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Abstract

This thesis introduces the design and implementation of an interaction concept called

DrawTalking. Through simple combinations of sketching and speaking, the user can improvisa-

tionally build an interactive world of graphics, animations, diagrams, and dynamic mechanisms

with behavior and rules, as if by narrating a story or explaining a concept to an audience. The

interface demonstrates a possible step towards designing future interfaces more closely in-tune

with how we naturally communicate and think.

For context, sketching while speaking has played a major part in innovation across disci-

plines. The combination of visuals and spoken language enables us to make-believe: think about,

describe, communicate, and interact with anything that we can think of, including things that do

not or cannot exist in the real world. Evolving technology creates opportunities to move beyond

sketching and speech alone. Human-computer interactions of the future, drawing inspiration

from our process of make-believe, can add interactive computation to the combination of sketch-

ing and speech, allowing us to work with explorable worlds, simulations, and mechanics. By

enabling such interactions, we might think, learn, design, play, and tell stories in increasingly

expressive ways.

Towards this idea, what makes for a good interface for computation-mediated sketching and

speaking? This touches upon several fundamental questions in interaction design, human-AI

interaction, and human-centered interfaces, chiefly among them, how to balance human control

and machine automation?
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Inspired by real-world speaking and sketching interactions, and seminal works in dynamic

sketching, interactive visual programming, and language interfaces, we designed interaction

techniques that draw on the way people describe objects and phenomena when telling stories

and explaining processes at a whiteboard.

How does it work? the user speaks to label hand-drawn sketches with names and properties,

and to define rules for how their world should behave. This communicates semantic intent to the

computer, while giving the user the flexibility to choose how to represent and change their draw-

ings. Now the user can interact with a simulated world simply by narrating stories or describing

mechanics, which dynamically creates running interactive programs from built-in primitives and

user-customized rules.

To gauge understanding of the mechanics of DrawTalking and to derive use cases, we invited

participants to an open-ended one-on-one user-study session with the researcher to discover and

explore the features in DrawTalking. Each user improvised and prototyped interactive sketch-

based animations and gameplay scenarios by collaborating with the researcher. The resulting

artifacts and discussion were oriented around each participant’s specific experiences and back-

ground.

Feedback suggests that our approach is promising and intuitive: it prioritizes user control;

it is flexible and supports improvisation; the workflow is fluid; the features are extensible and

adaptable to other application domains and contexts beyond sketching; the design demonstrates

how multiple applications can use similar language-based interaction techniques and behaviors

predictably alongside other language-based technologies; it enables programming-like capability

without code.

Through the research and design process of DrawTalking, we learned that it could represent

an approach to designing complex interoperating systems for human-AI collaboration. We hope

it can serve as a useful example for research and design of future machine-mediated interfaces,

interactions, and computer systems.
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1 | Introduction

Sketching while speaking has played a major part in innovation, thinking, and communi-

cation across disciplines [Fan et al. 2023; Tversky 2011], facilitating a wide range of activities

across storytelling, animation, games, education, presentation, iterative design, spatial problem-

solving, and many others [Subramonyam et al. 2020; Snyder 2013; Agrawala et al. 2011; Sturdee

and Lindley 2019; Walny et al. 2011; Novick et al. 2011; Victor 2013; Chandrasegaran et al. 2018].

We can think of the combination of sketching and speech as a means to play make-believe;

When we sketch while speaking, we create concrete representations and describe them to allow

for a shared understanding of ideas that emerge from our imaginations [Turner 2016]. Sketching

provides a concrete, visual form or symbol for an idea, and language adds semantics to those

sketches. The combination helps people to visualize and think about the mechanics of how ideas

behave and interact.

Sketching while speaking allows us to act out scenarios and to simulate outcomes. In doing

so, we tell stories, iterate on designs, and think things through by improvisation or spontaneity.

By making-believe through abstract sketches and spoken language, we metaphorically create a

running and explorable simulation of an interactive process.

The ability to combine visual and verbal information is fundamental to communication, think-

ing, and creativity, and perhaps is miraculous: The combination of visuals and spoken language

enables us to think about, describe, and share anything that we can think of, including things

that do not or cannot exist in the real world.
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Evolving technology creates opportunities to move beyond sketching and speech alone.

Human-computer interactions of the future, drawing inspiration from our process of make-

believe, can add interactive computation to the combination of sketching and speech, allowing

us to work with explorable worlds, simulations, and mechanics. By enabling such interactions,

we might think, learn, design, play, and tell stories in increasingly expressive ways [Victor 2014].

What makes for a good interface for computation-mediated speaking and sketching? Intro-

ducing computation and machine intelligence raises a number of research questions regarding

design choices, functionality and intended audience, including:

• What are the essential mechanics of such an interface? i.e. how does the machine receive

and interact with user intent? What is the balance between user interaction and machine

automation? How should the workflow be designed?

• What are the technical trade-offs in a concrete implementation of this kind of interface?

• How and for what purposes is such an interface useful, as an extension of our existing

language and sketching ability? What are the use cases from the perspective of potential

users?

Related to all of these, common problems in interface design revolve around figuring out how

to balance user-machine control, how to give agency to the user, and how to capture the user’s

intent.

To address these questions, we begin with the assumption that a good speaking and sketching

interface should transparently "blend-in" with how we already speak and sketch, serving as an

extension of the user’s abilities. Furthermore, in the spirit of make-believe, we assume that the

user will want to be able to explore and improvise in a live environment, whichmeans that wewill

need to give them creative freedom and flexibility, and the ability to create new things without

prior preparation. Above all, we wish to understand how best to extend the creative process.
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1.1 Research Motivation

To help define the scope of our research, we start by examining a broad array of existing inter-

active interfaces that contain elements of sketching and animation, language-based interaction,

graphical programming and game play to see what choices were made.

Figure 1.1: First GUI, Interactive Sketching — Ivan Sutherland’s "SketchPad"

Figure 1.2: (Figure from) William Sutherland’s Thesis on Visual Program Specification
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Ivan Sutherland pioneered the graphical user interface (GUI) with SketchPad, whosemachine-

mediated capabilities aided in computational illustration [Sutherland 1963]1.1. In this work the

machine interpreted the user’s rough drawings to create more precise lines and shapes. William

Sutherland then introduced visual programming via nodes and connections between the nodes,

while incorporating the user’s drawings as a way to specify elements of the visual program

[Sutherland 1966]1.2.

In both cases, the user’s intent was predicted by the machine according to known examples.

Both works inspired subsequent interfaces to incorporate increasingly dynamic and program-

matic illustrations, empowered with relational models, logic, and procedural animation.

Meanwhile, natural language interfaces such as Terry Winograd’s seminal SHRDLU have

enabled users to communicate with machines in more natural ways [Winograd 1972]1.3.

Figure 1.3: Seminal Language-Interface — Terry Winograd’s "SHRDLU"

SHRDLU was a machine agent that received natural English text as keyboard input and ap-

peared to respond intelligently to users’ directives. Its task was to edit and manipulate a scene

of 3D objects according to the user’s intent. In response to the user’s typed directives, SHRDLU

moved objects in a logical manner and could even respond with natural language to justify why it
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performed intermediate steps. This was one of the earliest examples of an AI interactively work-

ing together with the user in a simulated environment, using only language. Here the user’s

intent is telegraphed purely from language, and the user is communicating with the machine

agent as though it were human.

Similarly, in Richard Bolt’s "Put That There” demo, the user addressed the machine directly

via a combination of speech and pointing as though it were a human assistant. It was an early

and influential example of multimodal speech and gesture input [Bolt 1980].

In general all categories above combined have supported a broad range of interfaces such as

3D scene creation, editing of animation and video, and conjuring of graphical content based on

language context. Many works likely derive from SHRDLU or similar ideas. e.g. [Cohen et al.

1997; Coyne and Sproat 2001] for language-based command and scene editing, [Subramonyam

et al. 2018; Xia 2020] for editing of animation and video, or [Huang et al. 2020; Liu et al. 2023] for

conjuring-up of graphical content based on language context.

A large variety of previous research across dynamic illustration, visual programming, and

language-based or language-inspired interfaces borrow and mix ideas from these forerunners in

interface research, for example, by integrating relational models, logic, and procedural anima-

tion. These have run the gamut of use cases across interactive animation and illustration[Kazi

et al. 2014a; Suzuki et al. 2020; Subramonyam et al. 2018; Saquib 2020], live presentation and sto-

rytelling[Perlin et al. 2018b; Saquib et al. 2019], and UX/UI design and systems prototyping [Lan-

day 1996]. In some sense, these all converge towards common goals with similar approaches:

enabling increasingly natural interfaces through a mix of creative user input, language and/or

machine intelligence, and some form of programming.

We observe that in many cases:

1. The machine is treated as an anthropomorphic machine assistant or agent.

2. The machine is responsible for interpreting the user’s input to produce an intended output.
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The system assumes a given representation is the correct one.

3. The goal of many interfaces is to help create a specific desired output.

4. Often the user is expected to know precisely in advance what their intended outcome

should be, and must register graphical elements before using the system [Liao et al. 2022;

Saquib et al. 2019].

5. Many interfaces support very explicit editing with feature-rich UI.

6. Tools incorporating programming elements tend to require explicit programming knowl-

edge.

These are often useful qualities, but our research explores different directions that do not

always align.

1. Treating the machine as a human assistant simulates collaboration with another person or

other social situations and can create positive impressions on the user. Many interfaces can

successfully engage the user this way. However, this human-machine relationship might

create the feeling that the capability is in the assistant, not the person. In our research we

are interested in exploring one of the alternative approaches, in which computational capa-

bility might seem linked directly to the person’s natural sketching and speaking ability. For

example, when narrating a story or explaining (out-loud to themselves or to an audience), a

person would normally not address a third-party with imperative commands. Rather, they

would use narrative and description. To an audience, the speaker might appear to cause

something by their own abilities. With a machine agent approach, the speaker might ap-

pear to address a limitation in their abilities; asking for help or giving direct commands to

an external agent explicitly delegates a task. It also directs attention away from a poten-

tial audience. We think that fully-developed interfaces might benefit from supporting all

modes of addressing the machine in different social contexts and use cases, e.g. addressing
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an agent, addressing an element within the interface, narration-style, or others. To scope

our research, we choose to focus on enabling a narration style because it fits well within

existing storytelling, explanation, and teaching contexts. It also works towards the idea of

extending the user’s abilities. We’d like to move towards instilling the capabilities in the

user, or creating the appearance that this is the case.

2. Systems might assume that graphical elements should have a realistic representation, or

rather, their algorithms assume a representation given rules or evidence from data, but this

limits the user’s individual agency and creative options. If we look at many sketch-based

and speech-based interfaces, the machine is often assigned the task of inferring what a

sketch represents or what the user intends (e.g. through sketch recognition and speech

recognition). That is, the machine assumes to the best of its ability what the semantics

of the user’s content should be, based on the user’s input. However, this means that the

machine is prescriptive in that the user must provide certain inputs or sketch a certain

way to get best results. Especially for rough sketching, we should hope that the user is

in-control of how their content looks, and that the machine need not assume a particular

representation of the content.

3. Many interfaces, e.g. generative ones, try reading the user’s intent to create a specific out-

put as a singular goal. We are interested in supporting interactivity andmatching the user’s

imagination and creative process. In this case, there is no correct or best outcome. Rather,

there is exploration and iteration. We can take advantage of tools for creating specific out-

puts at given moments over the course of our process, but we treat this as a complementary

direction. This is one reason why we are interested in supporting open-ended interactive

simulation and "programming," as these represent more complicated open-ended results

and interactive play, rather than a single desired outcome.

4. Within a creative process, the user often cannot know what they want until they have
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worked through their own creative process [Compton and Mateas 2015]. The flexibility to

change is necessary.

5. Many interactive visual programming environments and games (for example) give users

expressive capability and control. They were designed with playful exploration in mind,

encouraging users to tinker with worlds [Solomon et al. 1986; Resnick et al. 2009; Maloney

et al. 2010; Dietz et al. 2021; 2023; Little Big Planet 2008; Little Big Planet 2 2011; Dreams

2020]. These arguably prioritize a playful "feel" fitting for an imagination sandbox and

come closest to our vision in that sense. However, they often rely on complicated editing

or explicit programming interfaces. This comes at the expense of the fluidity and flexibility

one might expect in real-time scenarios.

6. We’d like to move to a point at which people, including beginners, can create simulations

and interactive elements that behave like programs, but do not require traditional program-

ming expertise.

In summary, our initial assumptions are that we are looking for an interface without an ex-

plicit AI-agent, which supports a creative exploration process with interactive capability, but

without imposing too many assumptions about the user’s intent or content. The focus should be

on the process, not just on the artifact. It should not use an explicit UI or require programming

knowledge. Above all, the user should have control.

1.2 Formative Motivation

Motivated by these initial assumptions, we first focused on exploring playful sketch-based

interactions more deeply in several different contexts. The goal was to better understand what

forms of content people made, as well as how they behaved while speaking and sketching.

We did an informal survey of sketch content, both live and previously-produced (such as
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classroom talks and educational videos). Next, we ran design exercises in which 6 participants

narrated their own personal stories while drawing.

• Found content: We saw playful stories with abstract figures, playful and stylized anima-

tions with simple movements, and an overall rough sketch aesthetic. Even in previously-

produced content, people find the rough aspect to be endearing and do not require compli-

cated content.

• Observed behavior : During sketch+speech interactions, we observed that people aimed for

flexibility and control, continually revising and reworking their drawings, moving things

around, and iteratively updating objects. People would add visual hints such as arrows

or text labels to describe objects, or add props or set-pieces into the sketched scene. We

concluded that sketching+speaking in these live contexts is a live process of working things

out. These observations confirmed our hypothesis that people need to be able to improvise

during live sketching.

A key insight from our observations was the way in which people conveyed information by

using drawings, speech, and text together. Simply, people draw or display sketches while verbally

narrating and/or annotating with text. This spoken narration and text serve a dual-purpose: 1)

engaging with an audience (as in explaining or telling stories) or thinking out-loud; 2) describing:

i.e. leaving a visual or auditory artifact indicating what a sketch represents, how it behaves, and

how the world behaves – naming objects, rules, and phenomena out-loud or by text, referring by

deixis (words like this/that/those) [Stapleton 2017], and touching or pointing to objects.

We observed that 1) represents the user expressing their creative intent, and 2) is exactly what

a computational system would need in order to understand that intent. So if an interface could

tap into the information expressed by the user in these situations, then the result would be a

positive experience for the user. Secondly this could be a channel for the computer to receive the

user’s intent without interrupting the user or imposing creative assumptions such as a required
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visual representation. In other words, our goals could be a form of human-AI collaboration: The

user’s natural output is their language, which becomes input to the computer that communicates

semantic intent, which then becomes the interface for the user to create and control an interactive

world.

Such an interface might work as follows: If users can name and define properties on their

drawings within the digital medium, the computer can listen to this information and know the

user’s intent regarding what is in the world and how it behaves. This way, the user decides the

representation and behavior of their sketches, just as theymight during narration at a whiteboard

or when playing make-believe to make the "abstract" concrete. The computer is therefore not

required to guess what a sketch represents. Once the computer knows what entities are in the

world, the user can describe events in a story or explanation while referencing objects in plain

spoken language (English), and the computer, having received the user’s intent, can then apply

animation and simulation.

The question remains ofwhen things should happen during this process. Should the computer

decide when an operation should happen? We hypothesized that the user should decide.

We further hypothesized that an effective interface for extending speaking and sketchingwith

computation should incorporate all of the above: Flexibility and fluidity, a focus on improvisation

and play, and interaction techniques based on treating the user’s natural behavior as semantic

labeling and input to computer software that then "makes things happen."

These were the essential components that led to prototyping a proof-of-concept.

1.3 Project

We introduceDrawTalking[Rosenberg et al. 2024], an interactive software systemwhose users

speak while freehand sketching to create, control, and iterate on interactive visual mechanisms,

simulations, and animations 1.4. Through speech and direct manipulation, the user names their
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Figure 1.4: A subset of demo categories in DrawTalking

sketches to provide semantic information to the system. Given this information, DrawTalking

offers users computational capability for interactive animation and simulation within worlds of

their own creation. This results in interactions that are similar to explaining, discussing, or sto-

rytelling while pointing at a whiteboard in everyday life, but with added capabilities of interac-

tive computation which provide some of the power of programming. The workflow is a type of

human-computer collaboration in which the user and computer help each other with minimal

effort, and in a way that feels natural to the user. The result is a step toward the development of

future mature interfaces that provide computational support for sketching while speaking.

We implemented the DrawTalking prototype as a multitouch application on the iPad that

runs as a continuous simulation in which the user is free to build-up and explorable their own

worlds through freehand sketching and speech. Controlling the system entails the user alternat-

ing between (1) directing sketches to perform actions and (2) defining rules and relationships that

dictate how sketches should interact and behave in the future.
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DrawTalking synthesizes approaches from prior interfaces, while addressing the limitations

of those prior interfaces to enable more creative and exploratory use cases:

• It prioritizes user control because the user defines what their drawings are named and

what they do, not the computer. This puts the responsibility into the user’s hands and

assumes little about their intentions and the content they are making. By giving the user

more control over how their abstract sketches should be named, the system does not need

to perform inferencing on the user’s world on its own, thereby reducing the number of

possibilities for error and promoting greater user agency.

• The workflow is flexible and supports improvisation because users can change their

minds during any point of their creative process to revise the look, behavior and properties

of their drawings. At any step they can narrate via full spoken or typed sentences to mod-

ulate sketch behavior, either by giving commands or by defining persistent rules. Through

this approach, users can quickly iterate and try out their ideas for interactivemechanics and

worlds within a sandbox of their own design that enables interactions for gameplay me-

chanics, animations, and stories, all through simple combinations of sketching and talking,

with no preparation of content required.

• The workflow isfluid because all operations can be done consistently and with easy access

using just pen, touch, and speech, with low complexity in the interface and high spatial

proximity of all elements.

• The system is extendable and adaptable. It implements several language primitives that

can be parameterized interactively based on sketches’ labels. These primitives can be com-

posed together into more complex processes at runtime without needing to code entirely

new-behaviors from scratch. DrawTalking’s interactions are general and can be feasibly

adapted to or extended by other domain-specific applications.

12



• DrawTalking’s interactions give users programming-like capabilitywithout requiring

them to write code.

• DrawTalking is implemented with reproducible research, portability, and interoper-

ability with other language-based applications in-mind. It demonstrates how we

can convert natural language input into a generic format for broader use. We chose

to integrate built-in primitives to enable a deterministic and stable target that is easier to

understand and introspect. By compiling external language processing output to an inter-

mediary format that is generic, deterministic, and interpretable, we can develop interactive

language-enabled systems independently from natural language technology, and benefit

from better technologies as they improve.

To test our approach, we studied how users responded to DrawTalking. Do people find it

useful? Are its mechanics understandable? Can people derive their own use cases and possible

re-applications?

We chose to use a qualitative experimental setup, not only because there is no baseline system

to compare against, but also because at this stage, we care more about user’s personal feedback

without imposing a specific use case. The original spirit of the project was to work toward captur-

ing a spirit of creativity and make-believe, so we likewise aimed to capture the open-endedness

of a creative process.

In our user study, we invited participants to the features in the system through an open-ended

discovery session one-on-one with the researcher, who served as a guide and collaborator. The

researcher would ask a participant to draw a few objects of their own, and would then go on to

introduce more advanced features, improvised around the participant’s own creations. Each user

improvised sketch-based animations and gameplay scenarios. The final results comprised the

artifacts from the improvised exploration and collaboration process with the researcher, and the

deeper discussions and comments surrounding the exploration session. We chose this approach
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as an effective way to observe a participant being creative and collaborative, while introducing

the complexities of DrawTalking within a short time-frame. During this process, we aimed to

elicit meaningful discussion around the use cases and perceptions of the tool in comparison to

the participants’ personal experiences. The goal was to learn not only whether people found our

approach intuitive, but if so, why and in what ways, and how did they understand the interface in

relation to their life and work? What was their definition for why DrawTalking might be useful?

Additionally, this study gauged paths for future research and improvements to our approach.

The collective feedback and observations from the sessions shows that DrawTalking has po-

tential as a form of "digital make-believe" for multidisciplinary applications, and as a step toward

designing future computationally-enhanced systems that support sketching while talking – and

more generally – human-machine collaboration in a similar vein. We learned that users define

DrawTalking as an intuitive and fluid approach to programming using language, with a wide

range of use cases across game prototyping, design, education, and presentation. Our approach

can generalize and has the potential to be adapted to or complemented in many possible contexts

and systems.

In summary, our contributions are:

• DrawTalking: A new approach within the space of live sketching+speech interaction that

balances user-agency with machine automation. Through simple combinations of sketch-

ing and speech, the user constructs and programs interactive simulations by naming ob-

jects, defining rules, and directing the machine.

• DrawTalking Research Prototype: A digital sketching interface (for the iPad) that

demonstrates how sketching and speaking can be used together to build, program, and

control a simulated world of hand-drawn objects interactively. The implementation is an

instance of our approach that showcases the interaction techniques in the context of 2D

animation and playful game prototyping. The ideas generalize to other domains, and the
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implementation is designed to support future extensions and adaptations in other contexts.

• User Feedback, Artifacts, Discussion, Future Directions: Results from user studies

in which users discovered features, created artifacts, and discussed the utility and impact

of the tool and the ideas behind it. The results demonstrate the utility and potential of

DrawTalking across several use cases for creative visual expression, prototyping, and de-

sign.

This thesis contributes a new approach to the sketching+speaking space, aswell as a prototype

that demonstrates this approach using existing technology. We hope for this work to inspiremany

positive future directions in human-centered interface design.
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2 | Prior Explorations: Part 1

Sketching as a Glyphic Language

2.1 In the abstract

Prior to "sketching+speech," we tried treating sketching as a form of context-sensitive visual

language. The research platform, "Chalktalk" served as the testing ground for this idea. Chalktalk

was an interactive canvas supporting procedural sketch objects for illustrating known concepts

through animation and graphics. These objects were predefined and instantiated by drawing a

known glyph. To command these objects, the user had to memorize which directional stroke to

draw on an object to invoke the equivalent of a behavior. But a limitation of this approach was

that these sketch-gestures were all the same across all sketches. However, we wanted to see how

it might feel to extend the metaphor of sketching-to-bring-to-life beyond just creating objects. By

drawing glyphs on sketches, we could create glyphic language to control sketches with visually-

meaningful correspondence between the command being performed (the verb) and the object

being commanded (the noun). We created a selection of glyphs the user could draw on top of

other interactive sketches. These sketches would interpret the glyphs as commands. We picked

the topic of computer science data structures education, as often when teaching algorithms, we’ll

describe gesture-like traversals of data (e.g. tree traversal.) In the rest of the chapter, we introduce

Chalktalk and show examples of the "control by glyphs" approach [Perlin et al. 2018a].
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2.2 Introduction

Especially in the context of a classroom, presenters must supplement verbal communication

with visuals to illustrate concepts – specifically those whose behavior and representations change

variably or over time. Such visualizations are crucial for effective conveyance of ideas in areas

such as physics, computer science, and animation, wherein ideas revolve around dynamic, inter-

active entities. However, traditional media such as blackboards, slide shows, and (more recently)

electronic smart boards allow only for static drawings and text/image sequence, or in the best

cases, fixed animations made in advance[Nunes and Perlin 2017; Perlin et al. 2018b].

