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(5.23) uses (5.17), which follows from the 1,2 block of (5.9), namely (4.8).
We now use a similar argument to simplify the quadratic term in (5.39).

Instead of (4.8), we have, from the 1,2 block of (5.40),

—QlA(@){F -2} Q2 = M {AY =V 1+ {AY =V}l = O([2 — 27 ?).
Instead of (5.17), we conclude that

[Fyy (Z2{AY =Y HAY =Y} + [E (2){T — 2" HAY =Y}y
= O(|z — " P|AY = Y7

Again using (5.40) to define AY — Y* in terms of the z and w components
of Z — Z*, we see that the right-hand side consists of two terms, of which
one can be absorbed into the first term of (5.41), and the other into the

second. We therefore see that, just as the quadratic form in (5.8) reduces

to that in (5.23), the quadratic form in (5.39) reduces to
4 h- [ M J;’iw:Al ] —I—%{f—:c*}TVAV{f—:L’*} (5.42)

T
where h = O(|Z — z*|?). The constraint (5.40) reduces to (4.17), i.e.

I?PltA“:AI ]

xZ xZ

— 0(]& — = |P). (5.43)

The optimality conditions for the quadratic program defined by (5.42)-
(5.43) are
0 0 —r A+ Aw — A
l 0w ] -k |: l T —z"
K 0 vec {Uy — Us,}

— 0l - "), (5.44)

By assumption, K* has full rank and (5.31) is positive definite, so

{[3 ﬁ*]{KWT]

K~ 0

is nonsingular. Therefore, using (4.18)—(4.19) and noting that |W — W*|
= O(||z — z*|), we see that the inverse of the coefficient matrix of (5.44)
is bounded for r near z*. The desired quadratic contraction is therefore
proved. |
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with the understanding that all ¥3; terms are omitted. The O(|z — z*||?)
term on the right-hand side is justified by (3.27) and (5.33).

The necessary condition for a pair AZ, AU to solve the quadratic pro-
gram defining a step of Iteration 3 is, in addition to the constraints (5.9)—
(5.10), that there exists a dual matrix AU such that

AU : Fy(Z) =Ly(Z,0)+ [Lz2(Z,U)AZ). (5.37)

where rows and columns of the coefficient matrix corresponding to Y3; have
been omitted because of (5.10). Noting that AZ = Z — Z and subtracting
(5.36) from (5.37) gives

[L22(Z,UNZ = ZY] - {U - U} : F2(2) = O(|z —2"|*),  (5.38)

where U = U + AU.
Equations (5.35),(5.38) state the first-order optimality conditions for
the quadratic program

min b {Z 2} + YLy Z,00{Z - ZH{Z - Z*}]  (5.39)

Z-7z*
subject to [Fy(2){Z — Z*}] = O(|z — =*||?) (5.40)

where the first term in (5.39) is an inner product, with h (which has the
same structure as Z) satisfying h = O(||z — z*|*). It is understood that
there are no Yj; terms in Z, 7Z*. Note that the Hessian and constraint
coefficients of this quadratic program are identical to those of (5.8)—-(5.9).
We shall now simplify this quadratic program, using an argument similar
to that which reduced (5.8)—(5.9) to (5.23)—(5.24). First consider the linear
term in (5.39). We have

s [ M+ Aw - )

h-{?—f*}:h-[ ]+¢ (5.41)

T—2x"
where 2 € R and 1 € R satisfy h = O(|Z — z*|?) and ¢ = O(]|Z — z*|*).
This equation holds because of the constraint (5.40), which defines the
Y and O elements of Z — Z* in terms of the z and w components, by
analogy with (4.8)—(4.10). Now consider the quadratic term in (5.39). The
argument that showed that the quadratic form in (5.8) reduces to that in
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We are now ready to prove the main convergence theorem.

Theorem 5.4 Suppose that K* has independent rows and that the reduced
Hessian (5.81) is positive definite. Then there exist constants € and C such
that, if |2 — a*| <€, then

[£— 2" < Clg - "

for both Iterations 8 and 4. Consequently, both iterations generate points T
which converge quadratically to the solution x*.

Proof: From Theorem 5.3, assuming that z is sufficiently close to z*, a
necessary condition for a pair 2*, U* to solve the nonlinear program (3.11)—
(3.12) (without the condition Y7; = 0 imposed), is that, in addition to (3.12),
the equation (5.32) holds. Theorem 3.1 shows that we can take the v+
component of Z* to satisfy |Y*| = O(|z — z*|) and |Y7}| = O(|z — z*|?).
Furthermore, we can expand Fina Taylor series just as in the proof of The-
orem 4.2, obtaining all of equations (4.13)—(4.16) exactly as before, the only
difference being that these equations are not square systems. Specifically,

(4.16), with its Y3; terms absorbed into the right-hand side, gives
[F2(Z0{Z - Z°}] = O(Jz — 2" |*). (5.35)
Now let us expand (5.32) in a Taylor series. We have
0=L(Z2*U) =L Z,U)+[Lyzx(Z, U 2" = Z} + Ly (Z,U){U* = U}]
+0(1Z = Z)* + |2 - Z"||U - U))

using the linearity of E(Z, U)in U. Note that the terms in square brackets,
although involving second-order differentiation, are summed over only one
argument and are therefore vectors of length n(n +1)/2 + m + 1 — ¢, the
number of variables in Z. This system of equations has a row and a column
corresponding to each element of Z = (x,Y,w,0). Let us discard the rows
corresponding to Yy, and absorb the columns corresponding to Y77 into the
O term, which is permissible since ¥ = 0, Y% = O(|z — z*||?). Using the
fact that I}ZU = —ﬁ’z, this gives

0=Ly(2,0) +[Lsa 2.ONZ" = 2}~ {U" = U} : Fo(Z) + O — 2" |P)
(5.36)
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system (5.28) are equivalent. Using (4.18)—(4.19), it follows that if |z — 2|
is sufficiently small, the columns of the linear system (5.32) are also inde-
pendent. (The fact that the columns of the latter system have more rows
than the columns of the former, because of the presence of the additional
variables Y71, does not affect the linear independence.) This rank condition
provides a constraint qualification guaranteeing the existence and unique-
ness of U*, satisfying (5.32), i.e.

