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Abstract. A class of FETI methods for the edge element approximation of vector field prob-
lems in two dimensions is introduced and analyzed. First, an abstract framework is presented for
the analysis of a class of FETI methods where a natural coarse problem, associated with the sub-
structures, is lacking. Then, a family of FETI methods for edge element approximations is proposed.
It is shown that the condition number of the corresponding method is independent of the number
of substructures and grows only polylogarithmically with the number of unknowns associated with
individual substructures. The estimate is also independent of the jumps of both of the coefficients
of the original problem. Numerical results validating the theoretical bounds are given. The method
and its analysis can be easily generalized to Raviart-Thomas element approximations in two and
three dimensions.
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1. Introduction. In this paper, we consider the boundary value problem

Lu:=curl(acurlu)+ Au = f in Q,

(1) u-t 0 on 09,

with 2 a bounded polygonal domain in R%. The domain Q has unit diameter and ¢
is its unit tangent. We have

ov
curlv := 0z curlu := % — %
v |’ dxy  Ozy’
"o,

see, e.g., [16]. The coefficient matrix A is a symmetric uniformly positive definite
matrix—valued function with entries A;; € L>(), 1 <4,j <2, and a € L*(Q) is a
positive function bounded away from zero.

The weak formulation of problem (1) requires the introduction of the Hilbert
space H (curl;Q), defined by

H(curl; Q) := {v € (L*(0))?| curlv € L*(Q)}.
The space H(curl; Q) is equipped with the following inner product and graph norm,

(0, V)eurl = /u -vdr + /curlucurlv de, ||ull,m = (0, 1) eur,
Q Q
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and the tangential component u - t, of a vector u € H(curl;Q) on the boundary 01,
belongs to the space H~2 (89); see [16, 7). The subspace of vectors in H(curl; )
with vanishing tangential component on 92 is denoted by Hg(curl; ).

For any D C 2, we define the bilinear form

(2) ap(u,v) := /(a curlucurlv+ Au-v)dz, u,ve H(curl;Q).
D

The variational formulation of Equation (1) is:
Find u € Hy(curl; Q) such that

(3) aq(u,v) = /f-v dx, v € Hy(curl; ).
Q

We discretize this problem using edge elements, also known as Nédélec elements; see
[25]. These are vector finite elements that only ensure the continuity of the tangential
component across the elements, as is physically required for the electric and magnetic
fields, solutions of Maxwell’s equations.

The applications that we have in mind are mainly problems arising from static
and quasi-static Maxwell’s equations (eddy current problems); see, e.g., [6, 5]. In this
paper, we only consider the model problem (3), where the dependency on the time
or the frequency has been eliminated, and we will generically refer to it as Maxwell’s
equations. A good preconditioner for this model problem is the first step for the
efficient solution of linear systems arising from the edge element approximation of
static problems, and time— or frequency—dependent problems arising from the quasi—
static approximations of Maxwell’s equations.

The aim of this paper is to build and analyze a domain decomposition method with
Lagrange multipliers for the solution of linear systems arising from the edge element
approximations. Our algorithm belongs to the family of Finite Element Tearing and
Interconnecting (FETI) methods which have been first introduced for the solution of
elasticity problems in [14]. In this approach, the original domain Q is decomposed into
nonoverlapping subdomains Q;, 4 = 1,..., N. On each subdomain ; a local stiffness
matrix is obtained from the finite element discretization of agq,(-,-). Analogously, a
set, of right hand sides is built. The continuity of the solution corresponding to the
primal variables is then enforced by using Lagrange multipliers across the interface
defined by the subdomain boundaries. In the original FETT algorithm, the primal
variables are then eliminated by solving local Neumann problems, and an equation in
the Lagrange multipliers is obtained.

When considering the Poisson equation or stationary elasticity problems, the local
matrices are in general singular, with a small null space consisting of constants or rigid
body motions, respectively. Thus, auxiliary local problems need to be solved, in order
to obtain the components of the solution in the local null spaces. These auxiliary
problems play the role of a coarse problem and result in a condition number of the
method independent of the number of subdomains; see [13, 15]. In a variant of the
FETI method, introduced in [13], an additional Dirichlet problem is solved exactly on
each subdomain, in each iteration. This variant is also known as the FETI method
with Dirichlet preconditioner.

In [23, 32], it was first shown for scalar, second—order elliptic equations that
the condition number of the Dirichlet variant of the FETI algorithm is bounded by
C (1 + log(H/h))3, where H and h are a typical diameter of a subdomain and of
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a finite element, respectively, and C is a constant independent of H and h. Since
(H/h)4,d = 2,3 is a measure for the number of unknowns per subdomain, this gives
a convergence bound for the FETI algorithm which only grows polylogarithmically
with the number of unknowns associated with an individual substructure. In [21], this
result was extended to the elliptic system of linear elasticity and an algorithm with
inexact subdomain solvers based on FETI was proposed and analyzed. An improved
condition number estimate of the order of (1 + log(H/h))? will be given in [22]. For a
different FETT algorithm developed by Park et al., see, e.g., Park, Justino, and Felippa
[26], a condition number estimate of the same polylogarithmic order was given in the
thesis of Tezaur [32].

Some variants, for which the condition number is also independent of possibly
large jumps of the coefficients, were later proposed in [29, 30] based on mechanical
arguments. A mathematical analysis of these and of some extended FETT algorithms
will be given in [22].

The family of FETI methods has also been extended to problems that lack natural
auxiliary coarse problems, e.g., time—dependent problems from elastodynamics, see
[9, 12], and acoustic scattering problems, see [11].

Furthermore, FETT algorithms have also been developed for plate and shell prob-
lems, see, e.g., [12, 10] for algorithmic descriptions and numerical results and [24, 32]
for a mathematical analysis.

In this paper, we consider a FETI method for the edge element approximation
of Problem (3). Here, the local problems are not singular and, as in the case of
time—dependent problems, there is no natural coarse problem associated with the
subdomains. We will proceed as in [9], and propose a set of local functions that will
allow us to build a coarse space for the Lagrange multipliers. In addition, following
[30, 22], we also propose a family of preconditioners, built from the values of the
coefficient A in (2). An important feature of our method is that the condition number
is independent of the jumps of both coefficients in (2), as it is also the case for the
Neumann—-Neumann method considered in [33, 35]. We know of no previous work on
a FETI method for the vector problem (1), nor of any previous theoretical study of a
FETT method for the case where more than one coefficient has jumps.

In order to analyze our preconditioner and prove a polylogarithmic bound, we will
first introduce an abstract framework for a family of FETI methods without a natural
coarse problem; see [9]. We generalize the analysis in [22] to this class of problems and
introduce a new assumption on the space of coarse functions. Our theory then leads
to the choice of a suitable coarse space for Problem (3). The method proposed can be
easily generalized to Raviart—Thomas approximations in two and three dimensions.
To our knowledge, the case of Problem (3) in three dimensions still remains to be
treated.

