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Abstract

For an agent to be able to rely on a plan, he must know both that he is physically capable

of carrying out the physical actions involved, and that he knows enough to carry out the plan.

In this talk, we advance and discuss new de�nitions of \knowing enough to carry out a plan",

for the case of a single agent carrying out a sequence of primitive actions one at a time. We

consider both determinate and indeterminate plans.

We show how these de�nition can be expressed in a formal logic, using a situation calculus

model of time and a possible worlds model of knowledge. The de�nitions strictly subsume

previous theories for the single-agent case without concurrent actions.

We illustrate the power of the de�nition by showing that it supports results of the following

kinds:

� Positive veri�cation: Showing that a plan is feasible.

� Negative veri�cation: Showing that a plan is infeasible.

� Monotonicity: The more an agent knows, the more plans are executable.

� Reduction for omniscient agent: For an omniscient agent, a plan is epistemically feasible

if and only if it is physically feasible.

� Simple recursive rules that are suÆcient conditions for the feasibility of a plan described

as a sequence or a conditional combination of subplans.

1 Introduction

The question of whether an agent is able to carry out a plan can be divided into two parts. First,
is the plan physically feasible for the agent; that is, is it physically possible to carry out the actions
speci�ed by the plan? Second, is the plan epistemically feasible; that is, does the agent know enough
to perform the plan? A plan like \Make money at the roulette wheel by betting on the numbers
that win," is not a useful one; though the physical actions involved are feasible, there is no way to
�nd out in time what they are.

The epistemic feasibility of a plan depends both on the knowledge the agent has at the beginning
of execution, and on the knowledge he1 gains during the course of execution. For example, suppose

1Anonymous agents are here denoted \him" with no implication that they may not be \her".
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that my aunt Edith does not know my phone number, but she has a directory in which she knows
that my name is listed. In that case, she is not immediately able to carry out the plan \dial Ernie's
number," but she is immediately able to carry out the plan \sequence(look up Ernie's number; dial
Ernie's number)".

The problem addressed in this paper is to characterize the epistemic feasibility of a plan in
terms of the physical content of the plan and of the evolving knowledge of the agent. We propose
a characterization of epistemic feasibility that applies to any plan, determinate or indeterminate,
carried out by a single agent performing one primitive action at a time. We show, for this class
of plans, our de�nition strictly subsumes previous de�nitions of epistemic feasibility, and that it
supports a wide range of natural and powerful conclusions.

Section 2 informally presents the problem and solution. Section 3 discusses the formal structure
of the theory. Section 4 presents some general theorems. Section 5 discusses possible extensions to
the theory.

2 Knowledge Preconditions

Reasoning about the epistemic feasibility of plans requires a theory that integrates temporal rea-
soning with reasoning about knowledge. In order to determine whether an agent knows enough to
perform a plan, we must be able to characterize what knows at the beginning of the plan, and how
the state of the world and the knowledge of the agent change as a result of the execution of the plan.
Like the relation, \At time T agent A knows fact �", the relation, \At time T , agent A knows enough
to perform plan P" is referentially opaque (intensional) in its �nal argument. Aunt Edith does not
at this moment have enough information to perform the action \Dial Ernie's phone number", but
she does have enough information to perform the action \Dial 998-3123" which is extensionally the
same action.

The problem of characterizing the epistemic feasibility of actions or plans, sometimes called
the knowledge preconditions problem, was briey addressed by McCarthy and Hayes [11]. The �rst
in-depth study of the problem was that of Moore [13, 14], which we will describe below. More
recently, the problem was considered by Morgenstern [16], who modi�ed Moore's theory by using a
syntactic theory of knowledge and extended it to apply to plans involving multiple agents and the
communications between them. However, for the single agent case, the basic structure of the two
theories is quite similar, and, though I will use Moore's theory as a referent below, the same analysis
applies with minor changes to Morgenstern's.

Moore divides the problem of epistemic feasibility into two parts:

1. The knowledge preconditions (KP) problem for actions. Characterizing whether an agent
knows enough to perform a single speci�ed action in a given situation. For example, expressing
the fact that my aunt does not now have enough information to execute \Dial Ernie's oÆce
number"; however, if she �nds out that \Ernie's oÆce number is 998-3123" then she will have
enough information. (We are here viewing dialing a seven-digit number as an single atomic
action, rather than as a series of separate �nger movements.)

2. The KP problem for plans. For example, determining that the plan
\sequence(look up Ernie's number; dial Ernie's number)" is epistemically feasible for my aunt,
given that she knows that, after looking up my number, she will know what my number is.

Clearly, a solution of the KP problem for plans must rest on a solution of the KP problem for actions.

We proceed as follows:
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� In section 2.1, we present Moore's solution to the KP problem for actions. Here, we have no
changes to suggest, and we adopt this solution without modi�cation.

� In section 2.2, we consider the KP problem for determinate plans. We begin by presenting
Moore's solution to the problem. We show that this solution is not quite adequate and requires
an extension. Having made the extension, we can derive a simple criterion for the KP problem
for determinate plans. We then throw away the sca�olding by showing that this simple criterion
by itself subsumes Moore's theory.

� In section 2.3 , we consider the KP problem for indeterminate plans. Moore did not consider
indeterminate plans at all; Morgenstern considered a limited class of indeterminate plans.

2.1 Actions

Moore [14] proposes the following solution to the KP problem for actions: An action E is epistemi-
cally feasible for agent A at time T i� A knows at T a speci�c behavior that constitutes that action
in T . My aunt cannot execute dial Ernie's number because she does not know what behavior would
constitute dialing Ernie's number. If she �nds out that dialing 998-3123 constitutes dialing Ernie's
number, then she will know how to dial Ernie's number. In other words, in order to perform the
action \Dial Ernie's number," she must know what that action is.

Following Hintikka [8] the notion of \knowing what Q is" is represented in formal theories by
using a existential quanti�er of larger scope than the epistemic operator. In a modal theory, the
proposition \A knows what Q is" may be expressed as

9X know(A;X = Q).

In a possible worlds theory, it is expressed by stating that Q has constant value in all accessible
worlds [14].

9X 8W1 k acc(A;W0;W1) ) X=value in(W1; Q).

In a syntactic theory, it is expressed by stating that A knows a formula \X=Q" for some standard
identi�er X [15].

9X stid(X) ^ know(A,�#X# = Q�)

(The possible worlds theory will be described in detail in section 2.3. For discussions of the other
representations, see [2, 7, 8, 14, 15].)

These representations are not without their diÆculties and limitations, mostly deriving from
the rather vague character of the relation \knowing what Q is." However, nothing better has been
developed, and in this paper this family of solutions to the KP problem for actions is adopted
without further discussion.

2.2 Determinate plans

In addressing the KP problem for plans, Moore posits a set of axioms that characterize knowledge
preconditions for plans built up recursively from primitive actions using control structures such
as \sequence(P1 : : : Pk)," \if(Q;P1; P2)," and \while(Q;P1; P2)." The following axioms, among
others, are posited:
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Rule 1 The plan \sequence(P1; P2)" is epistemically feasible for agent A at time T if A knows at
T that

a. P1 is epistemically feasible for A at T ; and

b. After P1 is executed, P2 will be epistemically feasible.

For example, the plan \sequence(look up Ernie's number; dial Ernie's number)" is epistemically
feasible because my aunt now knows how to look up my number, and she knows that, after she looks
up my number, she will know how to dial my number.

Rule 2 The plan \if Q then do P1 else do P2" is epistemically feasible for agent A at time T if
either

a. A knows at T that Q holds at T and P1 is epistemically feasible for A at T ; or

b. A knows at T that Q does not hold at T and P2 is epistemically feasible for A at T .

For example, the plan \if it is raining out then put on a raincoat else put on a jacket" is feasible
if either I know that it is raining out and I know how I can put on a raincoat or if I know that it is
not raining out and I know how I can put on a jacket.

Rule 3 The plan \while Q do PA" is epistemically feasible for agent A at time T if A knows at T
that

a. At each iteration point (that is, at T and at the end of each iteration of PA), A will know
whether Q holds;

b. At each iteration point, if Q holds, then PA is epistemically feasible;

c. Eventually, the loop will terminate; that is, there will come an iteration point when Q does not
hold.

(This is not Moore's statement of the rule; however, it is equivalent given rules 1 and 2.)

However, there are gaps in these rules; these conditions are suÆcient but not necessary.2 Ex-
amples:

� (Failure of the converse of rule 1.) There are cases where \sequence(PA; PB)" is epistemically
feasible even though PA is not. For example, suppose that there is a barrel containing an
unknown number of apples; PA is \take half the apples out of the barrel" and PB is \take
out the remaining half." Then \sequence(PA; PB)" can be carried out simply by emptying
the barrel. However PA is not epistemically feasible, since you don't know when to stop.

(Some readers may have the intuition that under these circumstance PA should be considered
epistemically feasible; just empty the barrel and you know that you did carry out PA plus
some extra. But under that criterion, rule 1 would fail as a necessary condition; PA by itself
would be epistemically feasible, but \sequence(PA;announce success)" would not.)

2Moore [13] incorrectly states both rules as biconditionals; Morgenstern [15] correctly presents both rules as
suÆcient but not necessary conditions.
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Other readers may have the intuition that \sequence(PA; PB)" should not be considered epis-
temically infeasible, since an ordinary plan interpreter will not be able to execute it. However,
it is certainly possible to implement an plan interpreter that can execute it, by using multiple
program counters when a condition cannot be resolved. Moreover, it is unwise to base the
de�nition of fundamental concepts on the convenience of programming.)

� (Failure of the converse of rule 2.) There are cases where an agent knows how to perform \if Q
then do P1 else do P2" in S without knowing whether Q holds in S; namely, if P1 is the same
as P2, or if P1 and P2 begin the same, and the truth of Q in S will be found out before they
start to diverge. For example, consider the parameterized plan p(X;Y ) = \if q holds then do
f(X) else do f(Y )". In the case where X = Y , p(X;Y ) can be performed without knowing
whether q holds, just by performing f(X).

In both of the above cases, though Moore's axioms do not imply that the plan in the given form
is feasible, they do imply that a plan known to be equivalent is feasible. In the �rst case, the agent
knows that the plan is equivalent to \take all the apples out of the barrel;" in the second case, the
agent knows that the plan is equivalent to \do f(X)." This observation suggests that we augment
Moore's theory with the following rule:

Rule 4 Plan P is epistemically feasible for agent A at time T if there exists a plan P 0 such that

a. P 0 is epistemically feasible for A at T ; and

b. A knows at time T that P 0 is equivalent to P starting at T .

It is important in rule 4 that the existence of P 0 has larger scope than A's knowledge of its
equivalence to P . The statement \A knows that there exists a P 0 . . . " would not be a suÆcient
condition. For example, Aunt Edith knows that there exists an epistemically feasible plan that is
equivalent to \Dial Ernie's number;" namely \Dial(N)" for some value of N . The point is that she
does not know which such P 0 is equivalent.

We now consider a particular plan transformation: For any plan P , let T1(P ) be the plan

while (P has not successfully �nished)
do (the next step3 of P )

All we have done here is to push the whole structure of P away into the term \the next step
of P". However, this maneuver has very important consequences for our de�nition, since \the next
step of P" is a term that denotes a single action, and, therefore, it comes under the solution of the
KP problem for actions. Thus rule 4 allows us to reduce the analysis of any plan to the case of a
single while loop containing a single primitive action.

By rule 4, P is epistemically feasible if T1(P ) is. Applying rule 3 to T1(P ), and making use of
our solution to the KP problem for actions from the previous section, we derive the following rule:

3As we shall see in section 3.2 strictly speaking one should speak of \the next step of P following an interval" or
\following a sequence of steps" rather than \at an instant." However, the latter is much less clumsy in English, so,
for our informal discussion in this section we will be careless on this point.

5



Rule 5 P is epistemically feasible for A at T if A knows at T that,

a. At each stage of the execution of P , A will know whether P has successfully �nished;

b. At each stage of the execution of P , if P has not successfully �nished, then A knows which
speci�c action constitutes the next step of P ; and

c. P will eventually �nish successfully.

For example, the plan \sequence(look up Ernie's number; dial Ernie's number)" is epistemically
feasible for Aunt Edith because:

Initially, Edith knows that the �rst step is to look up Ernie's number, which she knows
how to do.

After the �rst step, Edith knows that the next step is to dial Ernie's number, which she
now knows how to do;

And after the �rst two steps, Edith knows that she has successfully �nished the plan.

Note that rule 5 works for the two cases mentioned above where rules 1 and 2 fail. The plan
\sequence(take half the apples out of the barrel; take out the remaining half)" is epistemically
feasible because:

Until the barrel is empty, the agent knows that the next step is to take out an apple;

When the barrel is empty, the agent knows that the plan has successfully �nished.

The plan \if Q then do f(X) else do f(X)" is epistemically feasible because the agent knows
that the �rst step is f(X).

But now we can see that rule 5 is all we need; rule 5 entirely subsumes rules 1 through 4. (We
will prove this formally for rules 1, 2, and 4 in section 4; the proof of rule 3 is similar.) The semantics
of the planning language de�nes what is the next step of a sequence, a conditional, or a loop in every
circumstance. Once that is de�ned for a plan, rule 5 is suÆcient to determine whether the plan is
epistemically feasible.

Our �nal step is to turn rule 5 into a de�nition by making it a biconditional:

De�nition 1 A determinate plan P is epistemically feasible for A at T if and only if A knows at
T that,

a. At each stage of the execution of P , A will know whether P has successfully �nished;

b. At each stage of the execution of P , if P has not successfully �nished, then A knows which
speci�c action constitutes the next step of P ; and

c. P will eventually �nish successfully.

