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Abstract

Various applications, from artistic creation, to scientific computing, require the processing and

reasoning of 3D digital objects. The computational modeling of 3D geometric shapes, materials,

and textures, as well as the simulation of their deformation and interactions, is essential to bring

the algorithmic power of computing to real-life manufacture, architecture, and medical device

design. Depending on the specific numerical properties, better algorithm designs might prefer 3D

data with different representations, for example, in planes, surfaces, or inside volumes. This thesis

investigates the problem related to the representations of data on 3D shapes and across different

domains, so computations for different stages within a pipeline may come together synergistically

without manual tuning that disrupts an automated data flow. I propose novel geometrical principles

in various geometric modeling and processing stages. I also showcase various geometric computing

applications that easily integrate such principles to guarantee the geometry validity and algorithm

effectiveness of surface parameterization, rendering, deformation/animation, and mechanical

simulation. In addition, we can finally explore creative solutions that reliably coarsen the surface.

Such simplification accelerates everyday geometric modeling operations; the contribution also

includes a scalable method to construct coarse and curved meshes for fast animation and scientific

computing. Furthermore, the thesis provides a declarative way to formulate mesh processing

and adaptation algorithms to facilitate the practical development of robust and reliable mesh

processing software. Finally, the thesis includes extensive numerical validations involving tens of

thousands of complex geometry shapes.
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1 | Introduction

People invent, craft, and interact with physical objects, ranging from sculptures to buildings and

handheld devices to vehicles. And most of these objects are manufactured through a digitally aided

production pipeline. In practice, a typical product begins its life-cycle from a digital specification of

the shape and material, and we can take advantage of the numerical solution of partial differential

equations (PDEs) to portray how a design would behave even before it becomes a reality. Computer

simulation would then test the behavior to match the designer’s intent: a car hood’s deformation

under the pressure of collision or a steel pan’s temperature distribution when heated on a stove.

In this case, a robust, efficient and accurate design-simulation pipeline could lift many iterations of

manufacturing to the digital platform. In addition, as it is safer to conduct more stress experiments

in a virtual environment, a reliable simulation promotes safety, especially in designing bio-

mechanical equipment.

On the other hand, we also create digital assets from natural objects through an inverse pipeline.

Traditionally, it serves as a way to reverse engineer a part into a digital format or preserve ancient

or otherwise valuable artifacts. And more recently, with the advance of 3D scanning and capture

devices, people are increasingly interested in representing themselves and their surroundings

as digital avatars and virtual environments. Such techniques convert raw scanning images to a

digital 3D shape. Afterward, the designer may perform additional simplification, editing, fairing,

modifications, or other modeling operations. Such digital objects will then interact, deform, and

collide with each other in a virtual modeling or game environment, abiding by essential physics.
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Such advances give us growing quantities of 3D model datasets, with great versatility of organic

shapes and their defects, including holes, self-overlapping surfaces, etc. Such defects require

expertise and manual labor to fix, throttling the effort for everyone to enjoy and create in the

virtual world. Towards an information-rich virtual environment, we must extend and scale up the

algorithmic capabilities to process and understand their diverse shape, material, and physics.

Various approaches specify a shape, depending on the different geometry characteristics.

Shape modeling evolves beyond smooth and regular objects like sculpture or furniture. Algorithm-

deduced structures have gained popularity since they deliver the promise of maximal durability

with limited material. Downstream, computer simulation requires a discrete tessellation of the

object. A notable example is a mesh: a data structure containing a list of vertices for the spatial

locations, a list of edges connecting different vertices, and a list of simple polygons or polyhedra.

However, it is rarely the case that one mesh fits all. More degrees of freedom give a more accurate

description of the desired shape, which inevitably means more computational resources are needed

to handle the computation.

Researchers usually examine the 3D acquisition, computational design, deformable animation,

and physical simulation separately. Different approaches lead to various computational tools for

discretized geometry. The representations between design methods and various adaptations of

simulations, even for the same shape, are not reliably connected. In the general case, the material,

attribute, or experiment setting cannot be robustly re-used on another representation without

laborious manually fixing. Such a pipeline demands the engineer or designer to understand

precisely the properties of the specific numerical methods of choice. It also prohibits an automatic

and robust pipeline from optimizing the desired physical durability or permeability structure.

In contrast to the 2D representations of images, which are commonly stored on grid struc-

tures and processed with standard matrix operations, different representation candidates can

express and process the information on a 3D shape. From multi-view depth images, point clouds,

structured/unstructured meshes, and different trade-offs are associated, ranging from memory
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efficiency and specialized algorithms. And across different stages of the computational pipeline

regarding a 3D shape, distinct representations might be used to adapt to specialized algorithms:

for example, 3D acquisition devices produce multi-view depth images; some design and model-

ing tools make use of the topology-flexible implicit surfaces as the representation for lattice or

porous structures; digital asset modeling tool-chains and industry make use of surface triangle, or

quadrilateral meshes extensively; physical simulation requires a spatial partitioning, as commonly

tetrahedral meshes to carry out the quantities inside a volume.

The thesis aims to develop computational principles to reliably associate different representa-

tions of discrete geometry entities at diverse design and simulation stages. Instead of re-assigning

properties at various phases of the design-simulation pipeline or whenever the required budget is

different, a good association between geometry at different stages gives more freedom to the design

and development of automatic and adaptive solvers. The adaptation can be bi-directional: on the

one hand, with coarse and concise tessellation, the algorithm utilizes the information associated

with the original design to obtain more faithful simulations. On the other hand, in early-stage

prototyping and automatic data generation for deep learning, the principles I established allow for

simplifying the shape and retaining the settings, providing a fast answer. In addition, I follow the

same direction to design the first large-scale and robust approach for curved mesh representation,

which provides accurate specification and efficient physical simulations. In addition, by reliably

connecting the data across different representations and at various stages, guarantees of the

correctness of properties can be safely upheld, reducing the chance of mistakes and iterations

by manual labor. Furthermore, since different algorithms perform well across representations,

multiple algorithms can finally work synergistically to improve the performance of an overall

industry pipeline. Such a contribution outreach to 3D model design and acquisition pipeline, as

well as their physical behavior predication, and manufactured.

The thesis investigates several problems and studies the techniques relevant to meshes and

their associated attributes. The central strategy is to leverage auxiliary geometric constructions to
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design novel constraints usable in the mathematical optimization framework. By integrating such

geometric constraints into the surface parameterization, or mesh generation and optimization

pipeline, I provide guarantees that the meshes are reliable candidates for downstream applications,

where the attributes can be robustly transferred. In the meantime, with the limited precision

implementations, geometric algorithms are often troubled with numerical problems. Thus, I also

perform extensive experiments to back up the claim and make the algorithm’s concept more easily

accessible to industrial applications.

Using these principles, I showcased reliable, efficient, and robust simulations from an arbitrarily

complex design setup. After establishing such connections, I am ready to systematically evaluate

and improve the computational bottlenecks in the entire engineering pipeline. The central idea

of this dissertation is to develop geometric computing tools that reliably associate different

representations of discrete geometry entities at diverse design and simulation stages. Instead

of re-assigning properties at various phases of the design-simulation pipeline or whenever the

required budget is different, a good association between geometry at different stages gives more

freedom to the design and development of automatic and adaptive solvers. The adaptation can be

bi-directional: on the one hand, with coarse and concise tessellation, the algorithm utilizes the

information associated with the original design to obtain more faithful simulations. On the other

hand, in early-stage prototyping and automatic data generation for deep learning, the principles

established to simplify the shape and retain the settings provide a fast answer for an update.

Chapter 2 reviews related works and our contribution in the broader technical context for the

remainder of this dissertation. Following, Chapter 3 introduces the problem of surface parame-

terization, where an injective map, from the 3D surface to the 2D domain, assigns a planar u/v

coordinate to each point on the surface. The algorithm guarantees the bijectivity between the

surface and its codomain, which is essential to convert surface-attached information into a unique

planar representation, and take advantage of widely supported image-based compression and

processing techniques for the color or material. The algorithm employs techniques of triangulation
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augmentation in the virtual expanded domain to fit the bijectivity condition into a mathematical

optimization framework, which scales up to large models with ease. To demonstrate the practical

applicability, we use it to compute globally bijective single patch parametrizations, pack multiple

charts into a single UV domain, remove self-intersections from existing models, and deform 3D

objects while preventing self-intersections.

Chapter 4 further investigates the problem of bijective attribute transfer between surfaces,

where I formulate a novel approach to associate bijective multiple close-by surfaces. The algorithm

converts a self-intersection-free, orientable, and manifold triangle mesh into a generalized prismatic

shell equipped with a bijective projection operator to map the mesh to a class of discrete surfaces

contained within the shell whose normals satisfy a simple local condition. Properties can be

robustly and efficiently transferred between these surfaces using the prismatic layer as a common

parametrization domain. The combination of the prismatic shell construction and corresponding

projection operator is a robust building block readily usable in many downstream applications,

including the solution of PDEs, displacement maps synthesis, Boolean operations, tetrahedral

meshing, geometric textures, and nested cages.

Chapter 5 incorporates the shell into two mesh generation tasks: conforming tetrahedral

meshes, and near-surface high-order shell meshes. Combined, they constitute a robust and

automatic algorithm to convert dense piece-wise linear triangle meshes with features annotated

into coarse tetrahedral meshes with curved elements. The construction guarantees that the high-

order meshes are free of element inversion or self-intersection. The user can specify a maximal

geometrical error from the input mesh, which controls the density of the curved approximation.

The boundary of the output mesh is in bijective correspondence to the input, enabling to transfer

of attributes between them, such as boundary conditions for simulations, making it an ideal

replacement or complement for the original input geometry. We demonstrate the robustness and

effectiveness of our algorithm in generating high-order meshes for a large collection of complex

3D models.
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While being useful in various applications that I design and investigate, I believe these geo-

metric constructions benefit more broadly if incorporated into some existing implementations.

While straightforward in theory, such integration often involves error-prone software engineering

efforts, especially when our goal is to arrive at robust algorithms. Therefore, an abstraction

and novel mesh editing specification paradigm is introduced in Chapter 6. Such an algorithm

development toolkit aims to make our contribution accessible to more researchers in the field

of robust geometry modeling, and scalable physical simulation. We introduce a novel approach

to describe mesh generation, mesh adaptation, and geometric modeling algorithms relying on

changing mesh connectivity using a high-level abstraction. The main motivation is to enable

easy customization and development of these algorithms via a declarative specification consisting

of a set of per-element invariants, operation scheduling, and attribute transfer for each editing

operation. We demonstrate that widely used algorithms editing surfaces and volumes can be com-

pactly expressed with our abstraction, and their implementation within our framework is simple,

automatically parallelizable on shared-memory architectures, and with guaranteed satisfaction of

the prescribed invariants. These algorithms are readable and easy to customize for specific use

cases. We introduce a software library implementing this abstraction and providing automatically

shared memory parallelization, which utilizes the multi-core structure of the computing resources

to accelerate the task of mesh editing.

In addition to the mathematical formulation and algorithmic design, we also provide open-

source implementations for the algorithms in the thesis. Additionally, we release source code

for each of the algorithm implementations [Jiang 2017, 2020, 2021], along with reproducible

instructions, to foster further research in this direction.
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2 | Related Works

2.1 Mesh Data Structure in Computer Graphics

Efficient data structures for representing solid geometry have been an intriguing research topic

since the early days of computer graphics [Requicha 1980]. As a result, there is a large variety of

mesh data structure designs, where they are each optimized for different usage scenarios. Index-

array-based mesh data structure encodes each element as a list of vertex indices on its boundary.

It is simple and memory efficient, but neighborhood query and local operations are not directly

supported. Graph-based mesh data structures, including half-edge [Mäntylä 1987], winged-edge

[Baumgart 1972], quad-edge [Guibas and Stolfi 1985], cell-tuple [Brisson 1989], etc., viewmeshes as

graphs, where each element contains links to its adjacent elements. This design allows for efficient

local query and update, making it ideal for algorithms like mesh simplification [Garland and

Heckbert 1997]. Closely related is the concept of generalized combinatorial maps [Lienhardt 1994;

Dufourd 1991], and the CGoGN library [Kraemer et al. 2014] provide an efficient implementation

which provide parallel traversal of the mesh. Linear-algebra-based mesh data structures, such as

[DiCarlo et al. 2014; Zayer et al. 2017; Mahmoud et al. 2021], encode adjacency information as

sparse matrices. This design elegantly reduces neighborhood query and local operations to sparse

matrix computations, which are highly optimized for modern parallel computing architecture.

Our algorthim implementation in chapters 3, 4, 5 make extensive use of matrix-based coordinate

and connectivity representations. However, by design, mesh data structures provide a low-level
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interface to manipulate vertices, edges, faces, and tetrahedra. Different designs differ vastly in API

and implementation details, making it hard to port algorithm from one data structure to another.

Our contribution in this dissertation focus on algorithm specification, and would be integrated

regardless of the choice of underlying mesh data structure. We further address in chapter 6 for

the practical challenges in incorporating into the implementations.

Domain specific languages in graphics For severeal subfields of computer graphics, there

has been a variety of domain specific languages (DSL) developed, that has proven to be useful

for researchers and practitioners. For dense regularly structured data such as images, Halide

[Ragan-Kelley et al. 2013] popularized the idea of decoupling image processing operations from

low level scheduling tasks. Similar abstraction that separates algorithm description from low level

data structure and/or parallel architecture can also be found in other DSLs such as Simit [Kjolstad

et al. 2016] for simulation over triangle meshes, Taco [Kjolstad et al. 2017] for dense and sparse

tensor algebra, Taichi [Hu et al. 2019a] for simulation over sparse volumetric data, and Penrose

[Ye et al. 2020] for generating diagrams from math notation. For mesh editing and modeling, due

to the complexity of the data structure, there has been few effort. In our final chapter 6, we take a

first step towards an abstraction model of mesh processing algorithms. Our contribution is more

of a software development kit, instead of a full language but I believe it would be beneficial for

further efficient mesh editing algorithms.

2.2 Maps and Parameterizations

Injective Surface Parameterizatons

We review only the most relevant prior works here and refer to the following surveys for more

details [Floater and Hormann 2005; Sheffer et al. 2006; Hormann et al. 2007]. There are many

methods that focus on creating locally injective maps, which amounts to requiring that triangles
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maintain their orientation (i.e. they do not flip). In mesh parameterization, many flip-preventing

metrics have been developed: the idea is to force the metric to diverge to infinity as triangles

become degenerate, inhibiting flips. These metrics optimize various geometric properties such as

angle [Hormann and Greiner 2000; Degener et al. 2003] or length [Sander et al. 2001; Sorkine et al.

2002; Aigerman et al. 2014; Poranne and Lipman 2014; Smith and Schaefer 2015] preservation.

Similar techniques in the context of deformation have been used to add barrier functions to

enforce local injectivity in deformations [Schüller et al. 2013]. Our method uses these techniques

to prevent flips in the scaffold.

Many methods have also been developed to optimize these distortion energies including

moving one vertex at a time [Hormann and Greiner 2000], parallel gradient descent [Fu et al.

2015], as well as other quasi-newton approaches [Smith and Schaefer 2015; Kovalsky et al. 2016;

Rabinovich et al. 2017]. Other approaches construct such maps by performing a change of basis,

projecting to an inversion free space, and then constructing a parametrization from the result [Fu

and Liu 2016]. While our method could potentially use any of these optimization methods, we use

[Rabinovich et al. 2017] for its large step sizes. We elaborate on this choice in Section 3.2.1.

In addition to (locally) injective constraints, bijective maps have the additional requirement that

the boundary does not intersect. One simple method for creating a bijective map in 2D involves

constraining the boundary to a convex shape such as a circle [Tutte 1963; Floater 1997]. Strictly

speaking, such bijective is actually injective. Such parametrizations guarantee a bijective map in

2D but create significant distortion. Even so, these methods are commonly used to create a valid

starting point for further optimization [Schüller et al. 2013; Smith and Schaefer 2015; Rabinovich

et al. 2017]. While methods that produce bijective maps with fixed boundaries exist [Weber and

Zorin 2014; Campen et al. 2016], we aim to produce maps where the boundary is free to move to

reduce the distortion of the map.

[Gotsman and Surazhsky 2001; Surazhsky and Gotsman 2001] introduced the concept of scaf-

folding where the free space is triangulated for the purpose of morphing without self-intersection.
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In [Zhang et al. 2005], the scaffold triangles are given a step function for their error: zero if

not flipped, otherwise infinity. Hence, the bijective condition becomes local in that the shape

can evolve until a scaffold triangle flips, in which case the free space is retriangulated and the

optimization continues. The main limitation of this work is the lack of an evolving triangulation

during the line search and the absence of a rotationally invariant metric for the scaffold triangles,

which lead to very small steps and an inefficient optimization.

The Deformable Simplicial Complex (DSC) method [Misztal and Bærentzen 2012] utilize a

triangulation of both the free space and the interior of an object to track the interface between

the two volumes. Similar to [Zhang et al. 2005], the DSC retriangulates at degeneracies but also

performs operations to improve the shape of the triangles. This method changes the triangulation

of the interface that it tracks, which works well for simulation, but it is not allowed in many other

applications such as UV mapping.

Air meshes [Müller et al. 2015] extends the technique of Zhang et al. [Zhang et al. 2005] to

add the concept of triangle flipping based on a quality measure during the optimization instead of

simply retriangulating at the first sign of a degeneracy. However, this method does not maintain

bijective maps as boundaries are allowed to inter-penetrate during optimization: the scaffold is

only used to efficiently detect problematic regions, and the local injectivity requirement is a soft

constraint in the optimization. The problem tackled in this chapter is much harder, because we do

not allow any overlap during any stage of the optimization to guarantee that the resulting maps

will be bijective.

[Smith and Schaefer 2015] take a different approach: instead of using a scaffold triangulation,

the authors introduce a locally supported barrier function for the boundary to prevent intersection

and explicitly limit the line search by computing the singularities of both the distortion energy

and the boundary barrier function. Such an approach is inspired by traditional collision detection

and response methods that are discussed below. Given a bijective starting point, this approach

never leaves the space of bijective maps during optimization. Its main limitation is that it is
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computationally expensive, especially for large models. Our method is two order of magnitude

faster in chapter 3 (Figure 3.11).

Global Parametrization Conformal mesh parametrization algorithms adapt the mesh during

optimization, as a fixed triangulation restricts the space of metrics realizable [Luo 2004; Campen

and Zorin 2017; Campen et al. 2019; Gu et al. 2018b,a; Springborn 2020; Sun et al. 2015]. Two

very recent works [Gillespie et al. 2021; Campen et al. 2021] introduce robust algorithms based

on Ptolemy flips to compute conformal maps satisfying a prescribed metric. These methods

require changing the mesh connectivity of a triangle mesh, and could additionally benefit from

our framework in Chapter 6 to simplify their implementation and parallelize the mesh editing

operations.

Texture Seam Creation.

In the context of parametrization, some approaches optimize the connectivity of the charts of

the surface during parametrization to obtain a bijective map. [Lévy et al. 2002; Zhou et al. 2004]

parameterize the surface and then split charts based on whether they intersect [Lévy et al. 2002]

or based on a level of distortion [Zhou et al. 2004]. Sorkine et al. [Sorkine et al. 2002] employ

a bottom-up approach and add triangles to a parametrization chart until bijectivity would be

violated. The problem we are solving is more general (seams are only useful for texture mapping

applications) and constrained (we preserve the prescribed seams). Our algorithm in Chapter 3

could be used by these algorithms to parametrize single charts, which could reduce the number of

additional seams. Also, [Li et al. 2018] incorporates our method to automatically produce seams

from a given geometry.
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Shell Maps

2.5D geometric textures, defined around a surface, are commonly used in rendering applications

[Wang et al. 2003, 2004; Porumbescu et al. 2005; Peng et al. 2004; Lengyel et al. 2001; Chen et al.

2004; Huang et al. 2007; Jin et al. 2019]. The requirement is to have a thin shell around the surface

that can be used to map an explicit mesh copied from a texture, or a volumetric density field used

for ray marching. Our shells are naturally equipped with a 2.5D parametrization that can be used

for these purposes, and have the advantage of allowing users to generate coarse shells which are

efficient to evaluate in real-time. The bijectivity of our map ensures that the volumetric texture is

mapped in the shell without discontinuities. We show one example in Section 4.4.

Isotopy between surfaces [Chazal and Cohen-Steiner 2005; Chazal et al. 2010] presents

conditions for two sufficiently smooth surfaces to be isotopic. Specifically, the projection operator

is a homeomorphism. [Mandad et al. 2015] extends this idea to make an approximation mesh that

is isotopic to a region. However, they did not realize a map suitable for transferring attributes.

2.3 Attribute Association and Transfer

Common Domains Cross Parameterization An approach to transfer attributes is to map both

the source and the target to a common parametrization domain, and to compose the parametriza-

tion of the source domain with the inverse parametrization of the target domain to define a

map from source to target. In the literature, there are methods that map triangular meshes to

disks [Tutte 1963; Floater 1997], region of a plane [Maron et al. 2017; Aigerman et al. 2015, 2014;

Schüller et al. 2013; Smith and Schaefer 2015; Rabinovich et al. 2017; Jiang et al. 2017; Weber

and Zorin 2014; Campen et al. 2016; Müller et al. 2015; Gotsman and Surazhsky 2001; Surazhsky

and Gotsman 2001; Zhang et al. 2005; Fu and Liu 2016; Litke et al. 2005; Schmidt et al. 2019], a

canonical coarse polyhedra [Kraevoy and Sheffer 2004; Praun et al. 2001], orbifolds [Aigerman
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and Lipman 2015; Aigerman et al. 2017; Aigerman and Lipman 2016], Poincare disk [Springborn

et al. 2008; Stephenson 2005; Kharevych et al. 2006; Jin et al. 2008], spectral basis [Ovsjanikov

et al. 2012; Shoham et al. 2019; Ovsjanikov et al. 2017], and abstract domains [Kraevoy and Sheffer

2004; Schreiner et al. 2004; Pietroni et al. 2010]. While these approaches allow mappings between

completely different surfaces, this is a hard problem to tackle in full generality fully automatically,

with guarantees on the output (even some instances of the problem of global parametrization,

i.e. maps from a specific type of almost everywhere flat domains to surfaces, lack a fully robust

automatic solution).

Our approach in chapters 4, 5 uses a coarse triangular domain embedded in ambient space

as the parametrization domain, and uses a vector field-aligned projection within an envelope

to parametrize close-by surfaces bijectively to the coarse triangular domain. Compared to the

methods listed above, our approach has both pros and cons. Its limitation is that it can only

bijectively map surfaces that are similar to the domain, but on the positive side, it: (1) is efficient

to evaluate, (2) guarantees an exact bijection (it is closed under rational computation), (3) works

on complex, high-genus models, even with low-quality triangulations, (4) less likely to suffer from

high distortion (and the related numerical problems associated with it), often introduced by the

above methods.

Our construction in Chapter 4 is not a full replacement for the fully general surface-to-surface

maps (since it cannot map surfaces with large geometric differences), but as a complement designed

to work robustly and automatically for the specific case of close surfaces, which is common in

many geometry processing algorithms, as well as serve as a foundation for generating such close

surfaces (e.g., surface simplification and improvement, see Section 4.4)

2.3.1 Attribute Transfer

Transferring attributes is a common task in computer graphics to map colors, normals, or dis-

placements on discrete geometries. The problem is deeply connected with the generation of UV
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maps, which are piecewise maps that allow to transfer attributes from the planes to surfaces (and

composition of a UV map with an inverse may allow transfer between surfaces). We refer to

[Floater and Hormann 2005; Sheffer et al. 2006; Hormann et al. 2007] for a complete overview, and

we review here only the most relevant works.

Projection Modifying the normal field of a surface has roots in computer graphics for Phong

illumination [Phong 1975], and tessellation [Boubekeur and Alexa 2008]. Orthographic, spherical,

and cage based projections are commonly used to transfer attributes, even if they often leads to

artifacts, due to their simplicity [Community 2018; Nguyen 2007]. Projections along a continuously-

varying normal field has been used to define correspondences between neighbouring surfaces

[Kobbelt et al. 1998; Lee et al. 2000; Panozzo et al. 2013; Ezuz et al. 2019], but it is often discontinuous

and non-bijective. While the discontinuities are tolerable for certain graphics applications (and

they can be reduced by manually editing the cage), these approaches are not usable in cases where

the procedure needs to be automated (batch processing of datasets) or when bijectivity is required

(e.g., transfer of boundary conditions for finite element simulation). These types of projection

may be useful for some remeshing applications to eliminate surface details [Ebke et al. 2014], but

it makes these approaches not practical for reliably transferring attributes. Our shell construction,

algorithms, and associated projection operator, can be viewed as guaranteed continuous bijective

projection along a field.

Attribute Tracking In the specific context of remeshing or mesh optimization, algorithms have

been proposed to explicitly track properties defined on the surface [Garland and Heckbert 1997;

Cohen et al. 1997; Dunyach et al. 2013] after every local operation. By following the operations in

reverse order, it is possible to resample the attributes defined on the input surface. These methods

are algorithm specific, and provide limited control over the distortion introduced in the mapping.

Our algorithm provides a generic tool that enables any remeshing technique to obtain such a map

with minimal modifications.
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2.3.2 Envelopes

Explicit [Cohen et al. 1996, 1997] or implicit [Hu et al. 2016] envelopes have been used to control

geometric error in planar [Hu et al. 2019b], surface [Guéziec 1996; Hu et al. 2017; Cheng et al.

2019], and volumetric [Hu et al. 2018, 2019c] remeshing algorithms. Our shells can be similarly

used to control the geometric error introduced during remeshing, but they offer the advantage

of providing a bijection between the two surfaces, enabling to transfer attributes between them

without explicit tracking [Cohen et al. 1997]. We show examples of both surface and volumetric

remeshing in Section 4.4. Also, [Barnhill et al. 1992; Bajaj et al. 2002] utilize envelopes for function

interpolation and reconstruction, where our optimized shells can be used for similar purposes.

2.4 Mesh Generation

2.4.1 Tetrahedral Mesh Generation

Tetrahedral meshing algorithms heavily rely on mesh editing operations. The most common

approaches are Delaunay methods [Shewchuk 1998; Ruppert 1995; Remacle 2017; Du and Wang

2003; Alliez et al. 2005; Tournois et al. 2009; Murphy et al. 2001; Cohen-Steiner et al. 2002; Chew

1989; Si and Gärtner 2005; Shewchuk 2002; Si and Shewchuk 2014; Cheng et al. 2008; Boissonnat

and Oudot 2005; Jamin et al. 2015; Dey and Levine 2008; Chen and Xu 2004; Shewchuk 1996;

Cheng et al. 2012; Bishop 2016; Busaryev et al. 2009; Boissonnat et al. 2002; Si 2015], which

strive to generate meshes satisfying the Delaunay condition, grid methods [Yerry and Shephard

1983; Bern et al. 1994; Molino et al. 2003; Bronson et al. 2013; Labelle and Shewchuk 2007; Doran

et al. 2013; Bridson and Doran 2014], which start from a regular lattice or with a hierarchical

space partitioning and optionally intersect the background mesh with the input surface, and

front-advancing methods [Sadek 1980; Cuilliere et al. 2013; Alauzet and Marcum 2014; Haimes

2014], which insert one element at a time, growing the volumetric mesh (i.e. marching in space),
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until the entire volume is filled .