~ ~

U Fy(Z*) =, (5.34)

where v is a vector with one nonzero element, namely 1, in the position
corresponding to the variable w. By definition, U satisfies

()

: Fy(Z) = v+ 0(12 - Z7)),

which has no equations corresponding to Yj;. Subtracting this equation
from the corresponding equations in (5.34), ignoring the Y7; equations in
(5.34), and noting that F is Lipschitz, gives

{U-U"}: Fo(2)=0(1Z - 2°)).

The independence of the columns of the coefficient matrix defining this
system then gives (5.33).
The proof of the final statement of the theorem is as follows. From

(5.30),
K{K*}"{vec Up,} = K*¢

and, from (5.15),
KKT{vec Un} = Ke,.

It follows as a consequence, using (4.19) and the fact that K* is full rank,
that
|Un = Uty = O(|z — =7]).

Combining this equation with (4.19) and (5.30) gives
KT {vec Uy} = 1 + O(|z — z*])

from which the result follows. |
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(5.20), {Az}IW*{Az} = U}, : M* for all {Az}, so it follows that
W™ 1s independent of the choice of basis (7.

4. The null space of K* is
{v:K"v =0}

1.e.

DA(z*)
al‘k

{v="_(v9 v1... vm)T s vl + Z vk{QI}T Q7 =0},
k=1

which 1s unchanged if )7 1s postmultiplied by an orthogonal matrix.

The previous theorem was concerned only with quantities involving z*
and F”. In order to prove convergence of Iterations 3 and 4, however, we
need to quantify the relationship between U and ﬁ*, the latter quantity
being the dual matrix associated with the solution of (3.11)—(3.12).

Theorem 5.3 Suppose K* has linearly independent rows and that T us
sufficiently close to x*. Consider the nonlinear program (8.11)-(3.12),
which has no constraint that Y1 = 0. A necessary condition for Z* =
(m*,?*,/\f,/\z) to solve (3.11)-(3.12) is that there exists an n by n sym-
metric matriz U* satisfying

L,(Z*,U") =0, (5.32)

i.e. (5.3)-(5.6) hold for Z = Z*, U = U*. Furthermore, U* is unique. Now
assume that the residual of (5.83)-(5.6) with Z = Z, U =U 1s O(|Z — Z*|),
as required by Iteration 3. Then

|U =071 =012 - 7)) (5.33)

Furthermore, such a matriz U is obtained by using the block structure (5.11)
and solving the least squares problem (5.15).

Proof: From Theorem 5.2, the independence of the rows of K* and the
independence of the columns of the coefficient matrix defining the linear
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Proof:

1. The rth singular value of K* can be written

min J{K” 3 {vec S},

where S is a t by t symmetric matrix. (The quantity (4.12) is zero in
the general case that K* has more columns than rows.) The quantity
being minimized is

= )Q1}2 )2,

({tr S}* + Z{S {QI}T
This minimum value is independent of the choice of basis @7, since
any rotation of the basis can be absorbed into §.

— l Uy U ]
{U U3
We claim that (5.28) is equivalent to the two conditions (5.29)—(5.30).
To see that (5.28) implies (5.29)—(5.30), observe, by analogy with
(5.3)—(5.7) and (3.15)—(3.21), that U* : F§ = 0 implies the diag-
onal elements of Uy, are zero, while U* : Fy (Z*) = 0 and U* :
Fy, (Z*) = 0, together with (3.1), imply respectively that the off-
diagonal elements of U}, and all elements of U7, are zero. The con-
ditions U* : E* = 1 and U* : FX(Z*) = 0 then reduce to (5.30).
Conversely, if (5.29)-(5.30) hold, it is easily verified that (5.28) holds.
The linear independence of the columns of {K*}?, equivalently the

2. Let

columns of the coefficient matrix of the linear system (5.28), provides
a constraint qualification guaranteeing the existence and uniqueness

of U*.

3. Let M* be defined by (5.25) with Z, A, Q replaced respectively by z*,
A", Q*. (This is equivalent to (5.18) in this case since A\j =--- = A}.)
When @7 is postmultiplied by a ¢ by ¢ orthogonal matrix P, it has the
following effect: the first Column of K* is unchanged and the others
are replaced by vec PTQ* oAz QlP the matrix M™ is replaced by

PTM*P; the matrix U}, is 1ep1aced by PTU; P. By analogy with
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Theorem 5.2

. Consider the r by (m+1) matriz K*, defined by (4.11), where r = t(t+1)/2.
Then the rth singular value of K* does not depend on the choice of basis

Q.

. Suppose that the rth singular value of K* is nonzero, t.e. K* has linearly

independent rows. Consider the nonlinear program (8.23)-(8.25), noting

that the latter constraint removes Y11 from the variable set. Let
L(Z,U)=w-U:F(2).

A necessary condition for Z* = (x*,0, A7, A}) to solve (3.28)-(5.25) is that

there exists an n by n symmetric matriz U*, satisfying

Ly,(Z",U")=0. (5.28)
Furthermore, U™ 1s unique, with
* Ul*l 0 ¢
o[t 0) -

where the t by t block U}, satisfies

{K*}Y {vec Uy} = ;. (5.30)
. Define W* to be the m by m symmetric matriz with elements
Wy = Us : G

where G** is the t by t symmetric matriz with elements

pP2AY) L OA(Y) L o
D202, Qr +2{Q;} o Qi {NT — A3 HQ3Y

Then W™ is independent of the choice of basis Q).

dA(z*)

*kl *
G - Ql 8$1

Q1.

. The null space of K* 1s independent of the choice of basis Q5. Consequently,
if N* 18 a matriz with orthonormal columns spanning the null space of K*,
the eigenvalues of the reduced Hessian matrix

{N*}T[ 8 V[(; ]N* (5.31)

are independent of the choice of bases Q5, N*. (The matriz in the center
of this expression has dimension m+1 by m+1.)

23



and

Wk[ = (711 . ékl. (527)

The use of W instead of W does not affect the convergence rate of Iteration
4, but the advantage of the latter formula is that it leads to the following
observation, due to M.K.H. Fan[1]:

Theorem 5.1 Suppose A s an affine function, i.e. Ay, = 0. Then if Un
18 positive semi-definite, W is also positive semi-definite, regardless of the
magnitude of T — x*.