There is also a weaker notion of epistemic feasibility that is sometimes relevant. Suppose that
it is in fact the case that the directory lists my name and number, but Aunt Edith does not know
this. Then an omniscient observer can see that if she attempts to execute the plan \sequence(look
up Ernie's number; dial Ernie's number)" she will succeed, but she herself does not know this. We
will call such a plan blindly epistemically feasible; if the agent is presented with the plan and follows
it in blind faith, he will get through it. The de�nition di�ers from de�nition 1 only in dropping the
outer knowledge condition:
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De�nition 2 A determinate plan P is blindly epistemically feasible for A at T if and only if

a. At each stage of the execution of P , A will know whether P has successfully �nished;

b. At each stage of the execution of P , if P has not successfully �nished, then A will know which
speci�c action constitutes the next step of P ; and

c. P eventually terminates.

De�nition 1 can now be reworded as follows: A determinate plan P is epistemically feasible for
A at T if and only if A knows at T that P is blindly epistemically feasible.

This distinction becomes more important and richer in the context of indeterminate plans.

2.3 Indeterminate Plans

An indeterminate plan is one that can be executed in more than one way. Indeterminate plans
were introduced into the AI literature in NOAH [19], and have since been studied extensively (e.g.
[1, 21]). The indeterminacy may involve a partial ordering on the steps of the plan, or arguments
to actions that are constrained but not fully bound, or simply options between two choices. In
executing an indeterminate plan, there may be several options for the next step of the plan at a
given moment. In some cases, some of the options at a given moment may be executable, while
others may be epistemically infeasible, physically impossible, or logically impossible. (A logically
impossible action is one that refers to a non-existent object, such as \Send a letter to the King of
France.")

De�ning epistemic feasibility is substantially trickier, both technically and conceptually, for
indeterminate plans than for determinate plans. There is more than one concept to be considered.
We will begin by considering a version of epistemic feasibility that turns out to be the clearest
conceptually, though not the most natural intuitively. The basic idea is this: Let us view an
indeterminate plan P as a task that has been assigned, rather than as a guideline to follow. Some
taskmaster has told the agent \Carry out a series of actions that conforms to P" and the agent
must �gure out some way of doing so. If the agent can �gure out a way of performing P , then we
will say that P is epistemically feasible as a task. For example, suppose that Aunt Edith is assigned
the plan, \sequence(look up anyone you choose in the directory; dial Ernie's number)". Edith can
�gure out that if she chooses to look up Ernie's number as the �rst step, then she will be able to
carry out the plan. This plan is therefore epistemically feasible for Edith as a task; that is, Edith
knows enough so that she can be sure that she will be able to perform it.

Other types of indeterminacy work the same way. Suppose that Edith is given either the plan

sequence(either(sing Yankee Doodle,
look up Ernie's number);

dial Ernie's number)

or the plan

in either order do both f dial Ernie's number;
look up Ernie's number g.

In either case, she can determine that if she �rst looks up Ernie's number and then dials it, she will
be able to �nish the plan successfully. Thus these plans are epistemically feasible as tasks.
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In any of these cases, Edith knows that the determinate plan \sequence(look up Ernie's number;
dial Ernie's number)" is epistemically feasible and is a way to carry out the speci�ed indeterminate
plan. This suggests the following de�nition, a generalization of rule 4 of the previous section:

De�nition 3 Plan P is epistemically feasible as a task for agent A at time T if there exists a
determinate plan P 0 such that:

a. P 0 is epistemically feasible for A at T ; and

b. A knows in T that an execution of P 0 starting in T will constitute an execution of P starting
in T .

In general, if P 0 is a determinate plan such that an execution of P 0 starting in T constitutes
an execution of P , we will say that P 0 is a completion of P . The form of P 0 may be more complex
than the form of P . For example, if P is the plan \for I := 1 to 100 do either A or B", then one
completion of P is

for I := 1 to 100 do
if the temperature in degrees Farenheit in the Ith largest city is
a prime number

then do A
else do B.

There are two possible objections to de�nition 3 : �rst, that it is too narrow, and, second, that
it is too broad. We will address them in turn.

It may seem that the de�nition requires too much. Why should the agent be obliged to generate
from the beginning a plan P 0 that will take him all the way through P ? Would it not be more in
the spirit of de�nition 1 to require only that he be able to see his way one step at a time?

The answer to this objection is that the de�nition presumes a very general sense of \plan".
When we come to the formalization of this theory, we will de�ne a plan extensionally as a set of
intervals, and then we can use the comprehension and choice axioms of set theory to guarantee the
existence of all sorts of plans. For the moment, we will illustrate the richness of the class of plans
as follows. We begin by de�ning recursively the notion of being on the right track to �nish a plan
successfully.

De�nition 4 Agent A is on the right track for plan P at time T if either

a. A knows at T that P has �nished successfully at T ; or

b. There is an action E such that A knows that, if he performs E, then he will (recursively) be
on the right track for P . Such an action will be called a right move of P for A at the time.

Furthermore, we posit the existence of a choice function, that, given a particular set of actions,
returns one speci�c element of the the set. For example, if the set of all actions can be well-ordered,
then one choice function would be to map a set of actions AA into the element lowest in the well-
ordering.

We now de�ne a transformation T2(P ) that takes an arbitrary plan P into a particular com-
pletion of P . For any plan P , T2(P ) is the plan

while (P has not �nished successfully)
do (choice-function(the right moves of P ))

8



Clearly, under practically any circumstances where one can say that the agent knows enough to
carry out P , this plan will satisfy the conditions for P 0 in de�nition 3.4

As we shall elaborate below (section 3.2.1), our notion of plans is rich enough to include T2(P )
for any plan P .

The other objection to de�nition 3 is that it does not capture the concept of an \executable"
plan, but rather addresses a di�erent, much weaker notion. A plan should be something that the
agent can simply execute, not something that requires the agent to think long and deeply about
how to carry it out. In fact, as far as de�nition 3 is concerned, \achieve(G)" is a perfectly �ne plan
as long as the agent can �gure out how to achieve G. What is wanted is the notion of a plan that
the agent can execute one step at a time without thinking ahead.

This view of executability is supported not only by intuition but also by all previous work on
indeterminate plans. The standard de�nition in the literature (e.g. [1]) is that an indeterminate
plan is necessarily physically feasible if every completion is feasible. De�nition 3 above admits plans
that are not even considered necessarily physically feasible. The indeterminate plan \Either wave
a ag or turn water into wine" is not necessarily physically feasible, because the completion \Turn
water into wine" is impossible; however, it satis�es de�nition 3 because the agent can choose to pick
the completion \Wave a ag."

More or less, we are aiming for a de�nition roughly along the following lines:

Plan P is executable for agent A at time T if, after each beginning of P starting in A,
A knows how to perform all the possible next steps of P .

(One might suppose that the complementary notion to de�nition 3 would be \All completions of P
are epistemically feasible." However, this condition can only be achieved by omniscient agents. For
example, let P be the plan \do either A or B" and let P 0 be the plan, \if Q then do A else do B."
Then P 0 is a completion of P ; however, P 0 is only epistemically feasible if Q is known.)

Unfortunately, there is an inherent clash between the notion of executability that we are aiming
toward here and the context of intelligent agents. After all, we are trying to de�ne epistemic
feasibility relative to an agent who knows something and can reason; in fact, we will idealize the
agent as being able to do arbitrary deductive reasoning instantaneously. The notion of executability
we are looking for, by contrast, assumes that the agent is not willing to look further ahead than his
nose; he will blindly try to execute the next step of the plan whatever it is. Thus, we are in a certain
sense trying to force the agent to be stupider than he actually is. It is not clear that there is any
particularly natural way to do this.

The result of this conceptual incoherence is that there are a variety of choices to be made in
de�ning the above notion of executability and there is no clear model or intuition to justify one
choice over another. For example,

1. Is the agent allowed to exclude next steps that are logically, physically, or epistemically im-
possible, and to choose only among the next steps that are possible? That is, are we excluding
the agent only from choosing steps on the basis of reasoning about the future, or are we also
excluding from choosing steps on the basis of reasoning about the present?

2. Is the agent obliged to know about all the possible next moves? If so, is he obliged to know
that the next moves he is aware of are, in fact, exhaustive? If not, is it necessary that the
possible next moves he is unaware of be feasible? For example, suppose that Fred is one block

4Actually, there is a small class of anomalous plans P for which T2(P ) does not necessarily terminate, but which do
satisfy de�nition 3. Thus, de�nition 3 is slightly more general than one based around the idea of repeatedly executing
a \right move."
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away from the World Trade Center, that Fred knows that the World Trade Center is 1350
feet high, but that he does not know the heights of the Empire State Building or the Chrysler
Building (1250 feet, not counting the TV tower, and 1046 feet, respectively.) Is the plan \`Take
a taxi to a New York building taller than 1000 feet," to be considered inexecutable, because
Fred does not know that it can be achieved by going to Empire State Building or the Chrysler
Building? What about the plan \Walk in �ve minutes to a New York building taller than
1000 feet," which is physically infeasible if the building is chosen to be either of the other two?
What about the plan, \Go to a New York building more than 1300 feet tall," for which Fred
in fact knows all the possible next steps, but does not know that his list is exhaustive?

3. Our proposed de�nition says that, however the agent begins plan P , he will be able to continue
it. But does this mean any beginnings whatever of P ? or only if he knows that he has begun
P ? or only if he could have planned to begin P in the way that he has? For example, let
P be the plan, \Take the train from New Haven to a city of population greater than one
million; then take a taxi to the Empire State Building." Suppose that New York is the only
city that the agent knows has a population greater than one million. Shall we say that the
plan is executable, because, if he chooses to execute it, he will certainly plan to go to New
York? Suppose we know that at the Philadelphia train station is a sign saying \Welcome to
Philadelphia; population > 4,000,000." Shall we say that the plan is not executable, because
he may get o� at Philadelphia pursuing some other plan, realize that he has begun P , and
attempt to �nish P ?

4. Consider the following case: Edith is sitting with Jack and Algernon. She does not know
who is older. P is the plan, \Either speak to the older of the two or speak to the younger
of the two." Edith knows, of course, that this plan is equivalent to \Either speak to Jack or
speak to Algernon." Is P executable, because it is equivalent to an executable plan? Or is P
inexecutable, because if she chooses either branch, she ends up with an inexecutable plan?

5. In the case of determinate plans, we made a distinction between plans that the agent knows
are feasible, and those that are blindly feasible. How do we make that choice in this context?

Not wishing to drag the reader through a dozen di�erent alternate de�nitions, and lacking
a clearly de�ned model or intuition, we choose a single de�nition that is easily expressed in our
formal language and that has \nice" formal properties. Its de�nition in the formal language is, in
face, almost exactly the same as the formal de�nition of \blind epistemic feasibility", dropping the
condition of determinacy and widening the notion of \the next step of the plan" to \the set of next
steps of the plan."

De�nition 5 A plan P is executable5 for agent A at time T if and only if,

a. P terminates when executed starting in T ; and

b. After any beginning of the execution of P starting in T ,

b.i A will know whether P has successfully �nished;

b.ii A will know of every action whether or not it is a next step of P ; and

b.iii All the next steps of P are feasible.

De�nition 5 is a comparatively narrow one, though not the narrowest possible. It gives the
following solutions to the issues raised above:

5This English language de�nition is not, of course, unambiguous relative to the issues discussed above, but it in
fact corresponds closely to the formal de�nition (section 3.4.)
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1. All next steps of the plan must be logically, physically, and epistemically feasible.

2. The agent must be aware of all the next steps, and aware that his knowledge is exhaustive.

3. The agent must be able to continue the plan after a beginning whether or not he could have
deliberately executed it that way. We require that, whenever the agent begins the plan, he
must be aware that he had begun it.

4. As long as agent can execute every action in the set of next steps, he need not be able to divide
them up along the same lines as the plan.

5. We admit blind feasibility.

Some good properties enjoyed by this de�nition include:

� For an omniscient agent, executability reduces to necessary physical feasibility in the usual
sense. (Theorem 5, section 6.5).

� Given suitable assumptions, the executability of plans is monotonic with respect to knowledge;
the more the agent knows, the more plans are executable. (Theorem 3, section 6.3).

� For determinate plans, executability is equivalent to blind epistemic feasibility.

3 Formalization

Formalizing de�nitions 1-5 requires a theory with the following elements:

� A theory of time. (Section 3.1)

� A theory of plans, including the de�nitions of a \plan", of the \execution" and \beginning" a
plan, of the \next step" of a plan, of a \determinate" plan, and of a \completion" of a plan.
The general de�nitions are in section 3.2.1. Section 3.2.2 gives a semantics supporting these
concepts for two simple planning languages.

� A theory of knowledge (Section 3.3.)

We use a sorted �rst-order logic with set theory. In our exposition below, we will state sym-
bolically the axioms of the theory that can be expressed without set theory; those that require set
theory will be expressed only in English.

3.1 Temporal theory

We use the situation calculus [11] as our temporal theory. In the situation calculus, time is construed
as an directed graph whose nodes are situations (instantaneous states of the universe) and whose arcs
correspond to events that transmute one situation into another. The predicate6 \result(S1; E; S2)"
will mean that event E changes situation S1 into situation S2. Figure 1 shows a small branching
time structure for a blocks world scenario.

Branching time is used in the literature for a variety of di�erent types of uncertainty or indeter-
minacy about the future. However, in this paper we will use branching only to represent the possible

6In the literature, \result" is usually taken to be a function; however, since we will be much concerned with the
case where this function is unde�ned, it will be easier to view it as a predicate.
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The picture on top shows the starting situation. The state of the blocks in each situation is depicted
inside the corresponding node. The arcs on the bottom level are labelled with the corresponding
action; for example, the leftmost bottom arc is labelled \p(a,c)" for \puton(a,c)". (Labels are
omitted from the upper level arcs because of space limitations.) Each situation is labelled with an
identi�er for future reference.