Chalktalk is an open-source presentation and communication tool in which the user creates

and manipulates interactive, animatable objects – called "sketches" – in real-time to demonstrate

ideas[Perlin et al. 2018b]. Chalktalk contains a growing library of programmable sketches based

on concepts from areas such as physics, mathematics, audio, computer graphics, procedural ani-

mation, and others. These can be controlled via mouse gestures and linked to form increasingly

complex systems and to adapt to the changing flow of a presentation – particularly classroom

lessons. Chalktalk presents the opportunity to improve our visualization of key concepts in com-

puter science: especially data structures, whose data and form change over time due to the variety

of interactions within a computer system. Like the popular Scratch[Resnick et al. 2009; Maloney

et al. 2010] language, Chalktalk can help new programmers focus on higher level logic and con-

cepts rather than on the syntactic peculiarities of a particular language. In addition, Chalktalk’s

links can transmit any data (including function callbacks) between Sketches, allowing for a more

flexible system than one built for a specific domain (e.g. Max/MSP’s audio modules [Nunes and

Perlin 2017]). These characteristics, combined with the ability to interact and build with sketches

in real time, make Chalktalk a promising environment in which to learn and explore computer

science. Thus, we propose a computer science-centric Chalktalk library and contribute proto-

type sketches based on fundamental data structures – the binary search tree (BST) and stack. We
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will use these prototypes as the basis for further investigation of alternative visualizations and

interactions for use in computer science education. Here we provide an overview of Chalktalk’s

system and use cases, then discuss our prototype data structure sketch implementations in detail.

We conclude with notes on ongoing and future research using the Chalktalk platform.

2.3 Presenting with Chalktalk

2.3.1 Example Use Case

Figure 2.1: Pendulum Example: The user has dragged the mouse to swing the pendulum (left), which
outputs its angle as numerical data for the graph (right) to display as a curve. In this case, the curve
represents the pendulum’s displacement. However, the graph can interpret all numerical data it receives,
which means any sketch that outputs numbers can interact with the graph sketch.

A simple example use case[Nunes and Perlin 2017] is as follows:

Suppose a physics teacher wishes to illustrate the motion of a pendulum. The teacher should

be able to draw the pendulum and swing it to demonstrate its physical properties. In addition,

the teacher should be able to draw a graph to which she can link the pendulum to show the

mathematical curve representing its displacement from equilibrium (see figure 2.1). Furthermore,

this pendulum sketch should be reusable in a network of other sketches to allow for further

experimentation – perhaps as a controller for the movement of other objects such as a fan (see
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Figure 2.2: Pendulum Linked with Fan: The same pendulum from 2.1 is linked to a fan sketch (right),
which uses the data from the pendulum to set its own angle, causing it to rotate. Neither sketch is aware
of each other’s types. Each merely sends and receives data that are interpreted independently.

figure 2.2) or for the configuration of a matrix to rotate 3D geometry (see figure 2.3).

2.3.2 User and Programmer Interface

2.3.2.1 Recognition

To instantiate a sketch, the user first free-hand draws a glyph, composed of a specific num-

ber and ordering of strokes. That glyph is compared against a library of glyphs (see figure 2.4)

defined in Chalktalk, and the closest match is selected for recognition. Finally, the user clicks the

recognized glyph to instantiate it as a sketch.

2.3.2.2 User Input

Sketches are able to recognize swipe motions, clicks, and drags as input events. Callback

functions defined in a sketch can be used to trigger events in response to mouse gestures. There

is also a general set of "command" gestures recognized by all sketches, which can be used to

modify the scale, position, rotation, and other properties of the sketch itself. These command

gestures always begin with a click around the periphery of the sketch.
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2.3.2.3 Links and Data Transfer

Links transfer data from one sketch to another. Connecting a link from and to a sketch is a

matter of wiring the link visually using a "command drag." This is achieved by clicking on the

source sketch’s left periphery, and then clicking and dragging an arrow from the source to the

destination sketch. In the internal JavaScript code, an output procedure returns data for receipt

by any number of other linked sketches, and each sketch may also directly access data sent to it.

2.3.2.4 Sketch Design and Implementation

Because Chalktalk is open-source, users may choose to use existing sketches or to design their

own, either for personal use or to contribute to the growing repository. This means that users

(e.g. teachers and students) need not be programmers. Nevertheless, one of Chalktalk’s strengths

lies in its programmability. Chalktalk runs in the browser, so sketches are written as JavaScript

files in which swipe, drag, output, render loop, and other methods attached to that sketch type

are defined. Designing the appearance of a sketch as well as its glyph (used for recognition)

involves calling draw functions that specify curves, colors, and other attributes or applyingmatrix

transformations. These functions take the form of mCurve(..), mLine(..), mOval(..), m.translate(..),

m.scale(..), color(..) and others. The drawing APImay be comparable to Processing’s[Reas and Fry

2014], as it allows the programmer to think in terms of curves and shapes rather than low-level

draw calls. As a user becomes more proficient in programming practices, all JavaScript language

constructs (conditionals, loops, variables) may be used to adjust the appearance and behavior of

a sketch. Methods such as this.output() may be defined in a sketch to send data across links, and

within the Chalktalk interface, the user may also access a sketch instance’s code for viewing or

editing at run-time (see figure 2.5).
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2.3.3 Narrative and Performance

Chalktalk is also a performative medium in which "programming" is not only the literal pro-

gramming of sketches, but also the narrative that unfolds when combining and juxtaposing

sketches in real-time. For example, a Chalktalk-based computer science library would include

sketches that might simulate pieces of a program. A teacher could begin the conversation with

her students by using sketches to introduce fundamental programming constructs such as the

loop. Based on student engagement, she could then arrange, link, and compose the sketches into

increasingly specialized systems of data structures and logic, mirroring the way in which tradi-

tional lessons build on previous concepts. The teacher may also invite students to design their

own experiments based on the day’s lesson. This sense of engagement and conversation is key.

2.4 prototype: computer science data structure sketches

We believe Chalktalk to be an ecosystem particularly fitting for the visualization of computer

science concepts such as data structures, which may take on multiple representations and be-

haviors depending on use and composition. To show the potential of a computer science sketch

library, we present two work-in-progress data structures sketches – a binary search tree (BST)

and stack – that illustrate the interoperability and interactivity of sketches.

2.4.1 Binary Search Tree

The internal code of the BST sketch (figure 2.6) contains a reference-based tree implementa-

tion that the user modifies via mouse interactions with the sketch, which map to operations such

as insert, remove, and preorder-, in-order-, post-order-, and breadth-first traversal. Operations

may also be undone using a leftward swipe. Insertion and removal are initiated by creating a nu-

merical sketch (built into Chalktalk) and dragging and dropping it onto the tree. This starts the
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recursive process of searching for the proper node, whereby the in-memory tree performs the

algorithm while issuing draw commands to highlight visited nodes in the Chalktalk interface.

Removal is implemented in a similar manner, but accounts for the additional cases in the removal

algorithm by providing additional animations. For example, when the node to remove has two

child nodes, the algorithm must find the predecessor or successor node to substitute (see figure

2.7).

When demonstrating a tree traversal, one way of appealing to visual learners might be to

represent the sequence of parent/child node visits with a mouse gesture. The presenter would

draw a special curve (see figure 2.8 for the design and figure 2.9 for an example) to trigger its cor-

responding traversal. This idea is implemented into the BST sketch by reusing the functionality

of Chalktalk’s sketch recognition system for the recognition of line strokes drawn atop the BST.

All interactive operations require timed pauses and interpolated movements across multiple

frames, so functions responsible for modifying the tree make use of JavaScript’s "yield" keyword

and generators to save state when an operation is in progress (e.g. tree traversals). To supplement

the raw language features and provide higher level interface, a small host of utility functions for

timing and pausing was written. To run and animate an operation, the BST sketch enqueues the

generator function specific to a given operation, runs the generator until a pause in the animation

is necessary (a yield), renders the updated sketch, and checks the queue on the next frame to

resume execution of the function. This process repeats until the current operation has been

completed. Objects modeled after debug breakpoints can be inserted into the code path of a

generator to allow the user to pause deliberately.

2.4.2 Stack

The LIFO stack sketch uses a JavaScript array internally as well as generators to save in-

termediary state over multiple frames, just as the BST does. To push a value, the user draws,

for example, a numerical sketch, and drags-and-drops it atop the stack. To pop, the user does a

22



downward swipe gesture with the mouse (see figure 2.10).

If a sketch is linked to the stack, additional logic will be used to decide whether it is necessary

to push or pop, as the link might send the same data repeatedly. Duplicate pushes and pops of

that same data should be ignored.

2.4.3 Final Expected Behavior

The final, completed versions of the BST and stack sketches will exhibit new behavior when

linked: during a traversal, the BST will output information about the most recently visited or

exited node, and the stack will interpret this data as stack frames to push and pop. As a result,

the linked tree and stack will show the relationship between recursion and a call-stack. The

current in-progress implementations interact differently for now: the tree outputs a record of the

most recently performed operation insertion or removal, and the stack displays the history of

these records (see figure 2.11).

Thus, the BST and stack have new behaviors when linked, just like the pendulum and graph.

Once implemented, arrays, FIFO queues, graphs, and other data structures could could be used

to interact in a larger high level simulation of a program or with other compatible sketches such

as matrices and vectors.

2.5 Ongoing and Future Research

One of the main strengths of Chalktalk’s system is that it gives the user the freedom to build

and use sketches in a variety of ways. In-development Chalktalk features such as improved code

hot-loading and property editing will likely impact the way in which sketches are designed, and

as a result, will lead to changes in the proposed data structures library as we experiment with

different implementations. Chalktalk has, in fact, been evolving. It lies at the center of research

that includes the development of a type system for Chalktalk’s links[Nunes and Perlin 2017] and
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the creation of interactive augmented reality (AR) and virtual reality (VR) environments [Perlin

et al. 2018b]. In addition, Chalktalk is being used in classrooms to teach computer graphics,

animation, sound processing and other subjects [Perlin 2016]. In the near future, we also wish to

conduct case studies on a larger scale.

2.6 Conclusion

We have shown how to extend Chalktalk’s recognition system’s usefulness beyond recogniz-

ing object primitives (nouns) to recognizing (verbs) via a form of context-sensitive visual lan-

guage. Sketch recognition is useful not only as a way to instantiate visual content, but also as a

means to express commands via a learnable domain-specific visual language. It can enable the

user to control visualizations without an explicit GUI, in favor of staying in the flow of sketching.
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Figure 2.3: Data Flow of Sketches for Linear Algebra: In this case, the matrix and coordinate system,
too, process only data transferred between sketches – not the sketches themselves. This data-oriented
design allows for the flexible combination of and interaction between sketches. Top-left: a 3D shapewhose
output is mesh data; Bottom-left: another pendulum; middle: a transformation matrix set to rotate on z;
Right: a 3D coordinate system – The matrix receives an angle from the swinging pendulum, which it uses
to set the rotation. The matrix processes, transforms, and outputs the shape data, which the coordinate
system displays.
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Figure 2.4: Chalktalk Sketch Library: A cross-section of Chalktalk’s library, containing mathematical
functions, creatures, geometry, and other entities and concepts

Figure 2.5: Chalktalk Live Coding: All sketch codes can be exposed in the Chalktalk interface. On the
left is a 3D cylindrical wire-frame mesh. On the right is a fragment of its code, which can be edited live.
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a The glyph that is recognized as a BST sketch

b The BST sketch in its initial state, pre-populated with nodes

Figure 2.6: Binary Search Tree Sketch Recognition

Figure 2.7: Binary Search Tree Sketch: The node removal visualization for the BST sketch – top: be-
cause the user has selected the now-blue node for removal, the algorithm has recursed down to that node;
middle: since the node has two children, the algorithm searches for the predecessor node for a replace-
ment; bottom: the blue node has been replaced with its predecessor (note that this recursion sequence is
animated)
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Figure 2.8: BST-specific Sketch Gestures: Seen here are the four BST-specific gestures that map to
the different traversals the sketch supports. They are meant to serve as (experimental) visual mnemonic
devices for learning purposes. For example, in post-order traversal, all children are visited first, so this is
represented as an arrow moving from left child to right child, and then to the root. (For in-order traversal,
the arrowmoves from the left child to the root node, then to the right child. In Pre-order traversal the arrow
moves from the root to the left child, and then to the right child.) Breadth-first search (BFS) traverses
the tree in layers, so a zig zag from root to child represents this process. We are interested in pursuing
research related to these sorts of mnemonic devices.
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Figure 2.9: BST-specific Sketch Gesture in-progress for BFS: top: the user has drawn a zig-zag curve
atop the BST to start a breadth-first search traversal; bottom: the traversal is underway – the algorithm
is now visiting the first row of child nodes (in blue)

Figure 2.10: Stack Sketch: left: the user drags and drops an "8" sketch onto a stack sketch containing
the values 1, 6, 1; middle: the 8 has been pushed to the top of the stack, the user now clicks and drags
downwards to pop the stack; right: the stack has been returned to its previous state
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Figure 2.11: BST and Stack Sketch Interop: The tree currently outputs a record of the operations it
performs. Because the stack can accept any form of numerical or string data, it can display these records
as a history. It can also interact with any sketch in the Chalktalk world that sends compatible data. At the
top of the stack seen here, a remove(5) record indicates that the node with value 5 has just been removed.
When complete, the BST will output information that the stack can use to simulate a call stack during a
recursive algorithm.
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3 | Prior Explorations Part 2:

Exploring Configuration of Mixed

Reality Drawing Surfaces for

Communication; Enabling Surface

Sketching for 3D Spatial (VR)

Environments

3.1 In the Abstract

Here we propose interactions in virtual reality (spatial/immersive environments) in which we

enable seamless switching between kinds of 2D drawing surfaces in 3D space, support movement

of 2D surface drawings into 3D space, and facilitate mutual gaze awareness in collaborative con-

texts around these drawing surfaces[He et al. 2019](figure 3.1). We continue to use Chalktalk as

the research and content platform.
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Figure 3.1: Three Configurations for Mixed-Reality (MR) Communication:
Inspiration for configurations:
1) side-by-side whiteboard brainstorming,
2) daily face-to-face conversations and
3) drafting boards
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Table 3.1: Terminology Table

Term Definition
Content Creation
Server

The content creation server is an external server which takes raw
drawing point data as the input, recognizes the drawing, and creates
interactive objects.

Content Board The content board is the transparent area on which content is dis-
played. The user’s input will be projected to the content board and
sent to the content creation server for processing. Afterwards, the re-
sult will be displayed in 3D in the transparent area.

Configuration The configuration refers to the placement and orientation of users and
the content board with respect to each other.

3.2 Introduction

Virtual Reality and Mixed Reality (VR, MR) are being explored increasingly, spurred by the

availability of high quality consumer headsets in recent years. VR and MR enable rich design

spaces in HCI by providing 3D input and immersive experiences. Decades ago, the "Office of

the future" was proposed to allow remotely located people to feel as though they were together

in a shared office space [Raskar et al. 1998], via a hybrid of modalities including telepresence,

large panoramic displays and shared manipulation of 3D objects. The core idea was that VR/MR

had the potential to enhance communication among groups of people. Since then, significant

progress has been made in exploring techniques for communication [Ishii et al. 1993; Otsuka

2016]. However, less studied is the configuration (see our full definition in table 3.1) of people

and shared manipulable objects in the environment, which may lead to different communication

experiences.

In daily life while speaking to others, we commonly use gestures or visual aids to help present

ideas, either subconsciously or purposefully. Visual aids can be drawn on paper, a whiteboard,

or a screen via video chat. A key task for collaborators is the shifting of focus between spoken

words, gestures and visual aids such as notes and drawings. Smooth transitions in conversa-

tions have been found to be important for collaboration [Buxton 1992]. Prior work addressed
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this with alternative configurations of spaces for communication. Tan et al. built a face-to-face

presentation system for remote audiences [Tan et al. 2010]. ClearBoard [Ishii et al. 1993] created

a shared workspace in which two users collaborate remotely without losing all the advantages

of in-person face-to-face interactions. One such advantage relates to learning. When a teacher

looks away from the audience, Lanir et al. [Lanir et al. 2008] observed that audiences in a class-

room would not focus on the presenter, which might "create a learning environment in which

there is no interpersonal engagement between the presenter and the audience, thus reducing

learning outcomes." We find that personal engagement, such as one-to-one interaction and eye

contact [Insa et al. 2016], in addition to focus shift [Buxton 1992], is therefore relevant to evalu-

ating communication experiences.

Still, it is unclear how the configuration of users and content in an MR space affects commu-

nication for co-located and distant people. We have implemented a multi-user MR workstation to

explore how configuration impacts communication by providing three different configurations:

1) side-by-side, 2) mirrored face-to-face and 3) eyes-free. We conducted a preliminary user-study

of the mirrored face-to-face configuration. Afterwards, we proceeded to user interviews in which

participants spoke about the face-to-face experience, one-to-one interaction, focus shift and eye

contact.

Chalktalk’s content ("sketches") is composed of graphical elements such as point data. 1)

Sketch data are serialized on the Chalktalk client side every frame and 2) sent as a data array to

the Chalktalk server, 3) to the Holojam relay, and then 4) to all Unity clients, where 5) the data are

rendered on content board(s). 6) MR user input is sent back through the pipeline to the Chalktalk

client and 7) translated into HTML canvas mouse events. 8) Avatar synchronization data are also

sent between clients using the Holojam relay.

Some previous work contributed to communication in VR/MR too. ClearBoard allows a pair

of users to shift easily between interpersonal space and a shared workspace [Ishii et al. 1993].

The key metaphor of ClearBoard is “talking through and drawing on a big transparent glass
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Figure 3.2: Data Pipeline
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board.” No gaze or eye contact information is lost while working on the content. ShareVR enables

communication between an HMD user and a non-HMD user [Gugenheimer et al. 2017]. By using

floor projection and mobile displays to visualize the virtual world, the non-HMD user is able to

interact with the HMD user and become part of the VR experience. The work discusses how

people with different devices communicate with each other. MMSpace allows face-to-face social

interactions and telepresence in the context of small group remote conferences [Otsuka 2016]. It

uses custom-built mechanical displays on which images of remote participants are projected, and

which move in response to users’ movements. Pairs of participants can maintain eye contact with

each other and remain aware of each other’s focus. Instead of designing a configuration to fit one

specific communication use case, we provide three different configurations for general-purpose

communication in VR/MR.

3.3 Detailed design and implementation

Three Configuration Designs. We implemented three configurations for communication in our

system: 1) side-by-side, 2) mirrored face-to-face and 3) eyes-free (see figure 3.1). For 1), our

implementation has users facing a content board (see full definition in table 3.1) from the same

side.

For 2), the users are face-to-face in the virtual environment with the content board placed

between them, so that each sees the other on the opposite side of the content board, left-right

reversed as if reflected in a mirror. The challenge is ensuring all the content is consistent for

everyone on each side of the board. Mirror reversal allows, for example, text to be readable

and asymmetric objects to appear correct for each participant. ClearBoard [Ishii et al. 1993]

implemented "mirror reversal" via video capture and projection techniques to solve a similar

problem for 2D displays. Inspired by that, we implemented a 3D immersive mirror reversal for

our MR configuration. We place the users physically on the same side of the content board and
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mirror all other users (from one user’s perspective) to the other side. This way, information such

as gaze and gesture direction is preserved, so participants can know where each other is looking

and pointing (see figure 3.3).

a Person A’s view

b Person B’s view

Figure 3.3: Mirrored Face-to-face Configuration Implementation. Person A is drawing a triangle with
right hand from his perspective, whereas person B sees person A drawing with the left hand. The content
of the drawing appears the same to both.

For 3), instead of writing or drawing in mid-air, users can create content in MR while resting

their arms atop a horizontal surface in the real world (e.g. table), thereby avoiding the potential

fatigue of drawing in mid-air for long periods of time. For this configuration, we now have

two boards in the MR world: a horizontal drafting board used for writing and drawing, and a

vertical board that displays all information to be seen by all people in a group. All content is
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duplicated onto the vertical board. A cursor on the vertical board corresponds to the position of

the user’s hand on the horizontal board. This way, the person using the horizontal board need

not look downward, remaining free to look at the vertical content board and other people. This

allows users to pay more attention to the environment and each other in a shared experience.

The configuration can extend 1) and 2) since we can choose where to place the vertical duplicate

board.

The MR System. Our system comprises 1) a content creation server, 2) an internal network

framework and 3) VR/MR clients (see figure 3.2 for a detailed description). 1) To enable inter-

active content during communication, we chose Chalktalk as our content creation server (see

figure 3.4). Chalktalk is a web browser-based 3D presentation and communication tool in which

the user draws interactive "sketches" for presentation. We designed a generic data serialization

protocol to connect and decouple the content creation server and the VR/MR clients, so alterna-

tive content could easily be plugged in. 2) To ensure communication between different devices,

we used Holojam [Perlin 2016], a shared space network framework designed at our lab. It syn-

chronizes data across devices and supports custom data formats. 3) We implemented the VR/MR

clients with Unity to support multiple VR/MR devices.

3.4 Preliminary Experiment

We completed a preliminary user study on ourmirrored face-to-face configuration, conducted

with 8 participants (F=4) between the ages of 22 and 26 (M=23.71, SD=1.50), recruited via email

and word-of-mouth.

Participants were required to have taken a linear algebra class and to have prior experience

with VR/MR. First, we introduced Chalktalk to participants who were unfamiliar with it to reduce

the novelty effect. Then we gave a presentation on matrix transformations (a concept in the

computer graphics curriculum, see figure 3.4, subsection 3.4.1 using our system in the mirrored
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Figure 3.4: Example Content Board Scenes:
Left: The content board. Right: Screenshot from experiment with matrix presentation.

face-to-face configuration:

For each session, we had 1 presenter and 2 study participants in the audience, all physically

remote. The presentation was repeated 4 times for 8 participants in all.

We ran the experiencewithOculus Rift headsets. Upon completion of all sessions, participants

answered a questionnaire that gauged their opinions on one-to-one interaction [Lanir et al. 2008],

eye contact [Insa et al. 2016] and focus shift [Buxton 1992] during the experience. Participants

then joined a semi-structured exit interview. All factors were evaluated using the 7-point Likert

scale. The study was recorded with users’ permission.

3.4.1 Matrix Lecture for Experiment

To create a realistic presentation, we invited a computer graphics professor to present a les-

son on matrices. He permitted us to use his presentation as the basis for our experiment. We

chose the topic of matrix transformations so participants could see and interact with 3D moving

content. For content within the 3D immersive environment, we chose visualization of the way
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a matrix translates and rotates geometry. During the lecture the presenter demonstrated matrix

transformations, including translation and rotation, by using 3D interactive visualizations from

the content server. Then she showed that matrix operations are non-commutative. The following

lists the steps in the presentation:

1. The presenter creates a 4x4 rotation matrix object and links geometry to it.

2. Modifying the matrix values rotates the geometry in 3D space. Students are invited to walk

around the MR environment to observe from any angle.

3. The presenter creates a second 4x4 matrix for translation, which she composes with the

rotation matrix.

4. To demonstrate that matrices are non-commutative, she shows that by changing the order

in which the translation and rotation matrices are applied, the geometry’s position and

rotation change visibly with the same matrix values.

3.5 Results and Findings

The three main discussion topics during the post-test interviews were "the feeling of one-to-

one," "ability to shift focus smoothly" and "eye contact" (see questions in Table 3.2 and results in

Figure 3.5).

One-to-one Experience Most participants felt the face-to-face experience created a feeling of

one-to-one interaction with the presenter (6/8 agree more than moderately). P1(F): “It felt like it

was a one-on-one lesson even though there was more than one person there. It felt like the person

[the presenter] was right in front of me.” P1(F) contrasted the experience with a college lecture

format in which the lecturer stands to the side, which she considered “more distant.” Similarly,

P4(F) thought it “really felt like a private lesson” and that “It was one-to-one–like we were together

in this.”
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Focus Shift Participants responded differently to the question (Q4) concerning how often

they shifted focus between content and the presenter (2/8 very rarely, 2/8 moderately rarely,

3/8 slightly frequently and 1/8 moderately frequently). Those who shifted focus least often (P2,M

and P4,F) thought the presenter was always in the field of view and felt they did not need to shift

focus while looking at the content. Most reported that they could follow both content(Q3) (5/8

strongly agree) and the presenter(Q2) (6/8 more than moderately agree) well. This suggested that

the focus shift between content and the presenter was smooth to some extent in the mirrored

face-to-face configuration.

