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Abstract

This paper treats the problem of computing the collapse state in limit analysis for
a solid with a quadratic yield condition, such as, for example, the Mises condition.
After discretization with the finite element method, using divergence-free elements
for the plastic flow, the kinematic formulation turns into the problem of minimizing
a sum of Euclidean vector norms, subject to a single linear constraint. This is a
nonsmooth minimization problem, since many of the norms in the sum may vanish at
the optimal point. However, efficient solution algorithms for this particular convex
optimization problem have recently been developed.

The method is applied to test problems in limit analysis in two different plane
models: plane strain and plates. In the first case more than 80 percent of the
terms in the sum are zero in the optimal solution, causing severe ill-conditioning.
In the last case all terms are nonzero. In both cases the algorithm works very
well, and problems are solved which are larger by at least an order of magnitude
than previously reported. The relative accuracy for the solution of the discrete
problems, measured by duality gap and feasibility, is typically of the order 10~8.
The discretization error, due to the finite grid, depends on the nature of the solution.
In the applications reported here it ranges from 10~° to 1072,
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1 Introduction

The problem of limit analysis is the following: Given a load distribution on a rigid plastic

solid, what is the maximum multiple of this load that the solid can sustain without

collapsing? And when collapse does occur, what are the fields of stresses and plastic flow

in the collapse state? In particular it is of interest to find the plastified region, where the

stresses are at the yield surface and where plastic deformation takes place. It is harder to

find the collapse fields than the collapse multiplier. In typical cases these fields are not

uniquely determined, in contrast to the equilibrium problems within the elastic model.

We shall use the following notation:
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f=f(z)
)

g=g(z
o = (0i;)

ceck
u = (u;)
e = (&)

domain occupied by the solid

fixed part of V’s surface

free and possibly loaded part of the surface
volume force at & € V

surface force at € € T

stress tensor (symmetric)

the yield condition

plastic flow field

plastic deformation rate tensor defined by

o 1 6uz i 6uj
9= 9\ 0e; | Bz

The work rate for the pair of forces (f,g) and a virtual plastic flow u is

F(u):/vfu—l—/Tgu

The work rate for the internal stresses is given by the bilinear form

a(o,u)

8ui

= /;/z.z,j:a-ijeijdw:/;/iz,j:aija—mjdw

= —/V(V-a')-udar:—l—/T(u-a')-uds

(4)

where v denotes the outward normal to V. The equality between (3) and (4) follows from

Green’s formula using that w =0 on S.



The equilibrium equation for o is the equation of virtual work rate:
a(o,u) = F(u) forall v with =0 on S. (5)

Comparing (2) and (4) we see that (5) is equivalent to the classical form of the equilibrium
equation:

—V-.-o=f inV, v-o=g on T.

For computational purposes we shall always use the form (3).

In this paper we assume that the yield condition is of the form
ceke Klo)<1 (6)

where K is a quadratic function in the components of o. For example the Mises condition
1s

(011 — 022)* + (022 — 033)” + (033 — 011)% + 6(0F, + 055 + 03,) < 200 (7)
oo being the yield stress in simple tension. The yield condition must be satisfied at every
point in the solid. Note that (7) does not put a bound on the diagonal components of .
For simplicity of notation we have assumed that the material is homogeneous, and that

the boundary condition on w is of the simple type above.

The limit multiplier A* is given by (Christiansen [10, 14])

A" = max{A |Jo €K :a(o,u)=AF(u) Vu} (8)
= Ran e (®)
= i rgelew) (10)
= Join D(w) (11)
where
D(u) = max a(o,u). (12)

The expression (8) states the existence of an admissible stress tensor & € K which is
in equilibrium with the external forces (Af, Ag). (9) follows from simple linear algebra,
while (10) is the duality theorem of limit analysis proved in [12] and [14, Section 5]. The
expressions (8) and (11) are traditionally known respectively as the static and kinematic
principles of limit analysis.

The solution to the problem of limit analysis consists of the triple (A*,o*, u*), where

(o*,u*) is a saddle point for (9)-(10). o* and u* are then fields of stress and flow in the



collapse state. It follows from the kinematic principle (11) that

A" =a(o",u") = D(u") = mea’éca(a',u*).

Inserting the form (3) for a(o, u) we get

/‘l/ Z 0';;- Eij(u*) de = max /V Z Oij 61-j(u*) dz
2,7 2,7

ceK

which leads to the principle of complimentary slackness in limit analysis: At each point
in the material where e(u*) is nonzero, the collapse stress tensor o* must be at the yield
surface at a point with e(u*) as the outward normal. Regions with e(u*) = 0 are rigid.
Points where e(u*) # 0, implying that o* is at the yield surface, belong to the plastified
region. Identification of these regions is an important part of the solution process.