Figure 1: Branching time structure
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We use upper case italicized symbols for variables. Free variables are assumed to be universally
quanti�ed with the whole sentence as scope. The sorts of variable are indicated by their �rst letter.
Sorts in the temporal theory: Situations (S), actions (E), uents (Q).
Non-logical symbols:

S1 < S2, S1 > S2, S1 � S2, S1 � S2 | Predicates. The order relations.
result(S1; E; S2) | Predicate. S2 results if E is performed in S1.
follows(S1; S2) | Predicate. S2 is a situation immediately following S1.
feasible(E; S) | Predicate. Action E is feasible in situation S.
holds(S;Q) | Predicate. Fluent Q holds in situation S.
value in(S;Q) | Function. The value of uent Q in situation S.

Table 1: The Formal Language of Time

actions that an agent may choose between. That is, the outarcs from a given situation correspond
to those actions that are feasible in the situation. Indeed, we will take this as the de�nition of
feasibility of actions: (We take the time structure to be the given, and de�ne other primitives in
terms of it.)

De�nition 6 Action E is feasible in S1 if there is an S2 which is the result of performing E in S1.

We de�ne a relation on situations \S1 < S2" (read \S1 precedes S2") to be the strict transitive
closure of the result relation. We posit that the time structure is forward branching; that is, the
situations preceding any situation S are totally ordered. Thus \precedes" is a strict partial ordering.
The other order relations (�; >;�) are de�ned in the usual way.

A uent is a parameter whose value changes over time. A Boolean uent , such as \raining",
has Boolean values; other uents, such as \president(usa)" take values in other spaces (in this case,
the space of people). We use the predicate \holds(S;Q)" to mean that boolean uent Q has value
TRUE in situation S. We use the function \value in(S;Q)" to denote the value of non-Boolean
uent Q in situation S. We will sometimes abbreviate these notations by attaching extra arguments
to uents; thus, we may write \raining(S)" rather than \holds(S,raining)" or \president(usa,S)"
rather than \value in(S,president(usa))."

We shall be particularly interested in uents that range over actions. For example, the term
\shake hands(president(usa))" might denote the uent whose value is the action of shaking hands
with that person who is currently President. The value of this uent for situations in 1986 is the
action of shaking hands with Ronald Reagan, while its value for situations in 1993 is shaking hands
with Bill Clinton.

In our informal discussion, we will frequently make use of �nite time intervals. For SA � SB,
the closed interval [SA; SB] is the set of all points S such that SA � S � SB. This set of points
is totally ordered; thus, slightly abusing notation, we will sometimes denote the interval [SA; SB]
as the tuple hS1 = SA; S2 : : : Sk = SBi of the situations in order. Our symbolic axiomatization,
however, does not use intervals, but just the two end-points.

We will say that action E is executed over interval [S1; S2] i� result(S1; E; S2).

Tables 1 and 2 give a formal axiomatization of the temporal theory.
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De�nitions:

T.1 follows(S1; S2) , 9E result(S1; E; S2).
(De�nition of follows: S2 follows S1 if there is an action that turns S1 into S2.)

T.2 feasible(E; S1) , 9S2 result(S1; E; S2).
(De�nition of feasible: E is feasible in S1 if there is a situation S2 that results from performing
E in S1.)

T.3 S1 > S2 , S2 < S1.
S1 � S2 , S1 < S2 _ S1 = S2.
S1 � S2 , S1 > S2 _ S1 = S2.
(De�nition of the other order relations in terms of \precedes".)

Axioms:

T.4 S1 < S2 ) :(S2 < S1).
(Antisymmetry of \precedes".)

T.5 [S1 < S2 ^ S2 < S3] ) S1 < S3.
(Transitivity of \precedes").

T.6 follows(S1; S2) ) S1 < S2.
(If S2 follows S1 then S1 precedes S2.)

T.7 follows(S1; S2) ) :9SM S1 < SM ^ SM < S2.
(Minimality of the \follows" relation.)

T.8 The \precedes" relation is the strict transitive closure of the \follows" relation. That is,
\precedes" has the minimal extension consistent with T.6 and T.5.

T.9 a. [S1 < S ^ S2 < S] ) [S1 � S2 _ S2 � S1].
b. [follows(S1; S) ^ follows(S2; S)] ) S1 = S2.
(Forward branching of the time line. Axioms (a) and (b) are equivalent, given T.8.)

T.10 result(S1; E; SA) ^ result(S1; E; SB) ) SA = SB.
(An event has a unique result.)

T.11 result(S1; EA; S2) ^ result(S1; EB; S2) ) EA = EB.
(A unique event occurs over an atomic interval.)

Table 2: Axiomatization of Time
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3.2 Plans

3.2.1 General approach

The fundamental notion in our theory of planning will be the predicate \Plan P executes over
interval [S1; S2]." The de�nition of this relation for a given plan will constitute the semantics of the
plan. All other properties of plans are de�ned in terms of this one.

There are a few tricky issues to be dealt with. The �rst issue is the treatment of plans that
require or permit the execution of an infeasible action. The approach that we will take here is
analogous to standard practice in programming language semantics. If the plan speci�es an infeasible
action, the agent will attempt it, but will in fact execute the action \fail".7 \Fail" is an action that
is always feasible. It has the e�ect of setting the Boolean uent \error" to be true. Its e�ects on
other uents is unde�ned.8 We posit that there is no action that sets \error" back to true. Figure
2 shows the modi�ed version of the branching time line in Figure 1.

Thus, the execution of a plan may succeed or fail. If plan P executes successfully over interval
[S1; S2], we will say that P succeeds over [S1; S2].

A second issue is the problem of in�nite loops. In our theory, execution of a plan is de�ned only
over �nite intervals. Therefore, if, intuitively, a plan P goes into an in�nite loop starting in S1, our
formal statement will be that plan P does not execute any �nite interval starting in S1. We will
say that P is vacuous in S1. Thus the conditions in de�nitions 1, 2, 3, and 5 that P terminate are
expressed formally by requiring that P be non-vacuous. We do not distinguish here between plans
that, intuitively, involve an in�nite sequence of feasible actions, such as \while (true) wave a ag"
and those that, intuitively, involve an in�nite sequence of impossible actions, such as, \while (true)
turn a gallon of water into wine"; both are consider equally vacuous.

A third issue is the fact that, in any given situation, there may be more than one active instance
of a plan P . For example, let p0 be the plan \For i := 1 to 50 do: take a stone out of the basket."
Let s0 be a situation in which there are 51 stones in the basket, and let the interval hs0, s1 . . . s50i
be an interval in which stones are taken out of the basket one at a time. Consider now what is
happening at time s50. There is an instance of p0 that started at time s0 that has just succeeded.
There is also an instance of p0 that started at time s1 which has executed its �rst 49 steps, and
which will succeed after one more step. There are also instances of p0 that started at times s2, s3
. . . s49 which have executed 48, 47 . . . 1 steps. These will be able to execute one more step, but
will not be able to succeed. Finally, there is an instance of p0 that is starting now at s50, which
will execute one step and then get stuck. For this reason, the notions of \executing", \succeeding",
`beginning", and \next step" are all de�ned relative to two situations: a starting situation and an
ending or a reference situation.

Finally, it should be noted that an indeterminate plan may both succeed over [S1; S2] and have
a next step after [S1; S2]. For instance, consider the plan \Say `Hello' two or three times." After
saying \Hello" twice, the plan has succeeded; it also, at that point, has a next step of saying \Hello"
a third time.

We will illustrate how the predicate \P executes over [S1; S2]" can be de�ned for two planning

7The reason to introduce this mythical action \fail", rather than simply say that an infeasible action brings about
the error state is to deal with logically impossible actions. One cannot say that the action of mailing a letter to the
King of France brings about the error state, because there cannot, at the moment, be any such action. What this
theory says, instead, is that, if a plan speci�es \Mail a letter to the King of France," what it really means is \Execute
fail."

8That is suÆcient for the purpose of this theory, since we are never interested in tracing plans past their �rst
failure. A theory that actually dealt with agents that fail and what they do afterward would need a more precise
account, of course, since the e�ects of failed attempts at actions are not actually arbitrary.
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Figure 2: Time structure with failure and error

languages in section 3.2.2. The de�nitions of the other properties of plans in terms of execution and
of the error state are straightforward; they are stated in de�nitions 7-15 below, and are expressed
symbolically in tables 3, 4, and 5.

De�nition 7 The extension of a plan P is the set of �nite intervals over which P executes. Any
set of �nite intervals corresponds to a plan. Two plans that execute over the same set of intervals
are considered identical.

De�nition 8 A plan P succeeds over [S1; S2] if it executes over [S1; S2] and \error" does not hold
in S2.

De�nition 9 A plan P begins over [S1; S2] if

i. For some S3 � S2, P executes over [S1; S3]; and

ii. \error" does not hold in S2.

De�nition 10 Action E is a possible next step of P after [S1; S2] if

i. E is feasible in S2; and

ii. Let S3 be the result of executing E in S2. Then the interval [S1; S3] is an initial segment of an
execution of P ; that is, there is an S4 such that S1 < S3 � S4 and P executes over [S1; S4].

De�nition 11 Plan P is determinate in S1 if there exists exactly one S2 such that P executes over
[S1; S2].
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De�nition 12 Plan P is vacuous in S1 if there exists no S2 such that P executes over [S1; S2].
As discussed above, plans that intuitively go into in�nite loops are formally considered vacuous.

De�nition 13 Plan P is necessarily physically feasible in S1 if P is non-vacuous in S1 and, for
any S2, if P executes over [S1; S2] then P succeeds over [S1; S2]. This is equivalent to the usual
notion of necessary feasibility of indeterminate plans [Chapman, 87], that every completion of the
plan is feasible. Each completion corresponds to an execution; an infeasible completion corresponds
to an execution that ends in failure.

De�nition 14 Plan P is possibly physically feasible in S1 if there exists an S2 such that P succeeds
over [S1; S2].

De�nition 15 Plan P 0 is a specialization of plan P in S1 if, for any S2, if P 0 executes over
[S1; S2], then P executes over [S1; S2].

De�nition 16 Plan P 0 is a completion of plan P in S1 if P 0 is determinate and is a specialization
of P .

As an illustration of the above de�nitions, consider the plan P0 =

sequence(either(puton(a,c)
puton(a,table));

puton(c,b))

executing starting in situation S0 of �gure 2. P0 executes over [S0,SE2] and [S0,S12]. It succeeds
over [S0,S12]. It begins over [S0,S0], [S0,S1], [S0,S3], and [S0, S12]. The next steps of p0 after
[S0,S0] are puton(a,c) and puton(a,table). The next step after [S0,S1] is \fail". The next step after
[S0,S3] is puton(c,b). P0 is possibly but not necessarily physically feasible. P0 is non-vacuous and
indeterminate. The plan \sequence(puton(a,table); puton(c,b))" is a completion of P0, since its
extension is just the set f[S0,S12]g , which is a subset of the extension of P0.

Finally, we de�ne the concept of \attempting" an action E; that is, executing E if possible, else
failing. This will be useful in de�ning the semantics of plans with infeasible actions.

De�nition 17 An action E is attempted over interval [S1; S2] if one of the following two conditions
hold:

i. E is feasible in S1, and S2 is the result of executing E in S1; or

ii. E is not feasible in S1 and S2 is the result of executing \fail" in S1.

3.2.2 Planning languages

What remains is to de�ne the conditions under which plan P executes over interval [S1; S2]. We
illustrate how this is done by de�ning the semantics of two simple planning languages.

In the �rst planning language, PLAN1, a plan is a partial ordering of steps. Each step has
a content , which is an atomic action. This is similar to the representation of indeterminate plans
in TWEAK [1], with the di�erences that (i) we exclude variables and (ii) we do not assume any
particular representation for the preconditions and e�ects of actions or restrictions on them.

The semantics of PLAN1 are de�ned in the natural way:
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Additional sorts: Plans (P ).
Non-logical primitives:

executes(P; S1; S2) | Predicate. Plan P executes over [S1; S2].
succeeds(P; S1; S2) | Predicate. Plan P succeeds over [S1; S2].
begins(P; S1; S2) | Predicate. Plan P begins over [S1; S2].
next step(E;P; S1; S2) | Predicate. Event E is a possible next step for

P after [S1; S2].
determinate(P; S) | Predicate. Plan P is determinate in S.
vacuous(P; S) | Predicate. Plan P is vacuous in S.
np-feasible(P; S) | Predicate. P is necessarily physically feasible in S.
pp-feasible(P; S) | Predicate. P is possibly physically feasible in S.
specialization(PR;P ) | Predicate. Plan PR is a specialization of P .
completion(PR;P ) | Predicate. Plan PR is a completion of plan P .
fail. | Constant. The action of failing.
error. | Constant. The uent of being in error.

Table 3: The Language of Plans

De�nition 18 A plan P in PLAN1 is executed over interval hS0; S1 : : : Ski i� for some total or-
dering hT1 : : : Tki of the steps of P , the content of Ti is attempted over [Si�1; Si].

For example, consider the plan P1 consisting of two unordered steps, W1 = puton(c,a) and
W2 = puton(a,table), to be executed in situation S0 of �gure 1. The total ordering hW1,W2i is
attempted unsuccessfully over interval hS0, S2, SE3i. The total ordering hW2,W1i is attempted
successfully (i.e. successfully executed) over interval hS0,S3,S13i. Thus plan P1 executes over the
two intervals [S0,SE3] and [S0,S13]; it is possibly physically feasible but not necessarily physically
feasible.

