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Abstract

An additive variant of the Schwarz alternating method is discussed.
A general framework is developed, which is useful in the design and
analysis of a variety of domain decomposition methods as well as cer-
tain multigrid methods. Three methods of this kind are then con-
sidered and estimates of their rates of convergence given. One is a
Schwarz-type method using several levels of overlapping subregions.
The others use multilevel, multigrid-like decompositions of finite ele-
ment spaces and have previously been considered by Yserentant and
Bramble, Pasciak and Xu. Throughout, we work with finite element
approximations of linear, self-adjoint, elliptic problems.

Key words domain decomposition, elliptic equations, finite elements,
Schwarz’s alternating method
AMS(MOS) subject classifications 65110, 65N30.

1 Introduction.

In this paper, we discuss parallel algorithms for solving systems of linear
algebraic equations, which result from finite element approximations of sec-
ond order, elliptic problems. These algorithms are based on additive Schwarz
methods (ASM), which form an important class of domain decomposition
methods. Omne of our goals is to show that an ASM framework is quite
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useful when constructing and analyzing new as well as previously known
iterative methods for solving elliptic finite element problems. This paper is
a continuation of our previous studies; see [7],[8].

This paper is organized as follows. In Section 2, a general ASM f{rame-
work is introduced for variational equations in Hilbert space. We work with
projections, which are orthogonal with respect to the given bilinear form,
and related subspaces; cf. Lions [9], where the classical Schwarz method is
considered. We also show how the rate of convergence of Schwarz methods
can be analyzed, and discuss briefly how they can be implemented.

In Section 3, a finite element approximation of second order, elliptic
problems is considered. We construct and analyze iterative methods for the
resulting linear systems using the results of Section 2. The original region
Q is divided into overlapping subregions. In the two-level algorithm, the
restriction of the finite element model to these subregions, and a coarse
finite element problem are solved in each iteration step. We also discuss
a £—level version of the method, which is obtained by recursively refining
the subregions, creating overlapping subregions on each level, and using
projections related to all of them. We show that the rate of convergence
of this method is independent of the parameters of triangulations and that
the condition number grows at most quadratically with £, the number of
levels. We also prove that for problems on convex regions, the growth of
the condition number is linear in £. The two-level case has previously been
considered in [7] and [8].

In Section 4, Yserentant’s hierarchical basis method, see [12], is described
inside our ASM framework. In Section 5, we consider a method due to
Bramble, Pasciak and Xu [2] from the same point of view. Their method can
be regarded as an extension of Yserentant’s method and has the advantage
that it also works well in three dimensions.

In this paper, we only consider symmetric, positive definite problems.
We note that additive Schwarz methods for non-symmetric cases, including
problems with some eigenvalues in the left half plane, have been considered
recently by Cai and Widlund [5]. That work extends earlier work by Cai

[3],[4].

2 The General Framework.

In this section, we present the additive Schwarz method in an abstract form.
We consider a general variational problem in a Hilbert space V : Find u € V,



such that
a(u,v)= f(v) ,YVveV. (2.1)

Here a(u,v): V x V — R, is a bilinear form, which is symmetric, bounded
and coercive. Therefore a(u,v) can be used as a scalar product in V. f(v):
V — R, is a continuous linear functional. By the Lax-Milgram theorem
equation (2.1) has a unique solution.

To define an ASM for (1.1), we represent V as

V=W+VWVi+- -+ Vy, (2.2)
where V; are subspaces of V. Let P;: V — V;, be the projection defined by
a(Pw,v) = a(w,v) ,YveV;. (2.3)

We note that if u is the solution of equation (2.1), then P;u can be computed
by solving the equation

a(Pu,v)= f(v) ,YveV;. (2.4)
The problem (2.1) is replaced by an operator equation of the form
Pu=(Ph+P+--+Py)u=g. (2.5)

This equation must have the same solution as (2.1). For this to hold the
right-hand side must be equal to g = Ef\;o g;, where ¢g; = P;u. The element
gi can be constructed by solving (2.4) for ¢ = 0,..., N. We will obtain a
strictly positive lower bound on the spectrum of P. This ensures that P is
invertible and that the solution of equation (2.5) unique. We note that P is
always automatically positive semi-definite and symmetric with respect to
the bilinear form a(u,v).