The Mises yield condition (7) is insensitive to the addition of any tensor of the form
oI, where I = (6;;) is the unit tensor. This reflects the property that purely hydrostatic
pressure (or underpressure) does not affect plastic collapse. We assume that the set K
of admissible tensors in condition (6) is either bounded (the easy case) or of the type
discussed above:

occK & (o—¢I)e K for any function ¢. (13)

The case where K is bounded occurs in the plane stress model and in the plate model.
The unbounded case occurs in 3—-dimensional problems and in the plane strain model.
We concentrate on the unbounded case, although we shall report computational results
for the plate model as well.

Assume now that the yield condition satisfies (13). Then it is easy to see that the so-
called energy dissipation rate D(u) defined by (12) is finite if and only if w is divergence
free, V - u = 0, i.e. the plastic flow is incompressible. This condition is an infinite set of
linear constraints on u in the minimization problem (11). For this reason the standard
approach in limit analysis with unbounded yield set has been to solve the discrete form of
the maximization problem (8). This problem is large, sparse and ill-conditioned, partially
due to the unbounded feasible set. Since efficient convex programming methods for such
problems were not available, the yield condition was linearized, and the resulting linear
program (LP) was solved with the simplex method (see e.g. [2, 7, 10]).

In [15] and [16] it was demonstrated that interior-point LP methods are very com-
petitive in limit analysis making it possible to solve for finer grids. Also interior-point
methods give more “physically correct” collapse fields than the extreme point principle of

the simplex method: in the typical case of non-unique or poorly determined solutions an
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extreme point method may pick a solution which oscillates from node to node. During
the 1980’s efficient convex programming methods appeared, such as MINOS (Murtagh
and Saunders [23]). Application of MINOS to limit analysis was reported in [13] and [14]:
the limit multiplier is more accurately determined without linearization of constraints,
but the collapse fields display unphysical fluctuations due to the extreme point nature of
the algorithm in MINOS. (For many problems this extreme point nature of the algorithm
is desirable, but not in continuum mechanics.)

A new and very efficient infeasible point method for linear programming by Andersen
[3] was applied to limit analysis in [5] (also reported in [14]). Problems one order of
magnitude larger than before were solved. The purpose of this paper is to present a
convex programming method for limit analysis with similar efficiency.

In the case where the set K of admissible stress tensors is bounded, the collapse problem
has been solved by minimizing a sum of norms in [25] (antiplane shear) and in [21] (plane
stress). Compared with these applications we emphasize the following differencies in the

present work:
e Handling unbounded yield set.
o Using mixed finite element methods.
e Using a more efficient method to minimize the sum of norms.

e Solving both larger and more ill-conditioned problems than previously possible.

2 The method

We assume that the yield condition is of the form (13) and impose the implicit constraint

V-4 =0. Then
(o, u) = / o(V - u)de = 0
14

for all scalar functions ¢. Hence we need only consider stress tensors satisfying Y oy = 0
in the duality problem (8)-(11). With this restriction the set of admissible tensors is
bounded, and hence the objective function D(u) in the minimization problem (11) is
finite for all u satisfying V - w = 0. The details are given in [12] and in [14, Section 5.4].

Using standard finite element spaces it is straightforward to find a discrete represen-
tation for stresses satisfying > o;; = 0 and thus reduce the problem size. The constraint

V -2 = 0 is a complication known from finite element computations in fluid mechanics,



discussed in e.g. Temam [26, Section 4.4-4.5]. The trick is to represent the flow u as a
curl, . = V x ¥, which implies V - 4 = 0. Instead of choosing finite elements for the
flow u itself we discretize the vector ¥ to a finite element representation ¥y, such that

the discrete flow uy, is given by

Uy = V x \I’h. (14)

(h is a linear measure of the element size in the discretization.) Care must be taken to
ensure that uj satisfies the boundary conditions.

This way we obtain not only a finite and computable objective function D(u) for
the minimization problem (11); we also get a reduction in problem size by removing
compressible flow and purely hydrostatic pressure from the duality problem. There is a
price to pay, though: The discrete flow u; must be continuous because of the boundary
condition and the derivatives in the expression (3). Hence ¥, must be of class C'. In
two space dimensions this implies the use of elements like the Argyris triangle or the
Bell triangle. If the geometry permits a triangulation into rectangles (in two or three
space dimensions), then the tensor product of the standard cubic C''~elements (Bogner—
Fox-Schmit rectangle) is a convenient choice. (All these finite elements are described in
Ciarlet [19, Section 2.2] and [20, Section 9].)