The second planning language, PLAN2, is a simple ALGOL-like language with an indeterminacy
operator. A plan is built up from primitive actions by applying recursive control structures to
primitive statements. A primitive statement has either the form \prim action(E)", where E is
an action, or \prim uent(QE)", where QE is a uent ranging over actions. For example, in the
blocks world, \puton(blocka,blockb)" denotes the action of putting block A onto block B, and
\prim action(puton(blocka, blockb))" denotes the plan consisting of that single action. The term
\puton q(top of(stacka), top of(stackb))" denotes the uent whose value in any situation S is the
action of putting the block that is at the top of stack A in situation S onto the block that is at the
top of stack B. The term \prim uent(puton q(top of(stacka), top of(stackb)))" denotes the plan
consisting of that single action. Here, we construe \top of(K)" as a function mapping a stack K to
a uent ranging over blocks, and we construe \puton q(Q1; Q2)" as a function mapping two uents
ranging over blocks to a uent ranging over actions.9

The control structures we will consider in PLAN2 are \sequence(P1 : : : Pk)",
\if(QB;P1; P2)", \repeat(P1; QB)", meaning \repeat P1 until QB", and
\indet(P1 : : : Pk)", meaning \indeterminately do either P1 or P2 or . . . or Pk." Here Pi is a subplan,
and QB is a Boolean uent such as \on(blocka,blockb)" or \raining".

For example, the following plan moves all the blocks in stack A to stack C, and then all the
blocks in stack B to stack C. (We assume that neither stack A nor stack B is initially empty.)

9It is common practice to extend automatically functions or predicates over atemporal objects to take uents as
arguments; for example, to extend the function \pickup" above to take as argument either a block or a uent over
blocks. However, since the de�nition of \knowing what � is" below depends critically on quantifying over situation-
independent objects and not over uents, we will be very rigid in distinguishing between a uent and its value.
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P.1 For any set P of �nite intervals, there is a unique plan P such that
executes(P; S1; S2) , [S1; S2] 2 P .
(De�nition 7 of \plan".)

P.2 succeeds(P; S1; S2) , executes(P; S1; S2) ^ :error(S2).
(De�nition 8 of \succeeds". Note the \extra-argument" notation in \error".)

P.3 begins(P; S1; S2) ,
9S3 S1 � S2 � S3 ^ executes(P; S1; S3) ^ :error(S2).
(De�nition 9 of \begins".)

P.4 next step(E;P; S1; S2) ,
9S3;S4 S1 � S2 < S3 � S4 ^ result(S2; E; S3) ^ executes(P; S1; S4).
(De�nition 10 of \next step".)

P.5 determinate(P; S1) , 91S2 executes(P; S1; S2).
(De�nition 11 of determinate.)

P.6 vacuous(P; S1) , :9S2 executes(P; S1; S2).
(De�nition 12 of vacuous.)

P.7 np-feasible(P; S1) ,
[:vacuous(P; S1) ^ 8S2 executes(P; S1; S2) ) succeeds(P; S1; S2)].
(De�nition 13 of necessary physical feasibility.)

P.8 pp-feasible(P; S1) , 9S2 succeeds(P; S1; S2).
(De�nition 14 of possible physical feasibility.)

P.9 specialization(PI; P; S1) ,
[:vacuous(PI; S1) ^ 8S2 executes(PI; S1; S2) ) executes(P; S1; S2).]
(De�nition 15 of specialization.)

P.10 completion(PC; P; S1) , [specialization(PC; P; S1) ^ determinate(PC; S1)].
(De�nition 16 of completion.)

P.11 attempt(E; S1; S2) ,
[result(S1; E; S2) _ [:feasible(E; S1) ^ result(S1,fail,S2)]].
(De�nition 17 of \attempting" an action.)

Table 4: De�nitions of the language of plans
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P.12 executes(P; S1; S2) ) S1 � S2.
(A constraint on language semantics: Plans must execute from earlier to later times.)

P.13 8S feasible(fail,S).
(Failing can always occur.)

P.14 result(S1,fail,S2) ) error(S2).
(Failing results in error.)

P.15 error(S1) ^ S1 < S2 ) error(S2).
(Error is irrecoverable.)

P.16 [:error(S1) ^ error(S2) ^ S1 < S2 ] )
9SA;SB S1 � SA < SB � S2 ^ result(SA,fail,SB).
(Frame axiom for \error": The error state is only entered as a result of executing \fail.")

Table 5: Axioms for the theory of plans

sequence(repeat(prim uent(puton q(top of(stacka),top of(stackc)))
empty(stacka)),

repeat(prim uent(puton q(top of(stackb),top of(stackc)))
empty(stackb))).

The semantics of PLAN2 can be de�ned by recurring down the form of the plan.

De�nition 19 (Semantics of PLAN2).

a. Let P=prim action(E). P executes over [S1; S2] i� E is attempted over [S1; S2].

b. Let P=prim uent(QE). P executes over [S1; S2] if value in(S1; QE) is attempted over
[S1; S2].

c. Let P=sequence(P1 : : : Pk). P executes over [S0; Sk] i� there exist S1; S2 : : : Sk�1 such that
Si�1 � Si and such that Pi executes over [Si�1; Si], for i = 1 : : : k.

d. Let P=if(Q;PA; PB). P executes over [S1; S2] i� one of the following holds:

{ Q holds in S1 and PA executes over [S1; S2]; or

{ Q does not hold in S1 and PB executes over [S1; S2].

e. We de�ne the semantics of the repeat loop by �rst giving a recursive de�nition of executing
some of the iterations of a repeat loop, and then using that to de�ne executing the entire loop.

e.i. Let P=repeat(PA;Q). P executes some iterations over [S1; S2] i� one of the following
holds:

� PA executes over [S1; S2]; or

� For some S3 such that S1 < S3 � S2, P executes some iterations over [S1; S3]; Q
does not hold in S3; and PA executes over [S3; S2].

e.ii. Let P=repeat(PA;Q). P executes over [S1; S2] i� P executes some iterations over
[S1; S2] and Q holds in S2.

f. Let P=indet(P1 : : : Pk). P executes over [S1; S2] i� Pi executes over [S1; S2] for some i 2
1 : : : k, and none of the Pi are vacuous in S1.
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Non-logical primitives:

prim action(E) | Function mapping action E to the plan of doing E.
prim uent(QE) | Function mapping QE, a uent over actions,

to the plan of doing the current value of QE.
sequence(P1 : : : Pk) | Function mapping plans P1 : : : Pk

to the plan of performing these in sequence.
if(Q;PA; PB) | Function mapping Boolean uent Q and plans PA; PB

to the plan of doing PA if Q, else PB.
repeat(PA;Q) | Function mapping plan PA and Boolean uent Q

to the plan of repeating PA until Q.
indet(P1 : : : Pk) | Function mapping plans P1 : : : Pk

to plan of doing one of them.

Axioms:

PL2.1 executes(prim action(E),S1; S2) , attempt(E; S1; S2).

PL2.2 executes(prim uent(QE),S1; S2) , attempt(value in(S1; QE),S1; S2).

PL2.3 executes(sequence(PA; PB),S1; S2) ,
9SM S1 � SM � S2 ^ executes(PA; S1; SM) ^ executes(PB; SM;S2).

PL2.4 executes(if(Q;PA; PB),S1; S2) ,
[[holds(S1; Q) ^ executes(PA; S1; S2)] _
[:holds(S1; Q) ^ executes(PB; S1; S2)]]

PL2.5 iterates(repeat(PA;Q),S1; S2) ,
[executes(PA; S1; S2) _
9SM iterates(repeat(PA;Q),S1; SM) ^ :holds(SM;Q) ^

executes(PA; SM;S2)].

PL2.6 executes(repeat(PA;Q), S1; S2) ,
iterates(repeat(PA;Q),S1; S2) ^ holds(S2; Q).

PL2.7 executes(indet(PA; PB),S1; S2) ,
[:vacuous(PA; S1) ^ :vacuous(PB; S1) ^
[executes(PA; S1; S2) _ executes(PB; S1; S2)]].

Table 6: Semantics of PLAN2
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Figure 3: System of possible worlds

Table 5 shows the symbolic expression of this de�nition.

The de�nition as a whole recurs down the structure of the plan. Item (e.1) also has an internal
recursion through iterations of a loop down the time line.

Note that every execution of a plan takes at least one time unit. (The use of repeat rather than
while loops is to insure this and thus avoid the problem of de�ning a semantics for a while loop with
an instantaneous body.)

3.3 Theory of Knowledge

We use a possible-worlds theory of knowledge [8]. Following Moore [13, 14], we identify a possible
world with a situation; a possible world is one way the universe can be at an instant. To express facts
about an agent's knowledge, we introduce the notion of a knowledge accessibility relation between
worlds. World s2 is knowledge accessible from world s1 if, as far as the agent10 knows in s1, the
world could just as well be in s2. The statement that A knows � is thus expressed by stating that
� holds in every accessible world; that is, no world in which � is false is consistent with what is
known. Thus, the statement that the agent knows in s1 that it is currently raining is expressed by
stating that in every world accessible from s1 it is raining. (Figure 3)

Following Hintikka [8], we represent, \A knows in what � is" using the large-scope quanti�cation,
\There is anX such that A knows that X = � ." In a possible-worlds representation, this is expressed

10In this paper, we deal only with a single agent and hence only a single knowledge accessibility relation.
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K.1 8S k acc(S; S).
(Reexivity = Veridicality.)

K.2 k acc(SA; SB) ^ k acc(SB; SC) ) k acc(SA; SC)
(Transitivity = Positive introspection.)

K.3 know val(Q;S) ,
9X 8S2 k acc(S; S2) ) X=value in(S;Q).
(De�nition of knowing what Q is.)

K.4 [result(S1A;E; S2A) ^ k acc(S2A;S2B)] )
9S1B result(S1B;E; S2B) ^ k acc(S1A;S1B).
(Axiom of memory).

K.5 k acc(SA; SB) ) [error(SA) , error(SB)].

Table 7: Axioms of Knowledge

in the formula, \� has the same value in every accessible world" or, equivalently, \There is an X
such that, for every accessible world W , X is the value of � in W ." For example, the statement
\John knows what the capital of New York is, but does not know what the capital of California
is," is expressed by saying that the capital of New York is the same thing (namely Albany) in all
accessible worlds, but the capital of California is di�erent things in di�erent accessible worlds. For
example, if John is uncertain whether the capital is Sacramento or Los Angeles, then there are some
accessible worlds in which Sacramento is the capital and there are other accessible worlds in which
Los Angeles is the capital.

We must thus extend the notion of uent from \something whose value can change over time" to
\something that could conceivably have another value." For example, in a purely temporal theory,
the gravitational constant would be a logical constant. However, if we wish to describe agents who
do not know the value of the gravitational constant, then it must be a uent whose value varies from
one world to another.

Knowledge about past and future is expressed by combining knowledge accessibility with tem-
poral relations. Thus, the statement, \The agent knows in s1 that, if he picks up block A, then
block B will be clear," is expressed in the formula

For every S2 and S3,
if S2 is accessible from s1,

and S3 is the result of picking up block A in S2,
then block B is clear in S3.

8S2;S3 k acc(s1,S2) ^ result(S2,pickup(blocka),S3) ) clear(blockb,S3).

The overall structure of possible worlds consists of a number of parallel branching time-structures,
connected by knowledge accessibility relations.

To axiomatize this theory of knowledge, we introduce the predicate \k acc(S1; S2)" (meaning
situation S2 is knowledge accessible from situation S1), and posit the axioms enumerated in Table
7.

Axioms K.1 and K.2 are purely constraints on the knowledge relation. As is well known, they
generate a theory of knowledge at an instant that corresponds to the modal theory S4 [7]. In
particular, axiom K.1 corresponds to the axiom of veridicality, that if A knows � then � must be
true, and axiom K.2 corresponds to the axiom of positive introspection, that if A knows � then
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E

S2A S2B

S1BS1A

E

If S1A, S2A, and S2B are connected as shown by the solid lines, then S1B must exist and be
connected as shown by the dotted lines.

Figure 4: Axiom of memory

A knows that A knows �. The other properties of an S4 logic are necessary consequences of the
structure of a possible worlds semantics. In particular, the theory has the \consequential closure"
property, that an agent knows all necessary truths and all logical consequence of his knowledge.

Axiom K.3 expresses the de�nition of \knowing what � is" discussed above. The value of uent
Q is known in S if it has the same value in all worlds accessible from S.

Axiom K.4 relates knowledge to time. It states that an agent remembers anything he once knew
and also remembers the events that have passed. (Since time structures are forward branching, there
is a unique sequence of events prior to any given situation.) Speci�cally it states that, if S2B is
knowledge accessible from S2A, then the same event E must have preceded both situations, and
the situation preceding S2B was knowledge accessible from the situation preceding S2A (Figure 4).
Since the class of accessible situations has not increased in going from S1A to S2A, the agent has
not forgotten anything, and since the two interposing events are the same, the agent knows what
it is. Using the axioms of time, one can show by induction that the agent knows all prior events
and always knows as much in a later state as in previous one. (Of course, the agent may become
increasingly ignorant about the current state. For example, an agent may know that a pair of dice
is showing twelve; if he then rolls the dice but does not look, then he will not know what the dice
are showing after rolling the dice. What the axiom does guarantee is that after rolling the dice he
still remembers that the dice showed twelve before he rolled the dice.)

Axiom K.5 asserts that the agent always knows whether he is in the error state. This is primarily
useful for deducing that he knows that he is not in the error state at the beginning of plan execution.

There is one further tricky issue in integrating our theory of plans with the possible worlds
theory of knowledge. As discussed in section 2.1.1, the planning concepts \P succeeds," \P has
begun," and \E is the next step of P"are all de�ned relative to an interval [S1; S2]. However, our
language of knowledge does not allow us to express a statement like \A knows in S2 that P succeeds
over [S1; S2]" directly; it does not make any sense to say, \In every situation accessible from S2 it
is the case that P completes over [S1; S2]."

