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Abstract

Additive multilevel Schwarz methods are developed for conforming finite element
approximations of second order elliptic problems. We focus on problems in three di-
mensions with possibly large jumps in the coefficients across the interface separating the
subregions. We establish condition number estimates for the iterative operators, which
are independent of the coeflicients, and grow at most as the square of the number of
levels £. For the multiplicative versions, such as the V-cycle multigrid methods using
Gauss Seidel and damped Jacobi smoothers, we obtain a rate of convergence bounded
from above by 1 — C £=2. We also characterize a class of distributions of values of the
coefficients, called quasi-monotone, for which the error of the weighted L2-projection
is stable and for which we can use the standard piecewise linear functions as a coarse
space and obtain condition number estimates independent of the number of levels, sub-
regions, and the coefficients. We also design and analyze multilevel methods with new
coarse spaces given by simple explicit formulas. We also consider nonuniform meshes,
multilevel iterative substructuring methods, and two-level additive methods with inexact
solvers for the local problems.

In a second part, two-level domain decomposition methods are developed for a simple
nonconforming approximation of second order elliptic problems. A bound is established
for the condition number of these iterative methods that grows only logarithmically
with the number of degrees of freedom in each subregion. This bound holds for two
and three dimensions and is independent of jumps in the value of the coefficients. For
these finite elements methods, a preconditioner is constructed from the restriction of the
given elliptic problem to overlapping subregions into which the given region has been
decomposed. In addition, in order to enhance the convergence rate, our preconditioners
include a nonstandard coarse mesh component of relatively modest dimension. We also
consider multilevel Schwarz preconditioners and show that all results for the conforming

case also hold for the nonconforming case.
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Chapter 1

Introduction

1.1 An overview

The development of numerical methods for large algebraic systems is central in the de-
velopment of efficient codes for computational fluid dynamics, elasticity, and other core
problems of continuum mechanics. Many other tasks in such codes parallelize relatively
easily. Therefore, the importance of the algebraic system solvers is increasing with the
arrival of new parallel computing systems with many fast processors, systems that are
at least as capable as traditional supercomputers. The development of these methods
makes it possible to carry out simulations in three dimensions, with very high resolu-
tion, relatively easily. Much higher resolution than now possible will be required in
many applications in order to gain insight into important open problems in science and
engineering.

Domain decomposition (DD) methods provide a very natural way of deriving parallel
algorithms for the numerical solution of partial differential equations and have recently
attracted much theoretical and practical interest; see e.g. [46], [20], [21], [47], [22], [51],
[50]. DD methods can often be viewed as preconditioners for iterative methods like the
conjugate gradient method or GMRES. Much has recently been learned about how to
design these special preconditioned conjugate gradient type methods to obtain very fast
convergence.

Such a successful preconditioner method is built mainly from two major components:
many local problems and one global problem. The local problems typically correspond

to subproblems that correspond to the original (or a similar) problem restricted to sub-



regions into which the given a domain has been divided. In a multiprocessor machine,
with distributed memory, one approach is to assign a subregion (of the domain of the
PDE) to each of the processors, and then to triangulate these subdomains to obtain a
fine mesh and a discretized system. The domain can be decomposed into overlapping
or non-overlapping subregions. In the former case the algorithms are often refered as
Schwarz methods with overlap, in the latter they are called iterative substructuring meth-
ods; this distinction is however not always clear because many iterative substructuring
methods can be analyzed as Schwarz methods.

When DD algorithms are used, a large number of subproblems can be solved in par-
allel. The local interaction is through the interexchange of information between neigh-
boring subregions. In addition, in the elliptic case, it is necessary to introduce a global
coarse part of the preconditioner, with only one or a few degrees of freedom per subre-
gion, to model the global interaction of the subregions and to obtain fast convergence in
case of many subregions.

There are several important reasons why domain decomposition methods have be-

came popular in recent years : They
i) are well suited for parallel computers;
ii) are of great intrinsic mathematical interest;
iii) apply to regions with complex geometries;
iv) have a solid theoretical foundation;

v) make it possible to use different numerical schemes for the different subprob-
lems, such as the finite element method, h, p and hp versions, fast Poisson

solvers, finite differences, spectral and collocation methods;

vi) allow the use of different kinds of equations in different subregions whenever

the underlying physics is of a different nature;
vii) can be combined with multiple scale solutions and local refinement;

viii) apply to several important physical problems of nonlinear nature arising from

mechanics, elasticity, fluid dynamics, aerodynamics and thermomechanics.



In this thesis, we develop Schwarz methods for conforming and nonconforming finite
element approximations to boundary values problems of second order, self-adjoint, lin-
ear elliptic PDE’s. A special emphasis is placed on problems in three dimensions with
possibly large discontinuities in the coeflicients of the PDE’s. There is a variety of engi-
neering and natural science applications where our methods can be very useful. Among
them are problems that arise in the computation of homogenized coefficients. Composite
materials, phase transitions, optimal shape design, polycrystaline dielectrics, polyphased
fluids, permeability of porous media are examples of such applications. Other impor-
tant applications arise in contaminant transport, groundwater flow, and oil reservoir

simulation.

The thesis is organized as follows. In the remainder of Chapter 1, we review some

basic definitions and useful results about Sobolev spaces for scalar and vector functions.

In Chapter 2, we first review some iterative methods for positive definite linear system
of equations. We then discuss recent results on Schwarz methods, which are regarded
as generalizations of the first domain decomposition method proposed in 1869 by H. A.
Schwarz [78]. In particular, a general abstract variational framework developed by Dryja
and Widlund is usaed to analyze Schwarz methods in terms of subspaces and bilinear

forms.

In Chapter 3, we introduce the elliptic model problem and corresponding discrete
system using the standard h-version finite element method and the lowest order Raviart-
Thomas mixed method; a parallel discussion of well-posedness of these two formulations
is given. The latter formulation is useful in applications for which accurate approximation
to the flux variable of the elliptic problem is required and the solution (of the elliptic
problem) is not sufficiently smooth; this is the case where there are highly discontinuous
coefficients. We next review the Arnold-Brezzi theory which takes advantage of an
equivalent hybrid formulation of the discrete mixed problem to reduce a symmetric
indefinite problem to one which is positive definite. The resulting problem is directly
related to the nonconforming P finite element problem; many local elementwise problems
also need to be solved. We can then apply our Schwarz methods developed in Chapter
5 and recover the flux variable by a simple element-by-element post-processing. This
procedure appears to hold the best promise for obtaining an approximation to the flux

variable for elliptic problems with highly discontinuous coefficients in three-dimensional



space.

The main contributions of our work are discussed primarily in Chapters 4 and 5.

Chapter 5 is an extension of a technical report Two-Level Schwarz Methods for
Nonconforming Finite Flements and Discontinuous Coefficients which was completed
in March 1993 [76]. This work was inspired by earlier multilevel studies, cf. Brenner [13],
Oswald [65], as well as by recent work by Dryja, Smith, and Widlund [35], but a number
of additional technical difficulties had to be overcome. They are primarily related to our
efforts to treat quite general coefficients. One of the main ideas relates to the construc-
tion of certain isomorphisms, or local interpolators, which map between conforming and
nonconforming spaces and obtaining several results for the nonconforming case which
are known for the conforming case.

These isomorphisms were apparently first used by the author in a short version of
[76] that was entered into Copper Mountain student competition in mid-December 1992.
We note that recently considerable attention has been focused on related techniques for
domain decomposition methods with nonconforming spaces; for second order scalar prob-
lems (cf. Brenner [12], Cowsar [28, 29], Cowsar, Mandel, and Wheeler [30], Sarkis [77]),
for plate elements (cf. Brenner [10]), and for non-nested meshes (cf. Cai [17, 16], Chan,
Smith, and Zou [24]). We also note the face based coarse spaces, which were introduced
n [76], have also been discussed in the conforming case in the recent work by Dryja,
Smith, and Widlund [35]. We also introduce approzimate harmonic extensions, and
B- Neumann-Neumann coarse spaces (generalizations of the Neumann-Neumann coarses
space introduced by Dryja and Widlund [41], and Mandel and Brezina [55]). These top-
ics are also discussed in the conforming case in Chapter 4. Finally, at the end of Chapter
5, we use our results of Chapter 4 to analyze some multilevel for hybrid-mixed finite
element methods that are insensitive to the jumps of the coefficients across substructure
interfaces and also to the number of substructures; see [77].

Chapter 4 is an extension of a technical report Multilevel Schwarz Methods for Elliptic
Problems with Discontinuous Coefficients in Three Dimensions completed in March 1994
in joint work with Maksymilian Dryja and Olof Widlund [34]. This work follows earlier
work on iterative substructuring methods [35] and Neumann-Neumann type methods
[41]. Tt is also focused on making the performance of the algorithms independent of

the jumps in the coefficients. We explore the use of nonstandard, exotic coarse spaces,



and also derive a new condition on the coefficients, quasi-monotonicity, for which we
can establish the same basic results for L2-projection in the constant coefficient case.
For such coefficients, we show that our multilevel methods converge at the rate which
is independent on the number of refinement levels. A strategy for selecting nonuniform

refinement of the mesh near singularities is considered.

1.2 Sobolev spaces

Sobolev spaces are of fundamental importance in studying elliptic boundary value prob-
lems. The existence for many such problems of generalized solutions is readily estab-
lished using variational principles. Classical existence is accordingly transformed into the
question of regularity of generalized solutions under appropriate boundary conditions.
Sobolev spaces are also important for numerical analysts who need to answer questions
related to well-posedness of the discrete system and how close the discrete solution is to
that of the continuous problem. In this thesis, the main use of Sobolev space theory is
to analyze preconditioners for discrete systems.

Many elliptic boundary values problems, which arise in practice, are posed in domains
which are simple but not smooth. In finite element studies, for instance, we often face a
geometry composed of polyhedra. In domain decomposition methods, we also encounter
substructures that are polyhedra. Thus, it is natural to introduce Sobolev spaces for
the class of Lipschitz domains. For this class of domains, it is possible to obtain several
equivalent norms. It is important to have several equivalent norms because that we can
then choose the most appropriate one for a certain problem.

Let G denoted a region, i.e. an open, connected set, in ®?. In later chapters, G will

be the whole region 2, a substructure €;, or a finite element 7.

Definition 1.1 (Lipschitz region) Let G be an open subset of R?. G is a Lipschitz
region, if for every x € G, there exist a neighborhood © C R of x and a mapping
from O onto a unity cube O = {|&;| < 1,7 =1,---,d} such that

i) 1 is injective

ii) 1 logether with v~ (defined on O) is Lipschilz continuous



i) GNO ={y € G : &4 = ¥(y)a < 0} where ¥(y)q denotes the dth component
of ¥(y).

A consequence of (iii) is that the boundary 0G is defined locally by the equation ¥(y)s = 0.

We remark that if G is a bounded Lipschitz region, we can, by compactness, select a

finite number of pairs (O;,4;), 7 =1, -, M, to cover a neighborhood of 9G.

Definition 1.2 (L?(G)) Lel u be a Lebesque measurable function and let G be an open
region in R, The Hilbert space L*(G) is defined by the norm

Hu”%z(g):/qudx

Definition 1.3 (H'(G)) Let G be an open region in R¢. The Sobolev space H(G) is

defined by the seminorm
|u|%[1(g) = /gVu -Vudz,
and the norm
lull gy = lulfr(g) + 2 llullZ2(q)

where Hg is the diameter of G. Here, Vu has to be understood as distributional deriva-

tives.

The scale factor Hg is obtained by a change of variable beginning with the standard

definition of the norm for a domain with unit diameter.

Definition 1.4 (H%(G),0 < s < 1)  Let G be an open region in R%. The fractional
order Sobolev space H*(G), 0 < s < 1, is defined as the space of all w € L*(G) such that

2 Ju(
d dy < 1.1
g = [, [ dedy < (L)
with norm

ellFregy = lults(g) + H—ésHuHiz(g)

For a bounded Lipschitz domain G, it can be shown [49, 62] that the space H*(G) is the
completion of the space C**(G) (‘or C*(G)) with respect to || - [|+(g); see also [1]. The



space C'*(G) consists of the infinitely continuously differentiable functions defined in G.
The space C*(G) C C*(G) is the restriction of C*°(R?) to G.

For an open domain G, the space H3(G) C H*(G) is defined as the completion of
C5°(G) with respect to || - ||fs(g). Here, the space C§°(G) is the subspace of C*°(G) of
functions with support in G. For a bounded Lipschitz domain, it can be shown [49] that
H*(G)=H{(G), for 0 < s < 1/2.

We also are interested in studying the behavior of a function u € H§(G) extended
by zero, outside G; let us denote this extension by @. It is possible to show [49] that for
bounded Lipschitz regions G, and s € [0,1/2)U (1/2,1] that

ae H*RY) if we HYG).

For v € Hé”(g), @ may not belong to H'/%(R?). However, we can define a subspace

H(}({Q(g), for which we have a bounded extension.
Definition 1.5 (HééQ(g)) Let G be a bounded Lipschitz region. The Sobolev space
H(}({Q(g) is defined by
2 _ 2 |u(z)|?
HUHHSO/Q(Q) = HUHH1/2(g) + /g md.@ (12)
Here, d(z,0G) denotes the distance from z to the boundary 0G.

It is possible to show [49] for any bounded Lipschitz domain, that

€1 HaHHlﬁ(éRd) < Hu”iféf(g) < e ”ﬂHHlﬁ(md)-

The constants ¢; only depend on the Lipschitz constants of 0G.
Next we state a lemma which makes it possible to extend results from a cube or a

smooth region to a bounded Lipschitz regions.

Lemma 1.1 Let G and Gy be bounded open regions, and let 1 be a bi-Lipschitz mapping
from Gy to Gy. Then, for u € H*(Gy), 0 < s <1,

clu o Ylgsgy) < |ulasg,) < Clu o ¥lgsg,)-

This lemma is proved in Necas [62] for s = 0,1. For intermediate s, we prove it by

working straightforwardly with formula (1.1); see also Grisvald [49].



1.2.1 Traces spaces

We shall need Sobolev spaces on manifolds such as dG, or an open subset I' C 0G. Let
us assume that G is a bounded Lipschitz region in ®? with charts (O;,¢5),j=1,---.M

covering 0G.

Definition 1.6 (H°(I)) A distribution w on I belongs to H*(I'), 0 < s < 1, if
%o wj—l € H*(v;(0; nT)), forj=1,---, M.

One possible seminorm for H*(I'), 0 < s < 1 is given by

M
|u|%IS(F) = Z|uo¢j_1|12118(w](0]01“))7 (1.3)
7=1
the L%(I')—norm by
M
lallZory = 2 1w o 95 T2y, (0,am): (1.4)
7=1
and the #*(1')-norm by
lalByeqey = ey + 575 Nl (15)
He() = IZIHs(T) HZ L2(T)" .

Note that the seminorms and norms introduced in (1.3), (1.4), and (1.5), depend on
the charts (O, ;) chosen. The definition of the norm L?(T') and the seminorm H'/%(99)
that we will use in this thesis will be introduced later and they are independent on the
charts chosen and are equivalent to (1.4) and (1.3), respectively.

We note that for a bounded Lipschitz region, the outward vector normal to 0G is
defined almost everywhere with respect to a hypersurface measure d5; see Grisvald [49].
This hypersurface measure is uniquely defined in terms of the d-Lebesgue measure dz
and 0G. It does not depend on the chosen charts. For a piecewise smooth 0G, dS
coincides with the standard notion of surface area.

The measure associated with the charts (O;, ;) can be obtained by

M
d5¢ = Zd€t|Jd_1(¢j_l)| ds.

i=1

Here, ds is the standard (d — 1)-Lebesgue measure, and Jd_l(@bj_l) is the (d—1) x (d—1)

matrix obtained by deleting the last row and column from the Jacobian of ¢J_1 Using

8



that ®; are bi-Lipschitz, we see that the measures dSy and d5 are equivalent. Hence,

we modify (1.4) and define

Definition 1.7 ([|ul|z2(r)). Let G be a bounded Lipschilz region and let I' be an open

subset of 0G. Let u be a measurable function with respect to the hypersurface measure

dS. The L*(T)-norm is defined by

[ /Fu2 ds. (1.6)

Note that dS, becomes less equivalent to dS when M is large or when the Lipschitz
constants of the v; and ¢J_1 become larger; i.e. for bad geometries. It is clear that for a
cube, tetrahedron, or sphere we obtain good equivalence. Similarly arguments applies to
a face of a cube, or a face of a tetrahedron. For instance, we can introduce an equivalent
H'/?-seminorm for a face F of a cube (or tetrahedron) by using (1.1) with d = 2, s = 1/2,
and G = F obtaining

Ju(z) = u(y)*
22, // Ix—yI?’ ds ds. (1.7)

Using the same arguments, we also have an equlvalent seminorm

2

since the nonlocal contribution of (1.8) is relative unimportant for well shaped regions
like cubes, tetrahedra, or spheres.

Finally, we are interested in knowing the behavior of a function u in H'/?(T') when
extended by zero on 0G\I'; let us denote this extension by @(dG). We use the same

arguments as above, and see that on a face F of a cube, we can use the norm

4l oy = Vil + . A s,

to obtain a norm equivalent to HUHHI/2(8Q).
We now introduce the concept of trace maps. We have an obvious definition of
boundary values, or trace, on dG, for functions in C°°(G). These maps can be generalized

to functions in Hl(g) for a bounded Lipschitz region G; see Necas [62].

Lemma 1.2 (Trace and Extension theorem) Let G be a bounded Lipschitz region.
The trace map v : u — u|ag, defined for C*°(G), has a unique continuous extension from

HY(G) onto H'*(0G). This operator has a right continuous inverse.



As a consequence, we can easily show that the kernel of v is H}(G), i.e.
HY(G)={u€ H'(G) : yu=0 on 8G}.

Another important consequence of Lemma 1.2 is that the seminorm |U|Hl/2(ag) in-

troduced can be replaced by the following equivalent seminorm

Definition 1.8 (H'/%(0G)) Let G be a bounded Lipschilz region in R?. Let u be a square
integrable function with respect to the hypersurface measure dS. We define the norm and

seminorm for the space H1/2(6g) by

o) = et Vo (19
and
1l 1206y = 14217200, + % ul2 5): (1.10)
respectively.

We now introduce spaces that will be used in the mixed formulation of elliptic prob-

lems.

Definition 1.9 (H~'/%(8G)) The dual space of H'/*(3G), is denoted by H='/?(9G) and

is a Hilbert space with the norm

JoguvdS
lullg-12(0gy = sup LA
veH/2(8G) HUHH1/2(8Q)

Definition 1.10 (H(div;G)) The space H(div; G) is defined by

H(div;G) = {p = (p:)a<i<a) € (L*(9))": divp € L*(G)}

and is a Hilbert space with the usual graph norm

d
1Pl divsgy = Y _lIpillizg) + [ldivp|iz(g)-
1=1

We know that for a Lipschitz region, the unit normal n to the boundary 0G is defined
almost everywhere. Thus, for a smooth vector function p on G, the normal component
p-n on 9G is defined almost everywhere. The following lemma extend the notion of the

normal component to H(div;G) functions.

10



Lemma 1.3 (Trace and Extension theorems for H(div;G)) Let G be a bounded

Lipschitz region. The trace map v, : p — Plag, defined for C*°(G), has a unique
continuous extension from H(div;G) onto H—1/2(8g). As a consequence, the following

characterization of the norm on H~'/%(9G)

| =1/ = inf P s 1.11
[l 1 2(89) peH(dzv;g):pn:uH HH(dzv,g) ( )

is valid.

Moreover, we also have a Green’s formula

Lemma 1.4 (Green’s Formula) Let G be a bounded Lipschilz region. Lel p €
H(div;G). Then,

/(Vv-p—l—vdz'vp)d.x:/ vp-ndS Yve HYG). (1.12)
g oG
Lemma 1.5 (Poincaré’s inequality) Let

_ 1 /
t=— | udz,
G| Jg

where we denoted |G| the volume of G. Then, there exists a constant C(G), which depends
only on the Lipschitz constants of 0G, such that

| — allr2(g) < C(G) Hglulprgy, Vue HY(G).

We also need the Poincaré-Friedrichs inequality. The idea of its proof can be found

in Ciarlet (Theorem 6.1) [27] and in Necas (Chapter 2.7.2) [62].

Lemma 1.6 (Poincaré-Friedrichs’ inequality) Let I' be a an open subset of 0G with
positive measure. Then there exists a constant C; (G,T) such that Vu € H(G)

1
Juleig) < €1 (6.1) B (ulgy + 7= ( [ 7ude)?), (113)
and
1
gy < €2 (6.1) HE (ulfpy + 77— [ (v de). (1.14)

The constants C; (G,1') depend only on the Lipschitz constants of 3G and on the relative

area of I' in comparison to 0G.

11



Proof.
We are only going to prove (1.13). The proof of (1.14) is similar. Consider initially a
region G with diameter 1; to get the general result, we use a linear change of variables.

We first prove that the functional f, given by

(o) = /des, (1.15)

is continuous on the space H(G).

In fact
[fo)] < [lollzry < C (D) [lollz2(r)
< €109, Do)l grrary 2 C2(9G,T) [|v]l (o) (1.16)
using the Cauchy-Schwarz inequality and a trace theorem.

We argue by contradiction assuming that (1.13)is false. Then, there exists a sequence

{v}72, such that

lollgrgy =1 V1, (1.17)

and
lli{goﬂvlﬁp(g) + (f(u))*) = 0. (1.18)
Since the sequence {v} is bounded in || - [|g1(gy, we can by Rellich’s theorem find a

subsequence, again denoted by {v;}, and a function o € H'(G) such that
g o =2l z2(g) = 0. (1.19)
By using (1.18), we have
ol F1gy =0 and (%) = 0.

Therefore, © = 0 and

fm for = 2l[m1g) = 0, (1.20)
which contradicts (1.17).

a

The following abstract lemma allows us to show well-posedness of certain elliptic

problems.
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Lemma 1.7 (Lax-Milgram Lemma) Let B be a bilinear form on a Hilbert space H.
Assume that B is bounded

[B(w,v)] < K |[wll# - [lolln Yw,0oeH
and coercive, i.e. there exists a v > 0 such that
B(v,v) > v|v||3, YveH.

Then, for every bounded functional f € 'H*, there exislts a unique element uy € H such
that
B(ug,v)= f(v) VveH,

and

The counterpart of the Lax—Milgram Lemma for certain saddle point problems is

given by (cf. Brezzi and Fortin [15])

Lemma 1.8 (Babuska-Brezzi Lemma) Let V and Q) be Hilbert spaces with the norms
|- lv and || - ||, respectively. Let a(-,-) be a continuous bilinear form on V- x 'V, let b(-, )
be a continuous bilinear form on'V X @), and Let us suppose that the range of the operator
B:V — @, defined by (Bp,v) = b(p,v), is closed in Q', i.e. there exists kg > 0 such
that

b(p,v)
sup
pev Ipllv

> kollvllg,Kerpr = ko inf BT v+ wlle) Vv e@. (1.21)

voeKer

Let us also suppose that the operator given by the bilinear form a(-,-) is elliptic on Ker

B, i.e. there exists ag > 0, such thal

; . . __a(qo,Po)
infy, e Kerp SUPpoe KerB Tpolly flaoly = 0>
(1.22)

: . . a(Po,90)

infpoe Kers SUPqoe Ker s Tasly Ipollv = 0
Then the problem:
Findq eV and u € Q such that

a(q,p) +b(p,u) = g(p) Vp,eV
{ b(q,v) =f(v) Vveq,

13



has a solution (q,u) for any g € V' and for any f € ImB. The first component, q, is

unique and u is defined up to an element of Ker BT . Furthermore

1 4 el
lallv < gl + (1 + )_”f”Q : (1.23)

g
and

Ml Dl T
IullgyKersr < o1+ e Dlollvr + L+ o (1.24)

We note that the conditions (1.21) and (1.22) of this Lemma are not only sufficient but

also necessary for the existence of a solution; cf. Brezzi [14].
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Chapter 2

Domain Decomposition
Techniques

2.1 Iterative methods

Let
Az =b (2.1)

be a linear system of equations arising from a discretization of a symmetric elliptic
problem by some finite element method. The stiffness matrix A is real, symmetric,
positive definite, and sparse.

Direct methods give exact solutions in exact arithmetic. The best known involve a
triangular factorization of the matrix A but there are sometimes other options, such as
fast Poisson solvers. Methods based on triangular factorizations can be impractical if n
is large, because the factors are often much less sparse than A, and much more storage
is necessary.

In order to fix ideas, let us assume in this paragraph that A arises from a discretization
of a Poisson equation with a uniform triangulation of a unit square (cube) using piecewise
linear functions. Let us denote by n the total degree of freedom of the system; the
degree of freedom are ordered now by row. In two dimensions, the work and the storage
required by the band Cholesky method are O(n?) and O(n®/?), respectively, and in
three dimensions are O(n7/3) and O(n°/3), respectively; cf. Golub and Van Loan [48)].
For the nested dissection method, a special variant of Cholesky’s method (cf. George

[44]), the work and the storage required in two dimensions are O(n*?) and O(nlog(n)),
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respectively; see George and Liu [45]. Using the same techniques as in [45], we obtain,
for three dimensions, lower bounds for the work and the storage which are O(n?) and
O(n4/3), respectively. These bounds reflect the experience that methods which are based
on direct factorization of the stiffness matrix can be prohibitively expensive.
Alternatives to the direct methods are given by ilerative methods. These methods
generate a sequence of approximate solutions {z;} and often involve the matrix A only
in terms of matrix-vector multiplications and/or inversions of submatrices of A. Well
known examples are Jacobi, Gauss-Seidel, SOR, Symmetric SOR, Block Jacobi, Block
Gauss-Seidel, Chebyshev semi-iterative, and conjugate gradient type methods; cf. Golub

and Van Loan [48].