Eye Contact Some participants did not always want eye contact. P5(M): “you don’t want the

presenter to be always looking at you.” Others like P4(F) felt it was necessary: “I look at the professor

the whole time. That’s the only way I can pay attention.” Those who preferred less eye contact

(6/8 reported eye contact less than slightly rarely) admitted they felt the presenter was looking

at them frequently, but chose to look at the content instead of the presenter. Participants who

preferred to have eye contact reported having it more often (2/8 more than half the time). This

suggests that our mirrored face-to-face configuration supports eye contact well and that the users

chose whether to make eye contact or not.

Findings Participants also thought the face-to-face format helped them concentrate during the

presentation. Referring to the front-and-center presence of the presenter’s avatar, P3(M) said “I

don’t think I’d be able to concentrate if I was just listening to somebody. I’d need someone to actually

be there.” P6(F) also found it easier to concentrate: “It felt one-to-one, so you won’t be distracted by

other people.” P3(M), P4(F) and P5(M) noted the format also made the experience feel interactive,

“unlike a video.”
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Table 3.2: Questionnaire

Q1: To what degree do you feel it is a one-on-one lecture?
Q2: Is it easy to follow the presenter?
Q3: Is it easy to follow the content?
Q4: How often did you switch your focus between the presenter
and the content?
Q5: How often did you have eye contact with the presenter?

3.6 Conclusions and Future Work

We have presented our ongoing work, a multi-user MR system for communication. We de-

signed three configurations for MR communication and evaluated the mirrored face-to-face con-

figuration with respect to one-to-one interaction, smooth focus shifts and eye contact.

The preliminary study suggests that the face-to-face configuration facilitates a feeling of one-

to-one collaboration. Participants responded positively to being given attention and feeling as

though they were working directly with the lecturer. Positioning the presenter in-front helped

some participants concentrate.

In the near future, we plan to conduct multiple user studies in which we will compare side-by-

side, mirrored face-to-face and eyes-free configurations. Wewill investigatewhich configurations

are best suited to communication experiences involving presentations, group discussions and

collaborative tasks. Additional questions remain to be explored. For example, how does the

feeling of one-to-one interaction change with the configuration of the users and content?
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Figure 3.5: Results for the 7-point Likert Scale Questionnaire
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4 | Moving towards Verb-based

Primitives and Sketching+Speaking

In the initial explorations of sketch-based interaction, we foundways to streamline commands

and manipulate content in 3D that used exclusively sketching and direct manipulation. This was

a good start. However, Chalktalk had a number of limitations (discussed prior) similar to other

interfaces. Namely: 1) all objects, and all sketch recognition glyphs are predefined – which means

the user cannot choose the visual representation for their content. Rather, they must learn the

visual language to produce a prescribed visual representation for an object; 2) All behaviors are

predefined on specific objects – meaning only an object of a given type can perform a specific

operation or animation, coded specifically for that object. This also limits the ease with which

multiple objects can interact with each other, as the user needs to memorize how each object can

connect to other objects to pass data through explicit wires. This was partly remedied with the

introduction of a type system in experimental versions of Chalktalk[Nunes and Perlin 2017], but

an explicit type system starts requiring programming knowledge. Furthermore, the user needs to

memorize : 3) complex behavior starts looking like an explicit programming interface. Creating

relationships and information flows between objects requires that the user create node/wire-like

diagrams between sketches, and prescribes that these diagrams be ever-present and part of the

presentation. This, combined with the need to program using a real programming language in

order to create new behaviors, meant that a "power user" would still need to be a programmer.
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Overall, an expert user would need to be a programmer to build new Chalktalk functionality.

The use case for Chalktalk is at its best when the user knows exactly what they need for a pre-

sentation in-advance, and can program their own library of interrelated drawings. But creating

new behavior becomes infeasible during live presentation.

So Chalktalk, along with interface of a similar nature, helped inspire a different direction. If,

let’s say, Chalktalk relies on "noun-based" primitives that have a predefined interface for behavior,

what if we increased flexibility and reduced predefined behavior by moving to primitives at the

"verb-based" level? Any object can do anything, and if that’s the case, this should remove the

requirement to memorize the behaviors only a certain object can do. By decoupling the visual

representation from the behavior, we could enable all sorts of greater flexibility in manipulating

digital objects. Additionally, in exploring glyph-based commands instead of commands invoked

through radial drags (at fixed locations around a sketch), we realized that we could still do better

than having users memorize strokes to do commands. By using speech, we can simply say what

we want without memorizing a sequence of strokes or button positions. Speech allows us to refer

to objects wherever they are. This greater ease of expression was a promising direction.

Overall, we moved towards speaking+sketching through the process of making such obser-

vations when playing with visual-programming-esque systems like [Little Big Planet 2 2011] and

Chalktalk.

In the next chapter, we give an overview of several more adjacent-works to help contextualize

DrawTalking.
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5 | Related Work

Our research is based on a confluence of advances in interactive computational linguistics /

natural language, dynamic sketching, and multimodal input interfaces using a combination of

speech, sketching, and / or gesture or touch control. The following sections cover a selection of

work in these areas. (Note: there is overlap between NLP and sketching interfaces.)

5.1 Natural Language-Adjacent Interfaces

Systems such as SHRDLU [Winograd 1972]1.3 and Put That There [Bolt 1980] pioneered

the vision of employing natural language to communicate with computers. Thanks to recent

advances in speech recognition and natural language understanding, the popularity of this in-

teraction modality has exploded, and has been used in a wide range of domains. For example,

VoiceCut [Kim et al. 2019] and PixelTone [Laput et al. 2013] allow users to speak short phrases

or sentences to perform desired operations in image editing applications. DataTone [Gao et al.

2015] and Orko [Srinivasan and Stasko 2018] enable users to explore data visualizations using

natural language queries. These systems extract corresponding commands and parameters from

users’ imperative natural language expressions and perform the desired interface operations to

find information. [Siddiqui et al. 2021] also provides a multi-modal system for query visualization

search, via sketching, natural language, and/or a visual regular expression language. However,

these systems operate on specific commands directed to the machine. [Fraser et al. 2020] extends
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the idea of using speech as a selection or query mechanism to help find and sort information, the

former for a data exploration use case, and the latter for searching for tutorial material fluidly

with little to no diversion from the task. We similarly use elements of language semantics to

form queries, but the query is given as a subset of regular English, and we specialize it to help

the user perform commands on a large number of simulated (and changing) objects and interface

elements in-parallel. These queries also provide context-sensitive information to commands to

trigger a wider range of behavior. So since an English sentence can encode an unbounded num-

ber of operations, the result is not only a find/selection operation or single operation, but several,

which comprise an entire impromptu script on an unbounded number of objects. In short, we

extend the metaphor of a query-select to create running parallelized programs for interactive

simulations and animations from spoken language. Along with these graphical programs, the

user can interact with the system to play with the behavior of the world as it runs. This means

the interface also offloads the task of controlling many elements at once to the machine while

still giving the user control at-will.

In contrast to the command-centric natural language expressions, prior works have explored

leveraging descriptive natural language expressions for content generation and interfacemanipu-

lation, which is closer to what this thesis envisions. WordsEye, for example, maps word semantics

to the spatial and graphical properties of 3Dmodels to create 3D scenes and animations from text,

but the scenes are static and for the most-part, non-interactive [Coyne and Sproat 2001], whereas

the thesis is concerned about making interactively controllable elements rather than generating

all scene content. CrossPower enables users to navigate, select, and compose linguistic and orga-

nizational structures in the text to generate corresponding graphics layouts and animations [Xia

2020]. CrossCast employs heuristic-based algorithms to identify key entities in the transcripts

and retrieve corresponding images and maps to augment audio travel podcasts [Xia et al. 2020].

Lyons et al. explored utilizing conversational speech among users as dual-purpose speech input

to the system, where words can trigger corresponding interface actions in the background [Lyons
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et al. 2004].

Other works including Drawmatic AR [Chang 2020] use NLP to create playful interactive

story-writing experiences. StoryCoder explores teaching programming by incorporating a ma-

chine assistant [Dietz et al. 2021], and a later variant uses a blocks-based language [Dietz et al.

2023]. DrawTalking avoids anthropomorphisation of the machine in favor of letting the user

narrate while sketching, with the machine operating as an interface listening in the background

for user input. We also do not use an explicit programming language, and rather give the user

have programming-like control through narration of a subset of English alone. The experience is

different from those involving communication with an assistant. In DrawTalking, the user causes

effects in the system using the computational power of the machine. This contrasted with speak-

ing with a third-party agent to delegate or collaborate on work.. We wanted DrawTalking to feel

like it was a tool extending the user’s individual language.

[Subramonyam et al. 2020] is a digital tool supporting the user in active diagramming: the

idea of formulating and drawing while reading to develop connections and understanding of the

text through iterative diagramming. (The system uses pen+touch for drawing and manipulation,

and natural language understanding to provide suggestions.) Like this work, we explore a con-

nection between language and visuals, but whereas texSketch specifically supports one known

effective textual-visual annotation task for learning, we use speech + speech (semantics) and vi-

sual/language connections to introduce new interaction techniques, in support of several general

creative open-ended activities for sketching, design, game-prototyping, and interactive simula-

tion. We also more broadly introduce a way for users to express their intent to the machine

transparently using language semantics and spoken word, within general interactive interfaces

connected to natural language, AI, and computational capabilities. So the visual-linguistic con-

nections act as a translation layer between user interactivity and computation.

We share a similar and complementary philosophy for design with [Xia et al. 2023]. We

focus heavily on user-first and user-control-based design. The semantic context of the user’s in-
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put and interaction can be used to drive the application and inform the machine of the user’s

intent to provide for a more fluid and natural experience. This can help the machine give the

user suggestions for how to complete operations. Crosstalk specifically explores the space of

semantically-enriched documents and video conferencing for live communication, and proposes

an architecture for more user-aware systems and filesharing. We focus more on the interactivity

loop within live sketching and creation of simulations where the domain isn’t known in advance.

Our interaction techniques are a proof-of-concept for how a user-in-the-loop interactive archi-

tecture could support live ideation and creation of multiple simulations and interactions through

a form of programming via speech semantics. In a sense, our project could represent a methodol-

ogy for prototyping domain-specific Crosstalk-like interactive systems through improvisational

sketching and speech as one might do while narrating or explaining concepts and ideas at a

whiteboard.

5.2 Dynamic Sketching Interfaces

HCI researchers have extensively explored sketching interfaces for dynamic and interactive

visualizations ever since the first graphical user interface (GUI) SketchPad[Sutherland 1963]1.1

and the forerunner of the visual programming language [Sutherland 1966]1.2. Most of these

works have thoroughly explored direct manipulation and sketching techniques for illustrated

animation, UI, and visual-oriented programs [Davis et al. 2008; Kazi et al. 2014a,b; Landay 1996;

Saquib et al. 2021], programming-by-demonstration [Leiva et al. 2021], and visual programming-

meets games [Resnick et al. 2009] and drawing tools [Jacobs et al. 2018] as interaction methods to

craft interactive behaviors. "Rapid Design of Articulated Objects" [Lee et al. 2022] contributes an

intuitive set of multi-modal interactions to prototype rough sketched models and key-frame ani-

mations of 3D articulated objects (joints, hinges, etc.) using 2D multi-touch and pen techniques.

The process is not meant to be for real-time use, however. It’s for expert artists wishing to make
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an artifact.

Researchers also explored supporting development of pre-programmed simulations and do-

main specific behaviors to craft interactive diagrams. In Chalktalk, for example, the system

uses sketch recognition to map users’ hand drawn sketches into corresponding dynamic, pre-

programmed behaviors/visualizations [Perlin et al. 2018b]. More domain-specific tools like Math-

Pad2 [LaViola and Zeleznik 2004], Eddie [Sarracino et al. 2017], PhysInk [Scott and Davis 2013]

and SketchStory [Lee et al. 2013] use hand-drawn sketches and direct manipulation interactions

to create interactive simulations in physics, math, and data visualization.

5.3 Programming-Like Interfaces

Although plenty of speech and NLP-based systems exist that sometimes incorporate an ele-

ment of sketching, none quite captures the idea of embedding information directly in our draw-

ings. For NLP interfaces, most assume the machine-as-an-agent model or specific commands

specialized to a particular domain. The closest among these works is [Lyons et al. 2004] since

it processes speech indirectly. For sketching, you see either a focus on the drawing aspect or

high level controls of specific features using speech. The project proposes to take some of the

existing ideas, but integrate them with the concept of a natural interface that doesn’t necessar-

ily know what content the user wants to create ahead of time (i.e. supports spontaneity and

iteration using narrative), and doesn’t take the role of a third-party agent. Furthermore, the cus-

tomizability and flexibility of such a more general interface implies a need for programmability.

We have also looked into real-time world simulation systems and programmable environments

such as the SmallTalk programming language[Goldberg and Robson 1983], Scratch [Resnick et al.

2009; Maloney et al. 2010], Improv [Perlin and Goldberg 1996], ChalkTalk[Perlin et al. 2018b], and

creative world-building games like the Little Big Planet series [Little Big Planet 2008; Little Big

Planet 2 2011; Ross et al. 2012] and Dreams [Dreams 2020]. These encourage interactive building
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of scenes, games and stories. They combine with elements of interactive visual programming

and drawing/sculpting with many types of content (2D, 2.5D, 3D, images). But all use explicit

interfaces for programming or programming-like functionality (nodes, wires, text).

The final project, DrawTalking, departs from explicit UI for sketching+programming-like ca-

pability. Instead, it largely replaces many programming-like functionality with the use of lan-

guage. Our direction explores the use of verbal, descriptive story narration together with other

input modalities (i.e., touch and pen input) to create animated and interactive graphics through

sketching.
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6 | Formative Steps

Our first step was to arrive at a set of design goals to inform the development of interaction

techniques and a prototype interface. To scope our project, we decided that this interface would

be for 2D sketching on a tablet akin to digital illustration and whiteboarding, so as not to distance

ourselves too much from what people were used to.

To do this, our process followed three tracks: 1) an informal search for examples of live and

pre-made sketch-based content to get a general sense of how people speak and sketch; 2) running

formative sketching + speaking design exercises to learn how people behaved and what content

they made when improvising stories over live sketches; 3) identifying technical requirements and

limitations we’d need to account for.

6.1 Sketching + Speech Content Exploration

To get a sense of the relationships between speech, text, and drawings, and to find examples

of content that people created, we conducted an informal (non-exhaustive) search for example

content online. We looked for examples that involved creating (or showing) rough sketches while

speaking, e.g. from popular video channels and educational course recordings. We looked at live

sketching (e.g. whiteboarding style) and produced/prepared videos that had a rough-sketching

aesthetic. In general, we looked at popular educational videos that featured content with the

appearance (actually or scripted) of improvised sketching. (6.1, 6.2 show samples.)
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Figure 6.1: A subset of existing prepared sketch-related content we explored for inspiration
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Figure 6.2: A subset of existing live-performed (bottom) sketch-related contentwe explored for inspiration
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We observed 1) the use of textual annotations placed near sketched-objects they should refer

to (for persistent identification or description of behavior). These were semantic labels that de-

fined the names and properties of the sketches. 2) narrators tended to point to objects roughly in

the order they mentioned the objects (in cases when the cursor or speaker’s hands were visible).

As for the type of content created, almost every sample we observed had unique representa-

tions of concrete objects depending on the style and taste of the author, regardless of whether the

sketched elements were abstract and cartoon-like or more commonly-used. Sans common dia-

grammatic elements and symbols, key point: the author (the one who sketches or narrates)

appears to control the representation of the objects.

As for what narrators described, to reiterate, when referring to objects on-screen, narrators

would name objects, refer to existing objects to draw attention to them, and define hierarchies

and relationships between objects. In short a key point: sketched presentations and content

implicitly encoded a hierarchical object model describing entities and the relationships

between them, as well as ways to refer back to them.

As for what was not described, although narration was used to explain or clarify the content

on-screen, but not all content (such as additional animations in the case of produced-content or

additional details) and not all narration mapped to each other. In other words, there is content

that doesn’t necessarily have a relationship with speech/narration, and there is content that the

speaker doesn’t consider necessary to represent, sometimes unpredictably. Key point: That

means that the combination of language and visual content is important, not just one

modality or the other, as we can only represent the complete picture with both inter-

twined.
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6.2 Drawing+Talking Informal Exercises

We conducted informal exercises with 6 participants to observe casual sketching + speaking

process with little to no preparation. This would inform design goals. We also wanted to source

some inspiration for content, and observe people’s use of existing drawing tools to try uncovering

pitfalls. This resulted in design goals and some technical requirements.

We invited 6 participants P1𝑖𝑛𝑖𝑡 -P6𝑖𝑛𝑖𝑡 , each with some experience with sketching-out ideas

and designs for school or work. e.g. concepts, storyboarding, project/presentation sketching for

game design.

Each participant was asked to think of 1 personal topic (or 2 based on availability) they would

feel comfortable narrating while drawing with freehand sketches. We wanted participants to be

casual and conversational for these exercises. Allowing participants to choose personal topics

was ideal to achieve this since it did not require them to rehearse or care about adapt another

person’s work accurately with visuals.

Note: we discovered it was easier to ask for personal stories only through experiment. We

asked P1𝑖𝑛𝑖𝑡 to try sketching-out an existing content while narrating: first, a fable , and second,

the water cycle process. We found the participant was distracted trying to follow the story and

match the visuals, or illustrate precisely. This made their process unnatural. After P1𝑖𝑛𝑖𝑡 , we only

asked for personal stories.

We suggested general topics for sketching-out: e.g. personal project, hobby, or recent event.

Participants used their choice of tools during the session (eg, MS Paint, Notability, basic tools in

Photoshop), but we only allowed basic color selection and transformations to keep participants’

use of their tools roughly at the same level of functionality.

6.2.1 Results / Observations

Participants had their own personal styles of rough sketching, but generally followed a
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simple-stylized approach with playful characters and props.

The scenes drawn were:

P1𝑖𝑛𝑖𝑡 a bird-watching trip. (The most complex, shown here: 6.3)

P2𝑖𝑛𝑖𝑡 (1) caring for a pet cat (2) a game design project;

P3𝑖𝑛𝑖𝑡 (1) old hobbies in school (2) research project;

P4𝑖𝑛𝑖𝑡 (1) learning about a hearing issue (2) finding a room-mate

P5𝑖𝑛𝑖𝑡 (2) dancing experience, (2) UX project

P6𝑖𝑛𝑖𝑡 (1,2) research projects.

The following discuss categories of observations across the content search and the

exercises: Content Style Sketches were drawn according to the way users think they should

look, not how they might look in reality. So users are in control of the representation of

their content and how it should be named.

Minimal precise temporal synchronization of speech and drawing: In the content search and

exercises, people do not tend to synchronize their speech exactly when drawing specific objects

(or if they do, the delay between actions is unreliable. In fact, we created an early technical

demo in which the researcher tried labeling objects with text spoken during the act of drawing

the objects. However, the experience was stressful and inaccurate. Even the researcher felt dis-

tracted by worrying about timing their speech, and / or failed to label objects reliably due to the

de-synchronization of their drawing and narration, however slight it was. This served as a san-

ity check not to rely on exact timing to label objects or do operations. ); however the order in

which people mention sketches verbally usually will correspond to pointing and sketching ac-

tions[Oviatt 1999]. This means we can use this ordering property with respect to speech
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Figure 6.3: Formative Design Session P1 Final Image This result inspired the feel of the project most
among them all for its use of visual "scene setting" within a single canvas and several abstract elements. 1)
Inline text establishing the name of the "story", 2) drawing of Toronto (city) to set the scene, 3) section of
forest to indicate movement in the story to another scene in nature, 4) bird with arrows indicating abstract
location information (on a tree, in the forest) — note the spatial relation is not physically accurate, 5) final
detailed location by a pond where P1 describes themself watching ducklings, 6) 200 photos took by P1

to let the user map semantics to objects in sequence, but temporal synchronization is

unreliable.

Drawn versus non-drawn spoken content: (For both content exploration and the exercises)

Participants did not draw all of the elements they described–only selectively. These tended to
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be objects representing characters or core ideas and objects. This means we can’t assume it’s

desirable to visualize everything someone says.

Speed and Flow: (For both content exploration and the exercises) People operate at many

different speeds when drawing and talking, and especially more slowly when for more detailed

drawings in real-time. People will unpredictablymove back and forth between sketches as they’re

iterated on. This means that we can’t force people to use a specific speed or cadence.

Modifications to content in the scene: For the exercises, a participant would usually multitask

and refine their sketches over time after initially mentioning the entity. They would add details

and annotations as they became relevant to the next part of their explanations or story, or as

time permitted as they were thinking about what to do next. For example, P1𝑖𝑛𝑖𝑡 added colors

to their gray bird and pond sketches as they described their experience at the scene. Because

they weren’t preoccupied with drawing the next thing, they went back to add more detail to

the existing elements they didn’t think to add before. Additionally, the participant might make

verbal corrections ( e.g. P1𝑖𝑛𝑖𝑡 initially called a "pond" a "lake," but self-corrected verbally. This

self-corrected was also common for live improvised talks. In other words, it is natural to misspeak

sometimes. This means that 1) speech errors are natural in real-life. We should assume

users will make errors in their speech, so we ought to provide ways to correct it. (Errors

are not just an artifact of speech recognition [Suhm et al. 2001].). 2) Users’ intent might

change frequently. They should be able to update their content with new or changed

information as they iterate or elaborate their ideas.

Spatial Relationships Are Abstract: Usually participants used their drawing canvas as an in-

finite space without regard for precise physical distances, positions, or spatial coherence. For

example, P1𝑖𝑛𝑖𝑡 ’s drawing comprised different sub-sketches representing different locations and

story beats flowing from one to another, as if in a picture book. P2𝑖𝑛𝑖𝑡 drew a world map on which

they annotated locations they visited over time in their telling of their story, but this map was

not-at-all to-scale. Furthermore, most elements in the sketching exercises had no spatial relation-
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ships between other objects (e.g. P3𝑖𝑛𝑖𝑡 drew independent objects representing different hobbies

and P4𝑖𝑛𝑖𝑡 drew different scenes without relating them spatially to each other). Sketched objects

often represent little scenes and vignettes corresponding to the narrative, rather than a precise

spatially-consistent scene. So spatial relationships between sketches are abstract and based

on the semantics or the user’s narrative, rather than related to physical locations.

Use of in-line text and semantic annotations: Perhapsmost critical, like in the content search,

participants would sometimes label their objects with names or use in-line text to describe ele-

ments in the screen for them to reference later. Pointing or proximity to sketches while using

deictics also acts as a way to refer to objects (as observed in content recorded with cursors or

speakers’ hands.) In the content exploration, where the purposes of the talks and videos were

primarily educational, this was especially the case. This is also consistent with the way sketching

in-design uses labels to mark what elements mean [Agrawala et al. 2011]. In short, semantics are

associated with sketches in many ways, including through narration, or explicit text labels. The

natural association between spoken language, text, and sketches inspired our our main

interaction technique.

Interface Complexity Reduces Fluidity Participants used a wide variety of tools with ranging

complexity (MS paint, Adobe Photoshop). To counteract this, we instructed participants to use

only basic pen/pencil, erase, and transform tools. However, most participants were casual users,

not experts, so we had a secondary opportunity to observe what workflow issues they might

encounter. There was one main pain-point that seemed to impact all participants: forgetting

where a UI element was to change program state (e.g. switch erase and draw tools), or finding it

too slow to find a UI element due to it being nested in the interface’s hierarchy. This would lead to

mistakes or interruptions in flow. This means our interface should have a simple design

that tries to maximize spatial locality of UI elements with little nesting. A "perfect

design" is not a main contribution, but we wanted to be careful not to overshadow any

learning curve of our interactive techniques with avoidable pitfalls in the UI. So we took
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care to keep most UI buttons and panels in our eventual interface accessible at the top

level to reduce the learning curve of finding them later during testing.