The problem, then, is to identify a particular instance of a plan over di�erent time structures
related by knowledge accessibility relations. In general, the cross-world identi�cation problem of
events across chronicles is a diÆcult one [12]. Here, however, there are two very helpful restrictions
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Non-logical primitive:

same events(S1A;S2A;S1B;S2B) | Predicate. The same sequence of
events occurs over interval [S1A;S2A] as over [S1B;S2B].

corresponds(S1A;S2A;S1B;S2B) | Predicate. Interval [S1B;S2B]
corresponds to interval [S1A;S2A].

CO.1 same events(S1A;S2A;S1B;S2B),
[[S1A = S2A ^ S1B = S2B] _
[9SMA;SMB;E same events(S1A;SMA;S2A;SMB) ^ result(SMA;E; S2A) ^

result(SMB;E; S2B)]].
(Recursive de�nition of \same events". The base case is the null sequence of events; the
recursive case recurs down the last event in the sequence.)

CO.2 \same events" is the minimal relation consistent with CO.1.

CO.3 corresponds(S1A;S2A;S1B;S2B),
[k acc(S2A;S2B) ^ same events(S1A;S2A;S1B;S2B)].
(De�nition of \corresponds".)

Table 8: De�nition of the predicate \corresponds"

on the problem:

� For the purposes of our de�nitions, we need only express the agent's knowledge about the state
of the plan over an interval just completed. That is, we only need to say that the agent knows
\P has succeeded over [S1; S2]" in the situation S2 itself, and not in any other situation.

� By postulating (axiom T.9) that time is forward-branching, so that each situation has a unique
history leading to it, and (axiom K.4) that an agent remembers all the events that have
occurred, it follows that in any situation, the agent knows the entire history of the world up
to this point.

In view of these two features, it is natural to posit that the agent can identify a particular instance of
a plan in terms of the sequence of events that have passed since it started. We will say that interval
[S1B;S2B] corresponds to interval [S1A;S2A] if S2B is knowledge accessible from S2A and the
same sequence of events occurs between S1B and S2B as between S1A and S2A. The axiomatic
de�nition of \corresponds(S1A;S2A;S1B;S2B)" is given in axioms CO.1 - CO.3, table 8.

3.4 Epistemic feasibility

We can now state the formal de�nitions of epistemic feasibility. We reformulate the de�nitions of
section 1 below. Table 9 shows the symbolic axiomatization.

De�nition 20 (Reformulation of de�nition 5.) A plan P is executable for agent A in situation S1
if and only if

a. P is non-vacuous in S1; and

b. If P begins over [S1; S2] and [S1A;S2A] corresponds to [S1; S2] then

b.i P succeeds over [S1A;S2A] if and only if it succeeds over [S1; S2];

25



b.ii E is a next step of P after [S1A;S2A] if and only if E is a next step of P after [S1; S2];
and

b.iii \Fail" is not a next step of P after [S1; S2].

De�nition 21 (Reformulation of de�nition 2) A plan P is blindly epistemically feasible for A in
S1 if it is determinate in S1 and executable for A in S1.

De�nition 22 (Reformulation of de�nition 1) Determinate plan P is epistemically feasible in S1
if and only if A knows in S1 that P is blindly epistemically feasible. Formally, if S2A is knowledge
accessible from S1, then P is blindly epistemically feasible from S1.

De�nition 23 (Reformulation of de�nition 3) Plan P is epistemically feasible as a task for agent
A in S1 if there exists a plan P 0 such that A knows in S1 that:

a. P 0 is executable for A in S1 ; and

b. P 0 is a specialization of P starting in S1.

Formally, there exists P 0 such that, for any S1A, if S1A is knowledge accessible from S1 then P 0 is
executable in S1A and P 0 is a specialization of P in S1A.

It may seem odd to use \executability" as the foundation of the de�nitions of the other notions
of epistemic feasibility, given that, as we argued in section 2.3, executability is a more arbitrary
notion than the others. However, formally, this is the simplest direction to go.

Figure 5 illustrates the structure of temporal and possible-worlds relations involved in the
example of looking up a number and dialing it.

4 Some Formal Proofs from our Theory

In this section, we will illustrate the power of the theory presented in section 3 by proving a number
of results:

I. Sample positive result: Under suitable assumptions, the plan \Look up Ernie's phone number;
dial Ernie's phone number," is epistemically feasible.

II. Sample negative result: Under assumptions similar to (I), the plan \Look up Fred's phone
number; dial Ernie's phone number," is not epistemically feasible.

III. Monotonicity with respect to knowledge: Under suitable assumptions, the more an agent
knows, the more plans are epistemically feasible.

IV. Reduction for determinate plans: If plan P is known in S to be determinate in S, P is
epistemically feasible if and only if P is feasible as a task.

V. Reduction for omniscient agent: For an omniscient agent, plan P is executable if and only if
it is necessarily feasible; and P is feasible as a task if and only if it is possibly feasible.

VI. SuÆciency of Moore's [14] rules for sequences (rule 1, section 2.2): If

A. PA is epistemically feasible in S1; and
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The �gure shows part of the structure of possible worlds for the plan \sequence(look up Ernie's
number; dial Ernie's number)." Initially, the situations S1, S1Z, S1A, S1B are all mutually knowledge
accessible (indicated by the triple lines). In S1 and S1Z, Ernie's number is 3123; in S1A and S1B, it
is 1111. The result of performing the action \lookup" is that the agent learns what Ernie's number
is. Thus, situations SQA and SQB are separated from SQ and SQZ. In each of these situations
therefore, the next step of the plan, \Dial Ernie's number" denotes the same action in all accessible
worlds. In all worlds accessible from SQ or SQZ, it denotes the action \Dial 3123"; in all worlds
accessible from SQA or SQB, it denotes the action, \Dial 1111."

Figure 5: Possible worlds structure for epistemic feasibility
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Non-logical primitives:

dep feasible(P; S) | Determinate plan P is epistemically feasible in S.
bep feasible(P; S) | Determinate plan P is blindly epistemically feasible

in S.
task ep feasible(P; S) | Plan P is epistemically feasible as task in S.
executable(P; S) | Plan P is executable as task in S.

De�nitions

EF.1. executable(P; S1) ,
:vacuous(P; S1) ^
8S2 begins(P; S1; S2) )

[:next step(fail,P; S1; S2) ^
8S1A;S2A corresponds(S1; S2; S1A;S2A))

[[succeeds(P; S1A;S2A) , succeeds(P; S1; S2)] ^
8E next step(E;P; S1A;S2A) , next step(E;P; S1; S2)]].

(De�nition 5 of executability.)

EF.3. bep feasible(P; S1) , [determinate(P; S1) ^ executable(P; S1)].
(De�nition 2 of blind epistemic feasibility for determinate plans.)

EF.4. dep feasible(P; S1) ,
8S1A k acc(S1; S1A) ) bep feasible(P; S1A).

(De�nition 1 of epistemic feasibility for determinate plans.)

EF.5 task ep feasible(P; S1) ,
9PC 8S1A k acc(S1; S1A) )

[specialization(PC; P; S1A) ^ executable(PC; S1A)].
(De�nition 3 of epistemic feasibility as a task.)

Table 9: De�nitions of epistemic feasibility
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B. it is known in S1 that, after PA completes, PB will be epistemically feasible,

then the plan \sequence(PA; PB)" is epistemically feasible in S1.

VII. SuÆciency of Moore's [14] rules for conditionals (rule 2, section 2.2): If either

A. it is known that Q holds in S and PA is epistemically feasible in S; or

B. it is known that Q does not hold in S and PB is epistemically feasible in S

then the plan \if(Q;PA; PB)" is epistemically feasible in S.

By way of comparison, in Moore's theory [14] (VI) and (VII) are axioms (for the determinate
case); (I) is easily proven; (II) can be proven if rule 1 is taken to be a necessary as well as suÆcient
condition; (III) and (V) can probably be proven for plans within Moore's planning language (PLAN2
without indeterminacy) by induction over the form of the plan; and (IV) is not meaningful since
Moore's theory deals only with determinate plans.

4.1 Positive result

We wish to show that the plan \Look up Ernie's phone number; dial Ernie's phone number," is
epistemically feasible. A plausible axiomatization of the domain is given in table 10.

Lemma 1 px executes by �rst executing the �rst step and then the second step.
executes(px,S1; S2) , 9SM executes(pxa,S1; SM) ^ executes(pxb,SM;S2).

Proof: From the de�nition of px (A.6) and the de�nition of execution of a sequence (PL2.3),
together with P.12.

Lemma 2 The �rst step pxa executes by executing the action of looking up Ernie's number.
executes(pxa,S1; S2) , result(S1,look up number(ernie),S2).

Proof: From the de�nitions of pxa (A.6), of executing a single action plan (PL2.1), of attempt-
ing an action (P.11), and the feasibility of looking up a number (A.1).

Lemma 3 The second step pxb executes by executing the action of dialing Ernie's number.
executes(pxb,S1; S2) , result(S1,dial(numberq(ernie,S1)),S2).

Proof: From the de�nitions of pxb (A.6), of executing a single uent plan (PL2.2), of attempt-
ing an action (P.11), of the uent function \dialq" (A.4), and the feasibility of dialing a number
(A.2).

Lemma 4 Plan px is executed by �rst looking up Ernie's number then dialing it. executes(px,S1; S2)
,

9SM result(S1,look up number(ernie),SM) ^
result(SM ,dial(numberq(ernie, SM)), S2).

Proof: From lemmas 1, 2, 3.
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Sorts: People (X), phone numbers (N).
Domain primitives:

look up number(X) | Function. The action of looking up the phone
number of X .

numberq(X) | Function. The uent whose value in situation S is
the phone number of X in S.

dial(N) | Function. The action of dialing number N .
dialq(QN) | Function. The uent of dialing the current value of QN .
ernie | Constant. A person.
px | Constant. The plan, \sequence(look up Ernie's number; dial Ernie's

number)."
pxa,pxb | Constants. The �rst and second steps of px.

Axioms

A.1 8S;X feasible(look up number(X),S).
(Looking up a number is always physically feasible.)

A.2 8S;N feasible(dial(N),S ).
(Dialing a number is always physically feasible.)

A.3 8X;N look up number(X) 6= fail ^ dial(N) 6= fail.
(Unique names assumption: Neither looking up a number nor dialing is inherently failing.)

A.4 8S;QN value(dialq(QN),S) = dial(value in(QN;S)).
(De�nition of the function dialq as the natural extension of dial to uents.)

A.5 8S1;X;S2 result(S1,look up number(X),S2) ) know val(numberq(X),S2).
(Causal axiom: After you look up the number of X , you know the number of X .)

A.6 pxa = prim action(look up number(ernie)) ^
pxb = prim uent(dialq(numberq(ernie))) ^
px = sequence(pxa,pxb).
(De�nition of symbols denoting pieces of the plan.)

To prove: 8S :error(S) ) dep feasible(px,S).
(The plan is always epistemically feasible.)

Table 10: Positive example
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Lemma 5 If S1, S2, and S3 are consecutive situations, and SA comes between S1 and S3. then
SA is either equal to S1, to S2, or to S3.

[follows(S1; S2) ^ follows(S2; S3) ^ S1 � SA � S3] )
[SA = S1 _ SA = S2 _ SA = S3].

Proof: From the forward branching of time (T.9.a) it follows that SA must be ordered relative
to S2. From the minimality of the \follows" relation (T.7), it follows that SA cannot come between
S1 and S2 nor between S2 and S3. The result then follows from the de�nition of � (T.3).

Lemma 6 If S1, S2, and S3 are consecutive situations, and SA and SB are consecutive situations
occurring between S1 and S3 then [SA; SB] is either [S1; S2] or [S2; S3].

[follows(S1; S2) ^ follows(S2; S3) ^ S1 � SA < SB � S3 ^ follows(SA; SB)] )
[[SA = S1 ^ SB = S2] _ [SA = S2 ^ S3 = SB]].

Proof: From Lemma 5 and axioms T.6 and T.7.

Lemma 7 If S3 is the result from S1 of doing �rst E1 then E2, and EA occurs at some time
between S1 and S3, then EA is either E1 or E2.

[result(S1; E1; S2) ^ result(S2; E2; S3) ^ S1 � SA � SB � S3 ^
result(SA;EA; SB)] )
[EA = E1 _ EA = E2].

Proof: From Lemma 6 and the de�nition of follows (T.1), [SA; SB] is equal to either [S1; S2]
or [S2; S3]. Since a unique event occurs during any time interval (T.11), EA must be equal either
to E1 or to E2.

Lemma 8 Executing px does not bring about the error state.
[:error(S1) ^ executes(px,S1; S2)] ) :error(S2).

Proof: From lemmas 4 and 7 and the fact (A.3) that neither looking up a number nor dialing
it is the failure act, it follows that no failure occurs between S1 and S2. By the frame axiom for
error (P.16), error cannot come about unless a failure occurs.

Lemma 9 All executions of px are successful.
succeeds(px,S1; S2) , [:error(S1) ^ executes(px,S1; S2)].

Proof: From the de�nition of succeeds (P.2) and lemma 8.

Lemma 10 The only beginnings of the execution of px are the null beginning; the execution of the
�rst step of px; and the execution of all of px.

begins(px,S1; S2) ,
[:error(S1) ^
[S1 = S2 _ result(S1,look up number(ernie),S2) _ executes(px,S1; S2)]].

Proof: From the de�nition of begins (P.3) together with lemmas 4, 5 and 8.

Lemma 11 The only next steps of px are looking up Ernie's number after the null beginning; and
dialing Ernie's number after looking it up.
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:error(S1) )
[next step(E,px,S1; S2) ,
[[S1 = S2 ^ E=look up number(ernie)] _
[result(S1,look up number(ernie),S2) ^ E=dial(numberq(ernie,S2))]]].