The equation (2.5) is solved by an iterative method usually the standard
conjugate gradient method. It is well known that the number of iterations re-
quired, to decrease an appropriate norm of the error of this iterative method
by a fixed factor, depends on k(P), the condition number of P. An estimate
of k(P) reduces to obtaining estimates of the positive constants 7; in the
inequalities,

Yoa(u,v) < a(Pv,v) < vra(u,v) ,YveV. (2.6)

Ideally these bounds should be independent of the number of subspaces and
the other parameters that are introduced in finite dimensional analogs of



equation (2.1). We note that it is easy to show that v4 < N + 1. Improved
estimates of y; can be obtained if many of the subspaces V; are orthogonal,
or almost orthogonal, to each other.

In order to establish the left inequality of (2.6), it is often convenient to
use the following lemma, cf. [9],

Lemma 2.1. If for every w € V, there is a representation u = Ef\;o ug,
u; € V; and a constant Cy, such that

N
a(ug,u;) < CFa(u,u) , (2.7)
=0
then
Cita(u,u) < a(Pu,u) .
We now briefly discuss how this method can be implemented. For sim-
plicity, we consider only the first Richardson method for solving equation

(2.5). Thus,

2
wtl = " — Topt(Pu" — g) ,  Topt = (

Yo+71)
Here r* = Pu™ — g = P(u" —u) = Ef\;o ri,r? = Py(u™ —u). To find 77, we
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(2.8)

solve
a(rl’,¢) = a(u",¢)— f(¢) ,Y o€V, (2.9)
for e = 0,1,..., N. These subproblems are independent and can therefore
be solved in parallel.
One of the attractive features of iterative methods of this kind is the pos-
sibility of using inexact solvers to solve the subproblems (2.9). Let b;(u,v)
be a bilinear, symmetric, positive definite form defined on V; X V;, such that

Y2bi(v,v) < a(v,v) < v3bi(v,0) ,Y v €V, (2.10)
with positive constants 73 and y3. We can then replace the operator P by
P, where o B B

P=Py4+ P+t Dy,
and P, : V — V;, is defined by
bi(Pyw, ¢) = a(w,d) ¥V ¢ € Vi . (2.11)
It then follows from (2.6) and (2.10) that
voy2 alu, u) < a(Pu,u) < y17v3 a(u, u) , (2.12)

from which an estimate of the condition number of P is obtained.



3 Schwarz Methods on Overlapping Subregions.

In this section, we construct and analyze an ASM for finite element approx-
imations of second order elliptic problems in three dimensions, using the
general framework of Section 2. (The method and analysis are equally valid
for problems in the plane.) To simplify the presentation, we only discuss a
standard Poisson equation with zero Dirichlet conditions approximated by
continuous, piecewise linear finite elements using tetrahedral elements. Qur
results can be extended to more general finite element approximations and
elliptic problems.
The continuous problem is of the form: Find u € H}(Q), such that

a(u,v) = f(v),Y v e Hy(Q), (3.1)

where

a(u,v):/QVqudm, f(v):/ﬂfvdx.

The form a(u,v) defines a seminorm in H!(Q) and a norm in H}(Q).

For simplicity, let © be a polyhedral region. The triangulation of 2
is introduced by dividing the region into nonoverlapping tetrahedrons €2;,
v = 1,..., N, which are also called substructures. This partitioning forms
a coarse triangulation with a parameter H = max; H;, where H; is the
diameter of €;. All the substructures ; are further divided into tetrahedral
elements. We associate a parameter h with this finer triangulation, which is
used in the overall finite element model of the problem (3.1). We assume that
the coarse and fine triangulations are shape regular in the sense common to
finite element theory; cf. Ciarlet [6].

Let VP =V h(Q) be the finite element space of continuous, piecewise
linear functions, defined on the fine triangulation, which vanish on 02, the
boundary of Q. The discrete problem is of the form: Find u, € V", such
that

a(up,vp) = f(vp) Yo, € VP, (3.2)

To define the ASM for equation (3.2), we construct overlapping sub-
regions Q) which cover Q. FEach substructure Q; is extended to a larger
region . We assume that the distance between the boundaries 6€2; and
6€2 is bounded from below by a fixed fraction of H;, and that 6Q! does not
cut through any element. If part of an extended subregion is outside of 2,
we cut off that part and denote the resulting subregion by Q.