The study and analysis of preconditioners for Nédélec and Raviart—Thomas ap-
proximations is very recent; extensive work to extend classical Schwarz preconditioners
to these vector problems has started only in the past three years. We note that two—
level overlapping Schwarz preconditioners were initially developed for two dimensions,
in [3], and then extended to three dimensions, in [34, 20]. Multigrid and multilevel
methods were considered in [3, 2, 19, 18, 4, 20|, and iterative substructuring methods
in [1, 28, 36, 37, 33, 35].

The outline of the remainder of this paper is as follows. In section 2, we intro-
duce appropriate Sobolev and finite element spaces, and in section 3, we formulate a
FETI algorithm for the solution of (3). Section 4 is devoted to the development of
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an abstract framework needed for the analysis of our method, and in section 5, we
apply these results and study the convergence properties of a particular class of FETI
methods for the solution of (3). In section 6, we present some numerical results to
validate our analysis. In an appendix, we give the quite technical proof of Lemma 5.3
stated in section 5.

2. Continuous and discrete spaces. In addition to H(curl; ), we also use
some standard Sobolev spaces. Given a bounded open Lipschitz domain D C RZ, with
boundary 8D, let | - |1/2,9p denote the semi-norm of the Sobolev space H'/2(9D).
Throughout, we work with scaled norms for the space H'/2(8D) obtained by dilation
from the standard definition of the Sobolev norm on a region with unit diameter.
Thus, with the Lo—norm || - ||o;p, we have

2

1
2 — 2
16113,00 = |11, + H—D||¢||o;m>-

Here and in the following, given a subset D C RZ, we denote its diameter by Hp.

As already mentioned, the tangential component of any vector field
u € H(curl; D) belongs to H~2(8D), and the corresponding trace operator is contin-
uous and surjective; see [16, 7]. Here, H ~3(8D) is equipped with the norm

(u, 9)
(4) ||u||—%;8'D = Slllp ||¢||71 )
$€H 2 (8D) 5;0D
$#0

where (-,-) represents the duality pairing between H~2(9D) and Hz(dD). If tp is
the unit tangent vector to 0D, the following inequality holds

(5) a0l o < C ([ullp + Hllcurl ul 3p)

with a constant C that is independent of Hp. The scaling factor is obtained by
dilation from a region of unit diameter. From now on, we denote by C a positive
generic constant, uniformly bounded from above, and by ¢ a positive generic constant
uniformly bounded away from zero.

We next consider a triangulation 7, of the domain 2, made of triangles or rect-
angles. Let &, be the set of edges of T. For every edge e, € &, we fix a direction,
given by a unit vector t.,, tangent to ex. The length of the edge e; is denoted by
|€k|.

We also consider a non overlapping partition of the domain 2,

N
fH:{Q,-| 1<i<N, Un—i:ﬁ},

=1

such that each 2; is connected and is the union of some elements in 7,. We suppose
that Fg has at least two elements. We denote the diameter of Q; by H; and define
H as the maximum of the diameters of the subdomains:
H = H;}.
IISH%XN{ i}
The elements of Fgr are also called substructures. In the following, we always assume
that the substructures are images of a reference square under sufficiently regular
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maps, which effectively means that their aspect ratios remain uniformly bounded.
In addition, we assume that the ratio of the diameters of two adjacent subregions is
bounded away from zero and infinity.

Let t; be the unit tangent to 0€2;, such that, when going along 0f; following the
direction of t;, 2; is on the left.

We define the edges of the partition as the intersections FEj;

Ei]‘ =00; N an, i# 7, |Ezj| >0,

where | E;;| denotes the measure of E;; and E;; its closure. Let g be the set of edges
of Fg, and let the interface I' be the union of the edges of Fg, or, equivalently the
parts of the subdomain boundaries that do not belong to 02:

N
=[] oo\ o0

i=1
For every subdomain (;, let Z; be the set of indices j, such that E;; is an edge of (2;:
T; = {] | Eij C 0%, Ez'j € EH}

Our assumptions on the partition Fg ensure that the the number of edges |Z;| is
uniformly bounded.

We also define a verter of the partition Fg as a non—empty intersection of the
closure of two different edges in £g. Let Vg be the set of vertices of Fp.

We assume that the coefficients a and A are constant in each substructure Q; and
denote them by a; and Aj;, respectively. We also assume that

(6) 0 < Billx||? < xPA;x < ~||x|]?, x e R?,

fori =1,---,N. Here, || - || denotes the standard Euclidean norm.
We define the local spaces

H,(curl; ;) := {u; € H(curl;Q;)| u; - t =0 o0n 02NN }.

We consider the lowest—order Nédélec finite element (FE) spaces, originally intro-
duced in [25], defined on each subdomain ©;

Xh(Qz) = Xz = {llz' S H*(curl;Qi)| ll,'h € R(t), te 77“ t C Qi};

where, in the case of triangular meshes, we have

R(?) :={[ ap + T ] |a,-e]R}.

Qg — 0371

We recall that the tangential component of a vector u; € X; on the edges of the
triangulation 7 is constant, and that the degrees of freedom can be taken as the
values of the tangential component on the edges

(7 ey (w;) = 11,(;) =u; - tekl%, er €&, e C Q;.

As in the case of nodal elements, the L2-norm of a vector u; € R(t) can be bounded
from above and below by means of its degrees of freedom

(8) ¢ > (el Ae(w))” < lluillgy < O (lef Ae(wi)?,

eCot eCOot
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where the constants ¢ and C only depend on the aspect ratio of the element ¢. The
proof given for nodal elements in [27, Prop. 6.3.1] can easily be adapted to the present
case.

We next consider the product space

N N
Xp(Q) =X := HXZ- C HH*(curl;Qi),
i=1 i=1

the trace spaces
Wi(0Q;) = W; := {u; - t; restricted to 0Q; \ 0N | u; € X;},

and the product space

The local trace spaces W; consist of piecewise constant functions on 0%; \ 9.
Throughout this paper, we will use the following notations. We denote a generic
vector function in X; using a bold letter with the subscript i, e.g., u;, and the column
vector of its degrees of freedom (7) using the same bold letter with the superscript
(i), e.g., ul?_ Tts k-th degree of freedom corresponding to the edge ey, defined in (7),

is ug). We define its tangential component on 9; \ 99 by
U; = 4Q; - tz', on 891 \ 89,

which is a piecewise constant function that is uniquely determined by the degrees of
freedom (7) on 99; \ 9. Let u(¥ be the column vector of these degrees of freedom
defined componentwise by

usj) = u,(:), er C 00\ ON.

We will also use the same notation for the spaces of functions X; and W; and the
corresponding spaces of degrees of freedom.