Proof: From the de�nition of \next step" (P.4), together with lemmas 4 and 6.

Lemma 12 Plan px is never vacuous.
:vacuous(px,S).

Proof: From lemma 4, the feasibility of looking up and dialing (A.1, A.2), and the de�nitions
of feasibility of actions (T.2) and of vacuity of plans (P.6).

Lemma 13 If [S1A;S2A] corresponds to [S1; S2], then the two events E1; E2 occur over [S1; S2]
just if the same events occur over [S1A;S2A].

corresponds(S1; S2; S1A;S2A) )
8E1;E2 [9SM result(S1; E1; SM) ^ result(SM;E2; S2)] ,

[9SMA result(S1A;E1; SMA) ^ result(SMA;E2; S2A)]

Proof: From the de�nition of corresponds (CO.1, CO.2, CO.3). Strictly speaking, this requires
a second-order argument.

Lemma 14 If S1, S2, and S3 are consecutive situations, then S3 is not equal to S1 and S3 does
not immediately follow S1.

[follows(S1; S2) ^ follows(S2; S3)] ) [ S1 6= S3 ^ : follows(S1; S3)].

Proof: From the temporal axioms T.4, T.5, T.6, and T.7.

Lemma 15 The agent knows that he has not executed px over a null interval or over an interval
with only one step.

[[S1 = S2 _ result(S1; E; S2)] ^ corresponds(S1; S2; S1A;S2A)] )
:succeeds(px,S1A;S2A).

Proof: By lemmas 4 and 9, px can only succeed over an interval with two steps. By lemma 13,
an interval with two steps can only correspond to another interval with two steps, and by lemma
14, an interval with two steps cannot also be a null interval or an interval with one step.

Lemma 16 If px is successfully executed from S1 to S2, then the agent knows that it has been
successfully executed.

[succeeds(px,S1; S2) ^ corresponds(S1; S2; S1A;S2A)] )
succeeds(px,S1A;S2A).

Proof: By lemma 4, if px executed from S1 to S2 then, for some middle situation SM ,
look up number(ernie) executed over [S1; SM ] and dial(n1) executed over [SM;S2], where n1 =
numberq(ernie,SM), Ernie's number in SM . By lemma 13, if [S1A;S2A] corresponds to [S1; S2],
then there is a middle situation SMA such look up number(ernie) executes over [S1A;SMA] and
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dial(n1) executes over [SMA;S2A]. (Note that it is not necessarily the case, at this point in the
argument that n1 is also Ernie's number in SMA; this has to be established.) By axioms T.1 and
T.9.a, SMA is the unique situation preceding S2A. By axiom K.4, since S2A is accessible from S2,
SMA is accessible from SM . By the causal rule A.5, that one knows a number one has looked up,
and the de�nition of know val (K.3), the value of numberq(ernie) is the same in all worlds accessible
from SM . In particular, it is the same in SMA as in SM . Thus, n1 = numberq(ernie,SMA) and
dial(n1) = dialq(numberq(ernie),SMA) (A.4). Therefore, by lemma 4 and 9, px succeeds over the
interval [S1A;S2A].

Lemma 17 After each beginning of px, the agent knows whether it has succeeded.
[begins(px,S1; S2) ^ corresponds(S1; S2; S1A;S2A)] )
[succeeds(px,S1; S2) , succeeds(px,S1A;S2A).

Proof: Combining lemmas 10, 15, and 16.

Lemma 18 The �rst step(s) of px is the same in all possible worlds.
[:error(SA) ^ :error(SB)] )
[next step(E,px,SA; SA) , next step(E,px,SB; SB)].

Proof: By lemma 11, looking up Ernie's number is always the only �rst step of px.

Lemma 19 After looking up Ernie's number, the agent will know what the next step of plan px is.

[:error(S1A) ^ result(S1A,look up number(ernie),S2A) ^
corresponds(S1A;S2A;S1B;S2B)] )
[next step(E,px,S1A;S2A) , next step(E,px,S1B;S2B)].

Proof: By the de�nition of \corresponds" (CO.1, CO.2, CO.3), look up number(ernie) executes
over [S1B;S2B] as well. By lemma 11 the only next step of px after [S1A;S2A] is dialing the value
of Ernie's number in S2A, and the only next step of px after [S1B;S2B] is dialing the value of
Ernie's number in S2B. By causal rule A.5, the value of Ernie's number is the same in all worlds
accessible from S2A; hence, it is the same in S2A as in S2B (A.1, CO.3). Thus, there is one action
which is the unique next step of px both after [S1A;S2A] and after [S1B;S2B].

Lemma 20 There is no next step of px after it succeeds.
succeeds(px,S1; S2) ) :9E next step(E,px,S1; S2).

Proof: Immediate from lemma 11, together with lemmas 4, 9, 14.

Lemma 21 After each beginning stage of px, the agent knows what the next steps of px are.
[begins(px,S1A;S2A) ^ corresponds(S1A;S2A;S1B;S2B)] )
8E next step(E,px,S1A;S2A) , next step(E,px,S1B;S2B).

Proof: Combining lemma 10 with lemmas 18, 19, 20.

Lemma 22 \Fail" is never the next step of the plan.
begins(px,S1; S2) ) :next step(fail,px, S1; S2).

Proof: From lemma 11 and axiom A.3.
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Lemma 23 px is always executable.
executable(px,S1).

Proof: Combining lemmas 17, 21, and 22 with the de�nition of executability EF.1.

Lemma 24 px is always determinate.
determinate(px,S1).

Proof: From lemma 4, which characterizes the execution condition of px as the sequence of two
determinate actions; axiom T.10, which posits that an action has a unique e�ect; and the de�nition
of determinate, P.5.

Lemma 25 px is always blindly epistemically feasible.
bep feasible(px,S).

Proof: From lemmas 23 and 24 with the de�nition of blind epistemic feasibility EF.3.

Theorem 1 Plan px is always epistemically feasible.
dep feasible(px,S).

Proof: From lemma 25 and de�nition EF.4.

4.2 Negative result

We wish to show that the plan. \Look up Fred's phone number; dial Ernie's phone number," is not
epistemically feasible. The domain is the same as in the previous section. The additional symbols
and axioms needed are shown in table 11.

Lemma 26 Plan py executes if the agent �rst looks up Fred's number and then dials Ernie's number.
executes(py,S1; S2) ,
9SM result(S1,look up number(fred),SM) ^

result(SM ,dial(numberq(ernie,SM)),S2).

Proof: Analogous to lemma 4.

Lemma 27 Executing py does not bring about the error state.
[:error(S1) ^ executes(py,S1; S2)] ) :error(S2).

Proof: Analogous to Lemma 8.

Lemma 28 The only beginnings of the execution of py are the null beginning; the execution of the
�rst step of py; and the execution of all of py.

begins(py,S1; S2) ,
[:error(S1) ^
[S1 = S2 _ result(S1,look up number(fred),S2) _ executes(py,S1; S2)]].

Proof: Analogous to lemma 10.
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Additional domain primitives:

fred | Constant. A person.
py | Constant. The plan, \Look up Fred's number; dial Ernie's number." pya,pyb |
Constants. The �rst and second steps of py.

Axioms, in addition to A.1 - A.6.

B.1 [:know val(numberq(X),S1) ^ result(S1; E; S2) ^
know val(numberq(X),S2)] )
E=look up number(X).
(Frame axiom: The only way to �nd out a telephone number is to look it up. Frame axioms
over knowledge are considered at length in [17] and [20]. The axiom here can be derived as
special case of the \Successor State Axiom for K" of [20].)

B.2 X 6= Y ) look up number(X) 6= look up number(Y ).
(Looking up X 's number is a di�erent action from looking up Y 's number if X 6= Y .)

B.3 N1 6= N2 ) dial(N1) 6= dial(N2).
(Dialing N1 and dialing N2 are di�erent actions if N1 6= N2.)

B.4 ernie 6= fred.

B.5 :know val(numberq(ernie),s1).
(In situation s1, the agent does not know Ernie's number).

B.6 py=sequence(pya,pyb).
pya = prim action(look up number(fred)).
pyb = prim uent(dialq(numberq(ernie))).
(De�nition of symbols denoting pieces of the plan.)

B.7 :error(s1).

To prove: :dep feasible(py,s1).
(The plan is not epistemically feasible.)

Table 11: Axioms for negative result
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Lemma 29 The only next steps of py are looking up Fred's number after the null beginning; and
dialing Ernie's number after looking up Fred's.

:error(S1) )
[next step(E,py,S1; S2) ,
[[S1 = S2 ^ E=look up number(fred)] _
[result(S1,look up number(fred),S2) ^ E=dial(numberq(ernie,S2))]]].

Proof: Analogous to lemma 11.

Lemma 30 There is a situation that results from s1 after looking up Fred's number.
9S2 result(s1,look up number(fred),S2).

Proof: From the feasibility of looking up a number (A.1) and the de�nition of feasible (T.2).

We will call this situation \s2".

Lemma 31 Plan py begins over [s1,s2].
begins(py,s1,s2).

Proof: From lemmas 28 and 30.

Lemma 32 If [S1A;S2A] corresponds to [s1,s2], then the action \Look up Fred's number" occurs
over [S1A;S2A].

corresponds(s1,s2,S1A;S2A) ) result(S1A,look up number(fred),S2A).

Proof: From lemma 30 and the de�nition (CO.1, CO.2, CO.3) of corresponds.

Lemma 33 The next step of py after an interval [S1A;S2A] corresponding to [s1,s2] is to dial
Ernie's number.

[correspond(s1,s2,S1A,S2A) ^ next step(E,py,S1A;S2A)] )
E=dial(numberq(ernie,S2A)).

Proof: From lemmas 29 and 32.

Lemma 34 Ernie's number is not known in s2.
: know val(numberq(ernie),s2).

Proof: From the frame axiom on not knowing phone numbers (B.1), the de�nition of s2 (lemma
30), the fact that the agent does not originally know Ernie's number (B.5), and the fact that looking
up Fred's number is not the same as looking up Ernie's number (B.2 and B.4).

Lemma 35 There is a possible world S2A which is knowledge accessible from s2 such that dialing
Ernie's number in S2A is di�erent from in s2. That is, the agent does not know in s2 what action
is dialing Ernie's number.

9S2A k acc(s2,S2A) ^ dial(numberq(ernie,S2A)) 6= dial(numberq(ernie,s2)).

Proof: From the de�nition of \know val" (K.3), the fact that dialing two di�erent numbers is
two di�erent actions (B.3), and the fact that the agent does not know Ernie's number in s2 (lemma
34).
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Lemma 36 There is an interval [S1A;S2A] corresponding to [s1,s2] such that the next step of py
after [s1,s2] is not a next step of py after [S1A;S2A].

9S1A;S2A;E corresponds(s1,s2,S1A;S2A) ^ next step(E,py,s1,s2) ^
:next step(E, py,S1A,S2A).

Proof: From the axiom of memory (K.4), together with lemmas 33 and 35.

Lemma 37 Plan py is not executable in s1.
:executable(py,s1).

Proof: From lemmas 31 and 36 together with the de�nition of executability (EF.1).

Theorem 2 Plan py is not epistemically feasible in s1.
:dep feasible(py,s1).

Proof: From lemma 37 and de�nitions EF.2, EF.3.

4.3 Monotonicity with respect to knowledge

We next prove that, under suitable assumptions, the more an agent knows the more plans are
executable. (Throughout this section, we will use the phrase \A is more than B" to mean \A is a
(possibly improper) superset of B".)

To justify this conclusion, we need to impose three conditions. First, we must restrict attention
to knowledge-independent plans; that is, plans whose execution conditions are independent of the
knowledge of the agent.11 A plan like, \If you know who was the �rst President then raise him from
the dead else wave a ag," is executable only if you do not know who was the �rst President; we
must therefore exclude these.

Second, we must assume that what an agent knows does not a�ect physical laws. Speci�cally,
we must assume that whether a given sequence of physical actions is feasible is does not depend on
what the agent knows. If it were the case that putting A onto C were feasible only if the agent did
not know who was the �rst President, then the desired result would not hold.

Third, we must assume that knowing more initially cannot lead to knowing less later, other
things being equal. If the world were such that looking up Ernie's number caused one to know
Ernie's number only if one did not previously know who was the �rst President, then the plan
\sequence(look up Ernie's number; dial Ernie's number)" would be feasible only if the agent did not
know who was the �rst President.

To state these conditions formally, we introduce the predicate \same phys(S1; S2)", meaning
that possible worlds S1 and S2 are the same in all physical respects. This property satis�es the
conditions of axioms C.3 { C.6 of table 12. (For some purposes, it may be desirable or convenient
to de�ne two situations to be physically the same i� all uents have the same value in the two
situations.)

We de�ne an agent as \knowing more" in SA than in SB if the worlds accessible from SA

are a subset of those accessible from SB. Since knowledge accessibility is dual to knowledge, this
condition means that what is known in SB is a subset of what is known in SA. It should be noted
that this is quite a strong notion. In particular, suppose that we posit the property of negative

11David Etherington pointed this out to me.
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introspection, that if the agent does not know �, then he knows that he does not know �. In such
a logic, it is impossible for an agent to know strictly more in one situation than in another, since,
if he knows � in SA but not in SB, then he knows that he does not know � in SB but not in SA.
Similarly, the strength of this notion means that the monotonicity property for epistemic feasibility
as a task is trivial. To say that P is epistemically feasible as a task in SB means that the agent
knows the fact \Plan PC is a specialization of P and is executable" in SB. If he knows more in SA
than in SB then he must know the same fact \Plan PC is a specialization of P and is executable"
in SA.

Table 12 gives the formal statement of the axioms we need and of the result to be proven.

