
Sharing is Caring: Combination of Theories?

Dejan Jovanović and Clark Barrett

New York University

New York University Technical Report: TR2011-940

Abstract. One of the main shortcomings of the traditional methods for combining theories is the
complexity of guessing the arrangement of the variables shared by the individual theories. This paper
presents a reformulation of the Nelson-Oppen method that takes into account explicit equality prop-
agation and can ignore pairs of shared variables that the theories do not care about. We show the
correctness of the new approach and present care functions for the theory of uninterpreted functions
and the theory of arrays. The effectiveness of the new method is illustrated by experimental results
demonstrating a dramatic performance improvement on benchmarks combining arrays and bit-vectors.

1 Introduction

The seminal paper of Nelson and Oppen [14] introduced a general framework for combining quantifier-free
first-order theories in a modular fashion. Using the Nelson-Oppen framework, decision procedures for two
individual theories can be used as black boxes to create a decision procedure for the combined theory.
Although the Nelson-Oppen combination method as originally formulated requires stably-infinite theories, it
can be extended to handle non-stably-infinite theories using an approach based on polite theories [12, 13, 17].

The core idea driving the method (and ensuring its correctness) is the exchange of equalities and disequal-
ities over the interface variables between the theories involved in the combination. Interface variables are the
problem variables that are shared by both theories (or an extended set of variables in the polite combination
framework), and both theories must agree on an arrangement over these variables. Most modern satisfiability
modulo theories (SMT) solvers perform the search for such an arrangement by first using aggresive theory
propagation to determine as much of the arrangement as possible and then relying on an efficient SAT solver
to guess the rest of the arrangement, backtracking and learning lemmas as necessary [1, 3, 6].

In some cases, if the theories that are being combined have additional properties, such as convexity and/or
complete and efficient equality propagation, there are more efficient ways of obtaining a suitable arrangement.
But, in general, since the number of shared variables can be substantial, guessing an arrangement over the
shared variables can have an exponential impact1 on the running time [15]. Trying to minimize the burden
of non-deterministic guessing is thus of the utmost importance for a practical and efficient combination
mechanism. For example, a recent model-based theory combination approach [7], in which the solver keeps a
model for each theory, takes the optimistic stance of eagerly propagating all equalities that hold in the model
(whether or not they are truly implied), obtaining impressive performance improvements.

In this paper we tackle the problem of minimizing the amount of non-deterministic guessing by equipping
the theories with an equality propagator and a care function. The role of the theory-specific equality propagator
is, given a context, to propagate entailed equalities and disequalities over the interface variables. The care
function, on the other hand, provides information about which variable pairs among the interface variables are
important for maintaining the satisfiability of a given formula. With the information provided by these two
functions we can, in many cases, drastically reduce the search space for finding a suitable arrangement. We
present a reformulation of the Nelson-Oppen method that uses these two functions to decide a combination
of two theories. The method can easily be adapted to the combination method for polite theories, where
reducing the number of shared variables is even more important (the polite theory combination method
requires extending the set of interface variables significantly).

? This work was funded in part by SRC contract 2008-TJ-1850.
1 If the two theories can decided in time O(T1(n)) and O(T2(n)), the combination can be decided in O(2n

2

× (T1(n)+
T2(n))).

2 Preliminaries

We start with a brief overview of the syntax and semantics of many-sorted first-order logic. For a more
detailed exposition, we refer the reader to [11, 20].

A signature Σ is a triple (S, F, P) where S is a set of sorts, F is a set of function symbols, and P is a
set of predicate symbols. For a signature Σ = (S, F, P), we write ΣS for the set S of sorts, ΣF for the set F
of function symbols, and ΣP for the set P of predicates. Each predicate and function symbol is associated
with an arity, a tuple constructed from the sorts in S. Functions whose arity is a single sort are called
constants. We write Σ1 ∪Σ2 = (S1 ∪ S2, F1 ∪ F2, P1 ∪ P2) for the union2 of signatures Σ1 = (S1, F1, P1) and
Σ2 = (S2, F2, P2). Additionally, we write Σ1 ⊆ Σ2 if S1 ⊆ S2, F1 ⊆ F2, P1 ⊆ P2, and the symbols of Σ1

have the same arity as those in Σ2. We assume the standard notions of a Σ-term, Σ-literal, and Σ-formula.
In the following, we assume that all formulas are quantifier-free, if not explicitly stated otherwise. A literal
is called flat if it is of the form x = y, x 6= y, x = f(y1, . . . , yn), p(y1, . . . , yn), or ¬p(y1, . . . , yn), where
x, y, y1, . . . , yn are variables, f is a function symbol, and p is a predicate symbol. If φ is a term or a formula,
we will denote by varsσ(φ) the set of variables of sort σ that occur (free) in φ. We overload this function in
the usual way, varsS(φ) denoting variables in φ of the sorts in S, and vars(φ) denoting all variables in φ. We
also sometimes refer to a set Φ of formulas as if it were a single formula, in which case the intended meaning
is the conjunction

∧
Φ of the formulas in the set.

LetΣ be a signature, and letX be a set of variables whose sorts are inΣS. AΣ-interpretation A overX is a
map that interprets each sort σ ∈ ΣS as a non-empty domain Aσ,3 each variable x ∈ X of sort σ as an element
xA ∈ Aσ, each function symbol f ∈ ΣF of arity σ1 × · · · × σn × τ as a function fA : Aσ1

× · · · × Aσn
→ Aτ ,

and each predicate symbol p ∈ ΣP of arity σ1 × · · · × σn as a subset pA of Aσ1 × · · · ×Aσn . A Σ-structure is
a Σ-interpretation over an empty set of variables. As usual, the interpretations of terms and formulas in an
interpretation A are defined inductively over their structure. For a term t, we denote with tA the evaluation
of t under the interpretation A. Likewise, for a formula φ, we denote with φA the truth-value (true or false)
of φ under interpretation A. A Σ-formula φ is satisfiable iff it evaluates to true in some Σ-interpretation over
(at least) vars(φ). Let A be an Ω-interpretation over some set V of variables. For a signature Σ ⊆ Ω, and a
set of variables U ⊆ V , we denote with AΣ,U the interpretation obtained from A by restricting it to interpret
only the symbols in Σ and the variables in U .

We will use the definition of theories as classes of structures, rather than sets of sentences. We define a
theory formally as follows (see e.g. [19] and Definition 2 in [17]).

Definition 1 (Theory). Given a set of Σ-sentences Ax a Σ-theory TAx is a pair (Σ,A) where Σ is a
signature and A is the class of Σ-structures that satisfy Ax.

Given a theory T = (Σ,A), a T -interpretation is a Σ-interpretation A such that AΣ,∅ ∈ A. A Σ-formula
φ is T -satisfiable iff it is satisfiable in some T -interpretation A. This is denoted as A �T φ, or just A � φ if
the theory is clear from the context.

As theories in our formalism are represented by classes of structures, a combination of two theories is
represented by those structures that can interpret both theories (Definition 3 in [17]).

Definition 2 (Combination). Let T1 = (Σ1,A1) and T2 = (Σ2,A2) be two theories. The combination of
T1 and T2 is the theory T1 ⊕ T2 = (Σ,A) where Σ = Σ1 ∪ Σ2 and A = {Σ-structures A | AΣ1,∅ ∈ A1 and
AΣ2,∅ ∈ A2}.

The set of Σ-structures resulting from the combination of two theories is indeed a theory in the sense of
Definition 1. If Ax1 is the set of sentences defining theory T1, and Ax2 is the set of sentences defining theory
T2, then A is the set of Σ-structures that satisfy the set Ax = Ax1 ∪Ax2 (see Proposition 4 in [17]).

Given decision procedures for the satisfiability of formulas in theories T1 and T2, we are interested in
constructing a decision procedure for satisfiability in T1 ⊕ T2 using these procedures as black boxes. The

2 In this paper, we always assume that function and predicate symbols from different theories do not overlap, so that
the union operation is well-defined. On the other hand, two different theories are allowed to have non-disjoint sets
of sorts.

3 In the rest of the paper we will use the calligraphic letters A, B, . . . to denote interpretations, and the corresponding
subscripted Roman letters Aσ, Bσ, . . . to denote the domains of the interpretations.