2.1.1 Conjugate gradient type methods

The conjugate gradient algorithm (CG) is often an effective iterative algorithm to solve

symmetric, positive definite systems because:

i) it does not depend upon parameters that are sometimes hard to choose prop-
erly; Chebyshev semi-iterative methods, for example, require parameter in-

put;

ii) it has good properties with respect to complexity and storage since it is based

on a three-term recurrence formula;
iii) it is founded solidly in theory;

iv) for a well conditioned matrix A, CG converges to a good approximate solution

in relative few iterations;

v) the explicit representation of A is not needed. We only need to know how to

apply A to a given vector;

When A is not well conditioned, which is generally the case for discretizations of
elliptic problems, we can introduce a preconditioner B and solve the preconditioned

linear system

BAz = Bb. (2.2)
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To obtain the preconditioned conjugate gradient algorithm (PCG), we first consider

the standard CG applied to the transformed system
Ai =
where A = BY/2ABY2z, b= BY?p,and & = B~1/?4.
Conjugate Gradient Algorithm

Set k = 0; Zo = 0; and 7o = b

while ||7x||g-1 > €]|70|| g1

E=k+1
ifk=1

P1=To
else

Br = (Fr—1,Tr-1)/(Tr—2,Tr—2)

Pr = Te—1 + BePr—1

end
ar = (Fr_1,7r-1)/ (Pr, Apr)
Tp = Tp—1 + QpPr

Tr = Th—1 — Qp APy
end

Let m = k&

Next, we eliminate the explicit reference to the matrix BY/2ABY/2 by defining py =
B_l/ka, T, = B_l/Zxk, 7 = B1/2rk, and zp = Brg, and obtain
Preconditioned Conjugate Gradient Algorithm

Set k=0;29p=0;and rg =b

while [[r¢]l2 > el|roll

Solve zp = Bry,

k=k+1
ifk=1
P1= %0
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else
Bk = (ri_y 26-1)/(1E_y» 2k=2)
Pk = 2k—1 + BrPr—1

end

ar = (rF_ 1, z5-1)/ (Pk, Apk)

Tp = Tp—1 + QkPk

TR = Tp—1 — QL Apg

end

Let m =k
We remark that the i and aj are the same for both algorithms. We can now use

that ||z — x||a = ||& — &k 5, where ||w]|4 = VwT Aw, and a well known formula for the

reduction in the energy norm of the error after £ steps of the standard CG iterations

\/I{(/I)—lk .
(——)"[|7 = Zoll4

[54], to obtain

Iz —zplla = [1& — @kl 5 < 2

K(A)+1
r(A) -1
=2(—)" Iz — xo|a.
K(A)+1
Here, k = x(A) is the condition number of BA given by
o Amaz‘(fzi)

An essential feature of PCG is that an explicit representation of A and B are not
needed. We only need to know how to apply them to a given vector. The preconditioner
B should be chosen with the following properties:

i) the computation of the Bry should be easily and efficiently realizable on

scalar as well as parallel machines;

ii) the condition number k(A) should be small to guarantee that the PCG con-

verges in a small number of iterations.

An effective way of constructing such preconditioner is based on domain decomposition

techniques. Other preconditioners that have been used extensively in practice are the

diagonal scaling, multigrid, and incomplete Cholesky methods.
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2.1.2 Extremal eigenvalues by Lanczos algorithm

In this thesis, we will study domain decomposition preconditioners based on an gen-
eral theoretical framework which has previously been developed by Dryja and Widlund.
Using this framework, we will be able to analyze and establish upper bounds for the
condition number of our preconditioner systems. To see how sharp these upper bounds
are, we may compute m(fi) approximately by using a generalized Lanczos procedure for
eigenvalue problems; see [83], [69]. We note that the Lanczos algorithm is closed related
to the CG algorithm. Both algorithms use Krylov subspaces and a three-term recurrence

formulas; see [81],[48],[71], [69]. We first define the matrix of normalized residual vectors
R,, € R"¥™ by i i
5 1 To T'm—1
" Mol el
where the vector 7 are the residual vectors obtained in the C'G algorithm for solving
Az =b.
It is possible to show [48] that

VB2

1
ay T
_ \/ﬁ_Q B2 + 1 _ VB
aq aq (2] a9
-  \/Bm
Am—1
_ vV ﬁm ﬁk + L
¥m—1 A1 =3
where T,, = Rﬁﬁf%m is a ®™*™ tridiagonal matrix; see [48]. The a; and fj are

the parameters of the CG algorithm, and they are readily available during the PCG
algorithm. Thus, we reduce to the problem to finding the condition number of the
tridiagonal, and relatively small matrix 7;,. Questions related to convergence of the

extremal eigenvalues of T}, to those of BA are considered in [69].

2.2 The Classical alternating Schwarz method

It is believed that the first domain decomposition method was proposed by Hermann
Amandus Schwarz in 1869 [78]. It was originally used to show the existence of the

solution of an elliptic boundary value problem on domains that consists of the union of
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simple overlapping subregions. In each subregion it is a priori known how to solve the
elliptic problem. For instance, assume that we have two overlapping rectangles 2y and
Q9; see Fig. 2.1. Since we can use separation of variables techniques to solve in each Q!
separately, we can use Schwarz ideas to solve the elliptic problem in Q) UQY. (If Q) were
a disk, we could use the Poisson formula for the corresponding subproblem.) For more

than two overlapping subregions, we can use recursion.

Fig. 2.1

Let Q@ = Q} U Q) be the domain shown in Fig 2.1. Let I';, ¢« = 1,2, denote the part
of the boundary of €} which is in the interior of 2. Let us assume that we want to solve

{ —Au=f, in Q,

uw=20, on J9Q. (2.4)

The classical alternating Schwarz method, also called the multiplicative Schwarz method

(MSM), consists of constructing a sequence of functions {u*} converging to the solution

u of (2.4). The sequence is constructed in the following way:

Step i) Choose a suitable initial guess u° defined on Q, and let k = 0.

Step ii) Solve
—Au]f+1/2 =f inQ,

k+1/2
u1+/ =u* onTy

u]f—H/Q =0 on 9Q\T;.

Step iii) Solve

—Aubtl = f in Q),
k+1/2
u§+1 = u1+ /2 on Iy
ubtl =0 on IQL\T5.
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Step iv) Let k = k 4+ 1 and go to Step ii).

The convergence of the sequence {u*} was first established by Schwarz using maximum

principle techniques.

2.3 A variational formulation

We also can interpret the alternating Schwarz algorithm in a variational framework; see
e.g. Dryja and Widlund [36], Matsokin and Nepomnyaschikh [59], Nepomnyaschikh [61],
and Lions [53]. Consider the problem:

Find v € H}(Q) such that

a(u,v) = f(v) Yo € H}(Q), (2.5)

where
a(u,v) = / p(z)Vu-Vode, and f(v)= / fodz.
Q Q

Here, the coeflicient p € L* satisfies 0 < ¢ < p(z) < €' < 00, almost everwhere on (2.
In all that follows, we consider H}(Q}) and H}(Q}) as closed subspaces of Hi(Q) by
extending their elements to Q\2; by zero. We can use the alternating Schwarz algorithm
for numerical computations by considering finite element subspaces V* C H(Q) and
VE = vEn HY(Q!). In order to consider the continuous and the finite element cases
simultaneously, we let V = H}(Q) and V; = H}(Q!), orlet V = VF and V; = V-

The classical alternating Schwarz algorithm can be written as
Step i) choose an initial guess u® € V. Let k = 0.
Step i) find «**+1/2 — u* € V; such that

a(uk‘H/2 —uF,v) = f(v) —a(u®,v) Vo eV,
Step iii) find u*t! — u**t1/2 € V;, such that
a(uF+t — uk‘H/Q,v) = f(v) — a(uk"'l/Q,v) VYo € V,.
Step iv) let & = k + 1, and go to Step ii).
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Let us define the orthogonal projection P; : V — V;, by
a(Pu,v) = a(u,v) YoeV;, i=1,2,

and let us introduce the error e, for integer k > 0, by

eF =k —u,

eRH1/2 _ k412 _

Here, u is the solution of (2.5). It is easy to check that
ek+1/2 _ (I _ P1)6k7

ek’-l—l — (I— P2)€k+1/2,

and that the error propagation operator E for a complete step of the classical alternating

Schwarz algorithm is given by
E=(-P)I-P).

The formalism also allows us to introduce inexact solvers for the subproblems. For each
subspace V;, we introduce a symmetric, positive definite bilinear form b;(-,-) defined on

Vi X Vi, and an operator T; : V — V; defined by
bi(Tiu,v) = a(u,v) VwvelV,. (2.6)

The b;(+,-) can be regarded as an approximation of a(-,-). When we use exact solvers
for the subproblems, i.e. b;(-,-) = a(-,-), we obtain T; = P;.
Next, we show how to view T; in a matrix form. Let us define the linear operator
AV — V' by
(Au,v) = a(u,v) VYv eV,

and the linear operators B! : V; — V! by
(B; 'u,v) = bi(u,v) Vv eV,

Here, the V/ and V' are the dual spaces of the V; and V, respectively, with respect to

the inner product (-,-). It follows from the properties of the bilinear forms b;(-,-) that
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the Bi_l are symmetric, positive definite operators with respect to (-,-). It is easy to see
that the T; are given by
T, = B;A.

The product B;A is well defined since V' C V/. It is also easy to see that the T;
are symmetric with respect to the inner product a(-,-). If we use exact solvers, then

bi(-,-) = a(-,-) and B; = A;'. Here, the operator A; is given by
(Au,v) = a(u,v) Vu,v €V,

We can regard the classical alternating Schwarz algorithm as a simple iterative

method for solving the equation
Tu= (I— E)u = (Tl + T2 — Tng)u =4grT,

where gy = Tyu+Tou—TyTiu. We note that g7 can be computed, without the knowledge
of the solution of (2.5), since we can find the ¢; = T;u and g31 = T3 1w by solving

a(gi,v)=a(u,v)= f(v), veV;, i1=1,2,

and

a(gaiu,v) = a(g1,v), v € V.

2.4 Multidomain Schwarz methods

We now consider algorithms based on many overlapping open subdomains !, 7 =
1,---N, which cover Q. For each subdomain Q}, i = 1,---N, we introduce a space
V; C V, a symmetric positive definite bilinear form b;(-,-), and a local operators 7; given
as in (2.6). The multiplicative Schwarz algorithm is a straightforwardly extension of the
classical alternating Schwarz algorithm to N subdomains once has been an order selected
for the subproblems. We note, however, that the extension of the theory originally pro-
vided some difficulties; see Bramble, Pasciak, Wang, and Xu [7], Cai and Widlund [19],
Dryja and Widlund [41], and Xu [91]. If a large number subdomains is used then the
convergence rates of this method will typically deteriorate rapidly with the number of
subdomains. This happens because such a method does not provide global communi-

cation of information in each iteration; information is passed only between neighboring
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subdomains. The most commonly used mechanism of transmitting global information is
to use a coarse space Vo C V and solving an appropriate problem on a coarse grid. We
also introduce a bilinear form bg(-,-), and an operator Ty for the space V.

Multiplicative Schwarz method

i) compute g; = Tiu, fori =0,1,---, N;

ii) given u*, compute u**t1 in N + 1 fractional steps:
k+ it1 _ k_l_L bt L .
wTNH = ¢ T N+1 ‘|‘(gi_TiU N+1)’ i=1,--+-,N.

This algorithm can be viewed as a simple iterative method for solving
Thsu=U—-(U-=Tn) (I —="10))u = gms,

with an appropriate right-hand side g,,;.

It is easy to see that the error e¥ = u* — u satisfies

ek-l—l — EN€k7
where Fp is the error propagation operator
En={U-Tn)---(I =1Tp).

We notice that the operator 1,5 is generally a nonsymmetric operator. It can be
accelerated by the GMRES method or another conjugate gradient type method designed
for nonsymmetric operators; cf. Saad and Schultz [75].

Accelerated multiplicative Schwarz algorithm
i) compute g = (I — En)u.
ii) solve the nonsymmeltric operator equation
(I-—Enjv=g
by the GMRES algorithm.
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We can solve the problem by PCG using the a(-,-) inner product, by considering the

following symmetrized multiplicalive Schwarz operator:
Tsms=1—-(I—=To)---(I =Tn)I-=Tn)---(I =Tp).
Another possibility (cf. Dryja, Smith, and Widlund [35]) is to replace Ts,,s by
I-(I-To)---(I-=Tn)---(I =Tp),

or

Ty + 17

sm

We have used that the T; are symmetric operators with respect to the inner product
a(-,-) in order to guarantee that the 7', are symmetric operators with respect to a(-,-).

We note that all preconditioned system that we introduced in this chapter can be
written as

T = POZZI(TmTla te '7TN)7

a polynomial of the T/s such that poly(0,0,---,0) = 0 so that ¢ = T'w can be computed
without knowing the solution w itself. It is easy to see that if T is invertible, then the
solution u of (2.5) is the only solution of Tv = g; see Cai [87].

In the multiplicative Schwarz algorithm, each iteration involves N 4 1 sequential
fractional steps and this is not ideal for parallel computing if N is large; on an abstract
level, T is not ideal for parallel computing if the degree of the polynomial poly is large. We
can decrease the degree of the polynomial by grouping the subregions using the following
coloring strategy. Associate with the decomposition {2}, an undirected graph in which
the nodes represent the subdomains {2.} and the edges intersections of subdomains.
This graph can be colored, using colors 1,-- -, J, such that no connected nodes have the
same color. We now group the 7; in term of the color that the subdomain has been
assigned. We obtain

Tos=1—-U-=Ty)---(I —1Tp).
We note that different T; of the same color correspond to domains that are mutually
disconnected; these subproblems can be solved in parallel.

To remove completely the inherent sequential behavior of the T,,s, Dryja and Wid-
lund [36], and Matsokin and Nepomnyaschikh [59] introduced the additive Schwarz meth-

ods. The basic idea is to choose the simplest (nontrivial lowest degree) polynomial of
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operators 1;’s, namely

Tos=To+1T7 +---+Ty.

Accelerated Additive Schwarz method
i) compute g = Tysu.

ii) solve the operator equation

Tv=yg

by the preconditioned conjugate gradient method using the a(-,-) inner prod-

uct.

In practice, despite less parallelism, the multiplicative Schwarz methods-(MS) are
often substantially faster than the additive Schwarz methods-(AS) since their algebraic
convergence rates tend to be higher. As we have noted, the parallelism of a MS results
mainly from the fact that foreach j = 1,---,J,7;is a sum a number of local, independent
subproblems that can be handled in parallel. We note, however, that the coarse problem
cannot be solved simultaneously with the local problems. This is in contrast to an AS
in which all subproblems, including Tp, can be solved in parallel. In a MS, there is,
therefore, a potential bottleneck with many processor idly waiting for the solution of the
coarse problem. Motivated by this, Cai [18] introduced a hybrid Schwarz preconditioner
given by

Tewi=vTo+1—-(I-Ty)---(I —Tp)

for which combines advantages of the AS and MS. Here, v > 0 is a balancing parameter.

A symmetrized version is given by
To+ I —(I—Ty) (I —T)) (I ~Ty) (I —T).
Another hybrid method was introduced in Mandel and Brezina [55]
Tnan =To+ (I = To)(Th + - - + Tn)(I — To).

This algorithm, however, does not have the same potential for parallelism as Cai’s algo-

rithm but has other advantages.
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2.5 Abstract theorems
2.5.1 Additive Schwarz methods

Let V be a finite dimensional space. Consider the following abstract variational problem:

Find «» € V such that
a(u,v)= f(v) YveV. (2.7)

The bilinear form af(-,-) is symmetric positive definite, and f is a continuous linear
functional on V.
An additive Schwarz method is defined by decomposing V into a sum of N + 1

subspaces:

V=Vot Vit -+ V.

We note that this decomposition is not necessarily a direct sum of subspaces; in many
applications of interest, the representation of an element of V' in terms of components of
the V; is not unique. Often, these subspaces are related to a decomposition of the domain
Q1 into overlapping subregions. The space Vy represents the coarse subspace and it is
added to the algorithm to provide global communication of information in each iteration.
We note that Widlund [87] has shown that, without a global coarse space problem, the
condition number of the relevant iteration operator must grow at least like 1/H?, where
H is the diameter of the subregions.

Let
Tos=To+T +---+ Ty

We now replace (2.7) by the problem:
Find @ € V such that

N

Tasﬂ = Yasy Yas = Zgzv g: = Tzu (28)
1=0

By construction, the solution u of (2.7) is also a solution of (2.8). We note that g, can
be computed, without knowledge of the solution of (2.7), since we can find the g; by

solving

bi(gi,vi) = a(u,v;) = f(v;) Vo, € V.

27



It is very easy to check that the operator T, is symmetric with respect to the inner
product a(-,-). The reason for replacing the problem (2.7) by (2.8) is that, by a suitable
choice of subspace V; and bilinear forms b;(-,-), we can transform a large ill-conditioned
system into a very well conditioned system problem at the expense of solving many
small independent linear problems. The equation (2.8) is typically solved by a conjugate
gradient method, without further preconditioning, using a(-,-) as the inner product. In
order to see that the problem (2.8) has u as the unique solution, and also to estimate the
rate of convergence of the preconditioned conjugate gradient method, we need to obtain
upper and lower bounds for the spectrum of 7,;. The bounds are obtained by using the

following theorem; cf. Dryja and Widlund [37, 38, 41], Zhang [95, 94].

Theorem 2.1 Suppose the following three assumplions hold:

i) There exists a constant Cy such that for all v € V there exists a decompo-

sition v = Eszo u;, v; € V;, such that
N
> bivi, ) < Ca(v,v).
1=0
it) There exists a constant w > 0 such that

a(v,v) <wb(v,v) YoeV, i=1,---,N.

iii) There exist constants ¢;;,1,j =1,---, N, such that

a(vi, vj) < eij a(vi, vi)2a(v;, v;)?

Yuv; € V; VUJ' S V]‘.

Then,
Ci%a(v,v) < a(Tasv,v) < (p(€) + Dwa(v,v) Yo € V. (2.9)

Here p(€) is the spectral radius of the matriz & = {e;},_;.

Proof. The left inequality: Using the definition of the T;, the Cauchy-Schwarz inequality,

and assumption (i), we obtain

N N
a(v,v)= Z:a(v,vi) = Z:bi(TiU,Ui)
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N

N
< (L bilTe, Too)) A bl o) V2

1= 1=0

N
Za (v, Tow)) % Co(a(v, )2,
1=0
Therefore,
a(v,v) < Ca(Tysv,v).

The right inequality: We first note that ||7;||, < w. Indeed, using the definition of

the T; and Assumption (i), we obtain
a(Tiu, Tiw) < wbi(Tiu, Tiu) = wa(v, Tiv)
< wa(v,v)?a(Tw, Tw)'/?,
Therefore,
a(Tiv, Tw) < w? a(v,v).
To prove the right inequality, we use the Assumption (iii) and (ii), and the definition of
T;:

ZTU ZTU g: (Tiv,Tjv)

7,7=1
N N
< E eija(To, Tow) 2 a(Tyv, Tjv) /% < p(E)Za(Tw,Tw)
7,7=1 =1
N N
§p(5)w2b(TU Tw) wZavTU
=1 =1
N N N
= p(&)wa(v, Y Tiw) < p(&)w v)%q ZTZ?J,ZTZ’U )2
=1 =1 =1

Hence,
N N
a(z Tm,ETiv) < p(€)*w?a(v,v),
=1 =1
and therefore
N
a(z Tiv,v) < p(&)wa(v,v).
i=1
This last inequality, added to
a(Tov,v) < wa(v,v),

completes the proof.
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We remark that the abstract theory easily can be extended to cases where there are
several coarse spaces. If there are two coarse spaces, we exclude them both when con-
sidering the strengthened Cauchy-Schwarz inequalities of the Assumption (iii) and the

factor (p(£) + 1) in the theorem is replaced by (p(&) + 2).

2.5.2 Multiplicative Schwarz methods

Since the error ef = u* — u satisfies e**! = Ene”, the reduction of the error in the MS

algorithm can be estimated from above by
a( Exu, Exu)/?
a(u, u)l/?

Theorem 2.2 Suppose the three assumptions of Theorem 2.1 hold. Assume further that

[EN]la = supuev

w < 2. Then,
(2-w)

Exll?<1-
1Exlla <1 = e

(2.10)
Here, & = max(1l,w).

We remark that from the definition of 7; that ||7}||, < w; see the proof of Theorem
2.1. The assumption that w < 2 is natural because ||T;||, > 2 implies ||I — T}||. > 1, and
then we cannot guarantee that || En|l, < 1. If w is too large, we can scale the bilinear
forms b;(-,-) properly to obtain [|7;||, = 1. If the ||T}]|, are very small then [|En||, is
close to 1 and the MS will converge slowly; we also can see this by (2.10) since if we scale

the b;(-,-) to make w small, the Cy must become large.

Lemma 2.1 Under the same assumptions as in Lemma 2.2, we oblain
(2-0)
(1 +207p(E)7)C3

a(u,u) < a(Lsmsu,v) < a(u,u) VYueV.
Proof. Using that T,,s = I — E}\;EN, we obtain
a(Tsmstt, u) = a(u,u) — a( Enu, Eyu) > (14 20%p(£)*)CE a(u, u),

and

a(Tsmsu,u) = a(u,u) — a( Eyu, Enyu) < a(u,u).
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Chapter 3

Differential and Finite Element
Problems

3.1 The elliptic problem

Let us consider the following selfadjoint second order problem:

Find u € H}(Q), such that
a(u,0) = f(v) ¥ v HYQ), (3.1)
where
a(u,'v):/QA(;L‘)Vu-Vv dz and f(v):/va de for feL*Q). (3.2)

For simplicity, let Q be a bounded polyhedral region in $* with a diameter of order 1.
We assume that A is a three-by-three symmetric matrix-valued Lebesque measurable

function on 2, such that
0 < Apninlé]? < ETA(2)E < Mpalé]? VEER ae € Q.

The well-posedness of the problem (3.1) is shown by checking the hypotheses of the

Lax-Milgram Lemma with
H=Hy(Q), and |-|ln ="l
i) The boundness is obtained by
a(w,v) < Apaz| 1) - [0lE1(Q) < Amazll©llmr Q) - 0]l H1(0)-
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ii) The coerciveness is obtained by using Friedrichs’ inequality for the space H}(Q).
@(v,0) > Aminl vl (0) > () Amin [[0llF1 (o) Vo € Ho(R).

Hence, the solution u of (3.1) satisfies

. 172
lullir ey < c(@) 1= o oy 2y,

A'min o Amzn

3.2 The finite element problem
3.2.1 The triangulations

A triangulation of € is introduced by dividing the region into nonoverlapping shape
regular simplices {Qi}f\;l, with diameters of order H, which are called substructures or
subdomains. This partitioning induces a coarse triangulation 7% associated with the
parameter H. We note that our results can be extended straightforwardly without the
quasi-uniformity assumption since only local arguments are used; see further Section

further 4.8.

The two level refinements

In the case of two-level methods, the substructures 2; are further divided into elements
T]h in such way that a conforming triangulation of all of Q is obtained. We associate a
parameter k to the finest triangulation and denote this triangulation by 7". Let V*(Q)
be the finite element space of continuous, piecewise linear functions, defined on the fine
triangulation 7", and let V() be the subspace of V/(Q) of functions which vanish on
091, the boundary of . We note that, for two level methods, the substructures €; can be

chosen in a more general way; see further Remark 5.2. As in the coarse triangulation,

only the shape regularity of the finest triangulation is necessary for our results.

The multilevel refinements

In the case of multilevel methods, we define a sequence of quasi-uniform nested trian-
gulations {Tk}izo as follows. We start with a coarse triangulation 7° = {Q;}¥, and
set hg = H. A triangulation 7% = {Tf ;V:kl on level k is obtained by subdividing each
individual element T;_l in the set 7%~ into several elements denoted by Tf. We assume
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that all the triangulations are shape regular and quasi-uniform. Let h;? = diameter(T]’jc ),

hi = max; hf, and h = hy, where { is the number of refinement levels. We denote

Th =T* and T]h = Tf.
We also assume that there exist constants v < 1, ¢ > 0, and C, such that if an

element T}H_k of level n 4+ k is contained in an element Tf of level k, then

diam (7715
( J ) < C"‘/n. (34)

diam(rf) -

ey" <

A refinement procedure to obtain shape regularity and (3.4) was introduced by Ong
[63]. For k = 1,---,(, all the tetrahedra Tf_l € 7% ! can be subdivided into eight
tetrahedra (see, Ong [63]); these are elements of level £ and belong, by definition, to
T%. A shape regular refinement is obtained by connecting properly the midpoints of
the edges of Tf ~1. We consider in Section 4.8 certain nonuniform refinements where our
results can be extended.