We say that a given vector u € X is continuous if its tangential component is
continuous across the edges E;; € £m. In this case, with our notations, we have

ui‘Eﬁ = —Uleij, Eij € &m,
usj) = ugj), ex C B, E;; €&q.
We remark that, given an edge E;; C £u, the vectors t; and t; have opposite direction
on E;;, but the direction of a fine edge e, C Ej; is the same on 0%); and on 012;.
Given the unit vectors t;, we define the column vectors t(* of degrees of freedom

ti;Z) =1t; - teka e C 08 \ aﬂ’ er € En-

We remark that, in case all the edges e; on 9f2; have the same direction of the
boundary 8€);, the entries of the vector t{*) are equal to one. Figure 1 shows an
example of a partition, with the directions of the subdomain boundaries and of the

fine edges on the interface I', and the corresponding values of the degrees of freedom
t®.
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Fi1g. 1. Ezample of partition of the domain Q2. We show the directions of the subdomain
boundaries, given by the unit vectors {t;}, those of the fine edges on the interface T, and the
corresponding values of the degrees of freedom t(9),

Finally, for ¢ = 1,---, N, we define the extensions into the interior of ;
H;: W; — Xi,

that are discrete harmonic with respect to the bilinear forms ag,(:,-). We recall
that u; = H;u; minimizes the energy ag,(u;,u;) among all the vectors of X; with
tangential component equal to u; on 9€; \ 0Q.

3. A FETI method. In this section, we introduce a FETI method for the
solution of the linear system arising from the edge element discretization of problem
(3). Throughout the paper, we denote the Euclidean scalar product in [2 by (-,-).
We first assemble the local stiffness matrices, relative to the bilinear forms ag, (-, ),
and the local load vectors. The degrees of freedom that are not on the interface T’
only belong to one substructure and can be eliminated in parallel by block Gaussian
elimination. Let f() be the resulting right hand sides and S(9 the Schur complement
matrices

S(i) : Wi — Wi,

relative to the degrees of freedom on 9Q; \ 99.
We recall that the local Schur complements satisfy the following property

9) |U(i)|?q(i) = (U(i)as(i)u(i)) = aq, (Hiui, Hiug);

see, e.g., [31, 35].
Following [22], we can then reformulate our problem as

Su + BA = f
(10) Bu =0
where
e o
u = . eEwW, S:= diag{s(l), e S(N)}’ f.-=

u™) F)
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The matrix B, the entries of which belong to {0,1,—1}, evaluates the difference of
the corresponding degrees of freedom on the interface I' and can be written as

B= [B<1> B ... B<N>] ,

where the local matrices B(®) act on vectors in W;. We note that, with our terminology,
a vector w € W is continuous if and only if Bw = 0. The vector A is a Lagrange
multiplier relative to the pointwise continuity constraint Bu = 0.

We remark that the S are always invertible and, consequently, there is no
natural coarse space associated to the substructures; we are in a similar case as the
one considered in [9].

We first find « from the first equation in (10), and substitute its value in the
second equation. We obtain the system

(11) F)=d,
where
F:=BS'B', d:=BS'f.

In order to build a preconditioner for (11), we first introduce a set of scaling functions
on the boundaries 0€;, using only the coefficient A4; see [33, 35] for a Neumann—
Neumann method. Our family of scaling functions will depend on a parameter

(12) §>1/2.
Let ; be a substructure. We define a piecewise constant function p;[ € W; by

%
W+

(13) IU’I\E” = je Iia

where 7; and +; are the largest eigenvalues of the coefficient matrices A; and A;,
respectively. We remark that u;-r is constant on each coarse edge E;; and satisfies

(14) (u! + H})‘ =1, Ej; €f&n.

E;;
We consider the matrices,

(15) R:= [R<1> RO ... R(M>], G.=BR,

where R() are vectors in W, related to the substructures {%}. More precisely, we

suppose that the generic R is obtained from a local vector r? € W; on 89;, by

extending it by zero on the boundaries of the other substructure. We will make a

particular choice of R for Problem (3), in section 5, and specify the dimension M.
Following [9], we then define the projection

P:=1-G(G'FG)"'G'F,

onto the complement of Range(G), orthogonal with respect to the scalar product
induced by F'. Following [22, Sect. 4], we define the preconditioner

M ':=(BD 'B")'BD 'SD 'B'(BD 'B) !,
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where
p»® o ... 0
2)
D := 0 D
: .0
o) ... O DWM

Here, the local matrices D() are diagonal and represent the multiplication by the
local scaling functions p!:

D,(le = /L;[ er C 09); \ onN.

ley,?
It can be easily seen that BD~1B? is s a diagonal matrix, since there are no crosspoints
in our discretizations. Therefore, M ! results in the same preconditioner as the
one for redundant Lagrange multipliers derived by mechanical arguments in [30] and
analyzed in [22].

Now, we consider a projected conjugate gradient method, as in [9].

1. Initialize

X = G(G'FG)'Gd
@®=d—F)\°

2. Iterate k = 1,2, -- - until convergence

Project: wk=! = ptgk—1
Precondition: zF~! = M ~twh=1

Project: yF~! = PzF—1
gE = o [yt [ = (]
P = yh Tl gl [pl = 4]
af = (y* =t Wt (pf, Fpt)
AF = AB=1 g gk
¢ = ¢ — oFFpt

The first projection can be omitted; because of the choice of the initial vector
A, we have wF~1 = ¢*¥~1 after the first projection step. Here, we have denoted the
residual at the k-th step by ¢*. In practice, partial or full reorthogonalization may
be required; cf. [15].

The method presented here is equivalent to using the conjugate gradient method
for solving the following preconditioned system

(16) PM~'P'FA\=PM~'P'd, A€ X+,
with

(17) V := Range(P).
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We remark that the matrices S and S—! do not need to be calculated in practice. The
action of S on a generic vector requires the solution of a Dirichlet problem on each
substructure, while the action of S~! requires the solution of a Neumann problem on
each substructure; see [31, Ch. 4].

4. Analysis of the FETI preconditioner. In this section, we develop an
abstract framework in order to analyze the preconditioned system (16). Our analysis
also applies to the method described in [9] for time—dependent elasticity problems and
is similar to the one in [22] for the original FETI method. It has been modified in
order to treat the case where the local matrices S{* are invertible and the projection
P is orthogonal with respect to the scalar product induced by F.

We note that, in the following, we use the same notation for operators and their
matrix representations. Let U := Range(B) be the space of the Lagrange multipliers.
Since S is invertible, we have

Ker(S) = {0}, Range(S)=W.

In addition to the subspace V' C U, defined in (17), we also need the space V' C U,
defined by

(18) V' := Range(P") = Ker(P)*.

Since P is not symmetric, V' and V' are in general different. Note that it can also be
easily shown that V' is isomorphic to the dual space of V' using (-,-) as dual pairing.

We now consider a subspace of coarse functions in W, which has a similar function
as the kernel of the matrix S in the original FETI method; see, e.g., [22]. We define

Z := Range(R) = span{RY|i=1,---, M},
where R has been defined in (15). We will make the following assumption on R; see
[22].

