
Pointer Analysis, Conditional Soundness,
and Proving the Absence of Errors?

Christopher L. Conway1, Dennis Dams2, Kedar S. Namjoshi2, and
Clark Barrett1

1 New York University, Dept. of Computer Science
{cconway,barrett}@cs.nyu.edu

2 Bell Laboratories, Alcatel-Lucent
{dennis,kedar}@research.bell-labs.com

Abstract. It is well known that the use of points-to information can substantially improve the accu-
racy of a static program analysis. Commonly used algorithms for computing points-to information are
known to be sound only for memory-safe programs. Thus, it appears problematic to utilize points-to
information to verify the memory safety property without giving up soundness. We show that a sound
combination is possible, even if the points-to information is computed separately and only conditionally
sound. This result is based on a refined statement of the soundness conditions of points-to analyses and
a general mechanism for composing conditionally sound analyses.

1 Introduction

It is well known that information about pointer relationships is essential for effective analysis and optimiza-
tion of C programs [2, 18]. Such information can be provided by a variety of algorithms that compute an
approximation of the points-to relations of a program (e.g., [3, 27, 12]). For variables x and y, x points to y
if there is some execution of the program such that the value of x is either the address of y or, if x and y are
aggregate objects (such as arrays or structures), the value of an element of x is an address within the extent
of y.

A (may) points-to analysis is sound if the relation it computes over-approximates the true points-to
relation of the program. Typical analysis algorithms are known to be sound only for “well-behaved” programs,
i.e., programs with behavior that is well-defined by the C standard [22]. For instance, typical points-to analysis
algorithms consider the points-to sets of pointer values x and x+1 to be the same. This is justified if x+1
does not “overflow” the bounds of the object pointed to by x. However, if the expression does overflow (i.e.,
the program is not “well-behaved”), the object pointed to by x+1 is undefined.

In extending the Orion static analyzer [11] to verify memory safety, we found that performing the analysis
without access to points-to information resulted in an overwhelming number of false alarms. In principle,
a single, combined analysis can be defined that computes memory safety and points-to information simul-
taneously. Since the memory safety information being computed in one “half” is available to the points-to
“half,” the points-to information is kept sound even for ill-behaved executions. Conversely, the memory safety
component has access to up-to-date points-to information, enabling a higher precision analysis.

However, such a fine-grained combination of analyses may not be scalable. We would like to treat existing
scalable points-to analyses as plug-in components. Moreover, one may wish to perform the memory safety
analysis in a “bottom-up” fashion, computing a general summary for each function on any possible input—in
this case, separately computed points-to information helps limit the possible values of pointer parameters
and global variables.

These considerations lead to the central questions addressed in this paper: Is it possible to obtain a
sound combination of independent points-to and memory safety analyses, especially as the first obtains
sound results assuming memory safety? More generally, under what conditions can conditionally sound
analyses be combined? What guarantees can be made for the combination?

This paper makes several contributions:
? This is an expanded version of a paper presented at SAS 2008 [5].

int A[4], c;

void bad(int *p, int x, int y) {

L0: c = 0;

L1: p[4] = x;

L2: if(c!=0) {

L3: A[1003] = y;

L4: }

}

void ok(int *q, int n) {

L5: q[0] = n;

}

void main() {

ok(A,0);

bad(A,1,0);

}

(a)

V = {A, c, p, x, y, t1, t2}

Γ (v) =

(
4, if v = A

1, otherwise

ℓ0

ℓ1

ℓ2

ℓ3

ℓ4

c := 0

t1 := p + 4
*t1 := x

[c 6= 0]

[c = 0]

t2 := &A
t2 := t2 + 1003
*t2 := y

(b)

Fig. 1. An unsafe C program

– We formalize the notion of conditional soundness, show how to compose conditionally sound analyses,
and derive the conditional soundness guarantee of the composition. Although we describe conditional
soundness in the specific context of points-to analysis and a particular kind of memory safety, we believe
our framework can be used to refine the soundness results of a variety of static analyses, e.g., analyses
that are sound assuming sequential consistency or numerical analyses that are sound assuming the
absence of integer overflows. Conditional soundness can be formulated in terms of the (unconditional)
preservation of a class of temporal safety properties using Cousot and Cousot’s power construction [7–9].
Our formulation, while more specialized, is simpler (e.g., it is state-based rather than path-based) and
captures the behavior of several interesting analyses more directly.

– We show that a set of points-to analyses similar to and sharing the soundness properties of commonly-used
flow-sensitive and insensitive analyses—such as those of Emami, Ghiya, and Hendren [16]; Wilson and
Lam [28]; Andersen [3]; Steensgaard [27]; and Das [12]—provide results that are sound for any memory-
safe execution of a program. This statement is both stronger and more precise than the traditional
statement that such analyses are sound for “well-behaved” programs.

– This more precise characterization of a points-to analysis, along with the combination theorem for con-
ditional analyses, shows that the combination of an independent points-to analysis with a memory safety
analysis is conditionally sound. The soundness result guarantees that the absence of errors can be proved.
Conversely, for a program with memory errors, at least one representative error—but not necessarily all
errors—along any unsafe execution will be detected.

Motivating Example. Figure 1(a) is an example of a program which is not well-behaved: there is an off-by-
one error at label L1 and an off-by-one-thousand error at label L3 when c is not 0. Assume that the functions
ok and bad are analyzed in a bottom-up fashion, without reference to the actual parameters supplied in main.
Without any points-to information regarding q, the only safe assumption is that the expression q[0] at label
L5 can alias any location in memory—a conservative memory safety analysis would be forced to assume that
the behavior of the program is undefined from this point on. But this is not the case: the function ok is
memory-safe so long as q points to an array of at least one element. Points-to information is necessary to
obtain a precise memory safety analysis.

A typical points-to analysis (e.g., Andersen’s [3]) will determine that p and q both point to A and not
to c, n, x, or y. Using points-to information, a memory safety analysis can (correctly) infer that q[0] is an

2

in-bounds location at L5 and, thus, the execution of ok is well-defined. Further, it can (correctly) detect that
p[4] is out-of-bounds at L1 and emit a useful error report.

In many implementations p[4] will alias c at L1—so that c is set to 1, making L3 reachable—but p will
not point to c according to the points-to relation. Since c is initialized to 0 in bad and—according to the
points-to relation—no expression aliasing c is subsequently assigned to, the analysis is likely to (incorrectly)
infer that the error at L3 is unreachable. Thus, it may seem that relying on the points-to relation will lead a
static analyzer to miss real errors. Note, though, that the reachability of the error at L3 is due solely to the
unsafe assignment at L1: the points-to relation can be relied upon up to the first occurrence of a memory
safety error.

This line of reasoning is not specific to the example: as we will show, it applies to any conditionally sound
analysis, enabling such an analysis to detect at least one error along any erroneous execution.

2 Program Analysis and Conditional Soundness

To present program analysis in a formal setting, we use the framework of abstract interpretation [6]. A
full syntax of program statements is given in the next section. For now, we are concerned only with the
relationship between concrete and abstract interpretations. We omit any discussion of techniques (such as
widening and extrapolation) which serve to make program analyses finite and computable—we are concerned
solely with issues of soundness.