For each level of triangulation, we define a finite element space V*(Q) which is the
space of continuous piecewise linear functions associated with the triangulation 7. Let
V() be the subspace of V#(Q) of functions which vanish on 9. We also use the
notation V() = V5 (Q).

3.2.2 The finite element problem

The discrete problem associated with (3.1) is given by:
Find u € VJ{(Q), such that

a(u,v) = f(v) Yove VHQ). (3.5)

The well-posedness of the problem (3.5) follows directly from Lax-Milgram’s Lemma; we

also have a stability result as in (3.3), with the constant independent of h.

3.3 The saddle point problem
3.3.1 The motivation

There are many engineering applications in which the main goal is to find a good approx-

imation for ¢ = —A Vu. Here, u is the solution of an elliptic problem with the coefficient
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A. We can find an approximation for q by finding an approximation for  and then apply-
ing the operator A V. This procedure may generate serious errors since when A becomes
more discontinuous, the solution u becomes more singular and the operator A V more
numerically unstable. We note that in the interior of Q we have, formally, divq = f.
Therefore, we expect q(z) to be less sensitive to variations of A(z) than u(z), if f is
relatively smooth. For instance, if we consider the one-dimensional case with f = 0 and
inhomogeneous Dirichlet data, we obtain q = constant. For this reason, mixed methods
have been introduced in order to approximate AVu and u, simultaneously. We note that
our motivation for considering the nonconforming P; space in chapter 5 comes primarily
from the fact that there is an equivalence between mixed methods and nonconforming
methods [2]. In this section, we present all the theoretical steps which establish this
equivalence, and note that the analysis is done locally, element-by-element. It follows
that the most expensive part in solving the mixed problem numerically is to find the
solution of a nonconforming P; problem; an approximate solution of the mixed problem

is then recovered by using only element-by-element computations.

3.3.2 The mixed problem

Assume that f € L%(Q). Then, it is easy to see that if u is the solution of (3.1), then
q=—-AVu € H(div;Q). (3.6)

We now use the Green’s formula (1.12) and density arguments to see that (q,u) is a
solution of the following mixed formulation of (3.1):
Find (q,u) € H(div; Q) x L*(Q) such that
JoA 'q -pde — [judivpdz =0 Vp € H(div;Q)
(3.7)
— [qvdivqdz =— [ fvdz Yo e L*(Q).

We obtain well-posedness for the problem (3.7) by checking the hypotheses of Lemma
1.8 with

Q= 1¥Q), V = H(div; ).
a(q,p):/QA_lq-pdx and, b(q,v)= —/Q“udiqu.r.
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Using the definition of B, we have
KerB = {p° € H(div; Q) : divp® = 0}. (3.8)

We also have

ImB = L*(Q). (3.9)

To show (3.9), we have to show that for every f € L*(Q), there exists a p € H(div;Q)
such that Bp = f. Indeed, in a first step we solve: Find w € H}(Q) such that

/Vw-v¢dx:/f¢dx Vi € Hy(Q),
Q Q

and set p = Vw.
We obtain straightforwardly, by using (3.9), that

KerBT = 0.
We also obtain |[Ja|| < ﬁ since
1
a(p,a) < 7—|Ipllz(@) llallzz(@)
1 .
< N HPHH(div;Q) HqHH(diV;Q) Vp,q € H(div; ).

We obtain ag > 5 L gince
max

0 0 0 .0
inf sup —%(q ,PO) > inf 7%((1 ’qo)
a*eKer BpocKer g [IPllv [1a°llv — geeKer B [l9°]lv [la®[lv

0 0
1
inf 5 g ’qo) > .
a°cKer B [|9°|z2(q) 14°(z2(0) — Amae

To show that kg > m > 0, we first note that

b(r,v)
[Iellv°

b
sup (p,v)

2
pev [[p[lv

where r = Vw, and w is the solution of
/ Vw-Vids = / —vpdr Y e HHQ).
Q Q
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Using the estimate

IVw||z2) < C1(Q) [[v]|12q),

we obtain
b(r,v) — [qudivedz  [ovidz
llx[lv llx[lv IVl g divia
Ja v2dz 1 fq v2dx 1

z = [l L2(a)-
(1Aw]Z2q) + [Volag)' % = Ca() Tollzg) — Ca(@) "M
Using the bounds for [|a||, ag, and kg in (1.23) and (1.24), we obtain

pmal‘
”qHH(diV;Q) < CS(Q)p — 1120 (3.10)
and
pmal‘
[ullL2 (@) < Ca(Q) = [[fllL2(a)- (3.11)

We note that the estimate (3.10) can be recovered from (3.3); we only use that the
solution (q,u) of (3.7) is unique and satisfies the relation (3.6). We note, however, that
we must use the present technique above to derive (3.10) and (3.11) to obtain stability
results, independent of &, for the discrete mixed problem.

We note that the problem (3.7) also can be viewed as the Euler-Lagrange equation

of the following saddle point problem:

1
inf sup —/A_lp-pdx—l—/fvdx—l—/vdivpdx. (3.12)
peH(div;Q)ver2(q) 2 /o Q Q

3.3.3 The discrete mixed problem

Let 7 be the unit reference tetrahedron with vertices
ap = (0,0,0), a; =(1,0,0), az =(0,1,0), and as=(0,0,1).

The lowest order Raviart-Thomas velocity space on 7 is defined by

a:z T
RT(F)={p: p=| b | +di | 7 |}
cs 2

Let 7" be a triangulation, as before, of the three dimensional region. For a tetrahe-

dron 7 € T" with vertices ag, a1, ay, and as, we define an invertible, affine linear map
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F.:71 — 7, such that F.(a;) = a;,i = 1,---4. Here, F;.(2) = B; & + b, where B, is a
3 x 3 invertible matrix and b, a 3-vector. For any scalar function ¢ defined on 7 (resp.

on J7), we associate the function v defined on 7 (resp. on Jd7) by
v:@OFﬂ'_l ({)IIUOFT)7

and for any vector-valued function p defined on 7, we associate the function p on 7 by

1

=—— _B.poF™' (p=det(B;)B 'poF,). 3.13
B Breo Bt (b= det(Br)B po Fr) (3.13)

p
The choice of the transformation (3.13) is based on the following results:
[@divf)di _ / vdivpde Ve e LX#) Vp € (HY(#)), (3.14)
and
/BA@ﬁ 0dS= [ vp-mds VielX7) Vpe(H'(7)
The space RT?(7) is defined by

1 e
RT° (1) = yETEA) B, RT° (#)o F71. (3.15)

It is easy to show that RT°,(7) consists of linear vector functions which have a constant
normal component on the faces of 7.

We introduce the spaces
RT° (T") ={p:p € (L*(Q))3 p|. € RT°,(7) Vr € T"},

RIY(T")={p:p € RT°,(T"), the normal component of p
is continuous across the interelements boundaries},

and
MO (T") ={v:v e L*(Q),v], =¢c, VT €T}
Here, ¢, is a constant that only depends on the element 7. It is easy to check that
RTY(T") = RT°(T") N H(div; Q).
The lowest order Raviart-Thomas mixed element method is given by:

Find (qn, un) € RT(T") x M°,(T") such that

JoA ™ aqn -prde — [qupdivprde =0 Vpy € RT{(TH)
(3.16)
— [q vndivgy dz = — fo fondx Vo, € MO, (TH).
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Let qn = > ¢;®;, and up, = >/~ u;X;, where the ®; and the x; are basis elements
of RT®,(T") and MY, (T"), respectively. In this basis, the mixed problem (3.16) is of

the form .
Ay, B qr. | _| O
=[] @

Here, Ap, is a symmetric, positive definite matrix with Ap;; = [, A~1®; &;dz and
By, is an approximation of the divergence map which is given by By,;; = — [ x;div®;dz.
The system (3.17) is a saddle point problem, a discrete version of (3.12). Hence, (3.17) is
symmetric but indefinite and cannot be solved safely by the standard conjugate gradient
method.

We again use Lemma 1.8 to show well-posedness for the discrete problem (3.16). We
show that the stability results (1.23) and (1.24) are uniform in k. The spaces ) and V'
are given by

Q= M2 (Th), V = RT)(T"),

and the bilinear forms a(-,-) and b(-, ) by (3.8).
We first note that the discrete divergence free space KerBy, is divergence free in the

L?(Q) sense, i.e.

KerB, C KerB = {p° € H(div;Q):V -p° = 0}. (3.18)
To show (3.18), we first reduce the arguments to one on the reference element. Hence,

/th (V-pr)de =0 Yo € MO (TH)
<~

/vh (V-pr)de =0 Vo, € MO, (r) Vre T
Using (3.14), we have for any 7 € 7"

/vh(V-ph)dx — 0 /@h(v-f)h)di 0.
We now set 9, = V - pp, to obtain

V-pr=0 in 7,

which implies that

V:-pr=0 in .
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1

Pmin

Using the same ideas as in the continuous case, we have [|a|| <
1

max

Using (3.18) and the same ideas as in the continuous case, we obtain ag >
To show that kg > ¢(Q) > 0, with ¢(2) independent of A, we use the same ideas as

the continuous case and the following lemma:

Lemma 3.1 For any function v, € M°,(T"), there exisls a function p, € RTJ(T")
such that

divpy = v, in Q,

and

thHH(diV,Q) S é(Q) H?]h”[;(g),

The proof of this lemma is given in Raviart and Thomas [73, 72]. The arguments in
[73] are for the two-dimensional case and they can be extended, straightforwardly, to the

three-dimensional case.

3.4 The nonconforming formulation

3.4.1 The motivation

There are several approaches to solving the system (3.16). We now discuss some good
iterative methods which do not depend upon iteration parameters that be sometimes

hard to select properly.

i) We can eliminate the variable q; obtaining
Spup = —BhAngguh = fr. (3.19)

The matrix 53, is symmetric, negative definite and hence a conjugate gradient
method can be used. Fach matrix-vector product with S;, can be computed
essentially at a cost of solving exactly a linear system with the matrix Ap.
We note however that 5, is not well conditioned. Drawback of this algorithm
are that the action of Agl on a vector may be very expensive and must be
computed for a substantial numbers of vectors. One alternative would be the
use of a preconditioned conjugate gradient iteration to evaluate Agl. The

problem with this approach is that to guarantee convergence of the outer
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i)

iii)

iteration, it becomes necessary to run the inner iteration to great accuracy,
thus making the overall solution process expensive. We note that for problems
with small variations in A, it can be shown that S is spectrally equivalent
to a discrete Laplacian of finite difference type (cf. Wheeler and Gonzalez
[86]); therefore, there is no difficulty finding an effective preconditioner for
Sp, and fewer iterations are needed in the outer iteration. To find and analyze
an effective preconditioner for Sj, becomes much harder when we work with
large discontinuities in the coeflicients because when we compute explicitly

BhAngg, we have a mixing of the coefficients near their discontinuities.

We can also solve the system (3.16) by an iterative method for symmetric,
nonsingular indefinite linear system such as the minimum residual method
for indefinite system studied by Paige and Saunders [70]. Its convergence rate
can be estimated in terms of the spectral properties of the matrix in (3.16).
We note, however, that its convergence rate will typically deteriorate rapidly
when the discretization is refined. In order to speed up the convergence a
preconditioned version of the method should be considered. For problems
with small variations in A, Rusten and Winther [74] analyze, successfully,
block diagonal preconditioners for which the convergence rate of the precon-
ditioned minimum residual is bounded independently of the discretization

parameter h.

Another approach was adopted by Mathew [56, 57, 58, 23]. In a first step, by
solving exactly a coarse space problem and many local problems in parallel,

Mathew reduces the problem (3.16) to a case for which f, = Brqn =0, i.e.

A, BF qn gh
: = 2
[Bh 0 up, 0 ’ (3 O)
for some appropriate right-hand side gy. Since Bpqp = 0, the problem

(3.20) can be solved in the subspace of divergence free velocities which satisfy

Brpr = 0. This new problem becomes positive definite since

T T
SORERH | kT R
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Pl Anpr + 201 Brpy = pl Awpr > 0.

In a second step, Mathew constructs a Schwarz preconditioners which pre-
serves the divergence free velocities in each iteration of the PCG. The di-
vergence free invariance is obtained at the expense of solving a coarse prob-
lem and the local problems (in parallel) exactly in each iteration. In the
two-dimensional case, Ewing and Wang [43] introduced a stream function
to reduce (3.16) to a standard finite element elliptic problem. Therefore, if
we have discontinuous coefficients across subregion interfaces, we can solve
the problem by several well-known domain decomposition methods, or by
the two-dimensional version of the algorithms developed in Chapter 4 of this
thesis. In the three-dimensional case, the theory is still incomplete; the dif-
ficulty is how to find a decomposition as in Assumption i) of Theorem 2.1

with » and the v; belonging to the divergence free space.

iv) The method that we adopt in this thesis is based on the Arnold-Brezzi [2]
theory and on our preconditioners for nonconforming P; finite elements prob-
lems [76, 77]; see also Chapter 5 of this thesis. We can then handle two- and
three-dimensional problems (3.16) with large variations of the coefficients

across the subregion interfaces.

3.4.2 The hybrid-mixed formulation

Let F, be the set of faces in 7%, and let 77 = {f € F, : f C 09}, and F? = Fp\F,.
We introduce the space of Langrange multipliers M, (F}) as the set of all functions on
UF}, that are constant on each face f € F7, and that vanish on ]—"}?. The hybrid-mized

discrete formulation is given by:

Find (q}, p;, An) € RTO(T") x MO (T") x MO, (F?) such that
JoCai-prde — Y crn([ updivprde — [;_ Appr-n;ds) =0
—>rern [ vndivqy de =—[o fonda (3.22)
>rern Jor Hn @), - 0 ds =0

Y(pu,vn, pn) € RTC(TH) x MO (T") x MO, (FD).
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Note that if p, € RT9,(7"), then

pr € RI(T") iff (Y /8 prph-nrds =0 Y, € M2 (F)).
reTh "7

Therefore, using element-by-element arguments, it is easy to check, that the system
(3.22) has a unique solution with q} = q, and u} = uy, where (qp, up) is the solution
of (3.16). Ay is then uniquely determined from the first equation of (3.22). Hence, the
systems (3.16) and (3.22) are equivalent, and we can therefore drop the superscript, *,
in (3.22).

In matrix notation, the system (3.22) is of the form

{ih Bg Cg qrn 0
Bih 0 0 up | = | fa . (3.23)
C, 0 0 AL 0

Remark 3.1 An advantage of the hybrid-mized formulation is that the matriz Ay is
block diagonal, with each block corresponding to a single element. Hence, A can be
inverted easily and in parallel. After eliminating the velocity in (3.23), we obtain a
symmetric positive definite system

BhAEIB;; Bhfiglég up, —Jh

S R TR R = ) (3.24)

3.4.3 The Arnold-Brezzi theory

As in the previous subsection, all the arguments given in this subsection are local,
element-by-element. We now note that the weak formulation forq = A Vu, on a single

element 7, is given by:

/A_lq-pd:v—/udivpdx—l— up-n,ds=0 Vp € H(div;T). (3.25)
T T orT

Hence, by comparing (3.25) with the first equation of (3.22), we may interpret the
Lagrange multiplier A as an approximation of the trace of p on the boundaries of the
elements. This observation motivated Arnold and Brezzi [2] to obtain, from uj and Az,
an asymptoticaly more accurate approximation of the original field u. Furthermore, the

variables uj, and Ap can be treated as one variable. Let us therefore introduce the spaces
VA (T") = VE(T") & VER(T™).
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Here,
VE(T") = {4 : 9|, is a cubic polynomial vanishing on dr V7 € 7"},
and
VER(TH) = {4 : 9|, is linear in every tetrahedron 7 € 7",
¢ continuous at the barycenter of the faces in F, and
1 = 0 at the barycenter of faces in ]—",?}

We note that VA(7") consists of bubble functions, i.e. functions that vanishes on
the boundaries of the elements, and the space V%,(7") is the classical nonconforming
Py space introduced by Crouziex and Raviart [31].

Let by be the barycenter of a face f € Fj,. Let Qj be the local Ly projection for an
individual element 7 and II; the local Ly projection for an individual face of FP. We

introduce the mapping Sy, : VA(T") — MO, (T") x MO, (F}?), defined by

Sr(¥n) = (v, pn) = (Quton, ntn)

where
1 .
Oplr = 7 [ Yndx (ie. vy, = Qpidp),
7] J+
and

prly = ¢(by) (e pn = ytn).

It is easy to see that Sy is an isomorphism. Therefore, we can define ¥y by ¥ =
S;  (un, An), where (qp, up, M) is the unique solution of (3.22). Using the Green’s For-
mula (1.12) with G = 7, and obvious properties of projections, we show that (qp, ) is
the unique solution of the following problem:

Find (qn, ¥n) € RT°(T") x VE(T") such that:

Srern Sy AT an prde + Y eqn [, VP =0 Vpj € RT2(T")

(3.26)
Srern foan-Vxndr == [o(Q) ) xnde ¥xn € VHT").
In matrix form, the system (3.26) has the form
- Ah B B}{Qh + Cth qhn _ 0 (3 27)
QF By + 1L Cy, 0 S I e ‘

We next show that the system (3.26) can be reduced to a positive definite system by

eliminating the velocity q.
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Let Q% ,_1 be defined as the orthogonal projection from (L3(7))* onto RT?(7)

with respect to the inner product

(Ph,Th)A-1(r) = / A~'py-rpde, pp,rn € RTO (7).

We note that the projection Q7 ,_i is local in each element and can be computed easily
and in parallel by inverting a block diagonal matrix with 4 x 4 blocks corresponding to

individual tetrahedra of 7%. We now use the first equation of (3.26) and obtain
ar = —Qpp 4-1(AVYL),  on 7. (3.28)

We substitute (3.28) into the second equation of (3.26) and use obvious properties of
projections to obtain the following equivalent problem:

Find ¢y, € V(T") such that:

M, xh) = /Q (QFf)xnda Vi € VI(TY), (3.29)

where

M Pnxn) = D (Qhya-1(AVYL), Qrp 4-1(A VXH))a-1(r)-
TETh

The next lemma show that the inner product ch(-, -) is equivalent to a more easy com-

putable inner product a”(-,-). The technique used in the proof is due to Brenner [11].

Lemma 3.2 Let us assume that A is a three-by-three symmetric matriz-valued suffi-

ciently function inside each element T € T" and salisfies
0 < Amin(TIEP? < ETA(2)E < Apau(T)IEP* VEER® aexer .
Then, there exist a positive constant C, independent of the coefficient A(z), such that

My, ) < (g, y) Ve Hy(Q) + VE(T), (3.30)
and
M, ) > Cal(y,p) Vo € VT, (3.31)

where

(b, 0)= Y | AVY-Vide,

reTh "7
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Proof. The first inequality: Using that QF,. ,_, is a projection, we have

(0, 0)= D (Qur a1 (A V), Qpp 41 (A V) 415

TETh

< Y (AVY,AVE) 4y = D [ AVE-Vide = d" (v, 9).
TETh reTh T

The second inequality: Using element-by-element local arguments, we have

() = S (Qhpact (A V), Qi ar(A V) 4

TeTh
(QTRT,A—J (A V¢)7 Ph)124—1 (7) (A V¢7 ph)124—1(7_)
— Z sup = Z sup
= PreRT?,(7) (Ph PR)a-1(r) ~ pneRT?, (1) (PhyPR)A-1(r)
2
— Z sup (V¢7 Ph Z Amzn sup (V¢h7 ph)
T PrERTC (7) (PhsPh)A pheRTgl(T) (Ph:PH)
<—§2Amm N Qrr (V)72
There remains to show that
1QRr 1V T2(ry = CN(VOI[T2(,y VT e T, (3.32)

and then use that the coefficient A is sufficiently smooth inside each element 7 to com-
plete the proof. We note that the dimension of V V() = 4 and that of RT?(7) = 4.

Hence, to prove (3.32), we only need to show that
Qrri(VY)=0= V¢ =0 Ve Vi(r).
Using that Q1 is the L?-orthogonal projection onto RT?,(7), we have

Qpr (V) = 0 = / Ve prdz =0 Vph € RT®,(7),

and using (3.14)
= [V bude =0 Vpy € RI%()

Using simple calculations, we find that 1,/; is a constant. Therefore, 7 is a constant and

V1 = 0. For details, see Brenner [11], or Meddahi [60])
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We conclude this subsection by discussing three cases:

i) A = pI, where p is a scalar constant on each element 7. Two interesting
things happen: We can show that C' = 1, where C' is the constant of (3.31),
and we can also show that the problem (3.29) can be reduced to a non-
conforming P; finite element problem and many local elementwise problems.

Using the first equation of (3.26), we obtain
p~tan = —Qpy (Vin)  VrerTh,

and the problem (3.26) is equivalent to:

Find ¢y, € VR(T") such that
> [ 0 QhraVen) - Vxnde = [ (@ N xude Y € VI(TH). (3.3
reTh 7

We now use that Vi(7") = VEH(T") & V,(T") decomposes uniquely, i.e.,
On = v + on, with v, € VER(T") and ¢, € VE(T), (3.34)

and

Yr = 2p + ¢n, with z, € VC@R(T}L) and ¢y € Vg(’fh).

For zp, € VEp(T"), we find that Qhr.1(Vzr) = Vzy is piecewise constant.
The same property holds for vs. For ¢, € VA(T"), we find that V¢, has
zero mean value on each element 7. The same property holds for ¢p,. Hence,
the problem (3.33) is equivalent to:

Find ¥y, = vy, + @n, where (vp,, 1) € VER(TH) x VA(T") is the unique solu-

tion of
Yrern fy pVor - Vande = [o(QF f) znde Wz € VER(T")

Yrern Jr pQrr(Veor) - Vonde = [o(QF f) rde Vo, € VE(T™).
(3.35)

Note that v, and @y can be computed independently; in fact @p can be
computed locally and in parallel, for each element 7. For the computation

of vy, we can, if p is nearly constant in each substructure, use one of our
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i)

iii)

Schwarz methods for nonconforming P; finite element methods developed in

Chapter 5 of this thesis.

A is a constant matrix on each element 7. Using Lemma 3.2 and the decom-

position (3.34), we find that there exist constants C; > 0 such that

Cra™(Pn, ) < a"(vn,vn) + " (on, o) < Caa"(Yn, 1) Vb € VR(TH),
(3.36)
and then it is straightforward to apply Schwarz techniques to solve (3.29).
Again, the hardest part is how to solve a problem like

Find vy, € VAL(T") such as
a"(vop,21) = g(zr) Yz € VER(T"),

for some appropriate right hand side ¢g. If in addition, the matrix A is
nearly constant in each substructure, we can use one of our Schwarz methods
for nonconforming P; finite element methods. We note, however, that our

analysis does not extend trivially to the case in which A is highly anisotropic.

A is a smooth and is small pertubation of a constant matrix on each element

7. In this case, the results of ii) hold.
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Chapter 4

Multilevel Schwarz Methods for
Elliptic Problems with
Discontinuous Coefficients in
Three Dimensions-Conforming
Version

4.1 Introduction

In this chapter, we develop multilevel Schwarz methods for a conforming finite element
approximation of second order elliptic partial differential equations. A special emphasis
is placed on problems in three dimensions with possibly large jumps in the coefficients
across the interface separating the subregions. To simplify the presentation only piece-
wise linear finite elements are considered. Our goal is to design and analyze methods
with a rate of convergence which is independent of the jumps of the coeflicients, the

number of substructures, and the number of levels.

We consider two classes of the methods, additive and multiplicative. The multiplica-
tive methods are variants of the multigrid V-cycle method. In our design and analysis,
we use a general Schwarz method framework developed in Chapter 2. Among the partic-
ular cases, discussed here, are the BPX algorithm, cf. Bramble, Pasciak and Xu [8], and
Xu [91], and the multilevel Schwarz method with one-dimensional subspaces considered

by Zhang [94, 95]; see also Dryja and Widlund [39, 40]. It is well known that these
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methods are optimal when the coefficients are regular.

The problems become quite challenging for problems with highly discontinuous co-
efficients. Pioneering work was carried out in Dryja and Widlund [40], where the BPX
method was modified and applied to a Schur complement system obtained after that the
unknowns of the interior nodal points of the substructures had been eliminated. In that
case, the condition number of the preconditioned system was shown to be bounded from
above by C (1 + €)%, where £ is the number of level of the refinement; see further Section

4.9.

The main question for problems with discontinuous coefficients is the choice of a
coarse space. We introduce a coarse triangulation given by the substructures and as-
sume that the coefficients can have large variations only across the interfaces of these
substructures. We then design methods with several coarse spaces, sometimes known as
exotic coarse spaces; cf. Widlund [88]. Some are new and others have previously been
discussed; see Dryja, Smith, and Widlund [35], Dryja and Widlund [41], and Sarkis [76].
One of our main results is that the condition number of the resulting systems can be
estimated from above by C (1 + £)? with C independent of the jumps of coefficients,
of the number of substructures, and also of {; see Section 4.4. For multiplicative vari-
ants such as the V-cycle multigrid, the rate of convergence is bounded from above by
1—-C(14¢€)7%,C > 0; see Section 4.6.

In Section 4.5, we study in detail the weighted L? projection with weights given by
the discontinuous coefficients of the elliptic problem. Bramble and Xu [9], and Xu [90]
have considered this problem and established that the weighted L? projection is not
always stable in the presence of interior cross points. Here, we introduce a new concept
called quasi-monotone distribution of coefficients which characterizes the cases for which
certain optimal estimates for the weighted L? projection are possible. For problems with
quasi-monotone coefficients, the standard piecewise linear functions can be used as the
coarse space and optimal multilevel algorithms are obtained.