Proof: Since A, = 0, it is clear that, for any choice of Az, M is pos-
itive semi-definite. Since Uj; is positive semi-definite, the inner product
U1 © M i1s nonnegative for all Az, which is equivalent to the condition

{Az}TW{Az} > 0 for all Az. |

Clearly, the same result holds if [A.,(Z)AzAz] is positive semi-definite
for all Az. Furthermore, if ¥ is close enough to z*, and W is _positive
definite, then W is positive definite. However, even if A is affine, W is not
positive semi- definite in genelal For example suppose n = 3, t = 2, and
Q = I. The condition that M is positive semi-definite then reduces to the
condition Y113y223 > Viys, regardless of A,. Choosing A= Diag(2,1,0) gives

Y113 = 17 Y123 = 7213 = 1-5, Y223 = 2.

so that M is indefinite. Then ﬁn can be chosen positive semi-definite such
that (5.20) is negative. However, substituting 2/(7\1 — 7\3) for 7;js results in
the matrices M and VT/, which are positive semi-definite.

The positive semi-definite condition on U11 is a natural one, because, as
indicated by the next two theorems, Uy is an approximation to the matrix
V* given in (3.4). Specifically, note that equation (5.30) defining U}, in
the following theorem is identical to equation (3.4) defining V*. There is
no condition on the definiteness of Uy}, because in the formulation of the
nonlinear program (3.23)—(3.24) we assumed that the optimal multiplicity
t 1s known; consequently, indefiniteness of U, indicates that t was chosen
incorrectly and hence that x* does not minimize ¢.
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Again, the case t = 1 is instructive: then, since Un = 1, G* is the scalar
quantity (1.4) (with 7 = 1), i.e. the second partial derivative of ¢ at © = Z,
and W is the Hessian matrix of ¢ at x = .

Therefore, Iteration 3, with U satisfying (5.11), reduces to:

Iteration 4. Given an initial value Z:
1. Define A, Q by (1.1)~(1.2).
2. Define Uy, by any ¢ by ¢ symmetric matrix such that (5.14) holds.

3. Define W by (5.19)—(5.22). Solve the following quadratic program:

min  Aw+ HAZY'W{Az} (5.23)
subject to I?[ i(:: ] =b (5.24)

where the latter constraint is defined by (4.6)—(4.7). Set T = z 4+ Ax.
4. Replace z by T and go to Step 1.

In the case t = 1, we see from (5.16) that (5.23)—(5.24) reduces to the
ordinary Newton iteration

min  [¢;(2)Az] + 1[¢ze(T)AzAz].

Az

Iteration 4 is the method given by [11], with two exceptions: (i) [11] ad-
dresses a slightly different problem, namely minimizing max(A;(z),—A.(2)),
with A assumed to be an affine matrix function; (ii) the method of [11] sub-
stitutes the quantities 2/{;\1 - /A\s} for 7;js, dropping the last term on the
right-hand side of (5.19). With this simplification, the corresponding for-
mulas for (5.18), (5.22) can be written conveniently using matrix notation
as

M = Q] [Aee(3)AxA2] Q1 + 2Q7 [4.(2)A2] Q2 D71 Q] [Au(3)A2] Q1 (5.25)
with D = AT — Ay,

A(@) 5
kal

Qs +207 ()Qz 1@5821—?@1 (5.26)

Qla
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But since AY must satisfy the constraint (5.9), whose 1,2 block is (4.8),
we see that

[Fyy(Z)AY AY)yy = —[Fay (Z2)AzAY]y,. (5.17)
We therefore have
[Fug(2)AZAZy = [Foo(Z)AaAz)iy + [Foy (Z2)AxAY )1
—I—[Fyz(Z)AYAJB]n + [Fyy(Z)A.rAY]H
= —OQ[4u:(2)AzAZ]Q1 + {AY 11207 [A:(2)Az]Qy
‘|‘@ﬂ (T )Az]QﬂAY}m-

Let us denote the right-hand side of this equation by —¢ﬁ; then we see that,
under the constraints (5.9)—(5.10),

[L;2(Z,UNAZAZ] = Uy, : M.
Using (4.8) we see that the elements of the ¢ X ¢ matrix M are given by
My = 31 [Aee(@)A2A2)G + Y 7iisd! [AeA2]G, ) [AcA2]g,  (5.18)
s=t+1
where 1 <:<t,1 <5 <tand
1 1 2

ijs = ==+t == = == + O(|]z — z7|). 5.19
[ vy wk vy wid s wh LAt VERCED)

Writing out the double sums in the square brackets explicitly we see that,
under the constraints (5.9)—(5.10),

[Ly7(2,0)AZAZ] = Uyy : M = {Az}TW{Az} (5.20)
where W is an m by m symmetric matrix whose k,[ element satisfies
Wi = Uy : GY (5.21)
with G* defined to be the ¢ by t symmetric matrix with elements

(9Af
~T
QZa

. 8A g O0A(Z
Z Viis4; ! ( ) qs q; a(l)qs (522)

s=t+1

{G"}y =
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As we shall see in Theorem 5.3 below, this can be achieved by solving the
least squares problem

min [ K7 {vec Uy} — e1]. (5.15)
U1

The constraints (5.9)—(5.10) are identical to the condition in Step 2 of
Iteration 1, the only difference being that the system of linear equations is
underdetermined rather than square. The same argument given following
Iteration 1 therefore shows that (5.9)—(5.10) is equivalent to the constraint
(4.5) on Az, Aw together with (4.8),(4.10) defining {AY }12, {AY }2s.

It is instructive to consider the special case ¢t = 1 at this point: in
this case the max eigenvalue function ¢(x) is differentiable at x*. Then @1
consists of a single column ¢, ﬁn 1s a scalar which can be taken to be the
number 1, (5.13) states that the gradient of ¢ at = 7 is O(||z — z*|), and
the constraint (4.5) states that

Aw = [¢p,Ax]. (5.16)

Now let us consider the quadratic objective function (5.8). The linear
term may be replaced by Aw, since the rest of this term is fixed by the con-
straint (5.9). To evaluate the quadratic term in (5.8), we need to calculate
the second derivatives of F. Clearly, all terms involving w or © are zero.
Differentiating (3.13)—(3.14) we obtain

[Foo(Z2)AzAz] = —Q7[Apa(Z)AzAz]Q;
[Fer(Z2)AzAY] = [Fyo(2)AY Ax]

= {AY}QT[4.(3)A2]Q — QT[A(2)Ax]Q{AY };
[Fyy(Z)AYAY] = AY{A{AY} — {AY}A} — {A{AY} — {AY}A}AY.