Let C be a distinguished set of concrete states. A domain (D, γ) is a pair, where D is a set of abstract
states and γ : D → 2C is a concretization function. When the meaning is clear, we overload D to refer
both to a domain and to its underlying set of states and use γD to refer to the concretization function. We
lift γD to sets of states: γD(D′) =

⋃
d∈D′ γD(d), where D′ ⊆ D. We say a set D′ ⊆ D over-approximates

C ′ ⊆ C iff γD(D′) ⊇ C ′. Similarly, a function fD : D → 2D over-approximates fC : C → 2C iff fD(d)
over-approximates fC(c) whenever c is in γD(d).

We define the soundness of a program interpretation in terms of a collecting semantics. Given a (concrete
or abstract) domain D, we will define a semantic operator J·K which maps a program P to a set JPK ⊆ D
of reachable states. The semantics JPK is defined inductively in terms of semantic interpretations over D:
a set I[P] ⊆ D of initial states and a transfer function F[P] : D → 2D. We lift F[P] to sets of states:
F[P](D′) =

⋃
d∈D′ F[P](d), where D′ ⊆ D.

An analysis A is represented as a tuple (D, I,F), where D is a domain and I and F are semantic
interpretations over D. We use DA, IA, and FA to denote the constituents of an analysis A and γA to
denote the concretization function of the domain DA.

Definition 1. Let A = (D, I,F) be an analysis. The k-reachability predicate RkA[P] for a program P w.r.t.
A holds if a state is reachable in A in exactly k steps. We define RkA[P] inductively as a subset of D:

R0
A[P] = I[P] RkA[P] = F[P](Rk−1

A [P]), k > 0

The semantics J·KA w.r.t. A maps a program P to a subset of D, the reachable states in P w.r.t. A:

JPKA =
⋃
k≥0

RkA[P]

To judge the soundness of an analysis, we need a concrete semantics against which it can be compared. The
concrete domain DC is given by the pair (C, γC), where γC is the trivial concretization function: γC(c) = {c}.
We assume that a concrete analysis C = (DC , IC ,FC) is given. The concrete analysis uniquely defines a
concrete semantics J·KC .

Definition 2. An analysis A is sound iff for every program P, JPKA over-approximates JPKC (i.e., γA(JPKA) ⊇
JPKC).

It is sufficient for A to have sound semantic interpretations.

3

Definition 3. Let ID be a semantic interpretation over a domain D. ID is sound iff for every program P,
ID [P] over-approximates IC [P]. FD is sound iff for every program P, FD [P] over-approximates FC [P].

Theorem 1. Let A be an analysis. If IA and FA are sound, then A is sound.

Proof. See Theorem 3 and Note 1, below. ut

Conditional Soundness. So far, we have defined a style of analysis which is unconditionally sound, mir-
roring the traditional approach to abstract interpretation. However, as we have noted, points-to analysis
is sound only under certain assumptions about the behavior of the program analyzed. To address this, we
introduce the notion of conditional soundness with respect to a predicate θ. An analysis will be θ-sound if
it over-approximates the concrete states of a program that are reachable via only θ-states. We first define a
semantics restricted to θ.

Definition 4. Let A = (D, I,F) be an analysis and θ a predicate on D (we view the predicate θ, equivalently,
as a subset of D). The θ-restricted k-reachability predicate RkA↓θ [P] for program P w.r.t. A holds if a state
is reachable in A in exactly k steps via only θ states. RkA↓θ [P] is defined inductively:

R0
A↓θ [P] = I[P] RkA↓θ [P] = F[P](θ ∩Rk−1

A ↓θ [P]), k > 0

The θ-restricted semantics J·KA↓θ w.r.t. A maps a program P to a subset of D, the θ-reachable states in P
w.r.t. A:

JPKA↓θ=
⋃
k≥0

RkA↓θ [P]

Note that RkA↓θ [P] may include non-θ states—neither I[P] nor the range of F[P] are restricted to θ—but
those states will not yield successors in Rk+1

A ↓θ [P]. The θ-restricted semantics give us a lower bound for the
approximation of a θ-sound analysis.

Definition 5. Let A be an analysis and θ a predicate on C. A is θ-sound iff for every program P, JPKA
over-approximates JPKC↓θ.

Note that an unconditionally sound analysis is also θ-sound for any θ. More generally, any θ-sound analysis
is also ϕ-sound, for any ϕ stronger than θ.

This notion of conditional soundness does not just give us a more precise statement of the behavior of
certain analyses—it provides us with a sufficient condition to show an analysis proves the absence of error
states.

Theorem 2. Let P be a program and A a θ-sound analysis. If there are no reachable non-θ states in P
w.r.t. A, then there are no reachable concrete non-θ states in P (i.e., if γA(JPKA) ⊆ θ, then JPKC ⊆ θ).

Proof. Since A is θ-sound, we know that JPKA over-approximates JPKC↓θ (i.e., γA(JPKA) ⊇ JPKC↓θ). By
assumption, γA(JPKA) ⊆ θ. Hence, JPKC↓θ⊆ θ. It suffices to show: if JPKC↓θ⊆ θ, then RkC↓θ [P] is equal to
RkC [P] for all k ≥ 0 (and, thus, JPKC↓θ= JPKC). We proceed by induction on k.

Assume k = 0. By definition, RkC [P] and RkC↓θ [P] both equal IC [P]. Thus, RkC [P] equals RkC↓θ [P].
Now, assume k > 0 and Rk−1

C [P] equals Rk−1
C ↓θ [P]. Since JPKC↓θ⊆ θ, we must have also Rk−1

C ↓θ [P] ⊆ θ.
Hence,

RkC↓θ [P] = FA[P](θ ∩Rk−1
C ↓θ [P])

= FA[P](Rk−1
C ↓θ [P])

= FA[P](Rk−1
C [P])

= RkC [P]

ut

4

It is sufficient for A to have a θ-sound transfer function.

Definition 6. Let FD be a transfer function over domain D. FD is θ-sound iff for any program P, FD[P](D′)
over-approximates FC [P](C ′) whenever D′ over-approximates C ′ and C ′ ⊆ θ.

Theorem 3. Let A be an analysis. If IA is sound and FA is θ-sound, then A is θ-sound.

Proof. Take a program P. We must show that, if c is in JPKC↓θ, it is also in γA(JPKA). By definition, if c is
in JPKC↓θ, then it is in some RkC↓θ [P]. Similarly, if c is in γA(JPKA), then c is in some γA(RkA[P]). Thus, it
suffices to show that RkA[P] over-approximates RkC↓θ [P] for all k ≥ 0. We proceed by induction on k.

Assume k = 0. By definition, R0
A[P] is IA[P] and R0

C↓θ [P] is IC [P]. Since IA is sound, IA[P] over-
approximates IC [P]. Hence, R0

A[P] over-approximates R0
C↓θ [P].

Now, assume k > 0 and Rk−1
A [P] over-approximates Rk−1

C ↓θ [P]. By definition,

RkA[P] = FA[P](Rk−1
A [P])

RkC↓θ [P] = FC [P](θ ∩Rk−1
C ↓θ [P])

Since FA is θ-sound, FA[P](A′) over-approximates FC [P](C ′) whenever A′ over-approximates C ′ and C ′ ⊆ θ.
Take Rk−1

A [P] for A′ and θ ∩ Rk−1
C ↓θ [P] for C ′. By assumption, Rk−1

A [P] over-approximates Rk−1
C ↓θ [P].