6.3 Design Goals

We derived design goals below:

D1 User Choice, User-Specified Intent & Minimal System Assumptions

Users should be in control. For general abstract, freehand sketching, their imagination

and preferences determine sketch names, properties, behaviors, and representations. The

machine should assume as little as possible and should not infer. Rather, it should defer to

the user and receive the user’s intent as input to give the user greater capability through

the medium.

D2 User-ControlledAssociation between Sketches and Semantics People associate seman-

tics with sketches via verbal narration or textual labels. Interactions should be designed

around letting the user take control of this process.

D3 Flexibility &Mutability Users should be able to try out many different ideas and be able to

modify their sketches at any time. This is because users do not always have a clear outcome

in mind. Their intent and ideas change as they figure out what they want to say and do in

an iterative process. Do not assume the user’s narration has a correspondence with all of

the visuals.

D4 Fluidity of Operations Operations should be able to happen in almost any order, without

requiring precise timing or synchronization of speech and direct manipulation, to support

many different speeds, preferences, and ordering of operations.
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D5 Error and Ambiguity Tolerance Users might misspeak or change their minds, meaning

we should provide multiple ways and opportunities for users to self-correct, refine input,

or resolve ambiguity, regardless of whether it’s the user’s error or the machine’s. The

system should support multiple ways to correct language input if speech fails. For example,

keyboard input, or manipulation of visual UI for alternatives or fallbacks.

D6 Multiple Content Types People use freehand sketches, glyphs, text, and labels. Support all

of these representations.

D7 System Transparency Users should easily be able to know what state the system is in and

what the system understands as the user’s intent.

D8 Complementary Input Channels Language and direct manipulation inputs should have

clear and complementary roles in the interface.

D9 Sketches Are Semantic Worlds Sketches are objects with semantic properties within the

user’s own world. Language encodes structured information defining names, behaviors,

and relationships. Using semantic structures goes beyond simple keywords. We want to

explore several ways to use the semantic structure creatively.

D9.5 Semantic Structure Encodes Spatially-Independent Selection and Search We ob-

serve that language can refer to objects that aren’t visible or which do not exist. That

makes language a powerful spatially-independent query system for selecting and search-

ing for objects.

D10 Fuzzy Spatial Relationships Provide a way to encode relationships independent of posi-

tion in the world. Sketches are often positioned on the canvas arbitrarily, irrespective of

spatial relationships such as "inside of," sometimes due to constraints in the drawing space

or due to choice.
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6.4 Additional Content Scoping

In this project, we wanted to focus on the interactions with simple freehand drawings. How-

ever, the subject-matter was important. We decided a goal was not to force domain-specific

knowledge on the user of our eventual tool. So rather than take a specific topic from our content

search (e.g. science), we focused on the general look and feel of the content and the actions il-

lustrated. To complement the existing material we found and the results from exercises, we also

looked at storybook illustrations e.g. Aesop fables [Aesop and Winters 2023]. These traditional

stories oftentimes involve dialogues or descriptions of anthropomorphic characters in a handful

of simple setpieces. Although the quality of storybook illustrations was higher than something

that might be drawn live, they were similar to video educational or story content. We also ob-

served that while sketching and speaking, the content that participants drew would oftentimes

result in a grouping of objects, vignettes, and scenes similar to what one might find in a story-

book, so it made sense to look at these as well. Overall, across our content search we see that

people generally stick to simple freehand sketching, and where there is animation, simple non-

physically-based movements such as translation, rotation, scaling, and teleportation suffice to get

ideas across – even in content focused on physics education. This means that in sketch-based

interaction, users seem to prioritize getting rough ideas across with simple visuals and

animations coupled with more descriptive narration, rather than visual fidelity.

6.5 Additional Inspiration from Games and Visual

Programming-Like Systems, and Technical Motivation

The end-goal of this project, in-part, is to support a form of natural world-building, which

has connections with our existing world-building and programming interfaces.. How do these

relate to the use of semantics and sketching? At a high-level, game engines and visual editors

63



facilitate a form of sketching and blocking-out of spaces, interactions, and mechanics. Although

these are not immediately similar to 2D freehand sketching, many of these tools are built with

non-programmers in mind – artists and general audiences – specifically for trying ideas-out very

quickly without complete knowledge of programming. It’s useful to understand the designs of

these systems because their goals are complementary. A common interface paradigm is the node

diagram flow in the spirit of [Sutherland 1966]. One can find variations of this style of visual pro-

gramming in production tools as well as programming interfaces for wide audiences, including

children. For example, have adopted these diagrammatic visual scripting systems to enable rapid

iteration of effects, animations, and designs by non-programmers within a running game simu-

lation environment. Game-like programming interfaces like [Resnick et al. 2009] are particularly

relevant to us because – arguably – they’re focused not only on creating an artifact or product, but

also on the user’s progress towards learning programming. They’re environments for learning

through play. Scratch, in this case, mixed a canvas designed for 2D sketches and images with a an

explicit programming interface. It took the ideas behind the programming language SmallTalk

[Goldberg and Robson 1983] and made them visual to support sketching of simulations via pro-

gramming. Similarly, user-generated content games like [Little Big Planet 2008; Little Big Planet 2

2011] followed the same Smalltalk-like tradition (down even to the use of message-passing-based

object-oriented design) to turn programming into the exercise of making a simulation, story, or

game. (However, LBP used circuit diagrams and wires rather than block programming). A couple

of observations: 1) Programming in these interfaces (when you dive into how they work) involve

creating textual labels to name objects and their attributes, or specify behavior upon events such

as collisions between objects of specific types. The blocks or node-based scripting represent func-

tions that define the behavior of these objects, and within these interfaces, the user can also label

scripts to invoke them later. Wires between nodes Scratch and LBP (and Unreal, and Unity) nat-

urally require the user to assign some form of semantics to the entities in the game. 2) Most of

these interfaces give the user a running simulation to play with in a flexible way, either in safe
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editing modes or during play modes in which all objects are alive during a physics or animation

simulation.

We begin to see that these interfaces already have useful constructs for thinking about what

interactions between language and simulations might look like. We see the use of language se-

mantics, as well as hints of sketching. However, since we want a natural interface that could

extend our language, a major problem here is that the interfaces are explicit. The programming-

specific elements (as opposed to the content being manipulated) take space, are time-consuming

to use (due to the navigation of menus), and still amount to programming with explicit textual

(or diagrammatic) structure. Using an explicit structure means the user needs to find elements in

the UI or their program within space, which takes time.

If we want to extend our language using simulations, then, we need to start thinking about

interfaces that could feasibly be transparent and work anywhere regardless of location. i.e. it

shouldn’t take space away from the content, and the user should always be able to access elements

of the interface or program from anywhere. This contrasted with textual programs and node

diagrams or deeply-nested UI (which have visual structure).

One way to solve the problem would be to compile a more natural input into these diagram-

matic representations behind-the-scenes to achieve similar effects i.e. defining entities, entity

relationships, rules, behaviors, and running programs.

In this way, it also makes sense for us to use speech (or text) as a natural input, as language

can encode complex logical, relational, and hierarchical structure through simple sentences, and

it doesn’t require a visual representation at all to store that encoding. Language, however, can

be visualized as text, meaning speech input is spatially-independent, yet flexible enough to be

transformed into other more structured representations. In other words, we’re providing an al-

ternative framing for our motivation: this is a UI-input and visualization simplification problem.

Hypothesis (from a programming language perspective) People can in theory learn

to program sketched-based simulations using just speech and directmanipulationwith-
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out perceiving a reduction in capability. Rather, they should perceive a simplification

of the user experience which could still be comparable to existing interfaces in terms

of capability. Because these forms of inputs correspond to how we narrate and explain things

in real life, we hope for this to be an example of a natural interface that people believe will be

useful in the future.

6.6 Iterative Design & Development Methodology

Following our formative steps, the design, development, and testing of DrawTalking under-

went many iterative steps. We took a continuous feedback approach in which we frequently

asked for feedback on aesthetics, mechanics, and use cases of the system during informal con-

versations. Among the audiences we contacted for feedback were HCI practitioners, computer

science professors, art, design, and computer science students (undergraduate- and graduate-

level), software engineers, and friends and acquaintances. We also conducted pilot test-plays of

our system. As necessary for clarification in the following sections, we report any feedback that

led to significant changes or insights. (We choose this format since feedback occurred over a long

period of time and couldn’t reasonably be traced to one specific version of our system.)
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7 | DrawTalking - Design and

Interaction

7.1 Workflow

In DrawTalking, the user sketches freehand on a digital canvas, and simultaneously speaks

to narrate. Speaking can serve the dual-purpose of explaining concepts or telling stories to an

audience, and as a way for the user to tell the system the semantics of their drawings – what

their names, properties, and behaviors are. By narrating, the user controls the semantics that

they want embedded into sketches as labels. Because the user does this labeling of sketched

objects with names (nouns) and properties (adjectives), the system knows what the objects are.

Then, the system can use the full semantic structure of the user’s speech (looking at nouns, verbs,

adjectives, adverbs, etc.) to understand what the user’s intent is, which objects to find and select,

and which commands or animations to run on sketches or the interface. The end visual result

is a simulation of the user’s narration in the form of animations, relationships, and automated

events between sketches. This comes from the semantic structure and logic in the user’s spoken1

input. The user fully-controls what part of their speech is used for control of interactive elements,

and what is pure narration. As a result, a recording of an expert using DrawTalk will look like a

whiteboard presentation using narration and drawing, but animation and simulation appearing
1or if preferred, typed
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to come from the user’s words. The user, meanwhile, creates and manages complex scenes via a

fluid workflow, and with speech commands that tell the machine how to automate the behavior

of many elements at once. By enabling the user to express intent in simple terms though language

and primitives, our approach achieves several of the criteria for expressive interactive systems

(i.e. the interface achieves expressive reach, power through recombination [Olsen 2007]). It has

the potential to empower wider audiences to create, play, and express themselves through simple

combinations of rough-sketched animation and simulation with speech.

The DrawTalking environment couples language and drawing input as a way of facilitating

a fluid and open-ended experience. It tries to combine everyday sketching and narration, while

transparently augmenting our creative and thinking process with many of the capabilities of live

programming.

For this project, we focused on achieving playful exploratory scenarios that the user sketches

in real-time while using multimodal controls. The user can speak full sentences using simple pre-

defined verbs that can be composed, sequenced, timed, repeated, parameterized with adjectives

on nouns or adverbs, or infinitely looped as part of ongoing interactive simulations. (see Ap-

pendix for supported vocabulary). Alternatively, the user can create rules that are invoked when

events occur in the future e.g. collisions between types of objects. The workflow is flexible. One

possible workflow might be to (1: define) draw and label all objects (using either deixis ("this" /

"that" / "these" / "those") or direct linking between words and objects), and then describe rules to

describe their behavior, (2: control) speak a story to direct the sketches to perform animations

and behaviors, and also influence, movement, and transformations of sketches deliberately with

direct manipulation, (3: observe) watch events unfold as sketches interact with each other due

to the prior labels and rules. The user can do any of these steps in any order to change labels,

rules, and content, and refine their interactive scene. So although it’s possible to stage all content

ahead of interacting with the scene, the user can choose to experiment with different outcomes

without knowing what exactly they want in advance. Insofar as the user has labeled sketches
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with the desired semantics, they can modify anything at any time. Whatever semantics and rules

are currently set influence the simulation at-present.

Another possible workflow might be to draw everything with no labels. Using speech com-

mands or the transcript, the user can easily label them in-post.

This way, we facilitate a creative process over the course of using DrawTalking. The output is

dynamic and responsive to the user’s particular exploration of the vocabulary and the combina-

tions of objects and properties in the scene. This results in an environment in which immediate

visual feedback and planned-out interactions are both possible within the same interface – which

means the user can be exploratory as well as decisive, and the user has a choice in affecting output

directly or letting the machine control some interactions automatically (6.3 D1).

Scenarios can be wide-ranging. We will show a variety of examples to showcase our approach

for creating interactive visual and computational mechanisms. All use rough sketching and lan-

guage controls to create interactive animations, simulations, and game prototypes from scratch

using the primitives in our interface.

7.2 Interface and General Controls

DrawTalking (7.1, 7.2) consists of multiple interactive regions and associated buttons. The

components together enable the user’s workflow. 1) a drawing canvas, 2) a pen toolbar, 3) a

transcript view (a scrolling live speech/text transcript), and 4) an independent scrollable picture-

in-picture (PIP) for a semantic diagram view – for displaying the machine’s understanding of a

command alongside selected objects –for transparency and editability. The user first confirms

(stages) a command based on the text in the transcript (using the speech confirm button), which

displays the semantic diagram view, and then the user confirms again. A key point is that the user

can choose to cancel the operation if the diagram is somehow wrong, or change the command to

select other objects. The same goes for the text transcript, which lets the user sub-select text to
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Figure 7.1: The initial state of the canvas

create different commands, or discard text if the user does not wish to use their speech so far.

The overarching workflowmight be to draw and name objects while speaking, and to confirm

commands using the transcript view and diagram interface elements in-between. The combina-

tion of multitouch and stylus inputs helps achieve fluid controls.

We choose to give the user the full control over a result before committing. The behaviors

in DrawTalking can have immediate lasting side-effects that would be disruptive if performed

by the machine automatically, or if the user wanted to be more careful and deliberate. However,

the user can choose to ignore these steps and run their command. The diagram will telegraph if

there is a critical error (not being able to find objects) and in these cases, the user simply must try
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Figure 7.2: Interface with an example of a staged speech command. "The character jumps on the
platforms" selects the sketch labeled "character" and all sketches labeled "platform" in the scene. The user
will confirm this command with the language action button (top-right), which will cause the character to
jump between all of the platforms.

again. In-practice, the less ambiguous the user is in their speech – i.e. more precisely referring

to specific objects, the more they can be confident enough to execute operations immediately.

Please see the essential overview of each region in figure 7.2.

The user coordinates freehand drawing and narration via pen and multitouch.

All operations are performed via a sequence of 1 or more unimodal or multimodal pen and /

or touch inputs . Holding an object while tapping another with the pen generally means to use

the object for context, and the pen selection will invoke a unique operation. In general, touch
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manipulates, pen draws, and pen+touch combinations do context-sensitive operations.

7.3 Sketching

2D sketching in DrawTalking occurs on a simple interactive 2D canvas with standard multi-

touch and stylus controls for direct manipulation (e.g. [Hinckley et al. 2010]). The canvas is

infinite in size2 and pannable, rotatable, and zoomable via multi touch(See figure 7.1).

7.3.1 Sketch Object Creation and Manipulation

A freehand sketch is represented a collection of one or more strokes3, which together repre-

sent one semantic entity, or thing, that occupies part of theworld with its own collision boundary

(6.3 D9). Treating sketches as entities lets the user select, transform (move, rotate, scale) or at-

tach sketches to other sketches as part of a scene hierarchy – via direct manipulation. It also

lets the system treat individual sketches as uniquely identifiable objects with their own semantic

properties – i.e. names, attributes, collision event triggers and responses.

7.3.1.1 Other sketch types

It is useful to support inline text and numbers within our drawings (6.3 D6), so the interface

supports these these. They behave the same as freehand sketches, but lack strokes. Instead, text

sketches are simplymodifiable text, and numbers represent values onwhichwe can performmath

operations through speech commands, direct manipulation, and interactions and events between

objects. Number objects can be treated as counter variables and checked for inequalities.
2within computational limits
3geometry, not rasterized in our case
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7.3.2 Sketch Selection and Editing

When a user first draws on the canvas with no sketches selected, they create a new sketch

(with its own unique identifier) with a bounding collider. To select a sketch andmake it active, the

user simply taps on it.4 This also shows a highlighted bounding collider around the active sketch.

Subsequent pen operations add or remove strokes local to the active sketch, depending on the

currently-selected tool. (If no sketches are selected, the eraser deletes the full sketch including all

of its strokes if tapped by the pen.) 5 To edit another sketch, the user must de-select the current

sketch by tapping the background (or reserved zone) and then tap a new sketch. The user can

select multiple sketches at-once (one-per finger) to move, rotate, and scale them individually.

Only the active sketch (with a dark/thicker bounding box) is editable with the pen, however.

Lastly, if a user wants to create several single-stroke objects in-succession: a shortcut is to hold

the currently-active object with a finger, and to draw somewhere else on the canvas. This will

create a new sketch and make it active even if an existing sketch has not been de-selected.

7.3.3 Semantic Labels

Each sketch is also a collection of semantic labels, embedded by the user’s speech interactively.

Labeling of sketches is key to specifying the correspondence between the visuals and entities

referenced in the user’s speech. These labels provide information about what the user intends

objects to be, without requiring the objects to have a specific visual representation. The system

uses them identify what objects to select and how to perform operations or drive behavior based

on the objects’ labels. The labels function as dynamic type information 6, meaning the user can

define rules and behavior on any sketch at all that shares specific labels. The user can add or
4if multiple sketches overlap at the selection, the sketch with the smallest size will always be chosen (because we

assume the user could have selected a larger sketch outside the smaller area.
5We found through pilot-testing that if we used the common method of adding strokes based on what the pen

overlapped, the user would accidentally create new objects they intended to be part of the same semantic thing. The
final method keeps the same object selected until explicitly de-selected, which we found was less error-prone.

6as in, programming language type system types
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remove labels at any time via speech or direct manipulation: 1 or more nouns (defining names

for the sketch) and 1 or more adjectives (with optional adverbs) defining attributes and attribute

values. This mapping only needs to be done once per sketch, and thereafter, the system can

operate on these sketches when processing the user’s narration.

By default, all labels are displayed by a sketch (as often is the case on a whiteboard), but this

can be disabled.

For flexibility and fluidity (6.3 D3, D4)), at any time the user has 2 main user-initiated7 ways to

perform this mapping between sketches and semantic labels (as discussed in D2): either through

1) verbal deixis combined with touching or pointing to 1 or more sketches or 2) linking sketches

with textual labels 7.3. (For further flexibility, it’s possible to assign labels to sketches up-front

to reduce multi-tasking later, or defer until later if the user refines the sketch.) Note that there is

no constraint on which labels can be assigned to which sketches (D3). Labels appear underneath

their associated sketches. Labels’ visibility is toggleable, and to remove a label, the user long-

presses it with touch. Removing a label essentially changes the identity of the sketch and gives

the user flexibility to try things-out (D3) or quickly correct themselves or the system (D5).

7.3.4 Labeling (Mapping) via Spoken Deixis

People often speak about or introduce objects by simultaneously pointing/touching them and

referring to them by name or deictics (D2). We emulate this process to enable quick labeling as the

user speaks. The user only needs to select objects in the order they’re referenced in a sentence

to label them. For example, we can tell the story about a scene in natural language, and can

transparently and immediately label multiple objects by tapping or drawing them as we refer to

to them in-order. (Only the order matters, not the timing, as per D4)

{ "This is a beach where this boy often goes, and that is a lighthouse that he visited a

couple of times with his dog. These are sailboats." }
7Later sections introduce ways to label sketches programmatically based on user-created rules.
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Using "this" or "that," we indicate that only one object is expected. "These" or "those"

indicate that we want to label multiple objects with the name name. It’s possible to narrate

naturally because the system looks at the language structure. This is the quickest and most fluid

approach to labeling objects in DrawTalking because it interleaves with the desired narration and

storytelling. In all pilots, we observed people used this mode of labeling the most.

7.3.4.1 via the Verbs "transform," "become"

. Additionally, selecting an object with the pen is also valid, e.g. if the user wants to name an

object upon the first stroke in a sketch.

7.3.5 Labeling (Mapping) via Direct Link with Text

Sometimes, it might be more intuitive to narrate and refer to objects without using deictics.

For example, during a talk or story when it’s obvious from context what an object is, deictics

might be awkward or tiring. some who piloted DrawTalking noted that Commonly when

iterating on a design or scene, the user might not know immediately what they intend a sketch

to be or whether to visualize it. For user-control, flexibility, and fluidity (D1-D4) as well as error-

tolerance D5, the user can directly link a sketch with words in the transcript view using a (◦,→)

operation to add labels. The interface displays an arc between the sketch and word for visual

feedback (D7). Re-linking removes the label and the associated arc. With this labeling method,

the user can speak naturally or even without regard for sentence structure, context. The labeling

can be performed anytime, as only the individual words matter. This aids in a design process with

more unknowns up-front, or when the user is not engaging in full narration or storytelling and

wishes only for the convenience of speaking individual words. In contrast with deixis-labeling,

this method is more flexible when speech is less desirable or the design process is early-on. It’s

also more error-tolerant because it has no assumptions about the order in which users refer to

sketches (D1, D5) It requires more multitasking between the pen and multitouch along with
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speech to achieve fluidity, as in a performance or professional talk. For example, in the example

sentence from the previous section , some words such as "dog" were not referenced via deictics,

but the user might have labeled the dog with a direct link. Perhaps later, the user will choose to

add a sun sketch or scenery like mountains and cliffs

Ideally, the user will use the full-range of deixis and direct linking as-necessary. It is up to the

user and their preferred workflow (D4).

7.3.5.1 via Text Object Sketches

A (◦,→) operation between the canvas and a word (or number) in the transcript view creates

a text / number sketch. Between the canvas and the transcript view itself creates a text object

from the selected text.

Note: A direct link via (◦,→) between a freehand sketch and a text sketch will label the

freehand sketch with the text contents.

7.3.6 Unlabeling

To unlabel via deixis, the user simply says that an object is not a label. To unlabel via direct

manipulation, either long-press the label with a finger, or (◦,→) between the object and the word

in the transcript view.

7.3.7 Status Bar

7.3.7.1 Color

1) the current color - tap with the pen while holding a sketch to change to this color 2) scrub

with touch or pen to change the current color
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7.3.7.2 Compass

Points towards "up" to help the user track the orientation of the canvas

7.3.7.3 Pen Modes

1) draw 2) erase - delete a sketch by tapping on it while it’s not selected, remove strokes by

first selecting a sketch and then drawing over the strokes 3) arrows - draw starting at a source

sketch and overlap other sketches to create arrows directed from the source to all intersected

sketches. The user can tap on the buttons to select the tool and double tap their pen (in our

implementation) to switch between 1) and 2). The currently-active icon displays beneath the

user’s pen as a cursor (also when hovering the pen) to help the user remember the current state.

7.3.7.4 Safe Area

This blank zone lets the user pan, rotate, and zoom the canvas at all times, which is useful if

the entire screen is currently covered.

7.3.8 Toolbar

This is a flat menu of quick actions.

• copy (◦, ◦) copy the root sketch object along with all labels

• copy attached (◦, ◦) copy the entire hierarchy of objects rooted at the touched sketch

• delete (◦, ◦) delete the touched sketch

• delete all (◦, ◦) delete all user-created freehand, text, and number sketches

• scale ◦ - multitouch scaling on a sketch is disabled by default. Tap to toggle.
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• flip left / right (◦, ◦) Swap the left/right orientation of a sketch. We assume a sketch’s

forward direction from the side view is to the right.

• attach / detach (◦, ◦) child-parent-attach / detach the first touched sketch to the second

touched sketch

• toggle show attached ◦ - display line segments between attached objects

• enable camera / disable camera ◦ - toggle a background front-facing camera on the iPad

(purely experimental)

• toggle labels ◦ - hide / show labels on all sketches

• toggle system labels ◦ - show / hide additional system-level metadata on all sketches

such as system ID (debugging)

• pause ◦ - pause / unpause the simulation in the world. All objects stop moving, making it

easier to edit and move objects yourself

• save thing (◦, ◦) - save the touched object as an example of whatever its label is to spawn

it later

7.4 Language Semantics

The key interactions in DrawTalking resolve around the interplay between speech and draw-

ing, and how the user provides their intent to the machine. The main interaction technique is

inspired by the core takeaways from 6 and 6.3. Namely: when people narrate and sketch, they

provide semantics and user intent to the machine as language and direct manipulation input.