Nelson-Oppen combination method [14, 19, 20] gives a general mechanism for doing this. Given a formula φ
over the combined signature Σ1 ∪ Σ2, the first step is to purify φ by constructing an equisatisfiable set of
formulas φ1∪φ2 such that each φi consists of only Σi-formulas. This can easily be done by finding a pure (i.e.
Σi- for some i) subterm t, replacing it with a new variable v, adding the equation v = t, and then repeating
this process until all formulas are pure. The next step is to force the decision procedures for the individual
theories to agree on whether variables appearing in both φ1 and φ2 (called shared or interface variables) are
equal. This is done by introducing an arrangement over the shared variables [17, 19].

Here we will use a more general definition of an arrangement that allows us to restrict the pairs of variables
that we are interested in. We do so by introducing the notion of a care graph. Given a set of variables V ,
we will call any graph G = 〈V,E〉 a care graph, where E ⊆ V × V is the set of care graph edges. If an
edge (x, y) ∈ E is present in the care graph, it means that we are interested in the relationship between the
variables x and y.

Definition 3 (Arrangement). Given a care graph G = 〈V,E〉 where sorts of variables in V range over a
set of sorts S, with Vσ = varsσ(V), we call δG an arrangement over G if there exists a family of equivalence
relations

E = { Eσ ⊆ Vσ × Vσ | σ ∈ S } ,

such that the equivalence relations restricted to E induce δG, i.e. δG =
⋃
σ∈S δσ , where each δσ is an

individual arrangement of Vσ (restricted to E):

δσ = { x = y | (x, y) ∈ Eσ ∩ E } ∪ { x 6= y | (x, y) ∈ Eσ ∩ E } ,

where Eσ denotes the complement of Eσ (i.e. Vσ ×Vσ \Eσ). If the care graph G is a complete graph over V ,
we will denote the arrangement simply as δV .

The Nelson-Oppen combination theorem states that φ is satisfiable in T1 ⊕ T2 iff there exists an arrange-
ment δV of the shared variables V = vars(φ1) ∩ vars(φ2) such that φi ∪ δV is satisfiable in Ti. However, as
mentioned earlier, some restrictions on the theories are necessary in order for the method to be complete. Suf-
ficient conditions for completeness are: the two signatures have no function or predicate symbols in common;
and the two theories are stably-infinite over (at least) the set of common sorts ΣS

1∩ΣS
2 . Stable-infiniteness was

originally introduced in a single-sorted setting [15]. In the many-sorted setting stable-infiniteness is defined
with respect to a subset of the signature sorts (see Definition 6 from [20]).

3 New Combination Method

In this section we present a new method for combining two signature-disjoint theories. The method is based
on Nelson-Oppen, but it makes equality propagation explicit and also includes a care function for each
theory, enabling a more efficient mechanism for determining equalities and dis-equalities among the shared
variables. Another notable difference from the original method is that we depart from viewing the combination
problem as symmetric. Instead, as in the method for combining polite theories [12, 13, 17], one of the theories
is designated to take the lead in selecting which variable pairs are going to be part of the final arrangement.

We first define the equality propagator and the care function, and then proceed to presenting and proving
the combination method.

Definition 4 (Equality Propagator). For a Σ-theory T we call a function P=
T J·K an equality propagator

for T if, for every set V of variables, it maps every set φ of flat Σ-literals into a set of equalities and
dis-equalities between variables:

P=
T JV K(φ) = {x1 = y1, . . . , xm = ym} ∪ {z1 6= w1, . . . , zn 6= wn} ,

where vars(P=
T JV K(φ)) ⊆ V and

1. for each equality xi = yi ∈ P=
T JV K(φ) it holds that φ �T xi = yi;

2. for each dis-equality zi 6= wi ∈ P=
T JV K(φ) it holds that φ �T zi 6= wi;

3. P=
T JV K is monotone, i.e. φ ⊆ ψ =⇒ P=

T JV K(φ) ⊆ P=
T JV K(ψ); and

4. P=
T JV K contains at least those equalities and dis-equalities, over variables in V , that appear in φ.

An equality propagator, given a set of theory literals, returns a set of entailed equalities and dis-equalities
between the variables in V . It does not need to be complete (i.e. it does not need to return all entailed
equalities and dis-equalities), but the more complete it is, the more helpful it is in reducing the arrangement
search space.

When combining two theories, the combined theory can provide more equality propagation than just the
union of the individual propagators. The following construction defines an equality propagator that reuses the
individual propagators in order to obtain a propagator for the combined theory. This is achieved by allowing
the propagators to incrementally exchange literals until a fix-point is reached.

Definition 5 (Combined Propagator). Let T1 and T2 be two theories over the signatures Σ1 and Σ2,
equipped with equality propagators P=

T1
J·K and P=

T2
J·K, respectively. Let T = T1 ⊕ T2 and Σ = Σ1 ∪ Σ2. Let

V be a set of variables and φ a set of flat Σ-literals partitioned into a set φ1 of Σ1-literals and a set φ2 of
Σ2-literals. We define the combined propagator P=

T J·K for the theory T as

P=
T JV K(φ) = (P=

T1
⊕P=

T2
)JV K(φ) = ψ∗1 ∪ ψ∗2 ,

where 〈ψ∗1 , ψ∗2〉 is the least fix-point of the following operator F

F〈ψ1, ψ2〉 =
〈
P=
T1

JV K(φ1 ∪ ψ2),P=
T2

JV K(φ2 ∪ ψ1)
〉
.

The fix-point exists as the propagators are monotone and the set V is finite. Moreover, the value of the
fix-point is easily computable by iteration from 〈∅, ∅〉. Also, it’s clear from the definition that the combined
propagator is at least as strong as the individual propagators, i.e. P=

T1
JV K(φ1) ⊆ P=

T JV K(φ1) ⊆ P=
T JV K(φ),

P=
T2

JV K(φ2) ⊆ P=
T JV K(φ2) ⊆ P=

T JV K(φ).

Definition 6 (Care Function). For a Σ-theory T we call a function CJ·K a care function for T with respect
to a T -equality propagator P=

T J·K when for every set V of variables and every set φ of flat Σ-literals

1. CJV K maps φ to a care graph G = 〈V,E〉;
2. if x = y or x 6= y are in P=

T JV K(φ) then (x, y) 6∈ E;
3. if G = 〈V, ∅〉 and φ is T -satisfiable then, for any arrangement δV such that P=

T JV K(φ) ⊆ δV , it holds that
φ ∪ δV is also T -satisfiable.

For any Σ-theory T and a set of variables V , the trivial care function C0J·K is the one that maps a set of
variables to a complete graph over the pairs of variables that are not yet decided. i.e.

C0JV K(φ) = 〈V, {(x, y) ∈ V × V | x = y, x 6= y 6∈ P=
T JV K(φ)}〉 .

Notice that C0J·K trivially satisfies the conditions of Definition 6 with respect to any equality propagator. To
see this, the only case to consider is when the care graph returned has no edges and φ is satisfiable. But in
this case, if P=

T JV K(φ) ⊆ δV , then we must have P=
T JV K(φ) = δV , and so clearly φ ∪ δV is satisfiable.

3.1 Combination Method

Let Ti be a Σi-theory, for i = 1, 2 and let S = ΣS
1 ∩ΣS

2 . Further, assume that each Ti is stably-infinite with
respect to Si, decidable, and equipped with a theory propagator P=

Ti
J·K. Additionally, let T2 be equipped with

a care function CT2J·K operating with respect to P=
T2

J·K. We are interested in deciding the combination theory
T = T1 ⊕ T2 over the signature Σ = Σ1 ∪ Σ2. We denote the combined theory propagator with P=

T J·K.The
combination method takes as input a set φ of Σ-literals and consists of the following steps:

Purify: The output of the purification phase is two new sets of literals, φ1 and φ2 such that φ1 ∪ φ2 is
equisatisfiable (in T) with φ and each literal in φi is a flat Σi-literal, for i = 1, 2. This step is identical to
the first step in the standard Nelson-Oppen combination method.

Arrange: Let V = vars(φ1) ∩ vars(φ2) be the set of all variables shared by φ1 and φ2. Let the care graph
G2 be a fix-point of the following operator

G〈G〉 = G ∪ CT2
JV K(φ2 ∪P=

T JV K(φ1 ∪ φ2 ∪ δG)) , (1)

where we choose the arrangement δG non-deterministically.
Check: Check the following formulas for satisfiability in T1 and T2 respectively

φ1 ∪P=
T JV K(φ1 ∪ φ2 ∪ δG2

) , φ2 ∪P=
T JV K(φ1 ∪ φ2 ∪ δG2

) .