In plane strain this approach is particularly attractive: Wj, only has one nonzero

component which we shall denote ¥y, and equation (14) reduces to

ov, ov,,
up = , — . 15
h < (91:2 62131 ) ( )
The corresponding stress tensor of trace zero satisfies o33 = —o7; and may be identified

with the vector (o1, 03), where
oh— [ 7 o ] (16)
09 —01

With this notation the Mises yield condition in plane strain becomes
1
o+ a2 < 50'3. (17)

In order to be specific we proceed to describe the discretization of the plane strain
case with bi-cubic C'-elements over rectangles (the Bogner—Fox—Schmit rectangle) for
V¥;. The nodes for this finite element space are the vertices of the rectangles. There are
four basis functions associated with each vertex u, corresponding to the following nodal
values of ¥}, ([20, page 92]):

oy oV 0*v

v .
’ 64151 ’ 64152 ’ 64151(9152
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The corresponding four basis functions are denoted 1/}20, }LO, 21, ¢‘1L1 If V,, denotes an

arbitrary vertex, then 1/ijﬂ is completely characterized by the following identities:

a 00 a 00 82 00

00
Yo (Vo) = b , —3:1:1¢” (V,)=0, —6m2¢“ (V,)=0, 6m18m2¢“ (V,) = 0
b (Vo) =0 9 (Vo) =48 9 ¥ (V2) =0 ik b (Vo) = 0
# Y ’ 8131 # Y we 8132 # Y ’ 8151(9132 # Y
¥ (Vi) =0 9 Y (Vo) =0 2 (V) =48 ik Yp(Vu) = 0
# Y ’ 81:1 # v ’ 81:2 # v we s 81:181:2 # Y
¥, (Vo) =0 s ¥, (V) =0 2 u (V) =0 A (V) = ¢
# v ’ (9:1:1 # v ’ (9:1:2 # v ’ 6:1516132 # v v

¥, may now be written
1

G=Y Y Y g u (18)

a=0 g

The values of uy, at the vertices are determined by (15) and (18):

un (V) = (n2, —n2).

We now turn to the choice of finite element space for the stress components o; and o
in (16). There are no boundary conditions on the stresses and no derivatives on o in the
expression (3) for a(o, u), so the discrete stresses need not even be continuous. However,
as we shall explain below, the dimension of the space of discrete stresses o, must satisfy
a compatibility condition with the dimension of the space for ¥), which in this case has
four degrees of freedom per vertex. The space of piecewise bilinear functions is too small,
but the space of piecewise bi-quadratic element functions satisfies this condition. The
nodes are the vertices of the rectangles, the midpoints of the sides and the midpoint of
the rectangles (see [20, page77]|. Associated with each node N, there is a scalar basis
function ¢, characterized completely by being equal to one at this node and equal to zero
at all other nodes. Consequently there are the following two basis functions for the space

of discrete stresses o, given by (16):

1_| e 0 2_ | 0 o
wu_[o _(PV‘|7 ¢u_[@y 0]
The discrete stress tensor may now be written
on=Y (&ol +&v2) (19)
The yield condition (17) is imposed on the nodal values as follows

(511,)2 + (53)2 < %a’é for all nodes wv. (20)
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After insertion of (18) and (19) into the expressions (2) and (3) the energy functions

may be expressed as
11

Flu) =Y 3. Y o F2F (21)

B a=0 =0

where
0 0 0 0
af _ af af N N X7
F,L = /V (f1 8m2¢” f28m1¢” ) de -l-/; (91 8m2¢” g26m1¢” ) ds (22)
and L
a(onun) =Y 3 3 30 D EniPARP, (23)
where
52
laf __ af
ol 5 g Vi d (24)
o 0? ? o
AZE /V oy (a_mg _ a_m{) ¥ da. (25)

F(u) is a linear form and a(op,uy) a bilinear form in the “long vectors” (f,’f) and
(nz‘ﬁ). This means that F' corresponds to a vector and a to a matrix. It is necessary,
at least for the classical algorithms of numerical linear algebra, that the coordinates of
these vectors are given by one-dimensional numberings. These numberings are defined

by one-to—one mappings

n = n(v,k)e{1,2,---,N}
m = m(p,a,pB)e {12 ---,M}.

Given these numberings the nodal values for o) and uj; may be written as “ordinary”

vectors:
z, =& where n=n(v,k) (26)
Ym = nfjﬂ where m = m(p, o, B). (27)

The vectors & = (mn)N € R¥N and y = (ym)M € RM are in unique correspondence

n=1 m=1

with the discrete fields o, and up, respectively. Inserting these numberings into (21) and

(23) we get:
M
F(uh) = Z ymbm = bTy; (28)
m=1

where

_ pepB _
b = F;7, m=m(p,a,p)
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and

M N
a(O’h,Uh) = Z Z YmTnlmn = ’yTAfﬂ = wT (ATy) : (29)

m=1n=1

A is the M x N matrix with entries

A = Aﬁzﬂ, m=m(p,o,8), n=n(vk).