Hence, Rk−1
A [P] over-approximates θ ∩ Rk−1

C ↓θ [P]. By definition, θ ∩ Rk−1
C ↓θ [P] is a subset of θ. Thus,

RkA[P] over-approximates RkC↓θ [P]. ut

Note 1. Theorem 3 generalizes Theorem 1: If FA is unconditionally sound, then it is θ-sound for any θ.
Hence, if IA and FA are unconditionally sound, A is unconditionally sound.

In Section 4, we will show that points-to analysis is SafeDeref-sound, where SafeDeref is a predicate
that captures memory safety.

Parameterized Analysis. Having defined a precise notion of conditional soundness, we now consider how
the results of a θ-sound analysis can be used to refine a second analysis. Suppose that A is an analysis and
we have already computed the set of reachable states JPKA. We may wish to use the information present in
JPKA to refine a second analysis over a different domain B. For example, we could use the reduced product
construction [7] to form a new domain over a subset of DA ×B including only those states (a, b) where a is
in JPKA and the states a and b “agree” (e.g., γA(a) ∩ γB(d) 6= ∅).

Traditional methods for combining analyses take a “white box” approach—e.g., Cousot and Cousot [7]
assume that the state transformers are available and can be combined in a mechanical way; Lerner et al. [24]
assume that analyses can be run in parallel, one step at a time. In contrast, we will assume that any prior
analysis is a black box: we have access to its result (in the form of a set of reachable abstract states), its
domain (which allows us to interpret the result), and some (possibly conditional) soundness guarantee. This
naturally models the use of off-the-shelf program analyses to provide refinement advice.

We will define such a refinement in terms of a parameterized analysis which produces a new, refined
analysis from the results of a prior analysis. An analysis generator G̃ is a tuple (D,E, Ĩ , F̃) where: D and
E are domains (the input and output domains, respectively) and Ĩ and F̃ are parameterized interpretations
mapping a set of states D′ ⊆ D to semantic interpretations Ĩ 〈D′〉 and F̃〈D′〉 over E. We denote by G̃〈D′〉
the analysis over E defined by the parameterized interpretations on input D′: G̃〈D′〉 = (E, Ĩ 〈D′〉, F̃〈D′〉).
As one might expect, the soundness of G̃〈D′〉 depends on the input D′.

Definition 7. An analysis generator G̃ with input domain D is sound iff for every set of states D′ ⊆ D,
G̃〈D′〉 is θ-sound with θ = γD(D′).

Given an analysis generator, it is natural to consider the analysis formed by composing the generator
with an analysis over its input domain. If A is an analysis and G̃ is an analysis generator with input domain
DA (i.e., the input domain of G̃ is the underlying domain of A), the composed analysis G̃ ◦ A is defined
by providing the result of A as a parameter to G̃ (i.e., G̃ ◦ A = G̃〈JPKA〉). An important property of the
composed analysis is preservation of soundness.

5

n ∈ Z x, y ∈ Vars

L ∈ Lvals ::= x | *x
E ∈ Exprs ::= L | n | x⊕ y | x E y | &x
S ∈ Stmts ::= L := E | [E]

Fig. 2. Grammar for a minimal C-like language.

Theorem 4. If G̃ is sound and A is θ-sound, then the composed analysis G̃ ◦ A is θ-sound.

Proof. Let B be the output domain of G̃ and P a program. We must show that, if c is in JPKC↓θ, it is also
in γB(JPKeG◦A), which is equal to γB(JPKeG〈JPKA〉

).

By definition, if c is in JPKC↓θ, then it is in some RkC↓θ [P]. Hence, by the definitions of RkC↓θ and FC ,
there is some sequence c0, c1, . . . , ck of concrete states from JPKC↓θ such that:

– ck is equal to c;
– ci is in FC [P](ci−1), for each 0 < i ≤ k;
– c0 is in IC [P]; and
– each state c0, c1, . . . , ck−1 is in θ.

Since A is θ-sound, we know that JPKA over-approximates JPKC↓θ. Hence, each of the states c0, c1, . . . , ck
is in γA(JPKA) and, thus, each ci is in RiC↓γA(JPKA) [P], for 0 ≤ i ≤ k. Hence, each of the states c0, c1, . . . , ck
is in JPKC↓γA(JPKA). In particular, the state c (i.e., ck) is in JPKC↓γA(JPKA).

Since G̃ is sound, we know that JPKeG〈JPKA〉
over-approximates JPKC↓γA(JPKA). Hence, c is in γB(JPKeG〈JPKA〉

).

This shows θ-soundness for G̃ ◦ A. ut

In the remainder of this paper, we will apply Theorem 4 to the problem of verifying memory safety
using points-to information. In Section 3, we define the concrete semantics for a little language that captures
the pointer semantics of C. In Section 4, we define a memory safety property SafeDeref and a set of
SafeDeref-sound points-to analyses similar to the points-to analyses found in the literature. In Section 5,
we define a memory safety analysis parameterized by points-to information. These, together with Theorem 4,
allow us to prove the absence of memory safety errors.

Note that since the points-to analysis is SafeDeref-sound, we could in theory use it to prove the absence
of memory safety errors. However, the points-to domain does not track memory safety information with
adequate precision to detect errors without an impractical number of false alarms. The value of Theorem 4
is that it allows for the definition of a specialized memory safety analysis which uses the points-to analysis
to increase its precision while remaining SafeDeref-sound.

3 Concrete Semantics

To make precise statements about program analyses requires a concrete program semantics. We will define the
semantics of the little language presented in Fig. 2. The language eliminates all but those features of C that
are essential to the question at hand. The semantics of the language is chosen to model the requirements
of ANSI/ISO C [22] without making implementation-specific assumptions. Undefined or implementation-
defined behaviors are modeled with explicit nondeterminism. Note that an ANSI/ISO-compliant C compiler
is free to implement undefined behaviors in a specific, deterministic manner. By modeling undefined behaviors
using non-determinism, the soundness statements made about each analysis apply to any standard-compliant
compilation strategy.

6

The most important features of C that we exclude here are fixed-size integer types, narrowing casts,
dynamic memory allocation, and functions.3 We also ignore the “strict aliasing” rule [22, §6.5]. Each of these
can be handled, at the cost of a higher degree of complexity in our definitions.

The syntactic classes of variables, lvalues, expressions, and statements, are defined in Fig. 2. We use n
to represent an integer constant and x and y to represent arbitrary variables. We use ⊕ to represent an
arbitrary binary arithmetic operator and E to represent a relational operator. Pointer operations include
arithmetic, indirection (*), and address-of (&). Statements include assignments and tests ([E], where E is
an expression).

Variables in our language are viewed as arrays of memory cells. Each cell may hold either an unbounded
integer or a pointer value. The only type information present is the allocated size of each variable—the “type
system” merely maps variables to their sizes and provides no safety guarantees.