These algorithms rely on local operations on mesh data-structures, and benefit from our

framework to simplify the implementation and gain automatic parallelization. We discuss an

implementation of one the more recent algorithms [Hu et al. 2018, 2019c] in Section 6.3. Note that

some of these algorithms use local operation that are not implemented yet (such as 5-6 swap), but

they could be added to our framework.

2.4.2 Constraints in Meshing.

Downstream applications often require meshes to satisfy either quality (avoidance of zero volume

elements) or geometric (distance to the input surface) constraints. For example, Mandad et al.

[2015] creates a surface approximation within a tolerance volume, the TetWild algorithms [Hu et al.

2018, 2019c] use an envelope [Wang et al. 2021] to restricts the geometry of the boundary of the

tetrahedral mesh, [Brochu et al. 2012] adds constraints to local remeshing to avoid interpenetrations

in simulations, and [Gumhold et al. 2003] extends mesh simplification [Garland and Heckbert

1999; Popović and Hoppe 1997] to ensure a non self-intersecting result.

These criteria are explicitly modeled as invariants in our framework, and they can be easily

swapped in and out existing implementations, as we demonstrate in Section 6.3.

2.4.3 Mesh Improvement.

Mesh improvements modifies an existing mesh by changing its connectivity and position of the

vertices to improve the quality of its elements [Canann et al. 1996, 1993; A. Freitag and Ollivier-

Gooch 1998; Lipman 2012; Chen and Xu 2004; Alliez et al. 2005; Feng et al. 2018; Hu et al. 2018;

Alexa 2019; Klingner and Shewchuk 2007]. We show in Section 6.3 a reimplementation of [Alexa

2019] in IDAS form.
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2.4.4 Dynamic Remeshing and Refinement

Simulations involving large deformations are common in computer graphics, and if the surface

or volume deformed is represented by a mesh, it is inevitable that after a large deformation the

quality of the elements will deteriorate, and the mesh will have to be updated. Additionally, it is

often required to concentrate more elements in regions of interest whose location is changing

during the simulation, for example to capture a fold in a cloth simulation, or a fracture in a

brittle material. These two challenges are tackled in elastoplastic and viscoplastic simulations

[Hutchinson et al. 1996; Bargteil et al. 2007; Wicke et al. 2010; Wojtan and Turk 2008], in fluid

simulations [Misztal and Bærentzen 2012; Klingner et al. 2006; Ando et al. 2013; Chentanez et al.

2007], in cloth simulation [Villard and Borouchaki 2002; Bender and Deul 2013; Li and Volkov 2005;

Narain et al. 2012, 2013; Pfaff et al. 2014; Simnett et al. 2009], and fracture simulation [Busaryev et al.

2013]. All these algorithms could benefit from our contribution, to simplify their implementation

and obtaining speedup due to the automatic parallelization offered by our approach.

A different approach is discussed in [Grinspun et al. 2002], where the refinement is performed

on the basis to avoid the difficulties with explicit remeshing. However, this approach cannot

coarsen a dense input, and also cannot increase the quality of elements, making it usable only for

specific scenarios [Grinspun et al. 2002]. Our approach aims at lowering the barrier for integrating

explicit remeshing algorithms in simulation applications, thus allowing to directly use standard

simulation methods on adaptive meshes without having to pay the high implementation cost for

the mesh generation.

When remeshing is paired with algorithms simulating contacts that do not tolerate interpene-

trations (for example [Li et al. 2020]), it is necessary to ensure that adaptive remeshing does not

break this invariant. This can be achieved adding non-penetration constraints to each local mesh

editing operations, as proposed in [Brochu et al. 2012]. Our framework is ideal for developing

such methods, as additional constraints can be added to existing mesh editing algorithms with
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minimal modifications, as we demonstrate in Section 6.3.

2.4.5 Curved Surface Meshes

There are many algorithms for fitting curved surfaces to dense 3D triangle meshes. The most

popular approaches fit spline patches, usually on top of a quadrangular grid. Since generating

quadrilateral meshes is a challenging problem for which robust solutions do not exist yet, we

refer to [Bommes et al. 2012] for an overview, and only review in this section algorithms for

unstructured curved mesh generation, which are more similar to our algorithm. We note that the

focus of our paper is volumetric meshing: while we generate an intermediate curved surface mesh,

this is not the goal of our algorithm, especially since the generated surface is only C0 on edges.

[Hoppe et al. 1994] fits a smooth surface represented by a point cloud to a curved triangle

mesh based on a subdivision surface scheme and an interleaving mesh simplification and fitting

pipeline that preserves sharp features. The algorithm does not provide explicit correspondence to

the input: they are defined using distance closest point, which is not bijective far from the surface.

[Krishnamurthy and Levoy 1996] converts dense irregular polygon meshes of arbitrary topol-

ogy into coarse tensor product B-spline surface patches with accompanying displacement maps.

Based on the work [Lin et al. 2007] that fits triangle surface meshes with Bézier patches, [Zhang

et al. 2011] fits triangle surface meshes with high-order B-spline quadrilateral patches and adap-

tively subdivide the patches to reduce the fitting error. These methods produce smooth surfaces

but do not have feature preservation.

Another related topic is the definition of smooth parametric surfaces interpolating triangle

meshes. We refer to [Zorin 2000] for an overview of subdivision methods and discuss here the

approaches closer to our contribution.

[Hahmann and Bonneau 2003] proposed to use triangular Bézier patches to define smooth

surfaces over arbitrary trianglemeshes ensuring tangent plane continuity by relaxing the constraint

of the first derivatives at the input vertices. Following Hahmann’s work, [Yvart et al. 2005b]
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presents a more complete pipeline: perform QEM simplifications, trace the coarse mesh onto

the dense one and perform parameterization relaxing and smoothing. Then it fits a hierarchical

triangular spline [Yvart et al. 2005a] to the surface. More recent work [Tong and Kim 2009]

approximates the triangulation of an implicit surface with aG1 surface. These schemes are usually

designed to interpolate existing meshes rather than simplifying a dense linear mesh into a coarse

curved mesh and are thus orthogonal to our contribution.

2.4.6 Curved Tetrahedral Mesh Generation

High-order meshes are used in applications in graphics [Bargteil and Cohen 2014; Mezger et al.

2009a; Suwelack et al. 2013] and engineering analysis [Jameson et al. 2002] where it is important

to reduce the geometric discretization error [Babuska and Guo 1988; Babuška and Guo 1992; Bassi

and Rebay 1997; Luo et al. 2001; Oden 1994], while using a low number of degrees of freedom.

The creation of high-order meshes is typically divided into three steps: (1) linear meshing of the

smooth input surface, (2) curving of the linear elements to fit the surface, and (3) optimization to

heal the elements inverted during curving. We first cover steps 2 and 3, and postpone the overview

of linear tetrahedral algorithms to Section 2.4.8.

Direct methods. Direct methods are the simplest family of curving algorithms, as they explicitly

interpolate a few points of the target curved surface or project the high-order nodes on the curved

boundary [Dey et al. 1999a; Ghasemi et al. 2016; Moxey et al. 2015; Abgrall et al. 2012; Sherwin and

Peiró 2002; Turner 2017; Marcon et al. 2019]. The curved elements are represented using Lagrange

polynomials, [Dey et al. 1999a; Peiró et al. 2008], quadratic or cubic Bézier polynomials [George

and Borouchaki 2012; Lu et al. 2013; Luo et al. 2002], or NURBS [Engvall and Evans 2016, 2017].

[Shephard et al. 2005; Sherwin and Peiró 2002] further optimizes the high-order node distribution

according to geometric quantities of interest, such as length, geodesic distance, and curvature. In

the case where no CAD information is available, [Wang et al. 2016], [Jiao and Wang 2012] use
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smooth reconstruction to compute high-order nodes and perform curving.

Deformation methods Deformation methods consider the input linear mesh as a deformable,

elastic body, and use controlled forces to deform it to fit the curved boundary. Different physical

models have been employed such as linear, [Abgrall et al. 2014, 2012; Dobrzynski and El Jannoun

2017; Xie et al. 2013], and (variants of) non-linear elasticity [Persson and Peraire 2009; Moxey

et al. 2016; Fortunato and Persson 2016]. A comparison between different elasticity and distortion

energies is presented in [Poya et al. 2016; Turner et al. 2016; Dobrev et al. 2019].

Direct and deformation methods have been tested on small collections of simple models, and,

to the best of our knowledge, none of them can provide guarantees on the validity of the output

or has been tested on large collections of models. There are also no reference implementations we

could compare against.

Inversions and Intersections. Most of these methods introduce inverted elements during the

curving of the high-order elements. Inverted elements can be identified by extending Jacobian

metrics for linear elements [Knupp 2002, 2000] to high-order ones [Engvall and Evans 2018; Peiró

et al. 2014; Johnen et al. 2013; Poya et al. 2016; Roca et al. 2012]. Various untangling strategies

have been proposed, including geometric smoothing and connectivity modifications [Cardoze

et al. 2004; Dey et al. 1999a; Gargallo Peiró et al. 2013; George and Borouchaki 2012; Lu et al.

2013; Luo et al. 2002; Peiró et al. 2008; Shephard et al. 2005; Dobrzynski and El Jannoun 2017;

Gargallo-Peiró et al. 2015; Geuzaine et al. 2015; Roca et al. 2012; Ruiz-Gironés et al. 2017, 2016a,b;

Stees and Shontz 2017; Steve L. Karman and Stefanski 2016; Toulorge et al. 2013, 2016; Ziel et al.

2017; Dobrev et al. 2019; Turner 2017; Luo et al. 2008; Lu et al. 2014]. None of these techniques

can guarantee to remove the inverted elements.

An alternative approach is to start from an inversion-free mesh and slowly deform it [Persson

and Peraire 2009; Ruiz-Gironés et al. 2017], explicitly avoiding inversions at the cost of possibly

inaccurate boundary reproductions. These methods cannot however guarantee that the boundary
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will not self-intersect. Our approach follows a similar approach but uses a geometric shell to

ensure element validity and prevention of boundary self-intersections.

Curved Optimal Delaunay Triangulation [Feng et al. 2018] generalize optimal delaunay

triangulation paradigm to the high-order setting, through iteratively update vertices and con-

nectivity. Their algorithm starts with a point cloud sampled from triangle meshes. However,

the success of the method depends on the choice of final vertex number and sizing field, where

insufficient vertices may result in broken topology or invalid tetrahedral meshes.

Software Implementation. Despite the large literature on curved meshing generation, there

are very few implementations available. Nektar [Moxey et al. 2018] is a finite element software

with a meshing component, which can generate high-order elements. Gmsh [Geuzaine and

Remacle 2009] is an open source software that supports the curved meshing of CAD models, but it

does not support dense linear meshes as input. Despite the difference in the input type, we provide

a comparison with Gmsh in Section 5.4.2, as it is the only method that we could run on a large

collection of shapes. To the best of our knowledge, the commercial software that support curved

meshing (Pointwise [Pointwise 2018; Steve L. Karman and Stefanski 2016]) are also requiring a

CAD model as input.

2.4.7 Curved Structured Mesh Generation

The use of a hexahedral mesh as a discretization for a volume, allows to naturally defineCk splines

over the domain, which can be used as basis functions for finite element methods: this idea has

been pioneered by IsoGeometric Analyisis (IGA), and it is an active research area. The generation

of volumetric, high-order parametrizations that conform to a given input geometry is an extremely

challenging problem [Sorger et al. 2014; Peiró et al. 2015]. Most of the existing methods rely on

linear hexahedral mesh generation, which is on its own a really hard problem for which automatic
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and robust solutions to generate coarse meshes are still elusive [Li et al. 2012; Gao et al. 2019; Guo

et al. 2020; Palmer et al. 2020; Zhang et al. 2020; Marschner et al. 2020] due to the inherently global

nature of the problem. The current state of the art for IGA meshing is a combination of manual

decomposition of the volume and semi-automated geometrical fitting [Yu et al. 2020; Coreform

2020].

In contrast, our approach is automatic, i.e. can automatically process thousands of models

without any manual intervention, while providing explicit guarantees on both the validity of

the elements and the maximal geometric error. Its downside is the C0 continuity of the basis

on the elements’ interfaces. However, it is unclear to us if this is a real limitation: in many

common settings in computer graphics and mechanical engineering (Poisson problems, linear and

non-linear elasticity) the higher smoothness offered by spline functions does not make noticeable

difference experimentally [Schneider et al. 2019] (and it actually leads to much worse conditioning

of the system matrix, which is problematic for iterative solvers), and we thus believe that curved

tetrahedral meshing is a very exciting alternative as it dramatically simplifies both the meshing

and fitting of high-order elements.

2.4.8 Boundary Preserving Tetrahedral Meshing

We refer to [Hu et al. 2018] for a detailed overview of linear tetrahedral meshing, and we focus

here only on the techniques that target boundary preserving tetrahedral meshing.

The most popular linear tetrahedral meshing methods are based on Delaunay refinement

[Chew 1993; Shewchuk 1998; Ruppert 1995], i.e. the insertion of new vertices at the center of the

circumscribed sphere of the worst tetrahedron in term of radius-to-edge ratio. This approach is

used in the most popular tetrahedral meshing implementations [Si 2015; Jamin et al. 2015], and, in

our experiments, proved to be consistently successful as long as the boundary is allowed to be

refined. A downside of these approaches is that a 3D Delaunay mesh, unlike the 2D case, might

still contain “sliver” tetrahedra, thus requiring mesh improvement heuristics [Cheng et al. 2000;
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Du and Wang 2003; Alliez et al. 2005; Tournois et al. 2009]. [Alexa 2019] discusses this issue in

detail and provides a different formulation to avoid it without the use of a postprocessing. [Alexa

2020] introduces an approach that does not allow insertion of Steiner points, making it not suitable

for generic polyhedra domains.

There are many variants of Delaunay-based meshing algorithms including Conforming De-

launay tetrahedralization [Murphy et al. 2001; Cohen-Steiner et al. 2002], constrained Delaunay

tetrahedralization [Chew 1989; Si and Gärtner 2005; Shewchuk 2002; Si and Shewchuk 2014], and

Restricted Delaunay tetrahedralization [Cheng et al. 2008; Boissonnat and Oudot 2005; Engwirda

2016].

To the best of our knowledge, all these methods are designed to allow some modifications

of the input surface (either refinement, resampling, or approximation). One exception is the

constrained Delaunay implementation in TetGen [Si 2015] that allows disabling any modification

to the boundary. However, this comes at the cost of much lower quality and potential robustness

issues, as we show in Section 5.2.3.

A different tetrahedral meshing approach has been proposed in [Hu et al. 2018], and its variants

[Hu et al. 2019b, 2020], where the problem is relaxed to generate a mesh that is close to the input

to increase robustness. However, these approaches are not directly usable in our setting, as we

require boundary preservation.

Due to these issues, we propose a novel boundary-preserving tetrahedral meshing algorithm

specifically tailored for the shell mesh generated by our curved meshing algorithm.

2.4.9 Parallel Meshing

To meet the demand of generating large meshes, a number of popular mesh generation algorithms

have been redesigned to leverage modern parallel computing hardware, both in a shared memory

and distributed memory setting. Typically a divide-and-conquer strategy is adopted where a mesh

is partitioned to run local processing operations on each subdomain in parallel. There are two
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key challenges involved: (1) how to handle operations involving elements shared by multiple

partitions; (2) how to ensure load stay balanced across different processors as the mesh evolves.

One way to mitigate both challenges is to ensure mesh is partitioned into similar sized patches

with high area to boundary ratio. A large number of partitioning strategies are available, including

clustering-based approaches [Mahmoud et al. 2021], spacial-hierarchy-based approach [Loseille

et al. 2017; Lo 2012], space-filling-curve-based approach [Marot et al. 2019; Borrell et al. 2018],

and general purpose graph partitioning [Karypis and Kumar 1998]. Many variations of space-

filling curves have also been used to construct mesh partitions [Chrisochoides 2006; Aluru and

Sevilgen 1997]. To handle potential conflicts that may arise at partition boundaries, various

synchronization strategies have been proposed [Okusanya and Peraire 1996; Chrisochoides and

Nave 2003; Chrisochoides 2006] to minimize the amount of communication.

After generating the submeshes, some methods allow each compute node to work on them

independently without synchronization. Once all threads are done, the meshes are merged

[Cignoni et al. 1993; Chen 2010; Funke and Sanders 2017; Blelloch et al. 1999]. However these

methods require complicated merge steps since the tetrahedra in the intermediate boundaries

may not align. There are some techniques that compromise the Delaunay condition in some cases,

so that the merging operation can be simpler [Lachat et al. 2014]. To avoid the tricky merge

operations, other parallel strategies maintain a single complete Delaunay tetrahedralization and

use synchronization techniques to avoid race conditions when working on a partition boundary

[Okusanya and Peraire 1997; Chrisochoides and Nave 2003]. The parallel constrained Delaunay

meshing algorithm [Chew et al. 1997] cleverly defines the boundary and edge constrains to

reduce the variable and unpredictable communication patterns. Some other techniques use locks

for handling conflicts and data races [Blandford et al. 2006; Batista et al. 2010; Foteinos and

Chrisochoides 2011].

Another set of methods use recursive divide-and-conquer techniques for parallel implementa-

tion on shared memory machines [Marot and Remacle 2020]. All threads independently work on
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the internal parts of the mesh and skip the operations at the boundary. After this phase, processing

of only the boundary elements becomes the new problem. This technique is then recursively

used until all the mesh elements are processed. A similar set of techniques use clever space-filling

curves for re-partitioning the mesh boundaries after each recursive phase [Chrisochoides 2006;

Aluru and Sevilgen 1997].

Since the submesh boundaries are the main areas of concern, some methods entirely avoid any

operations on these boundaries while ensuring the correctness of the result [Galtier and George

1996; Linardakis and Chrisochoides 2006]. These methods precompute the domain separators such

that their facets are Delaunay admissible. This completely eliminates synchronization overheads,

but only applies for Delaunay meshing.

Another conflict handling strategy is to simply reject the offending operations and try executing

them later with a new domain partitioning [Marot et al. 2019]. This reject-and-repartition strategy

may not guarantee algorithm termination, thus special care is needed to handle this case.

As the domain mesh evolves, keeping load balanced across processors becomes critical. Typi-

cally, this is done by periodically repartitioning the updated mesh. Zhou et al. [2012] proposes

a predictive load balancing method to keep partitions balanced. Marot et al. [2019] uses simple

rescaling of the space-filling curve to repartition the domain.

In this work, we are targeting only shared-memory parallelism, thus making the problem

of reducing communications between processors less relevant. We use a graph-based space

partitioning technique [Karypis and Kumar 1998] due to its simplicity and availability as open-

source code (METIS), but we use it only to reduce the risk of conflicts. To avoid conflicts, we

use a shared memory locking mechanism. This approach is only possible for shared-memory

parallelism but has the major advantage of not requiring rebalancing and to respect, to a certain

degree, the execution order prescribed by the user-code. This approach is possible thanks to the

availability of efficient parallel atomic instructions, and parallel libraries based on them (oneTBB).
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2.4.10 Boundary Layer

Boundary layers are commonly used in computational fluid dynamics simulations requiring highly

anisotropic meshing close to the boundary of objects. Their generation is considered challenging

[Aubry et al. 2015, 2017; Garimella and Shephard 2000]. These methods generate shells around a

given surface, but do not provide a bijective map suitable for attribute transfer.

2.5 Robust Geometry Processing

Some works related to our contribution are the recent algorithms enabling black-box geometry

processing pipelines to solve PDEs on meshes in the wild.

[Dyer et al. 2007; Liu et al. 2015] refines arbitrary triangle meshes to satisfy the Delaunay mesh

condition, benefiting the numerical stability of some surface based geometry processing algorithms.

These algorithms are orders of magnitude faster than our pipeline, but, since they are refinement

methods, cannot coarsen dense input models. While targeting a different application, [Sharp

et al. 2019] offers an alternative solution, which is more efficient than the extrinsic techniques

[Liu et al. 2015] since it avoids the realization of the extrinsic mesh (thus naturally maintaining

the correspondence to the input, but limiting its applicability to non-volumetric problems) and

it alleviates the introduction of additional degrees of freedom. [Sharp and Crane 2020] further

generalizes [Sharp et al. 2019] to handle non-manifold and non-orientable inputs, which our

approach currently does not support.

TetWild [Hu et al. 2018, 2019c] can robustly convert triangle soups into high-quality tetrahedral

meshes, suitable for FEM analysis. Their approach does not provide a way to transfer boundary

conditions from the input surface to the boundary of the tetrahedral mesh. Our approach, when

combined with a tetrahedral mesher that does not modify the boundary, enables to remesh low-

quality surface, create a tetrahedral mesh, solve a PDE, and transfer back the solution (Figure 4.1).
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However, our method does not support triangle soups, and it is limited to manifold and orientable

surfaces.

2.5.1 Mesh Arrangements/Boolean Operations

Boolean operations are basic algorithms often used in geometry processing applications. Recently,

[Zhou et al. 2016] proposed a robust way to compute them by constructing a space arrangement,

and then filtering the result using the generalized winding number [Jacobson et al. 2013]. A similar

approach, using an approximated meshing algorithm, has been extended in [Hu et al. 2019c],

using a tetrahedral mesher to create the initial arrangement. The reimplementation of TetWild

introduced in this paper (Section 6.3) can be extended for a similar purpose.

2.5.2 Collision and Animation

While not directly related to our approach, bijective maps inherently involve some form of collision

detection and response to avoid overlaps. The field on collision detection is vast, and we refer the

reader to a survey [Jimenez et al. 2001]. In terms of simulations, methods such as asynchronous

contact mechanics [Harmon et al. 2009; Harmon 2010; Ainsley et al. 2012] ensure the bijective

property but are very expensive and designed to operate as part of a simulation. Our approach

in Chapter 3 is specialized for geometric optimization, where we are interested in a quasi-static

solution (i.e. we do not want to explicitly simulate a dynamic system, but only find an equilibrium

solution).

The work that is closer to Chapter 3 in term of application (but very different in term of

formulation) is [Harmon et al. 2011], where collision detection and response is used to interactively

deform shapes while avoiding self-intersections. Similarly to the previous methods, the explicit

detection and iterative response is expensive when many collisions happen at the same time. Our

work avoids these expensive computations, and can robustly handle hundreds of simultaneous
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collisions while still making large steps in the optimization.

In Chapter 4 and 5 Converting triangle meshes into coarse cages is useful for many applications

in graphics [Sacht et al. 2015], including proxies for collision detection [Calderon and Boubekeur

2017] and animation cages [Thiery et al. 2012]. While not designed for this application, our shells

can be computed recursively to create increasingly coarse nested cages. We hypothesize that a

bijective map defined between all surfaces of the nested cages could be used to transfer forces

from the cages to the object (for collision proxies), or to transfer handle selections (for animation

cages). [Botsch et al. 2006; Botsch and Kobbelt 2003] uses a prismatic layer to define volumetric

deformation energy, however their prisms are disconnected and only used to measure distortion.

Our prisms could be used for a similar purpose since they explicitly tesselate a shell around the

input surface.

Curved tetrahedral meshes have also gained popularity in the context of fast animation. With

fewer degrees of freedom and preserved geometric fidelity, [Mezger et al. 2009b] observe the

benefit of quadratic tetrahedra in the pipeline of physically based animation. [Suwelack et al.

2013] further investigate the transfer problem when using curved meshes as a proxy.
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3 | Bijective Maps with Triangulation

Augmentation

3.1 Introduction

The computation of discrete maps is a fundamental problem in computer graphics that has been

extensively studied in the last three decades. The problem is challenging due to the large solution

space and the non-linearity of the desired properties (in both distortion measures and constraints).

Algorithms for robustly and efficiently computing locally injective (i.e. non-flipping) maps have

been only recently introduced [Lipman 2012; Kovalsky et al. 2016; Rabinovich et al. 2017] and

Figure 3.1: The Nefertiti model with prescribed seams is UV mapped by our algorithm. Each chart is

bijective mapped into a circle or ring with Tu�e’s embedding and achieves minimal distortion in less than

a second. The layout is further improved interactively and the final parametrized model is shown on the

right. Our approach guarantees a valid UV map with no inverted elements or overlapping triangles. See

the a�aching video for the optimization and manual interaction.
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are now having a major impact in many research areas outside of traditional texture mapping,

including remeshing [Bommes et al. 2013a], image editing [Poranne and Lipman 2014], and cultural

heritage [Pal et al. 2014].

In this chapter, we consider the problem of generating bijective maps, i.e. locally injective

maps with non-intersecting boundaries This is a difficult problem, exacerbated by the fact that

any pair of boundary elements could overlap, leading to non-linear constraints whose number is

quadratic in the size of the boundary. This problem is usually tackled by iteratively deforming

an existing map, checking for overlaps after each step, and then preventing the overlap using

constraints [Harmon et al. 2011] or penalty forces [Harmon 2010]. These methods require a

spatial acceleration structure to find the candidate pairs of overlapping elements and a resolution

strategy that updates the map while avoiding the detected overlaps. However, the newly computed

displacement might in turn lead to new overlaps, and this process has to be performed iteratively

in the hope that no collisions are left. Difficult cases with many collisions might requires tens or

hundreds of iterations before all the candidate intersecting pairs are detected.

Our approach sidesteps the need to find candidate self-intersections based on a simple obser-

vation: if the the entire ambient space (with a fixed simple boundary) is tessellated, then local

injectivity implies global bijectivity [Zhang et al. 2005; Lipman 2013; Müller et al. 2015]. We

thus propose an optimization framework based on this idea making it possible to leverage recent

techniques for locally injective maps; our algorithm is simple to implement, robust, and two orders

of magnitude faster than competing methods.

Overview. Given an input bijective map represented by a discrete triangle mesh and its mapped

vertex locations, we create a new scaffold mesh for a bounding box that contains the initial,

mapped triangle mesh (Figure 3.1) and conforms to its boundary. We then optimize for the desired

property of the map (such as distortion, positional constraints, etc.) while ensuring that no triangle

will flip. This property is achieved using a variational formulation that combines a user-defined
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energy for the map with a regularization term that allows the scaffold to freely deform without

hindering the optimization of the map properties. During the optimization, we refine and optimize

the connectivity of the scaffold mesh to prevent possible locking situations.