If both are satisfiable, output satisfiable, otherwise output unsatisfiable.

Notice that above, since the graph is finite, and the the operator G is increasing, the fix-point always exists.
Moreover, it is in our interest to choose the minimal such fix-point, which we can obtain by doing a fix-point
iteration starting from G0 = 〈V, ∅〉. Another important fact is that for any fix-point G, with respect to the
δG we have chosen, of the operator G above, we must have that the care function from (1) returns an empty
graph. This follows from the fact that the propagator must return all the equalities and dis-equalities from
δG, by definition, and the care function then must ignore them, also by definition.

Example 1. Consider the case of combining two theories T1 and T2 equipped with trivial care functions and
propagators P=

Ti
JV K that simply return those input literals that are either equalities or dis-equalities over

variables in V . Assume that φ1 and φ2 are the output of the purification phase, and let V be the set of
variables shared by φ1 and φ2. Since CT2

J·K is a trivial care function, we will choose a arrangement δG2
over

the set V of shared variables that completes the set of equalities and dis-equalities over V . Since equality
propagators simply keep the input equalities and dis-equalities over V , and all other relationships between
variables in V are determined by δG2 , the combined propagator will return a complete arrangement δV and
we will then check φ1 ∪ δV and φ2 ∪ δV for satisfiability. This shows that our method can effectively simulate
the standard Nelson-Oppen combination method. We now show the correctness of the method.

Theorem 1. Let Ti be a Σi-theory, stably-infinite with respect to the set of sorts Si, and equipped with equality
propagators P=

Ti
J·K, for i = 1, 2. Additionally, let T2 be equipped with a care function CTi

J·K operating with
respect to P=

T2
J·K. Let Σ = Σ1 ∪Σ2, T = T1⊕T2 and let φ be a set of flat Σ-literals, which can be partitioned

into a set φ1 of Σ1-literals and a set φ2 of Σ2-literals, with V = vars(φ1) ∩ vars(φ2). If ΣS
1 ∩ΣS

2 = S1 ∩ S2,
then following are equivalent

1. φ is T -satisfiable;
2. there exists some care-graph G2, and a corresponding arrangement δG2 , that are fix-point solutions of

(1), such that the following sets are T1- and T2-satisfiable respectively

φ1 ∪P=
T JV K(φ1 ∪ φ2 ∪ δG2

) , φ2 ∪P=
T JV K(φ1 ∪ φ2 ∪ δG2

) .

Moreover, T is stably-infinite with respect to S1 ∪ S2.

Proof. (1)⇒ (2) : Suppose φ = φ1∪φ2 is T -satisfiable in a T -interpretation A. Let δV be the full arrangement
over V satisfied by A. Since δV trivially is a fix-point of (1), A satsifies δV , and the propagator only adds
formulas that are entailed, it is clear that A satisfies both sets of formulas, which proves one direction.

(2) ⇐ (1) : Assume that there is a T1-interpretation A1 and a T2-interpretation A2 (and assume wlog
that both interpret all the variables in V) such that A1 �T1

φ1 ∪ P=
T JV K(φ1 ∪ φ2 ∪ δG2

) and A2 �T2
φ2 ∪

P=
T JV K(φ1 ∪ φ2 ∪ δG2

). Let δV be the arrangement over the complete graph on V satisfied by A1, so

δG2 ⊆ P=
T2

JV K(φ2 ∪ δG2) ⊆ P=
T JV K(φ1 ∪ φ2 ∪ δG2) ⊆ δV .

Because G2 is a fix-point, we know that CT2
JV K(φ2 ∪ P=

T JV K(φ1 ∪ φ2 ∪ δG)) = 〈V, ∅〉. We then know, by
property 3 of the care function, that there is a T2-interpretation B2 such that B2 �T2

φ2 ∪ δV . Since δV is a
complete arrangement over all the shared variables and we also have that A1 �T1

φ1∪ δV , we can now appeal
to the correctness of the standard Nelson-Oppen combination method to obtain a T -interpretation C that
satisfies φ1 ∪ φ2 = φ. The proof that the combined theory is stably-infinite can be found in [12]. ut

3.2 Extension to Polite Combination

The method described in Section 3 relies on the correctness argument for the standard Nelson-Oppen method,
meaning that the theories involved should be stably-infinite for completeness. A more general combination
method based on the notion of polite theories (and not requiring that both theories be stably-infinite) was
introduced in [17] and clarified in [12, 13]. Here, we assume familiarity with the concepts appearing in those
papers, and show how they can be integrated into the combination method of this paper.

Assume that the theory T2 is polite with respect to the set of sorts S2 such that Σ1 ∩ Σ2 ⊆ S2, and is
equipped with a witness function witness2. We modify the combination method of Section 3.1 as follows:

1. In the Arrange and Check phases, instead of using φ2, we use the formula produced by the witness
function, i.e. φ′2 = witness2(φ2).

2. We define V = varsS(φ′2) instead of V = vars(φ1) ∩ vars(φ2).

Theorem 2. Let Ti be a Σi-theory polite with respect to the set of sorts Si, and equipped with equality
propagators P=

Ti
J·K, for i = 1, 2. Additionally, let T2 be equipped with a care function CT2J·K operating with

respect to P=
T2

J·K. Let Σ = Σ1 ∪Σ2, T = T1⊕T2 and let φ be a set of flat Σ-literals, which can be partitioned
into a set φ1 of Σ1-literals and a set φ2 of Σ2-literals. Let φ′2 = witnessT2

(φ2) and V = varsS(φ′2). If
S ⊆ S1 ∩ S2, then following are equivalent

1. φ is T -satisfiable;
2. there exists a care-graph G2 and arrangement δG2 , fix-point solutions of (1), such that the following sets

are T1- and T2-satisfiable respectively

φ1 ∪P=
T JV K(φ1 ∪ φ′2 ∪ δG2

) , φ′2 ∪P=
T JV K(φ1 ∪ φ′2 ∪ δG2

) .

Moreover, T is polite with respect to S1 ∪ (S2 \Σ1). 4

4 Theory of Uninterpreted Functions

The theory of uninterpreted functions over a signature Σeuf is the theory Teuf = (Σeuf,A), where A is simply
the class of all Σeuf-structures. Conjunctions of literals in this theory can be decided in polynomial time by
congruence closure algorithms (e.g. [18]). We make use of insights from these algorithms in defining both the
equality propagator and the care function. For simplicity, we assume Σeuf contains no predicate symbols, but
the extension to the case with predicate symbols is straightforward.

Equality Propagator. Let φ be a set of flat literals, let V be a set of variables, and let ∼c be the smallest
congruence relation5 over terms in φ containing {(x, t) | x = t ∈ φ}. We define a dis-equality relation 6=c as
the smallest relation satisfying

x ∼c x′ ∧ y ∼c y′ ∧ x′ 6= y′ ∈ φ =⇒ x 6=c y .

Now, we define the equality propagator as

P=
eufJV K(φ) = {x = y | x, y ∈ V, x ∼c y} ∪ {x 6= y | x, y ∈ V, x 6=c y}.

It is easy to see that P=
eufJ·K is indeed an equality propagator. Moreover, it can easily be implemented as part

of a decision procedure based on congruence closure.

Example 2. Given the set φ = { x = z, y = f(a), z 6= f(a) }, the equality propagator would return
P=

eufJ{ x, y }K(φ) = { x = x, y = y, x 6= y, y 6= x }.
4 The remaining proofs are relegated to an appendix.
5 In this context, a congruence relation is an equivalence relation that also satisfies the congruence property: if
f(x1, . . . , xn) and f(y1, . . . , yn) are terms in φ, and if for each 1 ≤ i ≤ n, xi ∼c yi, then f(x1, . . . , xn) ∼c
f(y1, . . . , yn).

Care Function. The definition of the care function is based on the fact that during congruence closure, we
only care about equalities between pairs of variables that occur as arguments in the same position of the
same function symbol. Again, let V be a set of variables and let φ be a set of flat literals, such that φ only
contains function symbols from F = {f1, f2, . . . , fn}.