A program P is a tuple (V, Γ,L,S, τ, en), where: V ⊆ Vars is a finite set of program variables; Γ : V → N is
a typing environment mapping variables to their allocated sizes; L is a finite set of program points; S ⊆ Stmts
is a finite set of program statements whose variables are from V; τ ⊆ L×S ×L is a transition relation; and
en ∈ L is a distinguished entry point. In the following, we assume a fixed program P = (V, Γ,L,S, τ, en).

Example 1. Figure 1(b) gives a fragment of the program representation for the code in Fig. 1(a), correspond-
ing to the function bad . We have introduced temporaries t1 and t2 in order to simplify expression evaluation
and compressed multiple statements onto a single transition when they represent a single statement in the
source program.

In order to reason about points-to and memory safety analyses, we need a memory model on which to
base the concrete semantics. The unit of memory allocation is a home in the set H. Each home h represents
a contiguous block of memory cells, e.g., a statically declared array. A location h[i] represents the cell at
integer offset i in home h. The set of locations with homes from H is denoted L. The function size : H→ N
maps a home to its allocated size. When 0 ≤ i < size(h), location h[i] is in bounds; otherwise it is out of
bounds. Memory locations contain values from the set Vals = Z ∪ L. A memory state is a partial function
m : L → Vals. The set of all memory states is denoted M. The set of concrete states C is the set of pairs
(p,m) where p ∈ L represents the program position and m is a memory state.

An allocation for V is an injective function home : V → H such that size(home(x)) = Γ (x) for all
x ∈ V. Given such an allocation, the lvalue of x ∈ V is lval(x) = home(x)[0]. We write m(x) for m(lval(x))
and m[x 7→ v] for m[lval(x) 7→ v], where m is a memory state. We say a location h[i] is within a variable x
if h = home(x) and h[i] is in bounds.

Figure 3 defines the concrete interpretations E and post of, respectively, expressions and statements. Note
that both E and post result in sets of, respectively, values and concrete states—the set-based semantics is
needed as undefined operations may have a nondeterministic result. E returns the distinguished value ⊥ in
the case where an expression is not just ill-defined, but erroneous (e.g., reading an out-of-bounds memory
location)—in this case the next state can have any memory state at any program point.

The operator ⊕̃ is used to denote the semantic counterpart to the syntactic operator ⊕. The definition of
⊕̃ is as usual for integer values. If an integer j is added to (alt. subtracted from) a location h[i], where both
0 ≤ i ≤ size(h) and 0 ≤ i+ j ≤ size(h) (alt. 0 ≤ i− j ≤ size(h)), then the result is h[i+ j] (alt. h[i− j]). If
a location h[j] is subtracted from a location h′[i], where h = h′ and 0 ≤ i, j ≤ size(h), the result is i− j. In
all other cases, the result is undefined.

Note that arithmetic on pointer values is only defined for locations within (or one location beyond) a
single home. E.g., adding an offset to a location sufficient to create an out-of-bounds location does not
make the value point to a new home; subtracting locations from two different homes does not indicate the
“distance” between the homes.

The operator Ẽ is used to denote the semantic counterpart of a relational operator E. The definition of
Ẽ is as usual for integer values. If two locations h[i] and h[j] have the same home, then Ẽ is equal to the

3 The omission of dynamic allocation in the discussion of points-to analysis and memory safety may seem an over-
simplification. However, it is not essential to our purpose here. Points-to analyses typically handle dynamic allo-
cation by treating each allocation site as if it were the static declaration of a global array of unknown size.

7

E(m,n) = {n}

E(m, x) =

(
Z, if m(x) is undefined

{m(x)}, otherwise

E(m, *x) =

8><>:
⊥, if m(x) is undefined, not a location, or out of bounds

Z if m(m(x)) is undefined

{m(m(x))}, otherwise

E(m, x⊕ y) =

(
Z, if m(x) e⊕ m(y) is undefined

{m(x) e⊕ m(y)}, otherwise

E(m, &x) = {lval(x)}

E(m, x E y) =

(
{0, 1}, if m(x) eE m(y) is undefined

{m(x) eE m(y)}, otherwise

post(m, p, x := E) =

(
L ×M, if E(m,E) = ⊥
{(p,m[x 7→ v]) | v ∈ E(m,E)}, otherwise

post(m, p, *x := E) =

(
L ×M, if m(x) is undefined, not a location, or out of bounds; or if E(m,E) = ⊥
{(p,m[m(x) 7→ v]) | v ∈ E(m,E)}, otherwise.

post(m, p, [E]) =

(
∅, if E(m,E) = {0}
{(p,m)}, otherwise.

Fig. 3. The concrete interpretation.

integer comparison i Ẽ j. The value of Ẽ is otherwise undefined, with the following exception: equality (resp.
disequality) on two in-bounds locations with different homes or between an in-bounds location and 0 (the
null pointer constant) evaluates to False (resp. True).

We now define the concrete interpretation of a program.

Definition 8. The concrete semantics JPKC of a program P = (V, Γ,L,S, τ, en) is defined by the analysis
C = (DC , IC ,FC), where

IC [P] = {(en,m) | ∀l ∈ L. m(l) is not a location}

FC [P](p,m) =
⋃

(p,S,p′)∈τ

post(m, p′, S)

If (p, S, p′) is in τ and c′ ∈ post(m, p′, S), we say c′ is an S-successor of (p,m).

Example 2. Figure 4(a) gives a subset of the reachable concrete states of the program in Fig. 1(b). At `0, p
is A[0] (the base address of the array A), x is 1, and y is 0. At `1, due to the assignment to out-of-bounds
location A[4], the next state is undefined: every program point is reachable with any memory state.

Note 2. The following modifications would allow us to model other aspects of the C programming language.
To model dynamic memory allocation, we could add a component to the memory state to map locations
to their allocation status. To model fixed-size integers and narrowing casts, we would need to define scalar
values that span multiple locations (i.e., bytes), which require the modeling of alignment, padding, and byte
order. To model functions, we could add an explicit representation of the call stack and variable scope.
Handling strict aliasing would require more detailed type information, and would introduce more undefined
behaviors in the case where a location is accessed through an illegal “type pun.” This would correspondingly
weaken the soundness results below.

8

ℓ0 : {(p, A[0]), (x, 1), (y, 0)}

ℓ1 : {(p, A[0]), (x, 1), (y, 0), (c, 0)}

.

c := 0

t1 := p + 4
*t1 := x

(a)

ℓ0 : {(p, A)}

ℓ1 : {(p, A)}

ℓ2 : {(p, A), (t1, A)}

ℓ3 : {(p, A), (t1, A)} ℓ4 : {(p, A), (t1, A)}

ℓ4 : {(p, A), (t1, A), (t2, A)}

c := 0

t1 := p + 4
*t1 := x

[c 6= 0] [c = 0]

t2 := &A
t2 := t2 + 1003
*t2 := y

(b)

Fig. 4. Concrete and points-to semantics for the program in Fig. 1(b)

4 Pointer Analysis

The goal of pointer analysis is to compute an over-approximate points-to set for each variable in the program,
i.e., the set of homes “into” which a variable may point in some reachable state.

A points-to state is a relation between variables. We denote the set of points-to states by Pts. When
it is convenient, we treat a points-to state also as a relation between variables and memory locations: for
points-to state pts, variables x, y, and location h[i], we say (x, h[i]) is in pts when (x, y) is in pts and h[i] is
within y (i.e., h[i] is in bounds and h = home(y)). We write pts(x) for the points-to set of the variable x in
pts, i.e., the set of variables y (alt. locations l) such that (x, y) (alt. (x, l)) is in pts.