With the subregion ), we associate a finite element subspace V; C Vh
defined by
Vi={veV':v(x)=0,2eCQ},i>1.

The subspace Vy is equal to V¥, the space of continuous, piecewise linear
functions on the coarse triangulation generated by the substructures €2;.
Our finite element space V" can be represented as the sum of (N + 1)
subspaces, cf. (2.2),
VE=Vo4+ Vit +Vy. (3.3)

The projections P; : V* — V;, are defined by
a(Pw,d) = a(w, ) ,V o€V, (3.4)
and the problem (3.2) is replaced by the equation,
Pup = (Py+ P+ -+ Py)uy, = gn, (3.5)

where the right-hand side gp, is computed as g, = Ef\;o Ghis Ghi = Piug.
Theorem 3.1. The following inequalities hold,

voa(v,v) < a(Pv,v) < via(v,v) ,Y v e V. (3.6)

Here vg and v, are positive constants independent of h, H and N .
Proof: The proof of the right inequality follows from the fact that, for
1=1,...,N,
a(Pv,v) = aq (P, v) < agi(v,v) ,

and the fact that {2’} provides a finite covering of Q. Here ag/ is defined
the same way as the bilinear form a, but with the integration restricted to
the subregion .

The proof of the left inequality is given in [7]. It is based on Lemma 2.1
and a partition of unity; cf. also our discussion below. O

We see that the rate of convergence of iterative methods, used for solving
(3.5), can be regarded as optimal. If the first Richardson method is used, see
(2.8),(2.9), (N 4 1) independent subproblems are solved in each iteration.
The first problem, z = 0, corresponds to the solution of the original problem
on the coarse mesh; the remaining are local problems which are restrictions
of problem (3.2) to the Q). We note that the global subproblem provides a
mechanism for the global transportation of information. As shown in [11],
the condition number of any method, without such a mechanism, grows at
least as fast as 1/H?2.



Remark. An ASM can also be viewed in terms of a preconditioner for
problem (3.2). Let K be the matrix of the system corresponding to (3.2),
ie. (Ku,v) = a(u,v), u,v € V. Let K ;) be the submatrices of K defined
by (Kiyugy, vi)) = alu,v), u,v € Vi It can easily be shown that

Kl 0

P = 73({)< ()

ot g
0 0 )P(i)lx =K K,

(%)
where P(;) a permutation matrix. Let

It follows from Theorem 3.1 that the matrix K is spectrally equivalent to
K,ie. H(I?_IK) is bounded independently of h, H and N.

The ASM, described above, uses two levels with a coarse and a fine mesh.
If H is small, the local problems are small, but we then have to solve a large
system of algebraic equations corresponding to the problem in Vy = V. We
can make the computation cheaper by applying a multilevel version. Let us
consider { rather than two levels of triangulations of £ with substructures
Qr; and a parameter hg, £ = 0,1,...,£. The triangulation on level & is a
refinement of that of level (k — 1) with the level ¢ triangulation the finest
and hy = h. On each level of triangulation, we define a finite element space

Vi k =0,...,¢, with V* = V" and Vh = VH_ In turn each V* |
k=1,...,L, is represented as in the two-level ASM:
Vi = Vi 4 - 4 Vi, (3.7)

The subspace Vj; is associated with a subregion Q),, which is an extension

of ; satisfying the same assumptions as in the case of two levels. In other
words, Vi; = V#(Q) N HL(Q,), extended by zero on and outside of 9.
The original finite element space V" is now represented as

¢  Ng
yvh = yvH + Z ZV]“' . (3.8)

k=1 =1
We introduce projections Pi; : VP — Vi, by
a( Priv, @) = a(v,¢) .,V ¢ € Vi ,
and replace the original problem (3.2) by

¢ Ny
Pup, = (Py+ > > Pi)up = gi (3.9)