While a scaffold mesh has been already used in previous works [Zhang et al. 2005; Misztal

and Bærentzen 2012; Müller et al. 2015], we propose to use an isometric distortion energy on

the scaffold mesh, with the reference reset to the current rest pose at each iteration, and an

online remeshing strategy. Our scaffold energy aims for "isometry to the current iteration", which

resembles how plasticity is usually modeled in elasto-plastic simulations — this leads to a global

and natural deformation of the scaffold elements that opens up space for the evolving boundary

and allows for an efficient optimization using recent numerical methods for locally injective maps

[Rabinovich et al. 2017].

We demonstrate the practical utility of our algorithm in the context of single patch mesh

parametrization by producing distortion minimizing bijective maps for a collection of 119 challeng-

ing models. Our algorithm is ideal to compute tight UV maps for models with multiple connected

components and seams as we demonstrate in our interactive texture packing experiments. Our

algorithm can also be easily extended to 3D by replacing the triangular scaffold with one composed

of tetrahedra. For the 3D case, we show that our method can be used to deform surfaces preventing

self-intersections and to remove self-intersection from existing genus-0 surfaces when paired with

a mean conformalized flow [Kazhdan et al. 2012; Sacht et al. 2013].

In the additional material, we provide a video (showing the optimization iterations) and the

input/output meshes for each figure in the paper. To foster replicability of results, we will release

an open-source reference implementation of our algorithm.

Contribution.

• We enhance the idea of scaffolding to the context of efficient geometric optimization with

the "isometry to the current iteration" energy. This allows scaffold elements to freely open
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up space for the chart boundary to take larger steps than otherwise possible (Figure 12), as

well as oblivious to the triangulation at each iteration.

• To the best of our knowledge, ours is the first method that can bijectively parameterize

large, complex models efficiently and robustly.

• Our method provides an intuitive and simple way to prevent degenerate elements, which is

required to avoid locking (different from [Müller et al. 2015], where they must allow flip

to exert force), and handles challenging cases such as those in Figure 5. Our formulation

unifies geometric optimization problems in 2D/3D

3.2 Method

Our method, Simplicial Complex Augmentation Framework (SCAF) utilizes a scaffold structure to

robustly compute a bijective map between a pair of simplicial meshes with the same connectivity.

SCAF is specialized for the context of geometric optimization, i.e. we are interested in maps with

low distortion and optionally satisfying a set of geometric constraints. We assume our maps are

continuous and piecewise affine, i.e. the map deforms every simplex with an affine deformation.

Thus, we can fully define the map using the image of its vertices.

Our algorithm uses a discrete, bijective identity map (encoded as a non-overlapping and

non-flipping triangle/tetrahedral mesh) as initialization and then iteratively refines it, displacing

the vertices while always ensuring that it remains bijective. Our method is composed of three

stages: (1) augment the initial mesh with a scaffold, filling a bounding box around the initial map

image; (2) optimize the extended mesh (scaffold included), reducing the geometric distortion of the

map; (3) update the vertices and scaffold, enlarging the bounding box if necessary, to improve the

quality of the triangulation. Steps (2) and (3) are iterated until the quality of the map is deemed

sufficient.
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3.2.1 General Formulation

Denote the input simplicial mesh byM = (V,F ) with a single, simple boundary representing a

compact d-dimensional manifold embedded in the d-dimensional Euclidean space, whereV is

the set of n-vertices and F is the set ofm-simplices. Our goal is to compute a continuous and

piecewise affine mapping Φ :M → �d with Ω := Φ(M) = (V′,F ) the resulting simplicial mesh

with the same connectivity asM.

We are interested in the bijective map that minimizes a given type of geometric energy:

min
V ′

EM (Φ)

s.t. Φ is bijective, (3.1)

where EM is a user-defined geometric energy.

Reduction to Local Orientation Preservation. A sufficient condition for the simplicial

map Φ : M → Ω to be bijective is that the map preserves orientation and its restriction to

the boundary Φ|∂M : ∂M → ∂Ω is bijective [Lipman 2013]. In this light, we are able to take

advantage of the following simple construction (Figure 3.2): the algorithm extends the axis aligned

bounding box of M to get a d-orthotope and fills the enclosed region with a scaffold simplicial

complex to form a simplicial complex mesh D that includes and conforms toM ⊂ D. We can now

define the continuous and piecewise affine map Ψ : D → D′ with Φ = Ψ|M where Ψ|∂D is the

identity map, and denote the scaffold region as S = D \M . Now Φ is guaranteed to be bijective

if Ψ preserves orientation. Using this observation, we can translate the bijectivity into a local,

orientation-preserving requirement defined per simplex.

Variational Formulation Minimizing the distortion of Φ using the augmented map Ψ poses

an interesting challenge: what is the desired shape of the scaffold S? Ideally we would like the
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Figure 3.2: The initial meshM (in green, le�), is embedded in another mesh D (in gray, middle) that

covers a box in the ambient space and contains the same triangles asM. D might contain additional points

(orange). We denote the triangles that are in D but not inM as the scaffold S . Our algorithm deforms D,

inducing a corresponding deformation onM (right), while keeping the boundary (blue vertices) fixed and

preventing changes in the triangle orientation.

simplices in the scaffold to maintain their orientation and not affect the optimization in any other

way. Such a requirement is difficult to model directly, since it is a discontinuous condition that is

not well-suited for the variational framework that we would like to use to minimize EM .

We propose a regularized version of this condition modeled with an energy EM (Ψ|S ) that still

diverges when elements change orientation and that mildly penalizes any non-rigid distortion.

We choose a reweighted version of the symmetric Dirichlet energy D [Smith and Schaefer

2015], measured w.r.t. the Jacobian of the map Ψ computed from the rest pose of S for each simplex

f ,

Jf := ∇Ψf (3.2)

where Ψf is the restriction of Ψ over the simplex f , which is an affine map. We divide the energy

of each scaffold simplex f by its area A f , and sum them up to obtain the final energy that favors
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an equal contribution regardless of the size of each scaffold simplex:

ES (Ψ|S ) =
∑

f ∈S

1

A f
D (Jf )

=

∑

f ∈S
(‖ Jf ‖2F + ‖ J

−1
f ‖

2
F − 2d ). (3.3)

The −2d term ensures that the energy is 0 when Jf = I. The map is then computed by summing

the two terms:

min
D

EM (Ψ|M ) + λES (Ψ|S )

s.t. Ψ|∂D is Identity

Ψ preserves orientation. (3.4)

where λ > 0 is balancing the contribution of the two energies, decreasing as the optimization

proceeds.

Iterative Regularization Solving this problem leads to a bijective and distortion minimizing

map, but the regularizer will affect the stationary points of EM , which is problematic, especially

for large deformations. To address this problem we iteratively minimize this energy, regenerating

the scaffold at each iteration, and use the new scaffold as a rest pose for the regularization term

ES (Ψ|S ). This iterative procedure has two positive effects: (1) it acts as a proximal regularization

term without inhibiting movement since the rest pose is updated at each iteration; (2) the meshing

quality of the scaffold is high, which avoids locking configurations.

Interpolation Coefficient. We experimentally observed that our algorithm is robust to

different choices of λ, generating indistinguishable results in most cases. However, λ affects the

convergence speed (Figure 3.3). We used λ = 1
100

EM (Ψ|M )

|S | for all our experiments, where |S | is the
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number of scaffold simplices.

Figure 3.3: Different values of λ do not affect the result, but they change the number of iterations needed.

From le� to right: we used a large weight (100x ours), our weight, and a small weight (0.01x ours). The

optimization took 9,7, and 8 iterations, respectively, to reach the same energy level.

Solver. Since our energy is rotational invariant, we can minimize the energy with the same

quadratic proxy proposed in SLIM [Rabinovich et al. 2017], enriching the approach with the

equality constraint needed to fix the boundary ∂D. We also employ the orientation-preserving

line search [Smith and Schaefer 2015] (with exact predicates [Shewchuk 1996]) to ensure that no

triangles can change orientation. Alternatively, other methods such as AQP [Kovalsky et al. 2016]

could be used to minimize this energy. Since our approach changes the mesh connectivity at every

iteration, AQP loses much of its advantages as the approximate Hessian must be recomputed at

each iteration and not prefactored. Therefore, our approach is an ideal fit for [Rabinovich et al.

2017], which takes large steps at every iteration without relying on a constant, prefactored matrix

at each iteration. For practical applications, SLIM iterations are sufficient to minimize the energy
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to acceptable levels. For two stress tests (figures 3.4 and 3.11) we used the result of SLIM as a

warm start for a Newton optimization (as suggested by [Rabinovich et al. 2017]), which quickly

converges to a numerical minimum.

3.2.2 Surface Parametrization

Our framework can be used for many applications, one of which is computing a bijective surface

parametrization from a 3D surface into the UV plane. We follow [Liu et al. 2008] and assume that

each 3D triangle f 3D is equipped with a rigid transformation R f such that applying R f to f 3D

maps f 3D to the plane. Given this transformed triangle f , we can now measure the distortion of

the map using the Jacobian of the affine transformation (a 2 × 2 matrix) from R f ( f
3D ) to f , the

location of the triangle in the parametrization.

Initialization Our method is initialized with Tutte’s embedding algorithm [Tutte 1963]:

Φ
0 :M3D → Ω

0,

where Ω0 is a simplicial disk domain. Then we construct a larger rectangular domain D0 ⊃ Ω
0,

where ∂D0 is an axis-aligned rectangle, and use Triangle [Shewchuk 1996] to triangulate the

region in between. We enforce a quality bound of 20◦ to obtain a graded mesh that is coarse on the

boundary and conforming the boundary of Ω0. This grading implicitly produces an approximate

inverse distance weighting of the scaffold space with respect to the error function, which enables

a larger deformation per iteration. Then we define Ψ : D0 → D ⊂ R2 and restrict Ψ|∂D0 to be the

identity.

Mesh Improvement At the end of each iteration, we improve the quality of the scaffold. The

reason for maintaining a good mesh quality is two-fold. First, as observed in [Zhang et al. 2005;

Müller et al. 2015], fixing the scaffold will potentially prevent movement. Secondly, the quality of
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the scaffold affects the condition of the linear system in SLIM [Rabinovich et al. 2017]: a higher

quality leads to larger and more efficient iterations.

We resort to Triangle [Shewchuk 1996] to create the initial scaffold and to regenerate the

scaffold mesh in the improvement step. Our experiments show that, in 2D, it is faster to generate

the mesh from scratch at every iteration instead of trying to optimize the scaffold using local

operations as suggested in [Müller et al. 2015]. Since our solver makes large steps in each

iteration, the scaffold requires significant connectivity changes each iteration, which explains

why regenerating the triangulation is faster than local operations. This is in stark contrast with

physical simulation scenarios where each iteration represents a small time step and, thus, a minor

change in the vertex positions.

We demonstrate the effectiveness of the remeshing strategy in Figure 3.4 where our method

recovers from a large rotation — note that the scaffold is updated during the iterations and always

leaves space for the map to move freely.

Figure 3.4: A bijectivemap from a circle (le�) to a spiral (right) is computedwithout (top) andwith (bo�om)

the iterative remeshing step. The slivers in the triangulation locks the optimization (top), preventing it

from reaching the target shape.
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Sliding & Degeneracy Prevention As the optimization proceeds and some of the boundary

elements get closer, some of the scaffold triangles might (and often will) get smaller and smaller,

restricting the amount of sliding that is allowed in one iteration as well as introducing numerical

difficulties in computing the corresponding Jacobian Jf whose singular values will approach

infinity.

To avoid this issue, we replace the degenerating target when computing its Jacobian. For the

triangles with an area smaller than ϵ , we use an equilateral triangle with area ϵ to compute the

local Jacobian. In our experiment, we traverse through the boundary of the interior of the uv

domain at the current iteration to find the minimum edge length l and set ϵ = l2

4
.

A theoretical downside of this modification is that it affects the distortion energy. We experi-

mentally observed that the changes are negligible, and we thus used it for all our experiments.

However, on the practical side, it discourages fully degenerate elements — this change, coupled

with the orientation preserving line search [Smith and Schaefer 2015], makes our algorithm robust

enough for the challenging stress tests shown in Figure 3.5.

3.2.3 Extension to 3D

Our formulation naturally unifies bijective geometric optimization problems in 2D and 3D, so the

algorithm readily extends to the 3D case with only one major difference: the scaffold becomes a

tetrahedral mesh, which is computationally more challenging to create and update.

Mesh Improvement We use TetGen [Si 2015] to generate the initial scaffold and the local

operations proposed in [Klingner 2009] to optimize the scaffold’s quality in the subsequent

iterations. It is unfortunately not possible to directly use TetGen at every iteration as we did with

Triangle in the 2D case, since TetGen fails when boundaries get too close, which is common in

our experiments.
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Guarantee Similarly to the 2D case, we are guaranteed that no flipping or self-intersecting

tetrahedra will occur since we are following an interior point strategy. Notice the contrast with

Air Mesh [Müller et al. 2015] where only if penetration happens can the constraints be of effect.

However, as pointed out in [Dougherty et al. 2004], the local operations we are performing may

not be sufficient to explore the entire space of possible tetrahedralizations. Therefore, we cannot

guarantee that the algorithm achieves the globally optimal solution.

3.3 Results

We implemented our algorithm in C++ using Eigen[Guennebaud et al. 2010] for linear algebra

routines. We run our experiments on a desktop with a 4-core Intel i7 processor clocked at 4 GHz

and 32 GB of memory, but using only one thread on a single core. For all experiments, the scaffold

bounding box is computed by uniformly scaling by three times the bounding box of the image of

the current map.

Robustness. To demonstrate the robustness of our algorithm, we computed bijective maps for

all the 102 meshes parametrized by the MIQ algorithm [Bommes et al. 2009] and for the 17 meshes

parametrized by [Myles et al. 2014] in the dataset proposed by [Myles et al. 2014]. The cuts in

these meshes have been designed for locally injective parametrization that usually have major

self-overlap. We use them as a stress test for the effectiveness and robustness of our method: the

cuts introduce a massive distortion in the Tutte initialization and lead to boundaries that are prone

to overlap in hundreds of locations. Our method successfully creates bijective parametrizations for

all these models with default parameters. We attach all the parametrized models in the additional

material and show two examples in Figure 3.5.

Scalability. Our methods scales gracefully to large datasets, similarly to [Rabinovich et al.

2017]. We repeat their scalability experiment, but producing bijective maps instead of just locally
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Figure 3.5: Two models are cut using [Bommes et al. 2009] and bijectively parametrized using our

algorithm. See the additional material for more examples.

injective maps (Figure 3.6). The behaviour is remarkably similar — the density of the model (and

consequently of the scaffold) does not affect the number of required iterations.

Texture Atlas Generation UV mapping is a time consuming procedure required in most

geometric modeling pipelines. Existing commercial tools provide the ability to flatten single

patches and arrange them in UV layouts where multiple patches are tightly packed inside a

rectangular domain, which is then loaded in the texture memory of a GPU.

Our algorithm can bijectively parameterize a single patch (Figure 3.7), avoiding the typical

manual UV postprocessing required with traditional tools. Our algorithm can also be used to create

automatic UV charts of models with multiple connected components (or predefined cut edges). We

show an example in Figure 3.8 where we detected the connected components, bijectively map the

patches into a set of circles (using a grid layout), and reduce their distortion using our algorithm.

The result is a tight and automatic packing without resorting to any user-interaction. Additional
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Figure 3.6: We compare the distortion energy with respect to the number of iterations on a set of Lucy’s

meshes with different resolutions (from 1 to 12 million faces). In the center of the plot, we show the 1M

Lucy model parametrized by our algorithm.

interactive tools can further improve the atlas by dragging&dropping regions or translating islands

while ensuring that no overlaps are introduced (Figure 3.1). We show interactive sessions using

our packing tool in the additional material.

Preventing Self-Intersections Our algorithm can be generalized to handle mixed dimension

problems, such as the deformation of 2D surface in 3D space, while preventing self-intersections.

In Figure 3.9, we demonstrate the use of our method to resolve self-intersections of surfaces. First

we perform a conformalized flow [Kazhdan et al. 2012] using the algorithm proposed in [Sacht
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Figure 3.7: A mesh is cut by an artist into a single chart and parametrized using SLIM [Rabinovich et al.

2017] (le�) and with our algorithm (right). Note that local-injectivity is not sufficient for this model, since

the global overlaps in the highlighted region prevent this parametrization from being a UV texture map.

Our result (right) is guaranteed to be bijective.

et al. 2013] to resolve any self-intersections. While [Sacht et al. 2013] will resolve the intersections,

the resulting surface may be geometrically far from the initial shape (see Figure 3.9). Next we

tetrahedralize the ambient space while conforming to the deformed surface mesh and minimize

Equation 3.4 with an additional energy term that strives to restore the rest pose geometry of

the surface, using the surface ARAP energy proposed in [Sorkine and Alexa 2007]. The result

is a surface similar to the original mesh, but without self-intersections. In this example, it is

possible to observe that even dramatic changes of scale (on the foot) can be robustly handled by

our parametrization algorithm.

A more challenging stress test is shown in Figure 3.10, where the bunny model is scaled up

inside a box, to 30 times its original size. No self-intersections are introduced, despite the extreme,

constrained deformation.

Comparison with [Smith and Schaefer 2015] The algorithm closest to ours is [Smith and

Schaefer 2015], which tackles a similar problem (restricted to the 2D case). We replicated the space

filling curve experiment and obtained remarkably similar results, where our running time is 96s,

compared with 8,472s for [Smith and Schaefer 2015] (88 times faster). We show in Figure 3.11 a

more challenging experiment with a subdivided version of the space filling curve to emphasize the
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Figure 3.8: Amodel withmultiple chart (le�) is automatically parametrized in a texture atlas (bo�om-right)

by first mapping each component to a circle (top-right) and then minimizing the distortion.

performance difference: our algorithm converges in 39 minutes, while [Smith and Schaefer 2015]

did not converge after 5 days and 21 hours. For this example, we used the procedure suggested in

[Rabinovich et al. 2017]: we performed a few iterations minimizing the quadratic proxy and then

switch to a traditional newton method until numerical convergence. A video of the optimization

is provided in the additional material.

Our method produces results that are visually identical to [Smith and Schaefer 2015]. In Figure

3.12 we repeat the experiments shown in [Smith and Schaefer 2015], stopping our optimization at
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Figure 3.9: We remove the self-intersections from a genus 0 model using the conformalized flow [Kazhdan

et al. 2012; Sacht et al. 2013]. The flow is inverted, while using our algorithm to compute a bijective

volumetric map, to recover a self-intersection free version of the original surface. The final model can now

be meshed using TetGen, since it is free from self-intersections.

Figure 3.10: We grow a bunny inside a box, while preventing self-intersections. We show the result a�er

0,10,20,30,40, and 50 iterations.

the same energy value.

Local vs Global Optimization Both [Zhang et al. 2005] and [Misztal and Bærentzen 2012]

use a construction similar to ours to generate bijective maps. Both methods explicitly prevent

changes of orientation using a local approach: they optimize the map using coordinate descent

iterations [Solomon 2015] allowing only one vertex at a time to move in its 1-ring and thus
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Figure 3.11: We repeat the challenging test in [Smith and Schaefer 2015] with a subdivided version of

their Hilbert curve to increase the triangle count. Our method starts from a disc (upper le�), gracefully

extends (upper right), and reaches the same minimum (lower le�) in 39 minutes whereas [Smith and

Schaefer 2015] didn’t terminate more than 5 days (lower right), highlighting our performance boost of

over 200 times.

ensuring that no triangle flip. This strategy severely limits the maximal displacement per iteration

and restricts the step to the size of the 1-rings. Such a restriction makes these methods impractical

for parametrization applications since the difference in scale between the Tutte’s embedding and

the final result is extreme (the ratio of min and max triangle area is 10−6 in Figure 3.13). We

show an example of one of our iterations in Figure 3.13, where the highlighted vertex traversed a

distance of 150 times the size of the average edge length of its 1-ring in one single step. Using

coordinate descent would have required hundreds of iterations to achieve the same effect.

Despite the orientation-dependent box used as scaffold boundary, our optimization produces

results that are, in practice, independent of orientation. We show this effect in Figure 3.14 where

we initialize the optimization with 1000 randomly rotated Tutte’s mappings of the same camel

model and run our optimization. The isometric distortion of the model after 50 iterations is quite
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0.09568

Figure 3.12: We apply our algorithm on 4 models used in [Smith and Schaefer 2015] (using the same

stopping criteria) obtaining visually identical results. Distortion errors produced by our algorithm (outer)

and theirs (inner) are shown in black.

similar in all trials (the minimum, maximum, average, standard deviation of distortion errors in

all 1000 runs are 0.1086, 0.1107, 0.1095, 3.2698e-4 resp.) indicating very little change based on the

initial orientation.
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Figure 3.13: A single iteration of our algorithm (from le� to right) drastically reduces the distortion. The

black vector in the center is 150 times longer than the average edge length of its 1-ring. Iterative methods

would need thousands of iterations to achieve a similar progress.

Type Model #V #F #VS #FS It. Total Time (s) It. Time (s)

Atlas
Nefertiti (Fig. 3.1) 1697 2823 983/ 247 1945 /728 50 0.71 0.01
Maneki-Neko (Fig. 3.8) 23025 43648 2427 /725 7174/ 3770 50 16.81 0.34

2D

Hand (Fig. 3.3) 2239 4046 347/280 1104/970 7 0.14 0.02
Spiral (Fig. 3.4) 54 52 78/36 190/106 50(50) 0.04(0.21) 0.01
Thai Statue (Fig. 3.5, left) 42405 79970 3665/1593 12148/8004 50 28.28 0.56
Filigree (Fig. 3.5, right) 56062 100000 9160/2627 30422/17356 100 75.99 0.76
Lucy (Fig. 3.6) 501105 1000000 1856/ 3470 5900/ 5674 100 2524.22 25.24
Lucy (Fig. 3.6) 1001375 1999999 2284/ 4400 7297/ 7133 100 7251.00 72.51
Lucy (Fig. 3.6) 2002031 3999999 3587/ 6930 11215/ 10985 100 22500.07 225.00
Lucy (Fig. 3.6) 3002899 5999999 5135/ 9859 16047/ 15601 100 52235.31 522.35
Lucy (Fig. 3.6) 4002816 8000000 5140/ 10288 15890/ 15918 100 59413.14 594.13
Lucy (Fig. 3.6) 5003408 10000000 6194/ 12231 19182/ 19040 100 95247.59 952.47
Lucy (Fig. 3.6) 6004111 12000000 7357/6418 2291/21036 50 78726.05 1574.52
Animal (Fig. 3.7) 19937 39040 747/593 2306/1998 50 15.36 0.31
Space Filling (Fig. 3.11) 79545 146832 90815/88237 181608/176452 200(250) 547.13(1836.58) 5.30
Horse (Fig. 3.12) 20636 39698 1343/984 4238/3520 30(10) 8.26(12.03) 0.28(1.20)
Camel (Fig. 3.12) 2032 3576 384/272 1234/1010 30(10) 0.52(1.13) 0.02(0.11)
Cow (Fig. 3.12) 3195 5804 491/277 1546/1118 30(10) 0.81(1.74) 0.03(0.17)
Tricera (Fig. 3.12) 3163 5660 544/329 1732/1302 30(10) 0.83(1.77) 0.03(0.18)

3D
Leg (Fig. 3.9) 6617 13230 5016/5021 68521/68544 500 3251.17 6.50
Bunny (Fig. 3.10) 568 1132 683/706 6209/6289 50 7.16 0.14

Table 3.1: Timings and statistics for the models shown in the paper. From le� to right: number of input

vertices and simplices, number of initial/final scaffold vertices and simplices, number of iterations, running

time in seconds. The numbers in parenthesis refer to the Newton optimization. Note that our timings are

considerably higher than those reported in the SLIM paper for the Lucy model since we used the reference

implementation in [Jacobson et al. 2014], which does not use a multi-threaded solver.

Timings The timings for all the results in the paper are reported in Table 3.1.
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Figure 3.14: Our algorithm is independent to the initial orientation. We rotate the initializing Tu�e’s

mapping of the camel model and obtain results with similar isometric distortion.

3.4 Limitations and Remarks

We proposed a simple and robust algorithm to generate bijective maps, both in 2D and 3D. We

demonstrated the practical value of the algorithm in UV mapping and deformation applications,
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and its robustness with extensive stress tests.

One major venue for future work is the support of hard positional constraints, which are

favored over soft constraints in many practical applications. Our current algorithm only supports

soft constraints as geometric energy [Schüller et al. 2013]. To support hard constraints we would

need to generate a bijective starting point that guarantees those constraints, and then preserve

them in our optimization. While bijecive maps with hard constraints can be constructed for a 2D

patch homeomorphic to a disk [Weber and Zorin 2014] and for a 3D volume homeomorphic to a

ball [Campen et al. 2016], the generic solution is still elusive.

In 3D cases, the generation of the initial scaffold is not as robust as in 2D, since TetGen fails for

geometries with numerical challenges (Chapter 5 provides a comparison and a robust alternative).

Our algorithm is also slower in 3D due to larger and denser linear systems, as well as the need for

local mesh refinement operations instead of regenerating the entire tetrahedralization. A more

optimized and parallel implementation could reduce this overhead, as we present in Chapter 6
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4 | Bijective Projection in the Shell

4.1 Introduction

Triangular meshes are the most popular representation for discrete surfaces, due to their flexibility,

efficiency, and direct support in rasterization hardware. Different applications demand different

meshes, ranging from extremely coarse for collision proxies, to high-resolution and high-quality

for accurate physical simulation. For this reason, the adaptation of a triangle mesh to a specific set

of criteria (surface remeshing) is a core building block in geometry processing, graphics, physical

simulation, and scientific computing.

In most applications, the triangular mesh is equipped with attributes, such as textures, dis-

placements, physical properties, and boundary conditions (Figure 4.1). Whenever remeshing is

needed, these properties must be transferred on the new mesh, a task which has been extensively

studied in the literature and for which robust and generic solutions are still lacking (Section 2.3).

Defining a continuous bijective map, more precisely, a homeomorphism where the inverse is also

continuous, between two geometrically close piecewise-linear meshes of the same topology is a

difficult problem, even in its basic form, when one of these meshes is obtained by adapting the

other in some way (e.g., coarsening, refining, or improving triangle shape).a Common approaches

to this problem are Euclidean projection [Jiao and Heath 2004], parametrization on a common

domain [Praun et al. 2001; Kraevoy and Sheffer 2004; Lee et al. 1998], functional maps [Ovsjanikov

et al. 2012], and generalized barycentric coordinates [Hormann and Sukumar 2017]. However,
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(a)

(b)

(c)

(d) (e)

Figure 4.1: A low-quality mesh with boundary conditions (a) is remeshed using our shell (b) to maintain

a bijection between the input and the remeshed output. The boundary conditions (arrows in (a)) are

then transferred to the high-quality surface (c), and a non-linear elastic deformation is computed on a

volumetric mesh created with TetGen (e). The solution is finally transferred back to the original geometry

(d). Note that in this application se�ing both surface and volumetric meshing can be hidden from the user,

who directly specifies boundary conditions and analyses the result on the input geometry.
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the problem is not fully solved, as all existing methods often fail to achieve bijectivity and/or

sufficient quality of the resulting maps when applied to complex geometries. Our focus is on

correspondences between meshes obtained during a remeshing procedure, instead of solving the

more general problem of processing arbitrary mesh pairs.