For a set of formulas φ, let E (φ) denote the smallest equivalence relation over the terms occurring in φ
containing {(x, t) | x = t ∈ φ}. For an equivalence relation E, let E∗ denote the congruence closure of E (i.e.
the smallest congruence relation containing E). In order to make our care-function more precise, we will first
approximate the implications that possible equalities over variables in V could trigger. We do so by taking
all possible equalities over V , i.e. let δ=V be the full arrangement over the shared variables where all variables
of the same sort are equal. Now, to see what these equalities could imply, we let E=

φ = E (φ ∪ δ=V)
∗
.

For each function symbol f ∈ F of arity σ1 × σ2 × · · · × σk 7→ σ, let Ef be a set containing pairs of
variables that could trigger an application of congruence because of two terms that are applications of f .
More precisely, let Ef ⊆ V × V be a maximal set of pairs (x, y) ∈ V × V , that are not already decided by
the propagator (x �c y and ¬x 6=c y), such that for each (x, y) ∈ Ef we have:

1. there are xi and yi such that x ∼c xi and y ∼c yi;
2. there are terms f(x1, . . . , xi, . . . , xk) �c f(y1, . . . , yi, . . . , yk) in φ;
3. for 1 ≤ j ≤ k, variables xj and yj could become equal, (xj , yj) ∈ E=

φ ;
4. for 1 ≤ j ≤ k, variables xj and yj are not known to be disequal, ¬(xj 6=c yj).

Now, we let E =
⋃
f∈F Ef , and define the care function mapping φ to the care graph G as CeufJV K(φ) =

G = 〈V,E〉.

Example 3. Consider the following sets of literals

φ1 = {f(x1) 6= f(y1), y1 = x2} ,

φ2 = {z1 = f(x1), z2 = f(y1), g(z1, x2) 6= g(z2, y2)} ,

φ3 = {y1 = f(x1), y2 = f(x2), z1 = g(x1), z2 = g(x2), h(y1) 6= h(z1)} .

and corresponding sets of shared variables V1 = {x1, x2}, V2 = {x1, x2, y1, y2}, V3 = {x1, x2, y2, z2}. The
care function above would return the care graphs G1 = 〈V, {(x1, x2)}〉, G2 = 〈V, {(x1, y1), (x2, y2)}〉, and
G2 = 〈V, {(x1, x2)}〉.

Note that the the care function for φ3 does not return the pair (y2, z2), which is important in case x1
and x2 become equal. This is remedied in the procedure itself, by computing the fix-point, which, in case we
choose x1 = x2, will add the pair (y2, z2) to the care graph in the second step.

Theorem 3. Let Teuf be the theory of uninterpreted functions with equality over the signature Σeuf. CeufJ·K
is a care function for Teuf with respect to the equality propagator P=

eufJ·K.

5 Theory of Arrays

The extensional theory of arrays Tarr operates over the signatureΣarr that contains the sorts {array, index, elem}
and function symbols

read : array × index 7→ elem , write : array × index× elem 7→ array ,

where read represents reading from an array at a given index, and write represents writing a given value to
an array at an index. The semantics of the theory are given by the three axioms:

1. ∀ a:array. ∀ i:index. ∀ v:elem. read(write(a, i, v), i) = v,
2. ∀ a:array. ∀ i, j:index. ∀ v:elem. i 6= j → read(write(a, i, v), j) = read(a, j),
3. ∀ a, b:array. (∀ i:index. read(a, i) = read(b, i))→ a = b.

The flat literals of the theory are of the form x = read(a, i), a = write(b, i, x), i = j, i 6= j, x = y, x 6= y,
a = b, a 6= b, where here and below we use the convention that x, y, v are variables of sort elem, i, j are
variables of sort index, a, b, and c are variables of sort array, and w, z are variables of any sort. For a set
φ of flat Tarr-literals, we also define α(φ) to be the subset of φ that does not contain literals of the form
a = write(b, i, v).

Decision Procedure. Before presenting the equality propagator and care function, it will be helpful to present
a simple rule-based decision procedure for Tarr based on [9].6 Given a set Γ of flat Tarr-literals, we define ≈Γa
as E (α(Γ))

∗
and the corresponding disequality relation 6=Γ

a as the smallest relation satisfying:

w ≈Γa w′ ∧ z ≈Γa z′ ∧ w 6= z ∈ Γ =⇒ w′ 6=Γ
a z
′ .

Additionally, let Γ [l1, . . . , ln] denote that literals li, 1 ≤ i ≤ n appear in Γ , and for every pair (a, b) of
variables in varsarray(Γ), let ka,b be a distinguished fresh variable of sort index. Let Darr be the following set
of inference rules.

RIntro1
Γ [a = write(b, i, v)]
Γ, v = read(a, i)

if v 6≈Γa read(a, i)

RIntro2
Γ [a = write(b, i, v), x = read(c, j)]

Γ, i = j Γ, read(a, j) = read(b, j)
if

a ≈Γa c or b ≈Γa c,
i 6≈Γa j,
read(a, j) 6≈Γa read(b, j)

ArrDiseq
Γ [a 6= b]

Γ, read(a, ka,b) 6= read(b, ka,b)
if ¬(read(a, ka,b) 6=Γ

a read(b, ka,b))

Note that non-flat literals appear in the conclusions of rules RIntro2 and ArrDiseq. We use this as a shorthand
for the flattened version of these literals. For example, read(a, j) = read(b, j) is shorthand for x = read(a, j)∧
y = read(b, j) ∧ x = y, where x and y are fresh variables (there are other possible flattenings, especially if
one or more of the terms appears already in Γ , but any of them will do). We say that a set Γ of literals is
Darr-saturated if no rules from Darr can be applied.

Theorem 4. The inference rules of Darr are sound and terminating.

Theorem 5. Let Γ be a Darr-saturated set of flat Tarr-literals. Then Γ is Tarr-satisfiable iff α(Γ) is Teuf-
satisfiable.

Equality Propagator. Let φ be a set of flat literals and V a set of variables. Consider the following modified
versions of RIntro2 that are enabled only if one of the branches can be ruled out as unsatisfiable:

RIntro2a
Γ [a = write(b, i, v), x = read(c, j)]

Γ, i = j
if

a ≈Γa c or b ≈Γa c,
i 6≈Γa j,
read(a, j) 6=Γ

a read(b, j)

RIntro2b
Γ [a = write(b, i, v), x = read(c, j)]

Γ, read(a, j) = read(b, j)
if

a ≈Γa c or b ≈Γa c,
i 6=Γ

a j,
read(a, j) 6≈Γa read(b, j)

Let D′arr be obtained from Darr by replacing RIntro2 with the above rules. Since these rules mimic RIntro2
when they are enabled, but are enabled less often, it is clear that D′arr remains sound and terminating. Let
Γ ′ be the result of applying D′arr until no more apply (we say that Γ ′ is D′arr-saturated). We define the
equality propagator as:

P=
arrJV K(φ) = {w = z | w, z ∈ V,w ≈Γ

′

a z} ∪ {w 6= z | w, z ∈ V,w 6=Γ ′

a z}.

It is easy to see that P=
arrJ·K satisfies the requirements for a propagator. Though not necessary for the care

function we present here, a more powerful propagator can be obtained by additionally performing congruence
closure over write terms.

Care Function. Let φ be a set of flat literals and V a set of variables. First, since a simple propagator cannot
compute all equalities between array variables, we will ensure that the relationships between all pairs of array
variables in V have been determined. To do so we define the set Eφa of pairs of array variables in V that are
not yet known equal or dis-equal

Eφa = {(a, b) ∈ V × V | a 6≈φa b ∧ ¬(a 66=φ
a b)} .

6 The main difference is that in our procedure, we exclude literals containing write from the Teuf-satisfiability check
as they are not needed and this allows us to have a simpler care function.

Next, since the inference rules can introduce new read terms, we compute the smallest set Rφ with possible
such terms, i.e

– if x = read(a, i) ∈ φ or a = write(b, i, v) ∈ φ, then read(a, i) ∈ Rφ,
– if a = write(b, i, v) ∈ φ, read(c, j) ∈ Rφ, i 6≈φa j, and a ≈φa c ∨ b ≈φa c, then both read(a, j) ∈ Rφ and

read(b, j) ∈ Rφ,
– if a 6= b ∈ φ, then both read(a, ka,b) ∈ Rφ and read(b, ka,b) ∈ Rφ .