=1 =1



where
¢ Ng

gh="90+ Y, Y gk, 90=Pour, gri= Pru.
k=1 =1

Theorem 3.2. The following inequalities hold,
ol + 1) a(v,v) < a(Pv,v) < (€ + 1) a(v,v) ,Yv e VP . (3.10)

Here vy and 41 are positive constants independent of the mesh sizes and {.
Proof: The right inequality is established by the same arguments as in
the proof of Theorem 3.1.
The proof of the left inequality is based on Lemma 2.1 and a partition
of unity. We introduce the Ly-projection Qj : VF — V by

(Qrv: B)r2(n) = (v,0)12(q) ¥ @ € V™ .
It is known, see for example Strang [10], that
o = Qrovll 2y < Chilvliq) ¥V ve V™, (3.11)
and that these projections are uniformly bounded in H', i.e
|Qrvla) < Clolmya) Y ve V. (3.12)
For v € V* let

v=wvgt+uv+--+v, (3.13)

where vg = Qov, v = (Qr — Qr—1)v, for k =1,...,0—1,and vy, = (I —
Qg_l)v. Let vg; = Ihk((@kwk), where Qy; € CSO(Q;]C), and O, 2 =1,---, N,
is a partition of unity with respect to the set {},}. The interpolation op-
erator Iy, : Vh — VP is associated with the triangulation defined by the
substructures ;. It has previously been shown, cf. Dryja and Widlund
[7], that a partition of unity can be chosen, such that

Ny 1
Y alois vni) < C{loklingg) + 75— llonll T2 ()} -
=1 hk_l

Using this inequality, (3.11) and (3.12), cf. [7], we obtain

N,
Z@(vki,vki) < Ca(vg, vg) , (3.14)

=1



for k=1,...,£, and
a(vg,vg) < Ca(v,v).

We obtain the left inequality of (3.10) by using (3.12), adding the resulting
inequalities and using Lemma 2.1. O

We do not know if the lower bound in Theorem 3.2 can be improved in
the general case. In the case when {2 is convex the dependence on £ in the
left inequality can be eliminated. This has been recently been proved by
a Courant Institute graduate student, Xuejun Zhang. The following is the
main idea of his proof. An alternative partition of an element v € V" is
used:

v="0+ 01+ -+ 0. (3.15)

Here 39 = Pyv and, for k > 0, 9 = (P — P(k_l))v. The operator P, : Vi —
V% is the projection defined using the bilinear form of (3.2). Since the
region is convex, Nitsche’s trick can be used, cf. Ciarlet [6], to show that

||1) - PkUHLQ(Q) S Chk|U|H1(Q) . (316)

It is easy to show that, since V=1 C V" the terms of equation (3.15) are
orthogonal in H'. The same partion of unity can now be used to further
divide the individual terms of (3.15). The same estimate as in (3.14) results
and the argument is completed by using the orthogonality of the ¥ from

which follows that ,

Z a(vg, o) = a(v,v) .

k=0

We conclude this section by briefly discussing an implementation of the
variant of the ASM that uses the first Richardson method; see (2.8) and
(2.9). Let

¢ Ng
ST
k=1 i=1
where
Thi = Priup, — up)

and
ry = Po(u} —up) .

Here 77, € V}; is defined by

a(ry;, @) = a(uy, @) — f(¢) ,V ¢ € Vi .



In any ASM, contributions from the different subspaces are added, and
since different sets of basis functions are used, this involves interpolation.
Any basis function of a coarser space can be expressed as a linear combi-
nation of basis elements of a finer space. If so desired, this process can be
carried out recursively; cf. Yserentant [12] for a discussion of similar issues.
The process can be parallelized by dividing the work by subregions. The
residuals, required for the right hand sides of the different equations corre-
sponding to the different subspaces, can similarly be computed recursively
from the values of a(u}, ¢) — f(¢), where the ¢ are the standard nodal basis
functions of V. We can think of this as multigrid operations.