Lemma 38 If S1A and S1B are physically the same and P is knowledge independent, then the
successful completions, beginnings, and next steps of P starting in S1A match those starting in
S1B.

[same phys(S1A;S1B) ^ k independent(P )] )
8S2A>S1A 9S2B same events(S1A;S2A;S1B;S2B) ^

[succeeds(P; S1A;S2A) , succeeds(P; S1B;S2B)] ^
[begins(P; S1A;S2A) , begins(P; S1B;S2B)] ^
[next step(E;P; S1A;S2A) , next step(E;P; S1B;S2B)].

Proof: By C.5, the same sequences of events are feasible and lead to physically identical results,
which, by C.4, includes the same value of the error uent. By C.1, the execution intervals of P must
therefore match. The result then follows from the de�nitions of succeeds, begins, and next step (P.2,
P.3, P.4).

Lemma 39 If the agent knows more in S1A than in S1B then after the passage of a �xed series of
events, there are more intervals corresponding to [S1B;S2B] than to [S1A;S2A].

[know more(S1A;S1B) ^ same events(S1A;S2A;S1B;S2B) ^
corresponds(S1A;S2A;S1C; S2C)] )
corresponds(S1B;S2B;S1C; S2C).

Proof: By C.6, every world accessible from S1A is also accessible from S2A. The result then
follows from the de�nition of \corresponds" (CO.3) together with the fact that \same events" is an
equivalence relation on intervals (CO.1, CO.2).

Theorem 3 In two physically identical situations, the more you know, the more knowledge-independent
plans are executable.

[same phys(SA; SB) ^ k independent(P ) ^
know more(SA; SB) ^ executable(P; SB)] )
executable(P; SA).

Proof: By lemma 39, the intervals corresponding to a beginning from SA are a subset of those
corresponding to a beginning from SB. Therefore, given the condition (part of the de�nition of
executability EF.1), \The intervals corresponding to a particular beginning of P from SB are either
all or none successful executions of P and all have the same next steps," this same condition must
hold for the intervals corresponding to the matching beginning of P from SA. Moreover, by lemma
38, the condition that \fail" is never a next step of P must hold for executions beginning from SA if
it holds for executions beginning from SB. Thus, all the conditions of executability (EF.1) are met.
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Primitives

same phys(S1; S2) | Predicate. S1 and S2 are physically the same.
k independent(P ) | Predicate. Plan P is knowledge independent.
know more(S1; S2) | Predicate. The agent knows more in situation S1

than in S2.

De�nitions.

C.1 k independent(P ) ,
8S1A;S1B;S2A;S2B

[same phys(S1A;S1B) ^ same events(S1A;S2A;S1B;S2B)] )
[executes(P; S1A;S2A) , executes(P; S1B;S2B)].

(De�nition of knowledge independence: P is knowledge independent if given two intervals with
physically the same starting point and the same sequence of events, either both or neither are
executions of P .)

C.2 know more(SA; SB) , [ 8SC k acc(SA; SC) ) k acc(SB; SC)].
(De�nition of knowing more: The agent knows more in SA than in SB if the situations
accessible in SA are a subset of those accessible in SB.)

Axioms

C.3 same phys(S; S).
same phys(SA; SB) ) same phys(SB; SA).
same phys(SA; SB) ^ same phys(SB; SC) ) same phys(SA; SC).
(Physical sameness is an equivalence relation.)

C.4 same phys(SA; SB) ) [error(SA) , error(SB)].
(Two situations physically the same have the same value of the error uent.)

C.5 [same phys(S1A;S1B) ^ S1A < S2A] )
9S2B same events(S1B;S2B) ^ same phys(S1B;S2B).
(If S1B is physically the same as S1A then any sequence of events feasible in S1A is also
feasible in S1B and the two resultant situations are physically the same.)

C.6 [same phys(S1A;S1B) ^ know more(S1A;S1B) ^
same events(S1A;S2A;S1B;S2B)])
know more(S2A;S2B).
(If the agent knows more in S1A than in S1B but the two situations are physically the same,
then, after the passage of the same sequence of events, the agent will still know more in the
situation after S1A than in the situation after S1B.)

To prove:
[same phys(SA; SB) ^ k independent(P ) ^
know more(SA; SB) ^ executable(P; SB)] )
executable(P; SA).
(In two physically identical situations, the more you know, the more knowledge-independent plans
are executable.)

Table 12: Axioms of knowledge-independent physics and plans
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4.4 Reduction for determinate plans

In this section we show that, if plan P is known in S to be determinate in S, P is epistemically
feasible if and only if P is feasible as a task.

Lemma 40 If determinate plan P is epistemically feasible then it is epistemically feasible as a task.
[dep feasible(P; S1) ) task ep feasible(P; S1)].

Proof: Choosing P as its own specialization PC, it is trivial to check that the conditions of
de�nition EF.4 are satis�ed.

Lemma 41 If P is determinate and PS is a specialization of P starting in S1, then they occur over
the same interval [S1; S2].

[determinate(P; S1) ^ specialization(PS; P; S1)] )
[executes(P; S1; S2) , executes(PS; S1; S2)].

Proof: From the de�nitions of determinate and specialization (P.5,P.9).

Lemma 42 If it is known that PE executes from the current state if and only if PF does, then PE
is executable if and only if PF is.

[8S1A;S2A k acc(S1; S1A) )
[executes(PE; S1A;S2A) , executes(PF; S1A;S2A)]] )

[executable(PE; S1) , executable(PF; S1)]

Proof: For any S2 > S1, let [S1A;S2A] be any interval corresponding to [S1; S2]. By the
axiom of memory K.4, S1A is knowledge accessible from S1. Therefore it is easily checked that

� PF begins over [S1A;S2A] i� PE does;

� E is a next step for PF after [S1A;S2A] i� it is a next step for PE;

� PF succeeds over [S1A;S2A] i� PE succeeds.

The result then follows from the de�nition of executability (EF.1).

Note that Lemma 42 is the formal statement of rule 4 of section 2.2 for executability.

Lemma 43 If P is epistemically feasible as a task in S1 and P is known to be determinate in S1
then P is epistemically feasible in S1.

[task ep feasible(P; S1) ^ [8S1A k acc(S1; S1A) ) determinate(P; S1A)]] )
dep feasible(P; S1).

Proof: By de�nition EF.4, there is a plan PC that is known to be a specialization of P in S1
and that is known to be executable in S1. By lemma 41, PC and P execute over the same intervals
starting in situations knowledge accessible from S1. By lemma 42, since PC is executable in each
such situation, so is P . Thus, by de�nitions EF.2 and EF.3, P is epistemically feasible.

Theorem 4 If plan P is known to be determinate, then it is epistemically feasible as a task if and
only if it is epistemically feasible.

[8S1A k acc(S1; S1A) ) determinate(P; S1A)]] )
[task ep feasible(P; S1) , dep feasible(P; S1).

Proof: From lemmas 40 and 43.
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4.5 Reduction for omniscient agent

In this section we show that for an omniscient agent, plan P is executable if and only if it is
necessarily feasible; and P is feasible as a task if and only if it is possibly feasible.

We begin by de�ning an omniscient agent as one for whom the only situation accessible from
S is S itself. Since we are not explicitly representing agents, \omniscience" becomes a propositional
atom.

De�nition 24 omniscient , 8SA;SB k acc(SA; SB) ) SA = SB.

Theorem 5 For an omniscient agent, plan P is executable if and only if it is necessarily feasible.
omniscient ) [executable(P; S) , np feasible(P; S)].

Proof: Given the omniscience condition, \corresponds(S1; S2; S1A;S2A)" reduces to \S1 =
S1A ^ S2 = S2A" (CO.3), and the biconditionals in de�nition EF.1 thus become trivial. De�nition
EF.1 thus boils down to

executable(P; S1) , [8S2 begins(P; S1; S2) ) :next step(fail,P; S1; S2)]

It is easily shown that this is equivalent to the de�nition of necessary physical feasibility, given the
frame and causal axioms on the error condition (P.14, P.16), that state that error comes about if
and only if a fail action is executed; and given the fact that execution takes place over �nite intervals
(P.12, T.8), so that, in any execution with a failure there must be a �rst failure.

Lemma 44 A plan is possibly physically feasible just if it has a specialization that is necessarily
physically feasible.

pp feasible(P; S) ,
9PD specialization(PD;P; S) ^ np feasible(PD; S).

Proof: Let SP = f [S1; S2] j succeeds(P; S1; S2) g be the set of all intervals over which P

succeeds. Since P is possibly feasible in S, SP contains an interval starting in S (P.8). By axiom
P.1, there is a plan whose extension is SP ; that is, a plan PD such that PD executes over an interval
just if P succeeds over that interval. Then PD satis�es the conditions of the lemma.

Theorem 6 For an omniscient agent, plan P is epistemically feasible as task if and only if it is
possibly feasible.

omniscient ) [task ep feasible(P; S) , pp feasible(P; S)].

Proof: Using the fact that the knowledge accessibility relation is just identity and that exe-
cutability is just necessary feasibility, the condition for the epistemic feasibility of P as task reduces
to the statement that there is a necessarily feasible specialization of P . By lemma 44, this is equiv-
alent to the condition that P be possibly physically feasible.

4.6 SuÆciency of Moore's rules for sequences

In this section we will show the following two versions of Moore's [14] suÆcient condition for the
epistemic feasibility of sequences (rule 1 of section 2.2):
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Rule 1 for executability: If
(a) PA is executable in S1; and
(b) after any completion of PA, PB will be executable;

then the plan \sequence(PA; PB)" is executable in S1. (Note that Moore's condition that (b) be
known in S1 is not needed for executability.)

Rule 1 for epistemic feasibility as task: If
(a) PA is epistemically feasible as a task in S1; and
(b) it is known in S1 that, after PA completes, PB will be epistemically feasible

as a task;
then the plan \sequence(PA; PB)" is epistemically feasible in S1.

Lemma 45 sequence(PA; PB) succeeds if �rst PA succeeds and then PB succeeds.
succeeds(sequence(PA; PB),S1; S2) ,
9SM succeeds(PA; S1; SM) ^ succeeds(PB; SM;S2).

Proof: From the de�nition of the execution of a sequence (PL2.3), the de�nition of success
(P.2), and the fact that error is irrevocable (P.15).

Lemma 46 sequence(PA; PB) begins over an interval if either PA begins over the interval or a
successful completion of PA is followed by a beginning of PB. Note that these two disjuncts may
not be mutually exclusive if PA is indeterminate.

begins(sequence(PA; PB),S1; S2) ,
[begins(PA; S1; S2) _ [9SM succeeds(PA; S1; SM) ^ begins(PB; SM;S2)]].

Proof: From the de�nitions (PL2.3, P.2, P.3) and the fact that error is irrevocable (P.15.)

Lemma 47 The next step of sequence(PA; PB) after [S1; S2], assuming S2 is not an error state,
is either a next step of PA after [S1; S2] or a next step of PB after [SM;S2], where SM is the end
of a successful completion of PA. Again, if PA is indeterminate, then these two are not necessarily
mutually exclusive.

:error(S2) )
[next step(E,sequence(PA; PB),S1; S2) ,
[next step(E;PA; S1; S2) _
9SM succeeds(PA; S1; SM) ^ next step(E;PB; SM;S2)]].

Proof: From the de�nitions (PL2.3, P.2, P.4) and the fact that error is irrevocable (P.15.)

Lemma 48 If intervals [S1; S2] and [S1A;S2A] cover the same sequence of events, then each sit-
uation SM in [S1; S2] has a parallel situation SMA in [S1A;S2A].

[same events(S1; S2; S1A;S2A) ^ S1 � SM � S2] )
91SMA same events(S1; SM; S1A;SMA) ^ same events(SM;S2; SMA; S2A).

Proof: Using the de�nition of same events (CO.1, CO.2) and making an argument by induction
on the length of the interval [S1; S2].

Lemma 49 If interval [S1A;S2A] corresponds to interval [S1; S2] then S1A is knowledge accessible
from S1.

corresponds(S1; S2; S1A;S2A) ) k acc(S1; S1A).
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Proof: By induction on the length of the interval [S1; S2], using the de�nition of corresponds
(CO.1 - CO.3) and the axiom of memory (K.4).

Lemma 50 If interval [S1A;S2A] corresponds to interval [S1; S2] then each situation SM in
[S1; S2] has a corresponding situation SMA in [S1A;S2A].

[corresponds(S1; S2; S1A;S2A) ^ S1 � SM � S2] )
9SMA corresponds(S1; SM; S1A;SMA) ^ corresponds(SM;S2; SMA; S2A).

Proof: From lemmas 48 and 49 using the de�nition of \corresponding" intervals as knowledge
accessible intervals covering the same events (CO.3).

Lemma 51 If interval [S1A;S2A] corresponds to interval [S1; S2], then each situation SMA in
[S1A;S2A] has a corresponding situation SM in [S1; S2].

[corresponds(S1; S2; S1A;S2A) ^ S1A � SMA � S2A] )
9SM corresponds(S1; SM; S1A;SMA) ^ corresponds(SM;S2; SMA; S2A).

Proof: Using lemma 48, let SM be the situation parallel to SMA. By lemma 49, there is some
situation SMA0 in [S1A;S2A] which corresponds to SM ; by the uniqueness condition in lemma 48,
this can only be SMA.

To simplify the statements of the remaining lemmas, let pa, pb, and p be plans and s1 be a
situation such that:

p = sequence(pa,pb).
:error(s1).
executable(pa,s1).
8S2 succeed(pa,s1,S2) ) executable(pb,S2).

Lemma 52 Failing is never a next step of p.
:error(S2) ) :next step(fail,p,s1,S2).