ASSUMPTION 4.1. We have
Z N Ker(B) = Range(R) N Ker(B) = {0}.
This assumption means that Z does not contain any continuous vector and con-

sequently, that the matrix G = BR has full rank. It is immediate to check that the
kernel of P is equal to the range of the matrix G' and that

(19) V={reU|l (\\Bz)p=0,z€2Z},
(20) V'={AeU| (\,\Bz)=0, z€ Z},

where (-,-)r denotes the scalar product induced by F,
Awp=\Fu), A\pel.

We will also need the space Z', defined by

(21) Z':= {w € Ker(B)*| Bu = FBz, with z € Z}.

As for V and V', it can easily be shown that Z' is isomorphic to the dual space of Z.
The following lemma characterizes the space Z'.



FETI METHOD FOR MAXWELL'S EQUATIONS 11

LEMMA 4.1. A vector 2/ € W belongs to Z' if and only if there exists a z € Z,
such that

(22) 2" = BY(BB")"'FB=.

Proof. We first suppose that z' € Z'. For a suitable z € Z, we then have
B? = FBz = BBY(BB')"'FBz,
and, consequently,
2 — BY(BB")"'FBz =0,

since 2’ € Ker(B)*. The rest of the proof is trivial. O
From (19) and Lemma 4.1, we also have the following characterization of V'

(23) V={ eU (\B2)=0,z2¢€Z'}.

The following lemma generalizes Lemma 4 in [22].
LEMMA 4.2. For any w € W, there exists a unique 2, € Z', such that

B(w+2,) eV

Proof. Let 2' € Z', i.e.,
2' = B (BB")"'FBz,
for a suitable z € Z. From (20), we have that B(w + 2') € V' if and only if
#B'Bw+2)=0, Ze€Z,
and, using the definition of 2, if and only if
(24) #*B'FBz = —#'B'Bw, 7¢ Z

We need to show that (24) has a unique solution z = 2z, € Z, for all w € W. It
is enough to show uniqueness. If the solution of (24) is not unique, there exists a
non—vanishing vector z € Z, such that

#'B'FBz =0,

and, consequently, z € Ker(B). Using Assumption 4.1, we deduce that z = 0, and
this is a contradiction. O
Given the preconditioned system (16), we define the operator

cCl v —vV,

as the restriction of PAM~! to V' = Range(P"). We have the following Lemma.
LEMMA 4.3. The operator C-1 s selfadjoint and positive definite.
Proof. The first property can be easily checked. The proof of the second one is
similar to [22, Lem. 3]. Since S is positive definite, we have, for every A € V',

(G=IAN) = (1A, 0) = HS%D‘IBt(BD‘lBt)‘l)\Hz.
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The right hand side is always non negative and vanishes if and only if
(BD7'BY)7X\ € Ker(B'). Since B has full rank, this condition implies
(BD1B)~1X = 0 and, consequently, A = 0. O

The inverse of C 1

C:V—V,

is therefore well defined.

In order to bound the smallest and largest eigenvalues of the preconditioned
operator PM ~1P!'F, it is enough to find two positive constants C; and C such
that

CL{(CX\A) < (FA Q) < Co(CAN), AeV.
In order to find these bounds, we define two norms. In V', we define
25)  |Allvr = {(C AN = (J/\/I\’l)\,/\) =|D'BYBD'BY)\%, XeV/,
where
lw|% == (w,Sw), weW,

while in V', we define

A
(26) INlv := sup { ’“>, eV
pev [lullve

It can easily be checked that

IAIZ = (CA,A), AeV.
We finally consider a jump operator, originally defined in [22]
(27) Pp:=D7'BY(BD'BY)~!B,

which will be essential to prove our bounds. It is immediate that Pp is a projection
which is orthogonal to the scalar product induced by D, and preserves jumps, since
BPp = B; see [22, Lem. 2].
The following lemma can be found in [22, Lem. 1].

LEMMA 4.4. For any A € U, there exists a W € Range(Pp), such that A\ = BW.

Proof. Since U = Range(B), there exists a w € W, such that A = Bw. We can
then choose @ := Ppw, since Bw = BPpw = Bw. 0O

We will make the following assumption on Pp; see Lemmas 6 and 7, and the proof
of Theorem 1 in [22].

ASSUMPTION 4.2. There ezists a parameter w, such that, for any w € W with
BweV',

2
|Ppw|g < w |w|%.
Before proving our main result, we need the following lemma, which introduces a

representation formula for the matrix F. The proofs in [23, 22] can easily be adapted
to our case.
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LEMMA 4.5. For every A € U, we have

2
(FA,A) = sup L’B;U)
weW |w|5

We are now ready to prove our main abstract theorem.
THEOREM 4.1. If Assumptions 4.1 and 4.2 hold, we have

(CAN) < (FAX) <w (@A), AeV,
where w is the parameter in Assumption 4.2. Then,
k(PM 'P'F) < w,

where k denotes the condition number of the preconditioned system.

Proof. Our proof follows that of Theorem 1 in [22]. Let A € V. We first prove the
lower bound. We consider an arbitrary but fixed vector p € V'. Lemma 4.4 ensures
that there exists W € Range(Pp) such that y = Bw. Using Lemma 4.5, we have

(\,B@)> () B®)? (\, Bw)?
2 FA ) > = = .
28) (FAA) 2 @] |Po@3  |D-'BY(BD 'BY) B|%

Using the definitions of M-! and [|]]v7, the last expression in (28) is equal to

(A ) _Ap?
|D='BYBD-'BY)~tuls  |plli

pev'.

Taking the supremum over u € V' and using the definition of the norm [|\||y gives
the lower bound.
We now consider the upper bound. Using the definitions of Z’ and V', we can
write
(A, Bw)® (A, Bw +2'))? (A, Bw)®

29 sup ~——+— = Sup ~————5—— = sup =, 2'eZ.
R T S 4 T

According to Lemma 4.2, we can find a unique z,, € Z’ such that B(w + z.,) € V'.
Choosing z' = 2!, in (29) and using Assumption 4.2, we have

(\, Bw)? <w s (\, Bw)? < (\, Bw)?
sup <wsyp ———— =w Sup -———
wew  |w[% wew |Pp(w + 2},)[5 omwis, |PDW[S

weW
A, Bw)? A, )2
=w sup %zw sup<"u2>.
Biiﬁeev‘v;’ |PDw|S peV! ||N||V'

The upper bound is proven by using the definition of the norm ||A||y. D

5. A particular choice of the matrix R for Maxwell’s equations. In this
section, we consider a particular choice of the matrix R in the definition of the FETI
algorithm for Problem (3); see (15). Our aim is to find a suitable R such that As-
sumptions 4.1 and 4.2 hold with an w that does not depend on the diameter of the
substructures and the jumps of the coefficients a and A in (3).
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We consider the jump operator Pp and recall some of its properties; see [22].
Given w € W, we first define the vector

v:= Epw :=w — Ppw.