Crucial in the introduction of the above read terms, is the set of index variables whose equality could affect
the application of the RIntro2 rule. We capture these variables by defining the set Eφi as the set of all pairs
(i, j) such that:

– i 6≈φa j and ¬(i 6=φ
a j)

– ∃ a, b, c, v. a = write(b, i, v) ∈ φ, read(c, j) ∈ Rφ, and a ≈φa c ∨ b ≈φa c.

Finally, we claim that with the variables in Eφa and Eφi decided, we can essentially use the same care
function as for Teuf, treating read as uninterpreted. We therefore define the third set Eφr to be the set of all
pairs (i, j) ∈ V × V of undecided indices, i 6≈φa j and ¬(i 6=φ

a j), such that there are a, b, i′, j′ with a ≈φa b,
i ≈φa i′, j ≈φa j′, read(a, i′) ∈ Rφ, read(b, j′) ∈ Rφ, read(a, i′) 6≈φa read(b, j′).

With the definitions above, we can define the care graph as CarrJV K(φ) = G = 〈V,E〉, where the set of
edges is defined as

E =

Eφa if Eφa 6= ∅,
Eφi if Eφi 6= ∅, and

Eφr otherwise.

Note that as defined, Eφi may include pairs of index variables, one or more of which are not in V . Unfortunately,

the care function fails if Eφi is not a subset of V × V . We can ensure that it is either by expanding the set V

until it includes all variables in Eφi or doing additional case-splitting up front on pairs in Eφi , adding formulas

to φ, until Eφi ⊆ V × V .

Theorem 6. Let Tarr be the theory of arrays. CarrJ·K is a care function for Tarr with respect to the equality

propagator P=
arrJ·K for all sets φ of literals and V of variables such that Eφi ⊆ V × V .

Example 4. Consider the following constraints involving arrays and bit-vectors of size m, where ×m denotes
unsigned bit-vector multiplication:

n∧
k=1

(read(ak, ik) = read(ak+1, ik+1) ∧ ik = xk ×m xk+1) . (2)

Assume that only the index variables are shared, i.e. V = {i1, . . . , in+1}. In this case, both Eφa and Eφi will be
empty and the only read terms in Rφ will be those appearing in the formula. Since none of these are reading
from equivalent arrays, the empty care graph is a fix-point for our care function, and we do not need to guess
an arrangement.

Note that in the case when V contains array variables, the care graph requires us to split on all pairs of
these variables (i.e. the care function is trivial over these variables). Fortunately, in practice it appears that
index and element variables are typically shared, and only rarely are array variables shared.

6 Experimental Evaluation

We implemented the new method in the Cvc3 solver [2], and in the discussion below, we denote the new
implementation as Cvc3+C. We focused our attention on the combination of the theory of arrays and the
theory of fixed-size bit-vectors (QF AUFBV). This seemed like a good place to start because there are many
benchmarks which generate a non-trivial number of shared variables, and additional splits on shared bit-
vector variables can be quite expensive. This allowed us to truly examine the merits of the new combination

Table 1. Experimental results.

Boolector Yices MathSAT Z3 Cvc3 Cvc3+C
crafted (40) 2100.13 40 6253.32 34 468.73 30 112.88 40 388.29 9 14.22 40
matrix (11) 1208.16 10 683.84 6 474.89 4 927.12 11 831.29 11 45.08 11
unconstr (10) 3.00 10 0 706.02 3 54.60 2 185.00 5 340.27 8
copy (19) 11.76 19 1.39 19 1103.13 19 4.79 19 432.72 17 44.75 19
sort (6) 691.06 6 557.23 4 82.21 4 248.94 3 44.89 6 44.87 6
delete (29) 3407.68 18 1170.93 10 2626.20 14 1504.46 10 1766.91 17 1302.32 17
member (24) 2807.78 24 185.54 24 217.35 24 112.23 24 355.41 24 320.80 24

10229.57 127 8852.25 97 5678.53 98 2965.02 109 4004.51 89 2112.31 125

method. In order to evaluate our method against the current state-of-the-art, we compared to Boolector [4],
Yices [10], Cvc3, and MathSAT [5], the top solvers in the QF AUFBV category from the 2009 SMT-COMP
competition (in order). Additionally, we included the Z3 solver [8] so as to compare to the model-based theory
combination method [7]. All tests were conducted on a dedicated Intel Pentium E2220 2.4 GHz processor
with 4GB of memory. Individual runs were limited to 15 minutes.

We crafted a set of new benchmarks based on Example 4 from Section 5, taking n = 10, . . . , 100, with
increments of 10, and m = 32, . . . , 128, with increments of 32. We also included a selection of problems
from the QF AUFBV division of the SMT-LIB library. Since most of the benchmarks in the library come from
model-checking of software and use a flat memory model, they mostly operate over a single array representing
the heap. Our method is essentially equivalent to the standard Nelson-Oppen approach for such benchmarks,
so we selected only the benchmarks that involved constraints over at least two arrays. We anticipate that
such problems will become increasingly important as static-analysis tools become more precise and are able
to infer separation of the heap (in the style of Burstall, e.g. [16]). All the benchmarks and the Cvc3 binaries
used in the experiments are available from the authors’ website.7

The combined results of our experiments are presented in Table 1, with columns reporting the total time (in
seconds) that a solver used on the problem instances it solved (not including time spent on problem instances
it was unable to solve), and the number of solved instances. Compared to Cvc3, the new implementation
Cvc3+C performs uniformly better. On the first four classes of problems, Cvc3+C greatly outperforms Cvc3.
On the last three classes of problems, the difference is less significant. After examining the benchmarks, we
concluded that the multitude of arrays in these examples is artificial – the many array variables are just used
for temporary storage of sequential updates on the same starting array – so there is not a great capacity
for improvement using the care function that we described. A scatter-plot comparison of Cvc3 vs Cvc3+C is
shown in Figure 1(a). Because the only difference between the two implementations is the inclusion of the
method described in this paper, this graph best illustrates the performance impact this optimization can
have.

When compared to the other solvers, we find that whereas Cvc3 is not particularly competitive, Cvc3+C is
very competitive and in fact, for several sets of benchmarks, performs better than all of the others. This again
emphasizes the strength of our results and suggests that combination methods can be of great importance
for performance and scalability of modern solvers. Overall, on this set of benchmarks, Boolector solves the
most (solving 2 more than Cvc3+C). However, Cvc3+C is significantly faster on the benchmarks it solves.
Figure 1(b) shows a scatter-plot comparison of Cvc3+C against Boolector.

7 Conclusion

We presented a reformulation of the classic Nelson-Oppen method for combining theories. The most notable
novel feature of the new method is the ability to leverage the structure of the individual problems in order to
reduce the complexity of finding a common arrangement over the interface variables. We do this by defining
theory-specific care functions that determine the variable pairs that are relevant in a specific problem. We
proved the method correct, and presented care functions for the theories of uninterpreted functions and arrays.
The new method is asymmetric as only one of the theories takes charge of creating the arrangement graph
over the interface variables. Since many theories we combine in practice are parametrized by other theories,

7 http://cs.nyu.edu/∼dejan/sharing-is-caring/

(a) (b)

Fig. 1. Comparison of Cvc3, Cvc3+C and Boolector. Both axes use a logarithmic scale and each point represents the
time needed to solve an individual problem.

the non-symmetric approach has an intuitive appeal. We draw intuition for the care functions and correctness
proofs directly from the decision procedures for specific theories, leaving room for new care functions backed
by better decision algorithms. Another benefit of the presented method is that it is orthogonal to the previous
research on combinations of theories. For example, it would be easy to combine our method with a model-
based combination approach–instead of propagating all equalities between shared variables implied by the
model, one could restrict propagation to only the equalities that correspond to edges in the care graph,
gaining advantages from both methods.

We also presented an experimental evaluation of the method, comparing the new method to a standard
Nelson-Oppen implementation and several state-of-the art solvers. Compared to the other solvers on a selected
set of benchmarks, the new method performs competitively, and shows a robust performance increase over
the standard Nelson-Oppen implementation.

References

1. Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Splitting on demand in SAT Modulo
Theories. In Logic for Programming, Artificial Intelligence, and Reasoning, volume 4246 of LNCS, pages 512–526.
Springer, 2006.

2. Clark Barrett and Cesare Tinelli. CVC3. In Computer Aided Verification, volume 4590 of LNCS, pages 298–302.
Springer-Verlag, 2007.

3. Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Silvio Ranise, Peter van Rossumd,
and Roberto Sebastiani. Efficient theory combination via Boolean search. Information and Computation,
204(10):1493–1525, 2006.