The concretization function γPts takes a points-to state to the set of concrete states where at most its
points-to relationships hold. Say that variable x points to y in memory state m if there exist locations l1, l2
such that l1 is within x, l2 is within y, and m(l1) = l2. Then m is in γPts(pts) iff for all x, y such that x
points to y in m, the pair (x, y) is in pts. Note that there may be other pairs in pts as well—the points-to
relation is over-approximate. Note also that only in-bounds location values must agree with the points-to
state; out-of-bounds locations are unconstrained.

Note 3. Since the set of variables is known a priori and fixed, we will assume for convenience that the
function home is a bijection. To extend our results to programs with dynamic allocation, we would have to
introduce an inverse map from homes to abstract variables, such that every allocated block of memory has
some representative in the domain of the points-to relation. For example, we may introduce a set of variables
mallocp, for p in L, such that any memory location allocated by a call to malloc at program point p is
within mallocp. In any case, we would like to maintain the property: if m(x) is an in-bounds location, then
m(x) is within some (perhaps abstract) variable y.

Figure 5 defines the interpretations EPts and postPts for a selection of, respectively, expressions and
statements in the points-to domain. The interpretations are chosen to match those used by common points-
to analyses. A key feature is the treatment of the indirection operator *, which assumes that its argument
is within bounds. Without this assumption, the interpretation would have to use the “top” points-to state
(i.e., all pairs of variables) for the result of any indirect assignment.

We lift Pts to the set L × Pts in the natural way.

9

EPts(pts, n) = ∅
EPts(pts, x) = pts(x)

EPts(pts, *x) = {z ∈ V | ∃y ∈ V : pts(x, y) ∧ pts(y, z)}
EPts(pts, x⊕ y) = pts(x) ∪ pts(y)

EPts(pts, &x) = {x}
EPts(pts, x E y) = ∅

postPts(pts, x := E) = pts ∪ {(x, y) | y ∈ EPts(pts, E)}

postPts(pts, *x := E) =
[

(x,y)∈pts

postPts(pts, y := E)

postPts(pts, [x E y]) = pts

Fig. 5. Abstract interpretation over points-to states.

Definition 9. A flow- and path-sensitive points-to analysis Pts is given by the tuple (Pts, IPts ,FPts), where

IPts [P] = {(en, ∅)}

FPts [P](p, pts) =
⋃

(p,S,p′)∈τ

(p′,postPts(pts, S))

Example 3. Figure 4(b) shows a subset of the reachable points-to states for the program in Fig. 1(b). At `0,
p points to A. The transition from `1 to `2 causes t1 to point to A as well. The presence of an out-of-bounds
array access has no effect on the points-to state: the analysis assumes that evaluating *t1 is safe.

Definition 10. Let SafeDeref be the predicate that holds in a concrete state (p,m) if, for every transition
(p, S, p′) in τ where S includes an expression of the form *x, m(x) is an in-bounds location.

To show that Pts is SafeDeref-sound, we must first show that the function EPts over-approximates
the locations given by the function E on concrete states in SafeDeref. We formalize this with the following
Lemma.

Lemma 1. For concrete state c = (p,m), points-to state pts, variable x, location l, and expression E: if (1)
SafeDeref(c) holds, (2) m is in γPts(pts), (3) there exists an edge (p, S, p′) in τ such that E appears in S,
(4) l is in E(m,E), and (5) l is within x, then x is in EPts(pts, E).

Proof. We proceed by cases over E.

– E = n. No l can satisfy (4). The property holds trivially.
– E = y. If m(y) is undefined, then E(m,E) = Z and no l can satisfy (4). Assume m(y) is defined. Then, by

definition, the only value in E(m,E) is m(y). Assume m(y) is a location within x. Since m is in γPts(pts),
(y, x) must be in pts. Hence, x is in E(pts, E).

– E = *y. Since c is a SafeDeref state, m(y) must be an in-bounds location l′. If m(l′) is undefined,
then E(m,E) = Z and no l can satisfy (4). Assume m(l′) is defined. Then, by definition, the only value
in E(m,E) is m(l′). Assume m(l′) is a location within x. Take z such that l′ is within z: such a z is
guaranteed to exist if home is a bijection (see Note 3). Since m is in γPts(pts), (y, z) and (z, x) must be
in pts. Hence, x is in EPts(pts, E).

– E = y ⊕ z. The only case where E(m,E) contains a location value is when ⊕ is +, one of the operands
is location, the other is an integer, and the result is well-defined. Assume, wlog, that m(y) = h[i] (with
0 ≤ i ≤ size(h)) and m(z) = j (with 0 ≤ i + j ≤ size(h)). By definition, the only value in E(m,E) is
h[i+ j]. Assume h[i+ j] is within x. Then h[i] is within x. Since m is in γPts(pts), x must be in pts(y).
Hence, x is in EPts(pts, E).

10

– E = &x. By definition, the only value in E(m,E) is lval(x), which is within x. By definition, x is in
EPts(pts, E).

– E = y E z. No l can satisfy (4). The property holds trivially.

ut

Theorem 5. The points-to analysis Pts is SafeDeref-sound.

Proof. By Theorem 3, it suffices to show that IPts is sound and FPts is SafeDeref-sound.
Take a program P = (V, Γ,L,S, τ, en). We must show: (1) IPts [P] over-approximates IC [P] and (2)

FPts [P](p, pts) over-approximates FC [P](p,m) whenever (p,m) is a SafeDeref state and m is in γPts(pts).

(1) Let (en,m) be an initial concrete state. By the definition of IC , m(l) is not a location for any l ∈ L. By
the definition of IPts , the only initial points-to state is (en, ∅). By the definition of γPts , m is in γPts(∅).
Hence, (en,m) is in γPts(IPts [P]). This shows soundness for IPts .

(2) Take concrete states c = (p,m), c′, points-to state pts, and statement S such that m is in γPts(pts),
SafeDeref(c) holds, and c′ is an S-successor of c. It suffices to show that c′ is in γPts(FPts [P](p, pts)).
We proceed by cases on S:

• S = x := E. Follows from Lemma 1.
• S = *x := E. It suffices to show that, if m(x) is within y, then pts(x, y). This follows immediately

from the definition of γPts .
• S = [E]. By definition of post and postPts , c = c′ and postPts(pts, S) = pts. Thus c′ is in
γPts(postPts(pts, S)).

This shows SafeDeref-soundness for FPts .

Hence, Pts is SafeDeref-sound. ut

We can extract more traditional flow-sensitive, global, and flow-insensitive pointer analyses from JPKPts

as follows.

– A flow-sensitive, program-point-sensitive (path-insensitive) analysis is derived by assigning to each pro-
gram point p the least points-to state (by subset inclusion) pts] such that, if (p, pts) is in JPKPts , then
pts ⊆ pts].

– A flow-sensitive, global (program-point-insensitive) analysis is derived by assigning to every program
point the least points-to state (by subset inclusion) pts] such that, if (p, pts) is in JPKPts for any program
point p, then pts ⊆ pts].