In Section 4.7, we introduce approzimate discrele harmonic extensions and define
new coarses spaces by modifying previously known exotic coarse spaces; see Sarkis [76]
and Chapter 5 for a case of nonconforming elements. Using these extensions, we can
avoid solving a local Dirichlet problem for each substructure when using exotic coarse

spaces [88]. We show that the converge rate estimate of our new iterative methods, with
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approximate discrete harmonic extensions, are comparable to those using exact discrete
harmonic extensions. The use of approximate discrete harmonic extensions results in
algorithms where the work per iteration is linear in the number of degrees of freedom
with the possible exception of the cost of solving the coarse problem.

Elliptic problems with discontinuous coefficients have solutions with singular behav-
ior. Therefore, in Section 4.8, we consider nonuniform refinements. We begin with a
coarse triangulation that is shape regular and possibly nonuniform and then refine it us-
ing a local refinement scheme analyzed by Bornemann and Yserentant [3]. We establish
a condition number estimate for the iteration operator which is bounded from above by
C (1 + £)?. For quasi-monotone coefficients, we obtain an optimal multilevel precondi-
tioner. We conclude this chapter by an analysis of multilevel iterative substructuring
methods in Section 4.9, and by analyzing two-level Schwarz methods with inexact local
solvers in Section 4.10.

Our results have been obtained jointly with Maxsymilian Dryja and Olof Widlund.
This work has already submitted for publication; see Dryja, Sarkis and Widlund [34].
See also Dryja [33], Sarkis [77], and Widlund [88].

4.2 Assumptions and notation

We assume that A(z) = p(z) > 0, and p(z) is constant, in each substructure, with
possibly large jumps occurring only across substructure boundaries. Therefore, p(z) = p;
in each substructure ;. The analysis of our methods can easily be extended to the case
when p(z) varies moderately in each subregion ;.

The bilinear form a(u,v) defined in (3.2) is directly related to a weighted Sobolev
space H)(Q) defined by the seminorm

|ulfy () = alu,u).
We also define a weighted L2 norm by:
oy = [ o) lu(e) P d for u € 17(@), (4.1)

Let 7% k = 0,---,{ be a triangulation defined in Subsection 3.2.1, and let ¥ be a

region contained in  such that 90X does not cut through any element Tf € TF. We
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denote by V¥(2) the restriction of V() to X, and by VJ(X) the subspace of V*(X)
of functions which vanish on 9X. We also define H)(X) and L2(X) by restricting the
domain of integration of the weighted norms to ¥. To avoid unnecessary notations, we
drop the parameter p when p = 1, and X when the domain of integration is .

In the case of a region Y. of diameter of order hg, such as an element 7']1C or the union

of few elements, we use a weighted norm,
H;(E) H}J(E) hi L%(E)' '

We introduce the following notations: w < v , w = x, and y < z meaning that there

are positive constants C' and ¢ such that
u<Cv, w>cz and cz<y<(Cz respectively.

Here € and ¢ are independent of the variables appearing in the inequalities and the
parameters related to meshes, spaces and, especially, the weight p. Sometimes, we will

use < to stress that C' = 1.

4.3 Multilevel additive Schwarz method

Any Schwarz method can be defined by a splitting of the space V' into a sum of sub-
spaces, and by bilinear forms associated with each of these subspaces; see Subsection
2.5.1. We first consider certain multilevel methods based on the MDS-multilevel diag-
onal scaling introduced by Zhang [95], enriched with a coarse space as in Dryja and
Widlund [41], Dryja, Smith, and Widlund [35], or Sarkis [76, 77].

Let A% and N be the set of nodes associated with the space V¥ and V¥, respectively.
Let qbf be a standard nodal basis function of V', and let ij = span{obf}. We decompose
V] as

o=V —|—EV’“—V +Z > v

k=0 jeNE

We note that this decomposition is not a direct sum and that dim(ij) = 1. Four different
types of coarse spaces V2, and associated bilinear forms b, (u,u) : VX x VX — R, with
X = F, E,NN,and W, will be considered; see Section 4.4. We also consider variants

of these four coarses spaces using spaces of approximate discrete harmonic extensions
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given by simple explicit formulas; see Section 4.7. The case when the coarse space is
VY = V! is considered in Section 4.5.

We introduce operators P]lC : Voh — ij, by

a(P]ku, v)=a(u,v) Yve ij,

and an operator T : V¥ — VX, by an inner product b)_(l(-, -) and the formula
VX (T u,v) = a(u,v) Voe VE. (4.3)

The analysis can easily be extended to the case when we use approximate solvers for the

spaces ij . Thus, we do not need to save, in memory, or recompute, all the values of

a(obf,qbé?), for k=1,---,£, and Vj € NV}.

Let ,
=TX+> > P (4.4)
k=0 ]eNok
We now replace (3.5) by
L
TXu =g, g:Tf(lu—}—Z ZP]ku. (4.5)
k:Oje_/\/'Ok

Equation (4.5) is typically solved by a conjugate gradient method. In order to esti-
mate its rate of convergence, we need to obtain upper and lower bounds for the spectrum
of TX. The bounds are obtained by using a variant of Theorem 2.1 for which is more

suitable in the present context.

Theorem 4.1 Suppose the following three assumptions hold:

i) There exists a constant Cy such that for all u € Vh there exisls a decompo-

sition u = u_q + Ei:o ZjeN(f ué?, with u_y € VX, u € V]k, such that

b (uX ) —I—Z Z <C’0a(u u).

k=0 jen§
ii) There exists a constant w such that

a(u,u) < wb® (u,u) Yue VX.

52



iti) There exist constants e, myn=20,---,0 and

Vi e Ng¥, Vj € N such that

a(uf',uf) < € a(ul, o) Pa(u}, uf)

Vu* € V™ Yui e Vi
Then, T is invertible, a(Tu,v) = a(u,Tv), and

Cya(u,u) < a(Tu,u) < (p(€) + Dwa(u,u) Yu € V. (4.6)

mn1l
1] 2,7,m,n=0"

Here p(&) is the spectral radius of the tensor & = {e

4.4 Exotic coarse spaces and condition numbers

We now introduce certain geometrical objects in preparation for the description of our
exotic coarse spaces V. Let F;; represent the open face which is shared by two sub-
structures ; and ;. Let & represent an open edge, and V,, a vertex of the substructure
Q;. Let W; denote the wire basket of the subdomain €;, i.e. the union of the closures of
the edges of 0€;. We denote the interface between the subdomains by I' = U9Q;\01,
and the wire basket by W = UW;\99Q. The sets of nodes belonging to 9, Q;, 8Q;, F,;,
&, W;, and T are denoted by 09y, 0Q; 1, Q“L, Fiihr Euky Wi, and I'y, respectively.
We now proceed to discuss several alternative coarse spaces and to establish bounds

for the condition numbers of the corresponding additive multilevel methods.

4.4.1 Neumann-Neumann coarse spaces

We first consider the Neumann-Neumann coarse spaces which have been analyzed in
Dryja and Widlund [41], Mandel and Brezina [55], and Sarkis [76]. An interesting
feature of these coarse spaces is that they are of minimal dimension with only one degree
of freedom per substructure, even in the case when the substructures are not simplices.
For any 8 > 1/2, we introduce the weighted counting functions y; g, forall e = 1,---, N,
defined by

,ui”g(x) = Zp]@, S 8Qi7h\th, uivﬁ(x) =0, z € (Fh\aﬂm) U 0Qp.

J
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For each z € 09, ,\0Q},, the sum is taken over the values of j for which z € 99; .
The pseudo inverse ,u;»"ﬁ of p; g is defined by

pis(@) = (pip(e)™!, @ € 01\ O,
and
pig(e) =0, @ € (T\0Q 1) U 0Ly,

We extend ,ufﬁ elsewhere in © as a minimal energy, discrete harmonic function using the
values on I';, U 89y, as boundary values. The resulting functions belong to Vg{(Q) and
are also denoted by ujﬁ.

We can now define the coarse space VNV C V| by

VAN = span{p] uf,}, (4.7)

i.e. we use one basis functions for each substructure €2;. We remark that we can even
define a Neumann-Neumann coarse space for § = oo by considering, the limit of the

space VNN when 3 approaches oo, i.e.

+ 7 B+
Pi Mg e = ﬁlggo Pi K g

For instance, for € F;; 5, we obtain
o0 F =1. if o, .
p; z,oo(w) , P > p]’

P i o (x) =0, if pi < pj,
and
pi° i (x) = 1/2, if p;= p;.

We note that VYV is also the range of an interpolator INN : VJ* — VAN given by
NN ; n
uoy = [ Nu(e) = 3o ub = S al pluf,. (4.8)

Here, ﬂf is the discrete average value of u over 9€; 1.
We note the coarse spaces defined with 5 = 1/2, § = 1, and § > 1/2 have been
used by Dryja and Widlund [41], Mandel and Brezina [55], and Sarkis [76], respectively.
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Recently, Wang and Xie [85] introduced another coarse space which is similar to ours

with § = co. However, their basis functions only take the value 0 or 1 on I'y.

We introduce the bilinear form ™V (u,v) : VAN x VAN — R, defined by
VN (u,v) = a(u,v). (4.9)

Theorem 4.2 Let TNV be defined by (4.4), and let 1/2 < 3 < oo. Then for any
u € VIH(9Q), we have

1+ 0 2a(u,u) < a(TVu,u) < a(u, ).
The bounds are also independent of (.

Proof. We use Theorem 4.1
Assumption i). For notational convenience, we introduce, for k = 0, - - -, £, the bilinear

forms bg(ug, ur): VJF x VF — R, defined by

bie(up, ue) = Y up(z;)a( ﬁ?,qﬁ?) =y a(u?,uf), (4.10)

JjeNE JENE
We use a level k& decomposition given by uy = ju;?, with ué“ = uk(:vj)qb;?. Here, z; is
the position of the node j € N,
We decompose u € V() as
= Hu+ Pu in Q,
where
uw=HDu+ Py in Q. (4.11)

Here, H(Wu is the discrete harmonic part of u, i.e.

(VH(i)u’VU)LQ(Qi) =0 Vo e Vy' (),

HOu = u on 9,

and POy € V() is the H'—projection associated with the space VJ(£;), i.e.
(V(POu), V)20, = (Vt, VE) 121, Yo € V().

7
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We decompose Py and H(Du separately. We start by decomposing v(9) = PWy in
Q, as
o = Pl 4 (PO — ply () g (Pl = Py p@),

where P,gi) V() — VEF(4), is the H!—projection defined by
(VD) V) oy = (Vo) Vo) aq,) Vo € V().

We extend P,gi)v(i) by zero to Q\Q;, and also denote this extension by P,gi) v, Thus,
P € VE(Q). Let

og) = g, o) = (PO =P )00, k=1, e

Hence

) = v(()i) 1+ vy) 4ot ”1(:) 4ot Ulgi)l + véi), (4.12)

We use the decomposition (4.12) for all ¢ = 1,---, N. The global decomposition of v
is equal to v in Q;, and is defined by

¢ N
v = Z Vg, Uk = Zv,(;). (4.13)
k=0 =1

We now decompose Hu. Let
w=Hu—u_q,

where u_; is defined in (4.8).

We decompose w as

N .
=1
where
wl = Ly(uplufy) — ak pluly = (ol pty (w—ul)) on TUOQ
and extended as a discrete harmonic function in each Q;, 5 =1,---, N.

Here, Iy, is the standard linear interpolant based on the h-triangulation of I'. It is easy
to show that w(z) = 3, wl)(z) Vz € Q. Note that the support of w(?) is the union of

the Qj which have a vertex, edge, or face in common with ;.
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We decompose w(?) further as

wh= Y o+ 3w+ Y W), (4.14)
Fiy COQ; £,COQ; Vi CO8Y;

@) 0

where F;, &, and V,, are the faces, edges, and vertices of 0€;. Here, wi s We and
LV

ng) are the discrete harmonic extensions into € with possibly nonzero interface values

only on F; 1, &, and Vy,,, respectively. The support of each function on the right hand
side of (4.14) is the union of a few Qj and its interior is denoted by 1z, , Q¢ , or Qy,,,
respectively. We can assume that the regions Qz,, ¢, and Qy, are convex. If not, we
can extend them to convex regions and use a trick developed in Lemma 3.6. of Zhang
[95].

(%) (%)

' (%)
We now decompose W, We, and wy,

m

in the same way as the v(9). Let us first

consider w(}z-) . We obtain
ij

wi) = ol ol ool +oot ol g Fulk (415)
Here
w((JZ,)}—z] - (?) z]w_(;—i)]7 wlgcl,)]:” - (/plgf)}—l] a 7)152—)1,7:”)10—(7‘2—1‘)]’ k=1L

'P,Ei)}-i] (Vi (Qr,) — VE(Qx,), is the Hl-projection. As before, we extend 'P,Ei)}-ij w(}% by
zero outside (g, .

(1) (1)

We decompose wg, and wy,’ in the same way, and obtain

w) = wp kb wl kw4 el g ), (4.16)
where
wir, = Pokws), wile = Pk = Py e wl), k=1,
and
wf) = e, Fol, bl bl el (4.17)
Here,
LT N R P I S

We can now define a global decomposition of the function w as
w=1wy+wy+ -+ wp+ -+ wp_q + wy, (4.18)
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where

we= 0 3wl + > win+ Y wl)

7 Fij COQy E,CO8; Vm CI;
We check straightforwardly that (4.18) is valid Yz € Q. Using (4.18) and (4.13), we

define a decomposition for u € V' as

Uu=u_1+u+---+up+ -+ w1+ u, (4.19)
where
up = v +wg, k=0,---,L.

We obtain the desired decomposition in Assumption i) by decomposing u; as in

(4.10). We will now prove that
Z bi(uk, ur) < (1 + log(H/h))*a(u, ). (4.20)
k=-1

Therefore, in view of (4.10), we obtain C3 = C'(1+¢)? in Assumption i) of Theorem 4.1.

We start with the decomposition of ».

Lemma 4.1 For the decomposition of v given by (4.13), we have

£
Z br(vg, v) < alu,u). (4.21)
k=0
Proof. We first show that
Ebk ol oy < p; lulF1(60,)- (4.22)

Note that for & > 1, v,(:) = (P,gi) - 77,?_)1) o) = (I - 77,?_)1) v,(:).
Hence,
i 1 i
bulwi ) = g il ey % o101 i

The last inequality follows from the well known error estimate for

H!'—projections on convex domains; see Ciarlet [27]. For k = 0,
() 0y <1
bo(vg 5 vp7) = thzuvo HL2 ) =2 Pz|“o |H1 Q)
using Friedrichs’ inequality.
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Adding the above inequalities, we obtain
‘6 . .
ICLTUE
k=0

p{ (VP01 v +§: =P o, Vo) g}

= pilIVoUlTaay = pi IVPDulleq,) < pillVullZaq,

Thus
N ¢ ) )
Z Z bk(v,(j), v](j)) < a(u,u).
1=1 k=0
O
Lemma 4.2 For the decomposition of w&%, given by (4.15), we have
)
Yo blwr s wir ) 2 (L 02 pilulip g, (4.23)
k=0

Proof. Note that

by, wi) = (it o) 108 lliagas, ):

Here, Q}-z.j =, UQ; UF;;. Note that w(}l-})mj =0in Q\Q}-ij. Using the same arguments

as in the proof of Lemma 4.1, we obtain

Ejm 0, % (it el o, ). (4.24)

Note that
(pi + 2w ey ) = (oik ) I o ) =

K =
(pi + PN, g0 = T e ) =

(1+3) e "
WH(U— U; )f,;J,hHHgo/z(E]) = pill(w — u7) UhH 1/2(%)-

The first inequality above follows from an extension theorem for finite element functions
1/2

given in Bramble, Pasciak, and Schatz [6], and from properties of Hy) -norm given

in Chapter 2; see also Dryja [32]. A simple proof for this extension theorem is given
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in Lemma 4.14. Here, (v)g,, is the piecewise linear function on F;; N T" such that
(?J)]-‘ijyh = v at the nodal points F;;, and (v)r,, = 0 on 0F;;,. For the last inequality,
we have also used the fact that § > 1/2. For § = oo, we use a limiting process.

Let Hfi] be the discrete harmonic function, defined in €;, which equals 1 on F;;

and zero on 0€; ,\Fi;n. Using properties of the Hégz—norm and a trace theorem given

in Chapter 1, we obtain
—h —h
pill(w — @; )fi],hlliféoxz(ﬂj) 2 pilly (U0, (w — @)l g1/2 (a0,

=< pi |k (O, (u = w))) e

and using Lemma 4.5 of Dryja, Smith, and Widlund [35] and a Poincaré Friedrichs’

inequality, we obtain
< pi(1+log H/R)|lu — ||} g, = pil1 + O%fulq,-
Combining this inequality with (4.24), we obtain (4.23).

ad

Remark 4.1 The Poincaré Friedrichs inequality that we have just used does not fit,
straightforwardly, into the hypotheses of Lemma 1.6 since in (1.13) we possibly may

have
fate=a) = [ s(u=al)dr) 0.

We note, however, that for quasi-uniform triangulations, we can define

(o) =h* > w(z,) Yo e VHQ),

pEANL; p

and use the same arguments as in the proof of Lemma 1.6, and show thal
1
10172, < € H? ([v]fn(q,) + T (fu(y©))? Vo e V().
Hence, we oblain fr(y(u— ul)) = 0.

The next two lemmas are proved in the same way as Lemma 4.2; see a similar

argument in the proof of Theorem 4.4
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Lemma 4.3 For the decomposition of w(g?, given in (4.16), we have

£

S br(wh wie) < (14 €) pi [} ). (4.25)
k=0

Lemma 4.4 For the decomposition of ng)

m

, given in (4.17), we have

[ . .
> be(wl), wi ) < piluling,): (4.26)
k=0

Corollary 4.1 For the decomposition of w, given in (4.18), we have
£
E br(wg, wi) < (14 0)%a(u, u). (4.27)
k=0

The proof of Corollary 4.1 follows from Lemmas 4.2, 4.3, and 4.4.

We now estimate a(u_y,u_1).
Lemma 4.5 Foru_q =), u(_l)l, u(_l)l = al pf,u;-':ﬁ,
a(u_y,u_1) = (1 +log H/h)a(u,u) < (1 + €)*a(u,u) (4.28)

The proof of this result, for 5 = 1/2, can be found in the proofs of Theorem 6 and 7 of
Dryja and Widlund [41]. For different values of 3, we use an argument similar to that
of the proof of Lemma 4.2.

Returning to the proof of Theorem 4.2, we find that (4.20) follows from Corollary
4.1, and Lemmas 4.1 and 4.5. The bound for Cy has then been established.

Assumption ii). Trivially, we have w = 1.

Assumption iii) We need to show that p(£) < const. This has been established in
Remark 3.3 in Zhang [95].

a

Remark 4.2 Recently, Mazsymilian Dryja has proved that the estimate (4.28) can be
sharpened to

a(u_y,u_1) = (1 +log H/h)a(u,u). (4.29)

We note that this result is in agreement with a result obtained by Sarkis [76] for noncon-

forming spaces; see further Chapter 5. The proof of 4.29 will be published elsewhere.
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4.4.2 A face based coarse space

The next exotic coarse space is denoted by V¥, C VJ, and is based on values on the
wire basket W), and averages over the faces F;;. This coarse space can conveniently be

defined as the range of an interpolation operator I}fj (Vi — VI, defined by
F
Ih U,(.’E)|Ql = Z (CL'p S‘Qp + Z u]:I] 0'7:1]
pEWi h .7:1] CcaQ;

Here, ¢,(z) is the discrete harmonic extension, into €;, of the standard nodal basis
function associated with a node p. ﬂ}i] is the discrete average value of u over F;; .

We define the bilinear form by

Epz{ Z h )2

pewz h

+ H(1+0) Y (dy, —al)?),

Fij COQ;

where ?jlh is the discrete average value of u over 94, 3.

Theorem 4.3 Let TT be defined by (4.4). Then for any u € V§(Q), we have
(1+ 0 2a(u,u) < a(TFu,u) < a(u,u).

Proof. Assumption i). The decomposition here is the same as before, except that we
now choose w(®) = I;,(p; 12 Z+1/2(u — Ifu)) on T U 99, and extend these boundary values
as a discrete harmonic function elsewhere. We note that this decomposition is simpler

(%) (%)

since w(? vanishes on the wire basket. Therefore, wg, =0 and wy’ = 0. A counterpart

of Lemma 4.2 holds since
(@) |2 h 2
(01 21w s, = (s + o (IR sEs = L)) o

< pil|(u— @k )70l L) S pi (1 +log H/h)*||lu = ul, [},
< pi (1 +1log H/h) ultp g,y < pi (1+ O%|ultp g

Here we have used the same arguments as in the proof of Lemma 4.2. Finally, Lemma

4.5 is replaced by
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Lemma 4.6 For u € V()
b (I u, IFw) < (14 log H/h)a(u, u) < (14 O)a(u,u).

The proof of this result can be found in the proof of Theorem 6.7 of Dryja, Smith, and
Widlund [35].

Assumption ii). We have w < 1; see Dryja, Smith, and Widlund [35].

Assumption iii). As in Subsection 4.4.1.

Remark 4.3 Another possible decomposition for w is given by

Here, wy,, is the discrele harmonic function on Q with possibly nonzero interface values
only on F;jp. We note that the support of wg,, is QE]- We can decompose wg,; as in
(4.15), and obtain

bk(wk,}—iﬂwkv}—ij) = (Pi + ,0])| ”|H1/2(]_-]) -

(it o) N(u= )y = (L log IR = 2 o,

= (1 +1log H/h)*|ulfa ) < (1+ €)*|ulf g

4.4.3 An edge based coarse space

We can decrease the dimension of V] and define another coarse space. Rather than
using the values at all the nodes on the edges as degrees of freedom, only one degree of
freedom per edge, an average value, is used. The resulting space, denoted by V4 C V,

is the range of the interpolation operator I}]LE (V= VE, defined by

Ifu(x)mi: Z U( Vi )P (2)+

£.CW; F,Co0;

Here, ug is the discrete average value of u over & 1, and f¢, the discrete harmonic

function which equals 1 on & 4, and is zero on 0 4, \ €4 @m(2) is the discrete harmonic
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extension into 2; of the boundary values of standard nodal basis function associated
with the vertex V,,.
We define a bilinear form by

sz{h Z ')2+

Vm €99

gy VAHHA+E) Y (ak, -al))

EmCO8Q; Fij COSY;

Theorem 4.4 Let T be defined by (4.4). Then, for any u € VJ(Q), we have

(1+ 0 2a(u,v) < a(TFu,u) < a(u,u).
Proof. Assumption i). Here, we choose w(®) = Ih(pl/ ;"1/2(u — IPu)) on T'U OQ and
extend these boundary values as a discrete harmonic function elsewhere. Note also that,

(1)

we have wy,” = 0. The proof of a counterpart of Lemma 4.2 is similar to that given in
the proof of Theorem 4.3.
The proof of a variant of Lemma 4.3 for this case proceeds as follows. Let w(gl) be the

(1)

edge component of w(), given similarly as in (4.14), and let w, g be the decomposition

(1)

of wg’ given as in (4.16). Using similar arguments as in Lemma 4.2, we have

[ . .
> be(wpk wik) X 3 pm
k=0 m

where the sum ), is taken over all substructures, which share the open edge &. We

w(s? |12111(le )?

now use the fact that ,uZ 12 = =, ,01/2) on & 5, and an inverse inequality, and obtain

me|w51 |H1 (Qg) = Pi > h(ug - u(z,))”.

PEE
We next use a Sobolev type inequality to obtain
pi Y bl — u(zp))? < pi (1+ log H/W)ulq, (4.30)

PEEL R
Results very similar to (4.30) can be found in Bramble, Pasciak, and Schatz [6], Bramble
and Xu [9], Dryja [32], Dryja, Smith, and Widlund [35], and Dryja and Widlund [41].
Therefore,

>l a2 pi(1+ Olulfysqq,)- (4.31)

m

Finally, we use
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Lemma 4.7 For u € V!
VE, (1w, 1Fw) < (1+ 6) au, w).

The proof of this result can be found in the proof of Theorem 6.10 of Dryja, Smith,
and Widlund [35].

Assumption ii). We have w < 1; see Dryja, Smith, and Widlund [35].

Assumption iii). As in Subsection 4.4.1.

Remark 4.4 We can also simplify the proof by decomposing w as

> wr, ) we
Fi; &crl
Here, wg,; is chosen as in Remark 4.3 and we, is the piecewise discrete harmonic function
with possibly nonzero interface values only on & . We note that the support of wg, is in
Q¢,. We decompose we, as in (4.16) and obtain

me|w51|12111(95 me Z h( Usl ))2

PEELR

7°

< (140 lulfpq,,)-

4.4.4 A wire basket based coarse space

Finally, we consider a coarse space VY C V', due to Smith [79]. It is based only on
the values on the wire basket Wy. The interpolation operator I,EV :Vy — VW and is
defined by

I{/%/U(.’E)Kjl = Z U(.’Ep Sﬁp Z uaj:lj '7:“] )

PEW; fucan

Here, ﬂg}]; is the discrete average value of w on 0F;; . Let ﬂ%z be the discrete average

value of u on W; ;. We define the bilinear form by

DY (w,u) = (140> pi > h(u(p) — ajy, ).