Using the definition of Pp, we can easily find that the Epw is continuous. In addition,
Epw is equal to the D—weighted average of w on the interface I'; see [22, Lem. 5].
This can be seen by considering a continuous vector x € W, for every edge e € &
on I', that satisfies

wl(ci) _ mggj) =1, ife; € Ey,

and is equally zero elsewhere. Since Bz = 0, we have 2! DPpw = 0. Using the fact
that v is continuous, we then find

@) o =of =o'Dw=DRu? + DPu, e C By jeT,
or, equivalently, considering the corresponding functions,
Vi bijp, =Vi-ti, = I:NI(Wz' “t;) +N}(Wj 'ti)]‘ , J€L;.
: By

Using (30) and (14), we can find a formula for Ppw. If we define

(31) u:=Ppw =w —v,
we find that
(32) US) = D;(CJ;? (w;(ci) - w;(cj))y er C By, je€T;

or, equivalently,
Uilg,; = Wi ti\E”. - [N}(Wi bW tl)] B - [M}(Wi bt w; 'tj)jl
ij

(33) [u}(wﬁwj)] , jET.

|E','j

E;j

We note that t; and t; have opposite directions along E;;. Using (9), we see that, in
order to bound |u|%, we need to bound the energy of the discrete harmonic extensions

The discrete harmonic extension H; satisfies the following stability estimate
HE leurl Hiuillg.o, + Hiuillgo, < Clluil® 1,50,

with a constant C' that does not depend on the diameter of €2;. This estimate is
obtained by considering the corresponding bound for a substructure of unit diameter
and by using dilation. This shows that, in general, a bound for the energy

aq; (Hiui, Hiu;),

depends on the diameter of ;.
For an arbitrary substructure 2;, we define the subset of W; of tangential traces
with mean value zero:

W? = {u,EWZ| / ’U,idSZO}
o0Q;
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The following lemma ensures that a curl-free extension can be found of the traces in
WJ. The same argument as in [37, Lem. 4.3] can be employed for its proof; see also
[33, Sect. 5.5].

_ LEMMA 5.1. Let Q; be a substructure. Then, there erists an extension operator
Hi : W2 — X;, such that, for any u; € W2,

curl ﬁiui =0,
and
(34) [ Hiuilloe: < Cllull y,50,-
Here C' is independent of h, H;, and u;.
We note that, if u; € W2, Lemma 5.1 ensures that
(35) ag, (Hiwi, Hiug) < ag, (Hiui, Hiwg) < C luill 150,

with a constant C' that is independent of H;. Next, we try to find a subspace of
functions w for which the tangential traces u; of u = Ppw belong to W?. More
precisely, we require that

/uids = Z ug)tii)|ek|=z Z ugj)tg)|ek|

) e COQy JEL; ek CEij
9% eR €€ en€ER

(36)
= 3 3 e DY (@l ) =0, i=1,--,N.

JEI; exCEyj

epEEY

In Assumption 4.2, we consider functions w € W, such that Bw € V'. Using the
definition of V', we deduce that Bw € V' if and only if

#'B'Bw =0, z¢€Z,
or, equivalently,
N bt
(37) Zr(z) BWO' B0 =0, j=1,---,N,
Jj=1

where the local vectors (9 are those introduced in section 3 in order to build the
matrix R. Using the definition of the local matrices B(), (37) can be written as

(38) Z Z r,(:)(w,(:)—w,(cj)):O i=1,---,N.
JETL; ek CEij
e €€

We can then find the local vectors 7(¥) by making (38) equivalent to (36). We find,
fori=1,---,N,

(39) ri? = DK el en C By, jET,
or, equivalently, by considering the corresponding functions,

Til. 3=|ek|li} =|€k|[1—ﬂg]e; er C Eyj, jel,.
k leg e
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We remark that the local function r; is always positive and thus is the tangential
component of a vector that has the same direction as t;; it is scaled using the functions
,u;, relative to the substructures adjacent to €2;, and the diameters of the fine edges

on 99Q;. The corresponding expression for the vector of degrees of freedom (¥ must
take into account that the direction of 91; and that of the edges {ey} may differ.
We can formalize the definition of the vectors {r(9} in the following way:
DEFINITION 5.1. The local vectors {r("), i =1,---,N} are the unique vectors
that satisfy

Nt s
T 00 =3 / u;,,idsz/a_u})wds, vi € Wi.
e s,

The global vectors R\ are obtained by extending the local vectors r¥) by zero outside
09;.

We need to build the matrix R; cf. (15). If all the vectors R are used to build R,
then there are cases in which the space span{R(i)| i=1,---, N} contains a continuous
function, thus failing to satisfy Assumption 4.1. On the other hand, we need (36) to
be valid for every subdomain 2;; see the proof of Theorem 5.2. The following lemma
helps us determine how many of the vectors R(*) need to be employed for constructing
the matrix R and ensures that, in case any of the R is not used, (36) remains valid
for every ;.

We first define Gy as the dual graph of the partition Fg. We recall that Gy
is obtained by considering a vertex for each substructure of Fg and an edge in Gy
between two vertices if the corresponding substructures have a common edge. It will
be useful to identify the vertices of Gy with the centers of mass of the subdomains of
Fr.

LEMMA 5.2.

1) The graph Gu is two—colorable if and only if each vertex in Vi that does not
belong to 0N belongs to an even number of substructures.

2) The space span{R¥| i = 1,---,N} contains a non-vanishing continuous
function if and only if Gy is two—colorable.

3) If one of the wvectors R is removed, say RWN), then the space
span{R™|i=1,--- N — 1} does not contain any continuous function.

4) If Gy is two—colorable, then the condition

#B'Bw=0, zespan{RP|i=1,---,N—1},

implies that, for every w € W,

/ u;ds =0, i=1,--- N,
9;

where u = Ppw.

Proof. Since 2 is connected and Fg consists of more than one subdomain, Gy
has at least one edge. Then, Gg is two—colorable if and only if all its cycles have
an even number of vertices; see, e.g., [17, Th. 2.1.6]. In addition, we can associate a
cycle of Gg to each vertex of the partition Fg that does not lie on 0%, by considering
the shortest cycle that connects the centers of mass of the subdomains that have this
vertex. We remark that the number of vertices of this cycle is equal to the number of
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\ >
K>
/]

F1g. 2. Ezample of cycle C in Gy for a particular partition Fpg .

subdomains that share this vertex.

Part 1: We first suppose that Gy is two—colorable. Consider any vertex of Fg that
does not lie on 9. Then the cycle associated to this vertex has an even number of
vertices of Gg, and, consequently, it belongs to an even number of subdomains.