– A flow-insensitive analysis is derived by replacing τ in Definition 9 with the relation τ], where the edge
(p, S, q) is in τ] whenever some edge (t, S, u) is in τ , for any program points t and u. Intuitively, if a
statement occurs anywhere in the program, then it may occur between any two program points—the
interpretation ignores the control-flow structure of the program.

– Flow-insensitive, program-point-sensitive and flow-insensitive, global combinations can be defined as
above, substituting the flow-insensitive semantics for JPKPts .

Theorem 6. Each of the flow-, path-, and program-point-sensitive and insensitive variations of the points-to
analysis is SafeDeref-sound.

Proof. Take a program P and a points-to analysis Q from among the above. It is clear that, for any state
(p, pts) in JPKPts , there is a state (p, pts ′) in JPKQ such that pts ⊆ pts ′. Since γPts is monotonic, any concrete
state in γPts(JPKPts) is also in γPts(JPKQ). By Theorem 5, γPts(JPKPts) over-approximates JPKC↓SafeDeref.
Hence, the JPKQ over-approximates JPKC↓SafeDeref: Q is SafeDeref-sound. ut

11

Note 4. The flow-sensitive, program-point-sensitive analysis yields a points-to relation similar to that of
Emami et al. [16]. The flow-insensitive, global analysis procedure yields a points-to relation similar to that
of Andersen [3]. The Steensgaard [27] and Das [12] relations add additional approximation to the global
relation. We claim (but do not prove formally here) that these procedures approximate JPKPts and, thus,
are at least SafeDeref-sound.

By the definition of conditional soundness, it is possible some condition θ weaker than SafeDeref exists
such that some or all of the above analyses are θ-sound. It is our belief that this is not the case: no realistic
points-to analysis is θ-sound for any θ weaker than SafeDeref. A proof of this proposition is beyond the
scope of this paper.

In summary, we have shown that a set of points-to analyses which share the assumptions of widely used
analyses from the literature are sound for all memory-safe executions. This claim is both stronger and more
precise than any correctness claims the authors have encountered: our points-to analyses (and, by extension,
those cited above) compute a relation which is conservative not only for “well-behaved” (i.e., memory-safe)
programs, but for all well-behaved executions, even the well-behaved executions of ill-behaved programs

We have shown that, if we can prove the absence of non-SafeDeref states in JPKC , the points-to
analyses we have defined above will be sound. It remains to describe an analysis parameterized by points-to
information which can perform a precise memory safety analysis.

5 Checking Memory Safety

We wish to define an analysis procedure that will soundly prove the absence of non-SafeDeref states in
the concrete program. Note that the only attributes of a location value that are relevant to the property
SafeDeref are its offset and the size of its home; if we can precisely track these attributes, we can ignore the
home component of a location (i.e., which variable it is within) so long as we have access to over-approximate
points-to information.

Note 5. In our description of the analysis, we will omit the merging, widening, and covering operations
necessary to make the reachability computation tractable. In our implementation of a memory safety analysis
in Orion, we constrain integer values and pointer offsets using a relational abstract domain (e.g., convex
polyhedra [10]) and use merging and widening to efficiently over-approximate the semantics given below.

Our analysis will track abstract values from the set V̂als. An abstract value is either an integer or an
abstract location, a pair (i, n) representing a location at offset i in a home of size n. Each abstract value
v̂ represents a set of concrete values, according to the abstraction function α : Vals → V̂als. For integer
values, α is the identity (i.e., α(n) = n); for concrete location values, α preserves the offset and size (i.e.,
α(h[i]) = (i, size(h))). An abstract location (i, n) is in bounds if it represents only in bounds concrete
locations (i.e., 0 ≤ i < n); otherwise it is out of bounds. An abstract memory state is a partial function
b : L→ V̂als. We denote by B the set of abstract memory states.

The concretization function γB : B → 2C takes an abstract memory state b to the set of concrete memories
abstracted by b. A concrete memory m is in γB(b) iff for all l either m(l) and b(l) are both undefined or
α(m(l)) = b(l).

Figure 6 defines the interpretations EB and postB for, respectively, expressions and statements with
respect to B. Note that the interpretations rely on points-to information. In the limiting case, where no
points-to information is available (i.e., the points-to relation includes all pairs), the expression *x can take
the value of any location abstracted by b(x). As in the concrete interpretation, EB returns the value ⊥ in
the case where expression evaluation is (potentially) erroneous.

The operator ⊕̂ is used to denote the abstract counterpart to the syntactic operator ⊕. The definition of
⊕̂ is as usual for integer values. If an integer j is added to (resp. subtracted from) an abstract location (i,m),
where both 0 ≤ i ≤ m and 0 ≤ i+ j ≤ m (resp. 0 ≤ i− j ≤ m), the result is (i+ j,m) (resp. (i− j,m)). In
all other cases, the result is undefined.

12

EB(b, pts, n) = {n}

EB(b, pts, x) =

(
Z, if b(x) is undefined

{b(x)}, otherwise

EB(b, pts, *x) =

8><>:
⊥, if b(x) is undefined, not a location, or out of boundsdVals, if b(l) is undefined for some l in pts(x), where α(l) = b(x)

{b(l) | pts(x, l), α(l) = b(x)}, otherwise

EB(b, pts, x⊕ y) =

(
Z, if b(x) b⊕ b(y) is undefined

{b(x) b⊕ b(y)}, otherwise

EB(b, pts, &x) = {(0, size(home(x)))}

EB(b, pts, x E y) =

(
{0, 1}, if b(x) bEpts(x)∩pts(y) b(y) is undefined

b(x) bEpts(x)∩pts(y) b(y) otherwise

postB(b, pts, p, x := E) =

(
L ×B, if EB(b, pts, E) = ⊥
{(p, b[x 7→ v̂]) | v̂ ∈ EB(b, pts, E)], otherwise

postB(b, pts, p, *x := E) =

8>><>>:
L ×B, if b(x) is undefined, not a location, or out of bounds; or if

EB(b, pts, E) = ⊥
{(p, b[l 7→ v̂]) | pts(x, l), α(l) = b(x), v̂ ∈ EB(b, pts, E)},

otherwise

postB(b, pts, p, [E]) =

(
∅, if EB(b, pts, E) = {0}
{(p, b)}, otherwise.

Fig. 6. Abstract interpretation over B.

The operator ÊA is used to denote the abstract counterpart to the syntactic operator E, parameterized
by a points-to set A ⊆ V. The definition of ÊA is as usual for integer values. If two in-bounds abstract
location values (i,m) and (j, n) are compared for equality (resp. disequality) and either i 6= j, m 6= n, or
A = ∅, then the result is 0 (resp. 1). In all other cases, ÊA is undefined.

We lift B to the domain L ×B in the natural way.

Definition 11. The analysis generator B̃ maps a set of points-to states Q to the memory safety analysis
B̃〈Q〉 defined by the parameterized interpretations

ĨB〈Q〉[P] = {(en, b) | ∀l ∈ L : b(l) is undefined}

F̃B〈Q〉[P](p, b) =
⋃

(p,S,p′)∈τ

⋃
(p,pts)∈Q

postB(b, pts, p′, S)

Lemma 2. For concrete memory state m, points-to state pts, abstract memory state b, value v, and expres-
sion E: if (1) m is in γPts(pts) ∩ γB(b) and (2) v is in E(m,E), then α(v) = v̂ for some v̂ in EB(b, pts, E).