% PEW; 1
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Theorem 4.5 Let TY be defined by (4.4). Then, for any u € VJ(Q), we have
1+ 0 2a(u,u) < a(TVu,u) < a(u,u).

Proof. Assumption i). Let w(®) = Ih(p}/z,uj'l/z(u — IVu)). Therefore, we have w(gl) =0

(1) _

and wy,’ = 0. The proof of the counterpart of Lemma 4.2 is as follows:
: ~h
(pi+ o105 iy, ) = pill(Cn = 05 85, oo

2 —h 2 2
< il ) s )+ (05, )5 )
< pi{(1+log H/hY||ull}s g, + (1 + log H/B)|[ul2gor, )}
< pil1+ log H /B [ulfis 0, < pi(1+ OP|lullBpaga,) (4.32)

Here we have used ideas of the proof of Lemma 4.2, and the following results:

|05, 31 (0, < H (1 +log H/R), (4.33)
) 1
(dhr, ) < = llul2or,). (4.34)
and
[ullZ2(or,) = (1+log H/R) [|ullFpq,)- (4.35)

For the proof of (4.33), see Lemma 4.4 of [35]. The proof of (4.34) is a direct consequence
of Schwarz inequality. The proof of (4.35) is related to the proof of (4.30).
To get the seminorm bound in (4.32), we use the same arguments as for (4.31).

Finally, we also use

Lemma 4.8 For u € V()
W (I u, IV u) < (14 log H/h) a(u, u) < (14 £)%a(u,u).

The proof of this result can be found in the proof of Theorem 6.4 of Dryja, Smith, and
Widlund [35].
Assumption ii). We have w < 1; see Dryja, Smith, and Widlund [35].

Assumption iii). As in Subsection 4.4.1.

Remark 4.3 also applies in this case.
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4.5 Special coefficients and an optimal algorithm

In this section, we show that if the coeflicients p; satisfy certain assumptions, the
Lg—projection is le—stable and we can use the space of piecewise linear functions VH(Q)
as a coarse space and obtain an optimal multilevel preconditioner. It should be pointed
out that the Lg—pro jection is not H ;—stable in general; see the counterexample given in

Xu [90].

4.5.1 Quasi-monotone coefficients

Let V,,,m = 1,---, L, be the set of substructure vertices. We also include the vertices
on 0Q. Let Q,,,, t = 1,---,s(m), denote the substructures that have the vertex V,, in
common, and let p,,, denote their coefficients. Let 2y, be the interior of the closure of
the union of the substructures €1,,,,, i.e. the interior of UZS(:T)sz By using the fact that
all substructures are simplices, we see that each 2,,, has a whole face in common with

0Qy,,. Two-dimensional illustrations of Qy, = U;Q,,, are given by Fig. 4.1 and Fig. 4.2.
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Definition 4.1 For each Qy,,, order its substructures such thal py,, = maxX; .. s(m) Pm; -

We say that a distribution of the p.,, is quasi-monotone in Qy, if for everyi =1,---,s(m),
there exists a sequence ij, j =1,---, R, with
Pm; = Pmig <--- < Pmi;y, < Pmi; <--- < Pm;; = Pmys (4'36)

where the substructures Qmi] and Qmi]+l have a face in common. If the vertex V,, € 01,
then we additionally assume that 0Q,,, N 0 contains a face for which V,, is a vertex.
A distribution p; on Q is quasi-monolone with respect to the coarse triangulation T°
of it s quasi-monotone for each Qy, .
We also define quasi-monotonicity with respect to a triangulation T*, as before, by
replacing the Q; and the substructure vertices V,, by elements % and nodes in N'*,

J
respectively.

Remark 4.5 The analysis and results can easily be extended to the case in which
Pm; :pmiR <... < pmz‘]_l_l =< pmi] <...=< pmil = P, -

In two dimensions, quasi-monotonicity with respect to 7° implies, for the same dis-
tribution of the p;, quasi-monotonicity with respect to 7%. We can show this as follows.
The nodes of A'* divide into three sets: i) those which coincide with vertices of the
substructures (nodes of the coarse triangulation), ii) those which belong to edges of
the substructures, and iii) those which belong to the interior of the substructures. By
examing the three cases, it is now easy to see that a distribution of the coeflicients is
quasi-monotone with respect to 7% if it is quasi-monotone with respect to 7°.

In three dimensions there are cases in which a distribution of p; is quasi-monotone
with respect to 7° but not quasi-monotone with respect to 7%. In this case, the nodes of
N* are divided in four sets: those at vertices, edges, faces, and interiors of the substruc-
tures. There are no problems for those of the vertices, faces and interior sets but there
can be complications with the edge set of nodes. Quasi-monotonicity of the coeflicients
for nodes belonging to the edge set does not follow from the quasi-monotonicity with
respect to the coarse triangulation. To see that, let £ be an edge of a substructure €2;,

and let V,, be a vertex of ; and an end point of &. There are more substructures
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sharing V,, than substructures sharing the whole edge &;. From this observation, it easy
to distribute coefficients in such a way that they are quasi-monotone with respect to the
coarse triangulation but not quasi-monotone with respect to a finer triangulation.

We note that in Theorem 4.6 only the quasi-monotonicity of the coefficients p; with
respect to 79 is needed. We have introduced quasi-monotonicity with respect to 7%
only to obtain a complete theory for the stability of the Lg—projection on finer levels; see

Lemma 4.9 and Corollary 4.2

4.5.2 A new interpolator

We define an interpolation operator IM : V*(Q) — V#(Q), as follows. This operator is

central in our study of the properties of the weighted L2-projection.

Definition 4.2 Given u € V*(Q), define u, = [Mu € VF(Q) by the values of uy, at two
sets of nodes of N*:

i) For a nodal point P € N¥, let uy(P) be the average of u over an element
Tfp €Tk,
ii) For a nodal point P € Nkq, let up(P) be the average of u over ffp N ox.

Here, T]kP is the element, or one of the elements, with the vertex P with the largest

coefficient p;. N, is the set of nodes of N* which belong to 9Q, and Nf = NF\NE,.
It is easy to see that, for any constant ¢, IM(u — ¢) = IM(u) — ¢ Ve, and also that
u), vanishes on 02 whenever « vanishes on 94.
We note that f]kP NoN is a face of T]kP for a quasi-monotone distribution of coefficients
p; with respect to the triangulation 7Y, but that ffp N 0 might be just an edge or a

vertex for coefficients that are not quasi-monotone with respect to 7°.

Lemma 4.9 For a quasi-monolone distribulion of coefficients p; with respect to the tri-

angulation T*, we have Yu € V(1)
I = Il gy = Bl gy, € T, (437)

and

|IM ulpy oty |u|H;@k,M) v e Tk (4.38)
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—k,ext

Here, 7' M - T; 1s a connected Lipschilz region given explicitly in the proof of this
lemma. TJk s the union of the 7"2-’“ which have a vertex, edge, or face in common with
k
T
Furthermore,

Muc VHQ) if ue V).
Proof. We have
M, 112
o= BTl 0y = P = TRl
<) (N0 = el + L= el

Using the definition and properties of Ik , we obtain

HI%U—CHE(T]@ = 11" (u - HLz = Y BN (u—e))(P).
PET

Here, each P is a vertex of the element Tk.

For a case in which P € N, IMu(P), the average value of u over an element 7

JP’
can be bounded from above in terms of the L2 norm of u in TJkP, i.e.
RN (= e))(P)* 2 [|u— el ]
k U C = [|u C LQ(TJkP).
Here, T]kP is the element given in Definition 4.2.
For a case in which P € N%,, IMu(P), the average value of u over a triangle 7"1C noQ,

can be bounded from above in terms of the energy norm (4.2) of u in T . Indeed,
PRI (w = (PP 2 e flu = ellfagon poqy 2 Bkl = elliaon -

From the definition of quasi-monotonicity with respect to the triangulation 7%, there

exists for each P a sequence of elements T]lz, 1=1,---,n, with
k k k k k
p(r;) = p(7;) < < p(ry) < p(7},) = p(7})- (4.39)
Let 707 = U?erjk and Tf’M = UpeTki'fJ; Then,



Note that ?]k’M is a connected Lipschtz region with a diameter of order hi. Thus, we

can use Poincaré’s inequality to obtain
: k k
Héf ,0(7']' ) hi ”’LL - CHip(;]kyM) = p(Tj ) hi |u|12q1(7—_]k7M)7
and use (4.39) to obtain
p(T]k) hi |u|ip(7—_k7M) < hi |u|?{;(7—_k7M)'
J J

To obtain (4.38), we use

| U|H1 e ZP ) e |(TY (= €))(Py) .

k

Here, the P; are the vertices of the element 7. For the rest of the proof, we use the

same arguments as before.

a

Corollary 4.2 For a quasi-monotone distribution of coefficients p; with respect to T*,

we have

(1 = Qp)ullraie) = b lulmya) Yu € V5H(R), (4.40)

and

Qbulmie) 2 lulaya) Ve e Vg(Q). (4.41)

Here, Q% is the weighted L?-projection from V() to V().

Proof. We obtain (4.40) from (4.37), since Qk gives the best approximation with respect
to L2(2). Finally, we note that (4.41) follows from (4.40); see Theorem 3.4 in Bramble
and Xu [9].

a

Remark 4.6 The Lemma 4.9 and Corollary 4.2 can easily be extended lo funclions
which do not vanish on the whole boundary 0. Using Lemma 4.9, we can also establish
optimal multilevel algorithms for problems with Neumann or mized boundary conditions,

and quasi-monotone coefficients with respect to T°.
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4.5.3 An optimal algorithm

We prove that the MDS algorithm, using the space of piecewise linear functions, V, as
a coarse space, is optimal if the coefficient is quasi-monotone with respect to the coarse
mesh 79, It is important to note that to prove our next theorem, we do not need to

have quasi-monotonicity with respect to the fine meshes 7%.

Theorem 4.6 Let T be defined by (4.4) with V_y = VL = V{1, b_1(-,-) = a(-,-). Fora

quasi-monotone distribution of the coefficients p; with respect to T, we have
a(T %, u) < a(u,u) Yu € VHQ).

Proof. We only need to consider Assumption i); Assumptions ii) and iii) have been
checked in the proofs of the previous theorems.

Let the {6,,} be a partition of unity over Q with 6,, € C§°(€y,,). Because of the size
of the overlap of the subregions Qy, , these functions can be chosen such that |V#8,,| is

bounded by C'/H. We decompose w = u — I} u as

L
w= Z Wy, where w,, = [(0,w). (4.42)

m=1

Here, I}, is the standard linear interpolant with respect to the triangulation 7%,
We note that w,, = 0, on and outside of 9Qy,, m = 1,---,L. Using standard
arguments, cf. Dryja and Widlund [37], we can show that

2 < 2 1 2
@y, = Wl T 72 10lize,,,)

|

and by using Lemma 4.9, we obtain

2 2
[wnlmy@y,) = leluyag)-

Here, Qfﬁ is the closure of the union of Qy,, and the Q; which have a vertex, edge, or
face in common with 0y, .

By assumption, we have quasi-monotone coefficients with respect to 79, We now
remove the substructure Q,,, from €y, obtaining Q7 = 9, \Qn, -

We decompose w,, as
wy, = H™w,, + (W, — H(m)wm).
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Here, H(™w,, is the piecewise discrete harmonic function on s, and QF = that equals
Wy, on 0, U0y, . We stress that we use the weight p = 1 in obtaining this piecewise
discrete harmonic function.

We decompose H{"™)w,, as in (4.17), and obtain
Hw, = (w4 -+ (H™ w1 + (K w,y, )o. (4.43)

Therefore, by using that p,,, is maximal and the arguments in the proof of Lemma 4.2,

we obtain

4
kz: bk((H(m)wm)k7 (H(m)wm)k) = P |H(m)wm|%ﬂ(ﬂvm)
=0

< s MO w12
00

(m)ap, |2
(892m, NAQS,,) = pmy [H wm|Hl(Qm1) (4.44)

< pmy |wm|§11(9m1) < |wm|1211;(gvm)-

Let @, = wy, — H™w,,. Using the triangular inequality, we obtain

(@@, = [0mlE1@y,,)-

Note that @,, vanishes on 0€Q,,, U 0Qy,,. Therefore, we can decompose w,, in Q,,,
and Q7 , independently. For the decomposition in 1,,,, we have no difficulties, since
we have constant coefficients. For the decomposition in {7, , we can try to remove the
substructure with largest coefficient p,,, in 7, , and repeat the analysis just described.
It is easy to show that we can remove all substructures, recursively, if we have a quasi-
monotone distribution with respect to 7°. We note that the argument in (4.44) is invalid

if we do not have quasi-monotone coefficients.

a

Remark 4.7 In the proof of Theorem 4.6, we just need to carry oul the analysis locally
for each Qy,,. In a case of quasi-monotone coefficients with respect to T° and with
the coarse spaces VY| or VI, we can derive a bound on the condition number of the
multilevel additive Schwarz algorithm that is linear with respect to the number of levels
L. The analysis also works if we use different coarse spaces in different parts of the

domain Q. We can also use the coarse space V' and an exotic space VX simullaneously.

The resulting multilevel algorithm is optimal if the coefficient is quasi-monotone, and is
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almost optimal with a condition number bounded in terms of (14+()% otherwise. The same
arguments can also be used to prove that we also have an optimal multilevel algorithm

with Neumann or mized boundary condition and quasi-monotone coefficients.

4.6 Multiplicative versions

In this section, we discuss some multiplicative versions of the multilevel additive Schwarz
methods; they correspond to certain multigrid methods. Let X = NN, F, E, or W.

Following Zhang [95], we consider two algorithms defined by their error propagation

operators
£
Ee = (] I (- PE)UI - o1, (4.45)
k=0 jeNg
and , ,
Ey= [ U-T%= ([0 -n Y PPYU-uTE), (4.46)
k=—1 k=0 JENE

where 7 is a damping factor chosen such that HTkHH}) <w <2

The products in the above expressions can be arranged in any order; different orders
result in different schemes; see Zhang [95]. When the product is arranged in an appro-
priate order, the operators Eg and Fj correspond to the error propagation operators of
V-cycle multigrid methods using Gauss-Seidel and damped Jacobi method as smoothers
for the refined spaces, respectively.

By applying techniques developed in Zhang [95], and Dryja and Widlund [41], we
can show that the norm of the error propagation operators || Eg||g1 and || EF|/g1 can be
estimated from above by 1 — C'(1 + £)72. In a case in which we have quasi-monotone
coefficients and use the standard coarse space V7, we can establish that the V-cycle

multigrid methods, given by (4.45) and (4.46), are optimal.

4.7 Approximate discrete harmonic extensions

A disadvantage of using the coarse spaces VX, with X = F, E, NN, and W, is that
we have to solve a local Dirichlet problem exactly for each substructure to obtain the
discrete harmonic extensions. However, we can define new exotic coarse spaces, denoted

by V_X~1, with X = F, E,lﬁ, and W by introducing approzimale discrete harmonic
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extensions. They are given by simple explicit formulas [35, 76] and have the same
H;—stabﬂity estimates as the discrete harmonic extensions. Here we use strongly the
fact that our exotic spaces V_X~1 have constant values at the nodal points of the faces of
the substructures. We prove that the MDS, with these new coarse spaces, have condition
number estimate proportional to (1 + )%

Let Ck, k = 1,---,4, be the barycenters of the faces F;; of 9€Q;, and let V; be the
vertex of {2; that is opposite to C. Let C' be the centroid of €;, i.e. the intersection of
the line segments connecting the Vi to the C. Let Ey, [ =1,2,3 , be the open edges of
0F;r; see Fig. 4.3.

To approximate the discrete harmonic function 8z, in Q;, we use the finite element
function J,, introduced in the proof of Lemma 4.4 of Dryja, Smith, and Widlund [35]
(see also Extension 3 in Sarkis [76]), given by (see Fig. 4.3).

Definition 4.3 The finite element function Jz,; € VE(Q,) is given by the following

steps:

i) Let
u;(C) =
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it) For a point () that belongs to a line segment connecting C to Cy,k =
1,---,4, define u;;(Q) by linear interpolation between the values u;;(C) = 1/4
and u;;(C) = bk, i.e. by

ui(@) = MQ) § + (1 - M@z

Here \(Q)) =distance(Q), Cy)/distance(C,Cy) and 65, = 1 if j = k and 65, =

0, otherwise.

iti) For a point S that belongs to a triangle defined by the previous () as a
vertex, and the edge Fy; as a side opposite to @), l = 1,---,3, let

ui;(5) = ui; (Q).

w) Let Vr,, = Iu;;, where I} is the interpolation operator into the space
Vh(QZ-) that preserves the values of a function w;; at the nodal points of

Qi \Wi . and set them to zero on W .

v) In Qj, which has a common face F;; with ;, Vr, is defined as in ;.

Finally, 97, is extended by zero outside Q.

Note that Jr,; € V), and
Z ‘19]:U =1 on Qi,h\wi,h-
Fiy CON

We remark that other extensions are also possible; see, e.g., Extension 2 of [76].

Using ideas in the proof of Lemma 4.4 in [35], we obtain

Lemma 4.10
107,30 < 107, |t (q,) < H (1+log H/h).

For the wire basket contributions, we replace the piecewise discrete harmonic function
2pew, ,, WTp)ep, bY Ypem, , u(z,)@h, where ¢ is the standard nodal basis function
associated with a node p. Using the definition of qﬁf; and a Sobolev type inequality (see
Lemma 4.3 of [35]), we obtain
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Lemma 4.11

| >0 (ulep) = @) dplga,) = lu =l 1220w,

PEW; 1

New exotic coarse spaces vE Y, with X = F, E,J\m and W are introduced by
combining the approximate discrete harmonic functions vz, and 3° ey, , (xp)qﬁf;. We
define V_ as the range of the following interpolators I; X VP — VX

e Modified Neumann-Neumann coarse spaces
NN, _ -~  _N\N"qi
B = Yty = Yl ey
7

Here, fi]", = ,u;»':ﬁ on I', U0 and is extended elsewhere in Q as an approximate discrete

harmonic function given by:

ifa(@)= 3" wlslep)oy(x)+ D uiy(Fiy)dr,(2) Ve
PEW, Ty COQ;
¢ A modified face based coarse space
B _ e
pewi Jh -7:1] CaQ
¢ A modified edge based coarse space

Fu@)g, = Y aVa)dh, (2)+

Z Ug, Z <b£ )+ Z ur, Vr,(x

EICW; pe&yh f,]CQQ

¢ A modified wire basket based coarse space

(@), = Y ulep)db(a)+ Y. aor,dr,(2).

PEW; 1 Fij COQy

It is important to note that our approximate discrete harmonic extensions recover

constant functions, because

Yo e+ Y v, (2)=1 Ve e

PEW; 1 Fiy COQ;
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We define the bilinear forms exactly as before, i.e.
b)—z1 = b/—\rp
and operators Tf(l Vh— V_Xl, by
b)_zl(Térlu,v) =a(u,v) Yvée vX.

Let

. . £
™ =15+ > Pl

k:OjeNOk

Theorem 4.7 For any u € VJ{(Q), we have

1+ 0 2a(u,u) < a(T*u,u) < a(u,u).

Proof. Let us first consider a case with V_F~1 as the coarse space.
Assumption ii) Using the triangle inequality, the explicit formulas for the approximate

discrete harmonic functions, and Lemma 4.10, we obtain

lulfi ) = sz’{ > hi(u(zp))?

PEW; 1

+ H1+6) Y (ak)?) Yue VEL
Fi; COR;

We now use that the approximate discrete harmonic extension recovers constant

functions to obtain

a(u,u) < bF, (u, ). (4.47)

Assumption i) Note that the bilinear form blfl(u, u) depends only on the values of u

on I'y, and let w_; = Ifu and u_q = Igu. We can therefore use Lemma 4.6 to obtain
b (i1, @i—q) = b5 (ur, uly) < (14 0) a(u,u) Yu € VP (4.48)
We now modify the decomposition in the proof of Theorem 4.3

=+ Y Y
kg
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and construct a decomposition for the current theorem by

U:ﬂ—l-l-(u—l—ﬂ—ﬂ-l-zzuf:
kg
S SRS S IS o i)
kg k k j

Here we use that (w_y; — @_1) vanishes on I'y, U 92, and then decompose (u_q — @_1)

as in Lemma 4.1 to obtain
ZZ ], ] )2 a(u_y —U_q,u_q — 1) 2 a(ti_1,_1).
We now use (4.47) and (4.48) and obtain

a(ioy,@1) < b (a_q,a_y) = (14 Oa(u,w).

Finally, we use the proof of Theorem 4.3 to obtain

ZZ Fouf) 2 (14 0?2 a(u, ).

The proof of this theorem for VE or V_ﬁl/ as the coarse space is quite similar.
Let us finally consider the case with VNV as the coarse space. For Assumption ii),
we trivially have w = 1. Assumption i) is handled exactly as before. The only nontrivial

part is to show that
a(IVNu, IVN0) < (14 02a(u,u) Yu € VE(Q). (4.49)

The idea of the proof of (4.49) is the same as in Dryja and Widlund [41]. We reduce the
estimates to bounds related to the vertices, edges, and faces and use Lemma 4.5 in [35],

4.10 and 4.11.

4.8 Nonuniform refinements

We now consider finite element approximation with locally nested refinement. Such re-

finements can be used to improve the accuracy of the solutions of problems with singular
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behavior which arise in elliptic problems with discontinuous coefficients, nonconvex do-
mains, or singular data. We note, in particular, that solutions of elliptic problems with
highly discontinuous coeflicients are very likely to become increasingly singular when we
approach the wire basket.

Nested local refinements have previously been analyzed by Bornemann and Yserentant
[3], Bramble and Pasciak [5], Cheng [25, 26], Oswald [66, 67], and Yserentant [92, 93].
By nested local refinement we mean that an element, which is not refined at level j,
cannot be a candidate for further refinement. Under certain assumptions on the local
refinement, optimal multilevel preconditioners previously have been obtained for prob-
lems with nearly constant coefficients in two and three dimensions. For problems in two
dimensions with highly discontinuous coeflicients, the standard piecewise linear function
can be used as a coarse space to design multilevel preconditioners. A bound on the
condition number can be derived, which is independent of the coefficients, and which
grows at most as the square of the number of levels; see, e.g., Yserentant [93]. Here, we
extend the analysis to the case where the coefficients are quasi-monotone with respect
to the coarse triangulation or are highly discontinuous in two or in three dimensions.

Let us begin by a shape regular but possibly nonuniform coarse triangulation 7° =
7°, which defines substructures €; with diameters H;. It follows from shape regularity
that neighboring substructures are of comparable size.

We introduce the following refinement procedure: For k = 1,---, £, subdivide all the
tetrahedra 7"7]?_1 € TF1 into eight tetrahedra (see, e.g., Ong [63]); these are elements

of level k and belong, by definition, to 7%. A shape regular refinement is obtained by
connecting properly the midpoints of the edges T]k_l. We note that this refinement,
restricted to each €, is quasi-uniform.

Let Vok be the space of piecewise linear functions associated with 7%, which vanish on
09, and let ¥ be the set of nodal points associated with the space V. Let qbf, jENT,
be a standard nodal basis function of V, and let V]k = span{cb;?}.

We define a locally nested refinement in terms of a sequence of open subregions

O, C Q such that
Oy COp 1 C---COLC---CO1COy=19Q,
and assume that the 90Oy, the boundary of Oy, align with element boundaries of 7571,
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for £ > 1.

We define a nested, nonconforming triangulations 7%, k = 0, - -, £, as follows:
TF = T*% on O,

and

TF =77 on O;\Oj41 Vi< k.

Assumption 4.1 The levels of two elements of a triangulation T, which have at least

one common point, differ by at most one.

We note that Assumption 4.1 guarantees that all elements in 7°7(;) with a common
vertex are of comparable size. This type of refinement is exactly the same as that
analyzed by Bornemann and Yserentant [3].

Let Vok* be the space of piecewise linear functions associated with the triangulation
T**, which are continuous on € and vanish on dQ. By construction, Vok* C Vok-i'l* C
VyFL. The vertices of the elements of 7% are called nodes. From the requirement of
continuity, it follows that we can distinguish between the set of free nodes Né“* and the
remaining set of slave nodes. A function u € V(f* is determined uniquely by its values at
the free nodes NF " the values of u at the slave nodes are determined, by interpolation,

from the values at NJ *. Therefore, we have the following representation:

w= Y u(z;) (bf* Vu e Vi (4.50)
JjeNE”

Here, q§§* € V(f* is a nodal basis function, with respect to 7¢, which equals 1 at one free
node and vanishes at all other free nodes of N .
The discrete problem is given by:

Find u € V", such that
a(u,v) = f(v) Yve Vi (4.51)

In order to obtain a preconditioner, we consider the following splitting:

£
Vit = VoY, > Ve (4.52)
k=0 jeyk*
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Here, V¥* is the set of nodes of N¥ which belong to the interior of Oy.