We suppose that every vertex of Fg, which does not lie on 912, belongs to an
even number of subdomains. Consider any cycle C of Gi. We can suppose, without
loss of generality, that C has no repeated vertices, except the initial and the final. Let
{v1,--+,vk } be the vertices in Vg inside C, and let {Cy,---,Cx} be the cycles asso-
ciated to {v1,---,vk}. It is immediate to see that C can be obtained by considering
the cycles {C1,---,Ck} and deleting the common edges. We refer to Figure 2 for an
example. Since {Cy,---,Ck} all have an even number of edges, and the common edges
are removed two by two, then C must consist of an even number of edges and, since
C is arbitrary, Gg is two—colorable.

Part 2: We first suppose that Gg is two—colorable, with colors {1,—1}. Let ¢; be the
color of ;. It is then immediate to see that the vector

N
3 e RO,
i=1

does not vanish and that it is continuous, since, on the generic edge E;; € &, o R®
and V?R(J) have the same absolute value and opposite sign.
We next suppose that there is a non—vanishing continuous vector

N
(40) > iR,
i=1

with at least one coeflicient, say ay, different from zero.

We first prove that all coefficients {a;} are non—vanishing. Suppose, by contra-
diction, that there is a coefficient, say ay, that vanishes. Since (2 is connected, we
can find a sequence of subdomains

{Qilaﬂiy"'aQiM} C -7:H7
such that

Qi1 = QN; QzM = Qk;
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and such that any two consecutive subdomains in the sequence have a common edge:
ﬁii nﬁzﬂl =EjCcén, j=1---,M—-1,

Since ay = 0 and the sum in (40) is continuous on the edge E;, we have a;, = 0. In
the same way, we can prove that a;; = 0, for j = 3,---, M, and finally that oy, = 0,
which is a contradiction.

Consider then the integers {¢; := sign(a;)}. We now prove that the set {c¢;}
provides a two—coloring of Gg. Consider two adjacent subdomains €2; and Q; that
share the edge E;;. We have to prove that ¢; and c; have opposite sign. We first
remark that, since the unit vectors t; and t; have opposite direction along E;;, the
entries of the vectors R(¥ and RU) have opposite sign on E;;; see Definition 5.1 and
(39). As the sum in (40) is continuous along the edge E;; and the only contribution
on E;; comes from ; R®) and a; RY), the coefficients o; and o, and therefore ¢; and
¢j, must be of opposite sign.

Part 3: The proof employs an argument similar to the previous one, used for proving
that, if the sum (40) is continuous, then the coefficients «; are all non—vanishing.
Part 4: By construction of the vectors R(® (see (36), (37), and (39)), we have

/ ujds=0, +=1,---,N—1.
89
Let {¢; € {1,—1}} be a two—coloring of Gg. Using (33), we deduce that, along the

generic edge E;; € E£q, the tangential traces u; and u; have the same sign. Using
(13), we then have

N
St [ wids=o,
=1 Erop
since the contributions on the generic edge E;; cancel. We finally find that
N-1

/ uny ds = —CNWJQ‘S Z cifyf / u; ds = 0.
8Q;

0N i=1

We define the matrix R by
” { [RV) R®) ... RIN-U] ' if Gy is two—colorable,

(41)
[RY R® ... RM] | otherwise .

Lemma 5.2 ensures that Assumption 4.1 holds

THEOREM 5.1. Let R be defined in (41). Then Assumption 4.1 holds.

Before showing that Assumption 4.2 also holds, we need a decomposition lemma
for the tangential traces on the boundary of a substructure. The proof can be carried
out using a similar argument as that for the stronger result contained in [37, Lem.
4.4], and for completeness is given in Appendix A.

LEMMA 5.3. Let Q; be a substructure and let {w;j, j € I;} be functions in W;,
which vanish on 0; \ E;j. Let

w; 1= E Wij -

JEL;
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Then there exists a constant C, independent of h and H, such that
(42) ||wij||2_%;39i <O+ log(H/h))2||w,-||2_%;89

We are now ready to prove the following theorem.
THEOREM 5.2. Let the matriz R be defined as in (41). Then Assumption 4.2

holds with
7\ 2
w=0Cn <1+10g (—)) ,
h
where
— vi viH}
n:= z—ril,a-}f max{ﬂz p },

and where C' is independent of h, H, the coefficients a and A, and the parameter §.
Proof. Let Z = Range(R). Consider an arbitrary function w € W, such that

Z!B'Bw =0, z€Z.

We need to bound the quantity

N

N
|uls = Z [u 3 = Zam (Hiui, Hiui),

=1 =1
where u := Ppw. We consider an arbitrary substructure ;. Lemma 5.2 and Defini-
tion 5.1 ensure that u; € W2, for all i = 1,---, N. Using (35) and (33), we find
2
o (Hiug, Hiug) < Coy, ||u,||_l o0; <Cv Z py(wi + w;)di;

(43) JeL: — Lo,

’Y ’Yz ’Y ’Yz
< C ———|%; w||21 +C s
Z (’Yz _}_fy ) i i ;094 Z (’Yz +,Y

) ”ﬂleJHEL ;080
JETL; JEL; J

where C' is independent of H;, and 9;; is the characteristic function of E;; in 0.
We first consider the first term on the right of (43). Using Lemma 5.3, we find

730
Z ]77)”192sz“_1 8Q;

ez it

< C (1 +log(H/h))? i llwil2 y o, Z + 52 -
JET; ’YJ

(44)

In order to bound the the second term on the right of (43), we use Lemma 5.3 and
[33, Lem. 5.5.2]. We can then write

'7 '71 '7 '71
Z W'|ﬁ11w1|l2 aa; < c Z 5 ||79sz]”2_1 .09
(45) JEL; 1 J ]EI

2 73 2
< C(1+]log(H/R)? > W“anwjufé;aojv

JEL;
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where, with an abuse of notation, we have also denoted by ¥;; the characteristic
function of E;; on 9Q;. We combine (43), (44), and (45), and sum over the substruc-
tures €;. By noting that, for a generic substructure €;, exactly (1 + |Z;|) terms in
||w,||2_% aq, contribute to this sum, we obtain

N
Vv + 70 Vi
lul§ < C (1 +1og(H/R))* Y | i llwill® 5 50, Z o
P = 7+

It can be easily checked that the generic term

Vv + 7 7;
('7? + 'Yj) ¥i

is a homogeneous function of degree zero of 7; and +;, that can be bounded by 2,
uniformly in v; > 0, v; > 0, and 6 > 1/2. We then obtain

luls < C (1 +log(H/h)) Z% |w,||__ 59;-

The proof is completed by employing the trace estimate (4). O

We remark that the same constant 7 also appears in the estimates for other
substructuring methods for the same problem; see [36, 37, 33, 35].