Proof. We proceed by cases on E.

– E = n. By definition, the only value in E(m,E) or EB(b, pts, E) is n and α(n) = n.
– E = x. Assume b(x) is undefined. Since m is in γB(b), m(x) must also be undefined. By definition,
E(m,E) = EB(b, pts, E) = Z.
Now, assume b(x) is defined. Since m is in γB(b), m(x) must also be defined and α(m(x)) = b(x). By
definition, the only value in E(m,E) is m(x) and the only value in EPts(b, pts, E) is b(x).

13

– E = *x. Assume, wlog, that m(x) is an in-bounds location l. Since m is in γB(b), b(x) = α(l). Since m
is in γPts(pts), l must be in pts(x).
If b(l′) is undefined for some l′ in pts(x) such that α(l′) = α(l), then EB(b, pts, E) = V̂als and the
property holds trivially. Assume b(l′) is defined for all such l′. In particular, b(l) is defined. Since m is
in γB(b), m(l) must also be defined and α(m(l)) = b(l). By definition, the only value in E(m,E) is m(l)
and, since l is in pts(x), b(l) is in EB(b, pts, E).

– E = x ⊕ y. If b(x) ⊕̂ b(y) is undefined, then EPts(b, pts, E) = Z. It suffices to show that there are no
location values in E(m,E). The only case where E(m,E) contains a location value is when ⊕ is +, one
of the operands is a location value, the other is an integer, and the result is well-defined. Assume, wlog,
that m(x) is an in-bounds location h[i] and m(y) is an integer j, with 0 ≤ i+ j ≤ size(h). By definition,
the only value in E(m,E) is h[i] ⊕̂ j = h[i+ j]. Since m is in γB(b), α(m(x)) = b(x) and α(m(y)) = b(y).
Hence, b(x) = (i, size(h)) and b(y) = j. But (i, size(h)) ⊕̂ j is well-defined, which contradicts the
assumption that b(x) ⊕̂ b(y) is undefined. Thus, there can be no location values in E(m,E).
Assume b(x) ⊕̂ b(y) is well-defined and both b(x) and b(y) are integers, say i and j. Since m is in
γB(b), m(x) must be i and m(y) must be j. By definition, the only values in E(m,E) and EB(b, pts, E),
respectively, are i ⊕̃ j and i ⊕̂ j. Since ⊕̃ and ⊕̂ are defined in the same way for integer operands,
α(i ⊕̃ j) = i ⊕̂ j.
Assume b(x) ⊕̂ b(y) is well-defined, one of b(x), b(y) is an abstract location (i, n) (with 0 ≤ i ≤ n), the
other an integer j (with 0 ≤ i + j ≤ n), and ⊕ is +. Since m is in γB(b), m(x) must be an location
h[i] with size(h) = n and m(y) must be j. By definition, the only values in E(m,E) and EB(b, pts, E),
respectively, are h[i+ j] and (i+ j, n), and α(h[i+ j]) = (i+ j, n).
The case where ⊕ is - and b(x), b(y) are abstract locations is similar.

– E = &x. By definition, the only values in E(m,E) and EB(b, pts, E), respectively, are lval(x) and
(0, size(home(x))). By definition, α(lval(x)) = α(home(x)[0]) = (0, size(home(x))).

– E = x E y. If b(x) Êpts(x)∩pts(y) b(y) is undefined, then the property holds trivially.
Assume b(x) Êpts(x)∩pts(y) b(y) is well-defined, and b(x), b(y) are both integers, say i and j. Since m is in
γB(b), m(x) must be i and m(y) must be j. By definition, the only values in E(m,E) and EB(b, pts, E),
respectively, are i Ẽ j and i Ê j. Since Ẽ and Ê are defined in the same way for integer operands,
α(i Ẽ j) = i Ê j.
Assume b(x) Êpts(x)∩pts(y) b(y) is well-defined, b(x) and b(y) are in-bounds abstract locations, say (i, n)
and (j, r), and E is ==. Since m is in γB(b), we have m(x) = h[i] (with size(h) = n) and m(y) = h′[j],
(with size(h′) = r). By definition, the only value in EB(b, pts, E) is 0 and: i 6= j, n 6= r, or pts(x)∩pts(y)
is empty. We must show that the only value in E(m,E) is 0: this will be the case when h[i] 6= h′[j]. If
i 6= j, this is immediate. If n 6= r, then size(h) 6= size(h′) and, thus, h 6= h′. If pts(x) ∩ pts(y) is empty,
then, since m is in γPts(pts), h 6= h′.
The case when Ê is != and b(x), b(y) are abstract locations is similar.

ut

Lemma 3. ĨB〈Q〉 is sound for every points-to state Q.

Proof. Let P be a program. We must show ĨB〈Q〉[P] over-approximates IC [P]. Take (p, b) in ĨB〈Q〉[P]. By
definition, b is undefined at all locations. Hence, by the definition of γB , every initial concrete state is in
γB(p, b). ut

Lemma 4. F̃B〈Q〉 is γPts(Q)-sound for every points-to state Q.

Proof. Let P be a program. We must show F̃B〈Q〉[P](p, b) over-approximates FC [P](p,m) whenever (p,m)
is in γPts(Q) and m is in γB(b).

Take concrete states c = (p,m), c′, abstract state a = (p, b), points-to state (p, pts), and statement S
such that c is in both γB(b) and γPts(pts) and c′ is an S-successor of c. It suffices to show that there is some
b′ in postB(b, pts, S) such that c′ is in γB(b′). We proceed by cases on S:

14

– S = x := E. Follows from Lemma 2.
– S = *x := E. It suffices to show that, if m(x) is an in-bounds location value l, then α(l) = b(x) and

pts(x, l). This follows immediately from the assumption that m is in both γB(b) and γPts(pts).
– S = [E]. Follows from Lemma 2.

ut

Theorem 7. The analysis generator B̃ is sound.

Proof. By Theorem 3, Lemma 3, and Lemma 4. ut

Corollary 1. If a points-to analysis Q is SafeDeref-sound, the composed memory safety analysis B̃ ◦ Q
is SafeDeref-sound.

Proof. By Theorem 7 and Theorem 4. ut

Combining Corollary 1 with Theorems 5 and 6, we can compose B̃ with any of the points-to analyses
described in Section 4 and the resulting analysis will be SafeDeref-sound. Recall from Theorem 2 that
SafeDeref-soundness guarantees the detection of error states. If any non-SafeDeref state exists in JPKC ,
then a non-SafeDeref state is represented by the composed semantics; if only SafeDeref states are
reachable in the composed analysis then no concrete non-SafeDeref state is reachable—the absence of
error states can be proved.

6 Related Work

Methods for combining analyses have been described in the abstract interpretation community, starting with
Cousot and Cousot [7]. The focus has been on exploiting mutual refinement to achieve the most precise
combined analyses, as in Gulwani and Tiwari [19] and Cousot et al. [9]. The power domain of Cousot and
Cousot [7, §10.2] provides a general model for analyses with conditional semantics. We believe our notion
of conditional soundness provides a simpler model which captures the behavior of a variety of interesting
analyses.