4. Robert Brummayer and Armin Biere. Boolector: An efficient SMT solver for bit-vectors and arrays. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 5505 of LNCS, pages 174–177. Springer, 2009.

5. Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and Roberto Sebastiani. The Math-
SAT 4 SMT solver. In Computer Aided Verification, volume 5123 of LNCS, pages 299–303. Springer, 2008.

6. Roberto Bruttomesso, Alessandro Cimatti, Anders Franzen, Alberto Griggio, and Roberto Sebastiani. Delayed
theory combination vs. Nelson-Oppen for satisfiability modulo theories: A comparative analysis. Annals of Math-
ematics and Artificial Intelligence, 55(1):63–99, 2009.

7. Leonardo de Moura and Nikolaj Bjørner. Model-based Theory Combination. In 5th International Workshop on
Satisfiability Modulo Theories, volume 198 of Electronic Notes in Theoretical Computer Science, pages 37–49.
Elsevier, 2008.

8. Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 4963 of LNCS, page 337. Springer, 2008.

9. Leonardo de Moura and Nikolaj Bjørner. Generalized, efficient array decision procedures. In Formal Methods in
Computer-Aided Design, 2009, pages 45–52. IEEE, November 2009.

10. Bruno Dutertre and Leonardo de Moura. The YICES SMT Solver. Tool paper at http://yices. csl. sri. com/tool-
paper. pdf, 2006.

11. Herbert B. Enderton. A mathematical introduction to logic. Academic press New York, 1972.

12. Dejan Jovanović and Clark Barrett. Polite theories revisited. Technical Report TR2010-922, Department of
Computer Science, New York University, January 2010.

13. Dejan Jovanović and Clark Barrett. Polite theories revisited. In Logic for Programming, Artificial Intelligence,
and Reasoning, volume 6397 of LNCS, pages 402–416. Springer Berlin / Heidelberg, 2010.

14. Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM Transactions on
Programming Languages and Systems, 1(2):245–257, October 1979.

15. Derek C. Oppen. Complexity, convexity and combinations of theories. Theoretical Computer Science, 12(3):291–
302, 1980.

16. Zvonimir Rakamarić and Alan J. Hu. A Scalable Memory Model for Low-Level Code. In Verification, Model
Checking, and Abstract Interpretation, LNCS, page 304. Springer-Verlag, 2009.

17. Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba. Combining Data Structures with Nonstably Infinite
Theories Using Many-Sorted Logic. In Frontiers of Combining Systems, volume 3717 of LNCS, pages 48–64.
Springer, 2005.

18. Robert E. Shostak. An algorithm for reasoning about equality. In 5th international joint conference on Artificial
intelligence, pages 526–527. Morgan Kaufmann Publishers Inc., 1977.

19. Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the Nelson–Oppen combination procedure. In
Frontiers of Combining Systems, Applied Logic, pages 103–120. Kluwer Academic Publishers, March 1996.

20. Cesare Tinelli and Calogero Zarba. Combining decision procedures for sorted theories. In Logic in Artificial
Intelligence, volume 3229 of LNAI, pages 641–653. Springer, 2004.

(a) (b)

(c)

Fig. 2. Additional scatter-plot comparisons. Both axes are in logarithmic scale and each point represents the times
needed to solve an individual problem.

A Appendix

A.1 Proof of Correctness for Polite theories

Theorem 2. Let Ti be a Σi-theory polite with respect to the set of sorts Si, and equipped with equality
propagators P=

Ti
J·K, for i = 1, 2. Additionally, let T2 be equipped with a care function CT2

J·K operating with
respect to P=

T2
J·K. Let Σ = Σ1 ∪Σ2, T = T1⊕T2 and let φ be a set of flat Σ-literals, which can be partitioned

into a set φ1 of Σ1-literals and a set φ2 of Σ2-literals. Let φ′2 = witnessT2(φ2) and V = varsS(φ′2). If
S ⊆ S1 ∩ S2, then following are equivalent

1. φ is T -satisfiable;
2. there exists a care-graph G2 and arrangement δG2

, fix-point solutions of (1), such that the following sets
are T1- and T2-satisfiable respectively

φ1 ∪P=
T JV K(φ1 ∪ φ′2 ∪ δG2

) , φ′2 ∪P=
T JV K(φ1 ∪ φ′2 ∪ δG2

) .

Moreover, T is polite with respect to S1 ∪ (S2 \Σ1).

Proof. The proof is identical to the one given in Theorem 1 for the case of stably-infinite theories, except
that in the last step, instead of relying on the correctness of the standard Nelson-Oppen method, we rely on
the correctness of the method for combination of polite theories as described in [12, 13, 17].

A.2 Proof of Correctness for CeufJ·K

We prove correctness of the care function for CeufJ·K by relying on the following well-known proposition.

Proposition 1. A set φ of flat literals is Teuf-satisfiable iff for each dis-equality x 6= y ∈ φ, (x, y) 6∈ E (φ)
∗
.

Theorem 3. Let Teuf be the theory of uninterpreted functions with equality over the signature Σeuf. CeufJ·K
is a care function for Teuf with respect to the equality propagator P=

eufJ·K.

Proof. Let φ be a satisfiable set of flat literals, V a set of variables, let G = CeufJV K(φ) = 〈V, ∅〉. Suppose we
are given an arrangement δV (corresponding to equivalence relation EV) with P=

eufJV K(φ) ⊆ δV . We must
show that φ ∧ δV is Teuf-satisfiable. Let E1 = E (φ)

∗
, which corresponds to ∼c by definition; we know by

Proposition 1, above, that

x 6= y ∈ φ =⇒ (x, y) 6∈ E1 .

Now, let E2 = E (φ ∪ δV)
∗
. In order to prove the theorem it suffices to show that

x 6= y ∈ φ ∪ δV =⇒ (x, y) 6∈ E2 .

We start by showing that

E2 = E (E1 ∪ EV) . (3)

To see this, note first that by basic properties of equivalence and congruence closures we have that

E2 = E (φ ∪ δV)
∗

=
(
E (φ)

∗ ∪ E (δV)
)∗

= E (E1 ∪ EV)
∗
.

To see that E (E1 ∪ EV)
∗

= E (E1 ∪ EV), suppose that this is not the case. Then there must be some pair of
function applications f(x1, x2, . . . xn) and f(y1, y2, . . . yn), appearing in φ, such that

f(x1, x2, . . . xn) �c f(y1, y2, . . . , yn) ,

but for each 1 ≤ i ≤ n, (xi, yi) ∈ E (E1 ∪ EV). Since E1 is congruence closed, there must be some i such that
(xi, yi) 6∈ E1 and (xi, yi) ∈ E (E1 ∪ EV).

But then we must have a chain of equalities from xi to yi, such that at least one equality comes from EV ,
and hence this chain must contain at least two variables from V . Let’s pick x′i, the first variable from V , and
y′i, the last variable from V , in this equality chain.

Since the chains from xi to x′i, and yi to y′i do not contain any variables from V , all these equalities must
come from E1 so it must be that xi ∼c x′i and yi ∼c y′i. We can conclude that x′i �c y′i since otherwise we
could deduce that xi ∼c yi, and we would have the pair (xi, yi) ∈ E1. We additionally must have ¬x′i 6=c y

′
i,

as otherwise this dis-equality would be in the propagated set, and we chose δV to be compatible with it.
Finally, notice that for each 1 ≤ i ≤ n, we have that (xi, yi) ∈ E (E1 ∪ EV) ⊆ E=

V .
But, now we can see that x′i and y′i satisfy all the requirements of the care function, so the edge (x′i, y

′
i)

then must be in the graph G, contradicting the fact that it should be empty, which then establishes (3).
Next, it is clear that, since δV is compatible with the propagated equalities from φ, it must be that

v, w ∈ V and (v, w) ∈ E1 =⇒ (v, w) ∈ EV . (4)

We can now show that

v, w ∈ V and (v, w) ∈ E2 =⇒ (v, w) ∈ EV . (5)

Suppose v, w ∈ V and (v, w) ∈ E2 but (v, w) 6∈ EV . We know (v, w) 6∈ E1 by (4). By (3), the only
other possibility is that there is some transitive chain from v to w using pairs from both E1 and EV . Let
(t0, t1), (t1, t2), . . . , (tn−1, tn) be the smallest such chain (with v = t0 and w = tn). Let (ti, ti+1) be the first
pair such that ti ∈ V but ti+1 6∈ V (there must be such a pair since, by (5), every pair in E1 ∩ (V × V) is
also in EV so that if tk ∈ V for all k, we would have (t0, tn) ∈ EV). Then, let (tj , tj+1) be first pair such that
j > i and tj 6∈ V and tj+1 ∈ V (there must be such a pair since tn ∈ V). Notice that every pair from (ti, ti+1)
to (tj , tj+1) must be in E1 since each contains a term not in V . But then (ti, tj+1) ∈ E1 which contradicts
the assumption that (t0, t1), (t1, t2), . . . , (tn−1, tn) is the smallest chain from t0 to tn. This establishes (5).