The estimate given in Theorem 5.2 remains uniformly valid when the coefficient
matrix A tends to zero, but becomes unbounded when a becomes small. This situation
occurs when time—-dependent Maxwell’s equations are considered. It corresponds to
the case when the time step approaches zero. The following lemma ensures that in the
limit case a = 0, the condition number of the FETI preconditioned system is bounded
independently of H/h and the jumps of the coefficient A.

LEMMA 5.4. In the limit case a = 0, there is a constant C, independent of h, H,
the coefficient matriz A, and the parameter 8, such that Assumption 4.2 holds with

w = C¢,

.f:: _max {ﬂz}

Proof. The proof can be carried out as in Theorem 5.2, by noting that, in this
case, the bilinear forms a;(-,-) are just weighted L2-scalar products and that (8) can
then be employed. We refer to [33, Lem. 5.6.4] and [35, Lem. 6.4] for a proof of a
similar result. 0O

REMARK 5.1. An analogous FETI method can be also devised for problems in-
volving the bilinear form

where

/(adivudivv+Au-v) dz, u,ve H(div;Q),
Q

discretized with the lowest order Raviart—Thomas spaces. Here, H(div ; Q) is the space
of vectors in L?, with divergence in L?. Since, in two dimensions, vectors in the
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TABLE 1
FETI method. Estimated condition number and number of CG iterations necessary to obtain a
relative preconditioned residual ||zg||/||f|| less than 10~6 (in parentheses), versus H/h and n. Case
of a =1, b =1. The asterisks denote the cases for which we have not enough memory to run the
corresponding algorithm.

[ H/h ] 32 | 16 | 8 | 4 | 2 |
n=32 - 1.529 (3) [ 2.399 (7) [ 1.804 (7) | 1.299 (5)
n=64 | 1.801 (4) | 3.228 (8) | 2.485 (8) | 1.807 (7) | 1.299 (5)
n=128 | 4.215 (9) | 3.332 (10) | 2.487 (8) | 1.784 (6) *
n=192 - 3.348 (10) | 2.476 (8) * *
n=256 | 4.341 (11) | 3.319 (9) * * *

Raviart—Thomas spaces can be obtained from those in the Nédélec spaces by a rotation
of ninety degrees, the unit outward normal vectors n; to the boundaries 09);, instead
of the unit tangent vectors t;, have to be employed in the construction of the local
functions r;. All the results in this paper remain valid in this case. For Raviart-
Thomas discretizations in three dimensions, an analogous method can be defined and
all our results, except Part 1 of Lemma 5.2, remain valid in this case as well.

6. Numerical results. We consider the domain Q = (0,1)? and two uniform
triangulations 7, and Tg. The fine triangulation is made of triangles, and the coarse
one of squares that are unions of fine triangles. The substructures €2; are the elements
of the coarse triangulation 7. The fine triangulation 7 consists of 2 x n? triangles,
with h = 1/n. We assume that the coefficient matrix A is diagonal and equal to

a=lo bl

We use the value § = 1/2. In addition, since we have observed no difference in the
number of iterations with or without full reorthogonalization, in all our tests, we use
the standard two-term recurrence implementation for the conjugate gradient method,
as described in section 3.

In Table 1, we show the estimated condition number and the number of iterations
to obtain a relative preconditioned residual ||zx||/||f|| less than 106, as a function of
the dimensions of the fine and coarse meshes. Here, z; is the k—th preconditioned
residual as defined in the algorithmic description given in section 3. For a fixed ratio
H/h, the condition number and the number of iterations are quite insensitive to the
dimension of the fine mesh.

In Table 2, we show some results when the ratio of the coefficients b and a change.
For a fixed value of n = 128 and a = 1, the estimated condition number and the
number of iterations are shown as a function of H/h and b. In accordance with
Theorem 5.2, the condition number is independent of the ratio b/a, when b/a < 1.
Table 2 also shows that, in practice, this holds for b/a > 1 as well, and that, when b/a
is very large, the condition number tends to be independent of H/h. Our numerical
results thus confirm our analysis of the limit case a = 0, in Lemma 5.4.

We finally consider a case where the coefficients have jumps. In Table 3, we show
some results when the coefficient b has jumps across the interface. We consider the
checkerboard distribution shown in Figure 3, where b is equal to b; in the shaded area
and to by elsewhere. For a fixed value of n = 128, b; = 100, and a = 1, the estimated
condition number and the number of iterations are shown as a function of H/h and b,.

b 0
0 b
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TABLE 2
FETI method. Estimated condition number and number of CG iterations necessary to obtain
relative preconditioned residual (||zx||/||f]|) less than 108 (in parentheses), versus H/h and b. Case
of n =128 and a = 1.

(#Z/m [ 4 [ 8 | 16 ]
b=0.0001 | 1.782 (6) | 2.49 (8) | 3.337 (10)
b=0.001 | 1.782 (6) | 2.49 (8) | 3.337 (10)
b=0.01 1.782 (6) | 2.49 (8) | 3.336 (10)
b= 0.1 1.782 (6) | 2.49 (8) | 3.336 (10)
b=1 1.784 (6) | 2.487 (8) | 3.332 (10)
b= 10 1.788 (7) | 2.47 (8) | 3.307 (10)
b= 100 1.764 (7) | 2.407 (8) | 3.103 (10)
b= 1000 | 1.701 (6) | 2.081 (7) | 2.232 (7)
b=1e+04 | 1.356 (5) | 1.382 (4) | 1.387 (4)
b=1e+05 | 1.012 (2) | 1.015 (2) | 1.015 (2)
b=1e+06 | 1.04 (3) | 1.037 (2) | 1.037 (2)

TABLE 3
FETI method. Checkerboard distribution for b: (b1,b2). Estimated condition number and
number of CG iterations to obtain a relative preconditioned residual (||zx||/]|f]|) less than 10~8 (in
parentheses), versus H/h and by. Case of n =128, a = 1, and by = 100.

[H/h | 4 [ 8 [ 16 |
b2=0.0001 | 4.116 (17) | 5.987 (22) | 8.416 (26)
b2=0.001 | 4.095 (16) | 5.96 (20) | 8.374 (25)
b2=0.01 | 4.04 (15) | 5.882 (19) | 8.249 (23)
b2=0.1 | 3.876 (13) | 5.648 (17) | 7.909 (21)
b2= 1 3.445 (12) | 5.018 (15) | 6.994 (18)
b2= 10 2.577 (9) | 3.733 (12) | 5.158 (14)
b2= 100 | 1.764 (7) | 2.407 (8) | 3.103 (10)
b2= 1000 | 2.506 (9) | 3.37 (11) | 3.988 (12)
b2=1e+04 | 2.737 (10) | 3.094 (11) | 3.515 (11)
b2=1e+05 | 2.196 (9) | 2.73 (10) | 3.355 (11)
b2=1e+06 | 2.089 (9) | 2.653 (10) | 3.336 (12)

For by = 100, the coeflicient b has a uniform distribution, and this corresponds to a
minimum for the condition number and the number of iterations. When b, decreases
or increases, the condition number and the number of iterations also increase, but
they can still be bounded independently of bs.