In this work, we propose a general construction designed to enable attribute mapping between

geometrically close (in a well-defined sense) meshes by jointly constructing: (1) a shell S around

triangle mesh T spanned by a set of prisms, inducing a volumetric vector fieldV in its interior

and (2) a projection operator P that bijectively maps surfaces inside the shell to T , as long as the

dot product of the surface face normals andV is positive (we call such a surface a section of S).

Given a surface mesh T and its shell S, it is now possible to exploit the bijection induced by P in

many existing remeshing algorithms by adding to them an additional constraint ensuring that the

generated surface is a section of a given shell.

As long as the generated mesh is a section, the projection operator P can be used to transfer

application-specific attributes. At a higher level, the middle surface of our shell can be seen as

a common parametrization domain shared by sections within the shell: differently from other

methods that map the triangle meshes to a disk, region of a plane, a canonical polyhedron, or

orbifolds, our construction uses an explicit triangle mesh embedded in ambient space as the

common parametrization domain. This provides additional flexibility since it is adaptive to the

density of the mesh and naturally handles models with high genus, while being numerically

stable under floating-point representation (and exact if evaluated with rational arithmetic). The

downside is that it is defined only for sections contained within the shell. The construction

and optimization of our shell, and corresponding bijective mapping, is computationally more

expensive than remeshing-only methods: our algorithms takes seconds to minutes on small and

medium sized models, and might take hours on the large models in our tests.

We evaluate the robustness of the proposedapproach by constructing shells for a subset of

the models in Thingi10k [Zhou and Jacobson 2016] and in ABC [Koch et al. 2019] (Section 4.3).
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We also integrate it in six common geometry processing algorithms to demonstrate its practical

applicability (Section 4.4):

1. Proxy. The creation of a proxy, high-quality remeshed surface to solve PDEs (e.g., to compute

geodesic distances or deformations), avoiding the numerical problems caused by a low-

quality input in commonly used codes. Bijective projection operators associated with a shell

enable us to transfer boundary conditions to the proxy mesh, compute the solution on the

proxy, and then transfer the solution back to the original geometry.

2. Boolean operations. The remeshing of intermediate results of Boolean operations, to ensure

high-quality intermediate meshes while preserving a bijection to transfer properties between

them.

3. Displacement Mapping. The automatic conversion of a dense mesh into a coarse approxima-

tion and a regularly sampled displacement height map. Our method generates a bijection

that allows us to bake the geometric details in a displacement map.

4. Tetrahedral Meshing. The conversion of a surface mesh of low quality into a high-quality

tetrahedral mesh, with bijective correspondence.

5. Geometric Textures. Generation of complex topological structures using volumetric textures

mapped to the volumetric parametrization of a simplified shell defined by P. Our analysis

on the initial shell also complements the literature on shell maps.

6. Nested Cages. A robust approach to generate a coarse approximation of a surface for collision

checking, cage-based deformation, or multigrid approaches.

Our contributions are:

1. An algorithm to build a prismatic shell and the corresponding projection operator around

an orientable, manifold, self-intersection free triangle mesh with arbitrary quality;
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Figure 4.2: Overview of our algorithm. We start from a triangle mesh, find directions of extrusion, build

the shell, and optimize to simplify it.

2. A new definition of bijective maps between close-by discrete surfaces;

3. A reusable, reference implementation provided at https://github.com/jiangzhongshi/

bijective-projection-shell.

4.2 Method

Our algorithm (Figure 4.2) converts a self-intersection free, orientable, manifold triangle mesh

T = {VT , FT }, where VT are the vertex coordinates and FT the connectivity of the mesh, into

a shell composed of generalized prisms S = {(BS,MS,TS ), FS }, where BS , MS , TS are bottom,

middle, and top surfaces of the shell, consisting of bottom, middle, and top triangles of the

prisms, and FS is the connectivity of the prisms (Figure 4.3). The algorithm initially generates a

shell S whose middle surfaceMS has the same geometry as the input surface T (possibly with

refined connectivity), and then optimizes it while ensuring that T is contained inside and projects

bijectively toMS . The shell induces a volumetric vector fieldV and a projection operator P in the

interior of each of its prisms (Section 4.2.1). This output can be used directly in many geometry

processing tasks, as we discuss in detail in Section 4.4.
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Figure 4.3: Example of the top (le�, outer) and bo�om (right, inner) surface of the prismatic shell.

We first introduce the definition of our projection operator P and the conditions required for

bijectivity of its restrictions to sections of the shell (Section 4.2.1). We then define shell validity

(Section 4.2.2), present our algorithm for creating an initial shell (Section 4.2.3) and optimizing it to

decrease the number of prisms (Section 4.2.4). To simplify the exposition, we initially assume that

our input triangle mesh does not contain singular points (defined in Section 4.2.3) and boundary

vertices, and we explain how to modify the algorithm to account for these cases in sections 4.2.5

and 4.2.7.

4.2.1 Shell and Projection

Let us consider a single generalized prism ∆ in a prismatic layer S (Figure 4.4 left). The generalized

prism ∆ is defined by the position of the vertices of three triangles, one at the top, with coordinates

t1, t2, t3, one at the bottom, with coordinates b1,b2,b3, and one in the middle, implicitly defined by

a per-vertex parameter αi ∈ [0, 1], with coordinatesmi = αiti + (1 − αi )bi , i = 1, 2, 3. We will call

the top (bottom) “half” of the prism top (bottom) slab. For brevity, we will refer to a generalized
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Figure 4.4: A prism ∆ (le�) is decomposed into 6 tetrahedra (middle, for clarity, we only draw the 3

tetrahedra of the top slab). Each tetrahedron has a constant vector field in its interior (pointing toward the

top surface), which is parallel to the only pillar of the prism that contains the point.

prism as a prism.

Note that we want to ensure that our shell validity is independent from the enumeration of

the faces; for this reason, we require that the conditions I1 and I2 are satisfied for all possible

decompositions. Without using the double slab, different decompositions of the prism will result

in different intersections with the middle surface. In other words, the projection operator will

project the input mesh to a different set of triangles on the middle surface. The double slab makes

the middle surface independent of the decomposition by construction. We note that Theorem 4.6

is valid only for double-slab prisms since the statement requires that one prism contains only one

triangle.

Decomposition in Tetrahedra We decompose each prism ∆ into 6 tetrahedra (3 in the top

slab and 3 in the bottom one, Figure 4.4 middle), using one of the patterns in [Dompierre et al.

1999, Figure 4]. The patterns are identified by the orientation (rising/falling) of the two edges

cutting the side faces of the prism. While, for a single prism, any decomposition would be
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sufficient for our purposes, we need a consistent tetrahedralization between neighboring prisms to

avoid inconsistencies in the projection operator. To resolve this ambiguity, we use the technique

proposed in [Garimella and Shephard 2000]: we define a total ordering over the vertices of the

middle surface of ∆ (naturally, we use the vertex id) and split (for each half of the prism) the face

connecting vertices v1 and v2 with a rising edge if v1 < v2 and a falling edge otherwise.

Forward and Inverse Projection We define a piecewise constant vector fieldV inside the

decomposed prism, by assigning to each tetrahedron T ∆

j , j = 1, . . . , 6, the constant vector field

defined by the only edge ofT ∆

j which is a oriented pillar of ∆ connecting the bottom surface to

the top surface passing through the middle surface). That is, for any p ∈ T ∆

j

V (p) = ti − bi , (4.1)

where i is the index of the vertex corresponding to the pillar edge ofT ∆

j . Note thatV is constant

on each tetrahedron and might be discontinuous on the boundary: we formally define the value

ofV on the boundary as any of the values of the incident tetrahedra. This choice does not affect

our construction. There is exactly one integral (poly-)line passing through each point of the prism

if all the decomposed tetrahedra have positive volumes (Theorem 4.2). This allows us to define

the projection operator P (p) for a point p ∈ ∆ as the intersection of the integral line fp (t ) of the

vector fieldV passing through p, with the middle surface of ∆ (Figure 4.5). Intuitively, we can

project any mesh that does not fold in each prism (Figure 4.6) to the middle surface. Formally, we

introduce the following definition, to describe this property in terms of the triangle normals of

the mesh.

With a slight abuse of the notation, for meshes and collections of prismsA and B, we useA∩B

to denote the intersection of their corresponding geometry.

Definition 4.1. A section T̂ of a prism ∆ is a manifold triangle mesh whose intersection with ∆ is
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Figure 4.5: A point p (le�) is traced through V inside the top part of the shell. A ray with p as origin

andV as direction is cast inside the orange tetrahedron (middle). The procedure is repeated (on the blue

tetrahedron) until the ray hits a point in the middle surface (right).
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Figure 4.6: A 2D illustration for the normal dot product condition. The blue arrows agrees with the

background vector field (white arrows), while the red arrows do not agree.

a simply connected submesh T̂ ∩ ∆ whose single boundary loop is contained in the boundary of

∆, excluding its top and bottom surface, and such that for every point p ∈ T̂ ∩ ∆ the dot product

between the face normal n(p) and the vector fieldV (p) is strictly positive. Similarly, a triangle

mesh T̂ is a section of a shell S, if it is a section of all the prisms of S.

Note that this definition implies that all sections are contained inside the shell. Additionally, the

definition implies that the section does not intersect with either bottom or top surface. However,

our definition allows for the bottom or top surface to self-intersect. The intersection of the

shell does not invalidate the local definition of projection since it is defined per prism. Allowing

intersections is crucial to an efficient implementation of our algorithm since it allows us to take

advantage of a static spatial data structure in later stages of the algorithm (Section 4.2.4).
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Theorem 4.2. If all 6 tetrahedraT ∆

j in a decomposition of a prism ∆ have positive volume, then the

projection operator P defines a bijection between any section T̂ of ∆ and the middle triangle of the

prism (M in Figure 4.7).

Proof. Consider the unique (up to symmetry) piece-wise affine mapT deforming ∆ into a reference

prism ∆̂ = {u,v ≥ 0|u + v ≤ 1} × [−1, 1], identifying the bottom surface of ∆̂ as z = −1, middle

surface as z = 0, and top surface as z = 1. Let TT be the affine map mapping tetrahedronT to the

reference prism. Since the volume of allT is positive by assumption, the map T is bijective and

orientation preserving. In particular, T transformsV (p) to the const vector ez = (0, 0, 1) since the

edges of the prism are mapped to axis aligned edges of the reference prism. The projection operator

P (p) can thus be equivalently defined as P (p) = T −1(Pz (T (p))), where Pz is the projection over

the z-axis in the reference prism. Pz is bijective if the piecewise linear mesh intersecting ∆ is

composed of triangles with positive area (and the boundaries are mapped to the boundaries)

[Lipman 2014], after being mapped to the reference ∆ and projected by Pz . In the reference

domain, having positive area after projection (with a fixed boundary) is equivalent to that the dot

product between the projection direction and the normal of every face is positive. In the top half of

∆, Pz is bijective if for every point T (p),p ∈ f T (np ) · [0, 0, 1] = T (np ) ·T (V (p)) > 0 which holds

since np · V (p) > 0 (from the definition of section) and the fact that T is orientation preserving

and thus not changing the sign of the dot product. �

The inverse projection operator P−1 is defined for a section T̂ as the inverse of the forward

projection restricted to T̂ . It can be similarly computed by tracing the vector field in the opposite

direction, starting from a point in the middle surface of the prism. Note that, differently from the

inverse Phong projection [Panozzo et al. 2013; Kobbelt et al. 1998], whose solution depends on

the root-finding of a quadric surface, our shell has an explicit form for the inverse and does not

require a numerical solve. The combination of forward and inverse projection operators allows to

bijectively map between any pair of sections, independently of their connectivity (Figure 4.7). An
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Figure 4.7: The composition P−1S2 (PS1 (x )) with x ∈ S1, of a direct and an inverse projection operator

defines a bijection between two sections S1 and S2.

interesting property of our forward and inverse projection algorithm, which might be useful for

applications requiring a provably bijective map, is that our projection could be evaluated exactly

using rational arithmetic.

4.2.2 Validity Condition

Shell, projection operator, section definitions, and the bijectivity condition (Theorem 4.2) are

dependent on a specific tetrahedral decomposition, which depends on vertex numbering.

To ensure that our shell construction is independent from the vertex and face order, we define

the validity of a shell by accounting for all 6 possible tetrahedral decompositions [Dompierre et al.

1999, Figure 4].

Definition 4.3. We say that a prismatic shell S is valid with respect to a mesh T̂ if it satisfies two

conditions for each prism.

I1 Positivity. The volumes of 24 tetrahedra (Appendix 4.2.3) corresponding to 6 tetrahedral

decompositions are positive.

I2 Section. T̂ is a section of S for all 6 decompositions.
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If a shell is valid, from I1, I2, then by Theorem 4.2, it follows that any map between sections

induced by the projection operator P is bijective.

I2 ensures that the input mesh is a valid section independently from the decomposition; that is,

we require the dot product to be positive concerning all three pillars of a prism inside the convex

hull. A useful side effect of this validity condition is that it ensures the bijectivity of a natural

nonlinear parametrization of the prism interior (Section 4.2.8, Figure 4.26).

4.2.3 Shell Initialization

We now introduce an algorithm to compute a valid prismatic shell S = {(BS,MS,TS ), FS } with

respect to a given triangle mesh T = {VT , FT } such that T is geometrically identical to the middle

surface of S. We assume that the faces of the triangle mesh are consistently oriented.

Extrusion Direction. The first step of the algorithm is the computation of an extrusion

direction for every vertex of T . These directions are optimized to be pointing towards the outside

of the triangle mesh (which we assume to be orientable), that is, they must have a positive dot

product with the normals of all incident faces. More precisely, for a vertex v , we are looking for a

direction dv such that dv · n f > 0 for each adjacent face f with normal n f . We can formulate this

as the optimization problem

max
dv

min
f ∈Nv

n f · dv ,

s.t. n f · dv ≥ ϵ, ∀f ∈ Nv

‖dv ‖2 = 1. (4.2)

With slack variable t , Problem 4.2 can be rewritten as

max
t

t ; dvn f ≥ t , ‖dv ‖ = 1, t ≥ ϵ .
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In the admissible region, substituting t = 1/s ,

min
s

s; sdvn f ≥ 1, ‖dv ‖ = 1, 0 < s ≤ 1/ϵ .

Substituting x = sdv (thus ‖x ‖ = s ‖d ‖ = s), we obtain the QP problem 4.3. Note that the lower

bound on s is implied from sdvn f ≥ 1, and the upper bound ‖x ‖ < 1/ϵ is checked a posteriori.

A solution, if it exists, can be found solving the following quadratic programming problem

min ‖x ‖2,

s.t. Cx ≥ 1, (4.3)

with dv = x/‖x ‖ and C the matrix whose rows are the normals n f of the faces in the 1-ring Nv of

vertex v . Solutions not satisfying ‖x ‖ ≤ 1/ϵ needs to be discarded. The QP can be solved with

an off-the-shelf solver[Stellato et al. 2017; Cheshmi et al. 2020], and in particular it can be solved

exactly [Gärtner and Schönherr 2000] to avoid numerical problems. Note that the Problem (4.2) is

studied in a similar formulation in [Aubry and Löhner 2008] but their solution requires tolerances

in multiple stages of the algorithm to handle cospherical point configurations.

The admissible set of (4.2) might be empty for a vertexv , that is, no vector dv satisfies Cdv ≥ ϵ .

In this case we call v a singularity. For example, Figure 4.13 shows a triangle mesh containing a

singularity: there exist no direction whose dot product with the adjacent face normals is positive.

To simplify the explanation, we assume for the remainder of this section that T does not contain

singularities and also that it does not contain boundaries: we postpone their handling to sections

4.2.5 and 4.2.7.

Proposition 4.4. Let T be a closed (without boundary) triangle mesh without singularities and N

be a per-vertex displacement field satisfying CNi > 0 for every vertex vi of T . Then there exist a

strictly positive per-vertex thickness δi such that vertices ti and bi obtained by displacing vi by δi in

the direction of Ni and in the opposite direction, define a shell that satisfies invariant I1.
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Proof. For simplicity, we will show that a uniform lower bound δ for all vertices exists. By consider

a triangle ofT , extruded over the displacement fieldN , we obtain a generalized half prism with six

vertices 0, e1, e2, δn0, e1 + δn1, e2 + δ n2, with δ a positive constant. The indices of the tetrahedra

are: (0 ,2, 3, 4), (0 ,3, 4, 5), (0 ,1, 5, 3), (0 ,1, 2, 3), (1 ,2, 3, 4), (0 ,1, 2, 4), (0 ,1, 5, 4), (1 ,3, 4, 5), (1 ,2, 3,

5), (0 ,2, 5, 4), (0 ,1, 2, 5), (2 ,3, 4, 5).

For a sufficiently small δ , the linear term will dominate the higher power of δ , which we omit.

The dominant volume terms are listed in the following table: (eij := ej − ei )

(0 ,2, 3, 4) vol1(0, e2,δn0, e1 + δn1) δ〈e2,n0, e1〉

(0 ,3, 4, 5) vol2(0,δn0, e1 + δn1, e2 + δn2) δ〈n0, e1, e2〉

(0 ,1, 5, 3) vol3(0, e1, e2 + δn2,δn0) δ 〈e1, e2,n0〉

(0 ,1, 2, 3) vol4(0, e1, e2,δn0) δ〈e1, e2,n0〉

(1 ,2, 3, 4) vol5(e1, e2,δn0, e1 + δn1) 〈e12,δn0 − e1,δn1〉

= δ〈e2,−e1,n1〉

(0 ,1, 2, 4) vol6(0, e1, e2, e1 + δn1) δ〈e1, e2,n1〉

(0 ,1, 5, 4) vol7(0, e1, e2 + δn2, e1 + δn1) 〈e1, e2 + δn2,δn1〉

= δ〈e1, e2,n1〉

(1 ,3, 4, 5) vol8(e1,δn0, e1 + δn1, e2 + δn2) δ〈δn0 − e1,n1, e12 + δn2〉

= δ〈−e1,n1, e2〉

(1 ,2, 3, 5) vol9(e1, e2,δn0, e2 + δn2) 〈e12,δn0 − e1, e12 + δn2〉

= δ〈e12,δn0 − e1,n2〉

= δ〈e2,−e1,n2〉

(0 ,2, 5, 4) vol10(0, e2, e2 + δn2, e1 + δn1) δ〈e2,n2, e1〉

(0 ,1, 2, 5) vol11(0, e1, e2, e2 + δn2) δ〈e1, e2,n2〉

(2, 3, 4, 5) vol12(e2,δn0, e1 + δn1, e2 + δn2) 〈δn0 − e2,δn1 − e12,δn2〉

= δ〈−e2, e1,n2〉

For all the 12 tetrahedra the linear term is multiplied by a determinant containing the edges of

the prism. We check directly that all these determinants are positive due to the assumption that

CNi > 0.
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Initial Thickness We first show that a strictly positive per-vertex thickness δ exists for a shell

S with T as its middle surface, and then discuss a practical algorithm to realize it.

Theorem 4.5. Given a closed, orientable, self-intersection free triangle mesh T such that for all its

vertices Problem (4.2) has a solution, a shell S exists such that T is the middle surface and there exist

a strictly positive per-vertex thickness δ .

Proof. Consider a ball around a point p of the middle faceM of the prism. If the radius r (p) > 0

is sufficiently small, it contains, at most, a single vertex of M , and parts of incident faces. As

M is compact, there is a minimal value of r on M , and it is positive. The line along the normal,

passing through v , intersects incident faces at v so it cannot intersect them at any other point.

Thus, the top and bottom prism vertices can be obtained by displacing V by r in either direction

along the normal. Consider the r -neighborhood of the M , i.e. the union of all balls of radius r

centered at points ofM . This is a convex set, containing onlyM and parts of vertex-adjacent faces.

All top and bottom prism vertices are in this set. Thus tetrahedra connecting these vertices are

also in the set, i.e., complete prisms. The fact that tetrahedra are nondegenerate is established in

Proposition 4.4. �

To find a valid per-vertex thickness δi to construct the top surface, we initially cast a ray in

the direction of N for each vertex and measure the distance to the first collision with T (and cap

it to a user-defined parameter δmax if no collision is found). An initial top mesh is built with this

extrusion thickness; then we test whether any triangle in the top surface intersects T , through

triangle-triangle overlap test [Guigue and Devillers 2003], and iteratively shrink δi in this triangle

by 20% until we find a thickness that prevents intersections between the input and the top surface.

Analogously, we build the bottom shell along the opposite direction. Note that the thickness of a

vertex for the top and bottom surface can be different.
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Figure 4.8: The vector field aligned with the pillar edge (orange) has a negative dot product with the

green triangle normal; the tetrahedron with this field direction meets the green triangle at the red vertex.

As a consequence, the mid-surface is not a section. A�er topological beveling, the shell becomes valid since

the dot product between the green normal and the new pillar (purple) is positive.

Validity of the Initial Shell Proposition 4.4 and Theorem 4.5 ensure that the initial shell

constructed using a displacement fieldN obtained by solving (4.3), satisfies property I1. However,

T might not formally satisfy the conditions for being a section of S, despite being identical to the

middle surface of S, due to our definition of the projection operator P. The reason for this can be

seen in Figure 4.8. After the initialization, the middle surface is the input mesh. Thus every prism

∆ corresponds to a triangle T∆ of T . The intersection ∆ ∩ T , required to check if T is a section

of ∆ (Definition 4.1) contains points from both T∆ and its 1-ring neighborhood.

The projection operator (and thus the definition of the section) is based on all tetrahedral

decompositions of ∆; it is possible that multiple tetrahedra (with different vector field values in

V) overlap on the boundary of ∆.

Depending on the dihedral angles in the mesh T , it is possible that the dot product between

one of the pillars (orange in Figure 4.8) and the face normals of some of the triangles from 1-ring

neighborhood (green in Figure 4.8) is negative. While it may seem that this problem could be

addressed by changing the definition so that each edge is assigned to one of the incident triangles,

so that the field direction only in one incident tetrahedron needs to be considered, this problem is

more significant than it may seem, as it leads to instability under small perturbations (e.g., due to
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(a) (b) (c)

Figure 4.9: The beveling pa�erns used to decompose prisms for which T is not a section.

floating-point rounding of coordinates). Such small perturbations can change the set of triangles

intersecting a prism and thus violate the validity of the shell and, consequently, the bijectivity of

P. We propose instead to refine T , without changing its geometry, so that the shell corresponding

to the refined mesh satisfies I2 (i.e., its middle surface is a section).

Topological Beveling. We identify a prism ∆v for which I2 does not hold and use a beveling

pattern [Coxeter 1973; Conway et al. 2016; Hart 2018] to decompose ∆v in a way that T becomes

a section for all 6 decompositions (I2). We refer to this operation as topological beveling, as it does

not change the geometry of the mesh, only its connectivity (Figure 4.10). We use the pattern in

Figure 4.9a for ∆v , and we use the other two patterns (b) and (c) on the adjacent prisms to ensure

valid mesh connectivity. The positions of the vertices are computed using barycentric coordinates

(we used t = 0.2, i.e., the orange dot is at 1/5 of the horizontal edge), and the normals of the newly

inserted vertices are copied from the closest vertex (in Figure 4.9, the internal vertices have the

normal of the triangle corner with the same color).

Theorem 4.6. Suppose T is the middle surface of S, and neither TS or BS intersects with T . After

topological beveling, I2 holds, that is, T is a section of the shell S for all 6 decompositions.

Proof. To show that T is a section ofS we need to show that (1)M∆ = T ∩∆ is a simply connected

patch for any prism of S and (2) for each prism ∆ and every point p ∈ M∆ the dot product between

the face normal n(p) and the pillarsVi , i = 1, 2, 3 is strictly positive.
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Screwdriver (input)

|F|=6786

Initial Middle Surface

|F|=10470

Optimized Shell

|F|=394

Figure 4.10: Our algorithm refines the input model (le�) with beveling pa�erns (middle) to ensure the

generation of a valid shell. The subsequent shell optimizations gracefully remove the unnecessary vertices

(right).

(1) is trivial since for every prism ∆ of S, ∆ contains exactly one triangle of the topological

bevel refinement face of T .

To prove (2), consider the dot products of the normals of each of the triangles in the beveled

region sharing at least a vertex withM∆, and the vectors along the pillars ofM∆. We use colors to

refer to the triangles of beveled prisms as shown in Figure 4.11 left.

The prism corresponding to the pink triangle covers only the interior of the original triangle. It

satisfies the dot product condition since its pillars are copied from the solution of Problem (4.3) at

each vertex. A similar argument can be made for the green prisms: each prism gets its pillars from

the edges incident at two of the vertices, which are compatible with the normal of the adjacent

triangle (e.g., red and blue pillars have positive dot product with the normal of T1). Finally, the
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Figure 4.11: Bevel pa�erns used in the proofs in Section 4.2.6

prisms corresponding to orange triangles cover the same one ring that was used to compute the

original pillars (e.g., red pillar is compatible with T1 and T2). Since the same pillar is used for each

of the 3 vertices of the original prism, the dot product is unchanged.

�

Output The output of this stage is a valid shell with respect to T (Section 4.2.2), that is, it

satisfies I1 and I2.

4.2.4 Shell Optimization

During shell optimization, we perform local operations (Figure 4.12) on a valid shell to reduce its

complexity and increase the quality. Before applying every operation, we check the validity of the

operation to ensure that: (1) the resulting middle surface will be manifold [Dey et al. 1999b] and (2)

the shell will be valid with respect to T (to ensure a bijective projection). We forbid any operation

that does not pass these checks. We would like to remark that, while there are different choices to

guide the shell modification, we experimentally discovered that allowing shell simplification and

optimization consistently leads to thicker shells with a richer space of sections.

Theorem 4.7. Let S be a valid shell with respect to a mesh T and letC = {∆i }i∈I ⊂ S be a collection

of prisms such that the middle surfaceMC of C is a simply connected topological disk.
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Let O be an operation replacing C with a new collection of prisms C′ = {∆′i }i∈I ′ , preserving both

geometry and connectivity of the sides of the prism collection C , and ensuring thatMC ′ is a simply

connected topological disk.

If these three assumptions hold:

1. property I1 holds for C′,

2. the top and bottom surfaces of C′ do not intersect T (TC ′ ∩ T = BC ′ ∩ T = ∅),

3. the dot product condition n(p) · V (p) > 0 is satisfied for all points p ∈ T ∩ ∆′i for all pillars of

every prism ∆
′
i of C

′,

then, ∀i ∈ I ′, T ∩ ∆
′
i is a simply connected topological disk. In other words, T is a section of the new

shell S′ obtained by applying the operation O to S.