The following numerical results have been obtained by Mr. Xuejun
Zhang. The experiments are carried out on a unit square divided into square
elements of different sizes. The triangulations are obtained by dividing each
of these elements into two triangles. In these experiments only very small
linear systems, of order 4, 9, 16 and 25 (and smaller) are solved. The overlap
ratio measures the width of Q% \ €, in terms of the side of the square region
;. Here, in all cases, €, \ €; is one element wide. The last column of the
table gives the number of iterations required to decrease the Fuclidean norm
of the residual by a factor 1076,

total # # of subdomains | overlap | # of levels | cond # # of iter.
of elements | on lowest level ratio levels K(P) for e = 1076

8 x 8 2 x 2 1/2 3 7.2 11

16 x 16 2 x 2 1/2 4 9.3 17

32 x 32 2 x 2 1/2 5 10.7 20

64 x 64 2 x 2 1/2 6 11.7 21

9x9 3 x3 1/3 2 4.6 9

27 x 27 3 x3 1/3 3 7.1 16

81 x 81 3 x3 1/3 4 8.4 19
243 x 243 3 x3 1/3 5 9.4 21

16 x 16 4 x4 1/4 2 5.2 13

64 x 64 4 x4 1/4 3 7.3 17
256 x 256 4 x4 1/4 4 8.4 20

25 x 25 5x5 1/5 2 5.7 14
125 x 125 5x5 1/5 3 7.6 17
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4 Yserentant’s Hierarchical Basis Method.

In this section, we describe the hierarchical basis method of Yserentant [12]
as an ASM using the framework of Section 2.

Let Q@ C R? be a polygon. We consider a £ level triangulations of €,
as in Section 3, with the difference that the level k£ triangles are obtained
by dividing all level (kK — 1) triangles into four congruent triangles. ( As
demonstrated in Yserentant [12], more general situations can also be con-
sidered.) Let Iyv = Ip, v be the linear interpolant of v € Vh on the level k
triangulation.

The following identity holds

v=1Iov+ (Iiv — Ipv) + -+ (Lyw — L_1v),Y v € V" . (4.1)
We represent V7’ as a direct sum,
VE=VoaWVia --aV,, (4.2)

where Vo = VH and V;, = R(I,—I}_1), for k > 0,is the range of the operator
(Ix —Ix—1). The elements of the finite element space Vj are functions defined
on the level k triangulation, which vanish for all z € Nj_;. Here Nj_1 is the
set of nodal points of the level £ — 1 triangulation.

Let P;: V* — Vj, be the projection defined by

a(Pw,d) = a(w,d) ,Y ¢ €V;. (4.3)
We replace equation (3.2) by
Pup,=(Fo+Pi+--+ P)un = gn (4.4)
where g, = Yi_y Pruy.
Theorem 4.1. The following inequalities hold,
Fo(f + 1) 2a(u, u) < a(Pu,u) < Fra(u,u) ¥ ue V. (4.5)

Here 7y and 41 are positive constants independent of {hy} and (.

Proof. The right inequality follows from Theorem 4.2 of [12].

The left inequality is proved using Lemma 2.1 with vy = ([ — Ix_1)v
and using an inequality, given in [1], [12],

[0kl 2o () < C(1+log(hr/he))lvlip ) .V v € VF.O (4.6)
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We use inexact solvers for the subproblems in the implementation of this
method. Let

br(v,w) = Z v(z)w(z) . (4.7)

T€NE\Nk_1
It can be shown, cf. [12], that,

F2br(v,v) < a(v,v) < Fs3bi(v,v),¥ v € V. (4.8)

Here 73 and 73 are positive constants independent of iy and {. The operator
Py, is replaced with Py, : V* — V}, which is defined by

bi(Pyw, ) = a(w,¢) ,¥ ¢ € Vi . (4.9)
We obtain the result,
Theorem 4.2. The following inequalities hold,
Fo¥2(€ + 1) %a(v,v) < a(Pv,v) < F193a(v,v) ,V v € V* .

The proof of Theorem 4.2 follows from (4.5), (4.8) and (2.12).

5 Bramble, Pasciak and Xu’s Method.

In this section, we describe the multilevel method recently introduced by
Bramble, Pasciak and Xu [2]. It is a fast method for both two and three
dimensional problems. It is based on Ls-projections, and it can be described
as an ASM.