We consider in detail only the exotic coarse space V_1* = V_F~1*, i.e. the counterpart
of the modified face based coarse space introduced in Section 4.7. We note that the same
ideas can be extended straightforwardly to define and analyze algorithms using the other
exotic coarse spaces introduced in Sections 4.4 and 4.7.

ok
The coarse space V%]

If* VT - V_Fl*, defined by

can be defined as the range of an interpolation operator

Fu@g,= Y uwe)d @+ Y ax, 0%, (2),

pE(WinNE™) Fij COR;

where

S e one) UTp) Jsupp (o0 (7)) 9 45

o _

u]:ij =

f*
Lpe(F,ong’) Jsupp (o7 (7)) P 45
19;1'] is defined in a way similar to 9z, except that in Step iv), of Definition 4.3, we
interpolate at the free nodes Ng* which belong to QZ\ W; and set 19}_-” to zero on W;,.

We consider the following bilinear form:

by (uw) =Y pidlle = afllfaowy + Hi(1+0) Y (ak; —u)’),
; FiyCOR

where,

. Epe(anNof*) u(acp) fsupp (64" (9%%)) qbf;* ds

[ )

Ypeeainng®) Jsupp (54" (o)) ¥ 45

~ % ~ %
and introduce an operator Tfl : V(f* — Vfl , by

bi*(Tﬁl*u,v) =a(u,v) Yove V_F~1*.

Let

ek =k 2
™ =T +> > P (4.53)
k=0 jeVvk*

Theorem 4.8 For any u € V(f*, we have
(14 0 2a(u,u) < a(TF*u,u) < a(u,u).
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Proof.  Assumptions i) and ii). We first introduce pseudo inverses u;':l*/z and apply
Sobolev type inequalities and extension theorems to obtain the required results on the
coarse space approximation (see Lemma 4.16) and to reduce our problem to local prob-
lems with constant coefficients. For the local problems with constant coefficients, we use
the decomposition given in Bornemann and Yserentant [3]. Note that our refinement is
a particular case of the local refinement NLR2 considered by Oswald [67]; we can then
apply Theorem 6 of Oswald [67] to obtain a good decomposition.

The Sobolev type inequalities and extension theorems required for our particular
nonuniform refinement are given below in several lemmas.

Assumption iii). Note that, on each Q;, the strengthened Cauchy-Schwarz tensor £*
associated with the splitting (4.52) can be obtained by symmetrically deleting columns
and rows from the tensor £ associated with the case of quasi-uniform refinement. There-

fore, we obtain p(£*) < C' by a standard Rayleigh quotient argument.

a

We now slightly modify some lemmas that are well known for quasi-uniform refine-

ment to show that they hold in our nonuniform refinement case.

Lemma 4.12 For u € V*™(Q;),

> (wlep) =) 6y gy 2 lle = al7z o,

< (L+0) [ulf gy

Proof. For the proof of the first inequality, we use Assumption 4.1 and the inverse
inequality. For the second inequality, we use that V*7(€;) C V() and then apply a
standard Sobolev type inequality (see Lemma 4.3 of [35]). To obtain the estimate with

the seminorm, we use the fact that for any constant ¢, 47 = ¢, if v = con W; N N

Lemma 4.13

where 0%, € VE(;) is the discrete harmonic function, in the sense of V™ (), which

equals 1 on (F;; N N*) and is 0 on (09,\F;;j).
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Proof. The first inequality is trivial since the discrete harmonic function has minimal
energy. For the second inequality, we use the same ideas as in Lemma 4.4 of Dryja,

Smith, and Widlund [35]. Assumption 4.1 is crucial in this proof.

a

We denote by V**(9€;) the restriction of V™ () to 99Q;. Let HO)™ : V" (9Q;) —

VA (), be the discrete harmonic extension operator in the sense of V().
Lemma 4.14 Let u € VY7 (9%;). Then

HOD ul i) 2 |ulgie@ay)- (4.54)
Proof. Let @ € H'(Q;) be the harmonic extension of u defined by

(V@ V)2, =0 Vo€ Hy(Q),
% = u on 0f);.
Therefore, by the definition of the H'/2—seminorm,
@l = lulgeoa;)- (4.55)

We now slightly modify the interpolator [ ,?4 introduced in Definition 4.2 and define

another interpolation operator IM™ : H'(Q;) — V*7(€;), as follows

Definition 4.4 Given @ € HY(%;), such that @sq, € V' (09;), define u* = IMa €
V() by the values of u* al two sels of free nodal points N*™(Q;):

i) For a free nodal point P € N*"(Q;)\N*"(8%), let u*(P) be the average of

@ over an element TfP €T ().
ii) For a free nodal point P € N*"(9;), let u*(P) = a(P).
Here, T]kP is any element T'"(Q;) with vertex P.
Using the same arguments as in Lemma 4.9, we obtain
w1y = 1@l (4.56)

Finally, we use (4.55), (4.56), and the fact that H)"y has minimal energy, to obtain
(4.54).
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a

Let I*" be the interpolation operator into the space V¢* that preserves the values of

a function at the free nodal points N, Using the same ideas as in Lemma 4.4 of Dryja,

Smith, and Widlund [35], we obtain

Lemma 4.15 Let u € V¥ (Q;). Then
17 (%, W)l o = (L+ O lullinq,)-

Using Lemmas 4.12, we obtain the necessary results on the coarse space approxima-

tion:
Lemma 4.16 Let u € VJ . Then
oF(IF w1 ) < (14 ) au, w).

We now consider the case of quasi-monotone coeflicients with respect to the coarse
triangulation 7°%. Let
£
0% _ po* k
LY Y P
k=0 jevk*

Here, PO" : Vi~ — V", is the H;(Q)—projection.

Theorem 4.9 For a quasi-monotone distribution of the coefficients p; with respect lo

*
7%, we have

a(Tu,u) < a(u,u) Yu e V{ .

Proof. The proof is very similar to that of Theorem 4.6 using now Lemmas 4.12-4.16.
We note that Lemma 4.9, for k& = 0, holds for a locally quasi-uniform triangulation 7°".
We now replace the decomposition (4.43) by a decomposition analyzed by Bornemann

and Yserentant [3], or Oswald [67].
We note that Assumption 4.1 is needed to prove the first inequality in (4.44).
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4.9 Multilevel methods on the interface

In this section, we extend our results to multilevel iterative substructuring algorithms
for problems with discontinuous coefficients. We recall that iterative substructuring
methods provide preconditioners for the reduced system of equations that remains after
that all the interior variables of the substructures have been eliminated. We focus only
on variants of the algorithms developed in Section 4.4. Other algorithms, based on other
coarse spaces of Sections 4.4 and with nonuniform refinements, can be designed and
analyzed in the same way.

Let V§{(T') be the restriction of V{(Q) to I'. The iterative substructuring method
associated with (3.5) is of the form: Find u € VJ#(T') such that

s(u,v) = f(v) Yo e VJ(T), (4.57)

where

s(u,v) = a(Hu, Hv) = sz/ VHOy - VH Dy de,
i i

and
o) =3 [ 1me.

Let VF(T), k = 0,---,£, be the restriction of V() to I' and let NF(T) be the set of
nodal points associated with the space Vif(T'). Let VF(I),j € M§(I), be the restriction
of VF(Q) to I.

We introduce the bilinear forms bj(u,v): VF(I) x VF(T) — R, for k = 0,---,£, and
j € N(T) by

bi(u, 0) = w(zy)o(z;) a0, 85). (4.58)

Here, qbé“ is the nodal basis functions that span V]k(Q) We can easily extend the analysis
to the case in which we use a good approximation of a(cb;?, qbé“)

Let VX (), with X = F, E, NN, and W, be the restriction of VX (9), to T, and
let the associated bilinear form be given by X,(-,). Note that X, is well defined for
u € VJ(T'), since the computation of b (u,u) depends only on the values of u on I',.

We introduce the operators 7 : VJ*(I') — V(I'), k= 0,---,£, and j € M§(I), by
bL(TFu,v) = s(u,v) ¥ oe VA,
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and the operator Tf(l’r (VD) — VA (D), by

b (T4 u,v) = s(u,v) Vo e VE(D).

Let

‘
X,T
R Z Z leC
k=0 jeNG(T)

Theorem 4.10 For u € V(T
(14 0)%s(u,u) < s(T*Vu,u) < s(u,u).

Proof. The proof for X = W, with a condition number estimate of C(1 + £)? is given in
Dryja and Widlund [40] (Theorem 6.2). To obtain an improved, quadratic estimate, we
can use a result of Zhang (see Remark 3.3 in [95]). Using similar arguments as in [40]
and in previous sections, we can prove our current theorem for the other exotic coarse
spaces as well.

Another technique for estimating condition numbers for preconditioned Schur com-
plement systems was introduced by Smith, and Widlund [80]. They showed that the
condition number of the preconditioned Schur complement is bounded from above by
the condition number of the full linear system preconditioned by a related preconditioner.
Using the same technique, Tong, Chan, and Kuo [82] gave an upper bound for the con-
dition number for a Schur complement system preconditioned by a BPX preconditioner.
They only considered elliptic problems with nearly constant coefficients. Here, we can

also use the same technique to prove our theorem.

4.10 Two level methods

We study several two-level overlapping domain decomposition methods with a multilevel
algorithm solver for the local problems. This approach is quite attractive because we can
introduce more parallelism in our algorithms. The possible variants of the algorithms
depend on:

i) Which coarse space we use: VAN vE, vE VvV O vH VAN VE VE or
‘/W
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ii) How we cover  with overlapping subregions: Qy, , Q, , Q{, or respective
subregions with small overlap. Here, Q) is the union of €; and its next
neighboring substructures. We note that to use the covering {1z, we must

use VI, VW VE or VI as a coarse space.

iii) Which method we use for the local problems: exact solvers, multilevel di-
agonal scaling, one symmetrized multigrid V-cycle, n symmetrized multigrid

V-cycle, etc.

Algorithm 4.1 Let us first consider a case in which the coarse space is given by VN,
the local problems are given by a multilevel diagonal scaling-(MDS) on Qy,,, m =

1,---, M. Therefore, we introduce a subspace splitting by
I4 I4 /
h NN k k k
PG LD 3B DRSNS Sb SRVNINS o SRS
k=1 jeNt k=1 jeN k=1 jeN},

and a preconditioned operator by

¢ ¢ ¢
TNNaag = TN+ >3 PF+ 4> > PRy > PR (4.59)

Here, N® is the sel of k-nodal points associated to the space Vok(va).
Theorem 4.11 Let T be defined by (4.59). Then for any u € V§(Q), we have
(140 2a(u,u) < a(TNNadd u, u) = a(u, ).

Proof. Assumption (i) In a first step, we decompose u as in the proof of Theorem 4.2,
and obtain

U—u_q = Z(v(i) + Z w(}z-z)] + E w(gl) + Z w&)l) (4.60)

1=1 Fij CO8Y E,CIQ; Vn CO82;

Let 8,,, m =1, ---, M be the partition of unity introduced in the proof of Theorem 4.6.
We decompose each right hand side term of (4.60) as

U(Z) = th(gmv(i))7 w%)] - Zlh(emwgi)])’
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:EIh(Hmwg)), and wv ZIh (6 wv

We only focus on the analysis for the face part Ih(ﬁmw(}%), since the arguments are
similar for the other parts. The idea is to modify slightly the arguments given in the

proof of Theorem 4.2. Note that Ih(Hmw%)]) is not piecewise discrete harmonic on 2z, .

(1)

Therefore, we decompose Ih(Hmw}-U) as
(@) () (9
1 (0w ) H1(6,, Wi, )+ PIh(Hmw}-ij).

We decompose the piecewise discrete harmonic part HIh(Hmw%)]) as in (4.15), and we
decompose the interior part Plh(Omw%)]) as in (4.12). By using the same arguments as

in the proof of Lemma 4.2, we obtain
Zbk E ) )= (i o) DOl Vi, ) <

(pZ —|— p]) |Ih(0mw.(7;,,)])|%1(9}—z]) (pZ + p])(|w.7:7,]|H1 Q}‘ + ” z]”L Q}‘ ))
< (pi+ pj)|w-7‘2-ij|Hl(inJ).

In the last step, we use Friedrich’s inequality since w(}% vanishes on dQg,;. The rest

of the proof is straightforward.

d

Algorithm 4.2 The next algorithm is a combination of an additive and a multiplicative
Schwarz method. Let us consider a case in which the coarse space is VNN, and the
local problems given by one symmetrized mulligrid V-cycle on Qy,,, with Gauss Siedel or

damped Jacobi method as smoothers. The preconditioned operalor is given by

TNt = TN +T1+ o+ T+ -+ T, (4.61)

where
T,.=I1-EL, E T, =1—-EY, E
m G Qy,, TG Qv or Ip = Iy, Iy, -

Here,

4
Eca,,, = (I TI (- PF)

k=0 jeN,
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and
; ‘ .
Enq, = [[T -1 HI—UZPJQ)
k=0 = JENE

where ) is a damping factor chosen such that HTT]:LHH}) <w< 2.

Theorem 4.12 Let TNy be defined by (4.61). Then for any u € VJ#(Q), we have
(1+0)2a(u,u) < a(TNNmut @, 1) < alu,u).

Proof. By using the theory developed by Bramble, Pasciak, Wang, and Xu [7], Dryja,
and Widlund [41], and Zhang [95], we have

_@-a) j
15 20%(8)2 Z Y Pl<T, (4.62)
14 2%? ,0 Py
Here, & = max(1l,w) = 1 for the Gauss Seidel case, and @ = max(1l,w) < 2 for the
damped Jacobi case; see Widlund [41]. We also have p(&) < C for both cases; see Zhang
[95]. Therefore, by using Theorem 4.11 and (4.62), we obtain

(140 2a(u,w) 2 a(TNNagd us @) = a(TNNmule @, ).

To obtain the upper bound of this Theorem is straightforward since Qy, form a finite

overlapping covering and [|Ejq,, [|m1.[|Ecqy,,[[m1 < 1.
a

Consider the case of the coarse space is V. The local problems are solved by a
linear, iterative method; hence the preconditioned conjugate gradient method is not a
candidate. Use n multigrid V-cycles on Qy,,. n is chosen a priori; therefore our local
solvers are linear. Note that the norm of the error propagation operator of one multigrid
V-cycle on Qy,_ can be estimate from above by 1—C(1+¢)~2. Therefore, we choose n on
the order of (1+ £)? to obtain T, the operator associated with n multigrid V-cycles on
Qy, , which is spectrally equivalent to P,,, the H;—projection from V*(Qy,) to VJH(Qy,,).

For a quasi-monotone distribution of the coeflicients p;, we can choose n = 1.
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Algorithm 4.3 Let operators TNN and TH be given by (4.3) with VX = VAN and

VX =V, respectively. We introduce the preconditioned operators Ty, and Ty by

M
Tyn, =TNN + 3" T, (4.63)
m=1
and
M ~
Ty, =TH + > T (4.64)
m=1

Theorem 4.13 Let Ty, be defined by (4.63), and T, defined by (4.64). Then for any
u € VI(9Q), we have

(1407 ra(u,uw) < a(Tyn, u,uw) < a(u, u). (4.65)
For a quasi-monotone distribution of the coefficients p;, we have
a(Tg, w,u) < a(u,u). (4.66)

Proof. By construction, we have P,, < T,,. Therefore,
M ~ M
TN+ 3 T < TNV + 3 Py,
m=1 m=1

and

H LA - TH i
TH + > T, <xTH + > P

m=1 m=1
Hence, (4.65) and (4.66) follow directly from Remark 4.2, Corollary 4.2, and results on
the related methods with exact local solvers; cf. Dryja and Widlund [37], or Section
5.1.9.

ad

Remark 4.8 Let us consider algorithms in which we replace the coarse space VNN by
Vi, VE, VNN V_Fl, or V_El in the Algorithms 4.1, 4.2, and 4.3. Then, il is easy lo
prove that we obtain the same condilion number estimates as in Theorems 4.11, 4.12,
and 4.13. If we replace to V_Hl/, or V_W, we obtain condilion number estimales of the

form (14 €)% in Theorems 4.11, 4.12, and 4.13.
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Remark 4.9 Consider algorithms in which we replace the covering Qy,, by Q. in the
Algorithms 4.1, 4.2, and 4.3, and in the variants introduced in Remark 4.8. We can then
also show that we obtain the same condilion number estimates as in Theorems 4.11, 4.12,
4.13, and as in the Remark 4.8. We can also consider algorithms in which we replace the
covering Qy,, by Qr,;, and replace the coarse space V_]\;N by V_Fl, V_le, V_F~1, or V_ﬁlf mn
the Algorithms 4.1, 4.2, and 4.3. Again, we obtain the same condition number estimates

as in Theorems 4.11, and 4.12.
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Chapter 5

Schwarz Methods for

Nonconforming Finite Elements

5.1 Two-level Schwarz methods for nonconforming P, fi-
nite elements with discontinuous coeflicients

5.1.1 Introduction

The purpose of this chapter is to develop a domain decomposition methods for second
order elliptic partial differential equations approximated by a simple nonconforming finite
element method, the nonconforming P; elements. We first consider a variant of a two-
level additive Schwarz method introduced in 1987 by Dryja and Widlund [36] for a
conforming case. In this method, a preconditioner is constructed from the restriction of
the given elliptic problem to overlapping subregions into which the given region has been
decomposed. In addition, in order to enhance the convergence rate, the preconditioner
includes a coarse problem with lower dimension. The construction of this component
is the most interesting part of our work; we introduced nonstandard coarses spaces for
problems with discontinuous coefficients. Here we have been able to draw on earlier
multilevel studies, cf. Brenner [13], Oswald [68], as well as on recent work by Dryja,
Smith, and Widlund [35], and Dryja and Widlund [41]. We show that the condition
number of the corresponding iterative methods is bounded by C'(1 + log(H /L)), where
H and h are the mesh sizes of the global and local problems, respectively. We also note
that this bound is independent of the variations of the coefficients across the subregion

interfaces.
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The face based and the Neumann-Neumann coarse spaces, that we are introducing,
have the following characteristics. The values at the nonconforming nodes are constant
on each edge (face) of the subregions and the values at the other nonconforming nodes
are given by a piecewise discrete nonconforming P; harmonic extension, or by a simple
but nonstandard interpolation formula. In the latter case and for triangular (tetrahedral)
substructures, the value at any nonconforming node in the interior of a subregion is a
convex combination of the three (four) values given on the boundary. We note that an
important difference between the nonconforming and conformings case is that there are
no nodes at the vertices (wire basket) of the subregions.

Another interesting and original part of our work is the technique that we intro-
duce to analyze algorithms with nonconforming spaces; see Section 1.1. We introduce
nonstandard local operators (see the isomorphismsin [76]) in order to map between con-
forming and nonconforming spaces and then obtain several results for the nonconforming
case which are known for the conforming case. For instance, we can obtain extension
theorems, Poincaré’ inequalities, trace theorems, and partitions of unity for nonconform-
ing spaces, and then analyze nonconforming versions of domain decomposition methods

which have already analyzed for conforming cases.

5.1.2 Differential and finite element model problems

To simplify the presentation, we assume that € is an open, bounded, polygonal region
of diameter 1 in the plane, with boundary 9. In a separate subsection, we extend all
our results to the three dimensional case.

We introduce a partition of Q as follows. In a first step, we divide the region
Q into nonoverlapping triangular substructures €;,¢ =1,---, N. Adopting common as-
sumptions in finite element theory, cf. Ciarlet [27], all substructures are assumed shape
regular, quasi-uniform and to have no dead points, i.e. each interior edge is the inter-
section of the boundaries of two triangular regions. We can show that the theory also
holds if we choose nontriangular substructures, where the boundary of each substructure
is a composition of several polygonal edges, and each of them is the intersection of two
substructures. Naturally, we need assumptions related to the nondegeneracy of this par-
tition. Initially, we restrict our exposition to the case of triangular substructures since

the main ideas can be seen in this case. This partition induces a coarse mesh 7 and

94



we also introduce a mesh parameter H = max{Hy,---, Hy} where H; is the diameter of
Q. Later, we will extend the results to nontriangular substructures. We can show that
the quasi-uniformity assumption is not needed since all arguments are local.

We study the following selfadjoint second order elliptic problem:
Find u € H}(Q), such that

a(u,v) = f(v) Yo e HHQ), (5.1)

where N
a(u,v):Z/ pi Vu-Vovdz and f(v):/fvd.w for fe L*.
=1 Q; Q

Here, the p; are constants values such that p; > A, > 0 Vi This includes cases
where there is a great variation in the value of the p; across substructures interfaces. We
remark that there is no difficulty in extending the analysis and the results to the case
where each p; varies mildly inside each substructure ;.

In a second step, we obtain the elements T]h in the finest triangulation by subdividing
the substructures into triangles in such a way that they are shape regular, and quasi-
uniform. The mesh parameter h is the diameter of the smallest element and denote this
triangulation by 7". Similarly, we assume the triangulation 7" has no dead points.

Let &;; represents an open edge of a substructure {);; sometimes we use &;; to represent
an open edge shared by two substructures €; and ;. We denote the interface between
the subdomains by I' = UdQ;\0Q2. We denote by CR nodal points the nonconforming
nodal points, i.e. the midpoints of the edges of elements in 7". The sets of CR nodal
points belonging to Q, 09, &;, dQ;, and T’ are denoted by QgR, 8QgR, 55}2, 89%2,
and FgR, respectively. In order to preserve the notations of the previous chapters and
to distinguish between conforming and nonconforming spaces, we use the superscript, ,

for a nonconforming space.

Definition 5.1 The nonconforming Py element spaces (cf. Crouzeiz and Raviart [31])
on the h-mesh and H-mesh are given by
VR(Q) = {v]|v linear in each triangle T]h €Th,
v continuous at the CR nodes of QER},
V() = {v]|v € VHQ) and v = 0 at the CR nodes of 0951},

VH(Q) = {v]|v linear in each triangle in TH
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v continuous at the midpoints of the edges of T}, and
VA(Q) = {v|v e VH(Q) and v = 0 at the
midpoints of edges of TH that belong to 0Q}.

These spaces are nonconforming since V{1 (Q) ¢ VI(Q) ¢ H(Q).

Let ¥ be a region contained in {2 such that 9% does not cut through any element.
Denote by V*(X) and 7"(X) the space V* and the triangulation 7" restricted to ¥,
respectively.

Given u € V h(E), we define a discrete weighted energy seminorm by:

|u|?¥;yh(2) = a’g(uv u) ’ (52)

where
a(u,v) = Z / p(z) Vu-Vudz. (5.3)
Te Ths T
In a similar fashion, we define the inner product ¢ (u, v) and the seminorm |u|Hi,H(E)
for u,v € ‘T’H(E). In order not to use unnecessary notation, we drop the subscript %
when the integration is over  and the subscript p when p = 1.
The discrete problem associated with (5.1) is given by:
Find « € V{, such that
a"(u,v) = f(v) Yve V). (5.4)

We note that | - |H;,h(ﬂ) is a norm, because if |u|H;1>,h(Q) = 0, then u is constant in
each element. By the continuity at the CR nodes and the zero boundary condition, we
obtain u = 0. Therefore, we obtain uniqueness and existence of a solution for (5.4). To
show well-posedness independent of h, we use a Friedrichs’ inequality for nonconforming
Py functions and repeat the same arguments as given in Section 3.1. This Friedrich’s
inequality is established by using a variant of Lemma 5.9 with ; = Q, and using a
standard Friedrich’s inequality for H'(Q) functions. We obtain similar stability results
as for the conforming case.

We also define the weighted L? norm by:
lullZz (s = /EP(@ u(@)] o foruw € (VH(2)+ V(D) + L3()),  (5.5)
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and a weighted energy norm by:

2 _ 2 2
lullzrs sy = 1l () + WHUHL%(E)‘ (5.6)

Ms;
Fig. 5.1

Sometimes is more convenient to evaluate a norm of a finite element function in terms
of the values of this function at the CR nodal points. By first working on a reference
element and then using the assumption that the elements are shape regular, we obtain

the following lemmas:

Lemma 5.1 Forue VH(Y),

lulzz = B 30 p(r) (u2(Ma) + w3 (M) + w2 (Ms)) (5.7)
’ TheTh(S)
and
Iuliph@)x S (T {(u(My) — u(My))? (5.8)
" The Th(s)

+(u(My) — u(M3))* + (u(M3) — u(My))*}.

where My, My, M3 are the CR nodes of the triangle T]h as in Fig. 5.1.

We stress the the formulas (5.7) and (5.8) are for the two-dimensional case. There
are three-dimensional version of these formulas; the main difference is that we have to
multiply the right hand sides by an additional factor h.

An inverse inequality can be obtained by using only local properties. It is easy to

see that for u € V(2),

ulp,(s) 2 h™Hul s - (5.9)
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We note that (5.9) also holds for the three-dimensional case.

5.1.3 Additive Schwarz schemes

We now describe the special additive Schwarz method introduced by Dryja and Widlund;
see e.g. [37, 42]. In this method, we cover by overlapping subregions obtained by
extending each substructure €; to a larger region Q.. We assume that the overlap is é;,
where §; is the distance between the boundaries 9Q; and 99, and we denote by § the
minimum of the §;. We also assume that 9Q does not cut through any element. We
make the same construction for the substructures that meet the boundary except that
we cut off the part of Q) that is outside of €.

For each Q/, a nonconforming P finite element triangulation is inherited from 7"((2).

The corresponding finite element space is defined by
Vi={v|ve VI, supportof v C Q}, i=1,---,N. (5.10)

A coarse space V_; C VJ*(Q) is given as the range of a certain interpolation (or pro-
longation) operator. The most fundamental and original coarse space for nonconforming
Py spaces is the face based coarse space with an approzimate discrete harmonic exten-
ston. This space, which we denote by f’_ﬁl, can also be defined as the range of ffl The
prolongation operator f}_} will be defined later.