Finally, we return to the main proof and show that if x 6= y ∈ φ ∪ δV , then (x, y) 6∈ E2. We consider two
cases.

– First, suppose x 6= y ∈ δV (and thus x, y ∈ V). Clearly, we cannot also have x = y ∈ δV , so (x, y) 6∈ EV .
It follows by (5) that (x, y) 6∈ E2.

– On the other hand, suppose that x 6= y ∈ φ. We know that (x, y) 6∈ E1, because φ∪ δG is Teuf-satisfiable.
Thus, by (3), if (x, y) ∈ E2, there must be some transitive chain from x to y using at least one pair
from EV . Let (t0, t1), (t1, t2), . . . , (tn−1, tn) be such a chain (with x = t0 and y = tn). Let i be the first
index such that ti ∈ V , and let j be the last index such that tj ∈ V . We know that i < j since at least
one pair must be from EV . Clearly, (ti, tj) ∈ E2, but since both ti ∈ V and tj ∈ V , we also know by
(5) that (ti, tj) ∈ EV . Now, notice that (t0, ti) and (tj , tn) are both in E1 since EV only contains pairs
that are both in V . It follows by the definition of the propagator that ti 6= tj ∈ P=

eufJV K(φ ∧ δG). But
δV ⊇ P=

eufJV K(φ ∧ δG), so we must have ti 6= tj ∈ δV . But this is impossible since (ti, tj) ∈ EV .

A.3 Proof of Correctness for the Decision Procedure for Tarr

While the procedure we described in Section 5 is based on the one described in [9], it differs enough that for
the reader’s convenience, we provide a self-contained proof of correctness for our procedure here.

Theorem 4. The inference rules of Darr are sound and terminating.

Proof. By sound, we mean that for each rule, the set of literals in the premise is Tarr-satisfiable iff one of
the conclusion sets is Tarr-satisfiable. It is not hard to see that the soundness of the RIntro1 rule follows from
axiom 1 of Tarr, the soundness of RIntro2 follows from axiom 2, and the soundness of ArrDiseq from axiom 3.

To see that the rules are terminating, first notice that applying a rule results in a new set Γ which no
longer satisfies the side conditions of the rule just applied, so every applicaiton of a rule along a derivation
branch must involve different “trigger” formulas (the ones in square brackets). Now, no rule introduces array
disequalities, so it is clear that ArrDiseq can only be applied a finite number of times. Similarly, no rule
introduces a new literal containing write, so RIntro1 can only be applied a finite number of times. Now,
suppose we have a set Γ in which both the RIntro1 rule and the ArrDiseq rule no longer apply, and consider
rule RIntro2 which may introduce new read terms. The rule cannot, however, introduce new array or index
variables, so there are only a finite number of read terms that can be generated. Each application of RIntro2
merges the equivalence classes of either two index terms or two read terms. Since there are a finite number of
both, eventually, no more merges will be possible.

Theorem 5. Let Γ be a Darr-saturated set of flat Tarr-literals. Then Γ is Tarr-satisfiable iff α(Γ) is Teuf-
satisfiable.

Proof. Since Teuf includes all structures and α(Γ) ⊆ Γ , the only-if direction is trivial. For the other direction,
suppose Γ is aDarr-saturated set of flat Tarr-literals and denote with≈Γa the equivalence relation (from Section
5) on terms in Γ . Let A be a maximally diverse Teuf model of α(Γ) (for instance, the ≈Γa -quotient of the
term model) and note that it has the property that for any two terms s and t of the same sort, s ≈Γa t iff
sA = tA. We must show that Γ is Tarr-satisfiable. We will construct a Tarr interpretation B that satisfies Γ .
We define the domains of B as:

Bindex = Aindex ,

Belem = Aelem ,

Barray = { f | f : Bindex 7→ Belem } .

We further define:

readB = λ a : Barray. λ i : Bindex. a(i) ,

writeB = λ a : Barray. λ i : Bindex. λ x : Belem. (λ j : Bindex.if i = j then x else a(j)) ,

iB = iA ,

xB = xA .

We interpret each array a ∈ varsarray(Γ) as the corresponding function from A in a restricted manner. Let e0
be some distinguished element of Belem. Then

aB = λ e : Bindex.

{
xA if x = read(b, i) ∈ Γ and a ≈Γa b and iA = e

e0 otherwise.

To see that this definition is well-defined, suppose that for some variable a, we have both x = read(b, i) ∈ Γ
and y = read(c, j) ∈ Γ , with a ≈Γa b ≈Γa c and iA = jA = e. Clearly, bA = cA, but then it must be the case
that read(b, i)A = read(c, j)A and so xA = yA.

It is easy to see that the definitions of read and write satisfy the axioms of Tarr. Now, we proceed to show
that B |= Γ . First, note that by definition, equalities and disequalities between variables of sort index or elem
are trivially satisfied. Next, consider an equality of the form x = read(a, i). Since this equality is in Γ , we
know by the definition of aB that aB(iB) = xB, so by the definition of read, such equalities must be satisfied.
This shows that for terms t of sort index or elem, tB = tA and thus if s is a term of the same sort as t, s ≈Γa t
iff sB = tB. Similarly, it is not hard to see that since α(Γ) is satisfiable, we must have that if s 6=Γ

a t then
sB 6= tB.

Next, consider equalities and disequalities between array-variables. For every disequality a 6= b ∈ Γ , we
know that (because Γ is saturated), read(a, ka,b) 6=Γ

a read(b, ka,b), and thus read(a, ka,b)
B 6= read(b, ka,b)

B,
from which it is clear that aB 6= bB. To see that equalities a = b are satisfied, note that we have a ≈Γa b, and
thus the definitions of aB and bB will yield the same function.

Finally, consider an equality of the form a = write(b, i, v). Let fa = aB and fwrite = write(b, i, v)B. We
will show that for all index-elements ι, fa(ι) = fwrite(ι). First, suppose that ι = iB. In this case, it is clear
that fwrite(ι) = vB by the definition of writeB. Also, by the RIntro1 rule (and saturation of Γ), we know that
v ≈Γa read(a, i) and so read(a, i)B = vB. Then, by the definition of aB, we must have fa(ι) = vB.

Suppose, on the other hand that ι 6= iB. Note that by the definition of writeB, this implies that fwrite(ι) =
bB(ι). Suppose now that we have x = read(c, j) ∈ Γ with a ≈Γa c and jB = ι. In this case, the definition
of aB ensures that fa(ι) = read(c, j)B. Looking at rule RIntro2, we can see that because Γ is saturated and
iB 6= jB, we must have read(a, j)B = read(b, j)B. But the first is equal to read(c, j)B by saturation and rule
RIntro1, and the second is equal to bB(ι) by the definition of readB. Thus, fwrite(ι) = fa(ι). A similar case
is when x = read(c, j) ∈ Γ with b ≈Γa c and jB = ι. Here, we have fwrite(ι) = read(c, j)B by definition, and
we can again conclude that read(a, j)B = read(b, j)B by rule RIntro2. But the first is equal to fa(ι) by the
definition of read and the second is equal to read(c, j)B and thus to fwrite(ι). In the final case, when neither
of the previous cases hold, the definitions of aB and bB ensure that fa(ι) = aB(ι) = e0 = bB(ι) = fwrite(ι).

Since B satisfies the axioms and each of the literals in Γ , this shows that Γ is Tarr-satisfiable.

A.4 Proof of Correctness for CarrJ·K

In the proofs below, we make use of the definitions from Section 5. We start with a few simple lemmas. The
first lemma states that both ≈φa and 6=φ

a are monotonic.