The numberings m(p, @, 3) and n(v, k) are chosen in order to obtain a certain matrix
structure in A, typically to minimize fill-in during factorization.

With the present choice of finite element spaces, bi—-quadratic for o} and bi—cubic for
U}, the integrals in (22), (24) and (25) can be computed as products of one-dimensional
integrals. Each integral is simple, but there are numerous different combinations. We
found it advantageous to use a program for symbolic integration to compute these integrals
as functions of the mesh size h.

We discretize the problem (8)—(12) by restricting o and w to the finite dimensional
spaces spanned by o} and uj defined by our finite element functions. With the notation
(28) and (29) we get a finite dimensional duality problem in the variables € RY and
y € RM. Let K4 denote the set of 2 € RY for which the corresponding (£*) satisfies the
yield condition (20), and define

Dy(y) = max =T (ATy). (30)
:BEK:d
With this notation we get:
A = max{A| Jz € K;: Az = A\b} (31)

= max min yTAz
z€EK, bTyzl

- an g (4

= min Day). (32)
The duality between (31) and (32) follows immediately from [9, Theorem 2.1], but is
standard in the finite dimensional case.

From the discrete static form (31) it follows that A; = 0, if b does not belong to the
range of A, Ry = {Az | £ € R"}. In order to handle general external forces we must
impose the consistency condition R4y = R¥ or, in other words, the matriz A must have
full row rank M. In particular it is necessary that N > M. This is the compatibility
condition on the space of discrete stresses o, mentioned above, and this is the reason why
we must use piecewise bi—quadratic element functions for the components of o}, instead

of, e.g., piecewise bi-linear elements.



The use of piecewise bi—quadratic elements for o}, introduces an error in connection
with the yield condition. The inequality (20) imposes the yield condition (17) on &, only
at the nodes. With bi—quadratic element functions it may be violated between nodes as

indicated in Figure 1.

-1.25 —

Figure 1: Constraint violation between nodes for a quadratic element function.

The maximum pointwise violation of the quadratic condition (17) may be as large as
ca. 28% of the variation of a component of o, over the element. With a similar change
of sign in the corresponding component of e(uy) this may result in a value of a(oh, un)
which is too large. If we assume that the area where o changes in such a “bang-bang”
fashion decreases as O(h), as h tends to zero, then the influence of the constraint violation
on the discrete collapse multiplier A;, will be O(h) and thus can be considered part of the
discretization error. In limit analysis we cannot expect faster convergence than O(h)
[10, 11, 14, 16].

We do not know to what extent the above constraint violation actually contributes to

the discretization error in Aj.

3 Solution of the discrete problem

We approach the discrete problem in the form (32). There is only one linear equality

constraint, but the objective function (30) is not differentiable. The matrix A is sparse
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with the usual finite element structure for problems in two space dimensions.
Using the notation (26) for the z—variables we have

7 (479) = 5 3 (7).

v

Substituting for € K4 in (30) the normalized yield condition (20), i.e.

(51)2 + (52)2 <1 for all nodes v

v v

we get

b =5 (((40)) + ((4)))

Dy(y) is a sum of Euclidean norms of 2-dimensional vectors. Each term only involves two
rows of AT i.e. two columns of A. These are precisely the two columns associated with
the node v, and they correspond to the value of the two components of o at that node.
Now let A, denote the M x 2 matrix consisting of these two columns, i.e. the two columns
corresponding to the primal variables ¢} and ¢2. Then we get the following expression for
the objective function (30):

puw) = 3 ((a2), = (a29)) = X4l &

v

The discrete problem (32) may now be written
* : T
A = gin Ey: |ATy| (34)

where the sum is over the nodes for the discrete stresses as explained above. In the
optimal solution we typically expect a large number (in some applications more than
90%) of the terms in (34) to vanish and hence be non—differentiable. Dy(y) defined by
(30) is the discrete analogue of D(u) defined by (12). Hence the nodes for which ATy = 0
correspond to points where e(u) = 0, i.e. to points in the rigid region where there is no
local deformation.

Calamai and Conn [6] and Overton [24] have developed second-order methods for
problems like (34). The idea is to identify dynamically the zero-terms and then replace
them by constraints of the type ATy = 0. The code of Overton was applied to test
problems in limit analysis in [25] and [21]. We started this work with a plan of modifying
Overton’s code for large sparse problems, but it turned out that a certain nondegeneracy
condition discussed in [6, 21, 24, 25] is hard to handle in the general case. Results (for our

application in the next section) with rather coarse grids were obtained in [14] with the
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dense code, but we expect serious efficiency problems for finer grids. This motivated the
development of a new algorithm by Andersen [4] based on the idea of barrier methods in
linear programming. The results in the following section are obtained with this algorithm.
We also find the dual solution, i.e. the stress field, and identify the nodes where the yield
condition is satisfied with no slack. This is the plastified region.