Our finite element space is represented as a sum of N + 1 subspaces

Ve =Vo+ Vit + V. (5.11)
We introduce projection operators P; : f’oh —Vi,i=-1 and 1,---,N, by
a"(Paw,v) = a"(w,v) Y wveV, (5.12)

and the operator P : ffoh — f/oh, by
P=P,+P + -+ Py. (5.13)
In a case in which V_; = f’ﬂ, in matrix form, P_; is given by
Py Bb(IBTR PR T K (5.14)
where K is the global stiffness matrix associated with ap(-,-).
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We replace the problem (5.4) by
~ N ~
Pu=yg, g=73 g; where g;= Pu. (5.15)
=0

An upper and lower bounds for the spectrum of P is obtained by using Theorem

2.5.1.

5.1.4 Properties of the nonconforming P, finite element space

We first define two local equivalence maps (isomorphisms) in order to obtain some in-
equalities and local properties of our nonconforming space. With the help of these map-
pings, we can extend some results that are known for the piecewise linear conforming
elements to our nonconforming case. We point out that all the isomorphisms introduced
in this chapter are carefully defined so that our analysis also holds for any triangulation
that is shape regular and nonuniform.

Let Vg(QZ) be the conforming space of piecewise linear functions on the triangulation
Tg(ﬂi), where the h/2-mesh is obtained by joining midpoints of the edges of elements
of TH((,).

We define the local equivalence map M; : V*(Q;) — Vg(ﬂi), as follows:

Isomorphism 5.1 Given u € V#(%Q;), define Mu € Vg(ﬂi) by the values of M;u at
the three sets of points (cf. Fig. 5.2):

i) If P € Qgﬁ, then
Mu(P) = u(P).

i) If P € Qi7h\8ﬂi7h, and the Tjh are the elements that have P as a verter,
then
Mu(P) = mean of u|_n(P).
J

Here u|_n(P), is the limil value of u(x) when z € T]h approaches P.
J

i) If Q € 0Q; 5, and Q and Q, the two CR nodes of QS}? that are the next
neighbors of (), then
_ @@ 1Q-Q|

Mil@) = oo T+ o8]

Here |Q, Q| is the length of the segment Q,Q.

u(Qr).-
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In a case where the triangulation 7%(Q;) is uniform, e.g. as in Fig. 5.2, Case ii)

becomes

Case iii) is required in order to have property (5.18), which will be very important

in our analysis.

Fig. 5.2
Lemma 5.2 Lel u € V*(Q;). Then
(Miulgyan =< lulp (o, » (5.16)
[Miul|rzq,) < llullzz @) (5.17)
and
Miu(s)ds = / u(s)ds. (5.18)
o8 0Q;

Here | - |H;(Qz.) s the standard weighted energy seminorm for conforming functions.

Proof. We first note that we have results similar to (5.7) and (5.8) for the conforming
space V%(Qi), where now My, Ms, and M3 are the vertices of a triangle in 7%, In order
to prove (5.16), we compare (5.8) with the analogous formula for the piecewise linear
conforming space. We find (see Fig. 5.2),

_ @@
|Q1Q7’|

The right hand side can be bounded by the energy seminorm of u restricted to the union

Miu(Q) — Miu(Q)|* |[u(Q1) — w(Qr)|*.

of the triangles 77, 74 and 7.
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We also prove that if we take two next neighboring vertices of 7% in the interior of
2;, the energy seminorm can be bounded locally. If p(z) does not vary a great deal, we
can work with weighted seminorms. Using the fact that our arguments are local, it is
easy to obtain the upper bound of (5.16).

The lower bound is easy to obtain since the degrees of freedom of V*(;) are contained
in those of Vg(QZ)

Similar arguments can also be used to obtain (5.17).

Finally, it is easy to see that (5.18) follows directly from iii) even if the refinement is

not uniform.

d

Remark 5.1 The Isomorphism 5.1 is a local construction. Therefore, Lemma 5.2 holds
locally in each §2; but not simultaneously for every 1. In fact, we can prove that it is
impossible Lo construct a global Isomorphism M : V#(Q) — V%(Q) such that (5.19) holds
for every 1 simultaneously. The problem is how to define the values at the vertices of the
substructures that are cross points. We note, however, that for problems with constant or
quasi-monotone coefficients, a global Isomorphism M can be defined by replacing Q; by
Q in Isomorphism 5.1. Using the same ideas as in the proof of Lemma 5.17, we obtain

h
2

(MV5(Q)) € V' (),

[ Mul|r2q) =< [lullzz (),
|u = Mul|gz ) 2 hlulmyq),
and

[(Mulgye) < lulm ()
We define another local equivalence map M¢ : V#(Q;) — Vg(Qi), by:

Isomorphism 5.2 Given u € Vh(QZ) and an edge £ of the substructure ;, define
Méu € Vg(QZ-) by the values of ME&u at the three sets of points (cf. Fig. 5.2):

i) Same as step i) of Isomorphism 5.1.

ii) Same as step ii) of Isomorphism 5.1.
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i) If V is a vertex of the substructure Q; and an end point of £, and Vg the
CR node on &?R that is the next neighbor of V', then

MEu(V) = u(Ve).

w) If Q € 0Q; 1, and is not in the case iii), then

e Qi 10,0
Miul@) =100, + 19,0,

Using the same ideas as in Lemma 5.2, we can prove:

Lemma 5.3 Given u € V(). Then,
| M ulpy ;) < w20 (5.19)

”MZ'EUHLg(QZ-) < lull Lz (5.20)
and

/ngu(s)ds:/gu(s)ds. (5.21)

5.1.5 Interpolation operators

Definition 5.2 Let v € V*(Q). The Interpolation operator I : VH(Q) — VH(Q), is
given by:
i) If P;; is the midpoint of the edge &; common to Q; and Qj, then
. 1 1
0Py = o [ vla@) do= o [ olg(e) de. (5.22)
|(/Z]| 56] | Z]| gi]
ii) If P is the midpoint of an edge & common to §; and 0X), then

(IFo)(P) = % /€v|Qi($) de. (5.23)

Here, v[g, () is the limit value of v(y) when y € 2; approaches z. This limit is defined
a.e. We note that the second equality in (5.22) follows from the fact that the mean of
v on each edge of an element T]h € T"(Q) is equal to v(M;), where M; is the CR node
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of this edge. It is important to note that the value of (I/7v)(P;;) depends only on the
values of v on the interface &;. This allows us to obtain stability properties that are

independent of the differences of p(z) across the substructure interfaces. It is easy to

check from (5.23) that
(Ve () € Vo' ().

The next lemma is a Poincaré-Friedrichs inequality for nonconforming P; elements.

It is obtained by using Lemmas 5.2, 5.3 and 1.6.

Lemma 5.4 Let u € V*(Q;), where Q; is a triangular substructure of diameter O(H ).
Let I' be 092; (or an edge of 0%2;). Then,

el < Hulya + ([ uls)ds)? (5.21)
As a consequence, if [i-u(s)ds =0, we have the Poincaré inequalily
H“”L;h(ﬂi) =H |U|Héyh(9¢)' (5.25)

The next lemma gives an example of an operator that is locally L%— and H;—stable.

Lemma 5.5 Let u € H(S;), where Q; is a triangular substructures of diameter of

O(H ). Define a linear function ug in Q; by
_ 1 _ :
up(Pij) = —=— / u(s)ds j=1,2,3, (5.26)
€3 Jei,

where the &; are the edges of ;, and P;; is the midpoint of &;. Then

_ _ 1, _
lamr(Pi)* < |ulfp g, + ﬁ”u‘ﬁ'ﬂ(m)' (5.27)
lur |y = 1ulma,), (5.28)
and
lum — ullrze) = Hlulgyq,)- (5.29)
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Proof. Consider initially a subregion 2; with diameter of 1. Using that |&;;| = O(1), the

Cauchy-Schwarz inequality and a trace theorem, we have
(P < | [ ale) daf? < Jalfage,,
i

= HﬂHiI%(&) = Nallpe,) 2 Nallfee,) + @line,,)-
iJ

We obtain (5.27) by returning to a region of diameter H.

Note that for any constant ¢

@] f (g, < (5.30)
lag(Piy) — ag(Pi)|* + |ag(Py) — am(Pis)|* + |ag(Ps) — ag(Po)|?

< 1@ — ellznq,)-

By choosing ¢ = u(P;;) and I' = &, we can apply Lemma 1.6 and obtain the le(Q)—
stability (5.28).
We now prove the error LZ(Q)—stabﬂity. Since % — @y has mean zero on 0f);, we can

apply the Poincaré inequality (5.25) and obtain
[ = unllzz) = H |u = unlmay)-
Using the first part of this lemma, we obtain the error L2(€2)-stability (5.29).
a

The next lemma shows that the interpolation operator I]fl, defined by (5.22) and
(5.23), is locally L2— and H,—stable.

Lemma 5.6 Letu € f/h(ﬂ). Thenuy = Iu € ‘N/H(Q) satisfies the following properties

(V) c Vi (), (5.32)
lwnlu ) = lulay, @) (5.33)
and
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Proof. Let ug = I}flu € VH(Q) and u; = ./\/lf”u € V%(Qi), and let ug(Pn) €
H'(€;) be given by (5.26). Using the properties (5.21) and (5.22), we have

uH(PZ- ) = ﬂH(PZ' ) (5.35)

Therefore, from (5.35), (5.27) and Lemma 5.3, we have

_ _ 1
lunr(Pa)? = |un(Pa)l? < Julf g, + ﬁ“u\@(ni) (5.36)

1
=< Julfpa, + ﬁHuH%Q(Qi)'
We also obtain the same estimate for |ug(Pi2)| and |ug(P;s)|.

The rest of the proof is similar to that of Lemma 5.5. We now use the Poincaré

inequality for nonconforming elements.

5.1.6 The Face based basis

In this subsection, we introduce several prolongation operators and establish that they
are stable. The range of each of these operators will serve as a coarse space in our

algorithms.

Definition 5.3 The Prolongation Operator, Iﬁ, cVH L Vh s given by:

i) Let &;,5 = 1,2,3 be the edges of a substructures Q;. For all CR nodes
Pe&ll j=1,23andi=1,---,N, let (Ilug)(P) = up(P;), where P

g,
is the midpoint of the edge &;;.

ii) Given Iyup al the CR nodal points of T = U;0€; from i), let Ilug(Q) be

the nonconforming Py harmonic extension inside each §2;.

It is easy to check that u, = Ifug € V*(Q). A disadvantage of step i) is that we have
to solve exactly a local Dirichlet problem for each substructure in order to obtain the
harmonic extension. Other extensions can be used, which we call approzimate harmonic
extensions. They are given by simple explicit formulas with the same Lz and leﬁ

stability properties as the harmonic one.
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Fig. 5.3

Our first construction is a natural generalization of the partition of unity introduced
by Dryja and Widlund in [37]; this partition of unity will provide the basis of our
approximate extensions. Let P;, j = 1,2, 3, be the midpoints of the edges of €);, and let
V; be the vertex of €; that is opposite to P;. Let C' be the barycenter of the triangle €;,

i.e. the intersection of the line segments connecting V; to F;.
Extension 5.1 The construction of an approximate harmonic extension in €; is defined
by the following steps (see Fig. 5.3):

i) Let

W(C) = 5 {un(Py) + un(Py) + un(Py)).

it) For a point R that belongs to a line segment that connects C' to a vertex

Vi, let

w(R) = u(C).

iii) For a point @ that belongs to a line segments connecting C' to Py, define

u(Q) by linear interpolation belween the values u(C') and ug(Py), i.e by
u(Q) = MQ)u(C) + (1 = MQ))un(Pr).
Here \(Q)) =distance(Q, Py)/ distance(C, Py).
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iv) For a point S that belongs to the line segment connecting the previous point

Q) to a vertex Vy, with { # k, let
u(5) = u(@Q).

v) Finally, let f]};}uH(Qz) = Igf@, where IS}F is the interpolation operator
into the space Vh(QZ) that preserves the values of a function at the CR nodes
QcR.

Note that the function @ just constructed is continuous except at the vertices V; of ;.
The step 7) can be viewed as emulating the mean value theorem for harmonic functions.
However, near the vertices, « is a bad approximation of the harmonic extension. We know
that the local behavior of the harmonic extension near a vertex V; depends primarily
on the boundary values in the vicinity of V;. For instance, if ug(P;1) = 0,un(Ps) = 0,
and uy(P;) = 1, we should obtain up ~ 0 near V3; in addition, by using symmetry
arguments, we should have u, ~ 1/2 for points near V; that lie on the bisector that
passes through V; . With this in mind, we now construct an alternative approximate
harmonic extension.

We change notation in order to be able to use Fig. 5.3. Let now C be the point

where the three bisectors intersect.

Extension 5.2 The construction of the approzimate harmonic extension in §2; is defined

by (see Fig. 5.3):
i) Same as Step i) of Exlension 5.1.

ii) Define u(V;) = § Y 14; u(Py). For a point R that belongs lo a line segment
connecting C' to V;, define u(R) by linear interpolation belween the values

w(C) and u(V;).
ii) Same as Step i) of Erlension 5.1.

iv) For a point S that belongs to a line segment connecting the previous point
Q to Vi, L # k, u(S) is defined by linear interpolation between the values
w(@) at Q and f(Q,k, L) at V. Here,

J(Q,F,0) = M@Q) u(Ve) + (1 = MQ)) ul ).
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v) Same as Step v) of Extension 5.1.

A disadvantage of this extension is that we cannot just work in a reference triangle,
since the angles are not preserved under a linear transformation. This is similar to the
fact that under a linear transformation a harmonic function does not necessarily remain
harmonic. We can construct other approximate harmonic extensions which combine the
properties of the two extensions, given so far. For instance, we can construct Extension
5.3 by working with the barycenter C' as in Extension 5.2 and replacing the weight 1/2
in Step ii).

The next lemma shows that the extensions given above have quasi-optimal energy

stability. Using ideas of Dryja and Widlund [37], we prove the following lemma.

Lemma 5.7 Let uy € VI (Q). Then
|I~£IUH|H1 (@) = (1+ ZOQ(H/h))% lun | () (5.37)
oh o H

and

Hf}_}uH — uHHL%(Ql) < H |uH|H;H(Qz) i=1,--+,N. (5.38)

Proof. Let 19?5 € f’h(Qi),j = 1,2,3, be the approximate harmonic extensions, e.g. by
Extension 5.1, constructed from the boundary values 19?5 = 1 at the CR nodes 557]2,
and 19?5 = 0 at the other CR nodes of OQS}? It is easy to see that the 19?5 form
a basis of all approximate harmonic extensions that take constant values on the edges

of the substructure. It is easy to show that if a point z belongs to the interior of an

element of ;, then |V 19?5(90” is bounded by C'/r, where r is the minimum distance
from x to any vertex of ;. Note that any element that touches a vertex of €2; provides
an order one contribution to the energy seminorm. To estimate the contribution to
the energy seminorm from the rest of the substructure, we introduce polar coordinate

systems centered at the vertices of €2;. Then,
CR)|2 A -2
V¢, |H,11(9¢) <1+ //h r=rdrde <14 log(H/h). (5.39)
Since the partition of unity 19?3 forms a basis, it is easy to see that
ij
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Tho12
|IHUH|H;§(Qz‘) =

(1+ log(H /h)) {Jun(Py)]* + [un(Py)|* + [un(Ps)]*}

and using ideas similar to that of Lemma 5.5, we have

[ yun ) < (1+ log(H /1) {lu(Pr) — unr(Po)+
fup(Py) — u(Po)? + lugg(Pa) — ugg (P}

= (1+ lOg(H/h))|uH|l2q,11(Qi)'

By construction, it is easy to see that

|(Tgum)(2)] < max fup(P)|.
Therefore
Hyum = wallfz (o, = 32 H* lun (P,

and by using (5.36) and (5.25), we obtain (5.38).

(5.40)

Since, by assumption, p(z) = p; in each €;, these arguments are also valid for the

weighted norms and we obtain (5.37).

a

Let us denote ff = f}fIIfI Using Lemmas 5.4 and 5.7 and the triangular inequality,

we have:

Theorem 5.1 Let u € V(Q). Then

7
Mk w = ullzz () = H ulm (0,

and

= 1 . )
1Iiulm @ < (L4 log(H/R))? |ulgs (g i=1,--, N
o, Py
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Let Hgf € Vh(QZ-), 7 = 1,2,3, be the nonconforming P; harmonic functions in 2;
constructed with the values Hgf = 1 at the CR nodes 557]}?, and Hgf = 0 at the other
CR nodes of 8955. It is easy to see that the Hgf form a basis of all nonconforming
Py harmonic functions in §2; that take constant values on the edges of the substructure.
Hence, the Interpolation Operator I ;LI given in Defintion 5.3 can be given in terms of

these ng functions. Let us denote If = Ifll,f[. As in Theorem 5.1, we obtain
Theorem 5.2 Let u € V#(Q). Then
I (V) C Vi'(Q),
1w = ullp2iy < H w1 () (5.43)

and

[ ulg o = (14 log(H/R))E ulg (g, =1, N. (5.44)
ok ? o,h ?

Proof. The inequality (5.44) follows trivially from (5.42) since the nonconforming Py
harmonic function has minimal energy seminorm.

Using trivial arguments, we can show a weaker result than (5.43), given by
1
15 I w = ull 20,y = H (14 log(H/h))? lulm (i) (5.45)

We note that (5.45) will be enough for our purposes. To prove (5.43), we use the same
ideas as in the proof of Lemma 4.3 of Dryja, Smith, and Widlund [35]; we note £2; convex

is used.

Remark 5.2 [t is easy lo see that we do not need to use the fact that uy € Vig(Q); we
only need to calculate the values ug,; = uy(P;;) by formula (5.22). The next step is to
provide the constant value ug,, to all CR nodes on 55’]2 and perform a discrele noncon-
forming Py harmonic extension, or an approximate harmonic extension. An important
observation is that these extensions can be constructed for nontriangular substructures.
In a case of approximate harmonic extension, in a first step, we construct a partition of

unity in ;. This can be done by using ideas similar to those of the triangular case, if
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Q; is nol too degenerale. By using the same lechnique as in the proof of Lemma 5.7, we
can show that
Il gy % pi (14 log(H/R) Y (ue,, - o, )" (5.46)
" £i;CON
Here, uaq, is the average of u over 0%);. We obtain (5.42) by showing that each term
. . 2
inside the sum can be bounded by C |u|Héyh(Qi).

5.1.7 The Neumann-Neumann basis

In this subsection, we consider Neumann-Neumann coarse spaces. This is the noncon-
forming P; version of a coarse space studied in Dryja and Widlund [41], and Mandel
and Brezina [55]. However, here we use an approximate harmonic extension inside the
substructures. We note that the coarse spaces considered by these authors differ only
in how certain weights are chosen. Mandel and Brezina use weights that are convex
combinations of the coefficient p(z), while Dryja and Widlund use p%(a:) Here we show
that any convex combination of pﬁ(a:), for 3 > 1/2, leads to stability. We remark that we
can even define a Neumann-Neumann coarse space for 3 = oo by considering the limit
of  — oo; see Subsection 4.4.1. We point out that the choice § = 1/2 can be viewed as
a L%-average, while 8 = 1 is an average in the L' sense.

The coarse spaces of the previous subsection are face based. There are some differ-
ences between Neumann-Neumann and face based coarse spaces. A Neumann-Neumann
coarse spaces has one degree of freedom per substructure, while a face based uses one
degree of freedom per edge. A Neumann-Neumann basis function associated with the
substructure €2;, has support in ; and its neighboring substructures, while a face based
function basis, associated with an edge of a substructure, has support in just two sub-
structures. The face based coarse spaces appear to be more stable since all the estimates,
related to the jumps of the coeflicients, are tight. In the lemmas that we have proved
for the face based methods, all the stability results were derived in individual substruc-
tures, while in the Neumann-Neumann cases, we need to work with the neighboring

substructures as well.

Definition 5.4 The Neumann-Neumann interpolation operators, féVN : ‘N/Oh — ‘N/Oh, are

given as follows:
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i) For each substructure §;, calculate the mean value on 0Q;, i.e.

U; = |0§22| u(s) ds.

Here |08 is the length size of 09;.

ii) Let P;; be the midpoint of the edge & common to Q; and Qj. Then for all
CR node P € EER ) let INN (P) = (I'u)(Py), where

15,k
8 15
. o5 _ P; _
(I w)(Pij) = ui + uj.
A

iii) Let P;; be the midpoint of the edge &; common tlo Q; and 0. Then for
all CR node P € ES%, let INN (P)= (IA{IU)(PZJ), where

1j,h7
(I u)(Pij) = I u)(Pyj).

iv) Perform an approzimate harmonic extension to define féVNu in the inte-

rior of the substructures.

Note that we can also calculate wu; by:

Z ||§6|| IHu)(Py). (5.47)

Therefore, there exists a linear transformation I} : Vg(Q) — Vi(Q), such that

f,flu = Ig[fu. The next lemma establishes stability properties for Ig.
Lemma 5.8 Let ug € TT’H(Q) and 1/2 < p < oo. Then

|I§qu|Hé ) 2 lumly ey (5.48)

and
HIHUH — ’LLHHLQ < H |UH|H1 Qezt) (549)
Here the extended domain Q%' is the union of Q; and the substructures that share an

edge with ;.
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Proof. Let us first prove the LIQ) stability. We focus on the case where P;; does not
belongs to J€2. The other case is trivial. Note that (see Fig. 5.4)

pi® u; + ,0 uj
lun (i) = (Ifun)(Pip)|* = lun(Py) = =55
Pz + Pz
By using (5.47) and simple calculations, this quantity is equal to
1
0} + 0 i

|52k|
|0€;]

(un(Py) — un(Pa)) + ) gy (Py) — i (Pa))) +

B
P 9%

o5 g () = () + (P v ()}

Using the shape regularity of the subdomains, it is easy to see that

pi lug(Pi;) — (Iffum)(Pij)|* < (5.50)
i’ lu HIH pip?ﬁ_l lum |5
ﬁ () 8 8 (€25)
|Pz‘ |2 lp; + P} |2 A

and using the fact that 3 > 1/2, we can bound this quantity by

= |“H|H1 (Q:09;)"

We note that the constant related to the last inequality =<, is also independent of 3.
Therefore, our results also holds for 5 = co. We obtain (5.49) by adding all the contri-
butions (5.50) to the L2(;) norm. We prove (5.48) by using the triangular inequality,

an inverse inequality, and (5.49).
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Fig. 5.4

Theorem 5.3 Let u € V#(Q) and 1/2 < 3 < 0. Then
NN
1k " = ullpz oy = H el o) » (5.51)

and

. 1
|I}]LVNU|H;7h(Q¢) < (14 log(H/R))? [ulpy , qeee)- (5.52)

Proof. Using Lemmas 5.7, 5.8, and 5.6, we have

~ 1
[ Nulg iy % (U4 Log(H/W) T Il q) <

1
= (1+1log(H/h))z |I}?U|H57H(Qf“) <

1
< (L4 log(H[1))? |ulg  ee)-

The L%—stabﬂity is obtained by

(TR ullz(e,) < [IAREES IgIEUHLg(Qi)‘F

I 0 = Il 2, + @ = wllr2 g,

and by using Lemmas 5.7, 5.8, and 5.6.
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5.1.8 The Three-dimensional case

We show in this subsection that the methods developed above can be extended to three
dimensions.

For simplicity, we assume that € is a polyhedral region of diameter 1 in three di-
mensional space. Let 7% and 7" be the coarse and the fine triangulations, respectively,
given in Subsection 3.2.1. Define the nonconforming P finite element spaces V(€Q),
V), VE(Q), V{1 (Q) as the three-dimensional counterpart of Definition 5.1. Here, the
continuity is enforced at the barycenter of the faces of the triangulations; we note that
the space V() has already been defined in Subsubsection 3.4.3 as V/ig(T").

The local equivalence maps are given by the following procedure. In each tetrahedral
element of 7" (cf. Fig. 4.3), we connect the centroid to the four vertices and to the
barycenters of the four faces. We also connect each face barycenter to the three vertices
of the face. Thus, we subdivide each tetrahedral element into twelve subtetrahedra. We
denote this new triangulation by T%. The vertices of T* are the vertices, barycenters,
and centroids of the elements of 7%. Denote by V E(E) the conforming space of piecewise
linear functions on the triangulation T" restricted to a region Y. We use notation similar
to those of Section 4.4 to denote, e.g., by Q“AL the set of nodes of 7" belonging to ;.
We denote by CR nodal points, the barycenters of the faces of elements in 7. We
preserve the same notation as used for two dimensions. fgﬁ represents the set of CR
nodal points belonging to a face F;; of ;.

The counterpart of the Isomorphism 5.1 is given as follows:
Isomorphism 5.3 Given u € f’h(Qi), define M;u € Vﬁ(Qi) by the value of M;u at the
following sets of points:

i) If P € Qm\agm and the T]ﬁ are the elements in TE(QZ-) that have P as a
vertex, then

M;u(P) = mean of wul ;(P).
J
Here u|_;,(P) is the limit of u(z) when v € T]ﬁ approaches P.
J

i) If P € 0QFF, then



iii) If P € 0Q;, and and Tj, j = 1,- -+, Np, are the triangles of T" N 0Q; that
have P as a vertex, then

Np

||
Mu(P) = —— u(Cy).
192::1 | U?Sl Tj|

Here C; and |T;| are the barycenter and the area of the triangle T;, respec-

tively.