Once the machine knows user intent, it knows the content of the sketched scene and how to

perform operations on it when the user narrates. In the context of natural speaking and sketch-

ing, the user can tap into the computational capability of the interface with little additional effort
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than the norm, and the machine likewise has the benefit of knowing for sure what objects repre-

sent according to user intent, without the need for automated inference. In our implementation

of DrawTalking, that computational capability is procedural animation, simulation, computer

graphics, and interface control.

7.4.1 Semantics Interpretation

DrawTalking receives a structured subset of English syntax and builtin primitives for several

verbs, adjectives, and adverbs, taken from our content search, games, and visual programming

systems. In general, these run the gamut between transformations, create/destroy/appear/muta-

tion, procedural movements, tweens, drawing-program edit operations, and UI camera behavior,

among others.

So the machine has information to manipulate each sketch, we have the user narrate to assign

semantic labels to their sketches: possibly multiple nouns reflecting names and influencing selec-

tion, adjectives reflecting attributes and influencing selection and behavior, and adverbs reflecting

values that modify the effect of each adjective. i.e. these labels perform more or less the function

they do in language, but in the context of a procedural world simulation. Once this mapping is

built, all else follows (and the user does not need to add or change labels unless desired.)

Then, when the user narrates further with reference to these labels, the machine can select the

objects assigned these labels and parameterize verbs in the user’s sentences using adjectives and

adverbs. For example, an adjective might represent movement speed (e.g. "fast") and an adverb

"very" might amplify how fast. We can treat adjectives as variables, and adverbs as modifiers.

Verbs are equivalent to a continuously running function. Each verb primitive individually and

dynamically interprets noun, adjective, and adverb labels on objects differently according to the

builtin behavior of the verb. i.e. receiving or ignoring relevant parameters. To support interactiv-

ity, adjectives and adverbs are evaluated continuously. For example, "fast" can be removed and

replaced with "slow" upon an event or a new speech command, which will alter the speed of a
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sketch currently moving under the influence of a verb.

We also support conjunctions, sequences, loops, conditions (rules), elapsed time, number ("a",

"the"), numerical counts, hierarchical relationships, and distinctions between individual objects

and types of objects.
8 We took creative liberties and focused on playful interactions that might fit into rough

sketching.

Given user speech input, the interface looks at the whole semantic structure to express a

command for immediate execution or rule defining future behavior based on an event. In general,

a commandwill identify the sketches (and corresponding attributes andmodifiers) and what their

semantic roles should be for each verb in the sentence. The results of commands are driven by

our small domain-specific language of parts-of-speech and how we felt they ought to act and

be interpreted in our proof-of-concept interface. Any implementation of ideas in DrawTalking

might opt for different visuals and simulations.

. (In 13 we provide a manual of the features we introduced to participants in a study.)

7.4.2 Nouns, Pronouns, Deixis

Nouns identify which sketches (or types of sketch) the interface should select, as if in a query

(6.3 D9.5).

Quick selection via language is extremely important for achieving the fluidity and control in

the interface. It enables the user to reference and manipulate an unbounded number of objects

independent of their location, simply based on their properties. We believe this is a natural use

case for speech, as it mirrors how we communicate via language: we talk about and imagine

objects that aren’t there. The language control, compared with traditional UI and direct input
8To the programming languages audience, this is equivalent to assigning symbols to variables, where symbols are

semantic labels, and variables are sketches. The system is in charge of invoking interpreting users’ spoken sentences
as – essentially – functions, whose arguments are the objects whose labels are referenced in the sentence. We can
think of the concept of this interface as an interactive-time compiler from spoken language (in this case, English) to
any domain-specific-language (DSL) (in this case, the one we’ve implemented for simulation and animation.)
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techniques, shines here.

Using the article "The" or "a"/"an" differentiates between selection of specific targets and ran-

domly selected targets.

"all" lets you refer to every single object of a certain label.

We can select all objects with a label at once based on whether the noun is singular or plural,

or if a certain number of objects is specified. e.g. { "The 5 dogs" } . Conjunctions let you specify

objects of multiple labels. { "The 2 dogs and the 4 frogs..." } . If not enough objects exist, we

assume it’s valid just to select as many as possible.)

The special reserved noun "I" lets you do operations without a specific object.

The noun "thing" can refer to any object.

We can also use pronouns to refer-back to previously-mentioned objects (via co-reference

resolution), which is more natural to us than always naming objects explicitly.

Lastly, if we want to select objects ourselves and quickly start a command, we can simply

touch an object and say "This <verbs>." The system picks-up that the sketch being pointed to

should be guaranteed to be selected.

Overall, there several multimodal ways to select objects (by the user and machine) to fit many

flows.

7.4.3 Adjectives and Adverbs

7.4.3.1 Impact on Selection

We can use adjectives and adverbs to disambiguate between objects with the same label. For

example, a "boy" is different from a "happy boy" or a "very happy boy."
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7.4.3.2 Impact on Simulation

One or more adjectives describe the attributes of an individual object. For simplicity, we chose

to treat these as discrete values representing magnitudes for a particular builtin characteristic

(e.g. magnitude, speed, size, distance, height, accuracy). Adjectives are labels which map to

a given characteristic. 1.0 is the default value. Anything above normally increases the effect.

Anything below decreases it. We selected visually-appealing values by hand, but any method for

defining these values could work. For example, "fast" is 1.5.

Verbs in the end are given the flexibility control how to use and or ignore adjectives. An-

imations and simulations caused by verbs can continuously evaluate these parameters on the

selected objects. For example, if the user removes the label "fast," a verb can change its animation

while it’s running – to reflect a slowdown of the object if the adjective corresponded to speed, or

lower the height if the verb was something like "jump" and the adjective was "excited." The user

does not need to redo an entire command just to see this result. This is important as well when

commands start to script objects to change state automatically.

Adverbs modify adjective values. A very fast character will have an amplified speed value.

Humorously so, we opted for chained adverbs to modify multiplicatively: A very very very very

... fast character will move absurdly fast. As for adjectives with negative correlation e.g. "slow,"

adverbs with greater magnitude will multiply inversely to create a smaller value. See 7.4 for an

example.

Note: we handpicked adjectives and adverbs based on the animations and simulations we

wanted, but these are just labels mapped to values. At run-time, we can easily add adjectives and

adverbs with their own values to create wider ranges of parameters, so long as verbs understand

a given characteristic.
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7.4.3.3 Labeling by Deixis, continued

We can also use deixis to label objects with adjectives and adverbs. e.g. { This is a very very

happy dog. } will attach the labels "dog," "happy, very."

7.4.3.4 Special Adjectives

In pilots, users suggested providing speech-controls for directly manipulating

system-level features. To hook into system functionality, some adjectives have special behav-

ior. For example, any sketch is placed in either world space or screen space. It is desirable to

create a UI / HUD element, or to freeze an object independently of the camera for convenience,

by fixing it to screen space. Labeling an object as "static" achieves this, and unlabeling moves the

object back to world space. Other words like "invisible" will automatically hide an object.

Additionally, for certain potentially-repetitive actions like "take" (as in taking several objects

to a location), to disambiguate between 1) repeatedly affecting random object of a certain label 2)

repeatedly affecting a multiple unique object of a certain labels until a task is done to all objects.

We could find several context-based solutions to this, but our choice was simply to use the adjec-

tive "new" to describe repeating a task to multiple objects in sequence, as in collecting all trash

and putting it in a waste-basket.

7.4.4 Verbs

Verbs correspond to actions and instructions that tell the system what to do with arguments

passed-in (sketches, sketch types). The simplest example might be, "The object jumps." Note the

speech is in narrative third-person form. The verbs can start long-running behaviors, short-term-

animations, or control interface functionality directly. Verbs are essentially functions that can do

anything, and have access to the entire interface and whatever the implementation of DrawTalk-

ing exposes. We build-in a library of simple primitives sourced from sketch-based videos, anima-
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tion, game prototyping languages. Any implementation of DrawTalking could provide its own

primitives via coding or scripting.

Verbs are responsible for driving the behavior of objects in the scene. They do the final assign-

ment of the selected nouns (objects or types of objects) to different semantic roles: source (the

object doing the action), direct-object (the object directly receiving the action), object (an object

participating in an action, as in the object of preposition in "X jumps *on* Y), among others.

The verbs we chose to implement generally fall into a few categories:

7.4.4.1 Animation

Fixed-time or continuous movements, transforms, tweens, effects. e.g. move, follow, rotate,

jump, flee

7.4.4.2 State Changes

System-level or instantaneous functionality for creation, destruction, hiding/showing of ob-

jects, transformation of objects into other objects, stopping, among others.

7.4.4.3 Events

Verbs like "collides with" or "overlap" are reserved events that occur when objects intersect

with each other. "Press" is a reserved event by default that occurs when the user touches an

object.

7.4.4.4 Numerical

(In)equalities (e.g. "equal," "exceed"), arithmetic to affect and check values of number sketches.
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7.4.4.5 Adjective and Adverb Verb Modifiers

Adjectives and adverbs spoken as part of a sentence affect verbs the same way labels on

objects would, but are fixed into the command permanently (and aren’t evaluated continuously).

Adjectives are "interpreted" in the context of the verb. For example, "move slowly right" will cause

an object to move rightwards at a slow pace because a direction and speed category adjective

are provided as arguments. But if the user said "destroy right," that would not make sense in

the context of that verb’s implementation, so "right" is ignored. i.e. modifiers are context-

sensitive, and verbs are flexible to logical errors in users’ speech

7.4.4.6 Preposition Verb Modifiers

A verb combined with a preposition (e.g. "jump on") represents a potentially unique variant

of the verb, and just as in English, might express a very different action. The verb is responsible

for choosing the correct variant if it exists. Otherwise, it assumes a default. It’s up to the user

to make "sense." For a verb definition like "jump," the preposition matters: an object jumps "on"

(top) "below" (bottom) or "beside" (nearest side) of an object.

7.4.4.7 Selection by Preposition via Parent-Child Hierarchy

Objects can be attached hierarchically in a child/parent relationship to represent spatial rela-

tionships, or as in 6.2, arrows as well. We use these hierarchies and drawn arrows to represent

relationships such as "belonging to" or "spatial proximity." In sketching, objects might be placed

anywhere on the canvas for convenience or by choice, irrespective of their relationships (6.3).

We do not want to force the constraint that objects inside or belonging to others literally overlap

each other as in a physical space. When the system searches for objects described as belonging

to or spatially located with respect to another, it will search for objects in these scene hierarchies

to find the right one. For example: (7.5)
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If we attach a blade sketch to a windmill, and a blade to a counter (as in a kitchen), then

narrates { "The blade on the windmill rotates clockwise" } , we will traverse windmills only to

find a blade, correctly ignoring the blade on the table.

7.4.5 Verb Conjunctions

Use "and" as a conjunction between verbs to execute operations in parallel. This is a way to

synchronize animations and events to end at the same time.

7.4.5.1 Past and Present-Tense Are The Same

We treat past and present tense verbs the same for simplicity, as in the context of narrative,

explanation, or storytelling describing something now. This has the benefit of reducing errors

caused by inaccuracies in the speech recognition, as present and past tense recognized words are

equivalent.

7.4.5.2 Verb Stopping Conditions

To stop an action, we tell an object to "stop" or perform a new action that overrides the old.

For example, if an object is moving to a target, telling the object to move to a new target overrides

the previous instance of the action. Some builtin verbs are compatible with others e.g. an object

can rotate AND move, or an object can move up and move right, but not to two different targets.

Note that this is also part of our DSL according to what "felt right," but this in no way precludes

other possible implementations or configurations.

7.4.6 Seqences

Use "then" or "and then" to specify events that should happen in series.
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7.4.7 Timers

We can specify the duration of a verb by adding "for X seconds," where X is a real number.

e.g. { "The circle moves up for 11.18 seconds and then the circle jumps." }

7.4.8 Loops

We can repeat an action forever { "(forever|endlessly|over and over) the dog jumps } , repeat

a certain number of times { "10 times the dog jumps excitedly" } , or for a duration { "For 5.3

seconds ..." } .

For nested semantic structures, there can be ambiguity in fully natural language in deciding

how to interpreted looped and nested sequences. We simplify this like so: saying loop key-

words before inner structure ends up looping around all nested language, whereas after creates

an unnested sequence of loops:

keywords before:

{ "5 times A and then 2 times B" } means { Repeat the following 5 times: A happens once

and then B happens 2 times. }

keywords after:

{ "A 5 times and then B 2 times" } means { A happens once and then B happens 2 times. }

We stop loops by using the verb "stop" on the object performing a looped action or by deleting

the targets of actions. For example, an object will stop following a just-deleted object.

Some verbs like "follow" are implicitly loops in their implementation because they run con-

tinuously.

7.4.9 Rules (Conditionals, Events)

A rule represents an event-based trigger that continuously checks the current actions and

attributes of particular types and objects, and then runs a command when a condition is satisfied.
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This enables the user to specify a command for automatic execution in the futurewhen, as, or after

an event has completed. The rules are lazily evaluated as well, meaning we can refer to labels we

haven’t created or used yet. This gives the user the freedom to define the scene incrementally

based on the logic they think they will need, without knowing in advance which objects they

specifically need to draw. We can apply rules to individual objects, or, more generally, to objects

with specific labels or types. This is incredibly useful because enables us to build worlds that start

to look like simulated games, which behave independently, or in tandem with user interaction.

A common case is to specify behavior upon collision between multiple types of objects. Then,

the rule runs the command on the relevant objects whenever the condition is satisfied.

e.g.

In the case of rules below, nouns represent types, which are specified with plurals without

articles.

{ When dogs collide with treats dogs destroy treats }

or

{ Dogs destroy treats when dogs collide with treats }

or for a more natural input:

{When dogs collide with treats they destroy them } .

The first two introduce no ambiguity, whereas the last form could be misunderstood in more

complex cases and results may vary depending on the NLP capabilities.

Here, any objects with the labels "dog" and "treat" are candidates for this rule.

If we wanted this rule applied to a specific dog only:

{ When the dog collides with treats dogs destroy treats }

If the specific dog is deleted, the rule is automatically deleted. If the specific dog’s label is

removed, the rule still works, as the selection was persistent on the unique object. This allows for

some creative transformations of the same object. (See 8.1.7 later.)

To aid in testing and iteration, the user can view, temporarily disable/enable, or delete rules
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via a context-sensitive interface (see 7.6).

7.4.10 Definition by Composition and Chaining

Using the rule syntax, we can define new verbs or customized variants of existing by com-

posing existing verbs in the library. For example, we might find the word "eat" more fitting than

"destroy" as in the above7.4.9.

"Eat" is not defined, however, we can define it ourselves by:

{ When things eat treats things destroy things } , which would be a simple alias of "destroy"

for all objects, or we could customize it for dogs specifically as in { When dogs eat treats dogs

destroy treats }

But it would make more sense to have the dog move to the target before "eating" it:

{When dogs eat treats dogs move to treats and then dogs destroy treats }

It is also useful to chain triggers together separately for flexibility. e.g. we can make the above

livelier by adding a jump upon the end of the above event: {After dogs eat treats dogs jump twice

}

Lastly, to reduce ambiguity, we let the user specify when all objects of a certain type should

be affected by a rule: saying that all objects of a type should do something as a result of a rule

being a trigger will command every object with a certain type label.

7.4.11 As an English-Scripting Translation Target : Scoping and

Decoupling of Language Input from Tech

We clarify why a closed-set of capability and English syntax still helps us work towards a

"natural" interface, as opposed to using complementary technologies e.g. generative models.

Firstly, we wish to keep focused on the the workflow aspect and not on precision or assuming

a particular interpretation of the user’s intent. Introducing boundless capability might be more
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"magical," but it’s more unpredictable. Starting with a subset of English and known behavior

keeps things more deterministic, scoped, and introspectable, and yet in practice, an open sandbox

like DrawTalking still affords a wide range of expression and interactive capability. Furthermore,

for the range of use cases dealing with thinking, improvisation, play, and open-ended design, it

is important to keep the user in-control and the system interactive. A large language model, in

contrast, is excellent at generating an open-set of material to achieve a certain result. It can give

you results based on the expectations reflected by a mass amount of user data and content. If the

goal is to arrive at a particular result, this is excellent. However, what we want is to support a

workflow which puts the user in the loop of the entire creative process. Large language generate

models create results independently from the user beyond a prompt, so there is no obvious entry

point for direct user input and manipulation. This prevents us from exploring how to enable

interactive functionality, as a generated result is challenging to change or introspect precisely.

A closed subset of English and behavior is advantageous in that the user can learn and fully

understand the primitives and know what they do for sure, which means they can master the

system, and we as researchers can better observe them and learn what expectations are and are

not met when using the tool. An open-set of generative behavior, in contrast, would be very

challenging to study and reproduce, and the user would not be able to predict the output as

well as a closed-set language. Overall, generative models would be a good choice if the focus

were not on enabling a full user-in-the-loop process. In spite of the smaller set of functionality,

by composing the primitives together interactively, it’s possible for the user to build-up more

complex interactive results with fairly foreseeable and learnable visual results.

The system is not limited to structured input, however, in the sense that the user is able to

edit their spoken input using the transcript view to create the system-understood commands.

As most input (we’ve found) is short, this editing via multi-touch and pen is fast in-practice, or

unnecessary if the user sticks to the known syntax. Compared with large models, which as of

writing run in seconds, our scoped English subset and rule-based interface runs at interactive
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game-speed. So it allows us to simulate the feel of speed better than alternatives, which is crucial

for introducing our approach from the workflow perspective – how it feels as to how accurate it

looks. This makes sense for the rough sketching domain.

Overall, external models are promising complements to a rule-based system like ours, due

to the rich range of content, they can output, but they are less understandable. We choose our

approach deliberately for our use case and research.

As technology for more sophisticated language processing evolves and speeds-up to game-

levels of interactive time, external systems (e.g. generative models) could easily fit-in to create a

best-of-both worlds with user control mixed with larger content spaces.

Since our language input and primitives confirm to a structured spec, we can provide a transla-

tion target for generate systems to compile to. External models could generate structured English

systems like ours understand, directly from fully-natural English – or provide more flexible lan-

guage inputs, behaviors, and visuals, independent of our interface. Our interface design allows

for such translation layers in the future, while enabling us to study and play with the feel of the

interface now7.7.

7.5 Invoking Commands, Language Views

Speech input runs continuously by default to let the user focus on their narration. (A top

right indicator on the screen shows when recognition is on, and the ignore speech button 7.5.1.1

toggles it on/off).

Our design puts the user’s intent first, so the system does not run a new command from

the user’s input without their consent via the language-action confirmation button 7.5.1.1. This

serves the dual purpose of letting the user decide how to divide their sentences.

The user can immediately invoke commands from their ongoing speech by double-tapping

this button. Completing a command will automatically clear the transcript view to prepare the
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next command.

However, DrawTalking has an optional direct interface to the user’s language semantics. This

provides a visual of the user’s input history, editing capability, and transparency into the sys-

tem’s understanding of the input prior to a command. The transcript view is a live transcript for

visualizing and quick editing of speech input, and the semantics diagram is for visualizing and

editing/correcting the system’s understanding of input at the semantic roles level. The interface

elements are made always-accessible within reach to keep interaction quick even when using

these interface components.

The first tap takes the currently-selected text in the transcript view as the input (all text by

default). This generates the semantics diagram representing the command and the mapping be-

tween semantic roles and sketches. At this point the user can remap sketches if theyweremapped

incorrectly by the system. The second tap confirms that the result is correct and executes the

command. At any point in these steps, the user can cancel and clear the transcript view with the

7.5.1.1 button.

7.5.1 Balancing Fluidity and Precision Trade-offs

This interface design lets the user make their own trade-offs between confidence in preci-

sion and accuracy, and interface fluidity and speed, independent of the quality of the underlying

language processing implementation. We decoupled from the language processing technology

and provided these options for recovery and ambiguity resolution so the user could make these

choices.

For example, if the machine could read the user’s intent perfectly, the user could skip these

steps entirely. Realistically, the back-end speech recognizer and language processing implemen-

tation will influence precision, and the better technology becomes, the better our design will

perform. In general, the more specific and unambiguous the user is when phrasing input and

referring to objects, the more confident they can be that the system will do the right thing.
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Still, we believe that even in ideal scenarios, it is useful to provide full transparency and

control in case the user changes their mind (as discussed in 6.3).

7.5.1.1 Language Buttons (Input)

• language action stages language input for confirmation ; confirms

• discard discards language input ; cancels a staged command

• ignore speech toggles speech recognition off / on

• find finds sketches and rules. See

7.5.1.2 Language Buttons (Editing)

• select all selects all text in the transcript view

• selection clear deselects all text in the transcript view

• selection invert selects all non-selected text and deselects all previously-selected text in

the transcript view

• label things auto-labels the semantic diagram’s sketch selections. See 7.5.3.2

7.5.2 Transcript View

The transcript view is a scrollable live transcript of the user’s speech input. By default, all

words are considered part of the next command. If the user misspeaks or the underlying rec-

ognizer misinterprets, they should be able to deselect words and try again without repeating

themselves. This way, the user can speak naturally and still be able to input a valid command.

The user can label sketches with (◦,→) between a sketch and multiple nouns or adjectives in

the transcript. Directly linking a sketch to a noun in the transcript is also the most precise way
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to give a particular sketch a role within a new command because it forces the system to use the

user’s mapping. This is most often unnecessary and undesirable for speed since it’s normally

faster to let the system do the mapping, but it provides additional optional control to the user

over the result.

Our solution is to permit quick editing at the word level. Each word in the transcript is a

toggle/on button individually. Drag with touch at a start word over to an end word, and the

entire range of text will toggle off if the start word was on, and off if the start word was on 7.8

Additional buttons for quick selection and deselection have been added to speed-up text edit-

ing if desired 7.5.1.2.

It might be common to remove large sections of words if the user is addressing an audience

and does not want to treat all of their speech as a command. The user can select only the pieces

they want from the transcript fairly quickly and treat those as part of a command.

A possible use case that would benefit greatly from quick text editing is one-many presenta-

tion. The user could speak fully naturally to an audience, but quickly remove words to aid the

machine in processing a command.

As per our note on translation layers, external libraries could potentially preprocess natural

speech to output system-understood commands with higher probability. But the transcript view

could let the user edit if need-be, and sometimes the user might be able to edit with small changes

faster than external tools. It is generally good to have options.

7.5.2.1 SearchQuery

In a large unbounded canvas, it’s common to want to find moving objects off-screen, want

to move quickly between different parts of the scene, or interact with objects without moving to

them directly. To address these, we can use language as a search query. Tapping the find button

(7.5.1.1) will display in a grid a preview of all sketches corresponding to the nouns (+ adjectives)

in the text transcript. These previews are proxies to the original sketches: tapping with touch will
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move to and center the camera on the referenced sketch, wherever it is. Using erase on a preview

will also delete the referenced sketch. Lastly, we can also copy by dragging a preview with the

pen onto the canvas. Tapping with the eraser or dragging with the pen will apply the operation

to all previews in the query pane: meaning, erase all sketches, or copy all of them. (This is a way

to erase or copy multiplicatively en-masse. See 7.9).

We chose, as a test of how to show context-sensitive views without taking more space, the

find button will display previews of rules if you select the word, "rule." The eraser will delete a

rule, and the pen will toggle off and on a rule. This is a way for the user to test if a rule is doing

the expected thing, or even to toggle rules interactively off or on as part of a user-in-the-loop

performance of an animated scene.

7.5.2.2 Typing Input

As per 6.3 D8, it’s useful to provide alternative inputs to correct for others’ weaknesses, so we

enable input by keyboard. If speech recognition fails9, typing to edit individual words is a quick

way to correct without repeating yourself. It might also be desirable if the user sometimes does

not want to narrate some content.