4 The plate problem

Limit analysis for plastic plates is described in [8]. The variables are the three components
of the bending moments my;, mgy; and my; = ma; and the transversal displacement
rate u. The problem of limit analysis is formally the same as above with the following

modifications:

a(m,u) = _/ Z i 8m 8mJ da

2,7=1
8u 3m11 8m12 8u 8m12 amgz
= d
/. (89:1 < 9z, | 02, ) T b2 ( 9z, | O )) a  (35)
B 32m11 82m12 82m2
N _/ ( Oz? 8m18m2+ Oz’ da

Fu) = /Afuda (36)

where A denotes the area of the plate, and f is the transversal force. For computational
purposes we always use the form (35) with one derivative on both m and u, so that
standard finite element functions can be applied.

In the plate model the set of admissible moment tensors m is bounded. For example

the Mises condition is in normalized form
mfl — mqi1May + mgz + 3mf2 <1. (37)
Consequently D(u) defined by

D(u) = maxa(m,u) (38)

meK

is always finite.

With the substitutions (35), (36) and (37) the problem of limit analysis is formally the
same as discussed above. The discretization is much simpler in the plate model because
the energy dissipation rate D(u) is finite for all u, so that standard finite element spaces

may be used. As in [17] we use piecewise bi-linear element functions for both u and the
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components of m, but piecewise linear elements over triangles would do just as well. The
nodes are the vertices of the rectangles, and the nodal values are the values of my;, mas,
mqy and u at the vertices.

The discrete moment tensor may be written

= 5 (€00l + €6+ E0) (3)
where
e, O 0 0 0 ¢,
0, = , ol = , 9= (40)
0 0 0 o, e, 0

¢, denotes the scalar bi-linear element function equal to one at the node v and zero at

all other nodes. The yield condition is again imposed through the nodal values:
2 2 2
(&) —arer+ (&) +3(e7) <1

or equivalently

EZQEU <1 for all nodes v, (41)
where
Lo g
Q=|-1 10|, &=|¢&2|. (42)
0 0 3 £

With piecewise bi-linear elements the yield condition will be satisfied at every point if it
is satisfied at the nodal points.

The discrete transversal flow is a scalar function:
Up = Z My Yo, (43)
u

where 1, = ¢, are the same scalar functions as for the moments.

In analogy with (21) and (23) we get

Flur) = Y mu F(3) (44)

©

and

a(mn,un) =3 Y (&M nua (01!, $0) + 2000 (92, %) + 700 (017, %)) (45)

voopu
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with

B, 8%
a (el ) = /A ail 92, %

Op, O
a(Solz,Z: u) = /Agoflga%:c: da

Op, OYu | Op, OY
12 _ |2 |2
¢ (Soy ’ “) N A ((91:2 8131 + 8151 8m2) da.

Again we introduce linear numberings

n = n(v,i,j)e{l,---, N}, z,=¢4
m = m(,u)E{l,,M}, Ym = T

and obtain

M
F(uh) = Z Ym bm = bTy (46)
m=1
with
b = F($,) for m =m(g)
and
M N
a(mp,up) = Z Z YmTnlmn = Y~ Az = 27 (ATy) (47)
m=1 n=1
with

tmn = a (@, %) for n=n(v,i,j), m=m(p).
The component of ATy corresponding to n = n(v,1,j) is
(ATy)ij = Eﬂ: a (9, %)
Hence (47) may be written
o7 (ATy) =3 (&7 (ATy)) + & (a%y) 7 + 62 (aTy)"). (48)

Now let A, denote the M x 3 matrix consisting of the three columns from A associated

with the node v. With the notation (42) we get

Da(y) = max > & (Aly)

f,:,[‘qufl v

= ) max &7 (Af'y)

~ €2Q6,<1
=X ((Afy)TQ‘1 (Afy))g
5l (aty)|
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where C is the Cholesky factor of Q7! :

2 0 0

c- 30
V3

0 0 1

The discrete problem for plates analogous to (34) is then
AL = IIllIl ZH (A,C) yH (49)

This is again the minimization of a sum of norms, and the algorithms discussed in the
previous section apply.
In general, quadratic yield conditions give rise to problems of the form (49). The A4,

are columns of the equilibrium matrix A, while C depends only on the yield condition.