Remark 5.3 Il is easy lo check that Lemma 5.2 holds, if we replace V*/*(Q;) by ‘/E(QZ-).

The counterpart of Isomorphims 5.2 is given by the following local equivalence map

MT L VRQ) — VE(Q)), by:

Isomorphism 5.4 Given u € f/h(ﬂi) and a face F of O, define MTu € VE(QZ') by
the values ./\/lf:u at the following sels of points:

i) Same as step i) of Isomorphism 5.3.
ii) Same as step i) of Isomorphism 5.3.

iii) Let P € 0Q; ,NOF, and let T, j = 1,---, N5 be the triangles of T" N F

that have P as a vertex. Then

NE
MTu(P) = Z _ T u(Cy).

NF
k=1 | U]:Pl le

) Let P € 09 )\OF, and let Tj, j = 1,---, Np, be the triangles of T" N F

that have P as a vertex. Then

culP) =) N
k=1 | szPl Tj|

Remark 5.4 [t is easy to check that Lemma 5.3 holds, if we replace Vh/Q(QZ-) by V}AL(QZ-),

and let the faces play the role previously played by the edges.

Definition 5.5 Lelt v € V*(Q). The Interpolation operator I : VH(Q) — VH(Q), is

given by:
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i) If Ci; is the barycenter of the face F;; common to Q; and Q;, then

1 1
o Ci‘:—/ vl|g.(x) de = / vl (z) dz. 5.53
(e = gy [, oy de= g [ g (@ e 639)
ii) If P is the barycenter of a face F common to Q; and 09, then
1
(o) (P) = — / vlq (2) de. (5.54)
[Fl Sz

Using the same ideas as in two dimensions, we can prove lemmas analogous to Lem-
mas 5.4-5.6.

Definition 5.6 Let the prolongation operators I}},f}} : VH(Q) = V), be defined
as in the two dimensional case. In a first step, let define (Ifyuy)(P) = (Ifyug)(P) =
ug(Cyj) for all CR nodes P € ]—"gf. Finally, perform a nonconforming Py harmonic or
approzimate harmonic extension.

We describe the three dimensional version of Extension 5.1. This is a generalization of
the partition of unity introduced by Dryja, Smith, and Widlund [35]. Let C;, 5 =1,---,4,
be the barycenters of the faces F}; of 9, and let V; be the vertex of ; that is opposite

to C;. Let C' the centroid of €, i.e. the intersection of the line segments connecting the

V; to the C;. Let E;;, k =1,2,3, be the edges of 0F;.

Extension 5.3 The construction of an approximate harmonic extension in €; is defined

by the following steps (see Fig. 4.3):
i) Let

WC) =1 Y un(C).

ii) For a point @) that belongs to a line segment connecting C to C;, define
u(Q) by linear interpolation belween the values u(C') and uy(C;), i.e. by

w(@Q) = NQ)u(C) + (1 = MQ))un(C;).
Here \(Q)) =distance(Q, C;)/ distance(C, C}).
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iti) For a point S that belongs to any of the three triangles defined by the
previous (), and the edges ., k=1,---,3, let

) Finally, let Thup(Q;) = IS}FQ, where IS}F is the interpolation operator
into the space VH(|Q;) that preserves the values of a function at the CR

OCR
nodes of ;3"

We can also construct an approximate harmonic extension similar to that of Exten-
sion 5.2 or 5.3. This gives a better approximate harmonic extension near the edges.

The prolongation operator f]ff] in three dimensions has the same stability properties
as in the two dimensional case, i.e. Lemma 5.7 still holds. The idea of the proof is
the following. Consider the case where ug(€;) is given by ugy(Ci1) = 1 and uy(Ciz) =
ug(Cis) = upg(Cia) = 0. This gives an element of a partition of the unity introduced
by Dryja, Smith, and Widlund [35] and the energy seminorm of uy is of order H.
Let ﬂg-f(ﬂz) = Ihup(Q;). We note that |V19g-f(x)| is bounded by C'/r, where r is
the distance to the nearest edge of €2;. The contribution to the energy seminorm from
the union of the elements with at least one vertex on the edge of the substructure
can be bounded by C'H, using that the extension is given by a convex combination of
the boundary values. To estimate the contribution to the energy from the rest of the
substructure, we introduce cylindrical coordinates using the appropriate substructure
edge as the z-axis. Integrating |V199_—f(a:)|2 over this region, we find that is bounded
by C'(1 4+ log(H/h)) H. See Dryja, Smith, and Widlund [35] for more details. The
arguments can be extended easily for the nonconforming P; case.

To prove Lemma 5.7 for a general uy € VH(Q;), we use the same ideas as for two
dimensions.

Similarly to the two-dimensional case, we can extend the results to nontriangular

substructures and to the Neumann-Neumann case.

5.1.9 Main result for Two-level method

In this subsection, we consider the Schwarz method introduced in the previous subsec-

tions and prove the following result.
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Theorem 5.4 The operator P of the additive Schwarz algorithm, defined by the spaces
VI (Q) and V;, satisfies:
- H H

K(P) < (14 log(3)) (1+ ). (5.55)

Here 5(13) is the condition number of P. Therefore, if we use a generous overlapping,

i.e. H/¢ is uniformly bounded, then
W(P) <1+ log(%).

The proof of this theorem is essentially the same as in the case of a conforming space;
see Dryja and Widlund [42].

Proof. The lower bound is obtained by using Assumption i) of Theorem 2.1. We
partition the finite element function u € VJ'(Q), as follows. We first choose ug = I;Xu,
with X = F, F, NN, or E\A’N, and set w = u — ug. The other terms in the representation
of u are defined by u; = }?R(Hiw),i =1,---,N. Here I]?R is the linear interpolation
operator into the space f/oh(Q) that preserves the values at the CR nodes of QgR, and
{6;} is a partition of unity with §; € C5°(}) and 3" 6;(z) = 1.

For a relatively generous overlap of the subdomains, these functions can be chosen
so that V#; is bounded by C'/H. By using the linearity of I}?R, we can show that we
have a correct partition of . In order to estimate the seminorm of u;, we work on one

element T]h at a time. We obtain

12 312 CRi(a. G2
|“2|Hé’h(fjh) <2 |92w|H;’h(T]h) + 2 |17 ((6; Hl)w)|HF1)7h(K)

Here 6; is the average value of 8; over 7. It is easy to see, by using the inverse

J
inequality (5.9), that

170 = 0i)w) < W2 {IER((6; — 6:)w)

121 (n 125y
Hp,h(TJ ) LP(T] )

We can now use the fact that on Tjh, 6; differs from its average by at most C'h/H.

After summing over all elements of 2}, we arrive at the inequality
12 2 -2 2
ity o) = 1wl oy + A 0 llzzgan)-
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We sum over all ¢+ and use that each point in {2 is covered only a fixed number of
times and we obtain a uniform bound on CZ. We conclude the proof, by estimating the
two terms of

|w|12q;7h(9) + H ™ ol 72 q)
by |u|12q,13h(0). The bounds follow by using the stability results of Theorem 5.1 or 5.3.

For the case of small overlap, the proof is similar to that of the case of piecewise

linear conforming space considered in Dryja and Widlund [42].

An upper bound on the spectrum is obtained by bounding

a"(Pv,v) = a"(P_yv,v) + a"(Pyv,v) + - - -+ a"(Pyv,v), (5.56)
from above in terms of ah('v,'v). Using Schwarz’s inequality, the fact that the P; are
projections, and that the maximum number of regions that intersect at any point is

uniformly bounded, it is easy to show that the spectrum of P is bounded above by

]roréas))({#(i ipe Q)+ 1}

d

Remark 5.5 The proof of Theorem 5.4 holds also for triangulations TH and T" that
are shape reqular and nonuniform. We can show thal

K(P) = max (14 log(G0) (1+ ),

Here, H; is the diameter of Q;, and h; is the diameter of the smallest element in Th(QZ-).

5.2 Nonconforming coarse spaces

In this section, we introduce some modifications to our two level methods in order to
have more efficient algorithms.

The first modification is related to the average value Upcr defined earlier. To calcu-
late ’TL]_-iCR, it is necessary to know the exact area of each facé of Thn Fi;. Therefore, we
define a]nother quantity, ’17,};_.5 r, as the discrete average value of u over the CR nodes on
FR by
>pergn ulp)

H#peFGD

ﬂ]_—CR -
i3
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Similar considerations also apply to ﬂagiCR and {LSQCR. We note that, for quasi-uniform
triangulations 77(€;), the bounds in the estimates zthat we obtain here are the same as
before.

Motivated by Remark 5.2, we make another simplification of our algorithm introduc-
ing an inexact solver for the face based coarse problem.

We also describe the Neumann-Neumann coarse spaces from a different point of view.

5.2.1 A face based coarse space
The space V. F can conveniently be defined as the range of an interpolation operator
IF . V}(Q) — VI, defined by
(@), = > Gges 05 ().
We define a bilinear form by

bR 1w, u) ZpZ{H 1+ log H/h) Z (ﬂ_};_-CR quCR)2}7
Fiyco

and the operator Tfl : f’oh — f/_Fl, by
bk (12 T, u,v) = a*(u,v) Yo e V1.

5.2.2 Neumann-Neumann coarse spaces

We consider a family of coarse spaces with only one degree of freedom per substructure;
cf. Chapter 4.
For each 3 > 1/2, we define the pseudo inverses ,u;»"ﬁ, t1=1,---,N, by

1
_I_ I I
'LLZ )= —F—"7, FZ X kv FZ ( a! !Z\a!!

and

pis(z) =0, z € (PF\IQTE) U 9 R.

We extend ,ufﬁ elsewhere in © as a nonconforming discrete harmonic function using the
k)

data on T¢F U 9QFE. The resulting functions belong to VJ(Q) and are also denoted by

+
K-
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We can now define the coarse space VNN C VJH(Q) by

VY~ spandf,).

where the span is taken over all the substructures €2;. The associated bilinear form is
defined by ngNN(-, D) =a(-,).

We note that f/_]\;N is also the range of the interpolation operator f}]LVN given by
TNN { —h
u_y = I, M u(z) = Zu(_)l = ZaniCR (pi)ﬁ,u;{'ﬁ. (5.57)

Similarly, we can define our coarse spaces and bilinear forms with approximate har-
monic extensions. We only need to replace 09—5 to 19%]?, and define the ,u;':ﬁ in €; as
the approximate harmonic extension using the data in FgR U 8QgR. The operators
associated to the coarse problems are denoted by Tfl and Ti\fi]/\f

For X = F,F,NN, or ﬂr, let

N
T =T% +> P. (5.58)

=1

We can show:

Theorem 5.5 Assume that the triangulations TH(Q) and that T"(Q) are shape regular,
and T"(Q;) is quasi-uniform fori=1,---,N. Then, for any u € V§#(Q)

max (14 log(Hi/h) ™M1+ 5)a(u, ) < (T u,u) < o (u,0).

5.3 Multilevel additive Schwarz method
5.83.1 Overview

The first multigrid methods for nonconforming finite elements were introduced by Braess
and Verfiith [4], and Brenner [13]. The existing convergence results are based on assuming
H?—regularity for the continuous problem. Later, Oswald [64], and Vassilevski and Wang
[84] proposed optimal multilevel BPX-preconditioners for nonconforming P; elements in
the three-dimensional case by using a sequence of nested conforming subspaces. No
regularity beyond H! is used. We note, however, that we cannot guarantee that the rate

of convergence of these methods are insensitive to large variations in the coefficients of
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the differential equation; see also [68], [89], [29], and [52]. In this section, we modify
Oswald’s preconditioner by introducing our nonstandard coarse spaces in Section 5.2,
and establish that its condition number grows at most in proportion to (1 + £)%, and
does not depend on the number of substructures and the jumps of the coefficients. To
analyze our methods, we introduce additional isomorphisms besides those of previous

section.

5.83.2 Additive version

Let 7%,k = 0,---,{ be a three-dimensional triangulation defined in Subsection 3.2.1.
We use the same notations as in Chapter 4 and in previous section.

As we have noted repeatedly, any Schwarz method can be defined by the underlying
splitting of the discretization space ‘N/Oh(Q) into a sum of subspaces, and by bilinear forms
associated with these subspaces. Let X = F, NN, F, or NN. The splitting of ‘N/Oh(Q)

that we consider is given by

(R ERS DD IR TRSD W)

k=0 jeN* JENFE

Here, NCR = QgR\anR’ i.e. the set of barycentrical nodal points associated with the
space V(Q), and the CE;L are the standard nonconforming P; basis functions associated
with these nodes. The space f’jh C f/oh(ﬂ) is the one-dimensional space spanned by QE?
See Chapter 4 for the definitions of the ij and the A%,

We introduce the following operators:

i) TX : V& — VA s given by
a"(T u,v) = a"(u,v) Vv e VY.
i) PFoVe —VFE k=0,--(, jeNFis given by
a"(PFu,v) = a"(u,v) Vo€ ij.
iit) Pr:V] — f’jh, j € NPE is given by
a"(Plu,v) = a"(u,v) Vv e f/jh.
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Let

L
T =T%+> > P+ > P (5.59)
k=0 jeN* JENFER

Theorem 5.6 For any u € V/(Q)

(14 log H/R) 2a"(u,w) < a(TXu,u) < a*(u,u).
The proof of this lemma is postponed to the end of next subsection.

5.8.3 Technical tools

In order to analyze our algorithms for the nonconforming case, we introduce interpolators

with which we can map results from the conforming to the nonconforming case. We define

a local interpolator M : V() — V*((;), as follows:

Definition 5.7 Given u € f/h(Qi), we define a conforming piecewise linear function

u = M!u in terms of values of u;
Z) If Pe Qi,haﬂi,h; then let

u(P) = mean of ’U/lTJh(P)

Here, the T]h are the elements in T"(9Q;) that have P as a vertex, and u|_n(P)
J

is defined as the limit value of u(z) when z € Tjh approaches P.

i) If P € 0, and T, j = 1,---,Np, are the triangles of Th 0 09y that
have P as a vertex, then
Np

aP)=Y. B ey,

N
k=1 | U]':P1 Tj|

Here C; and |T;| are the barycenter and the area of the triangle T;, respec-

tively.
Using the same ideas as in Lemma 5.2 we can show:
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Lemma 5.9 Given u € V*(Q;), let u € V(Q;) be given by & = MPu. Then

|l < |u|H)11(Qi)7 (5.60)
lu = allze (o) = A lulgi oy, (5.62)
Jullzay = 8l graesion (5.63)
and
H{LHLQ(TJ’I) j HUHL2(T]h€”nQi)- (564)
Here, T]hmt s the union of a finite element TJh and its next-neighbor finite elements in
Q.

In addition, if w vanishes on the OQS}?, then w vanishes on 0€);.

We have the following trace lemma for nonconforming P; functions. It is similar to

a trace lemma for the conforming case; see e.g. (4.35).

Lemma 5.10 Foru € V#(%;)

S ullZaqey < B2+ log H/B) full .
Tjhm&;é@

Nole that the summation Y, is taken over the finite elements in which intersect the edge

&

Proof. In fact,

2 : h
Z HUH%2(7—]’I) j HMZ u”iz(q_heﬂ)
T]hﬂglqé@ T]hﬁgl;ﬁqj ’

< h* (1 +log H/h) M|, < h* (1 +log H/h) lullz g

Here we have used Lemma 5.9 and a bound on the trace of conforming piecewise linear

functions.

a

The following lemma is the nonconforming version of Lemma 4.5 in Dryja, Smith,

Widlund [35].
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Lemma 5.11 For u € V*(), we have

Here, IgR 15 the standard interpolation operator into the nonconforming space Vh(Q)

which preserves the value of a function al the CR nodes Q%VR_

The idea of the proof is the same as for the conforming case; see Dryja, Smith,
Widlund [35]. All the steps in the proof are the same except that we use Lemma 5.10
for nonconforming P; functions.

Let f/oh(Q]:i]) be the subspace of f/h(Q]:i]) of functions which vanish at the barycenter
nodes on (?Q%]j

Let 7" be the triangulation obtained by subdividing each tetrahedral element of 7"
into twelve subtetrahedra. Let VOE(Q]:U) be the conforming space of piecewise linear
functions ( with respect to the triangulation ’Tﬁ) which vanish on 0Qg,;.

We introduce an local interpolator ./\/lf] : TT’Oh(Q]:U) — VOE(QE]), as follows:

Definition 5.8 Given u € f/oh(Q]:i]), define a conforming function u. — ./\/lf]u by the

values of u. at the following sets of points:
i) If P € QZ’E\OQM or P e Qj’];\é?ﬂm, then
u:(P) = mean of u|_;(P).
Tk

Here, 7" are the elements in TE(QZ') (or TH(Q]-)) that have P as a vertex,
(z

and u|_,(P) is the limit value of u(x) when x € T,f approaches P.
k

i) If P € 39}1]’%, then

u(P) =0
ii) If P e FGR, then

ue(P) = u(P)

iU) IfP € fij7h\0.7j¢j’h, then

& |T

u(P) =Y — 2 u(Ch).
k=1 | U]:Pl T]|

Here, the T}, j = 1,---, Np, are the triangles of T"n Fi; that have P as a

vertezx.
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The interesting feature about this interpolator ./\/lf] is that we have approximation
properties simultaneously in the two domains §; and ;. Using the same idea as in

Lemma 5.2, we can show:

Lemma 5.12 Given u € V}(Qr,), lel u. € VOE(Q]:U) be given by u. = ./\/lf]u Then,

for k =1, 7, simultaneously, we have
|uel () < |l (ay) (5.65)
[ulD 1220, < llullz2(qy)- (5.66)
. it -
We define an pseudo inverse map MY : V{'(Qz,) — V' (Qx,), by
it
(MEo(P) = o(P).

Here, P is any CR node of 7"(Qy,)).
By using the fact that the nodal points associated with the space f/oh(Q]:i]) are also

nodal points associated with the space VOE(Q]:U), we obtain, for k = 1, j,

t
MY 0l 0, 2 ol (5.67)

and

it
1M vllz2(0,) = 10l 2 () (5.68)

The next lemma is of fundamental importance in the analysis of our algorithms.

Lemma 5.13 Let u € f’oh(Q]:i]) be a nonconforming piecewise discrete harmonic func-

tion in Q;;. Then

|U|H,11(Qi) = |U|H’1L(QJ)-

It is easy to prove this lemma when the substructure are simplices. We reflect u from
(); into §2;, interpolate into ffoh (£2;), and perform comparisons of norms.

For general substructures, we proceed as follows. Note that
~ T . ~ . ~
[ulgaay) < 1ME HO (M) g, o, = THY (M) pg, lmay)
< NMEWE ez, ) = ITHD (MEw) 00,101 @)-
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Here, Hg) is the discrete harmonic extension operator on the mesh h in ©;. Note that
u and M%TH%j)(Mgu)w% have, by construction, the same boundary values on OQ]C:}?
Thus, the first inequality follows from the fact that the nonconforming discrete harmonic
function has the minimal energy. The second inequality follows from (5.67). In the third
and the fourth inequality, we use properties of the Héf—norm and the fact that (./\/lf]u)
vanishes on dQ,;. For the fourth inequality, we use an extension theorem for piecewise
linear, discrete harmonic function.

Hence,

< |M%“|H1(Qi) = ulg o

by using Poincaré’s inequality, the minimal energy for conforming harmonic function,
and finally, Lemma 5.12.
The proof is completed, by using the previous arguments, to show the reverse in-

equality

lul (e = Ul (a;)-

Proof of Theorem 5.6.
We use Theorem 2.1; see also Theorem 4.1. The proof is given for TX = TNN_ Similar
arguments can also be used to prove the other cases.

Assumption (i). Let

u=Herpu+v in €,

where

Hopu = Hg%u and v = Pg])%u on ;.

Here, H(C%u € V#(9;) is the nonconforming discrete harmonic part of u in €;. The
remaining part Pg])%u is H}-projection into VJ(€;).
We decompose v() = 'Pg])%u on £; as
v(i) = @(i) + (v(i) — @(i)) = @(i) + ?}(i)‘
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Here, 5() = M!v() belongs to the space of conforming functions V(9;). Therefore, we

can decompose (9 further, as in (4.13), and obtain
7 — @(()i) + @Y) 4o q 17](:) 4ot @E?l + @éi)‘

As in the conforming case, we work with the bilinear forms b(-, -) defined by (4.10). We

use the same arguments as in the proof of Lemma 4.1, and (5.60), to obtain

1

£ . . . . . .
S (o), 0) < ag, (89, 51)) < afs (v, 0) < ay (u,w).
k=0

We use that Pg])% is a projection to obtain the last inequality.
For the #(%), we use (5.62) to obtain

We now decompose Hogru. Let
w=Hepu — u_q,

where u_; is defined in (5.57). We decompose w as

N

w=Y wl
=1

Here,
; _h —h CR |, 90CR
w® = UPEH% ~ Uaqer Piﬁ/ﬁ;{—ﬁ = Piﬁ (u-— uaﬂfR)'uiﬁ on I'y™ U 0%,

and nonconforming P; discrete harmonic function into the interior of the {Q j}é\;l. It is
easy to see that the support of w() is a union of Q; and the Qj which have a face in

common with ;. We further decompose w(?) as

wh = 3wl (5.69)

Fiy CO
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(1)

Here, w’’ is the nonconforming P; discrete harmonic function on €, with possible
LV

nonzero value, on FgR U GQgR, equal to w(® only on j:g,]f?- Note that the support of
(%) (%)

each wy’ is Q.. Therefore, we can decompose wy  as
¥ J (%)

Here, QIJ(}% = M%w(}%, where ./\/lff7 : Voh(Q]:U) — V§(9z,), is the local interpolator
defined as in Definition 5.7 by changing Q; and 9€;, to Qx,, and Qs , respectively.

The stability properties of ./\/IZ that we use are

Ing (s, 2 Iw(j-fj Ifqi(%]) (5.70)
and
o) — @), ) 2 B 1) e ) (5.71)

We note that we cannot work with the operator ./\/lf] because we need to interpolate into
h h
VH(Qg,), not VH(Qx,, ).

We decompose ﬂz(}% as in (4.15) and obtain

K3

By using the same arguments as in the proof of Lemma 4.2, we obtain
> by, w,) % (pi + p)|EE) ey, -

By using (5.70), Lemma 5.13, the fact that § > 1/2, the fact that the nonconforming
discrete harmonic function has the minimal energy seminorm H}(€;), Lemma 5.11, and

a Poincaré inequality for nonconforming P; functions (see Lemma 5.4)we obtain
_(2) 2 1) (2
(pi+ i)l e, ) 2 (i p)|0%) e, ) 2

(i + pi)lws) iy = (01 + p)IHER(PY (1 = Whgen)iifg)zerlin o)

13,h
< pil HE e (u ﬂgQiCR)]:gﬁﬁIé(Qi) < Pl IER(OF (u - ﬂngR))h%I}l(Qi)
< pi(1+log H/h)?||u — ﬂngRH%I}l(Qi) = pi(1+log H/h)2|u|ifi(ﬂi)'
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Here, (v)fo}al is defined by (U)}—g,}; = at-the CR nodes ]—"gﬁ and (v)]_-gﬁ =0 on
QCR\ . For the nonconforming part lb%)], we use (5.71) to obtain

> @l () ) (2,)dh) <

jeN;lCR(QiJ)

o e @ 2
(pi +pg)§sz] - wﬁ,)HL?(QfU) =
(pi +03) |08 gy, ) = pil1+log H/RP|ulf g

Assumption (ii). We have trivially w = 1.
Assumption (iii). We have p(€) < 1 by applying Remark 3.3 in Zhang [95] for the
multilevel conforming part, and using that we have a finite covering for the nonconform-

ing part.

5.3.4 Multiplicative versions

Let X = F, F, NN, or NN. We consider two versions:

Eg=( ] (I-PM) H II (1 - PO -nT), (5.72)

JENFE k=0jeN*

and
4
Ey=I-n Y PHIU-n ) PO -nT), (5.73)
JENSR k=0 JENK

where 7 is a damping factor such that

Hh Dk
|nT? 1”H1 A > P a2, » [l > P I, <w <2
]GNCR JENE

When the product is arranged in an appropriated order, the operators Fg and Fj corre-
spond to the error propagation operator of V-cycle multigrid methods using Gauss Seidel
and damped Jacobi smoothers, respectively. Using the same techniques as in Zhang [95],
we can show that the norm of the error propagation operators HEGHH;h and HEJ”H;’I

can be estimated from above by 1 — Cy (14 £)~2
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Remark 5.6 In the case of quasi-monotone coefficients (cf. Chapter 4), we can replace
our nonstandard coarse spaces by the piecewise linear conlinuous function space VOH(Q),

and show that the algorithms in this chapter are optimal.

Remark 5.7 We also consider algorithms that are straightforward variants of the al-
gorithms developed in Section 4.8, 4.9, and 4.10; we replace the exolic spaces based on
conforming Py functions by our nonstandard nonconforming coarse spaces, and add the
one-dimensional spaces spanned by the QB;L We can then establish the same condilion
number estimates as obtained in Chapter 4. The techniques needed for these proofs have

already been described in this thesis.
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