7.5.2.3 Overall

The transcript view overall represents balancing user precision and speed. It enables fine-

grained control of speech-input to keep the user always in-control. At minimum, the user can

ignore this interface and use exclusively deixis for labeling and structured English for the system

to understand. In between, they might use this interface purely to correct or edit their input

occasionally, or to let them speak fully naturally to an audience and remove parts of their speech

to help the machine. At most, the user could choose to use this part of the interface to have

complete control over commands and not care about narration or speed, but rather accuracy.
9We use a builtin speech recognizer and do not contribute out own.
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7.5.3 Semantics Diagram

The user should be made-aware of the system’s understanding of their input (7) to remain

in-control. To fulfill this need, we display a diagram representing system understanding of a com-

mand before the user confirms to execute the command. The diagram is spatially-independent

from the main canvas, meaning it’s a picture-in-picture that can be panned and zoomed sepa-

rately to reveal other parts of the diagram, while letting the user move the main canvas sepa-

rately. When the user stages a command with the language action button, the system displays

a simplified semantic role diagram representing its understanding of the input. The flat tree di-

agram represents the relevant words with semantic roles linked to the sketches that should fill

those roles. We designed the diagram to look almost like the original input to make it readable

at a glance.

Words mapped to individual sketches contain a vertical list of proxy sketches referring to

the sketches in the scene. This is designed to give a preview of the system’s mappings without

introducing visual clutter in the main canvas.10

Types or references of sketches are marked with an asterisk and do not contain a proxy list,

as these do not refer to individual objects.

If the user thinks the diagram is correct, they can confirm the command to move-on. For most

sentences and inputs, we find it is reasonable to skip the diagram step and just confirm twice, as

speech recognizer errors are handled by the transcript view, and the user can often avoid any

errors just by being more specific in their language (which is what we do in real-life to avoid

ambiguities).

The diagram offers error feedback and recovery (6.3D5). If there are "fatal" errors, such as
10Language visualization is an ongoing research area that might be a good future direction. In previous versions

of the interface, arrows always connected the words in the diagram to sketches directly in the scene rather than
proxies. We do not claim that the final is necessarily better, as some might argue that joint attention is better with
all information in one spot. However, we found that this was a necessary trade-off, as too much visual information
was confusing and made it challenging to distinguish between UI and content in the canvas.
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missing sketch/word mappings, the diagram will highlight the respective word in red, meaning

the user cannot proceed with the command. This will commonly happen if the sentence refers to

something that does not exist with the correct label. If the command references verbs that don’t

exist in the system (and the user is not defining a rule), the system will suggest existing verbs

with similar meanings by displaying a list of candidate verbs for the user to select. For example,

the word "hop" is not in the library, but the system will recommend "jump."

7.5.3.1 Remapping

The user can choose to (◦,→) between proxy sketches and a diagram’s word to remove them

from the diagram, and between sketches in the scene to a word to map the sketches themselves.

In this step, any sketch will be valid, irrespective of its label. So the user can do the final sketch

mapping themselves with this diagram interface if they desire.

7.5.3.2 Auto-labeling

The diagram, in this way, lets the user choose to defer the task of labeling to the last moment.

However, it’s useful to do the labeling. To support this version of the workflow, the user can tap

the 7.5.1.2 "label things" button to label all mapped sketches with the words they’re connected to

in the diagram, all at-once.

7.5.3.3 Search or Edit by Proxy

The user can also treat the diagram as a spatially-independent search and editor. By tapping

a proxy sketch, an arrow is displayed linking the proxy to the referenced sketch, wherever it is

in the scene (on or off-screen). Using the eraser on a proxy will delete the original sketch.

In more mature versions of the interface, on might edit a sketch via proxy with the pen.
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7.5.4 Overall

We designed the DrawTalking interface to support workflow flexibility, system transparency,

and error recovery at every stage. The transcript view and semantics diagram expose semantics

and editing capability to the user if they want it and satisfy our goals towards putting user-control

first. The user can trade-off fluidity and precision. Our design allows the user to choose between

these extremes. On one end, it provides additional fine-tuning capability to the users who want

deliberate control and direct manipulation of their language as a form of data input. On the

other end, a user can skip past these levels of control and see results as fast and as precisely as

the underlying implementation can handle. This way, our approach is independent of the lan-

guage processing technology that powers it, but as technology improves, the speed and precision

experienced while using our approach should as well.
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a (left) labeling by speech + pen/touch, (right) labeling by touch selection + pen selection of a
noun

b pre-selecting with pen and using speech

c pre-selecting multiple objects with the pen and using speech

d labeling by linking an object to text directly, with selection + pen

Figure 7.3: Labeling sketches with semantics via 1) touch/pen + speech 2) link to text with pen
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a staging a loop on "jump"

b we have the "jump" speed and height change based on the current adjectives and adverbs

Figure 7.4: Adjective effects - e.g. the verb "jump" is affected from left-to-right as shown via debug
labels. "sad" has the inverse effect to "happy."
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Figure 7.5: Disambiguation by hierarchy - The system disambiguates between like-named objects by
looking for context from other information, such as spatial hierarchy. Here, the correct blades are selected
since the sentence describes blades attached to a windmill.
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a Hovering over the rule for causing water to rise, with the pen

b The rule has been disabled dynamically and temporarily no longer takes effect.

Figure 7.6: Rule Panel - view all existing rules, toggle them with the pen to enable/disable them, use the
eraser to delete.
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Figure 7.7: Translation Layers - From right-to-left, we can think of our prototype as an example of
taking platform-specific language libraries or models, converting them into a generic format/DSL, and
then sending to our domain-specific application.

a

b

Figure 7.8: transcript view selection/deselection - the user can omit words quickly from the next
command by deselecting individual regions within the transcript view .
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Figure 7.9: The "find" panel lets the user locate objects by name (selecting the word or multiple words
in the transcript view) and warp to them by tapping on their entry. It also lets the user copy the individual
objects or all of them to fill a scene quickly with cloned-objects. Here, the user is cloning trees into the
scene multiplicatively, as the clones dynamically appear in the find panel.
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Figure 7.10: Editable Semantics Diagram. This displays a simplified form of the user’s input text based
on what the machine understood. Each noun in the diagram has a vertical list of "proxy" icons referring to
the objects the machine selected. The user can edit the diagram to refer to different objects using a (◦,→)
operation. Note that objects with mismatching labels can be substituted-in. In this mock-example, two
dogs exist in the scene, but no objects labeled "Toby" or "school" exist. The user in this scenario connects
the desired sketches to the diagram to complete the command.
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8 | Putting It All Together by Example:

Demos and Things

Here, we go through how to create sample scenarios and setpieces for mechanics built-up in

DrawTalking. We show how the workflow fulfills the criteria for an interactive systems contribu-

tion [Olsen 2007] — particularly, 1) reduced solution viscosity (in which our use of language and

sketching enables flexible design iteration and achieves expressive leverage and match with user

intent1), and 2) power in combination (in which the primitives are capable of being recombined

to express things with greater complexity). Please see 13 for a list of existing functionality as we

go along.

Through the design, iteration, and feedback/pilot process, we consistently felt the draw of

such an interface was partly in the playful feel and rough aesthetic – being able to create logi-

cal simulations and setpieces just with rough sketches and simple speech. We hypothesized that

the range of application domains would be broad, ranging from playful interactive storytelling,

animation creative exploration in design, and illustrative explanations, with all of these incorpo-

rating user-interaction and control. But the domain that brings together all these elements i.e.

"playful," and "creative," "simulation," "ideation" fits well with game prototyping, mixed with a

rough sketching, almost storyboard-like aesthetic. So, our examples tend towards playful, game-

like worldbuilding and gamemechanics. We start with simple examples based on rough-sketched
1This essentially describes being able to express more with less and "how close the means for expressing design

choices are to the problem being solved"
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characters and build-up to more advanced examples approximating functionality you could ex-

pect in more full-fledged game prototypes. We show how DrawTalking’s approach supports a

blend of rough sketching and language with computational world-building.

Note: we skip describing the labeling step, as this can happen at any time before commands

operate on given objects.

8.1 Simple Set-Pieces and Mechanics

We start with simple mechanics to show how DrawTalking works. Let’s assume the user

wants to iterate on a few animated scenes using rough figure sketches of characters and animals,

e.g. Rosie the dog. Note that in the end, these small scenes could be composed together into a

larger whole, so these examples illustrate an iteration process on small pieces.

8.1.1 A boy and dog play fetch.

We illustrate with an "infinite game of fetch"8.1 how we can build-up looping simulation

sequences with full interactive control by the user. Note that the examples continue from one

another unless otherwise-stated.

Figure 8.1: Infinite Loop created by "Over and over the person throws the ball into the pond and then
the dog gives the ball to the boy."

8.1.1.1 The simplest sentence.

The user might begin by sketching a dog (e.g. Rosie the English Springer Spaniel) and testing

it with a basic action. (table 8.1)
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draw dog
objects dog
speech "The dog jumps two times."
confirm
command begin / end: The dog jumps in-place two times.

Table 8.1: Instructions: dog jumps two times

Note that the result maps to exactly what the user said.

8.1.1.2 The Simplest Multi-object Sentence.

Here is a multi-object command. The user can insert themselves into the simulation and

move objects while the command is happening, but the actions will still adjust dynamically to

the positions and states of the objects to complete the task, meaning the user does not need to

worry about precision or accurate "physics." The logic takes priority. (table 8.2)

draw pool
objects dog, pool
speech "The dog jumps into the pool."
confirm
command begin
user moves the pool path between dog and pool adjusts dy-

namically as user moves the target to
adjust the scene

command end The dog is atop the pool after having
moved in an arc

Table 8.2: Instructions: dog jumps into pool

8.1.1.3 Indirect Object Commands

This is an example of directing an object to perform a simple task using other objects. (table

8.3)
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draw boy, ball
objects dog, pool, boy, ball
speech "The boy throws the ball into the pool."
confirm
command begin The boy moves to the ball and then

throws it in an arc towards the pool.
command end

Table 8.3: Instructions: boy throws ball

8.1.1.4 Infinite Seqences

It can become infeasible for the user to direct all steps of a simulation themselves. This exam-

ple shows how the user can offload repeated tasks to the machine by creating the equivalent

of a loop 8.1. (table 8.4)

objects dog, pool, boy, ball
speech "Over and over the boy throws the ball

into the pool and then the dog gives the
ball to the boy."

confirm
command loop begin The boy moves to the ball and then

throws it in an arc towards the pool.
Afterwards, the dog moves to the ball
and then gives it to the boy.

command loop repeat

Table 8.4: Instructions: boy throws ball, dog gives ball to boy - loop

See an image here: 8.2

Moving any objects in the scene will dynamically alter the trajectories and paths of the simu-

lated objects. This lets the user fine-tune or perform interactively while the machine directs the

logic of the scene for them, all without needing to redo the commands to make adjustments.

We can continue to iterate on the scene. For example, labeling the dog "energetic" will speed

her-up.
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Figure 8.2: Dog fetch infinite sequence

8.1.1.5 Embellishments by Event-based Control

The user might want to prototype some visual embellishments. For example, causing the

pool to rise and sink upon impact with the ball using a rule. We show how to try this idea

independently of the running simulation. (table 8.5)

See 8.3.
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Figure 8.3: Dog fetch infinite sequence with rule for rising water upon collision with balls

objects dog, pool, boy, ball
speech "This is water" and Touches pool assigns additional label "water" to pool
objects dog, (pool,water), boy, ball
speech "When water collides with balls water

moves up for 0.2 seconds and then wa-
ter moves down for 0.2 seconds"

confirm
command begin/end Instantly creates a general rule that

will trigger a rise/fall effect when ANY
object labeled as "ball" collides with
ANY object labeled as "water."

command loop begin/end The dog playing fetch loop is still run-
ning, but now when the ball lands in
the water, the rule causes the rising
and falling.

Table 8.5: Instructions: water rises when ball collides with water
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8.1.2 Randomization with Pond Creatures

If we move to a different section of the canvas, we can play with other ideas.

For example, we can create a set-piece involving other creatures (e.g. frogs and butterflies)

moving with some basic random behavior. (table 8.6)

We’ll define objects up-front for brevity.

8.1.2.1 Hopping Frog

draw frog, lily_pad
objects frog, butterfly, lily_pad
mass-copy lily_pad We search for the lily_pad and copy

en-masse
objects frog, Many(lily_pad)
object movement The user moves the lily_pads around.
speech "The frog hops to a lily_pad every sec-

ond."
confirm
create verb alias The word "hop" us unknown, but the

interface suggests the word "jump" to
the user for the closest approximation,
and the user accepts.

command loop begin This creates an implicit loop: the frog
will hop to a random object with the
label "lily_pad", wherever it is.

command loop repeat A new lily_pad is selected
draw lily_pad
objects frog, Many_Plus_One(lily_pad)
command loop repeat A new lily_pad is selected, which will

include the one just added, and ex-
clude any whose label might’ve been
removed

Table 8.6: Instructions: frog hops to a random lily pad

We’ve shown another instance of how the user can individually control elements during it-

eration time and let the machine handle some nuances in the behavior if they do not require an
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exact visual – in this case, the task of selecting another target randomly is desirable for a simple

behavior guiding a frog hopping around.

8.1.2.2 Layering with Butterfly

We might want to layer different behaviors on top of currently-running simulations. (table

8.7)

draw butterfly
objects frog, butterfly, Many(lily_pad)
speech "The butterfly follows the frog"
confirm
command loop begin/end The butterfly follows the frog forever
speech + Touch the butterfly This butterfly is slow
confirm
command begin/end The butterfly caught up with the frog

too quickly, so the user decides to
slow-it down as the simulation is run-
ning

Table 8.7: Instructions: frog hops, butterfly follows frog

Now we have a pond scene.

See 8.4.

8.1.3 Logical Gadgets, UI, Numerical Ineqalities

8.1.3.1 Lightbulb - Definitions for Custom Verbs and Dynamic Property Assignment

Using similar mechanics as above, we could create a flickering lightbulb. "Flicker" is not

defined, but we can define it in-terms of "appear" and "disappear."

Simply: "when things flicker, things disappear for 0.2 seconds and then things appear for 0.2

seconds.

Now, when we draw a lightbulb and tell it to "flicker forever," it will use our definition of

"flicker".
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Figure 8.4: The frog infinitely hops to a random lily pad as the butterfly follows the frog.

Wemight want to create a static button in screen-space 7.4.3.4 to trigger the lightbulb as well.

{ "When I press this button the lightbulb flickers" } .

We can also create our own version of an on/off switch by using our own objects and rules.

Let’s create a number sketch and label it "state."

When its value is 1.0, the light will disappear, at 0.0, it will appear. "appear" and "disappear"

will be treated as events. We create a rule stating that when we press the button, the "state"

will increase. Another rule will be created so when the "state" equals 2.0, it will equal to 0.0

(immediately set to 0.0).

Using existing primitives, we’ve just created the equivalent of modulo boolean!

Note: we could also achieve the same by dynamically assigning adjectives to trigger events.

In this case, we define:
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a The user just pressed the button at the
initial state ... b ... and the state increased

Figure 8.5: Visual Boolean as Visualized by a Lightbulb Sketch

{ When lights become broken they flicker forever. } ( to cause endless flickering), { When

lights become functional they stop flickering and then they appear. } (to stop the flickering and

leave the light in the appear state).

Now, if we want our button to toggle all lights in the scene, we can rely on the current states

of the lights to disambiguate:

{ When I press the button all broken lightbulbs become functional. } , { When I press the

button all functional lightbulbs become broken. }

Lastly, we purposely left the library of adjectives minimal, so it’s not obvious to the system

that "repaired" should be removed when "broken" is added. We can define this behavior ourselves

(and opens up possibilities for our own world logic or custom words).

{When things become functional things become not broken } , {When things become broken

things become not functional } .

OR (since pronouns here are unambiguous:)

{ When things become functional they become not broken } , { When things become broken

they become not functional } .
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.

Now, the lightbulbs have on/off states represented by "broken,"/"functional" rather than an

external number object.

This alternative to the first approach allows for control of many more objects of the same type

at the same time. The button, also, is not required. Any speech command directing one of these

lightbulbs to "become" an adjective (become "broken") will trigger these state changes.

8.1.3.2 Windmill - Custom Objects and Spawning

Here we create a windmill that rotates it blade when user-created wind objects collide with

it. It’s an example of creating a chain reaction with rules and custom-labeled objects.

We create the base of a windmill, with an independent blade sketch attached to it as a child {

"The blades attach to the windmill" } or using the "attach"/"detach button.

We create and save a template for a custom object with (◦, ◦) between a sketch and the "save"

button. This will save the object mapped to its noun and adjective labels. When we use the verb

"create," the systemwill clone an object based on the specified labels. We sketch a little wind swirl

and label it "wind," then save it.

For our rules:

{ "As wind collides with blades blades rotate" } - "as" meaning continuous collision.2

We test by moving our wind sketch through the windmill to verify the blades rotate.

However. we realize that the blade do not stop rotating after the wind stops colliding.

We add a rule:

{ "After wind collides with blades blades stop rotating" }

to end the rotation upon collision end.
2To create different behavior for left/right collision, we can create additional invisible collider objects on either

side of the windmill, so the rule could refer to these specifically. Our engine does not expose collisions with the
relative coordinate (yet) but easily could to allow rules such as "As wind collides with ... from the left side"

116



We delete the original wind sketch because we no longer need it. We could also create several

other wind sketches and save them to add variety ("create" will randomly-selected equivalent

options).

Next, we create a spawnpoint for the wind by drawing a simple box and labeling it anything.

e.g. "boundary." This should just be a point for reference, so we can make it invisible with { "This

thing disappears" }

We’ll use a static UI button again to test the mechanics. To make the wind move rightwards

from the wall, we can define: { "When I press the button I create wind at the boundary" } {

"When wind appears wind moves right." }

When we press the button, a new wind sketch will spawn and move rightwards through the

windmill blades, causing them to rotate.

We notice that we’re creating too many wind objects. We can create another boundary (call it

"second boundary") off-screen on the right, which destroys the wind on collision. { "When wind

collides with second boundaries, second boundaries destroy wind." }

Optionally, we can create another number object and perhaps increase its value as wind col-

lides with the windmill blades, to represent "power."

We’re left with a little windmill gadget we can play with and use as a potential mechanic for

generating power. See 8.6

This example is possibly themost advanced so far because it involves more of a chain reaction.

Notice, however, that the workflow is largely the same as before. The sketching, language, and

rule-building operations can all happen at different times, and the user has time to think and

work-out how to proceed. We’ve shown how at each step the user might realize a limitation of

their current design and immediately address it.
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a The user’s customwind sketchesmoving from
the left; the user has spawned the wind by
pressing the button in the bottom-right multi-
ple times.

b The wind sketches moving rightward across
the windmill’s blades have caused the power to
increase

Figure 8.6: A windmill’s blades rotate as wind swirls continuously collide with the blades, causing the
power counter to increase

8.1.4 Takeaways

We’ve shown how starting with a simple example, the user is able to construct increasingly

complex functionality, delegate it to the machine, and continue trying other things in parallel. We

can create interactive gadgets and hooks into our semi-automated scenes to let us have a hand

in the simulation as well. We’ve also shown that using simple language also helps us use and

navigate editing features in the interface. Moreover, based on the above, we could easily combine

scenes and logic to continue building.

Note that the visual fidelity and quality of the animations are a separate concern from the

functionality behind DrawTalking’s control mechanisms. We can see our approach applying to

more production-oriented use cases in other implementations.

118



8.1.5 Examples towards Prototyping of Gameplay Mechanics

In this section, we walk-through examples that are designed to show how one might use the

controls to iterate on mechanics for arcade-style games and interactive diagrams, or to illustrate

more specialized examples of how we might apply our approach.

We will show 1) elements of a 2D platforming game, 2) how one might try-out and repurpose

mechanics (using the classic games Pong[noa 2022], Breakout[AtariAdmin 2022], and Space In-

vaders[noa 1980] as examples), 3) event-based character behavior, 4) a molecule-matching lesson,

5) a blend of several examples into one world.

As for why move to games from sketching at a whiteboard sketching with animations:

We wanted iterative and playful tasks that would result in runnable artifacts across a broad

range of domains (i.e. a playable mini-game prototype). Many whiteboarding tasks might work:

e.g. designing an interactive mechanic, improvising an animated story, describing physical prop-

erties and behavior, explaining a concept with motion graphics. Game prototyping via rough

sketching is an adequate umbrella because it can involve a little bit of all of those examples. As

we found in 6, much of the content people need is achievable with simple primitives and capabil-

ities with a rough aesthetic aesthetic. The rough sketching medium lends itself well to quick and

playful trying-out of mechanics, and the language controls should enable the user to represent

many of the requirements in worldbuilding (selection, rules, variables, dynamic behavior) The

introduction of interactive rules to our interface led us to extrapolate from this more explanatory

content into more simulated, game-like content. Overall, game prototyping is representative of

several other use cases for interactive animation and explanation, and it involves programming

(or programming-like activity), so it was a good domain for examples. All-in-all, we tried to be

creative in designing simple interactive examples to showcase our approach, so game-like simu-

lations made the most sense.

Games and game-like simulations, furthermore, demonstrably require more multitasking and
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exploration from the user because they tend to have more possible outcomes to explore and ele-

ments to track. As a result, the user is likelier to benefit from the machine’s ability to automate

parallel tasks like procedural animations and simulations for the user. However, the workflow

remains the same. The number of required primitives and inputs stay relatively low and man-

ageable in size compared with the simpler examples. This is because the user has the freedom

to "try things out." They can continue to take their time to layer and recombine functionality

over their iteration process, rather than staging all things at-once. The approach "scales-up" with

more complex functionality. Nothing stops us from creating more advanced functionality in a

fleshed-out implementation.

Also, games and simulation-building is essentially a form of programming. These examples

(though still simple) provide a proof-of-concept of how an implementation of our techniques

might support programming-like tasks. We hypothesize that this wouldmake programmingmore

accessible for learner-onboarding and provide a quick way for a larger audience to express them-

selves. (In section 10, some participants liken the approach to beginner-tools like [Maloney et al.

2010], but find it simpler and more natural to understand once learned.) This would give us a

positive sense that our approach starts to work towards the greater vision for natural interfaces

while also serving the needs of more audiences.

8.1.6 Interactive Gameplay Mechanics Prototyping

This example illustrates how onemight start prototyping and visualizing gamemechanics and

abilities that could feasibly be part of a 2D game. The dog will have the ability to collect items

for the boy, and we’ll try a couple of ideas for how this will work. The boy will have standard

jumping abilities. We’ll have a simple life system with respawning at checkpoints upon damage,

and a points and lives counter HUD.
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8.1.6.1 Character Abilities

Let’s create a mechanic in which the dog fetches collectibles for the boy, similar to the earlier

example.

We’ll try a couple of ideas:

First we’ll have a point counter (via a number object called "score," made static in the corner

of the screen.

Let’s say we want the dog to collect biscuits to get points.

We create and save a biscuit sketch.

Now define our collection logic:

{ When dogs collect biscuits the score increases and then I destroy biscuits } , { When dogs

collide with biscuits dogs collect biscuits }

test the logic with an automated command (after we’ve drawn a biscuit and copied-in several)

{ Over and over the dog moves to a new biscuit. }

–and we see the score increasing.

The dog becomes a companion that collects biscuits for the boy. Now that we’ve tried the

idea, we can make it easier to repeat by creating a button to trigger the action.

In the corner of the canvas we create a static UI button labeled "button" and use the rules {

"When I press the "button" a boy throws a ball at a biscuit and then a dog moves to it." } 3

But collecting any biscuit would be overpowered. So let’s define a collection radius called

"proximity"4: we draw a circle around the boy, make it invisible, and attach it to the boy.

We can use the speech input to tell the interface to center the collider precisely on the boy by

narrating: { "The proximity moves to the boy and then it attaches to the boy." } We can always

edit the collider later or recenter it conditionally.5

3Using "a" ensures that if we accidentally delete these characters, other sketches with the same label can be
commanded instead.