Since U satisfies (5.11), we need only the 1,1 block of each of these terms.
Using (5.10) and (3.17), we obtain

~

[Foe 2)AxAz]n = —QF [Aeu(B)AzAL]Qy;

[Foy (2)AzAY ] = {AY}Q7[4.(2)A2]Qr + Q1 [4.(2)Az]Q2{ AY };
[Fyy(Z2)AYAY] = {AY haof—A{AYH, + {AY}A ) +
{A{AY }1o — {AY } A H{AY
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Tteration 3. Given an initial value z:
1. Define A, Q by (1.1)—~(1.2), and F by (3.9). Let 7 = {i\,O,Xl’KQ}.

2. Define U to be any n X n symmetric matrix such that the norm of
the residual of equations (5.3),(5.7),(5.5),(5.6), with Z = Z, U = U,
is O(|Z — Z7|).

3. Solve the quadratic program

min [LAZ,U)AZ) + Lyz(Z,U0)AZAZ] (5.8)
subject to [Fy(Z)AZ] = —F(Z) (5.9)

with the restriction also that
{AY}1 = 0. (5.10)
Set Z =2 + AZ.
4. Replace Z by T, the z component of Z. Go to Step 1.

Like Iteration 1, Iteration 3 can be substantially simplified using the
structure of the problem. We begin with a closer look at the dual matrix.

/\_ (711 0
U_[ 0 0]. (5.11)

Suppose we choose

and consider (5.3)—(5.6) with Z = 2, U = U. We see then that, for U = (7,
(3.16) implies (5.6) and (3.21) implies (5.4). In order to satisfy the condition
in Step 2, then, we see from (3.15) and (3.20) that we need only ensure that

tr Uy =14 0(|z — 27| (5.12)
and DA(F)
U : OF axZ 0, = 0|z — z*|)), 1<k<m. (5.13)

This is a system of m + 1 equations in ﬁt;—ll unknowns, which can also be
written

K™{vec Up} = €1 + O(|z — z7). (5.14)
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where U 1s an n xn symmetric matrix of Lagrange multipliers corresponding
to the n X n symmetric matrix constraint (3.12). The matrix U is called
the dual matriz since its components are dual variables. The Frobenius
inner product A : B was defined at the end of Section 2. Assuming a
full rank condition to be discussed in detail later, the first-order necessary
conditions for Z to minimize (3.11) subject to (3.12) are that, in addition
to the satisfaction of (3.12) by Z, there exists U satisfying

L,(zZ,U)=0, (5.2)
l.e. ~
U:F(Z)=0, (5.3)
U:Fy(2Z)=0, 5.4
U:F,=1, (5.5)
and ~
U:Fo=0. (5.6)

~

Here (5.3), for example, is understood to mean U : [F(Z)Az] = 0 for all
Az, ie. U : %k@ =0,1 <k <m. A pair Z,U which satisfies conditions
(5.3)—(5.6) is denoted AR
In the following Newton iteration we shall, as in the previous section,
impose the additional condition that {AY}1; = 0, and we shall therefore
also relaz the corresponding dual condition U : ﬁ{y“}(Z) = 0, replacing
(5.4) by ~ ~
U:Fy,y(Z)=0, U: Fy,y(Z)=0. (5.7)

Each step of the iteration requires a dual matrix estimate (7, which is
necessary to define the Lagrangian function. It is important to note that
a dual matrix estimate from the previous step of the iteration cannot be
used, since the function F changes from one iteration to the next, with the
basis Q, which defines F', not converging in general.
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all of the derivatives being evaluated at Z, the appearance of O(|z — z*||2)
instead of O(|Z — Z*|*) on the right-hand side being justified by (3.27).

By Theorem 3.1, the F}y,,; term on the left-hand side can be absorbed into

the right-hand side, reducing (4.16) to a linear system of nlntl) equations in

2
w variables. By precisely the argument which showed the equivalence

of (4.1)-(4.2) with (4.5),(4.8),(4.10), this system can be reduced to ]

2
. - H(t41
equations in % unknowns, namely

K

T—a*

”{AltA“_AT]=owf—xw%. (4.17)

The proof is then complete if we can assert that the norm of the inverse of
K is bounded for ¥ in a neighborhood of #*. Theorem 3.1 shows that there

is an orthonormal basis of eigenvectors for A(z*), namely Q* = @ey*, for

which
1@ — @ =10"(Q - Q)| =I—¢"
Using this choice of @Q* in (4.11), we have

= 0(IY"]) = O(Jz — 2"]). (4.18)

IE - K = O(z —2]). (4.19)

Since K* is nonsingular by assumption, and this nonsingularity is indepen-
dent of the basis choice, the boundedness of the inverse of K follows from
the standard Banach lemma. |

5 The General Case

In this section we assume that w < m + 1. The von Neumann-Wigner

argument discussed earlier shows that the opposite inequality can hold only
nongenerically. Equality can be expected to hold only occasionally since
relatively few of the integers have the form w In the general case, the
constraints (3.12) are not enough to define z* locally, so minimization of
(3.11) must also be considered.

Define the Lagrangian function for (3.11)—(3.12) by

LZU)=w—-U:F(2) (5.1)
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(see the discussion at the end of Section 2). This quantity is not changed
if ()7 is postmultiplied by an orthogonal matrix. |

Using this result, we can speak unambiguously about whether or not
K* is singular. The convergence result may now be stated.

Theorem 4.2 Suppose K* is nonsingular. Then there exist constants e
and C such that, iof |T — 2*| <€, then

|z —2"] < Clz — 27"

Consequently, Iteration 1, equivalently Iteration 2, generates points T which
converge quadratically to the solution x*.