5 Computational results

The method is applied to solve problems in two plane models: plane strain and plates.
In the computations reported here uniform grids are used. Adaptive mesh generation can
and should be used, but our main goal is to demonstrate the strength of the discretization
and the optimization algorithm.

We first apply the method in Section 3 to the test problem in plane strain described
in [5, 10, 16] and [14, Example 11.1]. A rectangular block with thin symmetric cuts is
being pulled by a uniform tensile force at the end faces. Figure 2 shows a cross section of

the block, and the reduction of the problem size by symmetry.

L2 L2
1
- f=0 -~ a(L,y) = (1,0)
w=1
- a[$ = I
L] -
- = $ u; =0 =
a
g(—L,y) = (_170) =~ — @uz =0
L1
L
L

Figure 2: Geometry of the test problem in plane strain
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When comparing with other results we focus on the obtainable mesh size (which
determines the discretization error) and on the quality of the computed collapse fields
for stresses and flow. In [5] the yield condition was linearized and the resulting LP was
solved, using a 200 x 200 grid. In [14, section 13] the convex problem (32) was solved
directly on a 30 x 30 grid applying MINOS [23] to the static formulation, but with poorly
determined stresses. In both cases piecewise constant elements were used for the stresses
and piecewise bi-linear elements for the flow.

In comparison, the largest problem solved with our new method is for a 120 x 120
grid. However, since the elements of higher degree used here provide four times as many
degrees of freedom per node, a 120 x 120 grid corresponds in accuracy and problem size

to a 240 x 240 grid in [5] and [14, Section 13].

a=1/3 a=1/2 a=2/3
R~ | A*(k) k(h) R(h)| A*(h) k(h) R(k)| X(R) k(k) R(h)
6 | 0.9898 1.2193 1.4775
12 | 0.9560 0.9221 | 1.1751 1.1308 | 1.4336 1.3896

18 1 0.9450 1.05 0.9230 | 1.1603 1.00 1.1309 | 1.4172 0.80 1.3844
24 109396 1.06 0.9235 | 1.1530 1.02 1.1311 | 1.4088 0.95 1.3838
30 | 0.9364 1.05 0.9237 | 1.1487 1.03 1.1313 | 1.4038 0.95 1.3835
36 | 0.9343 1.05 0.9238 | 1.1458 1.02 1.1314 | 1.4003 0.97 1.3833
42 1 0.9328 1.05 0.9239 | 1.1437 1.02 1.1314 | 1.3979 0.97 1.3832
48 | 0.9317 1.04 0.9239 | 1.1422 1.02 1.1314 | 1.3961 0.98 1.3832
54 1 0.9308 1.05 0.9240 | 1.1410 1.01 1.1315 | 1.3946 0.99 1.3832
60 | 0.9302 1.04 0.9240 | 1.1401 1.02 1.1315|1.3935 0.99 1.3831
90 | 0.9281 1.04 0.9241 | 1.1372 1.01 1.1315|1.3900 0.99 1.3831
99 | 0.9278 1.03 0.9241 1.3894 0.99 1.3831
100 1.1366 1.01 1.1315
120 | 0.9271 1.03 0.9241

Table 1: Results and convergence analysis for the test problem in Figure 2, L =1, a = %,

a = 5 and a = 2. k(h) is the computed convergence order, and R(k) the Richardson

extrapolation to order 1.

A selection of our results is shown in Table 1 and visualized in comparison with the

results from [5] and [14, Section 13] in Figure 3. We can solve the convex problem (32)
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at least as accurately as the LP solved in [5], even ignoring the linearization error which
is about 2%.

Table 1 shows, for L = 1 and the cases a = %, a = % and a = % (see Figure 2),
some computed values for A}, the estimated convergence order based on these values (as

described in [18]), and the estimate of A* obtained by Richardson extrapolation to order

k = 1. These values are computed from the expression

Ex*(h.Y — \*(h. :
R(hz) _ a )\ (hz) )\ (hz—l)’ o = h;L_l

ak —1
where h; < h;_; are 2 successive h-values in the table. The convergence analysis shows
that the collapse multiplier A; converges in h with order 1, in the sense that the limit

1
lim - (A — \") (50)

h—0

exists. This was found not to be the case in [5] where the expression in (50) was bounded,
but not convergent, as h — 0. The explanation is that the finite element functions of
higher degree used here approximate even the non—-smooth collapse fields in limit analysis
better than piecewise linear or bi-linear elements, although the convergence order is still
k = 1. This makes it possible to estimate the discretization error and extrapolate to
obtain an accuracy not seen before in limit analysis. For example we claim that in the
case L =1and a = % we have A* = 0.9241 with all digits correct.