In Table 4, we show some results when the coefficient a has jumps. We consider
the checkerboard distribution shown in Figure 3, where a is equal to a; in the shaded
area and to as elsewhere. For a fixed value of n = 128, a; = 0.01, and b = 1, the
estimated condition number and the number of iterations are shown as a function of
H/h and ay. We remark that for a; = 0.01, the coefficient a has a uniform distribution.
A slight increase in the number of iterations and the condition number is observed,
when a» is decreased or increased and when H/h is large.

Acknowledgments. The authors are grateful to Olof Widlund for his endless
help and enlightening discussion of their work.
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F1G. 3. Checkerboard distribution of the coefficients in the unit square.

TABLE 4
Checkerboard distribution for a: (al,az). Estimated condition number and number of CG
iterations to obtain a relative preconditioned residual (||zx||/||f||) less than 10=° (in parentheses),
versus H/h and az. Case of n =128, b =1, and a1 = 0.01.

[H/h | 4 [ 8 [ 16 |
a2=1.c07 | 2.799 (8) | 4.492 (12) | 7.286 (15)
a2=1.c-06 | 2.409 (8) | 3.812 (11) | 6.208 (14)
a2=1.c-05 | 1.817 (7) | 2.651 (9) | 4.048 (11)
a2=1.c-04 | 1.794 (7) | 2.448 (8) | 3.229 (10)
a2=1.c-03 | 1.784 (7) | 2.419 (8) | 3.072 (9)
a2=1.e-02 | 1.764 (7) | 2.4 (8) | 3.247 (10)
a2=1.c01 | 1.772 (7) | 2.407 (8) | 3.103 (10)
a2=1.e+00 | 1.774 (7) | 2.458 (8) | 3.265 (10)
a2=1.e+01 | 1.774 (7) | 2.458 (8) | 3.265 (10)
a2=1.e+02 | 1.774 (7) | 2.458 (8) | 3.265 (10)
a2=1.c+03 | 1.774 (7) | 2.458 (8) | 3.265 (10)

Appendix. Proof of Lemma 5.3.

We will use the same argument as that for the stronger result contained in [37,
Lem. 4.4]. We will first recall some technical tools; they were originally developed for
the three dimensional case in [37], and then adapted to two dimensions in [33, Sect.
5.5].

We consider an arbitrary substructure Q;. We will first replace the H~'/2-norm
in W; by an equivalent one, by considering the supremum over a finite dimensional
space of H'/2. We define V;,(89;) ¢ H/2(8Q;) as

Vi (0€4) == Qn(0€%) + Br(0€%).

Here Qr(09;) is the space of all continuous piecewise linear functions and B, (9€);) a
space of bubble functions vanishing on the edges e € &, e C 9;:

Qn(0%) == {$ € CO(O%), ¢, € Pi(e),e C O, e € &4},
Bh(aﬂz) = {Qp € 00(802), ’(ﬁ|e = ae¢1¢2,e C GQi, e e c‘,’h,ae S R},

where @1 and ¢, are the nodal basis functions that span Py (e) on the edge e.

The space V},(09;) satisfies the following property; we refer to [37, Lem. 4.2] for
a proof.

LEMMA A.1. There exists a constant C, which depends only on the aspect ratio
of Q;, such that for each ¢ € Qp(0Q;) and ¥ € Bpy(09Y;), the following equivalence
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holds
(46) o+ Y100, < 18ll1,00, + 1¥ll100, < Cli¢+ Y10,

The following lemma introduces an equivalent norm in W; and can be proved
similarly to [37, Lem. 4.2].
LEMMA A.2. There exist constants, ¢ and C, such that, for all u € W;, we have

u u
¢ sup < 7¢) < ”u”fl;BQi < C sup ( 5¢)
¢V (001) ||¢||1 .89 2 #€Vy (000) ||¢’||1 199

We are now ready to prove Lemma 5.3. Consider a generic edge E;; € £n, with
j € Z;. Using Lemmas A.2 and A.1, we have

(47) ||wz'j||71~69i SC sup < ij7¢> + sup ( 1]7¢)
ek seQp(on) ol 1,07 vem, (oa) 111 1;00.

We then decompose v into the sum of terms v;; supported on individual edges E;; C
o9

(48) b= 1.

JEL;

Similarly, we decompose ¢ into the sum of contributions supported on individual
edges. Let x;; be a continuous piecewise linear function on 9f2; that vanishes outside
E;; and is identically one at every interior mesh point in E;;. We define

bij = XijP, J €L,

and the remainder ¢,,

(49) w = (b - z (]5”

JEL;

We remark that ¢,, is the sum of different contributions, one for each vertex of 01};,
and has support contained in the union of the two fine edges in &£, that end at that
vertex.

Local inverse estimates combined with interpolation arguments easily give

(50) 193511%,00, < CI¥IA s, -

Similar arguments give

(51) 16ullt o0, < O lidulBion, < Cllgulli oo,
Using [8, Lem. 3.3], we have,

(52) [PwllEe a0,y < CQ +log(H/R)) 1611350,
Combining (51) and (52), we find

(53) 1pwll} 50, < C(1+log(H/R)) 16113,50,-
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Using the inequality [|g||1;0; < C|lq|f? /2,60, Which is valid for discrete harmonic func-
tions, and the same argument as in [31, p. 172, Th. 3], we have,

(54) 635113 50, < CQA +log(H/h))?||6l13, 50, -
By using the splitting (49), we find

(Wijs0) = Y (wij, dik) + (wig, du)
(55) kEL;

= (wi, ¢ij) + (Wij, Pw)-
The first term on the right side of (55) can be bounded by means of (54)

(56) [(wi, ¢ij)| < C(1 + log(H/h)) (|6l 1,50,

wi“—%;agi-
The second term on the right side of (55) can be bounded using the following argu-

ment: For each ¢,, there is a unique '(/’;ij € B (09Q;) that vanishes outside E;j, such
that

/¢wds=/1zz’jdsa e €&, e C Ey.

Moreover, this mapping is continuous

~ 1. -~ . 1
104113,00, < C3 11600, < C7l1ullgon, < Clidull},ag, -

By means of this bound and (53), we finally obtain

[wiss pudl = |wis, Bi)| = [(wi, di3)] < Cllwill_y 0,90l 3;00,
(57) < O+ log(H/W) 2 |[will_y 50, 1¢ll3;00,-

Using (50), we find for the second term on the right hand side of (47)

[wig, P _ [(wis dig)| llwill - ;00 [19is]]4.00;
191l 1,00, 1¥ll1,00, ~ 191 1,00,
2 2 2
||wi||—l;89i ¢z’j|l;agi
(58) <C 2|¢|1 p” : < COllwill- 190, -
35 i

The proof is completed by combining (47), (49), (56), (57), and (58).
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