Asin Section 4, we consider £ levels of triangulations of 2, which can be a
two or three dimensional region. On the level k triangulation, a conventional
finite element space V() is defined. We note that V-1 C Vi |k =
1,...,£. We use the following identity

u==Qou+ (Q1—Qo)u+ -+ (Qr—Qu1)u,Vuc Ve, (5.1)
and represent the space V" as
Vi=ViaVig---aV,. (5.2)

Here Vo = QoV", Vi = R(Qr — Qi_1) and Qp : V" — Vi, is the L,-

projections introduced in Section 3, i.e.
(Qrw, )12y = (W, 9)r2q) YV ¢ € Vi - (5.3)
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We also use the projections Pj defined as in (4.3), using the subspaces Vj
just introduced. We consider

P=P+P+---+P. (5.4)
Theorem 5.1. The following inequalities hold,
400+ 1) Ya(v,v) < a(Po,v) < (L4 1) a(v,v) Y v e V. (5.5)

Here 4q is a positive constant independent of the {hy} and (.

Proof. The right inequality is elementary since P is the sum of £ 4+ 1
projections. To prove the left inequality, we use Lemma 2.1 with vg = Qgv
and vy = (Qr — Qr—1)v,k=1,...,¢, and apply the estimate (3.12). O

Let (Au,v)r2(q) = a(u,v), u,v € V", and let
(Apu,v)p2q) = alu,v) ,V u,0 € Vg . (5.6)

It is easy to see that Py = AalQoA and P, = A;l(Qk - Qr-1)A , k=
1,2,...,£ . Therefore,

P=(A7"Qo+ AT (Q1— Qo) + -+ A7 (Qr — Qr_1))A . (5.7)

When using an iterative method to solve an equation with this operator, we
need to compute Pyv for given vectors v, i.e. solve

a(Prv,¢) = a(v,¢) VN o € Vi . (5.8)

This is expensive. Therefore an inexact solver is used. Let

br(vk, v) = h;Q(vk,vk)Lz(Q) Voo € Vi . (5.9)

Lemma 5.1. For any vy € Vi, k = 1,...,{, the following inequalilies
hold,

Y2bi(vk, vi) < a(vg, vk) < F3br(vk, vx), ¥ vk € Vi (5.10)

Here 45 and 43 are positive conslants independent of hy and k.

Proof. The left inequality follows from the estimate (3.11) and the fact
that vy = (I — Qk—1)vk. To prove the right inequality, we use an inverse
inequality. O

By Lemma 5.1, we have, for k =1,...,¢,

Yo 2 vk, vr) 2 < (Agvr, )12 < A3hy (v, v) 2 LV vk € Vi

13



which shows that Py can be replaced by Plgl) = h3(Qr — Qr—1)A and that
P = p,+ pl(l) 4ot pf(l)
is spectrally equivalent to P. The operator P1) can be rewritten as
PO = (A7 Qo-h3Qu+(h3—h3) Q1+ - +(h}_ —h}) Qi1 +hiQs)A . (5.11)
This means that
BW = A5'Q0 — h3Qo + (W} — h3)Q1 + -+ (B, — hD)Qer  (5.12)

is spectrally equivalent to A™', to within the dependence on ¢ indicated in
Theorem 5.1. This preconditioner is relatively expensive to use and it needs
to be modified further. This is done in two steps, cf. [2]. We first introduce
the operator

B® = A7'Qo + h3Q1 + -+ -+ hQs .

If the refinement of the meshes satisfies the condition

hity > (L+6)h*, k=0,...,0-1,

then it is easy to show that

(BWv,0)2 < (BPDv,0)2 < (14 6)(BMv,0)2 VoeVh.

More importantly, we also replace Qr, k = 1,...,£, by inexact solvers. Let
Bk(uv’v) = hi Z u(x) ’U(CC) ’
IENk

where Ay, is the set of nodal points of the level & triangulation, and define
Qr : Vi — V™, by

b(Qrv,0) = (v, )12 ¥ € V.

It is easy to show that, in V", @k is spectrally equivalent to @, with
respect to the Ly-inner product. We thus obtain the final preconditioner B,

B=A;"Qov+h{Q:+ -+ hiQs
which is spectrally equivalent to B(?). It follows that
K(BA) < Ce* .
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