Figure 4 visualizes the computed collapse fields u; and o} for the case L = 1, a =
%, h = 11%. As is standard, we have multiplied the displacement rate u; by a suitable
time—-scale in order to see the resulting deformation. The deformed grid is not necessarily
linear between nodes due to the higher order element functions. Rigid regions separated
by a narrow slip zone are clearly recognizable. The nodes in the rigid region correspond to
zero—norms in the sum (34). The nodes where the stress tensor satisfies the yield condition
without slack are indicated by a small line segment indicating the direction of the vector
(01,02) in (16). These nodes make up the plastified region. On this fine grid the direction
can hardly be recognized, but the plastified region is clearly visible. In Figures 4 and 5,
a node is considered plastified if the slack in the yield condition is less than 1072, but the
picture is almost the same for all tolerances between 107'° and 1078. The collapse fields
are in agreement with those found in [5], but slightly better determined.

Figure 5 shows the collapse solution for the case L = 2, a = %, h = 61—0. We see that
the plastified region does not penetrate to the side x = L, suggesting that the collapse

solution, in particular the limit multiplier A*, should remain the same if material is added
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to the rightmost rigid block. This was confirmed by actually computing the collapse
solution for L = 3. For h = 3 the values of A}, for L = 2 and L = 3 are 1.258833 and
1.259579, respectively, but for h < % the values of A} for L = 2 and L = 3 are identical.
Through the same analysis as in Table 1 we find that for L > 2 and a = % the limit
multiplier is A* = 1.130 + 0.001.

The discrete problem corresponding to Figure 4 (the largest case solved) has
M = 58240 variables (u—components) and N = 116162 dual variables (c—components).
There are 58081 terms in the sum (34) out of which more than 80% are zero in the opti-
mal solution. The matrix A has 2,092, 843 nonzero elements. The computation used 79
hours of CPU-time on the CONVEX (C3240 vector computer at Odense University. The
accuracy measured in duality gap and lack of feasibility is about 1078. The CPU-time
is considerable, but we have tried to test the limits of the method. In our experience
the bottleneck in limit analysis has not been the CPU-time or storage, but the deterio-
ration of accuracy due to ill conditioning. In this respect the present method is beyond
comparison.

The second application is the plate bending problem described in [17]: Various com-
binations of simply supported/clamped, square/rectangular plates loaded by a uniform
load or a point load at the center. In [17] results are reported for meshes up to 40 x 40
grids on the square plate (reduced to 20 x 20 by symmetry). We have results for 800 x 800
grids (reduced to 400 x 400 by symmetry). As in [17] piecewise bilinear finite element
functions are used both for u and for the components of m.

The largest case solved has M = 160000 variables, N = 482403 dual variables, 160801
terms in the sum (34), and the matrix A has 3,390,400 nonzero entries. The computation
used 5.7 hours of CPU—time (same computer as above). The duality gap was less than
1078, while infeasibilities (primal and dual) were less than 107'°. This problem can be
solved very efficiently because all terms in the sum of norms (34) are nonzero in the
optimal solution. This was also essential for the results in [17] which were obtained using
the smooth optimization algorithm by Goldfarb [22].

Our results agree with earlier results, but the fact that we are able to solve for much
finer grids makes a better convergence analysis possible. This is done as described in [18].
Table 2 shows the value of A} for the simply supported square plate with uniform load.
The computed convergence orders k;(h) in column 3 confirm that the error is of order
2. Column 4 shows the result R;(h) of Richardson extrapolation to order 2. We then

estimate the order ky(h) of the error after extrapolation (column 5) and find the order 3.
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| MR) | E(R)  Ru(h) | Ey(h)  Ra(h)
12 | 24.86336954
24 | 24.97645373 25.01414846
36 | 24.99948059 | 1.84 25.01790208 25.01884048
48 | 25.00787151 | 1.89 25.01865984 | 2.56 25.01908081
60 | 25.01183455 | 1.92 25.01887995 | 3.06 25.01907256
72 | 25.01401352 | 1.94 25.01896572 | 3.00 25.01906865
84 | 25.01533804 | 1.95 25.01900594 | 3.06 25.01906738
96 | 25.01620269 | 1.96 25.01902721 | 3.07 25.01906672
108 | 25.01679808 | 1.97 25.01903955 | 3.03  25.01906653
120 | 25.01722540 | 1.97 25.01904713 | 3.09  25.01906623
200 | 25.01839885 | 1.98 25.01905892 | 2.99 25.01906628
300 | 25.01876857 | 1.98 25.01906435 | 3.03 25.01906621
400 | 25.01889849 | 1.99 25.01906553 | 3.03 25.01906619

Table 2: Results and convergence analysis for the simply supported, uniformly loaded
square plate.