4Probably easier to type this one
5We can also see how automating the collider could’ve led to other interesting behavior, for example, if the boy
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We add the following rules:

{ "When proximities collide with biscuits, biscuits become nearby." } and { "After proximities

collide with biscuits, biscuits become not nearby." }

Now we revise the above just to have the dog move: { "When I press buttons a dog moves to

a nearby biscuit." }

Now we’ve balanced the mechanic so the boy’s dog companion only picks-up a biscuit that

is close-enough to the boy. See 8.7.

Figure 8.7: The dog fetching biscuits as amechanic. This demonstrates a mechanic bounded by rules,
as well as how to use custom collision objects. When the boy’s proximity collider touches biscuits, they
become labeled as "nearby." When the boy’s proximity collider no longer touches biscuits, the "nearby"
labels are removed. The dog will only collect the "nearby" biscuits.

Here we’ve seen how Sketching+speaking is useful not only for driving animations, but also

could collect points by swinging the collider with "revolve around."
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telling the system to do precise operations for you and create reusable behavior.

8.1.6.2 Custom Movement, Movement Control, Collisions

We some way for the user to control them more easily.

For control, the user can again define a full button UI with a few static button sketches. Left-

/right/up/down movement can be mapped to buttons labeled for those movements, representing

a directional pad drawn on-screen. Releasing those buttons can direct the boy to stop moving.

{ "When I press this button the boy moves left" } (tapping the specific button to disambiguate

with the other button), { "When I press the button the boy stops moving" } (tapping the specific

button again). Repeat for the other buttons.

This can start to approximate an 2D overhead map game.

If we’d like to playtest, we can direct the camera to follow the main character using the

context-sensitive version of "follow", simply: { "The view follows the boy and dog." } . This

will make sure both characters remain in-view.

8.1.6.3 Lives, Checkpoints. Obstacles

Using essentially the same ideas from previous examples, we can create a life counter that

decreases when the character collides with a obstacle. When the life counter depletes to 0, the

system can spawn a user-defined game over screen text.

Normally, losing a life in a game might send a player back to a previous checkpoint. We can

do the same with an invisible "spawnpoint" sketch and any number of checkpoint sketches. {

"When boys collide with checkpoints a spawnpoint teleports to checkpoints" } . { "When boys

collide with obstacles all life_counters decrease and then boys teleport to a spawnpoint." }

8.1.7 Ghost Enemies - Transforming Sketches

Lastly, let’s give the boy enemies.
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When we "transform" a sketch into another sketch, it retains its identity, but is replaced with

the visual representation and set of labels of the target. This is useful for creating and automating

contextual behavior changes, as well as dynamically changing graphical representation of objects

independent of other actions they’re performing.

To try this out, we create a ghost enemy that is only dangerous during the night.

We create and save sun and moon sketches (and delete the moon). The sun should transform

into the moon and vice-versa. We can treat the sun/moon object just as a button as in other

examples that the user presses themselves, or we can alternatively trigger the change based timed

collisions between objects, among other ways.

This will create a day/night cycle (user-driven, or automated).

A side-note on transformations: we can also implement basic keyframe animation states by

using ordinal adjectives as labels. e.g. transforming "first frames" into "second frames" into ...

every so-and-so fraction of a second upon an event.

Now we create and save "cursed villager" and ghost sketches.

Define: { "When moons appear all cursed villagers transform into a ghost. } , { "When suns

appear all ghost transform into cursed villagers" } .

Let’s make these enemies follow the boy upon appearance.

We define just that: { "When ghosts appear ghosts follow a boy } .

Now if we create several cursed villagers, they will transform into ghosts when the sun trans-

forms into a moon, and vice-versa.

See 8.8.

We could go on to make the scene even more interesting by, for example, having a particular

enemy causing regular villagers to become cursed upon collision, and maybe by having our goal

be to cure all of the villagers by giving them potions.

With several of these little working prototypes, we can see how various ideas could work

with each other, independent of the complexities of a full engine.
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a The sun is out, so the villagers are repre-
sented as villagers, and are not following the
main character

b The moon is out, so the villagers have trans-
formed into ghosts, and are now following the
main character.

Figure 8.8: Sun/moon and villager/ghost cycles This demonstrates dynamic changes in behavior on
the same objects.

8.1.7.1 Takeaway

We’ve taken one of the very first simple "dog plays fetch" examples and shown a possible

path to extending it into a much more complex set of custom functionality — all within the same

environment. We can continue to add objects and define more behavior as we play with our

simulations and animations.

We’ve essentially shown a proof-of-concept for how our approach could help people pro-

totype game mechanics quickly using just language and rough sketching. Different implemen-

tations could expand the functionality greatly and still use the same sorts of inputs to control

them.

8.1.8 Pong, Breakout, and Space Invaders - Reuse and Recombination of

Mechanics

In this particular set of examples inspired by pieces of classic arcade games, we’ll focus on an-

other example of how the user can transform one idea into another using the existing primitives.
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We chose these games because they’re simple and well-known.

8.1.8.1 Pong Transformed into Breakout

Pong requires a paddle per player, a score count per player, level boundaries for walls and

goals, and a ball to reflect off the boundaries and goals.

We can have the scene set-up like so:

— such that each player has an up/down button tomove the paddle as an alternative tomoving

the paddle themselves using touch. (We define press and release behavior to move the paddles

up/down and stop them accordingly.)

The start button causes the game to start with the ball moving fast to the right.

For the walls, we define { "When walls collide with balls walls reflect balls" } and for each

player goal one way to to phrase two rules is like so:

{ "When balls collide with first/second goals second/first scores increase and balls stay" } –

which increases the correct scores and cancels all velocity on the ball6

{ "When balls collide with goals balls teleport to a center and then balls move right fast" }

resets the position of the ball and then sets it moving rightward at a faster speed than the default.

Lastly, we define reflection on the paddles:

{ "When balls collide with paddles paddles reflect balls }

And we have a simplified form of the game Pong.

See 8.9a.

To transform it into Breakout, we could simply remove the second player sketches and goals,

replace the rules on the buttons (or even rotate the canvas 90 degrees), and move a couple of

colliders. The additions to Breakout are the field of breakable blocks and the game end condition

(reach the goal behind the blocks).
6We decided that "stop" and "stay" would be useful with different meanings. "Stop ends an action, and stay

specifically nullifies velocity."
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a Pong-inspired mechanics
b The Pong scene has been transformed into a
variant of Breakout, reusing many of the same
rules, and objects

Figure 8.9: Pong- and Breakout-inspiredmini-games The bottom-right button starts the ball’s move-
ment. Labels have been disabled here to de-clutter.

We sketch a quick block for the user to break with the ball and to reuse the wall reflection

behavior from before we add a second label "wall," then save it.

To speed-up our drawing practice, we can sketch a temporary rectangular "region" and say

{ "I pack the region with blocks" } to fill the region with the block object we just defined. To

make the blocks destructible and increase the point count, create a rule { "When balls collide

with blocks balls destroy blocks and then the points increase." }

See 8.9b.

Lastly, we could create a text object with the word "win title," save it, and spawn it when the

ball reached the goal. { "When balls collide with goals balls stay and then I create a win title" }

Nowwe’ve transformed a sketch of a working Pong clone into a Breakout clone reusing a mix

of our own previously-defined functionality. This demonstrates a fair level of flexibility to try-out

mechanics without needing to start over or worry about future changes in decision-making.
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8.1.9 Space Invaders Elements Built from Breakout Elements

A common trick in games is to have objects appear to warp between sides of the screen to

achieve an animation effect or looping movement. Let’s create a looping version of the moving

enemies from Space Invaders, which requires some timed events and sequencing.

We create and save an alien sketch.

Now we want to clone several of these and have them move in a snake pattern until they

reach the bottom of the screen. Then they should teleport back to the start.

Wemake invisible walls on the left, bottom, and right sides and a spawnpoint at the beginning.

We also make colliders representing triggers for moving left and right. The bottom zone teleports

aliens back to the startpoint upon collision.

The following rule will create the spawning logic: { "When aliens collide with the bottom

zone aliens teleport to a startpoint." }

For the movement logic we create our own "start" verb definition: { "When aliens start aliens

move right. } { "When aliens collide with walls aliens stop and then aliens move down" } {

"When aliens collide with r_walls aliens stop and then aliens move left." } { "When aliens collide

with l_walls aliens stop and then aliens move right." }

See 8.10.

Now, we can augment the paddle from breakout by creating a shoot button that causes our

own bullet object to spawn from the paddle. (This is similar to the previously-described exam-

ples). When the paddle collides with an alien, that might be a lose condition.

Note that we can think about this looping behavior as a building block for other games and

scenarios as well. For example, Frogger requires spawning of random cars and obstacles that

move from left to right as the title character navigates.
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Figure 8.10: Space Invaders basic zig-zag-motion. This shows how one might start to approximate
Space-Invaders-inspired motion by using walls as triggers for changing objects’ trajectories.

8.1.10 Interactive Lesson

For one more example, we can create an interactive molecule matching game that could func-

tion as an exercise for an interactive lesson.

Let’s create a box and a checkbox for it to transform into if the user gets the matching correct.

If we save a sketch structure of hydrogen and oxygen atoms attached together and name it

"water," we can use this as a template for matching

Now using the verb "form" we can define: { "When atoms form water the box transforms into

a checkbox" }

With this rule, the interface will check whether a group of sketches labeled as atoms form the

same hierarchical attachment structure as the "water" sketch, with the correct "hydrogen" and
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"oxygen" labels. If so, the condition is fulfilled and the box becomes the checkbox.

See 8.11.

Figure 8.11: MoleculeMatching Lesson Prototype - The structure of a water molecule has been saved
prior. The shown mechanism spawns a checkbox if the user has fulfilled the rule: to create at least one
correctly-structured and correctly-labeled hierarchy of sketches matching the water molecule. We believe
this could be something one might want in an interactive lesson notebook or textbook.

This is just one example we’ve tried that shows how we could turn these interactive simula-

tions into learning games that could fit in a digital notebook or worksheet use cases.

8.1.11 Overall Takeaway

In this section, we’ve illustrated the DrawTalking workflow through several examples show-

casing capability as well as potential user iteration processes. We started from simple and small

simulations and built towards larger interactive game-like prototypes. We’ve shown how using
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the same set of primitives and operations, we can flexibly and fluidly try-out ideas just through

sketching and language. Due to the capabilities of the system, the user can manage several ob-

jects at once, define and reuse behavior, and explore several potential use cases. To reiterate, the

approach to user/machine control using sketching and speech is our contribution. If we imag-

ine our approach applied to more fleshed-out interfaces with larger sets of capability, it does not

escape our notice that sketches and commands could easily represent variables and functions in

different computing environments. In other words, as a takeaway from these examples, we con-

sider how we can scale and export to other interfaces, and still preserve the functionality of our

approach.
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9 | System Architecture and

Implementation

We start by presenting the system architecture in the abstract (in terms of input and language

processing layers) independently from the specific content features. Then we follow with our

concrete implementation. By splitting the explanation we hope to clarify where our approach

could help in the implementation of systemswith different content needs, butwhichmight benefit

from a similar style of user interactivity as ours.

9.1 Abstract System Architecture

9.1.1 User Input and Object Selection

The system uses a combination of inputs. Language is captured and converted into text via

continuous speech-recognition through a microphone, typing at a keyboard, or interaction with

the application (e.g. manipulation of text objects). Direct manipulation input controls the appli-

cation directly and represents what the user is touching or pointing to. e.g. using stylus/pen and

multi-touch input. Concrete information such as position and orientation of the input event is

stored along with the ID of whatever a user selects with a given direct input. Events are stored

in-order per input-modality and retained so we canmatch sequences of selections with sequences

of words in the future. Specifically, we match sequences of selection events with sequences of
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deictics to label or command objects in-order.

9.1.2 Translating Language into Application-Agnostic Form into

Application-Specific Commands

The language processing component (in the abstract) comprises roughly 4 steps that translate

a natural language data structure into something usable by the application as a command (9.1,

9.2).

Figure 9.1: Abstract Model for Language Processing Stages

[In Natural Language Raw Text, Out S1] The system receives language input and annotates

it using any method (modern models or classic NLP, libraries, etc.). It outputs a data structure

(directed graph) encoding the dependencies between and semantic roles of words. Note that this

representation does not prescribe a use case for the information. Instead, it’s meant to be an

abstract simplified structure built according to a known spec e.g. a simplified English grammar.

Our implementation of DrawTalking uses the Spacy (v 3.1.4)[Montani et al. 2023] library to out-

put a dependency tree per-sentence, along with a library called "coreferee" to fill-in coreference

information.

[In S1, Out S2] The system traverses S1 and generates a new generic graph structure S2 from

the information in S1. Each node entry in the graph structure represents a nested hierarchy of

semantic units containing information such as labels (the word actually used) and part of speech
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Figure 9.2: System-Specific Language Processing into Intermediate Structures

(such as noun, verb, etc.). For example, ACTION nodes contain a label for the verb. Noun-like

child nodes such as AGENT, DIRECT_OBJECT, INDIRECT_OBJECT, PREPOSITION, and so on

have a label for the noun. Noun-like nodes might contain values including but not limited to

numbers or entity IDs (if the user specifies specific objects in their language). ACTIONs and

noun-likes can contain a PROPERTY, which is where we lookup and store information about

adjectives and adverbs (For more details on the format, see 13).

[In Incomplete S2, Out S2 with System-Context] Feedback] Upon creating the structure for

S2, there might be unspecified placeholders for objects, so we call it "incomplete." The system will

now look at application-context such as user-input and objects. At this stage, the system fills the

structure with concrete entity IDs as-needed. (In our case, the sketching application has spatial-

visual context, so objects have positions and some notion of physics, so adjectives referring to a

property like velocity are going to depend on the presence of these physical properties.). A query

sub-system is needed to register and lookup objects based on their labels. For each noun-like

entry in the traversal, the system queries for objects with the given noun and adjective labels,
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and returns the IDs of all objects in the world that match those labels. These are used to complete

S2. Also, this is where the application can differentiate between object instances and object types

(e.g. we differentiate using plural and singular), randomness, and how to interpret adjectives as

what kinds of properties (e.g. as numbers, text labels). Deictics or direct linking are used to infer

which objects the user referred to at a given moment and assign entity IDs to parts of the graph;

[In Incomplete S2, Out Complete S2 with User Feedback] After this process, the user should

be able to do last-second editing and correction of the intermediate structure. The system can

output user feedback, (which is what the 7.10 is).

[In S2,Out S3] Lastly, the application traverses the structure and generates a final application-

defined structure S3 that it can evaluate – in our case, a mix between scriptable virtual machine

and animation engine akin to [Perlin and Goldberg 1996; Resnick et al. 2009] or a runnable node-

based program [cycling74 2018]. S3 can We’ll call these scripts. S3 can retain S2 for reference.

When traversing nodes in S2 labeled ACTION (the verbs) we lookup the appropriate previously-

defined script for that action and insert a reference to it in S3. The arguments for that action, i.e.

semantic role keys mapped to object ids or types, are inserted into a lookup table specific to the

ACTION script instance so when the action executes, it knows what objects to modify. Loops and

timed waits are also inserted into S3. The application evaluates the final structure according to

its own interpretation. This results in any potential application-specific side-effect – in our case,

animation, simulation, rule creation, application state-changes and so on.1 The application can

also retain the generic S2 structure to help generate commands later.
1In consequence, a different implementation might interpret the exact same data structure and see different

parallel visual results.
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9.2 Concrete Implementation

9.2.1 Hardware and Software

DrawTalking is implemented for the Apple iPad (2022 iPad Pro - A2436 - iPadOS 16) 2, with the

main code written mostly in C++ and C, bridged with Objective C++ and Swift to access platform-

specific APIs.3 Speech-recognition happens on-device (via the SFSpeechRecognizer API4).

9.2.2 World System

Briefly to give a sense of the underlying data structures for entities in the system: an entity

in DrawTalking is called a Thing, which belongs to a World context. The entire system stores

references to Things by ID for pointer stability. Things are typed at runtime and can refer to any

user-interactive or system-level object. i.e. freehand sketch, UI element, a component in S39.1.2.

Each type has a default "run" function called on the Thing per simulated-frame.

Things contain flags for setting visibility, user-interactivity permissions (whether an object

can be moved or deleted), among others. All Things have default and dynamically-attachable

event-handlers for touch/pen interactions.

Things have standard representation data including pose and model transforms, and in our

case, storage for polycurves (points, colors, widths, etc. as separate buffers). Things have type-

associated data storage for persistent state that are initialized when the runtime sets a Thing’s

type. e.g. "velocity," "rotation_direction." The data are decoupled so different versions can be

swapped-in or rolled-back.
2This is the best iPad model as of 2023 that supports stylus-hover operations
3Although platform-agnostic code was not required, we wanted to write most of the code in a portable-enough

systems language to moving to another platform in the future would not be as prohibitive. Targeting wasm for web
platforms is a possibility if we re-implement the "platform layer" — the Objective C++ and Swift for different devices.

4SFSpeechRecognizer in on-device mode as of 2023 auto-times-out a task and resets the results after a couple
seconds of silence, but we want continuous speech recognition for the user to speak a command at their own pace.
To simulate continuous speech recognition, we just start the task again and concatenate the previous incomplete
input to the new results.
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Things store all language info as properties using a unified query library that performs ef-

ficient lookups across many properties and facilitates creation of rules. We used open-source

library for such a data structure called "flecs."

The system has basic collision entry, exit, and overlap checks using colliders, which are at-

tached to Things dynamically.

Things can also send messages to each other similarly to a naive version of Erlang’s message

queue system or Smalltalk’s messages. Or they can defer operations as callbacks to be executed

at a specific point in the system’s frame loop in the future (via poll queues). (e.g. it’s important

to "schedule" the deletion of an object so it occurs before or after the main execution loop, which

is where we assume the world is stable.)

Things can also call a "getter/setter" on other Things with parameters without knowing the

specifics of the other Thing’s type. This is often how the system achieves offsets for actions such

as "jump onto." The source object calls the getter for position with a "spatial_above" argument to

get the position with the correct offset. The object being requested handles for itself how to get

that value.

In light of the fact that these underlying elements of the system are not specifically a contri-

bution, we won’t dive more into specifics. For those curious, we’ve included some of the actual

code definitions, here: A.5 in the event they help clarify the rough structure of how Things are

evaluated.

9.2.3 Language Data Structure Transformations

9.2.3.1 Transforming S1 into Incomplete S2

S1 is Spacy’s dependency tree of word tokens and dependencies, alongwith coreference point-

ers to resolve pronouns. This is stored as a list of stable pointers. We transform S1 into S2

with recursive descent starting at the root token (usually the verb). This behaves like any clas-
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sic depth-first programming language compiler. The routine constructs S2 depth-first, branching

into different parts of the tree, and matching token dependencies and parts-of-speech. This "com-

piler" stage is entirely hand-written. The implementation does not matter as long as S1 (whatever

NLP library) can get to the simplified S2 form reliably. For the vast majority of sentence struc-

tures we’ve tried and demonstrated, our compiler works. Additionally, if some word dependency

patterns aren’t handled, they are ignored rather than treated as an error case. This is often a

good thing because some natural language includes words that do not contribute to a meaningful

command, so the user has some leeway to speak in a less structured way and still get a working

command.

9.2.3.2 Transforming Incomplete S2 into Complete S2

As mentioned, S2 is completed by incorporating deixis and direct labeling to fill-in ID place-

holders in S2 for things the user referred to. The system depth-first-traverses S2 to do this, han-

dling each type of element based on its type13. The noun-like elements are where the routine

tries matching entities or types of entities. In this same step for completing S2, the routine con-

structs a user interface for the semantics diagram7.10. At the end of this process, the system has

a completed S2, which is placed into a pending state for the user to edit (optionally), then confirm

or discard. If confirmed, the system feeds S2 to the execution engine (the world’s animation/sim-

ulation system) to generate and run the final command.

9.2.4 Execution Engine

We implemented our own execution engine for DrawTalking called "Make The Thing." Note

that it represents one specialized instance of a solution and could potentially be replaced by any

engine that understands how to use the more generic S29.1.2. That said, to give a sense of how

the system as it is works, we’ve included this section for the documentation factor.

The system runs an execution and simulation loop over all Things per-timestep. It’s not ex-
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posed to the user in any way5. A collision detection and physics update step is performed, all

rules and scripts are evaluated (see "process_scripts" and "process_things" here: A.5), and all

Things’ transforms are updated and all Things are prepared for rendering . This includes visual

user-interactive objects like freehand sketches and UI (designated as "actors"); rules; animation

building blocks like move, rotate, etc; and system-level building-blocks for that represent "in-

structions" such as starting a loop, starting a script, waiting for the latest scripts to finish, or

returning a completion status to end a script.

Each Thing is actually an invisible "node" in an evaluation graph (similar to a visual blocks-

based languages) with in/out data flow ports. S39.1.2 structures are actually compositions of these

world graphs. The world graphs are runtime "programs" run in a vm/stack-machine-like frame

loop. The root graph comprises actors, and all other behind-the-scenes Things (instructions) run

in sub-graphs. This "everything is a Thing" approach is to keep the ID system unified across all

elements in the entire system.

A verb actually refers to a script, which is is a blueprint responsible for selecting and initializ-

ing an instance for a script containing its own evaluation graph "program." Initialization involves

selecting the right template based on the verb arguments (e.g. "jump," "jump on") and filling a

lookup-table of variables (e.g. source, target, height, speed) from S29.1.2. It then generates an in-

stance of a script and evaluation graph for that script instance. The evaluation graphmight define

how to achieve a "jump" or "follow" animation. An evaluation graph is roughly a list of primitive

Things (instructions), port connections between instructions, and events that should occur. (The

graph execution order is defined by explicit ordering of the Thing instructions, followed by a

topological sort on the in/out ports. This is to keep execution order/behavior deterministic, as

otherwise loops in the ports might cause unpredictable behavior, as is the case in many blocks

languages that don’t have explicit execution order.) Then, the system schedules the script in-
5but could represent an easy first step to open-up more advanced live editing for programmers, but this was

out-of-scope.
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stance to run on the next simulation step. The instance has a status for run state representing

"not begun," "running," "canceled," "terminated."

The world evaluation graph structure is essentially S39.1.2 and a script is the glue code and

container that initializes it from S2. S3 is fully-generated at runtime for each command.

The script evaluation step is based on a hierarchy of task queues used by something close

to stack machine (all top-level actors are run last, separately). When a script instance is added

to the queue at the root level, it will be placed on top of the stack, given its lookup table of

arguments (accessible by every instruction in the evaluation graph for that instance script), and

run immediately (this triggers a "begin event" for a verb to inform rules). The script has an

instruction idx into the evaluation graph’s list of Things. By default, most Things return a status

of "proceed," which will move to the next instruction after the current instruction is done. So, the

current Thing instruction is run, the instruction index is moved, and then the next instruction is

run, and so on, until a different status is returned. E.g. a "terminate" status, which ends the script

entirely (and fires an end event). The script can also be set to a terminate status from the outside.

Other status types might tell the machine to suspend and wait to continue next frame, or to jump

to a different instruction. (So infinite animations will just keep running). Loops are achieved

with begin/end Thing instructions that push/pop to the stack and check whether repetitions are

necessary. (begin/end refer to each other and keep loop counter states)

Within a script, there is often a Thing instruction with the type "Call" that references a differ-

ent script to call, followed with another instruction called "Wait." Call will spawn and initialize

a new script instance, parent it to the current running script instance, and schedule it to run on

the root task queue. This new script is also added to a local pending-task queue that belongs

to the parent script. The parent script moves to "wait." Wait checks the local queue to see if all

scripts within it have completed. If not, it suspends the parent script, which blocks it until the

next simulation step. Otherwise, if all scripts within the local queue have completed, the wait

instruction returns a "proceed" status, which moves the parent to the next Thing instruction as
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usual. Conjunctions are actually implemented as an uninterrupted sequence of Call Thing in-

structions (to spawn multiple scripts at once). Sequences (and then) are implemented as nested

blocks of "Wait"s. Parallel sequences e.g. ("X happens and then Y happens AND A happens and

then B happens AND"...) are scripts with multiple instruction pointers. i.e. the stack is really a

stack of contexts containing usually 1, but possibly more independent instruction indices evalu-

ating the same script. Multiple instructions running on the same script necessitates storing the

data for each instruction state separately, or else side-effects might affect the wrong arguments.