Lemma 1. Suppose φ and Γ are sets of flat Tarr-literals with φ ⊆ Γ . Then:

– s ≈φa t→ s ≈Γa t , and

– s 6=φ
a t→ s 6=Γ

a t .

Proof. This is a straightforward consequence of the fact that adding additional information can only increase
the set of consequences of a set of formulas.

The next lemma shows that if some derivation path from φ could introduce read(a, i), then read(a, i) ∈ Rφ.

Lemma 2. Let φ be a set of flat Tarr-literals, and Rφ the set defined as in Section 5, and suppose that
CarrJV K(φ) = 〈V, ∅〉. If Γ is a satisfiable set of literals obtained from φ via a sequence of Darr-inferences, then
if read(a, i) appears in Γ , read(a, i) ∈ Rφ.

Proof. The proof is by induction on inference rule applications. For the base case, suppose Γ = φ. The first
rule defining Rφ ensures that read(a, i) ∈ Rφ.

For the inductive case, suppose every term read(a, i) apearing in Γ is in Rφ and let Γ ′ be obtained
by applying an inference rule to Γ . Suppose the inference rule is RIntro1. This introduces a term of the
form read(a, i). It also requires that we have an equality a = write(b, i, v) ∈ Γ . But no rule introduces such
equalities, so it must have been in φ originally. The second rule defining Rφ then ensures that read(a, i) ∈ Rφ.

Next, suppose the inference rule is RIntro2. The right branch of this rule may introduce read(a, j) and
read(b, j). In this case, we know there are equalities a = write(b, i, v) and x = read(c, j) in Γ with i 6≈Γa j,
and either a ≈Γa c or b ≈Γa c. As before, we must have a = write(b, i, v) ∈ φ, and by the inductive hypothesis,
we know that read(c, j) ∈ Rφ. Furthermore, because Eφa = ∅, we know that all relationships between array
variables are already determined by φ, so either a ≈φa c or b ≈φa c; and we know from Lemma 1 that i 6≈φa j.
We can then see that the third rule defining Rφ ensures that read(a, j) and read(b, j) are in Rφ.

Finally, suppose the inference rule is ArrDiseq. This rule may introduce read(a, ka,b) and read(b, ka,b). This
can only happen if a 6= b ∈ Γ . Since no rules introduce disequalities between array variables, this implies that
a 6= b ∈ φ, and so the last rule defining Rφ ensures that read(a, ka,b) ∈ Rφ and read(b, ka,b) ∈ Rφ.

Theorem 6. Let Tarr be the theory of arrays. CarrJ·K is a care function for Tarr with respect to the equality

propagator P=
arrJ·K for all sets φ of literals and V of variables such that Eφi ⊆ V × V .

Proof. Assume that we are given a set φ of flat Σarr-literals and a set V of variables with Eφi ⊆ V × V .
Let CarrJV K(φ) = 〈V, ∅〉, and assume that φ is Tarr-satisfiable and δV is a variable arrangement such that
δV ⊇ P=

arrJV K(φ). Because φ is Tarr-satisfiable, there must exist some set Γ ⊇ φ such that:

– Γ is derivable from φ using the rules of Darr.
– Γ is Darr-saturated,
– α(Γ) is Teuf-satisfiable.

Let ∼c and 6=c be the relations defined in Seciton 4, but with respect to α(Γ). Notice that by definition we
have s ∼c t iff s ≈Γa t and s 6=c t iff s 6=Γ

a t.
We claim that δV ⊇ P=

eufJV K(α(Γ)). We know that δV ⊇ P=
arrJV K(φ), so it suffices to show that

P=
eufJV K(α(Γ)) = P=

arrJV K(φ). Notice that, if Γ ′ is the D′arr-saturated set obtained starting from φ (the
set is unique because D′arr is completely deterministic), then by matching up the definitions, it is clear that
P=

arrJV K(φ) = P=
eufJV K(α(Γ ′)). Thus, it suffices to show that P=

eufJV K(α(Γ)) = P=
eufJV K(α(Γ ′)). In fact, we

can show that Γ = Γ ′. Suppose not. The only way this could happen is if there is some Darr-derivation
starting from φ in which rule RIntro2 applies but rules RIntro2a and RIntro2b do not. Let Γ ′′ be the first
set in the Darr-derivation from φ ∪ δG to Γ in which this is the case. In order for the rule to be enabled,
we must have a = write(b, i, v), x = read(c, j) ∈ Γ ′′. As we have noted before, derivations do not introduce
equalities containing applications of write, so we must have a = write(b, i, v) ∈ φ. We also know by Lemma 2
that read(c, j) ∈ Rφ. We also have a ≈Γ ′′

a c or b ≈Γ ′′

a c, so it follows from the fact that Eφa = ∅ that a ≈φa c
or b ≈φa c. But now, since Eφi = ∅, clearly we must have i ≈φa j or i 6=φ

a j. In the first case, we know that

i ≈Γ ′′

a j, so rule RIntro2 is not applicable, contradicting our assumption. In the second case, we know that
i 6=Γ ′′

a j which means that RIntro2b is applicable, which also contradicts our assumption.
Now, let G′ = 〈V,E′〉 = CeufJV K(α(Γ)) be the Teuf care graph based on α(Γ) (with read treated as an

uninterpreted function). We claim that E′ = ∅. First note that because Eφa = ∅, we know that for variables
a, b ∈ varsarray(V), either a ≈φa b or a 6=φ

a b (and thus a ∼c b or a 6=c b), so it is impossible to have (a, b) ∈ E′.
Next, notice that since variables of sort elem cannot appear as arguments to functions in α(Γ), there are no
pairs (x, y) ∈ E′. Finally, suppose we have a pair of variables (i, j) of sort index such that (i, j) ∈ E′. Let δ=V
be the arrangement over V that sets all variables of the same sort whose relationship is not yet determined
in φ to be equal, and let E= = E (α(Γ) ∪ δ=V)

∗
. By the definition of CeufJ·K, we know that there exist a, b, i′, j′

such that

1. read(a, i′) and read(b, j′) appear in α(Γ),
2. read(a, i′) 6≈Γa read(b, j′),
3. (a, b) ∈ E=,
4. ¬(a 6=Γ

a b), and
5. i ≈Γa i′, and j ≈Γa j′,

We can immediately conclude from (1) that read(a, i′) ∈ Rφ and read(b, j′) ∈ Rφ by Lemma 2. Also, (2)
implies that read(a, i′) 6≈φa read(b, j′) by Lemma 1.

We next consider the implications of (5). Notice that the only equalities between index variables that
could have been introduced during the derivation from φ to Γ are those introduced by rule RIntro2. But,
as we argued above, if this rule is enabled and could introduce i = j, then (i, j) ∈ Eφi . But we know that

Eφi = ∅. It follows that no equalities between index variables are introduced in the derivation. So, if i ≈Γa i′,
then i ≈φa i′. The only way this can hold is if there is some chain of equalities from φ linking i to i′. Let i′′

be the first variable in the chain that is also in V . Clearly, i ≈φa i′′. Similarly, there is a j′′ on a chain from
j to j′ such that j ≈φa j′′. But now notice that if we can establish a ≈φa b (see below), it will follow from the
definition of Eφr (and the fact that Eφr = ∅) that either i′′ ≈φa j′′ or i′′ 6=φ

a j
′′. But i′′ ≈Γa i and j′′ ≈Γa j, so

in the first case, we clearly have i ≈Γa j and thus i ∼c j, and in the second case, we have i 6=Γ
a j and thus

i 6=c j. This contradicts our assumption that (i, j) ∈ E′. It remains to show a ≈φa b. By (4), we know that
¬(a 6=Γ

a b), and thus by Lemma 1, ¬(a 6=φ
a b). But since Eφa = ∅, we must then have a ≈φa b.

We have thus established that E′ = ∅. Now, because δV ⊇ P=
eufJV K(α(Γ)), by Theorem 3, α(Γ) ∪ δV

must be Teuf-satisfiable. But α(Γ) ∪ δV = α(Γ ∪ δV), so α(Γ ∪ δV) is Teuf-satisfiable. Finally, since Γ is
Darr-saturated, and δV can only add new equalities and disequalities between variables of sort index or elem,
it is clear that Γ ∪ δV must also be Darr-saturated, so by Theorem 5, Γ ∪ δV is Tarr-satisfiable, from which
we can conclude that φ ∪ δV is Tarr-satisfiable.