2 and 3 are the expected orders of the two lowest order terms for smooth solutions »* and
m* with piecewise bilinear element functions. Finally column 6 shows the result Ry(h)
of a second extrapolation, this time to order 3. For this case we get A* = 25.019066 with
all digits correct.

For the uniformly loaded clamped plate the results are shown in Table 3. In the
clamped case u* has a singularity in the form of a so-called hinge along the boundary,
resulting in a slower convergence. An analysis similar to the one for Table 2 indicates
that the lowest two orders in the error are 1.5 and 2. For this case we find the value
A* = 44.1269 with uncertainty in the last digit only. This confirms the value found in
[17, page 180], but is in conflict with a conjecture in [1, page 135], which implies a lower
bound of 44.46. This discrepancy cannot possibly be explained by the discretization error.
The computer programs used in the present work and in [17] were prepared completely
independently, although both are based on the same conceptual method for discretizing
the clamped plate by the finite element method. In [1, page 135] the authors agree that
“the computed results throw doubt on the validity of the conjecture”. From our results

we draw the conclusion that the conjecture is incorrect.
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| MR) | E(R)  Ru(h) | Ey(h)  Ra(h)
24 | 43.73575159
36 | 43.91239918 44.12341810
48 | 43.98660561 | 1.49 44.12412661 44.12484481
60 | 44.02590034 | 1.48 44.12474444 | -0.52 44.12567757
72 | 44.04966063 | 1.48 44.12520184 0.33 44.12612043
06 | 44.07627631 | 1.48 44.12560108 1.38 44.12625923
120 | 44.09041730 | 1.47 44.12598832 0.31 44.12657317
200 | 44.10973000 | 1.46 44.12649948 | 0.49 44.12695585
400 | 44.12076200 | 1.47 44.12679560 2.20 44.12691930
800 | 44.12471300 | 1.48 44.12687387 2.28 44.12689996

Table 3: Results and convergence analysis for the clamped, uniformly loaded square plate.

The collapse multiplier A; for a discrete point load is shown in Figure 6 for the following
four cases: Simply supported/clamped and square (1 x 1)/rectangular (1 x 2) plate. In the
clamped case the values for the square and rectangular plate (white and black diamonds
in Figure 6) overlap almost completely, and the difference tends to zero with h. In the
plastic plate model a point load is only admissible as a limit of concentrated loads and may
be approximated by a sequence of discrete loads “shrinking” with h as well as by discrete
point loads. (For details see [17, pagel81].) Since the error in the simply supported case
is quite large (white and black circles in Figure 6), we have also approximated the point
load by a sequence of unit loads distributed uniformly on a central square of side h (white
squares in Figure 6). As mentioned in [17] this approximation must yield the same limit
as the discrete point loads if the concept of a point load is valid. This appears to be the
case.

Our results confirm (although not beyond any doubt) a claim made in [17]: The 5
sequences of discrete values A} in Figure 6 converge to the same limit. This means that
the limit multiplier for a point load does not depend on shape or support of the plate.
We find this value to be A* = 6.82 £+ 0.01.

Convergence analysis shows that for all the above mentioned discretizations Aj; con-
verges more slowly than h* for any power & > 0, as b — 0. The collapse solutions in

Figure 7 (simply supported plate) and Figure 8 (clamped plate) clearly indicate why: The
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deformation is singular. On the other hand, our results indicate that the deformation con-

verges as h — 0, which means that the peak at the center is finite. The solutions shown

in Figure 7 and 8 are for a 200 x 200 grid (by symmetry the computation is reduced to a
100 x 100 grid). The largest case solved is for an 800 x 800 grid, but this is too fine to

plot.
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Caption for Figure 3

Computed values of the collapse multiplier for the test problem in Figure 2:
+ : Exact yield condition, divergence-free elements (new results).
x : Exact yield condition, constant-bilinear elements (from [14, Section 13]).

V : Linearized yield condition, constant-bilinear elements (from [5]).
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Figure 3: Caption on opposite page.
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Figure 4: Collapse fields for the test problem in Figure 2: L =1, a =

26
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h=1

1
3’ 60"

Figure 5: Collapse fields for the test problem in Figure 2: L =2, a =
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Caption for Figure 6

Computed values of the collapse multiplier for various approximations of a point load:
o : Simply supported square plate; discrete point load.
e : Simply supported rectangular plate; discrete point load.
¢ : Clamped square plate; discrete point load.

¢ : Clamped rectangular plate; discrete point load.

: Simply supported square plate; load concentrated uniformly at a central square of

side h.
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Figure 6: Caption on opposite page.
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Figure 7: Simply supported square plate with point load.
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Figure 8: Clamped square plate with point load.
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