Proof: That Iterations 1 and 2 generate the same point z follows from
the equivalence of (4.1)—-(4.2) with (4.5), (4.8),(4.10). Expanding F in a
Taylor series about Z, using the point Z* whose existence is guaranteed by
Theorem 3.1, gives

0=F(Z*)=F(Z)+ |FA2){Z" — Z})+ O(|Z — Z*|*). (4.13)
By definition of Iteration 1, we also have

0=F(2Z)+ [Fx(2){Z — Z}], (4.14)

noting that the Y;; component of Z is zero. The difference of these two
equations gives

[F2(ZNZ ~ 2} = 012 - Z°|). (4.15)

Some comments here will be helpful: as usual, the proof of convergence
of Newton’s method involves three points: the current iterate, the new
iterate, and the solution point. Here, these are respectively 2, 7 and Z*,
the subtlety being that Z* is the solution to ﬁ’(Z) = 0, an equation whose
definition depends on Z. Equation (4.15) states that

[Fiz — 2"} +
[Fr {-Yi} + [Fa {H{AY Jo = Y + [Fra {H{AY Jo2 — Y33} +
[FL{M + Aw — X + [FofAy + AO — A3} = O(|F — «7[?),  (4.16)
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The off-diagonal equations of this symmetric system can be solved for
{AY };; in a manner similar to equation (4.9), while the diagonal equa-
tions, which vanish in the last two terms, can be solved for AG.

In fact, though, we see that each step of Iteration 1 actually requires
solving only one linear system for Aw and Az, namely (4.5), a system of
w linear equations in m + 1 variables and therefore square by assump-
tion. The variables AY and AO are not required to continue with the next
iteration; their only purpose is their use in the problem formulation and

convergence analysis. [teration 1 is therefore equivalent to:

Tteration 2. Given an initial value z:

1. Define A, Q by (1.1)(1.2).

2. Solve the linear system I?[ Aw = b, defined in (4.6)—(4.7), for Aw,

Az ]
Az. Set T =7 + Az.
3. Replace = by 7, and go to Step 1.
Let us now analyze the rate of convergence of Iteration 1, equivalently
Iteration 2. We first need:
Theorem 4.1 Define

DA(z" OA(z"
K* = [vecf —vec( IT 6(11 )QI) —VGC( IT ai )QI)] (4'11)

Then the smallest singular value of K* 1s independent of the choice of basis

Q1.

Proof: The freedom in Q7 is that it may be postmultiplied by any ¢ by
t orthogonal matrix. The smallest singular value of K* is, by definition,

. | Aw ‘
p T, 1B [ A ] I (4.12)
The vector norm being minimized is in fact
|Aw I —{Q;}T[Au(2")Az]Q} |1k

14



situation is not unusual; see [5,15]. The linear system (4.1) is equivalent to

[FL(Z2)Az] + [Fy(Z2)AY] + [F(Z)Aw] + [Fo(Z2)AB) = —F(Z).  (4.3)

Because of the assumption that t(tg'l) = m + 1, together with the fact that
Y11 is constrained to be zero, this is a system of MRQ——HZ equations in the same
number of variables. Examining (3.15)—(3.21), we see that it separates very
conveniently. Imposing the condition {AY};; = 0, the 1,1 block of (4.3)

reduces to the t by ¢ symmetric matrix equation
Aw I — Qf[A(2)Az]Qr = Ay — A L. (4.4)

Let us denote this system of linear equations by

- Aw 7
A[ A ] _3 (4.5)
where
K= [vec I —vec (@{OA(r)@l) <. T VEC (@{OA(r)@l)] (4.6)
8.171 81:m
and R R N
b=vec (Ay — \I). (4.7)

Note that K has dimension t(t +
assumptions of this section. (The operator “vec” was defined at the end of
Section 2.)

The 1,2 block of (4.3) is the ¢ by n — t matrix equation

1)/2 by m + 1, i.e. it is square under the

— QT [A:(2)A2]Qr — Mi{AY }1o + {AY }1pAy = 0 (4.8)
which can be solved for {AY }1, in terms of Az by
4 [A:(2)Az]g;

Ay, = = , 4.9
Yij /\j—/\z’ ( )

for 1 <1 <t t < j < n;the denominator is bounded away from zero for z
in a small enough neighborhood of z*. The 2,1 block of (4.3) contains the
same information as the 1,2 block. The 2,2 block of (4.3) is

AO — QT[A(2)AZ]Qy — A {AY }yy + {AY }35A, = 0. (4.10)

13



from (3.11)—(3.12) makes (3.12) infeasible in general. Ideally, we would like
to work with the function £, but @ is not known. We shall see that
the solution to these difficulties is to work with a different function F' at
each step of the iteration, removing Yj; from each linearization step, but
including Y7; in the convergence analysis of this procedure.

An immediate consequence of Theorem 3.1 which we shall need later is

1Z = Z*| = O(lz - 7|, (3.27)

using (3.18) and the Lipschitz continuity of the eigenvalues.

The rest of the paper is organized as follows. In the next section, we
analyze the special case ﬁt—;—ll = m + 1, when the dimension of the variable
space matches the number of conditions imposed by the multiple eigenvalue,
and hence quadratic convergence to a local solution of (1.5) can be achieved
by a method which only uses first derivative information. In the subsequent
section, we consider the general case, where second derivative information
18 necessary.

4 A Special Case

In this section we assume ﬁt;—ll = m + 1, where t, as before, is the multi-
plicity of Aj. Counsider the following iteration.

Iteration 1. Given an initial value Z:
1. Define A, Q by (1.1)~(1.2), and F by (3.9). Let Z = {Z,0, A, A,}.
2. Solve the n by n symmetric matrix equation
[Fy(Z)AZ) = —F(Z) (4.1)
for AZ, imposing also the condition
{AY'}1 = 0. (4.2)
Set Z =2 + AZ.
3. Replace Z by T, the z component of Z. Go to Step 1.

Iteration 1 consists of a Newton iteration applied to a varying function,
since the function which is differentiated, F', changes at each step. Such a

12



called B there is not bounded. The statement should instead have been
made that the methods essentially result from applying Newton’s method
to the function (3.12) (in the inverse eigenvalue context w and O are fixed);
in other words, the ¢ x ¢t block of equations corresponding to the multiple
eigenvalue cannot simply be analyzed separately from the other equations.
However, although this motivational attempt was misguided, the methods
themselves are correct as given in [4] and [11], and the convergence analysis
in [4] is also correct.