Proof. We use A◦ to denote the interior of a set A. We first assert that the topological disk patch

T ∩C coincides with T ∩C′. To make the notation more concise, we define TC = T ∩C and

TC ′ = T ∩C′.

We show that TC ⊂ C′ by contradiction: assume there is p ∈ TC but p < C′. Choose a point

q ∈ ∂TC , that belongs to single prisms in C and C′ and denote the enclosing prism in C as ∆q and

the corresponding one in C′ as ∆′q . It follows from the positivity of the volumes of ∆q and ∆
′
q

(Assumption 1), that there is ε > 0 such that the half-ball (for sufficiently small ε) Ball(q, ε ) ∩ ∆q

coincides with Ball(q, ε ) ∩ ∆
′
q . Futhermore, the validity of the initial shell guarantees that there

exists an interior point q̄ ∈ Ball(q, ε ) ∩ ∆
◦
q ∩ T , and q̄ ∈ ∆′◦q ∩ T ⊂ C′◦ ∩ T .

Since neither p or q̄ lies on the boundary side triangles of ∂C′ (since p, q̄ < ∂TC ), therefore there

exists an interior path P (i.e., a path both in TC and in TC ′) that connects p and q̄. By continuity

the path P it will cross ∂C′ at some point pi ∈ TC . Since the ∂TC ′ = ∂TC is a fixed boundary loop

(by the definition of O), and does not contain interior points, pi can only cross on the top surface

or bottom surface of C′ which contradicts Assumption 2. The roles of C and C′ can be inverted to

complete the proof.
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We then map MC to a regular planar n-gon D, with vertices on ∂MC mapped cyclically to

the vertices of ∂D. It follows from [Floater 2003, Corollary 6.2] that such a convex combination

mapping φ : MC → D is bijective. Then, similarly to the construction in Theorem 4.2, we define

ϕ : C → D × [−1, 1] through affine mapping induced by the thetrahedralization of the prisms ∆i .

Similarly, we defineψ : C′ → D × [−1, 1]. The mappingψ is also bijective because of Assumption

1 and the definition of O it follows that the codomain of ψ is the same as ϕ. Note that in both

cases, the map transforms the vector fieldV (p) to the constant vector field ez = (0, 0, 2), and the

projection is Pz , as defined in the proof of Theorem 4.2.

The dot product condition (Assumption 3) ensures that Pz defines a bijection between D and

ψ (TC ); and further, the image satisfies Pz (ψ (∆′i ∩ T )) = ψ (M′i ) where M
′
i is the middle surface

(a single triangle) of ∆′i . Therefore, since ψ and Pz are both continuous and bijective, they are

homeomorphisms which preserve topology, thus ∆′i∩T is a simply connected topological disk. �

We note that assumption (2) in Theorem 4.7 prevents the input surface from crossing the

bottom/top surface, thus avoiding it to move in the interior of a region covered by more than one

prism.

Our local operations (satisfying the definition of O in Theorem 4.7) are translated from surface

remeshing methods [Dunyach et al. 2013] since our shell can be regarded as a triangle mesh

(middle surface) extruded through a displacement field N . All the local operations described

below directly change the middle surface, and consequently affect the extruded shell. After every

operation, the middle surface is recomputed by intersecting T with the edges of the prisms in S.

Shell�ality We measure the quality of the shell S using the MIPS energy [Hormann and

Greiner 2000] of its middle surface MS . For each triangle T of the middle surface, we build a

local reference frame, and compute the affine map JT transforming the triangle into an equilateral
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Edge Flip Edge Collapse

Edge Split

Vertex Smooth (Pan)

Vertex Smooth (Zoom)

Vertex Smooth (Rotate)

Figure 4.12: Different local operations used to optimize the shell. Mesh editing operations translate

naturally to the shell se�ing. For vertex smoothing, we decompose the operation into 3 intermediate steps:

pan, zoom, and rotate.

reference triangle in the same reference frame. The energy is then measured by

∑

T∈MS

tr(JTT JT )

det(JT )
.

This energy is invariant to scaling, thus allowing the local operations to coarsen the shell whenever

possible while encouraging the optimization to create well-shaped triangles. Good quality of the

middle surface decreases the chances, for the subsequent operations, to violate the shell invariants.

Shell Connectivity Modifications. We translate three operations for triangular meshes to

the shell settings (Figure 4.12 top). Edge collapse, split, and flip operations can be performed by

simultaneously modifying the top and bottom surfaces and retrieve the positions for the middle

surface through the intersection. We only accept the operations if they pass the invariant check.

Vertex Smoothing. Due to the additional degree of freedom on vertex-pairs (position, direction,

and thickness), we decompose the smoothing operations into three components (Figure 4.12

bottom). Pan moves the positions of the top and bottom vertex at the same time, minimizing the

72



MIPS quality of the middle surface. Neither the thickness or direction will be changed. Rotate

re-aligns the local direction to be the average of the neighboring ones while keeping the position

of the middle vertex fixed. Zoom keeps the direction and position of the middle vertex, and set the

thickness of both top and bottom to be 1.5 times of the neighbor average, capped by the input

target thickness.

Invariant Check We use exact orientation predicates [Shewchuk 1997] to make sure all the

prisms satisfy positivity (I1). Further, we ensure that the original surface T is not intersecting

with the bottom and top surface, except at the prescribed singularities. The check is done using the

triangle-triangle overlap test [Guigue and Devillers 2003], accelerated using a static axis-aligned

bounding box tree constructed from T . To accelerate the checks for normal condition, for each

prism ∆i , we maintain a list triangles overlapping with its convex hull (an octahedron), and check

their respective normals against all the three pillars of ∆i . These three checks ensure that the three

conditions in Theorem 4.7 are satisfied. Note that the vertex smoothing operation is continuous,

in the sense that any point between the current position and the optimal one improves the shell.

We, however, handle it as a discrete operation to check our conditions: we attempt a full step,

and if I1 is not satisfied, we perform a bisection search for a displacement that does. We avoid

bisection for the other two conditions since they are expensive to evaluate.

Projection Distortion An optional invariant to maintain (not necessary for guaranteeing

bijectivity, but useful for applications), is a bound on the maximal distortion DP (∆) of P for a

prism ∆. We measure it as the maximal angle between the normals of the set C containing the

faces of T intersecting ∆ andV :

DP (∆) = max
p∈C
∠(np,V (p)),
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Figure 4.13: A model with 48 singularities and a close up around one (le�). Our shell is pinched around

each of them without affecting other regions (right).

where ∠ is the unsigned angle in degrees. This quantity is bounded from below by the smallest

dihedral angle of T , making it impossible to control exactly. However, we can prevent it from

increasing by measuring it and discarding the operations that increase it. In our experiments, we

use a threshold of 89.95 degrees.

Scheduling and Termination Our optimization algorithm is composed of two nested loops.

The outer loop repeats a set of local operations until the face count between two successive

iteration decreases by less than 0.01%. In the inner loop we: (1) flip every edge of S decreasing

the MIPS energy and avoiding high and low vertex valences [Dunyach et al. 2013]; (2) smooth

all vertices which include pan, zoom, and rotate; and (3) collapse every edge of S not increasing

the MIPS energy over 30. Note that for every operation, we check the invariants, the projection

distortion, and manifold preservation and reject any operation violating them. After the outer

iteration terminates (i.e. the shell cannot be coarsened anymore), we further optimize the shell

with 20 additional iterations of flips and vertex smoothing.

4.2.5 Singularities

Singularities, i.e. vertices of T for which the constraints set of problem (4.2) is empty, are

surprisingly common in large datasets (Figure 4.13 shows an example). For instance, in our subset
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of Thingi10k [Zhou and Jacobson 2016], although only 0.01% vertices are singular, 8% of the

models have at least one singular point. This has been recently observed as a limitation for the

construction of nested cages [Sacht et al. 2015, Appendix A], and it is a well-known issue when

building boundary layers [Aubry et al. 2015, 2017; Garimella and Shephard 2000]. There are two

main situations that give rise to singular points. The first one naturally generates a singular

point when more than two ridge-lines meet (e.g., figures 4.13 and 4.31), thus making the point a

feature point. The second one is a pocket-like mesh artifact, often produced as a result of mesh

simplification (Figure 4.14).

While singularities might seem fixable by applying local smoothing or subdivision as a pre-

process, it is not desirable in the case of a feature point, and is likely to introduce self-intersection

or more serious geometric inconsistency. Therefore, due to the above reasons and observing that

they are very uncommon, we propose to extend our theory (Section 4.2.6) and algorithm to handle

isolated singularities by pinching the thickness of the shell. Note that in the rare case where two

singular points are sharing the same edge, they are automatically separated by our topological

beveling.

Pinching. We extend our definition of the shell by allowing it to have zero thickness on singular-

ities, thus tessellating the degenerate prism with 4 instead of 6 tetrahedra (Figure 4.14). We further

remark that these isolated points must be excluded from Definition 4.1. In the implementation,

this requires to change the intersection predicates to skip the singular vertices. With this change,

the singularity becomes a trivial point of the projection operator P, and the rest of our shell can

still be used in applications without further changes. Since singularities tends to be isolated (they

are usually located at the juncture of multiple sharp features), this solution has minimal effects on

applications: for example, when our shell is used for remeshing, pinching the shell at singularities

will freeze the corresponding isolated vertices while allowing the rest of the mesh to be freely

optimized.
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Figure 4.14: Le� to right: examples of a singularity as a feature point and as a meshing artefact; and

illustration of the degenerate prism with a singularity (red) and its tetrahedral decomposition made of

only four tetrahedra.

The topological beveling algorithm is changed most signifi-

cantly: for singularities, there is no pillar to copy from. In this

case, we apply an additional edge split, to use the pattern in the

inset (with the singularity marked by a white dot) in the one-ring

neighborhood of the singularity. The newly inserted vertices lie

either inside a triangle (uncircled red and orange dots), or in the

interior of an edge (circled red and orange dots). Therefore, we assign to the orange vertices the

average normal of the two adjacent triangles, and to red the pillar of the connected orange one.

Additionally, the edges connecting singularities will always be beveled/split after beveling.

Therefore no prism will contain more than one singular point. We discuss the technical extensions

for our proofs to shells with pinched prisms as follows,

4.2.6 Extension to meshes with Singularities

Most of the proofs and definition in Section 4.2 easily extends to meshes with singularity or

pinched shells. For instance, both Theorem 4.2 and Definition 4.3 apply to pinched shells by just

considering a prism made of 4 (2 for the top and 2 for the bottom slab) instead of 6. Propositions 4.4

76



Top View Side View

A
B

D

A B

D
A’

Figure 4.15: AA′ is a direction with positive dot product with respect to all its neighboring faces. However,

no valid shell can be built following that direction.

and 4.5 both rely on per-vertex properties; by just excluding singular vertices (and neighboring

prism) from the statements the proofs (and our algorithm) still holds.

Theorem 4.7 requires some minor additional considerations. As a consequence of beveling, no

two singularities are adjacent. Therefore, we can always find a point q ∈ ∂TC that belongs to a

single prism since every prism will have a positive volume because no singularities are adjacent.

Finally, Proposition 4.6 requires a new proof since the beveling pattern used for singularities

is different.

Proof. In Figure 4.11 right, we highlight in red and orange the triangles not covered by the

discussion. The prism corresponding to an orange middle triangle intersects the edge-adjacent

triangle. And since the new pillars are computed as the average of the normals of the two adjacent

triangles with dihedral angle strictly less than 360◦ (Section 4.2.5 inset), each dot product is positive.

The prism for a pink middle triangle intersects only the interior of the original triangle, and the

dot product between the pillars and the triangle normal are positive by construction. �

4.2.7 Boundaries.

We introduced our algorithm, assuming that the input mesh does not have boundaries. We will

now extend our construction to handle this case, which requires minor variations to our algorithm.
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Figure 4.16: An example of a mesh with boundary.

For some vertices on the boundary, it might be impossible to extrude a valid shell (Figure 4.15),

even if problem (4.2) has a solution, as Theorem 4.5 does not apply in its original form. We identify

such cases by connecting every edge in the 1-ring neighborhood of the boundary vertex to the

extruded point and check if they collide with the existing 1-ring triangles (e.g., the triangle A′AB

intersects the existing input triangle in Figure 4.15). If it is the case, we consider this vertex as a

singularity, and we pinch the shell. Note that this is an extremely rare case and, in our experiments,

we detected it only for models where the loss of precision in the STL export introduces rounding

noise on the boundary.

Once we pinch all boundary singularities, our construction extends naturally to the boundary.

The only necessary modification is in the shell optimization (Section 4.2.4), where we skip all

operations acting on boundary vertices to maintain the bijectivity of the induced projection

operator (Figure 4.16). We thus freeze these vertices and never allow them to move or be affected

by any other modification of the shell. Note that, in certain applications, it might also be useful to

freeze additional non-boundary vertices to ensure that these remain on the middle surface during

optimization (e.g., to exactly represent a corner of a CAD model).
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4.2.8 Bijectivity of the Nonlinear Prismatic Transformation

In this section, we show the isoparametric transformation of prismatic finite element [Ciarlet

1991] is also bijective if I1 holds.

We follow the notation from Appendix 4.2.3. The map is defined as (for the top slab)

f (u,v,η) = ue1 +ve2 + ηn0 + uηn01 +vηn02,

det Jf = 〈(1 − u −v )n0 + un1 +vn2, e1 + ηn01, e2 + ηn02〉,

where η is the variable corresponding to the thickness direction, and nij = nj − ni . Observe that

det Jf (u,v,η0) is linear in u,v for fixed η0, the extrema will only be achieved at the corner points

[Knabner and Summ 2001]. Therefore, it is sufficient to check the signs at three edges (0, 0,η),

(1, 0,η), (0, 1,η) for η ∈ [0, 1].

det Jf (0, 0,η)

= 〈n0, (1 − η)e1 + η(e1 + n1 − n0), (1 − η)e2 + η(e2 + n2 − n0)〉

= (1 − η)2〈n0, e1, e2〉 + (1 − η)η〈n0, e1, e2 + n2〉

+ (1 − η)η〈n0, e1 + n1, e2〉 + η2〈n0, e1 + n1, e2 + n2〉

= (1 − η)2vol4 + (1 − η)η(vol3 + vol1) + η2vol2 > 0.

By symmetry, it is easy to verify that the following are positive,

detJf (1, 0,η) = (1 − η)2vol6 + (1 − η)η(vol7 + vol5) + η2vol8,

detJf (0, 1,η) = (1 − η)2vol11 + (1 − η)η(vol9 + vol10) + η2vol12.
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Figure 4.17: The effect of different target thickness on the number of prisms |F| of the final shell, and

distribution of final thickness (shown as the box plots on the top).

Furthermore, we observe that, for a quadratic bezier curve piece at2 + bt (1 − t ) + c (1 − t )2, t ∈

[0, 1], the sufficient and necessary condition is a > 0, c > 0,b > −2
√
ac , and the last relation is

equivalent to (but more clearly stated as) b > 0| |b2 − 4ac < 0. Note that the current condition (all

12 positive tetra) imposes an unnatural constraint on edge splits: in the case of an aggressively

positive prism (all decompositions are all-positive), the sub-prism may not be positive in the same

check. While this will not break anything, forbidding edge split may lead to unexpected quality

loss in the later optimization procedure.

4.3 Results

Our algorithm is implemented in C++ and uses Eigen [Guennebaud et al. 2010] for the linear algebra

routines, CGAL [The CGAL Project 2020] and Geogram [Lévy 2015] for predicates and spatial

searching, and libigl [Jacobson et al. 2016] for basic geometry processing routines. We run our

experiments on cluster nodes with a Xeon E5-2690 v2 @ 3.00GHz. The reference implementation

used to generate the results is attached to the submission and will be released as an open-source

project.
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Robustness For each dataset, we selected the subset of meshes satisfying our input assumptions:

intersection-free, orientable, manifold triangle meshes without zero area triangles (tested using a

numerical tolerance 10−16). We test self-intersections by two criteria: a ball of radius 10−10 around

each vertex does not contain non-adjacent triangles; and all the dihedral angles are larger than 0.1

degrees.

We tested our algorithm on two datasets: (1) Thingi10k dataset [Zhou and Jacobson 2016]

containing, after the filtering due to our input assumptions, 5018 models; and (2) the first chunk

of for the ABC dataset [Koch et al. 2019] with 5545 models. The only user-controlled parameter of

our algorithm is the target thickness of our shell; in all our experiments (unless stated otherwise),

we use 10% of the longest edge of the bounding box. In Figure 4.17, we show how the target

thickness influences the usage of the shell: a thicker shell provides a larger class of sections, thus

accommodates more processing algorithms, while a thinner one offers a natural bound on the

geometric fidelity of the sections.

Our algorithm successfully creates shells for all 5018 models for Thingi10k and 5545 for ABC.

We show a few representative examples of challenging models for both datasets in Figure 4.18,

including models with complicated geometric and topological details. In all cases, our algorithm

produces coarse and thick cages, with a bijective projection field defined.

We report as a scatter plot the number of output faces, the timing, and the memory used by

our algorithm (Figure 4.19). In total, the number of prisms generated by our algorithm is 7% and

2% of the number of input triangles for the Thingi10k and ABC dataset respectively and runs with

no more than 4.7 GB of RAM. The generation and optimization of the shell takes 5min and 59s in

average and up to 8.6 hours for the largest model. 50% of the meshes finish in 3 minutes and 75%

in 6 minutes and 15 seconds.

Comparison to Simple Baselines In Figure 4.20 we compare to two baseline methods based on

[Garland and Heckbert 1998]. For each method, we generate a coarse mesh, uniformly subdivide
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Figure 4.18: Gallery of shells built around models from Thingi10k [Zhou and Jacobson 2016] and

ABC [Koch et al. 2019].
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Figure 4.19: Statistics of 5018 shells in Thingi10k dataset [Zhou and Jacobson 2016] (le�) and 5545 in

ABC Dataset [Koch et al. 2019] (right).

it for visualization purposes, and query the corresponding spatial position on the original input

to form the subdivided mesh. The UV based method is a conventional way of establishing

correspondence in the context of texture mapping. However, the robust generation of a UV

atlas satisfying a variety of user constraints is still an open problem. We use the state-of-the-art

methods [Li et al. 2018; Jiang et al. 2017] to generate a low-distortion bijective parametrization,

and use seam-aware decimation technique [Liu et al. 2017] to generate the coarse mesh. Due to

the complex geometry and the length of the seam (Figure 4.20 second figure), the simplification

is not able to proceed beyond the prescribed seam while maintaining the bijectivity, making the
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Zoom

Thai Statue
|F| = 79970

UV based
|F| = 3828

Naive Cage
|F| = 1950

Ours
|F| = 1950

Missed Projection

Figure 4.20: The UV based method cannot simplify the prescribed seams, and introduces self-intersections.

The projection induced by the Naive Cage method is not continuous and not bijective; it leads to visible

spikes in the reconstructed geometry.

pipeline inadequate especially for building computational domains.

We also set up a baseline of the Naive Cage method by creating a simplified coarse mesh with

[Garland and Heckbert 1998] and use Phong projection to establish the correspondence [Kobbelt

et al. 1998; Panozzo et al. 2013]. Such attribute transfer is not guaranteed to be bijective; some

face may not be projected (Figure 4.20 third image). With our method, we can generate a coarse

mesh while having a low-distortion bijective projection (Figure 4.20 fourth image).

Numerical accuracy To evaluate the numerical error introduced by our projection operator

when implemented with floating-point arithmetic, we transfer the vertices of the input mesh to
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Shark (input) Phong Projection Shell Ours

Figure 4.21: Our projection is three orders of magnitude more accurate than the baseline method, and

bijectively reconstructs the input vertex coordinates.

the middle surface and inverse transfer them from the middle surface back to the input mesh. We

measure the Euclidean distance with respect to the source vertices (Figure 4.21). We compare

the same experiment with the Phong projection [Kobbelt et al. 1998]. This alternative approach

exhibits distance errors up to 10−5 even after ruling out the outliers for which the method fails

due to its lack of bijectivity. The maximal error of our projection is on the order of 10−8; this error

could be completely eliminated (for applications requiring an exact bijection) by implementing

the projection operator and its inverse using rational arithmetic.

4.4 Applications

Using our shell S, we implement the following predicates and functions:

• is_inside(p): returns true if the point p ∈ R3 is inside S.

• is_section(T ): returns true if the triangle mesh T is a section of S.

• P (p): returns the prism id (pid), the barycentric coordinates (α , β) in the corresponding

triangle of the middle surface, and the relative offset distance from the middle surface (h,

which is -1 for the bottom surface, and 1 for the top surface) of the projection of the point p.

• P−1(pid,α , β,h) is the inverse of P (p).
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Rockerarm |F|=20088 QSlim |F|=100

Shell |F|=448 Ours |F|=136

Figure 4.22: We a�empt to simplify rockerarm (top le�) from 20088 triangles to 100. QSlim [Garland

and Heckbert 1998] succeeds in reaching the target triangle count (top right) but generates an output

with a self-intersection (red) and flipped triangles (purple). With our shell constraints (bo�om le�), the

simplification stagnates at 136 triangles, but the output is free from undesirable geometric configurations.

Note that both examples use the same quadratic error metric based sceduling [Garland and Heckbert

1998].

• PT (tid,α , β ) = P (q), whereq is the point in the triangle tid of the mesh T , with barycentric

coordinates α , β .

• P−1T (pid,α , β ) is the inverse of PT .

As explained in Section 4.2, our shell may self-intersect and we opted to simply exclude the

overlapping regions. In practice this affects only the function is_inside(p) which needs to check if

p is contained in two or more non-adjacent prisms.

These functions are sufficient to implement all applications below, demonstrating the flexibility

of our construction and how easy it is to integrate in existing geometry processing workflows.
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Figure 4.23: The heat method (right top) produces inaccurate results due to a poor triangulation (le� top).

We remesh the input with our method (le� bo�om), compute the solution of the heat method [Crane et al.

2013] on the high-quality mesh (middle bo�om) and transfer the solution back to the input mesh using

the bijective projection (bo�om right). This process produces a result closer to the exact discrete geodesic

distance [Mitchell et al. 1987] (top middle, error shown in the histograms).

Remeshing We integrated our shell in the meshing algorithm proposed in [Dunyach et al. 2013]

by adding envelope checks ensuring that the surface is a section after every operation. After

simplification, we can use the projection operator to transfer properties between the original

and remeshed surface (e.g., figures 4.23, 4.24). Since the remeshed surface is a section, a very

practical side effect of our construction is that the remeshed surface is guaranteed to be free of

self-intersections, As shown in Figure 4.22, the constraints enforced through our shell prevents

undesirable geometric configurations (intersections, pockets, or triangle flips).
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Knot 

|T|=1,497,488

Shell

|F|=7210

Section

|F|=30,182

Tetrahedralized

|T|=176,190

Figure 4.24: Knot simplified with our method and tetrahedralized with TetGen. The original model is

converted to 1,503,428 tetrahedra (le�) while the simplified surface is converted to only 176,190 tetrahedra

(right).

Proxy A particularly useful application of our shell is the construction of proxy domains for

the solutions of PDEs on low-quality meshes. Additionally, by specifying the target thickness

parameter (Figure 4.17), we are able to bound the geometry approximation error to the input

as well. Using our method, we can (1) convert a low-quality mesh to a proxy mesh with higher

quality and desired density, (2) map the boundary conditions from the input to the proxy using

the bijective projection map, (3) solve the PDE on the proxy (which is a standard mesh), and (4)

transfer back the solution on the input surface (Figure 4.23). Our algorithm can be directly used to

solve volumetric PDEs. by calling an existing tetrahedral meshing algorithm between steps 2 and

3 (figures 4.1, 4.24). In this case, we control the geometric error by setting the target thickness (we

use 2% of the longest edge of the bounding box).

Boolean Operations The mesh arrangements algorithm enables the robust and exact (up

to a final floating-point rounding) computation of Boolean operations on PWN meshes [Zhou

et al. 2016]. However, the produced meshes tend to have low triangle quality that might hinder
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Figure 4.25: The union of two meshes is coarsened through our algorithm, while preserving the exact

correspondence, as shown through color transfer.

the performance of downstream algorithms. By interleaving a remeshing step performed with

our algorithm after every operation, we ensure high final quality and more stable runtime. The

composition of the bijections enables us to transfer properties between different nodes of the CSG

tree (Figure 4.25).

Displacement Mapping The middle surface of the shell is a coarse triangular mesh that can

be directly used to compress the geometry of the input mesh, storing only the coarse mesh

connectivity and adding the details using normal and displacement maps (Figure 4.26). A common

way to build such displacement is to project [Kobbelt et al. 1998; Collins and Hilton 2002] the
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Input Mesh QSlim + Displacement Map

Shell Ours + Displacement Map

Figure 4.26: Top: an input mesh decimated to create a coarse base mesh, and the details are encoded in a

displacement map (along the normal) with correspondences computed with Phong projection [Kobbelt

et al. 1998]. Bo�om: the decimation is done within our shell while using the same projection as above.

With our construction, this projection becomes bijective (Section 4.2.8), avoiding the artifacts visible on

the ears of the bunny in the top row.

dense mesh on the coarser version. As shown in Section 4.2.8, our method guarantees that this

natural projection is also bijective as long as the coarse mesh is a section. This alleviates the loss

of information even on challenging geometry configurations, and our shell can thus be used to

automate the creation of projection cages and displacement maps.

Geometric Textures. The inverse projection operator provides a 2.5D parametrization around

a given mesh and can be used to apply a volumetric texture (Figure 4.27). Note that we build the

volumetric texture on the simplified shell, while still being able to bijectively transfer the texture

coordinates.
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Input |F|=39040

Shell |F|=1584

Figure 4.27: Two volumetric chainmail textures (right) are applied to a shell (bo�om le�) constructed

from the Animal mesh (top le�). The original UV coordinates are transferred using our projection operator.

4.5 Variants

Inputwith Self-Intersections Up to this point, we assumed that our input meshes are without

self-intersections. This requirement is necessary to guarantee a bijection between any section (e.g.,

the input mesh) and the middle surface. Such bijection is essential for a key target application, the

transfer of boundary conditions for solving PDEs on meshes or mesh-bounded domains.

However, our method can be easily extended to meshes containing self-intersections, broad-

ening the class of meshes it can be applied to, at the cost of making the resulting shell usable in

fewer application scenarios: for example, if it is used for remeshing, it will likely generate a new

surface that still contains self-intersections.

If T contains self-intersections, our algorithm can be trivially extended to generate a shell

which will be locally injective, and the bijectivity of the mapping between sections still holds

but with respect to the immersion. The only change required is to modify the invariance checks

(Section 4.2.4): we have to replace the global intersection check with checking whether local

triangles overlap with the current prisms. Figure 4.28 shows an example of a mesh T with self-

intersections, the generated shell, and the isolines of geodesic transferred on the coarser middle

surface.
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Leg w/ Self-Intersection

|F| = 13230

Shell

|F|=528 

MidSurface w/ Transfer

|F|=528 

Figure 4.28: An example of a shell built around a self-intersecting mesh.