Proof: Let E be a next step of p after [s1,S2]. By lemma 47, E is always either a next step of
pa after [s1,S2] or a next step of pb after [SM;S2] where pa succeeds over [s1,SM ]. In the former
case, E cannot be fail since pa is executable in s1 (EF.1). In the latter case, E cannot be fail, since
pb is executable following every successful completion of pa.

Lemma 53 If p succeeds over [s1,S2], then the agent knows in S2 that it has succeeded.
[succeeds(p,s1,S2) ^ corresponds(s1,S2,S1A;S2A)] ) succeeds(p,S1A;S2A).

Proof: If p has succeeded over [s1,S2] then, by lemma 45, pa succeeds over [s1,SM ] and pb
succeeds over [SM;S2]. By the executability of pa, the agent knows in SM that pa has succeeded;
that is, pa succeeds in every interval corresponding to [s1,SM ]. By the executability of pb after
the execution of pa, the agent knows in S2 that pb has succeeded; that is, pb succeeds in every
interval corresponding to [SM;S2]. By lemma 50, every interval corresponding to [s1,S2] consists of
an interval corresponding to [s1,SM ] followed by one corresponding to [SM;S2]. Therefore, every
interval corresponding to [s1,S2] consists of a successful execution of pa followed by a successful
execution of pb.

Lemma 54 If p does not succeed over [s1,S2], then the agent knows in S2 that it has not succeeded.
[:succeeds(p,s1,S2) ^ corresponds(s1,S2,S1A;S2A)] ) :succeeds(p,S1A;S2A).
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Proof: Let SM be any situation between s1 and S2. Let SMA be the situation between S1A
and S2A corresponding to SM , as in lemma 50. Since p does not succeed over [s1,S2], it must be
the case that either (1) pa does not succeed over [s1,SM ] or (2) pa does succeed over [s1,SM ] but
pb does not succeed over [SM;S2]. In the former case, since pa is executable in s1, the agent will
know in SM that pa has not succeeded; thus, pa does not succeed over [s1,SM ]. In the latter case,
since pb is executable after any successful execution of pa, the agent will know in S2 that pb has
not succeeded over [SM;S2]; thus, pb will not succeed over [SMA;S2A]. In either case, then p does
not succeed over [S1A;S2A].

Lemma 55 If E is a next step of p after [s1,S2], then the agent knows in S2 that E is a next step.
[:error(S2) ^ next step(E,p,s1,S2) ^ corresponds(s1,S2; S1A;S2A)] )
next step(E,p,S1A;S2A).

Proof: By lemma 47, there are two cases to be considered:

Case I: pa begins over [s1,S2] and E is a next step of pa after [s1,S2]. By the executability of
pa in s1, the agent knows in S2 that E is a next step of pa after [s1,S2]; that is, E is a next step
of pa after [S1A;S2A]. Therefore, by lemma 47, E is a next step of p after [S1A;S2A]; that is, the
agent knows in S2 that E is a next step of p.

Case II: pa succeeds over [s1,SM ]; pb begins over [SM;S2]; and E is a next step of pb after
[SM;S2]. Let SMA be the situation between S1A and S2A corresponding to SM (Lemma 50).
By the executability of pa, the agent knows in SM that pa has succeeded; that is, pa succeeds over
[S1A;SMA]. Since pb is executable after a successful execution of pa, the agent knows in S2 that
E is a next step of pb after [SM;S2]; that is, E is a next step of pb after [SMA;S2A]. Thus, by
lemma 47, E is a next step of p after [S1A;S2A].

Lemma 56 The possibility that E is a next step of p after [s1,S2] is consistent with what the agent
knows in S2 only if E is indeed a next step of p after [s1,S2].

[begins(p,s1,S2) ^ corresponds(s1,S2; S1A;S2A)] )
[next step(E,p,S1A;S2A) ) next step(E,p,s1,S2)].

Proof: By lemma 47, there are two cases to consider.

Case I: pa begins over [S1A;S2A] and E is a next step of pa after [S1A;S2A]. Since pa is
executable in s1, and [S1A;S2A] corresponds to [s1,S2], it follows that E must be a next step of pa
after [s1,S2].

Case II: pa succeeds over [S1A;SMA], pb begins over [SMA;S2A], and E is a next step of
pb after [SMA;S2A]. Let SM be the situation in [s1,S2] corresponding to SMA, as in lemma 51.
Since pa is executable in s1, pa must succeed over [s1,SM ]. Since pb is executable in SM , E must
be a next step of pb after [SM;S2]

In either case, E is a next step of p after [s1,S2].

Lemma 57 Plan p is executable in s1.
executable(p,s1).

Proof: Combining lemmas 52 through 56 with the de�nition of executability (EF.1).

Theorem 7 If PA is executable in S1 and PB is executable after every successful completion of
PA, then sequence(PA; PB) is executable in S1.

[ executable(PA; S1) ^ [8S2 succeeds(PA; S1; S2) ) executable(PB; S2)]] )
executable(sequence(PA; PB),S1).
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Proof: Universal abstraction from lemma 57, using the assumptions enumerated before lemma
52.

Lemma 58 If PAS is a specialization of PA and PBS is a specialization of PB, then sequence(PAS; PBS)
is a specialization of sequence(PA; PB).

[specialization(PAS; PA) ^ specialization(PBS; PB)] )
specialization(sequence(PAS; PBS), sequence(PA; PB)).

Proof: From the de�nitions of sequence (PL2.3) and specialization (P.9).

Theorem 8 If PE is epistemically feasible as task in S1 and the agent knows in S1 that PF will
be epistemically feasible as task after every successful completion of PE, then sequence(PE; PF ) is
epistemically feasible as task in S1.

[ task ep feasible(PE; S1) ^
[8S1A;S2A [k acc(S1; S1A) ^ succeeds(PE; S1A;S2A)] )

task ep feasible(PF; S2)]] )
task ep feasible((sequence(PE; PF ),S1).

Proof: From de�nition of epistemic feasibility as a task (EF.4) we can infer:

� There exists a plan PES such that in every world S1A accessible from S1, PES is a special-
ization of PE and PES is executable.

� For every pair of worlds S1A;S2A such that S1A is accessible from S1 and PE succeeds over
[S1A;S2A], there exists a plan pfs(PF; S2A) such that in every world S2B accessible from
S2A, pfs(PF; S2A) is a specialization of PF in S2B and is executable in S2B.

Let I be the set of all intervals [S2A;S3A] satisfying the following conditions: there exists an
S1A that is knowledge accessible from S1; PES executes over [S1A, S2A]; and pfs(PF; S2A)
executes over [S2A;S3A]. Let PFS be the plan corresponding to I (axiom P.1). Let PS =
sequence(PES; PFS).

Now, by construction, PES is executable in every situation S1A accessible from S1. By con-
struction, for every such S1A, and for every S2A such that PES succeeds over [S1A;S2A], PFS is
executable. Therefore, by theorem 8, PS is executable in every such S1A. By lemma 58, PS is a
specialization of sequence(PE; PF ). Therefore, by de�nition EF.4, PS is epistemically feasible as a
task.

4.7 SuÆciency of Moore's rules for conditionals

In this section we will show the following two versions of Moore's suÆcient condition for the epistemic
feasibility of conditionals: (rule 2 of section 2.2)

Rule 2 for executability: If either
(a) it is known that Q holds in S and PA is executable in S; or
(b) it is known that Q does not hold in S and PB is executable in S

then the plan \if(Q;PA; PB)" is executable in S1.

Rule 2 for epistemic feasibility as task: If either
(a) it is known that Q holds in S and PA is epistemically feasible as task in S; or
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(b) it is known that Q does not hold in S and PB is epistemically feasible as
task in S

then the plan \if(Q;PA; PB)" is epistemically feasible as task in S1.

Actually, we will just prove part (a) of each; the proof of (b) is exactly analogous.

Lemma 59 If it is known that PE executes from the current state if and only if PF does, then PE
is epistemically feasible as task if and only if PF is.

[8S1A;S2A k acc(S1; S1A) )
[executes(PE; S1A;S2A) , executes(PF; S1A;S2A)]] )

[task ep feasible(PE; S1) , task ep feasible(PF; S1)].

Proof: Follows directly from Lemma 42, together with the observation that any specialization
of PF from a knowledge accessible situation S1A is also a specialization of PE. Note that this
corresponds to rule 4 of section 2.2 for epistemic feasibility as task.

Theorem 9 If Q is known in S1, then the conditional \if(Q;PE; PG)" is executable just if PE is
executable and is epistemically feasible as task just if PE is epistemically feasible as task.

[PF=if(Q;PE; PG) ^ 8S1A k acc(S1; S1A) ) holds(Q;S1A)] )
[executable(PF; S1) , executable(PE; S1)] ^
[task ep feasible(PF; S1) , task ep feasible(PE; S1)].

Proof: By de�nition of the conditional (PL2.4), for any situation S1A accessible from S1, PF
executes over [S1A;S2A] if and only if PE executes over [S1A;S2A]. The result then follows from
lemmas 42 and 59.

5 Limitations, Extensions, and Future Work

The theory above assumes a particular representation language and a restrictive ontology. It will be
necessary to loosen these if the theory is to be applied to rich real world domains. Certain extensions
can be made easily; others appear to be very diÆcult:

Continuous Time: In a forthcoming paper [3] I will describe the generalization of this theory
to continuous action. We posit that for each agent there is a minimum time � between his perceiving
a fact and his reacting to his perception. Under that assumption, we propose the following de�nitions:

De�nition 25 Plan P is executable for agent A with delay � in situation S1 if: (1) All
executions of P starting in S1 complete successfully; and (2) After any beginning of P
starting in S1, A will know whether P will complete within time � and A will know all
the ways to continue P for time �.

De�nition 26 Plan P is epistemically feasible as task for agent A in situation S1 with
delay � if there is a plan PC such that A knows in S1 that PC is a specialization of P
and that PC is executable in S1 with delay �.

Epistemic Theory: It is easy to adapt most of the theory to a more explicitly intensional
representation for epistemic states, such as a modal or a syntactic theory. The largest di�erence is
in the theory of plans. The view we have taken that any set of intervals constitutes a plan becomes
unnatural in an intensional theory. However, without that assumption, some of the proofs in section
3 fall through. It would be interesting to study how this gap could be �lled in.
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Concurrency: Synchronous concurrency can be handled by modifying the time line so that
an arc between situations corresponds to a set of primitive actions being executed simultaneously
[6, 10]. Asynchronous concurrency can be reduced to synchronous concurrency by representing an
action A as the iteration of the primitive action \continue(A)" for an indeterminate number of time
quanta.

Actions with Indeterminate E�ects: Our theory assumes that in each situation an action
has a determinate result. In many cases, such as rolling a die, this assumption may not be appro-
priate. There are two ways of extending our theory to accommodate such actions. The simpler
approach is to treat this simply as a case of ignorance. Before rolling a die, there are six accessible
possible worlds: in the �rst, the die will come up one; in the second, it will come up two; and so on.

An alternative would be to modify the time line to admit two kinds of branching: one corre-
sponding to the agent's choice of action and the other to indeterminacy of e�ect. This approach
would require the theory to be reformulated to distinguish clearly between the sequence of actions
performed, which is under the agent's control, and the interval traversed, which is not. (The current
theory essentially uses an interval as a convenient way to denote a sequence of events.)

External Events: The incorporation of external events into our theory does not raise any
further diÆculties besides those already addressed above. The fact that external events occur con-
currently with the agent's actions can be handled in the same way as concurrent actions. The fact
that they may not be entirely predictable can be handled in the same way as actions with indeter-
minate e�ects. The fact that they occur as a result of physical law rather than agent choice can
be handled by asserting a theory of physical constraints among events and states of the usual kind.
Some speci�c examples are analyzed in [3]

Other Agents: If there is more than one autonomous intelligent agent, then each agent has
his own epistemic state and his own choice of actions. Giving agents separate epistemic states
requires only making the agent an additional argument to the knowledge accessibility relation (or
whatever other epistemic representation is used.) Giving agents separate powers of choice requires
restructuring the time line along the lines discussed above: we must admit more than one type of
branching (one for each agent), and we must consider an agent as controlling only the sequence of
his own actions but not the overall interval that will be traversed.

A further diÆculty is that, in planning, we often wish to predict that, though an agent has
a choice of actions, he will in fact do one particular thing. For example, in an environment of
cooperative agents, we would like to state the default rule, \If one agent makes a request of another,
then the latter will carry it out, if he can." To express this, we need to distinguish between what
an agent can do and what he will do; that is, we need to be able to say that one particular branch
of the time line corresponds to what actually will happen. The full treatment of this issue has not
yet been worked out. [12, 18]

Planning language: For practical applications, perhaps the most important problem is to
develop a simple tractable language of knowledge e�ects and knowledge preconditions, analogous to
the STRIPS [5] language of add lists, delete lists, and precondition lists. An interesting preliminary
attempt at this is made in [4].

Hierarchy of actions: A fundamental premise of our work is the assumption that there exists
a particular level of \primitive" actions. It is often useful to reason about actions at multiple levels of
granularity [9]. re�ning a coarse description using high-level actions into a more precise description
using low-level actions. For such reasoning to be coherent, there should be some connection between
the conclusions that are drawn at the various levels; if a plan P is found to be feasible when described
at a high-level, then (at a minimum) there should be a low-level re�nement of P that is likewise
feasible. It is not at all clear that this kind of consistency can be achieved for the theory we have
presented here.
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Better fundamental theory: Finally, I am not convinced that our theory has reached rock
bottom in the analysis of epistemic feasibility. The de�nitions are complicated and must be mentally
argued through; they do not evoke immediate assent. It is clear that di�erent notions of feasibility
are appropriate to di�erent circumstances; our theory does not provide any indication when to use
one de�nition rather than another. It seems likely that there is some deeper sense of an agent being
able to carry out or to think through a plan, of which the theory developed here is a consequence
or an approximation.
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