But now a second key point must be emphasized. Although the Yi;
variables are redundant in (3.23)—(3.24), they are not redundant in (3.11)-
(3.12) if T # 2*; on the contrary, the freedom in Y11 is necessary to ensure
that a feasible solution to F(Z) = 0 exists in general. Clearly, the closer
is to z*, the closer the Yj; variables come to being redundant; this obser-
vation is quantified by the following theorem, which follows directly from
[4], Corollary 3.1 and subsequent remarks.

Theorem 3.1 There exist € > 0, C < oo such that, if |2 — z*| < e, then
F(Z)=0 has a solution Z* = {z*,Y*, A}, A3} with

Y7 < Clz — 27|
and with the leading t by t block of v+ satisfying
Y5l < ¢z — 2|

Here Y™ and Z* are so denoted because, unlike x*, they depend on the choice
of function F.

Roughly speaking, the Y variables describe the rotation of the eigen-
vectors ¢; needed to transform them to eigenvectors of A(xz*), while Yy
describes the rotation of the first ¢ of these eigenvectors within the ¢-
dimensional space they span. The rotation of the latter kind becomes
relatively unimportant, as ¥ — x*, because of the nonuniqueness of the
eigenvectors of A(z*).

Straightforward application of Newton’s method to solve (3.11)—(3.12)
is not satisfactory, since inclusion of the Yj; variables, which are redundant
in the limit, prevents rapid convergence. On the other hand, removing Y7,

11



Thus, F and F* coincide if 7 = 2* and the same basis Q = (0" is used in
both definitions. Since A7 is a multiple of the identity matrix, it is clear,
by analogy with (3.21), that all contributions from Y1, vanish from the
derivatives of F*. Therefore, in the nonlinear program

min w (3.23)
z,Y,w,0
subject to F*(z,Y,w,0) =0 (3.24)

neither the minimization objective nor the constraint Jacobian at the solu-
tion x* depends on Yj1, 1.e. the rows of the gradients of the objective and
constraint functions which correspond to the elements of Y;; are all zero.
Consequently, these variables have no effect on the Lagrange multiplier
system at z* and could be eliminated by setting

Y1y = 0. (3.25)

Removing Y31 changes (3.24) to a system of @

equations in @ +
m+1— w unknowns.

Thus, we recover the von Neumann—Wigner dimension count mentioned
above; imposing the multiple eigenvalue equation (3.12) represents w
generic degrees of restriction on a parameter space of dimension m + 1 (the
m elements of x and the common maximum value w).

The discussion just given is very closely related to that in [4]. Indeed, the
function F* was given in Theorem 3.1, p.654, in explaining when an inverse
eigenvalue problem with multiple eigenvalues is well-posed. The observation
that the partial derivatives of F* with respect to Y;; are zero was not
explicitly made, although the subsequent Lemma 3.1 states a closely related
fact. Also, the statement was made, both in [4, p.650] and in [11, p.260],
that the quadratically convergent methods given in those papers essentially

t(t+1)
2

result from applying Newton’s method to the system of nonlinear

equations

Qi(2) A(z)Q1 () = wI (3.26)
where Q1(x) is a locally (near ¥ # z*) smoothly varying basis of eigen-
vectors of A(x) corresponding to the largest ¢ eigenvalues. It was pointed

out by [19] that this is clearly incorrect, since all off-diagonal equations are
identically zero. The fallacy in the remarks in [4], p.650, is that the matrix

10



[FyAY] = —B — BT, where (3.14)
B ={-AY + HAY}Y + LY {AY} + O(Y)}QTA(x)Q{I + Y + O(Y?)};

(B Aw] = l&(‘;[ 8] (3.15)
[FoAO] = [ 8 AOG ] (3.16)

Here Az, AY, Aw, AO® are variables with the same dimensions as z,Y,w, O,
respectively; for example AY', like Y, is an n by n skew-symmetric matrix,
with

C{AY}, {AY) (3.17)

where AY7; and AYy; are skew-symmetric (but AYj, is not).
It will be convenient to denote the variables {z,Y,w,©®} collectively by

AY:[ {AY }y {AY}U]’

a single variable Z, which lies in a space of dimension w +m+1—t.
Likewise, AZ denotes {Axz, AY, Aw, AO}.

Now let us evaluate F' and its derivatives ﬁ’z, Fy at the point
Z ={z2,Y, M, Ay}, (3.18)

where

~

Y =0

the latter equation being essential to keep the formulas simple. The other
derivatives F,, and Fg are constant. We have

PPN MI—A; 0
F(Z)= ; 1
=Moo (3.19)
(F(Z)Ad] = ~Q"[4,(2)A2]0) (3.20)
[Fy(Z)AY] = —A{AY} + {AY}A = (3.21)
—A/A\l{AY}n + {AY}IIA/A\I —/:\1{AY}12 + {AY}12/:\2 ]
AAAY M, —{AY LA —A{AY oo + {AV o2y |
Now comes a key observation. Define
F*(2,Y,w,0) = Hf g ] QY A@)Q Y. (3.22)



the context, it is clear that I is used to mean the identity matrix of order
t; subsequent block matrices will have dimensions conforming with those of

F. We shall find it useful to write

Vi Yi
Y = , 3.10
l Yo" Yo ] (3.10)

where Y11 and Y3, are skew-symmetric but Y, is not. Note that the defini-
tion of F' depends on z through Q.
Consider the nonlinear program

pin w (3.11)
subject to ﬁ’(JC,Y,w, ©)=0. (3.12)

It is clear that if {z,Y,w,©} solves (3.12), then {z,w} satisfies the con-
straints (3.6), with A(z) having eigenvalues w, ..., w, 01,...6,_+, and eigen-
vectors given by the columns of @ey. Conversely, if z,w satisfy (3.6), then,
regardless of Q, (3.12) has a solution {z,Y,w,0}, with 6, = A\¢,(z) and
¥ = QTQ, where @) is an orthogonal matrix of eigenvectors for A(x). Con-
sequently, given that (3.1) holds, formulation (1.5), formulation (3.5)-(3.6)
and formulation (3.11)—(3.12) are all equivalent, regardless of the choice of
z.