Figure 4.29: The Armadillo model with four nested cages. We create a shell from the original mesh, and

then rerun our algorithm on the outer shell to create the other three layers. Note that all layers are free of

self-intersections, and we have an explicit bijective map between them.

Resolving Shell Self-Intersections For certain applications it might be preferable to have

a shell whose top and bottom surfaces do not self-intersect: for example, in the construction of

nested cages [Sacht et al. 2015] (useful for collision proxies and animation cages), we want to

iteratively build nested shells while ensuring no intersections between them (Figure 4.29). With a

small modification, our algorithm can be used to generate nested cage automatically and robustly,

with the additional advantage of being able to map any quantity bijectively across the layers and

to the input mesh. In contrast, [Sacht et al. 2015] does not provide guarantees on the success

(e.g., the reference implementation of [Sacht et al. 2015] fails on Figure 4.20, probably due to the

presence of a singularity).
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Camel w/ Self Intersecting Top Surface Self Intersection Resolved

Figure 4.30: A�er optimization, the shell may self-intersect (le�). Our postprocessing can be used to

extract a non-selfintersecting shell, which is easier to use in downstream applications (right).

To resolve the self-intersections of the top (bottom) surface, we identify the regions covered

by more than one prism by explicitly testing intersections between the tetrahedralized prisms,

accelerated using [Zomorodian and Edelsbrunner 2000]. For every detected prism, we reduce the

thickness by 20%, and iterate until no more intersections are found. Differently from the procedure

in Section 4.2.3, where reducing the thickness of the shell always maintains the validity of the shell,

at this stage, the shrinking of the shell may make the shell invalid, since T may not be contained

anymore in S. Whenever this happens, we perform one step of red-green refinement [Bank et al.

1983] on the regions we wish to thin, and we iterate until we succeed. This procedure is guaranteed

to terminate since, on the limit of the refinement, the middle surface will be geometrically identical

to T , and thus Theorem 4.5 holds. In the worst case, the procedure terminates when the size

of triangles on the middle surface is comparable to the input; then no refinement is required to

shrink below the minimum separation of the input. Figure 4.30 shows how the intersecting shell
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Figure 4.31: We generate a pinched shell for a model with a singularity (le�). Optionally, we can complete

the shell using our Boolean construction.

between the legs of the camel can be shrunk to generate an intersection-free shell.

Pinching Alternative. For certain applications, such as boundary layer meshing, it is necessary

to have a shell with non-zero thickness everywhere, including at singularities, and it is tolerable to

lose bijectivity at the vicinity of a singularity. For these cases, we propose a Boolean construction

to fill the shell around singularities, and to extend the projection operator P inside these regions.

That is, every point in the filled region will project to the singularity.

Without loss of generality, let us assume that T has a single singularity (Figure 4.31). We

initially construct a pinched shell, with zero thickness at the singularity, construct a valid shell

(Section 4.2), and then perform a corefinement [Loriot et al. 2020] between a tetrahedron (centered

at the singularity and whose size is smaller than the minimal thickness of the neighboring vertices)

and the shell. The result of the corefinement operation (Figure 4.31 middle) consists of triangles

belong to the tetrahedron, or the shell surface. The remaining part of the tetrahedron is a star-

shaped polyhedron with the singularity in its kernel, and sharing a part of its boundary with the

shell. This polyhedron can be easily tetrahedralized by connecting its triangulated boundary faces

(one of them is highlighted in red in Figure 4.31 middle) with the singularity. For every point p in

these tetrahedra, the projection operator P projects p to the singularity. The remaining triangles

are divided into two groups: the triangles with only one new vertex complete the degenerate

prisms (one of them is highlighted in blue in Figure 4.31 middle), while the others map to the
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edges they are attached to.

4.6 Limitations and Remarks

Currently, our algorithm is limited to manifold and orientable surfaces: its extension to non-

manifold and/or non-orientable meshes is a potential venue for future work. With such an

extension, the integration of shells with robust tetrahedral meshers [Hu et al. 2018, 2019c] would

allow to solve PDEs on imperfect triangle meshes without ever exposing the user to the volumetric

mesh, allowing them to directly work on the boundary representation to specify boundary

conditions and to analyze the solution of the desired PDE. Since we rely on the additional checks for

the bijective constraints, our method is slower than classical surface mesh adaptation algorithms

and it is not suitable for interactive applications.

Integrating our approach into existing mesh processing algorithms might lose some of their

guarantees or properties since our shell might prevent some local operations. Other surface

processing algorithms guarantee some properties under some regularity assumptions on the input,

which might not hold when our bijective constraints are used. For example, QSlim [Garland and

Heckbert 1997] might not be able to reach the desired target number of vertices and [Dey and

Ray 2010] might not be able to achieve the bounded aspect ratio. A practical limitation is that

integrating our approach into existing remeshing or simplification implementations requires code

level access.

Our shell is ideal for triangle remeshing algorithms employing incremental changes: not every

geometry processing algorithm requiring a bijective map can use our construction. For example,

it is unclear how isosurface-extraction methods [Hass and Trnkova 2020] could use our shell or

how global parametrization algorithms [Kraevoy and Sheffer 2004; Schreiner et al. 2004; Alliez

et al. 2003; Bommes et al. 2013b] could benefit from our method since they already compute a

map to a common domain.
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We introduce an algorithm to construct shells around triangular meshes and define bijections

between surfaces inside the shell. We proposed a robust algorithm to compute the shell, validated it

on a large collection of models, and demonstrated its practical applicability in common applications

in graphics and geometry processing.

We believe that many applications in geometry processing could benefit from bijectively map-

ping spatially close surfaces, and that the idea of using an explicit mesh as a common parametriza-

tion domain could be extended to the more general case of computing cross-parametrizations

between arbitrary surfaces. To foster research in this direction, we will release our reference

implementation as an open-source project.
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5 | Bijective and Coarse High-Order

Tetrahedral Meshes

5.1 Introduction

Piecewise linear approximations of surfaces are a popular representation for 3D geometry due to

their simplicity and wide availability of libraries and algorithms to process them. However, dense

sampling is required to faithfully approximate smooth surfaces. Curved meshes, that is, meshes

whose element’s geometry is described as a high-order polynomial, are an attractive alternative

for many applications, as they require fewer elements to achieve the same representation accuracy

Dense Linear Mesh

(Input)
Coarse Shell Curved Mesh Optimization

AfterBefore

Coarse Curved Mesh

(Output) Transferred Displacement

Figure 5.1: Our pipeline starts from a dense linear meshwith annotated features (green), which is converted

in a curved shell filled with a high-order mesh. The region bounded by the shell is then tetrahedralized

with linear elements, which are then optimized. Our output is a coarse, yet accurate, curved tetrahedral

mesh ready to be used in FEM based simulation. Our construction provides a bijective map between the

input surface and the boundary of the output tetrahedral mesh, which can be used to transfer a�ributes

and boundary conditions.
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of linear meshes. In particular, curved meshes have been shown to be effective in a variety

of simulation settings in mechanical engineering, computational fluid dynamics, and graphics.

Despite their major benefits, they are not as popular as linear meshes: We believe that one of the

main reason for their limited usage is the lack of an automatic, robust way of constructing them.

While robust meshing algorithm exists for volumetric linear tetrahedral meshing, there are few

algorithms for curved meshes, and even fewer of them having either a commercial or open-source

implementation (Section 2.4). Only a few algorithms work directly on arbitrary triangle meshes

(most of them require the input geometry to be either a CAD file or an implicit function), and

none of them can reliably process a large collection of 3D models.

We propose the first robust and automatic algorithm to convert dense piecewise linear triangle

meshes (which can be extracted from scanned data, volumetric imaging, or CAD models) into

coarse, curved tetrahedral meshes equipped with a bijective map between the input triangle

mesh and the boundary of the tetrahedral mesh. Our algorithm takes advantage of the recently

proposed bijective shell construction 4 to allow joint coarsening, remeshing, and curving of the

dense input mesh, which we extend to support feature annotations. Our outputs are guaranteed

to have a self-intersection free boundary and the geometric map of every element is guaranteed

to be bijective, an important requirement for FEM applications.

The key ingredient of our algorithm is the separation of the curved volumetric meshing

problem into a near-surface, surface curving problem, followed by a restricted type of linear

volumetric meshing.

We believe that our curved meshing algorithm will enable wider adoption of curved meshes,

as it will provide a way to automatically convert geometric data in multiple formats into a coarse

tetrahedral mesh readily usable in finite element applications. To showcase the benefits of our

approach we study 2 settings: (1) we show that a coarse proxy mesh can be used to compute

non-linear deformations efficiently and transfer them onto a high-resolution geometry, targeting

real-time simulation (Figure 5.1), and (2) we show that our meshes are ready to use in downstream
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FEM simulations.

We validate the reference implementation of our approach on a large collection of more than

8000 geometrical models, which will be released as an open-source project to foster the adoption

of curved meshes in academia and industry.

Our contributions are:

• An algorithm to convert dense piecewise linear meshes into coarse curved volumetric

meshes while preserving a bijective map with the input and bounding the approximation

error.

• An extension of the bijective shell construction algorithm to support feature annotations.

• An algorithm for conforming tetrahedral meshing without allowing refinement on the

boundary, but allowing internal Steiner points.

• A large-scale dataset of high-order tetrahedral meshes.

5.1.1 Variation from the Original Algorithm

To extend the shell formulation in 4 to accommodate for feature preservation (Section 5.3), we

modify the definition of a valid section (Chapter 4 Definition 3.1), by relaxing the intersection

between a triangle and a prism in the discrete case. That is, we do not consider the prism to be

intersecting a triangle if they share only one vertex of the triangle; we also ignore the intersection

if they intersect on a feature edge on opposite sides. The bijectivity and validity condition of the

shell projection trivially holds.

5.2 Curved Tetrahedral Mesh Generation

Input. The input of our algorithm is a collection of orientedmanifold, watertight, self-intersection-

free triangle meshM = (V , F ), and a set of points pi ∈ P (possibly empty) on the surface ofM
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M
φk

= Π ◦ ψk

ψk

T
kpi

Figure 5.2: Input triangle meshM and points P. Output curved tetrahedral mesh T k and bijective map

ϕk .

k = 1 k = 2 k = 2

g

k = 3

Figure 5.3: Lagrange nodes on the reference element τ̂ for different k = 1, 2, 3, and example of geometric

mapping д.

(Figure 5.2, left) where the distance bound ε is prescribed. The collectionM must be consistently

oriented such that it is the boundary of an oriented 3-manifold. A set of edges can also be optionally

provided as annotated features (Section 5.3).

Output. The output of our algorithm is a tetrahedral mesh T k
= (V k ,T k ) of order k . Formally,

each tetrahedron τ ∈ T k is defined through the geometric map from the reference tetrahedron τ̂ ,

дτ =

n
∑

j=1

cτj Lj (û, v̂, ŵ ), (5.1)

where û, v̂, ŵ are the local coordinates of a point in τ̂ , cτj are the control points for a tetrahedron τ ,

and Lj are polynomial bases (typically Lagrange bases). For two tetrahedra τ1 and τ2 ofT
k sharing

a face F , the restriction of the maps дτi , i = 1, 2, to F coincide. Figure 5.3 shows the position

of the control points cj on the reference element for k = 1, 2, 3 for the Lagrange bases. We call
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0 points. 200 points. 500 points. 1000 points.

Figure 5.4: Effect of the choice of the set P on the output.

the tetrahedralization of a curved mesh T k positive if det(Jдτ ) > 0 everywhere on every τ . In

particular, for k = 1, since д is affine, Jдτ is constant and the positivity reduces to the positive

orientation of the vertices [Shewchuk 1997].

Note that, while bijectivity of the geometric map дτ implies positivity, the reverse is not true.

Therefore, our algorithm not only checks for det(Jдτ ) > 0, but also ensures that the boundary ∂T k

does not intersect; we show in section 5.3.2 that these two conditions guarantee the bijectivity of

дτ . Furthermore, our algorithm ensures that the distance from any point in P to ∂T k (the surface

of T k ) is smaller than an user-controlled parameter ε .

We are not assuming anything on P: a sparse set of points will generate a mesh less faith-

ful to the input geometry, while a dense sampling computed for instance with Poisson disk

sampling [Bowers et al. 2010] will prevent the surface from deviating too much (Figure 5.4).

Our algorithm guarantees that the tetrahedralization is positive and that ∂T k does not have

self-intersections. It also aims at coarsening T k as much as possible while striving to obtain a

good geometric quality. To reliable fit ∂T k toM we require a bijective map

ϕk : M → ∂T k

from the inputM to the surface of T k (Figure 5.2 right). Our algorithm also generates this map and
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Figure 5.5: Our algorithm maintains free of intersection even on challenging models, without the need of

se�ing adaptive threshold.

exposes it as an output for additional uses, such as attribute transfer. Note that, since we build upon

the shell construction in 4, we also guarantee ∂T k is homeomorphic and topology-preserving

with respect toM (Figure 5.5).

To simplify the explanation, we use the bar to represent quantities on the straight linear

shell, the tilde ˜ for the curved shell, and hat ˆ for the reference elements (e.g., P is the prism on

the straight coarse shell, P̃ is the curved prism, and P̂ is the prism on the reference configuration).

Definition 5.1. We call a curved mesh T k and its mapping ϕk to M valid if it satisfies the

following conditions:

1. ϕk is bijective;

2. the distance between any p ∈ P and ∂T k is less than ε ;

3. T k is positive (i.e., every geometric map дτ has positive Jacobian’s determinant).
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SM S̃

pi

T
k

T
k

Figure 5.6: Overview of curved mesh generation pipeline.

Overview. Our algorithm starts by creating a valid mesh (i.e., it satisfies 5.1), then it performs

local operations (section 5.2.4) to improve T k (i.e., coarsen it and improve its quality) while

ensuring all the conditions remain valid with respect to local modification. To achieve this goal,

our algorithm uses two stages: (1) curved shell generation and (2) tetrahedral mesh generation

and optimization.

Stage 1: Curved Shell Construction. In the first stage (Section 5.2.1) we extend the shell

construction of 4 by combining the shell projection Π with a high-order mapping

ψk : S̃ → S.

We start form the valid shell S constructed from the input meshM (i.e.,M is a section S). We

call S a projection shell and call the prismatic projection Π. Together with the construction of S,

we build an order k curved prismatic shell S̃ that defines a curved layer aroundM and a bijective

mapψk between S̃ and S (Figure 5.6, first three figures) that ensures that the distance between

M and ∂T k is smaller than ε (Section 5.2.2). That is, ϕk (p) < ε for any p ∈ P. (Note that we do

not requireM to be a section of S̃.)

To facilitate the volumetric meshing in the next stage (Section 5.2.3), we restrict the top
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and bottom surface of S̃ to be linear (independently from the order of ψk ). The final output of

this first stage is a high-order volumetric shell, a bijective mapping ϕk = Π ◦ψk , and a positive

tetrahedralization of S̃ with flat boundary. In other words, the tetrahedralization of S̃ satisfies 5.1.

Stage 2: Tetrahedral Mesh Generation. In the second stage (Section 5.2.3) we use boundary-

conforming tetrahedralization to connect the top and bottom surface of S̃ with a background

tetrahedral mesh, thus generating a positive order k tetrahedralization T k of a bounding box

around the input, which we can further optimize with local operations to improve its quality

(Figure 5.6, last two figures).

To ensure that our first condition is satisfied, we define the mapping ϕk as a composition

of several mappings, which we ensure are bijective. For the second condition, we initialize our

construction with ϕk as the identity, and thus, the distance at the sample points is zero. After

every operation, we recompute the distance and “undo” the operation if the distance becomes

larger than ε . To ensure that the last condition holds, we rely on checking if all prisms (linear and

curved) have positive geometric mapping, which ensures that they can be tetrahedralized with a

positive tetrahedralization. Ensuring the condition while coarseningM allows us to generate a

coarse curved tetrahedral mesh T k and the bijective map ϕk to the input meshM.

5.2.1 High-order Shells

To simplify the explanation, we first focus on the case where ε = ∞, that is, we aim at generating

an as-coarse-as-possible curved mesh. Note that, the trivial solution (i.e., a single tetrahedron) is

not necessary a valid T k since it would be impossible to build the bijective mapping ϕk .

The output of 4 is a coarse shell S with a piecewise linear middle surface. To curve it, we

construct a shell S̃ and the bijective map ψk while constructing S. The shell S̃ is constructed

warping every prism P̃ of S̃ withψk . Since we define ϕk as Π ◦ψk , and Π satisfies the first two

conditions 5.1, we only need to ensure that ψk is bijective, for ϕk to be bijective. We define the
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mappingψk
= ω ◦ (ω̃k )−1 through two cross-parametrization maps from the reference prism P̂ :

ω : P̂ → P , ω̃k : P̂ → P̃ .

Bothmappingsω and ω̃k are defined as the tensor product between the base triangular mapping

(high-order for ω̃k ) and pillar’s barycentric heights. That is, for a prism P̃

ω̃k (û, v̂, ĥ) =

n
∑

j=1

cPj Lj (û, v̂ )
(

(1 − û − v̂ )hP̃1 + ûhP̃2 + v̂hP̃3
)

ĥ,

where û, v̂, ĥ are the barycentric coordinates in the reference prism, cj the control points of

a triangle, hP̃i the three pillars heights, and Lj a triangle polynomial basis. By ensuring that

ψk is bijective, we guarantee that any curved tetrahedralization of a prism P̃ will be a valid

tetrahedralization of S̃.

We note that to decouple the following tetrahedral mesh generation and the curved shell

generation, we ensure that ω̃k maps the top and bottom face of the curved prism P̃ to a linear

triangle.

After each local operation, we generate samples ŝi , i = 1, . . . ,m on the parametric base of the

prism P̂ and use Π−1 ◦ω to map ŝi back toM and ω̃k to map them to ∂T . Using the mapped point

we solve

min
ci

m
∑

i=1

‖ (Π−1 ◦ ω) (ŝi ) − ω̃[ci]k (ŝi )‖22 ,

where ci are the control points of ω̃
k . As ω̃[ci]

k (ŝi ) is a linear function of ci . This is a quadratic

optimization problem. The control points of the top and bottom surface are fixed to ensure that

ω̃k maintains the two surfaces as linear. We validate the bijectivity of ω̃k by checking positivity of

the determinant [Johnen et al. 2013] and that the top and bottom surfaces are intersection free.

The intersection is simplified in our case since fast and exact algorithms[Guigue and Devillers

2003] are available since the top and bottom surfaces stay linear.
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Input ε = 5 × 10−3 ε = 10−3 ε = 5 × 10−4

Figure 5.7: A model simplified with different distances.

5.2.2 Distance Bound

In the previous section, we explained how to generate a curved shell S̃ that satisfies 5.1. To

ensure that the middle surface of S̃ has a controlled distance from the points in P, we interleave

a distance check in the construction of ω̃k after each local operation. Formally, after every local

operation we use the mapping ϕk to map every point pi ∈ P to p̃i = ϕ
k (pi ) a point on the coarse

curved middle surface of S̃ and, if ‖pi − p̃i ‖ ≥ ε we reject the operation. The initial shell is trivially

a valid initialization as ϕk is identity and thus, the distance is zero. Note that, p̃i is not necessarily

the closest point to pi on ∂T , thus ‖pi − p̃i ‖ is an upper bound on the actual pointwise distance.

Figure 5.7 shows the effect of the distance bound on the surface; a small distance will lead to a

denser mesh with more details, while a large one will allow for more coarsening.

5.2.3 Tetrahedral Meshing

The outcome of the previous stage is a curved tetrahedralization of S̃ that closely approximates

M with linear (“flat”) boundaries. We now consider the problem of filling its interior (and option-

ally its exterior) with a tetrahedral mesh, a problem known as conforming boundary preserving

tetrahedralization.

Several solution exists for this problem (Section 2.4.8) and the most common implementation

is TetGen [Si 2015]. Most algorithms refine the boundary, which allows deriving bounds on the

quality of the tetrahedral mesh. However, in our setting, this is problematic, as any change will

have to be propagated to the curved shell. To avoid coupling the volumetric meshing problem
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(1) (5)(4)(3)(2)

Figure 5.8: Two dimensional overview of the five steps of our boundary preserving tetrahedral meshing

algorithm.

with the curved shell coarsening, while technically possible it is very challenging to implement

robustly, we opt for using a tetrahedral meshing algorithm that preserves the boundary exactly.

Not many algorithms support this additional constraint, the only one with a public implementation

is the widely used TetGen algorithm. However, we discovered that, when this option is used, it

suffers from robustness issues. To solve this problem in our specific setting, we propose in the

following five step algorithm (Figure 5.8) taking advantage of the availability of a shell, based on

the TetWild [Hu et al. 2018] algorithm.

Step 1. To generate a boundary preserving linear mesh, we first exploit the shell to extrude the

bottom surface B (and top T ) further by a positive (potentially small) constant δ such that the

newly extruded bottom surface Be (and top Te ) does not self-intersect. The space between B and

Be (and between T and Te ) consists of prisms divided into positive tetrahedra.

Step 2. Then we insert Be andTe in a background meshB generated following TetWild algorithm

([Hu et al. 2018, Section 3.1]), that is, we use the triangle of Be and Te as the input triangle meshes

for the first stage of the TetWild algorithm, which inserts them into a background mesh B, so that

each input triangle is a union of faces of refinement of B.

We interrupt the algorithm after the binary space partitioning (BSP) subdivision (and before

the TetWild mesh optimization [Hu et al. 2018, Section 3.2]) to obtain a positive tetrahedral mesh
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in rational coordinates with a surface with the same geometry of Be and Te , but possibly different

connectivity as TetWild might refine it during the BSP stage.

Step 3. Our original goal was to compute a mesh conforming to B and T , but we could not

do it directly with TetWild as they might be refined. We now replace the mesh generated by

TetWild between Be and Te with another one conforming to B and T . To achieve this, we delete

all tetrahedra between Be and Te , and insert the surfaces B and T , which will “float” in the empty

space between Be andTe . We now want to fill the space between B and Be with positive tetrahedra

conforming to the surfaces B and T .

Step 4. Every prism P , made by a bottom triangle BT and a bottom extruded triangle BTe and its

corresponding bottom extruded refined triangle B′Te ∈ B, can be tetrahedralized without refining

B: That is, we first decompose the prism BT ,BTe in tetrahedra (always possible by construction),

then refine every tetrahedron touching B′Te . By repeating the same operation on the space between

T and Te we will have a positive linear boundary conforming tetrahedral mesh of B and T .

Step 5. The tetrahedra generated in the previous step will have rational coordinates and will

also likely have low quality. To round the coordinates to floating-point representation and to

improve their quality, we use the mesh optimization stage of TetWild, with the minor variant of

keeping the vertices and edges on B and T frozen. Note that the vertices in B and T are already

roundable to floating-point representation, as they were part of the input.

Boundary preserving TetGen comparison We compared our conforming tetrahedral meshing

algorithm (Section 5.2.3) with TetGen on the linear shells (triangle meshes) of 3522 models from the

Thingi10k dataset, giving each model sufficient computing resources (2 hours maximum running

time and 32GB memory usage). Inheriting the robustness from TetWild, our method successfully

processed all the inputs while preserving the triangulation, while TetGen fails on 224 models (215
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Figure 5.9: Histogram of mean and maximum conformal AMIPS energy [Rabinovich et al. 2017] of the

output of our method and TetGen.
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Figure 5.10: Histogram of output tetrahedra number for TetGen and our method.

models are not conforming, and 9 models have no output). In Figure 5.9, we show the average

and maximum element quality of the output of our method and TetGen. Our method has a better

average and maximum output quality than TetGen. Note that in the quality plot, the “tail” of

TetGen’s distribution is longer than ours. The maximum average energy of TetGen’s output and

ours are 3 × 108 and 3 × 105 respectively. The largest maximum energy of TetGen’s output and

ours are 3 × 1012 and 7 × 106 respectively. Our method generates denser output (Figure 5.10), but

our focus is on robustness instead of efficiency in this step.

Curved Tetrahedral Mesh Optimization After generating the conforming linear tetrahedral

mesh. we stitch it with the tetrahedralized S̃ to obtain a valid output mesh T k (Definition 5.1).
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However, its quality might be low, in particular in the curved region, as S̃ can be thin with large

triangles. To improve the quality of T k we adapt the local operation of a linear pipeline to our

curved settings. We propose three local operations: smoothing, collapse, and flip. Since the surface

of T k is already coarse and of high quality, as part of the definition of ϕk , we prevent any local

operation from changing it. We validate every local operation (i.e., check the positivity of T k )

using the convex-hull property [Johnen et al. 2013] and reject the operation if it is violated. Our

local operations are prototypical, and we leave as future work a more comprehensive study of

curved mesh optimization.

Smoothing. As for the linear case, we compute the total energy of a vertex v by summing up

the energies of the tetrahedra adjacent to it, which we compute on 56 regularly sampled points.

We then perform gradient descent for all high-order nodes in the one-ring neighborhood of v .

That is, we collect all edge nodes, face nodes, and cell nodes of the one-ring neighborhood of

v . Differently from the linear case, the optimization is expensive since the nodes neighborhood

typically contains hundreds of nodes.

Collapse and Swap The collapse and swap are the same as in a linear mesh, and we place the

high-order nodes of the newly created face on the linear flat face.

5.2.4 Local Operations for High Order Meshing

Figure 4.12 introduce a set of valid local operations to modify the shell, including edge split, edge

collapse, edge flip and vertex smoothing. The operations are an analogue of the triangle mesh edit

operations [Dunyach et al. 2013], by simultaneously editing the shared connectivity of bottom,

middle and top surface of the shell. Chapter 4 Theorem 3.7 outlines invariant conditions, which

maintains the shell projection to be bijective.

Our algorithm adopts and extends the local operations therein to the high order setting. In

110



φk

M = (V, F )

v
k

i
vi

T
k
= (V k, T k

)

Figure 5.11: Input triangle mesh with features and output curved mesh with feature preserved equipped

with bijective map ϕk .

addition to the existing conditions, we also validate the curved volumetric mesh in the shell. The

algorithm maintains the global intersection free bottom (top) surface with a dynamic hash grid

[Teschner et al. 2003]. Then for each prism, we check the positivity (defined by the determinant of

Jacobian of the geometric map) of the prismatic element (each decomposed into three tetrahedra).

In the presence of feature annotation and feature straightening (Section 5.3) more care is taken

to maintain the valid correspondence between the grouped feature chains and the curved edges:

edge flip is disabled on the edges annotated as features; collapse is only allowed when it does not

degenerate the chain, and the two endpoints of the edge is on the same chain. Since we require

a map from the original input edges, we insert additional degree of freedoms in the input mesh.

When performing edge split, the insertion of the new vertex is queried among the pre-image of

the current edge, as an existing vertex of the input. For vertex smoothing (more specifically pan),

the target location is limited to the set of input vertices.