Pointer analysis for C programs has been an active area of research for decades [21, 16, 28, 3, 27, 17, 12, 20,
23]. The correctness arguments for points-to algorithms are typically stated informally—each of the analyses
has been developed for the purpose of program transformation and understanding, not for use in a sound
verification tool. Although Hind [21] proposes the use of pointer analysis in verification, the authors are not
aware of any prior work that formally addresses the soundness of verification using points-to information.

Adams et al. [1] explored the use of Das’ algorithm to prune the search space for a typestate checker and
to generate initial predicates for a software model checker. In both cases, the use of the points-to information
is essentially heuristic—the correctness of the overall approach does not depend on the points-to analysis
being sound.

Dor, Rodeh, and Sagiv [15] describe a variation on traditional points-to analyses intended to improve
precision for a sound, inter-procedural memory safety verifier. A proof of soundness is given in Dor’s the-
sis [14]. However, the proof is not explicit about the obligations of the points-to analysis. We provide a more
general framework for reasoning about verification using conditionally sound information.

Bruns and Chandra [4] provide a formal model for reasoning about pointer analysis based on transition
systems. The focus of their work is primarily complexity and precision, rather than soundness.

Dhurjati, Kowshik, and Adve [13] define a program transformation which preserves the soundness of a
flow-insensitive, equality-based points-to analysis (e.g., those of Steensgaard [27] and Lattner [23]) even for
programs with memory safety errors. The use of an equality-based analysis is necessary to achieve an efficient
implementation, but it limits the use of the technique in applications where a more precise analysis may be
necessary, e.g., in verification. The soundness results we describe here are equally applicable to flow-sensitive,
flow-insensitive, equality-based and subset-based pointer analyses.

15

Our abstraction for memory safety analysis is very similar to the formal models used in CCured [26] and
CSSV [15]. Miné [25] describes a combined analysis for embedded control systems which incorporates points-
to information. His analysis makes implementation-specific (i.e., unsound in general) assumptions about the
layout of memory.

7 Conclusion

This work grew out of a simple, but puzzling question: is it possible to utilize the results of an analysis
(points-to) whose soundness is dependent on a property (memory-safety) in a sound analysis for the same
property? There seemed to be a circularity that could make a sound combination impossible.

Studying this question, we were led to a more precise statement of the soundness properties of points-to
analysis and to the definition of conditional soundness. The final result shows that the combination is sound
enough to correctly prove the absence of errors, although it may not be strong enough to point out every
possible error.

We have concentrated here on points-to and memory safety analysis, but our conditional soundness
framework is by no means restricted to these domains. For example, some static analyses are sound only
assuming sequential consistency, that integer overflow does not occur, or that the program is free of floating
point exceptions. The soundness claims of such analyses could be refined using the methods we have described
in this paper.

Acknowledgments. This material is based upon work supported by the National Science Foundation under
Grant No. 0341685. Additional support was provided by NSF Grant No. 0644299.

References

1. S. Adams, T. Ball, M. Das, S. Lerner, S. K. Rajamani, M. Seigle, and W. Weimer. Speeding up dataflow analysis
using flow-insensitive pointer analysis. In Static Analysis Symposium, pages 230–246, Madrid, Spain, Sept. 2002.

2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-Wesley, 1988.
3. L. O. Andersen. Program Analysis and Specialization for the C Programming Language. PhD thesis, DIKU,

University of Copenhagen, May 1994.
4. G. Bruns and S. Chandra. Searching for points-to analysis. In Foundations of Software Engineering, pages 61–70,

Charleston, South Carolina, Nov. 2002.
5. C. L. Conway, D. Dams, K. S. Namjoshi, and C. Barrett. Points-to analysis, conditional soundness, and proving

the absence of errors. In Static Analysis Symposium, Valencia, Spain, July 2008.
6. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In Principles of Programming Languages, pages 238–252, Los Angeles,
California, 1977.

7. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Principles of Programming
Languages, pages 269–282, San Antonio, Texas, 1979.

8. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The ASTRÉE analyzer. In
European Symposium on Programming, pages 21–30, Edinburgh, Scotland, Apr. 2005.

9. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Combination of abstractions
in the ASTRÉE static analyzer. In Asian Computing Science Conference (ASIAN), Tokyo, Japan, Dec. 2006.

10. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In Principles
of Programming Languages, Tucson, Arizona, Jan. 1978.

11. D. Dams and K. S. Namjoshi. Orion: Building blocks for program analyzers. In Formal Methods for Components
and Objects, Amsterdam, The Netherlands, Nov. 2005.

12. M. Das. Unification-based pointer analysis with directional assignments. In Programming Language Design and
Implementation, pages 35–46, Vancouver, British Columbia, 2000.

13. D. Dhurjati, S. Kowshik, and V. Adve. SAFECode: enforcing alias analysis for weakly typed languages. In
Programming Language Design and Implementation, pages 144–157, Ottawa, Canada, June 2006.

14. N. Dor. Automatic Verification of Program Cleanness. PhD thesis, Tel Aviv University, Dec. 2003.

16

15. N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic tool for statically detecting all buffer overflows in
C. In Programming Language Design and Implementation, pages 155–167, San Diego, California, July 2003.

16. M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-to analysis in the presence of
function pointers. In Programming Language Design and Implementation, pages 242–256, June 1994.

17. J. S. Foster, M. Fähndrich, and A. Aiken. Flow-insensitive points-to analysis with term and set constraints.
Technical Report UCB/CSD-97-964, University of California, Berkeley, Aug. 1997.

18. R. Ghiya, D. M. Lavery, and D. C. Sehr. On the importance of points-to analysis and other memory disambigua-
tion methods for C programs. In Programming Language Design and Implementation, pages 47–58, Snowbird,
Utah, June 2001.

19. S. Gulwani and A. Tiwari. Combining abstract interpreters. In Programming Language Design and Implemen-
tation, Ottawa, Canada, June 2006.

20. N. Heintze and O. Tardieu. Demand-driven pointer analysis. In Programming Language Design and Implemen-
tation, pages 24–34, Snowbird, Utah, June 2001.

21. M. Hind. Pointer analysis: Haven’t we solved this problem yet? In Program Analysis for Software Tools and
Engineering, Snowbird, Utah, June 2001.

22. ISO Standard - Programming Languages - C, Dec. 1999. ISO/IEC 9899:1999.
23. C. Lattner. Macroscopic Data Structure Analysis and Optimization. PhD thesis, University of Illinois at Urbana-

Champaign, May 2005.
24. S. Lerner, D. Grove, and C. Chambers. Composing dataflow analyses and transformations. In Principles of

Programming Languages, pages 270–282, Portland, Oregon, 2002.
25. A. Miné. Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics. In

Languages, Compilers, and Tools for Embedded Systems, Ottawa, Canada, 2006.
26. G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe retrofitting of legacy code. In Principles of

Programming Languages, pages 128–139, Portland, Oregon, Jan. 2002.
27. B. Steensgaard. Points-to analysis in almost linear time. In Principles of Programming Languages, pages 32–41,

St. Petersburg Beach, Florida, Jan. 1996.
28. R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C programs. In Programming

Language Design and Implementation, pages 1–12, San Diego, California, June 1995.

17