Comparing (3.11)-(3.12) with (3.5)—(3.6), we see that we have intro-
duced an additional ~ n;l —t equations and the same number of additional
variables (since Y is skew-symmetric). Thus, (3.12) consists of w equa-
tions in ﬂ”2_+11 + m + 1 — t variables. The important point is that Fis
(Fréchet) differentiable. Consequently, if its derivative has full row rank,
@, the standard Lagrange multiplier rule may be applied, e.g. [3], stat-
ing that a necessary condition for {z,Y,w, 0} to be a solution of the non-
linear program (3.11)—(3.12) is that the gradient of the objective function

in (3.11) is a linear combination of the gradients of the w component

functions making up F.
Let us calculate the derivatives of F'. The appearance of the matrix
exponential function in the definition makes this an easy task. We obtain

[FoAz] = —e Y QT[4 (2)Az]QeY; (3.13)



V*, are satisfied. See [12] for discussion of the case where all optimality
conditions except the positive semi-definite condition are satisfied.

Assuming, then, that the optimal value of ¢ is known, solving (1.5) is
equivalent to

min w (3.5)

subject to w= \(z), i =1,...,t. (3.6)

where + € R™ and w is a real scalar. This is apparently a nonlinear program
with m + 1 variables and ¢ constraints, but since the constraints are not
differentiable, we cannot apply standard Lagrange multiplier techniques.
However, since the constraints now have the same form as an inverse eigen-
value problem, we may apply the techniques of [4] to rewrite these con-
straints as a differentiable system of nonlinear equations. The key idea is
to parameterize the orthogonal matrix of eigenvectors using a matriz expo-
nential: as is well known, any orthogonal matrix P with det P = 1 can be
represented by!
P=c"=T4+Y+3Y"+. .,

where Y is skew-symmetric, i.e. ¥ = —Y7. Since eigenvector signs are
arbitrary, the assumption that det P = 1 is not a restriction.

Let & be a given point, with the eigenvalues and eigenvectors of A(7)

given by (1.1)—(1.2). Also, let

~

Ay = Diag(A1, ..., A), Ay = Diag(Ag1,. .., An), (3.7)
and let - R
Ql = [qu e at]7 Q? = [th+1 e (jn] (38)

Define the twice continuously differentiable n X n symmetric matrix-valued
function

7 wl 0 -YAT ALY

F(I, Y7w7 ®) = 0 o) —¢€ Q A(T)Qe ) (39)
where @ € ™, w is a real scalar, @ = Diag(6,...,6,_;) is a real diagonal
maftrix of order n —t , and Y is a real n x n skew-symmetric matrix. From

1This is easily shown [6] using the spectral decomposition of P, which has eigenvalues
of the form %1 and cosé £ isind, with an even number of —1’s.



3 The Matrix Exponential Formulation

Let z* be a locally unique minimizer of ¢ = A1, and let A7 = \;(z%),
1 =1,...,n. Suppose that

A== A0 > A, > >\ (3.1)

ie. the maximum eigenvalue of A(z*) has multiplicity ¢, but all other
eigenvalues are simple. (The latter assumption usually holds in practice; it
could be relaxed, at the cost of more complex notation.) Let

A} = Diag(X;, .., \}), Aj = Diag(Xy, .-, X)), (3.2)
and let @* = [¢7,...,¢:] be a corresponding orthogonal basis of eigenvec-
tors, with

Qi=la---¢l, &=I[gn ¢l (3.3)

The matrix ()5 is unique, up to the choice of signs for its columns, but the
matrix ()7 is not, since any particular choice of basis may be rotated by
postmultiplying by a t x ¢t orthogonal matrix.

It was shown in [12] that a necessary condition for z* to minimize ¢(z)
is that there exist a t by ¢ symmetric matrix V*, with V* positive semi-
definite, such that

GV =1 V@) (e Ad)Q; = 0, (3.4)

for all Az. In the case t = 1, when @] consists of a single column g,
this reduces to the statement that {q¢;}? A.(z*)Az|¢; = 0, equivalently
[¢-(x*)Az] = 0 for all Az, i.e. the gradient of ¢(x*) is zero.

We wish to consider the correct local formulation of a Newton-based
method so that quadratic convergence to z* is obtained generically. We
assume that the optimal multiplicity ¢ is known. This is not the case in
practice, and must be determined during the course of the computation,
as explained in [11,12]. If ¢ is set incorrectly, the methods to be described
would converge locally to a minimizer of ¢ subject to the wrong multiplicity
constraint, which might not be a minimizer of ¢. This can be avoided,
by computing an approximation to V* and verifying that the necessary
conditions for optimality, including the positive semi-definite condition on



and [A,,AzAz] to mean

m m 82
{Az} i {Az},———A.
kzz:l; ]a$ka$j
We shall reserve square brackets [, | for this purpose, and we shall use

parentheses (, ) primarily to mean “evaluated at”. We shall use braces
{, } to indicate expression precedence. For example, the first and second
derivatives of ¢(x) = A(z) at © = &, when A\{(Z) is simple, given by (1.3)-
(1.4), are written in tensor notation as

[62(2)Az] = ¢ [A=(7)Az] @

and

[@m( )AxAx] — qT[AmAxAx Q1 + ZZ {Q1 A Af]%} .
rD VW

Because the second derivative of a twice continuously differentiable function
is symmetric with respect to its two arguments of differentiation, there is
no ambiguity in this notation. There should be no confusion between those
subscripts indicating differentiation and those indicating components.

We shall use | - | to denote the Euclidean vector norm. The expression
A : B, where A and B are syminetric matrices of the same dimension,
means the matrix inner product

A:B=tr AB.

The operator “vec” maps the set of symmetric matrices of dimension t

into the corresponding vector space R!¢+1/2 multiplying the off-diagonal
components by the factor v/2 so that

(vec A)T(vec B)=A:B.

Consequently
[vec A = [ AlF,

the Frobenius norm of A.



matrix defined by (1.4). However, it is more often the case that A(z*)
has multiple eigenvalues; this is a consequence of the optimization objec-
tive, which in driving all the eigenvalues down as much as possible usually
forces the coalescence of some of them. In such a case A; is not generally
differentiable at * = x*.