5.3 Feature Preserving Curved Shell

Input We enhance the input to additionally include a set of feature edges fi ∈ F and feature

vertices vi ∈ V such that no triangle in F has more than one feature edge (Figure 5.11 left). (This

property can be satisfied on any generic mesh by performing 1-to-3 refinement on every triangle
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Figure 5.12: A sphere with different marked features (green). As we increase the number of features our

algorithm will preserve them all but the quality of the surface suffers.

Figure 5.13: Input feature (green) is not preserved a�er traditional shell simplification.

with more than one feature edge).

Output Since the input has features, the output curved mesh T k will also have curved feature

edges f ki ∈ T k , feature verticesvki ∈ Vk , and the bijective map ϕk preserves features by bijectively

mapping F to F k andV toVk . Our method makes no assumption on the topology and “quality”

of the features. If the features are reasonable, it will produce a high-quality mesh, while if the

features are close our algorithm will preserve them and result in smaller triangles on the surface.

(Figure 5.12).

The previous construction generates valid curved tetrahedral meshes and the bijective map

ϕk based on the construction of 4. However, the shell construction cannot coarsen features: the

authors suggest freezing them. For instance, when performing an edge collapse on the feature,

the new coarse edge (orange) will not map to the feature (green) anymore (Figure 5.13). To ensure

feature preservation we extend Definition 5.1.
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Figure 5.14: Overview of the construction of the first stage of our pipeline.

Input mesh Snapped mesh Curved mesh

Figure 5.15: The input mesh has feature edges snapped, to create a valid shell, as well as the curved mesh.

Definition 5.2. We call a curved mesh T K and its mappingϕk fromM valid and feature preserving

if they are valid (Definition 5.1) and ϕk bijectively maps F to F k andV toVk

As for the non-feature preserving case, we always aim to maintain a valid feature preserving

T k .

To account for features, we propose to change the prismatic map Π, that is, we only need to

change the first stage. This is done by snapping the input features (Section 5.3.1). That is, we

modifyM to “straighten” the feature to ensure that the coarse prismatic projection preserves

them and construct a mapping β between the straight meshM andM (Figure 5.15).

The outcome is a valid shell S with respect to the straight surfaceM (i.e.,M is a section S)
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Figure 5.16: The input edges feature (green) are grouped together in poly-lines and categorized in graph

(le�) and loops (right). For every graph we add the nodes (blue) to the set of feature vertices.

that preserve features, the prismatic projection Π, and the bijective map β that can be directly used

in the curved pipeline (Section 5.2). That is, the mapping ϕk will be defined as ϕk = β ◦ Π ◦ψk .

As for the non-preserving feature pipeline we ensure that our conditions are always met,

starting from a trivial input and rejecting operations violating them. Our goal is to modify the

input meshM and createM by moving its vertices. In such a way, the mapping β is simply

barycentric. To guarantee bijectivity of ϕk we need to ensure that all mappings composing it are

bijective, in particular β . To ensure that β is bijective it is enough thatM is self-intersection free

(guaranteed by the shell construction) and that all its triangles have positive area. By straightening

the features ofM we ensure that the edges of the prism will map to the feature. Thus, ϕk will be

feature preserving.

Feature Grouping. The first step of our pipeline consists of grouping successive edges fi ∈ F

into poly-lines and identifying two categories: loops and graphs (Figure 5.16). For every graph, we

identify its nodes and add them as feature vertices. In other words, we add toV all the end-points

and junction of poly-lines.

5.3.1 Feature straightening.

To allow feature coarsening, we propose to straightenM to ensure that all features are collinear.

In other words, we build, together with the shell S, a meshM = (V , F ) (i.e., a mesh with the same

connectivity F ofM) and features F such that every triangle ofM has a positive area,M is a
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Figure 5.17: Illustration of smoothing on a feature.

section of S, and the features in F are collinear. In such a way, the mapping β is trivially defined

as piecewise affine (M andM share the same connectivity) and is locally injective as long as all

the triangles onM have positive areas. Note that the bijectivity of β follows from the fact that

the shell prevents self-intersections ofM.

To construct a meshM with straight features, we start withM =M (in the beginning all

prisms of S cover at most one feature edge). Let f
1
= { f 1i }, i = 1, . . . ,n and f

2
= { f 2i }, i = 1, . . . ,k

two chains of feature edge belonging to the same feature f ∈ F . For every local operation acting

on a feature f 1 and f 2 we first construct the new feature f
n
= { f ni }, i = 1, . . . ,k such that the

segments ( f
n

i , f
n

i+1) are collinear and their length is proportional to ( fi , fi+1) (the feature vertices

in the input meshM), that this we use arc-length cross parameterization from f to f
n
(Figure 5.17

show an example of smoothing a feature). Moving vertices of f
n
will also move the vertices ofM

thus, straighten the mesh as the local operations proceed. After the construction of f
n
we check if

the newly constructedM is still a section of S and if the triangles modified by the straightening

have areas larger than ϵ . In practice, we choose ϵ = 10−10: a smaller value would lead to numerical

instabilities and a larger one to less straightening.

Note that not all features can be straight; for instance, if a triangle has three feature vertices

(the snapped feature will result in a degenerate triangle, thus, β will not be bijective) or if the

snapping flips the normal (M will no longer be a section of S). Both are extremely rare cases in

our dataset.
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5.3.2 The geometric map is bijective

Consider a connected 3-dimensional compact manifold (curved) tetrahedral meshM = {σi }, i =

1, . . . ,n with σi = дi (τ̂ ), τ̂ a regular unit tetrahedron, det(Jдi ) > 0 at all points including the

boundary, and σi and σj agree on a shared face. LetMD be the domain obtained by copies of τ̂

and identifying τ̂i along common faces. We then define the map

σ : MD → R3,

by setting σ |τ̂i = σi .

Proposition 5.3. Suppose σ |∂MD
is injective. Then σ is injective on the whole domainMD .

Proof. Our argument closely follow from [Aigerman and Lipman 2013, Appendix B] and [Lipman

2014, Theorem 1].

We consider point y ∈ R3 in general position, but not in the faces, edges, vertices, or any plane

spanned by a linear face ofM. For each tetrahedron τ , we construct the map Ψ̂ as a composition

of σ |∂τ̂i (restricted to the triangular faces of the regular tetrahedron) and the projection map χ to

the unit sphere centered around y.

We parametrize the image of σ |∂τ̂i as x (u,v ) on the projective plane (note that since det Jдi >

0, the image is a non-degenerate surface homeomorphic to a sphere). Since x (u,v ), and its

normal field n(u,v ) = ∂
∂u
x × ∂

∂v
x are polynomial functions, Consider the parametric curve

n(u,v ) · (x (u,v ) − y) = 0, the algebraic curve partitions the surface into finite number of patches,

and on each patch the orientation of Ψ̂ is constant. We can further triangulate the partitions to

create a (abstract simplicial) complex.

Similar to [Aigerman and Lipman 2013, Appendix B], we count the number of pre-images of y,

which equals to the degree in general positions,
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deg(σ ) (y) =

n
∑

i=1

deg(Ψ̂|τi ) = deg(Ψ̂|∂M ).

Since σ |∂MD
is injective, and furthermore

deg(Ψ̂|∂M ) = degχ |∂M =





1, y ∈ M

0, y <M .

Thus we have shown the map is injective for the general positions for y, and it remains to be

shown that the map is an open map, which follows from the same argument of [Lipman 2014,

Lemma 2].

�

5.4 Results

Our algorithm is implemented in C++, using Eigen [Guennebaud et al. 2010] for the linear algebra

routines, CGAL [The CGAL Project 2020] and Geogram [Lévy 2015] for predicates and geometric

kernel, libigl [Jacobson et al. 2016] for basic geometry processing routines, and meshio [Schlömer

2020] for converting across the different formats. We run our experiments on cluster nodes with

Intel Xeon Platinum 8268 CPU 2.90GHz. The reference implementation and the data used to

generate the results will be released as an open-source project.

To simplify the exposition, all meshes presented in this section are quartic meshes (k = 4). Our

method is flexible and, for lower k , it will generate denser meshes (Figure 5.18).

5.4.1 Large Scale Validation.

We tested the robustness and quality of the result produced by our algorithm on three datasets:

(1) Thingi10k dataset [Zhou and Jacobson 2016] containing 3574 models without features; (2) the
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Input k = 3 k = 4 k = 5

Figure 5.18: Curved meshes of different order. The additional degrees of freedom allows for more

coarsening.

first chunk of the ABC dataset [Koch et al. 2019] with 5328 models with features marked from

the STEP file and (3) the CAD dataset [Gao et al. 2019] containing 106 models with semi-manual

features.

Note that the original datasets contain more models since, for each of them, we selected meshes

satisfying our assumptions: intersection-free (using the same strategy as in 4 with a distance

tolerance of 10−6 and dihedral angle of 2◦) oriented, manifold triangle meshes, smallest triangle

area larger than 10−8.

Our method has only the geometry accuracy parameter ε , which we set to 1% of the longest

bounding box edge, and the point set P which we set as the input vertices V . With this basic

setup, our algorithm aims to produce the coarsest possible mesh while preserving features and

striving to generate high-quality meshes. Our algorithm successfully generates curved meshes for

3527 for Thingi10k, 5268 for the ABC, and all for CAD dataset within 12 hours; by allowing more

time, all models but 3 can be successfully processed. The 3 failures are due to models with a small

one-tetrahedra component that “move” inside the shell as it grows. This is an implementation
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Figure 5.19: Relative average edge length (with respect to longest bounding box edge of each model) of

our curved meshes versus number of input vertices.

Input fTetWild Ours

Figure 5.20: Within the same distance bound (10−3 of the longest bounding box side), our method

generates a coarser high order mesh, compared to the linear counterpart generated by fTetWild.

choice: we use collision detection instead of continuous collision detection for efficiency reasons.

Our method successfully generates coarse meshes whose average edge length is 10% of the

model size while preserving features (Figure 5.19). Figure 5.20 shows how our method successfully

captures the features and coarsen the surface with curved elements, while many linear elements

(generated with fTetWild [Hu et al. 2020]) are required to closely approximate the surface.

The output of our algorithm can be directly used in the simulation (Section 5.4.4) since we

guarantee that the geometric mapping д is positive. To ensure good conditioning and performance

of the numerical solver, we measure the MIPS energy [Hormann and Greiner 2000; Fu et al. 2015]
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Figure 5.21: Surface and volume average MIPS energy of the output of our method (the CAD volume

energy is truncated at 100, excluding 6 models).
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Figure 5.22: Timing of our algorithm versus the input number of vertices.

of our output meshes (Figure 5.21).

Figure 5.22 shows the running time of our method with respect to the number of vertices.

The running time of our algorithm is linear with respect to the number of input vertices; it takes

around an hour for a model with around 10 thousand vertices.

5.4.2 Comparisons

Curved ODT [Feng et al. 2018] is, to the best of our knowledge, the only existing algorithm

designed to convert dense triangle meshes into coarse, curved approximations. The input and
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Input
CODT with uniform

(46249 elements)

CODT with LFS

(38159 elements)

Our

(2037 elements)

Figure 5.23: Compared with Curved ODT, our method does not rely on se�ing vertex number and sizing

field, and can generate coarse valid results.

output are the same as in our algorithm. However, their method does not provide a bijective

map between the input and output, does not guarantee to preserve features, has no bound on the

distance to the input surface, and does not guarantee that the elements are positive. While our

algorithm has been designed to process large collections of data automatically, exposing only a

few intuitive options to control the faithfulness to the input, the reference implementation of the

curved ODT method provided to us by the authors requires the user to choose multiple per-model

parameters to achieve good results, and the parameters have a strong effect on the quality and

validity of the result (as shown in [Feng et al. 2018, Figure 16]). We thus restricted our comparison

to only a small selection of models (see additional material) that the authors of [Feng et al. 2018]

processed for us.

From our discussions with the authors, we observed that curved ODT generates a valid output

when we provide (1) a sufficiently large number of vertices and (2) a good local feature size sizing

field (LFS) [Alliez et al. 2005] to efficiently spend the vertex budget in the regions with more

geometrical details. Figure 5.23 shows an example of a model for which [Feng et al. 2018] fails to

converge when using a uniform sizing field, while it succeeds when the sizing field is used.

In contrast, our algorithm can be run automatically on a large collection of geometrical models,

it is guaranteed to have positive Jacobian (up to the use of floating-point predicates, Section 5.5),
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Gmsh Fixed Surface Gmsh Free Surface Ours

Figure 5.24: Example of a BRep meshed with Gmsh where the optimization fails to untangle elements

when fixing the surface. By allowing the surface to be modified, the mesh becomes “wiggly”. Our method

successfully generate a positive curved mesh.

Coarse Gmsh Dense Gmsh Ours

Figure 5.25: Example of a STEP file meshed with Gmsh where, due to the low mesh density, the tetrahe-

dralization is not positive. Gmsh manages to generate a positive mesh by using a denser initial tessellation.

Since our method starts from a dense mesh and coarsen it, it can successfully resolve the geometry.

it preserves features, it automatically controls the density of the output depending on the desired

user-provided distance threshold, and it provides a bijective map between the input mesh the

boundary of the curved surface. For the model in Figure 5.23, our result contains 2037 elements,

18 times less than the curved ODT algorithm.

Gmsh [Geuzaine and Remacle 2009] can only generate curved meshes from boundary represen-

tation (BRep), that is the input is not exactly the same as ours. To compare both algorithms, we

start from the BRep and we generate a dense linear mesh that we use for our input. The Gmsh

algorithm first constructs a curved mesh by fitting the high-order nodes to the BRep (possibly
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Implicit microstructure subdivision surface

Figure 5.26: Our algorithm processes triangle meshes that can be extracted from different formats: an

implicit microstructure geometry from [Tozoni et al. 2020] or a subdivision surface from [Crane 2013].

The bijective map preserved on the surface allows taking advantage of the plethora of surface algorithms

including polyhedral geodesic computation [Mitchell et al. 1987] and texture mapping.

inverting elements) then performs mesh optimization to untangle them [Remacle et al. 2013];

thus has no guarantee to generate positive meshes while preserving the surface (Figure 5.24, left).

Additionally, Gmsh algorithm cannot control the distance from the input when the untangling

allows the surface to move, and thus the surface is “wiggly” and denser than our result (Figure 5.24,

center). We also observed that if the initial surface mesh is not dense enough, Gmsh closes holes

and cannot generate a valid tetrahedral mesh (Figure 5.25).

5.4.3 Flexibility

Since the input to our method is a triangle mesh, our method naturally supports a variety of input

that can be easily converted into triangle meshes. For instance,M can be generated frommarching

an implicit surface or Catmull-Clark subdivision of a hand-made quad mesh (Figure 5.26). The

bijective map ϕk is used, for instance, to transfer the geodesic distance field or color information
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Figure 5.27: L2 error of the solution of the Poisson equation with respect to model size on our three

datasets.

from the input triangle mesh to the coarse curved mesh.

5.4.4 Applications

Large Scale Poisson To show that our meshes are ready for simulation, we solve for Poisson

equation

∆u = f , u |∂Ω = д,

where Ω is the domain (i.e., the mesh), f is the right-hand side, and д are the Dirichlet boundary

conditions. To simplify the setup and the error measurements, we use fabricated solutions [Salari

and Knupp 2000]. That is, we choose the function uexact to be

uexact(x1,x2,x3) =

3/4 e−((9x1−2)
2
+(9x2−2)2+(9x3−2)2)/4

+ 3/4 e−(9x1+1)
2/49−(9x2+1)/10−(9x3+1)/10

+ 1/2 e−((9x1−7)
2
+(9x2−3)2+(9x3−5)2)/4 − 1/5 e−(9x1−4)2−(9x2−7)2−(9x3−5)2,

then we plug it in the equation to obtain f (д is simplyuexact). Figure 5.27 shows the L
2 error (aver-

age) distribution across our three datasets using our quartic meshes with quadratic approximation
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Tetrahedral mesh Curved simulation

Figure 5.28: By meshing the region between a box and a complicated obstacle, we are able to perform

non-linear fluid simulation on our curved mesh.

of u (i.e., we use superparametric elements).

High Accuracy Fluids Our curved meshes can be directly used to solve different partial

differential equations (PDEs). For instance, by meshing the part outside the top shell and discarding

the rest, we can generate a curved background mesh for the Navier-Stokes equation (Figure 5.28).

Fast Animation Our coarse curved meshes can be used as animation proxies as in [Mezger

et al. 2009b; Suwelack et al. 2013]. We first compute an as-coarse-as-possible curved mesh (i.e., we

set ε to infinity). Then we apply the boundary condition to simulate an elastic distortion of the

curved mesh using linear elements. Finally, we use our bijective map φ4 to map the displacement

back to the input high-detailed surface mesh (Figure 5.1). The results are almost indistinguishable

to a classical pipeline (i.e., mesh the input mesh), but the runtime is 400 times faster (8s versus

over 50 minutes).
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5.5 Limitations and Remarks

We introduce an automatic algorithm to convert dense trianglemeshes in coarse, curved tetrahedral

meshes whose boundary is within a user-controlled distance from the input mesh. Our algorithm

supports feature preservation, and generates meshes with positive Jacobians and high quality,

which are directly usable for FEM simulations.

Limitations. Our algorithm generates meshes with a C0 geometric map. For most FEM ap-

plications, this is not an issue. However, for geometric modeling applications, where only the

mesh boundary is used, the C0 geometric map introduces normal discontinuities, which are

undesirable. While the surface looks smooth from far away, plotting the reflection lines shows

the discontinuity between the normals. We believe an exciting extension of our work would be

to study the feasibility of using geometric maps that are C1 [Lyche and Muntingh 2015] or C2

[Xia and Qian 2017]. A second limitation is that, in our implementation, the validity conditions

(Definition 5.1) are currently checked using floating point arithmetic, using numerical tolerances

to account for rounding errors. While our implementation works on a large collection of models,

it is possible that it will fail on others due to the inexact validity predicates. We are not aware of

exact predicates for these conditions, and we believe that developing them is an interesting, and

challenging, venue for future work.

Future Work. Our current high order mesh optimization pipeline is preliminary, as it only

supports vertex smoothing, collapse, and swap. Adding additional operators, allow them to exploit

the curved geometric map, and optimizing the boundary could lead to a further increase in mesh

quality. While simple at a high-level, this change will require to merge the two parts of our

algorithm, a major implementation effort.
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Conclusions. We believe that our work will foster adoption of curved meshes, and open the

door to a new family of geometry processing algorithms able to take advantage of this highly

compact, yet accurate, shape representation.
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6 | Declarative Specification for

Unstructured Mesh Editing

Algorithms

6.1 Introduction

Unstructured triangular and tetrahedral meshes are widely used in graphics, engineering, and

scientific computing due to their flexibility to represent objects with complex boundaries. Such

unstructured meshes find their usage in modeling and rendering 3D objects and scenes, discretizing

Figure 6.1: Example of four different mesh editing algorithms implemented with our library. With our

framework, users can implement different flavor of mesh editing with built in robustness, and readily

available parallelism. From le� to right: harmonic triangulation, QSlim, the input, isotropic remeshing,

and robust tetrahedral mesh generation.
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partial differential equations for physical simulation, collisions detection and response, path

planning in robotics, and many other applications.

An unstructured mesh is usually stored in a custom data-structure supporting a set of local

operations to add, remove, or change its elements and their properties. A major research effort

has been invested in exploring different data-structures and evaluating their generality and

efficiency (Section 2.1), which led to the development of mesh libraries such as CGAL [The

CGAL Project 2020], VCG/meshlab [Cignoni et al. 2021], OpenMesh [Botsch et al. 2002], libigl

[Jacobson et al. 2016], PMP [Sieger and Botsch 2019], and OpenVolumeMesh [Kremer et al. 2013].

Commonly, mesh-editing algorithms are tightly coupled with a data-structure and its API, and

porting an algorithm from one library to another is a major engineering effort. Code relying on

local operations is also inherently error prone, as it usually involves keeping track of properties

attached to mesh elements as the mesh itself changes due to the local operations. Parallelizing

code using a mesh data structure is also challenging, due to race conditions when multiple threads

attempt to change the same region of the mesh.

At a high-level, it is common practice to describe a mesh editing algorithm as a sequence of

topological and geometrical editing operations. We argue that this approach is unnecessarily low-

level, as it exposes the algorithm designer to technical problems that can be handled automatically

by changing the abstraction level. It also makes it challenging to use or customize mesh editing

algorithms in larger projects (such as their use in physical simulation for adaptive refinement), as

low-level data structure details percolate in the entire code-base. A particularly difficult challenge

in these algorithms is to ensure that a set of conditions (such as manifoldness, being free from

self-intersections, minimal quality, maximal geometrical approximation) hold after each operation

is applied. This is usually tackled by simulating each operation for the purpose of checking these

conditions, an error-prone process that needs to be carefully designed for each pair of operation

and condition. The additional presence of attributes attached to vertices, edges, or faces further

complicates these problems.
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We propose a different way to describe mesh-editing algorithms on simplicial manifold meshes,

using a declarative specification instead of a more traditional procedural approach. Instead of

focusing on what the algorithm does, we ask the user to specify what are the requirements that

the desired mesh should have. We divide these requirements into two groups: invariants and

desiderata. The former is a description of hard requirements on the mesh (for example, no inverted

elements or no self-intersections) and the latter is a set desirable properties (such as good quality).

A mesh editing algorithm is then described as: (1) a set of per-element invariants (for example, all

elements should have correct orientation), (2) a measure for the desiderata (for example, element

quality), (3) a set of application-specific attributes attached to mesh elements, and how they are

affected by local operations, and (4) a schedule of operation types. We show that many existing

algorithms for mesh generation, remeshing, and parametrization, can be concisely expressed in

this form (Section 6.3), which we denote IDAS (Invariant-Desiderata-Attributes-Schedule).

The IDAS specification has been designed with four goals:

1. Modularity: The connectivity of the mesh is abstracted from the user, which can only

navigate the mesh using a high-level abstraction based on a cell tuple [Brisson 1989]. This

reduces the learning curve for a new user, as they only need to learn a navigation API to

implement algorithms in IDAS. It will also allow IDAS programs to benefit from continuous

progress in data-structure design, as the data structure will be swappable without requiring

downstream code changes in the high level IDAS code. This is in stark contrast with existing

mesh libraries, which tend to be very invasive in the user code relying on them due to the

close connection between navigation, mesh editing, and property management.

2. Usability: The user code sees, at all times, a valid mesh: the library simulates each operation

transparently allowing the user to navigate on a valid mesh before and after every operation,

dramatically simplifying the logic required to define invariants and desiderata. Properties

on the mesh are also similarly abstracted, allowing to attach attributes on every simplex
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independently on the data structure used for implementing the specification.

3. Efficiency: The specification purposely requires only definitions of properties on individual

elements. This feature allows runtimes for IDAS program to parallelize the computation

(Section 6.3) without requiring special attention from an user. We demonstrate that automatic

parallelization of mesh editing algorithms is possible on multi-core architectures.

4. Robustness: The IDAS specification moves the majority of the robustness issues typical of

meshing algorithm on the runtime used to execute a IDAS program instead of the IDAS code

itself. This simplifies the development of robust algorithms: for example, the user invariants

are guaranteed to be enforced during processing, as the runtime will automatically check

them on every modified element. As long as the user provides correct code for the invariant

(for example to check for area positivity of an element using a predicate), then the runtime

ensures that the invariants will be satisfied for all elements.

Given an algorithm in IDAS form, we design an algorithm and runtime library to realize it,

with guarantees on satisfying the invariant and a best effort to maximize the desiderata. Our

library exploits shared memory parallelism without any additional effort required from users in

the algorithm specification.

To demonstrate the generality and effectiveness of our approach, we provide IDAS formulations

for five popular mesh editing algorithms (Section 6.3, Figure 6.1): (1) shortest edge collapse [Hoppe

1996] (decimation for trianglemeshes), (2) QSlim [Garland andHeckbert 1997], (3) isotropic triangle

meshing [Botsch and Kobbelt 2004] (remeshing for triangle meshes), (4) harmonic triangulations

[Alexa 2019] (quality improvement for 3D volumes), and (5) robust tetrahedral mesh generation

[Hu et al. 2019c] (conversion of surface meshes to volumetric meshes). The IDAS formulation

closely resemble the textual description of the algorithms in the corresponding papers: it is

compact, readable, and easy to adapt for requirements of specific applications. As an example, we

show that modifying (1) and (2) to guarantee a maximal geometric error requires is straightforward.
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Figure 6.2: Overview of the components behind our specification. A mesh is represented trough its

topology, implemented by our library, and a list of user provided a�ributes. Before an operation is

a�empted, we explicitly perform a pre-check, and, if successful, we generate a mesh (a�ributes and

topology). At this point, we trigger the a�er check to validate the operation (e.g., check if the newly

generate mesh has positive volume). In case the a�er check fails, we automatically rollback the operation

and restore the mesh to its previous valid state.

Despite its generality, IDAS implementations executed using our library are comparable or faster

than state of the art implementations in open-source software: the overhead due to the framework

generality is more than compensated by the automatic parallelization (Section 6.3).

We believe our contribution is an important step to allow researchers and practitioners to

effectively develop newmesh-editing algorithms, shielding the designer of mesh editing algorithms

from many of the robustness and correctness challenges plaguing previous low-level approaches,

by moving these components inside the runtime environment. It will also allow mesh editing

algorithms to be used more easily in larger systems, as they can be tailored to requirements of a

specific application with minimal programming effort.

We provide an open-source implementation of our library and of the five mesh editing algo-

rithms as additional material.
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6.2 Method

Our declarative specification is designed to remove the burden of low-level management of the

mesh connectivity and attributes, allowing an algorithm designer to focus only on high-level

requirements. The design consists of five components.

6.2.1 Mesh editing components

Operation Rollback. It is common to perform mesh editing to improve a given energy func-

tional, such as mesh quality or element size. However, due to the discrete nature of the operations,

it is not possible to use standard smooth optimization techniques, and instead the effect of the

energy is evaluated before and after every operation to measure its effect on the energy. This is

commonly implemented using an ad-hoc energy evaluation that “simulates” the operation only

for the purpose of measuring the energy change. This simulation is complex (especially in 3D),

and error-prone, as not only the connectivity changes, but the energy likely depends on properties

attached to mesh elements, which needs to be updated accordingly.

We propose instead to make this process opaque to the user, providing to the user-code an

explicit copy of the mesh (and up to date attributes) before and after the operation is performed

to allow an easy and reliable energy evaluation. The correctness and efficiency of this process

is handled by the runtime. This reduces the complexity of mesh editing considerably in our

experience, as it makes them more similar to traditional finite difference approaches where the

energy is evaluated on different points on the domain to approximate its derivative.

Explicit Invariants. It is common to have a set of desiderata on the mesh that needs to be

satisfied, such as avoiding triangle insertions or self-intersections. Given the complexity of a mesh

editing algorithm it is difficult to ensure that they are satisfied, as these conditions needs to be

checked after every operation is applied (and they often depend on attributes too, such as vertex
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positions).