This paper is concerned with the formulation of a Newton-based method
to solve optimization problems involving eigenvalues in exactly this case,
where multiple eigenvalues occur at the solution. We shall show that the
correct problem formulation leads to a method with generic quadratic con-
vergence. This method was first given by [11], inspired in part by [2,4].
Quadratic convergence was demonstrated by numerical examples. The pur-
pose of the present paper is primarily to prove the quadratic convergence
property for the method presented in [11], justifying the Hessian matrix for-
mulas given there, which were originally derived only formally and stated
without any derivation or proof. The ideas of this paper can be applied
to other classes of eigenvalue and singular value optimization problems,
e.g. those discussed in [7,12,13,14,17,18], as well as many other references
which can be found in these papers. However, we concentrate on the model
problem (1.5). For discussion of issues involved in extending these ideas to
apply to large-scale problems, see [12].

2 Tensor Notation

We shall have frequent need to refer to the first and second derivatives, with
respect to several variables, of matrix-valued functions. Such objects are,
respectively, tensors in three and four dimensions, a matrix being a tensor
in two dimensions. We shall use subscripts to denote differentiation: thus
A, and A,, refer to the first and second derivatives of the matrix-valued
function A, with respect to the variable x € R™. Rather than attempt to
describe the elements of a tensor, however, we shall describe its action as
a linear operator, the result having the same dimension as the undifferen-
tiated quantity, whether a matrix, a vector, or a scalar. For example, we
write [A,Az] to mean

< 9
];{Afﬁ}ka—rkfl



The eigenvalues are

ALQ =14 \/.?7% —|—SL’%

Thus Aq, the largest eigenvalue of A(z), is not generally a smooth function
of x; furthermore, it cannot even be written as the maximum of n smooth
functions of z, if * has two or more components. Also, the eigenvectors
of A(z) cannot generally be written as continuous functions of z; this is a
consequence of the fact that eigenvectors corresponding to simple eigenval-
ues are unique (up to sign and normalization) while those corresponding to
multiple eigenvalues are not.

Generally speaking, applications involving eigenvalues of matrices de-
pending on free parameters fall into one of two categories. In the first, it
is specified that some or all of the eigenvalues A;(x) achieve some given
values A7; this is known as an inverse eigenvalue problem. If these given
values are distinct, the inverse eigenvalue problem may be formulated as
a differentiable system of nonlinear equations, and, if the number of free
parameters and the number of equations is the same, the application of
Newton’s method is straightforward, using (1.3). In [4] it was shown how,
even in the multiple eigenvalue case, the inverse eigenvalue problem may
be formulated as a differentiable system of nonlinear equations, so that
Newton-based methods, with generic quadratic convergence, are applica-
ble. This will be explained further below. A key point was to note that the
specification of a given eigenvalue with multiplicity ¢ generically imposes
w degrees of restriction on the parameter space, a fact first observed by
von Neumann and Wigner in [16].

In the second class of applications, the eigenvalues are not required to
have particular values, but rather it is desired to solve some optimization
problem involving the eigenvalues. A particularly common case is the “min-
max’ problem

min  é(z) (1.5)

r e R
where ¢(z) = Ai(x), the largest eigenvalue of A(x). Let z* be a locally
unique minimizer of ¢. If * has the property that the eigenvalue A\;(z*)
is simple, i.e. has multiplicity one, then the function to be minimized, Aq,
is twice continuously differentiable in a neighborhood of z*, and Newton’s
method for unconstrained minimization may be applied, using the Hessian



1 Introduction

Let A denote an n X n real symmetric matrix-valued function depending
on a vector of real parameters, * € R”. Assume that A depends smoothly
on x, specifically that it is at least twice continuously differentiable, with
the second derivative satisfying a Lipschitz condition in x. Denote the
eigenvalues of A(z) by

A(z) > > M),

The eigenvalues A; are Lipschitz continuous functions of z [8] and, in any
region where they are distinct from one another, it is well known that they
are (Fréchet) differentiable; in fact, they inherit the C? smoothness of the
function A(x) [8, p.134]. Let & be given, with

A(R)=QAQ", ,Q"Q=1, (1.1)

where
A =Diag(A1,..., ), Q@ =1[q1,-,qnl (1.2)
Thus, {\;} and {G;} are respectively the eigenvalues and an orthonormal
set of eigenvectors of A(Z). Assume that A\; > --- > A, so that \; = \,(Z).

Then formulas for the first and second partial derivatives of the eigenvalues
A; at ¢ = 7, assuming that the \; are distinct, are

ON(E) _ 4 DAG)

e =4 g, U (1.3)
and R
GNP I P gr 4L g,qreg, L
Oxdx; ' Oz Ox; oy Ai — A, ' '

The first of these formulas is well known, and the second may be found in
a variety of sources; see [9], [10], as well as (in a somewhat less accessible
form) [8, p.95]. Both will follow as special cases of the results given in this
paper.

However, if A(z) has multiple eigenvalues at a point @ = Z, its eigen-
values, while still Lipschitz continuous, may not generally be written as
differentiable functions of several variables at * = . For example, consider

A(‘r):llﬂl Ty ]

T2 1—.171
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Abstract

Let A denote an n X n real symmetric matrix-valued function depending on a
vector of real parameters, z € R™. Assume that A is a twice continuously differ-
entiable function of x, with the second derivative satisfying a Lipschitz condition.
Consider the following optimization problem: minimize the largest eigenvalue of
A(z). Let z* denote a minimum. Typically, the maximum eigenvalue of A(z*) is
multiple, so the objective function is not differentiable at 2*, and straightforward
application of Newton’s method is not possible. Nonetheless, the formulation of
a Newton-based method with local quadratic convergence is possible. This for-
mulation is derived by parameterizing the eigenvectors using a matrix exponential
representation, introducing an appropriate Lagrangian function. Consideration of
the Hessian of this Lagrangian function leads to the second derivative matrix used
by Newton’s method. The derivation of the method and the proof of quadratic
convergence take into account the following key fact: the number of variables used
in the eigenvector parameterization drops, in the limit, by #(¢ — 1)/2, where ¢ is
the multiplicity of the maximum eigenvalue of A(z*). In the special case ¢t = 1, the
maximum eigenvalue is a smooth function and the method reduces to the stan-
dard Newton method. The same ideas are applicable to a wide variety of other
eigenvalue and singular value optimization problems.
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