We propose to make these invariants explicit, and delegate to the library the task of ensuring

that they are checked after every mesh modifications, and after the input is loaded. In this way,

not only the code is simpler, but it is much easier to ensure correctness, as the checks are handled

transparently by the library.

Explicit Attribute Update. Mesh attributes are usually handled by low-level meshing libraries,

allowing to attach them to the desired mesh element (vertex, edge, face, triangle, or tetrahedra).

However, the handling of attributes after a local operation is performed is usually a responsibility

of the user code, as it is dependent on the application.

We propose to make this process more explicit, requiring the user to provide the rules on how

to update attributes after operation in a high-level specifications, and delegating the actual update

to the library. This makes the specification more direct and less error-prone, and allows users to

write algorithms without having to know the low-level details on how the local mesh operations

work.

Parallel Scheduling. The type and scheduling of local operations is crucial in mesh editing

algorithms. It usually involves maintaining a priority queue of operations, which is updated after

every local operation.

We provide a direct way of controlling the operations performed and how the queue is updated.

In the library, we can then distribute the work automatically on multiple threads, hiding from the

user code the complexity of performing mesh editing operations in parallel and ensuring that race

conditions are avoided.

Abstract Mesh Navigation. Both invariant and attribute updates require navigating a mesh.

Instead of relying on data-structure specific navigation, we favor the use of the cell tuple abstraction

[Brisson 1989]. This allows the specification to be independent of the mesh data structure used
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in the library. The Tuple stores four indices (three for surface meshes), vertex, edge, face, and

tetrahedron and provides a single function per index, called switch, to change one index while

keeping the other indices fixed. For instance switch_vertex changes the vertex index while

keeping edge, face, and tetrahedron fixed which has the effect of selecting the opposite vertex on

an edge.

6.2.2 Declarative Specification

Our API provides two abstractions: a TetMesh (and TriMesh class for 2D) (Algorithm 1), and a

Scheduler (Algorithm 2).

class TetMesh

{

public:

bool split_edge(const Tuple& t,

std::vector<Tuple>& new_tets);

bool collapse_edge(const Tuple& t,

std::vector<Tuple>& new_tets);

bool swap_edge(const Tuple& t,

std::vector<Tuple>& new_tets);

bool swap_face(const Tuple& t,

std::vector<Tuple>& new_tets);

bool smooth_vertex(const Tuple& t);

bool insert_triangle(

const std::vector<Tuple>& intersected_tets,

const std::vector<Tuple>& intersected_edges);
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protected:

bool invariants(const std::vector<Tuple>& tets);

bool split_before(const Tuple& t);

bool split_after(const Tuple& t);

bool collapse_before(const Tuple& t);

bool collapse_after(const Tuple& t);

bool swap_edge_before(const Tuple& t);

bool swap_edge_after(const Tuple& t);

bool swap_face_before(const Tuple& t);

bool swap_face_after(const Tuple& t);

bool smooth_before(const Tuple& t);

bool smooth_after(const Tuple& t);

bool insert_triangle_before(

const std::vector<Tuple>& faces);

bool insert_triangle_after(

const std::vector<Tuple>& faces,

const std::vector<std::vector<Tuple>>& new_f);

};

Listing 1: API of our TetMesh class.
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template <class Mesh>

struct Scheduler

{

function<double

(const Mesh&, Op op, const Tuple&)>

priority = ...;

function<vector<pair<Op, Tuple>>

(const Mesh&, Op, const vector<Tuple>&)>

renew_neighbor_tuples = ...;

function<vector<size_t>

(Mesh&, const Tuple&)>

lock_vertices = ...

function<bool(const Mesh&)>

stopping_criterion = ...;

function<bool

(const Mesh&, tuple<double, Op, Tuple>& t)>

should_process = ...;

size_t num_threads = ...;

size_t max_retry_limit = ...;

size_t stopping_criterion_checking_frequency = ...;
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bool operator()

(Mesh& m,

const vector<pair<Op, Tuple>>& ops);

};

Listing 2: API of our Scheduler.

Mesh Classes Both the TetMesh and TriMesh classes provide the basic local operations (e.g.,

edge split or collapse) and, for each operation, their corresponding before and after methods.

The mesh class is responsible of implementing the operations changing the topology, and the

application code must only override the before and after methods to update attributes. The

before method has a view of the mesh before the operation, and can thus navigate it to cache

local attributes, while the after method has a view after the operation is performed, and it is

responsible for updating attributes. In the simple case of regular subdivision of a triangle mesh, the

split_before caches the coordinates of the two edge endpoints, and the split_after computes

the position of the newly inserted vertex by averaging them.

In addition, the mesh class provides a method, which can be overridden by the user code, that

automatically verifies user-provided invariants (e.g., maintain positive elements’ volume). All

user-provided methods return a Boolean status to notify the mesh classes if the operation fails; in

case it does, our API rolls back the operation and restores the topology to the previous valid state.

As the connectivity and attributes management is handled by the class, this ensures that, in case

of failure of the operation, the mesh will go back to a valid state.

Our API provides the standard local operations: edge collapsing. edge/face swapping, edge

splitting, and smoothing. We also provide an additional, non standard, operation: triangle insertion.

This operation is an enhanced version of splitting where multiple edges, faces, and tetrahedra are

subdivided to represent an input triangle provided as input. This operation is useful to compute

mesh arrangements, and it is also used in meshing algorithms [Hu et al. 2019c].
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Since the TetMesh class only handles topology, the operation requires the list of edges and

tetrahedron the input triangle intersects. Internally it subdivides all of them, and generates a valid

tetrahedral mesh using the connectivity table in [Hu et al. 2019c]. The before operation provides

the user the list of faces that will be changed by the operation, allowing the user code to explore

the mesh and cache attributes, while the after provides a mapping between the old faces and any

newly inserted face in the mesh.

Scheduler The second part of our API is the Scheduler that is responsible to control the

order of the individual operations and then execute a list of operations. The main purpose of the

scheduler is to abstract the operation order and hide parallelization details from the user. Our

scheduler provides customizable callbacks, including,

• Priority to order the local mesh edit operations.

• Renew neighbor tuples that is invoked after a successful operation, to add newly created

tuples and operations into the queue.

• Lock vertices that provides information on the affected region for the operation, and avoiding

conflicts.

• Stopping criterion that is checked periodically to terminate the program if certain criterion

is met. For example, number of vertices, or quality criterion.

6.2.3 Implementation.

We implement a runtime for our specification in C++, using Intel oneTBB for parallelization.

Data Structure. We opt for an indexed data structure, where we explicitly represent the

vertices and the simplex of higher dimension (triangle for 2D, tetrahedra for 3D). Each vertex

explicitly stores a list of incident simplices, and each simplex stores a sorted list of its vertices.
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Figure 6.3: Example of the locking region for two edges. In the example the operation requires locking a

two-ring neighborhood (e.g., for the edge collapse operation). If the two edges are sufficiently far (right)

both operations can be safely executed in parallel. When the two edges are close (le�) the operations

might fail acquiring the mutexes in the shared area.

While not the most efficient option for navigation, this data structure makes the implementation

of local operation much simpler.

Parallelization. To avoid conflicts between local operations working on the same part of the

mesh, we introduce a synchronization mechanism using locks.

Each mesh vertex is associated with a mutex. Whenever a thread wants to access (read/write)

any attribute stored in a vertex, edge, triangle, or tetrahedron it must first acquire a lock on all

the vertices of the tetrahedron containing the element(s) storing the attribute (Figure 6.3). For

example, if a thread wants to read a value on an edge of a 3D mesh, it first needs to acquire a lock

on all vertices of all the tetrahedra containing that edge. This mechanism is used also for mesh

navigation, and for updating the mesh connectivity.

At a first look, this mechanism might seem cumbersome and expensive. However, we rely on

asynchronous, tentative lock acquisition operations. We try to acquire the lock, and give up if the

lock is already taken by another thread. These operations are efficient on modern hardware and

dramatically improve the performance, while avoiding deadlocks. A downside is that an operation

might be skipped due to impossibility of acquiring a mutex. These operations are retried for

several times (by default 10 times) and run serially if the still do not succeed. Before performing

any local operation, we try to acquire the lock on vertices in the 1-ring or 2-ring of the vertex
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involved in the operation. For example, a vertex smoothing operation requires acquiring the 1-ring

vertex neighborhood of the smoothed vertex, while an edge-collapse operation on an edge (v1,v2)

requires acquiring the lock on the 2-ring vertex neighborhood of both v1 and v2 (Figure 6.3).

Finally, since we partition the input mesh using Morton Encoding [Karras 2012], the amount

of conflicts (and skipped operations) is low.

6.2.4 Example: Shortest Edge Collapse

We show how the library is used in a classical example, shortest edge collapse. In this case, we

add a 3D position to every vertex as a vertex attribute (by default, there are no attributes attached

to mesh elements). For every attribute and for every operation we plan to use in the scheduler, we

need to provide a function that updates such attribute (Algorithm 3). In the collapse_before

function, we cache the two vertex coordinates associated with the collapsed edge represented by

Tuple t. In the collapse_after function, we generate a new vertex in the middle of the two

endpoints of the collapsed edge.

//Save two vertices attached to edge t

bool collapse_before(const Tuple& t)

{

cache.v1p = verts[t.vid()];

cache.v2p = verts[switch_vertex(t).vid()];

return true;

}

//Generate a new point

bool collapse_after(const Tuple& t)

{
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verts[t.vid()] = (cache.v1p + cache.v2p) / 2.0;

return true;

}

Listing 3: Overridden methods in TriMesh sub-class to implement shortest edge collapse.

Equipped with the 3D position attribute, which at this point will be automatically kept up

to date by the library, we can now schedule the collapse operation (Algorithm 4). For shortest

edge collapse, we want to attempt to collapse all edges, prioritizing the shortest ones, until we

reach a fixed number of collapses n_collapse: in the code we registering the operation type

(ops), specify how to update the queue after an operation (renew) by adding all the neighbouring

edges, and specifying the edge length as a priority (priority). Note that the outdated elements

in the queue that are affected by a local operation are automatically invalidated using a tagging

mechanism on the tuples which is opaque to the user.

//Collect edges attacched to tris

vector<Tuple> new_edges_after(const vector<Tuple>& tris)

{

vector<Tuple> new_edges;

for (auto t : tris) {

for (auto j = 0; j < 3; j++) {

new_edges.push_back(

tuple_from_edge(t.fid(), j));

}

}

return new_edges;

}
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bool collapse_shortest(int n_collapses)

{

//Register operations

auto ops = vector<pair<Op, Tuple>>();

for (auto& l : get_edges())

ops.emplace_back("edge_collapse", l);

//After a successful operation,

//we append all new edges

auto renew = [](auto& m, auto op, auto& tris) {

auto edges = m.new_edges_after(tris);

auto optup = vector<pair<Op, Tuple>>();

for (auto& e : edges)

optup.emplace_back("edge_collapse", e);

return optup;

};

//priority in which we collapse

auto priority = [](auto& m, auto op, const Tuple& e) {

const auto v1 = m.verts[e.vid()];

const auto v2 = m.verts[e.switch_vertex(m).vid()];

auto len2 = (v1 - v2).squaredNorm();

return -len2;

};

//Set the functions to the scheduler
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Scheduler executor;

executor.renew_neighbor_tuples = renew;

executor.priority = priority;

executor.stopping_criterion_checking_frequency =

n_collapses;

//We stop only when we perform n_collapses

executor.stopping_criterion =

[](auto& m) { return true; };

//Run the executor

executor(*this, ops);

}

Listing 4: Scheduler setup for the schedule shortest edge collapse.

6.3 Applications

To showcase the generality and effectiveness of our approach, we implement five popular mesh

editing algorithms in our framework, and compare them with reference implementations. Overall,

the performance of our method are competitive for surface applications, but the overhead due to

the approach generality is higher in 3D, leading to higher running time.

Shortest Edge Collapsing The simplest algorithm for simplifying a triangle edge is shortest

edge collapse [Hoppe 1996], which performs a series of collapse operations prioritizing the shorter

edges. The algorithm requires only one local operation, edge collapse. A common criteria for

termination is reaching a desired number of mesh elements. We compare our implementation with

the “decimate” implementation in libigl [Jacobson et al. 2016]. The serial libigl implementation

is comparable when running the algorithms serially, and our parallel implementation is up to 9
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Figure 6.4: Comparison of our parallel implementation (32 threads) of shortest edge collapse (scalability

plot on the right, from 1 to 32 threads) of a model with 281, 724 faces with the serial version in libigl. Both

libigl and our output have 28, 168 faces and comparable edge length (1.058 for libigl versus 1.061 for ours).

Our serial method runs in 4.9s (5.84s on a single thread, 0.52s with 32 thread, leading to a speedup of 11×),
while libigl runs in 2.74s.

times faster when using 32 threads (Figure 6.4).

QSlim We use our framework to implement QSlim [Garland and Heckbert 1997]. QSlim collapse

edges based on the planarity of the two adjacent faces measured with an error quadric. The

algorithm continues to collapse until it reaches a target number of edges. We compare our

implementation with the QSlim implementation in libigl [Jacobson et al. 2016]. The serial libigl

implementation is 8 times faster than our implementation, due to their direct manipulations of

elements in the queue with each collapse. But our parallel implementation is twice as fast when

using 16 threads (Figure 6.5).

Isotropic Remeshing We implemented the widely used algorithm for isotropic remeshing

proposed in [Botsch and Kobbelt 2004]. This algorithm alternates edge collapse, edge flips, edge

splits, and tangential smoothing to obtain a mesh that is isotropic (i.e. all elements have the same
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Figure 6.5: Comparison of our parallel implementation of QSlim with the serial version in libigl for a

model with 1, 909, 755 faces. Top right, the libigl output has 17, 891 faces and takes 41.26s. Bo�om le�, our

output has 17, 906 faces and runs in 306.59s. Our implementation scales well: 347.59s with one thread and

13.88s with 32 (25× speedup).
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Figure 6.6: Example of uniform remeshing a model with 2, 529, 744 triangles (le�) with the same target

edge length. Middle, [Möbius and Kobbelt 2010] remeshes it to 78, 322 faces in 31.96 seconds. On the right

is our 32-thread implementation, which generates 71, 640 triangles in 8.2 seconds (78.34s serial, 95.0s for a

single thread, leading to a speedup of 11×). The difference in density of the meshes is due to differences

in the detail of the implementation, which makes the two methods reach an average vertex valence of

5.999, and a similar target edge length (differ 0.01% of the bounding box diagonal length) with a different

element budget.

size) and where all triangles are close to equilateral. The process is guided by a user-provided

target edge length L, and terminates when no local operation leads to either an improvement in

the desired edge lengths or an improvement in vertex valence [Botsch and Kobbelt 2004].

In Figure 6.6, we compare our implementation of [Botsch and Kobbelt 2004] with the imple-

mentation in OpenFlipper [Möbius and Kobbelt 2010]. The OpenFlipper implementation is 2.5

times faster when running on a single thread, and our implementation becomes faster after 4

threads are used (Figure 6.6).

Harmonic Triangulations The harmonic triangulations algorithm has been introduced as an

alternative to sliver exudation in the Delaunay tetrahedralization pipeline to efficiently reduce

sliver tetrahedra. The original paper [Alexa 2019] proposes to use both flip and smoothing

operations.
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Figure 6.7: Example of Harmonic Triangulations starting with one million Gaussian distributed random

points. Both our and the reference implementation reach a similar target number of tetrahedra (5.9 million

for the reference and 6.1 million for ours, due to a difference in operation ordering) and a similar Mean

Harmonic Index (0.547 for the reference and 0.554 for ours). Our method takes 3.82s with 32 threads (15.49s

serial, 40.49s on a single thread, speedup of 11×), while the reference serial implementation takes 6.37s.

The code provided by the authors implements a reduced version of the algorithm proposed in

the paper, restricting the optimization to 3-2 edge swap operations. We thus implemented both

a reduced version for a fair comparison (Figure 6.7) and a complete version. Our more generic

framework is twice as slower than the hand-optimized code written by the authors when running

serially, and it is 2 times faster when running on 32 threads (Figure 6.7).

Tetrahedral Meshing The TetWild algorithm is a tetrahedral meshing algorithm with minimal

input requirements: given an input triangle soup, it can generate a tetrahedral mesh which approx-

imates its volume. We take inspiration from the original algorithm introduced in [Hu et al. 2018,

2019c] with a few modifications: (1) we use the insertion operation [Hu et al. 2019c] (using rational

coordinates) as a replacement for their BSP partitioning, as this simplifies the implementation, (2)

we use the envelope proposed in [Wang et al. 2020] instead of sampling, and (3) we use 2-3 face

swapping, 3-2 and 4-4 edge swapping operations, to simplify the implementation. We show results

on two models in Figure 6.8: the results are very similar to the original implementation, and our
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Figure 6.8: Tetrahedralize a surface with 856, 294 faces. Original TetWild (top right) generates a mesh with

56, 761 tetrahedra in 287.58s; our reimplementation (bo�om le�) generates a mesh with 44, 866 tetrahedra

in 153.33s with 8 threads (452.42s serial, 521.47s on a single thread, speedup of 3.4×). The difference in
number of tetrahedra is likely due to the different order of scheduling of operations due to the partitioning.

version is 2 times faster when using 8 threads. We experimentally observe that our framework

scales well up to 8 threads, after that the algorithm becomes slower. This is because, as we increase

the number of threads and partitions, the frequent conflict in tetrahedral mesh edge operations

affects the parallel performance. We believe that this observation might be useful for the future

design of high performance concurrent mesh generation algorithms.
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Figure 6.9: Example of spli�ing the longest edge on the bo�om of the triangle. On the le�, the edge can

be split to generate the dark blue edge. In the next iteration, the le� edge is split (by the light blue edge)

leading to a decreasing maximum edge-length. On the le�, the bo�om edge is locked illustrated by a

dashed line. In this case the next iteration splits the le� edge (dark blue edge) and so on. As long as the

dashed edge is locked it will never be split preventing the maximum edge length to decrease.

6.3.1 Parallelization

Enabling the parallelization mechanism introduces a minor slowdown as visible in the difference

between the pure serial and one thread timings on our applications, due to the additional cost of

allocating mutexes and to acquired them. The algorithm scales well in all 5 applications (figures

6.4, 6.5, 6.6, 6.7, 6.8), obtaining a scaling speedup. We would like to remark that thanks to our

specification and our runtime, the serial and parallel implementation of the 5 algorithms above is

almost identical.

An inevitable drawback of parallelization is that the algorithms cannot efficiently preserve

ordering. For instance, in shortest edge collapse, every thread will try collapse edges in its own

partition independently from the others. If one of these collapses append on the partition’s

interface, the thread will need to acquire a lock. In case of failure the collapse is postponed to a

later stage thus not respecting the order (Figure 6.9). This is a rare event that is more problematic

for fast operations.
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Figure 6.10: Shortest edge collapse with envelope containment of a model with 857, 976 faces. Our method

successfully generates a mesh with 71, 298 faces in 37.49s with 32 threads (731.32s serial, 725.34s on a

single thread, speedup of 20×).

6.3.2 Algorithm Modifications

A major motivation to invent and develop this declarative language is enabling easy customization

of meshing algorithms. As an example, we add an additional termination criteria to the shortest

edge collapse and uniform surface refinement. Integrating the envelope check is straightforward

with our approach, as it only requires adding the envelope check to the invariants. We use

the open-source library proposed in [Wang et al. 2020], which allows to directly specify the

maximal allowed surface deviation. The envelope adds a noticeable computational cost, which is

ameliorated by our parallel implementation (figures 6.10 and 6.11).

6.3.3 Large-scale dataset validation

To validate our framework we run our reimplementation of uniform remeshing and tetrahedral

meshing on the Thingi10k dataset [Zhou and Jacobson 2016]. We run all experiments serially on
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Figure 6.11: Uniform remeshing with envelope containment check of a model with 198, 918 faces. Our

method produces a mesh with 68, 202 faces in 29.11s with 32 threads and 493.54s for a single thread (483.68s

for the serial version) leading to a speedup of 16×.

an individual node of an HPC cluster an Intel Xeon Platinum 8268 24C 205W 2.9GHz Processors

limiting the runtime to 15 hours.

For uniform remeshing, Figure 6.12 shows the time, average edge length normalized by the

target, and average valence of isotropic remeshing on the ten thousand models. Most of our

models finish within 10 seconds with only a few requiring more than a minute. For almost all

meshes, the algorithm succeeds at reaching the target edge length and valence of 6.

For TetWild we limit the number of iterations to 25 (Figure 6.13). We note that within the 15

hours limit only 2.5% models did not finish, and after 25 iterations 3% of the models still have some

rational coordinates. Among the successful models, most finish within 20 minutes and succeed in

achieving high-quality meshes (only 8 models have average AMIPS larger than 10).

152



0.001 0.01 0.1 1 10 100 1000

2

5

1

2

5

10

2

5

100

2

5

1000

2

5 1000 2 5 10k 2 5 100k 2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

5 1000 2 5 10k 2 5 100k 2

3

4

5

6

7

8

9

Input |F| Input |F| Input |F| 

T
im

e
 (

s)

A
v

e
ra

g
e

 E
d

g
e

 L
e

n
 /

 T
a

rg
e

t

A
v

e
ra

g
e

 V
a

le
n

ce

Figure 6.12: Timings, target edge length ratio, and valence for every model in the dataset. Most models

finish within a minute. The target edge length ratio measure how well our algorithm simplifies the meshes

to reach the desired edge length, with an optimal value of 1. Since uniform remeshing strives to generate

regular meshes, for most model our algorithm is able to obtain the optimal valence of 6.
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Figure 6.13: Timing, max and average AMIPS energy (capped at 20) for maximum 25 iterations of

tetrahedral meshing. Most models finish withing 20 minutes with only a few taking up to a day. Even by

limiting the iterations to 25, most models reach an average AMIPS energy lower than 10, with optimal

value at 3.

6.4 Remarks

This paper introduces a new declarative specification for mesh algorithms to allow an easier

implementation, while at the same time obtaining competitive performances and exploiting

parallel hardware.

Using this specification, we implement five popular mesh editing algorithms covering mesh

generation and optimization on surfaces and volumes, which can be easily adapted for other use

cases: we demonstrated that integrating an envelope check requires only a few lines of code.

The library we implemented supports shared memory parallelism, which leads to a good

scaling on the machines we tested it on. We believe an exciting venue for future work would be the
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implementation of a library for our specification targeting MPI to distribute the computation over

an HPC cluster. Having access to such a library would allow our five mesh editing applications to

run on a distributed environment with minimal or no changes.
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7 | Conclusion

In the previous chapters, the dissertation has discussed several problems related to the bijective

mappings between different spatial domains and introduced relevant computational principles to

guarantee the validity of attribute association and present robust algorithms to process information

across digital shapes efficiently. In this concluding chapter, I argue that the significance of these

principles lies not only during the robust and scalable processing of digital geometry shapes but

also in developing the next-generation pipeline of geometric modeling and physical simulation.

To achieve this broader goal, there are still many open and exciting problems to solve.

1. Shape-Aware Adaptive Mesh Refinement: In chapter 5, we showcased the benefit of surface

and volume simplification in the context of scalable visualization and efficient physical

simulation. On the other hand, we can further extend the pipeline to refine back towards a

given geometry by adding detail and smoothness adaptively. Combined with an Adaptive

Mesh Refinement (AMR) pipeline, such features are essential for scientific computing and

computational design. Specifically, given a detailed reference shape with material assign-

ment, the algorithm in chapters 4,5 coarsen the volume domain with drastically fewer

elements. The governing equations with transferred boundary conditions may be efficiently

solved in such a simplified domain. The geometry might refine where needed depending on

the current solution’s smoothness or accuracy. Note that such refinement should always

converge to the reference shape to bring the geometry error down, and finally, we can

achieve an adaptive solution on an otherwise dense geometry.
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2. Bijective Shell in the Wild In chapter 4, the bijective shell is formulated on manifold meshes,

to guarantee strictly bijective attribute transfer everywhere. However, a blended framework

with envelope [Hu et al. 2018; Wang et al. 2021] can open the door to partially corrupted

or occluded data. Such characteristics are common in 3d scanned datasets or MRI medical

datasets, and point cloud and implicit represented surface data may all be processed within

the same framework. Given an input mixed shape description, the algorithm would first seg-

ment the partial regions with attributes and apply the bijective shell construction algorithm

on the partial surface. During downstream remeshing, different parts would be checked

with varying envelope criteria, and extra care should be taken to ensure continuity across

the segmentation boundaries.

3. High-Order reduced FEM simulations The high order finite element method is a concept

already with decades of development. Still, we believe that the availability of more high-

order surface and volume meshes (chapter 5) would benefit its adoption and release the

potential inefficient physical computations. In addition, resolving frictional contact with

curved representations, [Ferguson et al. 2022] can make dynamic simulations more scalable

and efficient. While surface modeling software often uses curved geometries (e.g. Bézier and

NURBS), the conversion of these geometries to curved simulation meshes is still an open

problem, and existing solution are not robust. In this aspect, our contribution of robust and

intersection-free curve surface modeling can lead to a more systematically robust industrial

design and simulation pipeline.

4. Improved Computational Fabrication of Customized Devices The chapters 4,5 have introduced

the robust association between design and simulation representations. A closely related

concept with attribute transfer is differentiability. Novel schemes for differentiable physics

on the same mesh has been proposed. And in the presence of large deformation with

connectivity change, our construction comes in handy by bijectively associating through
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the remeshing process. With such end-to-end associations, the initial design decisions in the

shape space can be reflected in the final durability of the parts, and differentiability ensures

that the design can be instructed to improve automatically.

5. Volume-Aware 3D Geometry Processing can be another venue for interesting future works.

Similar to the principle we explained in chapter 3, a background mesh provides implicit

and easy ways to check for the geometry validity. For example, the scaffold mesh converts

global surface self-intersection into locally inversion checks. It has the potential to unify

the framework in different shapes and orders of finite element cells, and is partially adopted

in the construction of curved shell 5. Traditional geometry processing algorithms, including

smoothing, fairing, and animation, can be more efficient and reliable under topology con-

straints with a tetrahedral-based virtual domain. A notable example is the surface insertion

or mesh arrangement problem we used in Chapter 6: the exact version is still the bottleneck

of our tetrahedral mesh generation algorithm, but recent advances in mesh arrangement [Hu

et al. 2019c; Zhou et al. 2016; Trettner et al. 2022] are promising on this path.

6. Robust Large-Scale Geometry Dataset Processing Finally, advances in new processing algo-

rithms are necessary for improved and automatic data collection techniques. Better data is

the stepping stone to fully leveraging information from the large-scale dataset [Koch et al.

2019; Zhou and Jacobson 2016]. More significant amounts of data pave the way for more

tasks, including semantic shape segmentation, point cloud feature detection, object physics

with interaction understanding, and robotics manipulation.
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