This is why we decouple the data for each Thing. The machine saves and restores copies of the

data layout for each instruction state, so only the currently-running instruction modifies its data.

This is absolutely an area for improvement, as more complicated engines might try to parallelize

execution. This is doable by restructuring the engine, but is out-of-scope for this project since per-

formance was acceptable for our examples, and the current engine was straightforward-enough

to develop and test.

Adjectives/property values are pulled dynamically from Thing instructions to update argu-

ments to the script (i.e. looking at the source and target Things to animate, pulling their proper-

ties’ labels, mapping them to values)

9.2.4.1 Client-Server Architecture

The language data-flow(9.1) is achieved through a client-server approach(6. DrawTalking the

application runs on the iPad and communicates with a local server (2021macbook pro 16"M1Max

- model MacBookPro18,2 - macOS 14). (9.3 describes the data flow more abstractly. 9.4 describes

the system implementation more concretely.)

Language text along with an ID for the current unstaged command is sent to the serverside

continuously as the user speaks, or after they type (via TCP for ordering — the performance

is good enough for now). This includes before the user has decided to confirm a command so
6since most NLP is available only through Python-based libraries
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Figure 9.3: Language Processing Data-Flow

Figure 9.4: Concrete Details for Client/Server Text data are sent to a server for natural language
processing over a data channel and forwarded to an NLP-focused sub-process on the same machine The
semantic parses return to the client. A command channel handles canceling parses and other events
independently from the NLP.

the data are ready as soon as possible, or for functionality that can use the live speech without

confirmation. For example, deixismatching is one case inwhich the user does not need to confirm.

The serverside runs natural language processing on the text on-receipt

(via Spacy [Montani et al. 2023] to get dependency parsing structure and coreference resolu-

tion, as well as NLTK+Wordnet [Loper and Bird 2002] for finding synonyms to suggest alternative

verbs). This generates S19.1.2, which is sent pack to the client in JSON format.
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Note that as technology evolves, we might use entirely different algorithms7, and better on-

device approaches might become available that don’t necessitate offloading to another machine.

Upon receipt of S1, client processes S1 into S29.1.28. The system updates the transcript view

(to enable up-to-date matching by linking), runs deixis matching checks, and saves S2 to await

user commands. If a new S1 arrives for a given command, previous ones are ignored.

If the user presses the discard button, 7.5.1.1 a control message is sent to the serverside on

another port that cancels unfinished NLP for a stale command and prevents it from returning to

the client. This is necessary to prevent the server from falling behind on outdated data.

9.2.4.2 Rendering

We wrote a custom renderer with a simple abstraction layer API around Metal, the GPU API

for Apple devices. We did this to have the most control over the pipeline for render passes,

composition, and effects, and the least bloat during development. The abstraction layer allows

for possible changes in the platform and creativity with the API.

9.2.4.3 Other Explorations in Implementation That Showed Potential

The keyboard input field in DrawTalking also serves as a command-line prompt for developer

commands, which could help expert users program or customize the environment. We used this

to develop ideas faster or create test cases. Example commands ranged from creating entities

with a specific type and position quickly to setting variables directly to enabling/disabling a dark

mode. These might all be desirable things for a power user who is a programmer.

We also created a parallel version of DrawTalking for macOS using the same project code

withminor platform-specific input andAPI changes. The experience is not optimized for a system

without a pen andmulti-touch. However, desktop supports access to the entire system andmakes

more interesting capabilities easier to implement.
7but e.g. LLMs cannot yet achieve as fast a response
8in another thread so as not to bottleneck the application user input, simulation, and rendering.
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For example, recompilation and reloading of code as dynamic libraries has been implemented.

This enables users (who are comfortable as programmers) to extend functionality at run-time —

i.e. create new verbs and interpreters or pull-in any functionality from other applications.

We also support texture loading from disk (on iPad and macOS). Although this feature might

be expected in production-ready systems, we found the core of this project was the control +

rough sketching aspect, and not the content. Loading of images proved to be a distraction from

that interactivity focus. However, we tried this functionality, and it works. This includes loading

an image from a URL or REST service such as a generative AI. Loading images, definitely can

help supplement the content the user can create themselves and fit into a more feature-complete

version of the application.

Additionally, in an early tests to see how multiuser collaboration could work, we tried con-

necting an iPad running DrawTalking to our mac running DrawTalking. The mac version treated

the iPad as a camera feed, and we displayed the iPad’s view onto an object on the mac’s side so the

mac’s scene contained the iPad’s scene within a sketched object. The iPad miniature view could

feasibly become a "portal" for users to move between each other’s scenes, watch as audiences,

or reach-in remotely to help with minor changes. A regular camera feed from any device could

work, which means DrawTalking could also implement functionality from video-conferencing or

a streaming solution.

9.3 Afterword on Implementation

We’ve implemented DrawTalking around the idea of decoupling the concept of our approach

from the specific details of the implementation. We believe that by thinking in terms of transla-

tion layers, we’ve shown how future advances in technology can improve the pipeline in terms

of speed and performance, independently from the approach. For example, we decided to use a

fully-rule based NLP library rather than a large model to favor interactive time speed and fluidity
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over naturalness of speech input; the loss in interactive time hurts the experience too much. It is

faster by an expert user (i.e. us) to edit a natural sentence into a system-understood one, in most

cases. However, large-language models, once faster or used in creative combinations with other

methods, are a good option. They can feasibly translate from natural language into an intermedi-

ate format like ours and skip S19.1.2 directly to S29.1.2, or they can reduce a natural language to

only system-handled versions of S1. Then the same applications like DrawTalking could use their

own interpreters of the deterministic input. Or other applications could reuse other deterministic

interpreters without coupling with the technology. We think of DrawTalking’s language system

as a proof-of-concept that shows this kind of decoupling could allow for improvements to the

experience without affecting the core approach. It allows for parallel tracks of development and

research without establishing hard-dependencies.
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10 | User Feedback

10.1 Study Design Motivation

In designing a study, we wanted to learn about the participant’s exploration process and im-

pressions as a first-time user over a short-time period. We are starting from our experimental

design, which fulfills our specialized design goals and criteria towards a vision for future inter-

faces. Our focus was not on comparing the system in terms of performance, as there isn’t a

specific use case we are evaluating in this stage. We are also aware that participants will need

more time to learn to use the interface than an initial round of exposure would commit. Instead,

we are interested in evaluating the feasibility of the user experience in isolation. i.e. how do users

respond to this interactive approach?

We wanted to learn based on user feedback whether our approach would be perceived as

something with potential that is acceptable and useful. Moreover, why and in what ways might

people like and use the approach, from their own points-of-view?

To that end, we designed an open-ended exploration session in which the researcher intro-

duced and guided the participant through increasingly complex features that they could try-out

with their own creative direction. Discussion during the entire session would be allowed. The

goal was to give the participant enough exposure to the interface to arrive at working artifacts

from the process and elicit meaningful discussion. Since this would be a short exploratory session,

the emphasis was not on reaching expert performance, but rather on getting the exposure.
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By the end they should identify for us through longer-form discussion what the use cases and

comparable workflows and tools are, from their perspective. We specifically did not prescribe

specific use cases for the participant so as to bias them less.

We believe this form of verbal feedback is valuable because it can extend our own understand-

ing of the tool with specific anecdotal and experiential feedback. In summary, we are interested in

identifying use cases from the participants’ perspectives. Do they perceive potential in the tool,

and what is the main utility of the tool and what potential does it have for them, personally?

From there, we can identify themes, directions, and additional user needs.

Some of the factors we anticipated observing and learning about were the following:

1. use cases and utility for the workflow (elicited from the participant)

2. understanding of the mechanics in a relatively-short time period

3. creativity as evidenced by explorations and artifacts from having tried the tool

4. the first-time user’s exploration process

5. preferences for working with different parts of DrawTalking for tasks (e.g. labeling by

speech vs labeling by linking)

6. expectations for and adaptations to language the controls

7. suggestions for improvements

— with the expectation that we’d learn additional feedback through discussion.
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10.2 Study

10.2.1 Participants

We invited ten participants P1𝑒𝑥𝑝𝑙 -P9𝑒𝑥𝑝𝑙 to an in-person study via an online form.

The form helped us select candidates with relatively-high confidence in speaking and sketch-

ing, with interest in the topic, and with a fair mix of professional/academic backgrounds and

statuses. It asked candidates to state their academic and professional backgrounds and provide a

short description of why sketching mattered to them (e.g. as a hobby, profession-related task, in

general life, etc.). It also asked candidates to self-rate their confidence in speaking and sketching

to help us decide whether they’d be comfortable using the tool.

Each participant was compensated 30 USD for their time and feedback.

The following summarizes the participants’ backgrounds:

P1𝑒𝑥𝑝𝑙 A very-experienced professor (at a higher-level institution) in computer science, inter-

active graphics, and new visual media (e.g. AR, VR storytelling and games) — focuses on

teaching students new to programming. Uses many visual aids in classes.

P2𝑒𝑥𝑝𝑙 Digital fine arts university student (design and computer science), drawing is a hobby.

Uses sketching for game design; planning gameplay features and figuring out how they

should work. e.g. diagramming and framework design. Experienced with tablet drawing.

P3𝑒𝑥𝑝𝑙 Experience as a digital designer, economics and digital art university student,

not professionally-trained in art, uses a digital canvas (Procreate) to record visual ideas.

P4𝑒𝑥𝑝𝑙 Tech / Design university student. Does design for web, desktop, apps in-general. Has

done digital illustration and drawings often since childhood.

P5𝑒𝑥𝑝𝑙 A very experienced professor in computer programming for interactive graphics. Does
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live-coding and streaming for internet-based education as well. Uses and authors open-

source coding libraries for interactive graphics. Teaches programming for creating visuals

rather than designing visuals by hand.

P6𝑒𝑥𝑝𝑙 Student in interactive media. Draws and paints using the physical medium, with lifelong

interest and experience. Experienced with digital graphical design work. Low experience

with programming.

P7𝑒𝑥𝑝𝑙 Industry creative expert. 15+ years experience as a set designer and in the theater industry.

Digital illustrator, spatial experience designer, AR/VR immersive projects, projects in en-

tertainment and fine-arts. Creative directing, collaborations with companies and academia.

Non-programmer, some experience with visual blocks-based interfaces.

P8𝑒𝑥𝑝𝑙 Robotics andmachine-learning researcher, workswith developingMLmodels, often needs

to visualize ML inputs/outputs and illustrates rough sketches to think-through policies (for

robots). No prior experience using a tablet.

P9𝑒𝑥𝑝𝑙 Robotics and machine-learning PhD student, used tablet-based sketching interfaces.

10.2.2 Physical Setup

We set-up DrawTalking at a table and wanted the session to approximate side-by-side col-

laborative whiteboarding. The participant sat on the researcher’s right facing the table, with the

iPad and pencil in-front of them, within the view of the researcher. The server (macbook) was

placed in-front of the researcher. Screen and microphone recording of the session would be done

on the iPad on-device. The researcher had a DrawTaking Info sheet on the table for reference to

show the participant available features to try (after the training phase).
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10.2.3 Procedure

We conducted a semi-structured study of 1-1.5 hours. It involved 4 components: 1) A brief

introduction of the study by the researcher and a self-introduction by the participant; 2) a training

phase to acquaint the participant with the basic drawing-specific interface elements 3) integrating

the full speech-input; an open-ended collaborative session between the researcher and participant

exploring system features with increasing complexity, towards eliciting discussion about the user

experience. The expectation was for the participant to become well-enough acquainted with

the system (not necessary achieve mastery). The participant could ask questions, interject with

thoughts and feedback, and try-out features. The exact content was improvised according to the

participant’s initial drawings and explorations of a feature list, with some structure imposed by

the researcher to help the participant explore the the system; 4) a discussion-only segment with

the participant for more focused feedback on the full experience.

The study was divided into the following sections, for a total of roughly 60-80 minutes:

10.2.3.1 Introduction (~5 minutes)

First, the researcher introduced the purpose of the study as an exploration of new sketching

and speaking interactions for tasks such as interactive animations. No specific use cases were

defined in an attempt to keep the participant open-minded. To make the participant comfortable

with the study, the researcher emphasized that we were not measuring for skill or performance,

but rather we were looking for feedback on the experience. Lastly, The participant was asked to

give a brief overview of their background and experience.

10.2.3.2 Drawing Training (~10 minutes)

The researcher explained and demonstrated exclusively the drawing/canvas controls, then

invited the participant to try the controls until they were visibly comfortable with the controls.
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The researcher asked the participant to draw 5+ objects (characters, scenery, props) they might

wish to interact with in the scene.

10.2.3.3 Collaborative Exploration (~30-45 minutes)

The researcher and participant explored all of DrawTalking’s features collaboratively, impro-

vising based on the drawings the participant created in the scene. The participant was able to

think-aloud throughout the entire section and interject with questions and comments. First, the

researcher demonstrated both of the workflows for labeling, using a variant of a basic command

such as "jump on" or "move to as an example." The participant would be asked to repeat the same

command using other objects. Afterwards, the researcher would progressively introduce more

complex features (conjunctions, sequences, loops) ending with rules. After each feature, the par-

ticipant would be asked to do similar commands with the freedom to look at a paper manual

for inspiration. If the participant had an idea they wanted to try that diverged from this pat-

tern, they were allowed to explore. The researcher would alternately suggest some ideas or help

the participant reason-through how to achieve a given effect using the controls. The researcher

was allowed to assist in correcting for speech/recognition/language errors, so long as the partic-

ipant could demonstrably perform the same operations. The expectation for this study was not

mastery, but rather understanding and comfort with the controls. The ideas was to evaluate the

concept qualitatively, so the quality of language processing technology should not be a blocking

point for the participant.

10.2.3.4 Post-Discussion (flexible to end)

After the participant created working commands using rules and demonstrated a fair under-

standing, the session naturally transitioned into a semi-structured discussion of the experience.

The researcher asked specifically 1) which labeling technique the participant prefers (linking or

deixis); and broadly 2) how the participant envisions using the techniques in their own work/life;
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3) what use cases and scenarios the participant envisions. Beyond these, the researcher would

continue the discussion open-endedly. Lastly, the researcher would show prerecorded videos of

demos made in DrawTalking or demonstrate additional more advanced examples to elicit more

feedback (e.g. windmills, game control buttons and UI, characters collecting coins for points, etc.).

After all sessions, we collected screen-shots and feedback (comments) according to themes

related to 10.1.
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11 | Results

Each participant learned to use DrawTalking’s mechanics (from simple verb commands to

rules) and developed a strong understanding of the ideas behind the tool during the session.

Participants were visibly excited and offered invaluable feedback in defining the strengths, use

cases, potential, and future directions for the approach.

Participants collectively identified and discussed related use cases including educational ap-

plications, videogame prototyping and paper prototyping, user interface design, presentations,

language-learning, and visual-oriented programming. All participants likened using the interface

to a form of play or rapid prototyping.
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11.1 Participant Discussions

11.1.1 P1𝑒𝑥𝑝𝑙

P1𝑒𝑥𝑝𝑙 notes how working with DrawTalking is like using language with the feel of building

blocks to program a scene. It has potential for creating interactive games and could be comple-

mented by new language technologies to make it even more expressive. P1𝑒𝑥𝑝𝑙 : It’s like language

and Legos put-together.

You could totally make something for kids to make their own videogames and build a videogame

creator. That would be totally cool.

Right now the grammar’s structured. You have to conform. I wonder if you could use a language

model to parse human speech and transform it into the desired grammar. So I could speak more con-

versationally. That might free people from having to learn the specific grammar. Potentially lower

the bar of entry.

I think it’s awesome the way it is.

If you build this as a basic generic toolset that can handle basic actions, the artwork generation, and

the exporting options – I think it could be a good engine (especially if you throw LLMs in the front-

end.) You could sit here and have a conversation and build up just using language your interactions

and then you send that out for code. That’d be fun. I’d do this all day.

Asked about additional use cases,

P1𝑒𝑥𝑝𝑙 suggested using DrawTalking as a way to play with digital manipulatives to explain

mathematical or physics concepts, citing the windmill demo as a good example. Furthermore,

P1𝑒𝑥𝑝𝑙 : "I can completely see you using this to teach English as a Second Language (ESL). Learn

vocabulary, practice. From a reading perspective for kids whose native language is not English [it is

useful] to have the names of the objects below the objects. "
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11.1.2 P2𝑒𝑥𝑝𝑙

P2𝑒𝑥𝑝𝑙 , as someone who taught kids programming via Scratch[Resnick et al. 2009], reflects

on how DrawTalking compares as a visual-oriented programming language and provides several

parallels with their own practices.

P2𝑒𝑥𝑝𝑙 : When we make games ... there’s something called a paper prototype where we make

a bunch of pieces of the players and the objects. We just move it around by hand to kind of

simulate what it would be. [DrawTalking] is kind of like that but on steroids a bit. So it’s very

nice to be able to kind of have those tools to help you with it without needing to manually

make it.

P2𝑒𝑥𝑝𝑙 : It’s like using Scratch I used to teach Scratch to middle scholars while I was in high school

and it’s kind of the same experience of figuring out like all these these — ’this is an if statement, this

is like a for loop, I can make this condition go here.’ This really is like a coding language.

When asked "how is it different:"

P2𝑒𝑥𝑝𝑙 : Both a bit limited andmore flexible. It’s flexible because you can kind of make whatever

and using your speech patterns makes it more flexible even if there’s restraint on the way you speak.

It feels a lot more freeing that I can kind of just make game objects at whenever I want. I can make

them look however I want, and it’s very easy to do that.

I think in Scratch you have to do sprites and then import them in, put them in the game and then

attach code to them.

The thing with the inflexibility right now might be due to the limited vocabulary. There’s still a lot

you can do with this, but some of it feels a little not close to how we’d normally talk.

Specifying the subject again it makes sense but is obviously a limitation.

The more I use it the more comfortable I would get with it. It’s just like a new programming language.

You can definitely make a game wireframe using this. Going back to the paper prototype.

Sometimes when we’re testing we playtest the paper prototype instead of actually having a program.
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And we’ll give players a keypad. Like paper arrows that they press. and we’ll move the stuff for them.

This [the static on-screen programmable buttons] is kind of that but it skips the middleman.

When asked how they’d use the tool:

P2𝑒𝑥𝑝𝑙 : [I’d] probably use it to make little prototypes (used to mess around with Scratch).

Making tiny little games to see if concepts work. (Referring to a boss they’re currently programming

for a videogame): Would probably interesting to draw a little boss and program him to move around

and react to stuff in his environment. Test edge cases.

The logic flows pretty similarly to what I’m currently using, which is Unity.

It’s good to figure out what the interactions I want would be.

When asked how the interactions might apply to other tools:

P2𝑒𝑥𝑝𝑙 : [They’d help me] find things. (Referring to the ability to warp to objects by name)

Unity, Maya, Z-brush. Their UIs are dense and difficult to work with. So it [the mapping] might

be helpful to find stuff. Like windows or find objects if you’ve lost them in a really big scene. This

was pretty interesting that you thought to add this [find features]. Some software doesn’t have find

option in their menus. It was still easy to use to tap and hit find. This would’ve solved a lot of

issues when I was first learning to develop. When I draw I would show people my ideas with

Procreate. Procreate is manual (e.g. using lasso) and can’t control things in tandem, which

this [DrawTalking] solves. If I had to make interactions happen I would have to do slowly

step-by-step. If I had to do the same thing (werewolf sun/moon demo) I’d have to draw it so

this really ups the efficiency. Also because of the way the system is implemented, there’s things

that happen that you don’t expect that are a result of a computer program, which is actual useful

for me because a lot of things can go wrong when I’m programming systems (edge cases) but seeing

them happen with the logic / rules I program into this software can make me account for those things

more easily and make me think about those things.

Old Scratch games did not have actual interaction like a videogame. e.g. you walk down this path.

premade events. This could lead to a lot more interactive storytelling whereas most stories that we
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think of are down a straight path. This could lead to alternative paths. Also unexpected things

because of the interactions you’ve created. I definitely could see interesting things being made in

terms of narrative for this application.

P2𝑒𝑥𝑝𝑙 overall likened DrawTalking to an interactive game and storytelling environment with

useful automation and simple-to-understand controls and UI. They draw strong parallels with the

visual programming environment Scratch, where the speech controls are the main differentiator

— easier despite restrictions on the language structure because DrawTalking requires far fewer

steps to do certain operations and solves issues related to multitasking.

11.1.3 P3𝑒𝑥𝑝𝑙

P3𝑒𝑥𝑝𝑙 found the interface straightforward and felt it was fast in comparison to other creative

applications they’d used. He also likened DrawTalking directly to learning programming and

finding several creative possibilities after the initial steps in this kind of learning process.

P3𝑒𝑥𝑝𝑙 : Learning this reminded me of learning how to program. When you learn a new term/new

language. You kind of forget what you learned before so you need to remind yourself of what came

before. Once you learn all the features and use them for a couple of times, you get pretty good at it.

You remember everything you keep coming up with new ideas.

At the beginning it takes time to remember the things, but once you learn all of them they keep

inspiring you to come up with new ideas.

P3𝑒𝑥𝑝𝑙 : "This could be a brief storyboard for game design."

P3𝑒𝑥𝑝𝑙 describes DrawTalking as adaptable to other applications. It could be a potential plug-in

for other applications that could use its mix of language and direct interactivity features, espe-

cially if it were to become more mature. It could integrate with other AI.

P3𝑒𝑥𝑝𝑙 : This is kind of like... In Adobe AfterEffects[video creation software] if you were to move

something. you have to do a lot of things. set a keyframe. set the way it’s going to go.But in here, it

just takes one second for me to "say it" and it’s going to do it. I definitely can see this being used in
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creative software that you can just say things and it’s going to do it for you.

When there’s AI, now you can select the area and say "remove the scarf." I can see this[DrawTalking]

being similar. built-in function for any tool interactive AI

The interaction of this does things other AI cannot do. (direct interactivity) I see this as a builtin

function in basically any tool.

I can see this replacing other AI that use prompts

If this is more mature. I definitely see this easier to use than other AIs.

P3𝑒𝑥𝑝𝑙 also perceived DrawTalking’s workflow as fluid because it successfully supported mul-

titasking between drawing and definition by pen, touch, and speech:

P3𝑒𝑥𝑝𝑙 : I was also very impressed by how while you are still drawing you can say out loud and

just name it. I’m surprised by how these two things can happen at the same time. // ... this is a

smooth experience that when I’m drawing that I say something and then it’s made.

P3𝑒𝑥𝑝𝑙 describes DrawTalking’s workflow as quicker and easier than other things they’d used

in the past.

11.1.4 P4𝑒𝑥𝑝𝑙

P4𝑒𝑥𝑝𝑙 felt very creatively-engaged with the tool. Like others, they needed time to understand

the possibilities and encountered a learning process since to them, the bare-bones UI was not

self-revealing. However, once they got acquainted, they immediately started considering the

storytelling and animation potential. This shows a trade-off between complexity/obviousness in

the UI and and the learning curve. Also like others, P4𝑒𝑥𝑝𝑙 compared DrawTalking with Scratch in

terms of how they thought about problems. P4𝑒𝑥𝑝𝑙 : While I was making this I definitely felt very

immersed and I was thinking about a whole story in my head and all the different things

that I could do with this program. // The thing that limited me the most was the unfamiliarity

with the controls so it does take some getting used to and I think that maybe having a more developed

UI might be part of it since right now it’s kind of bare-bones. But I think that once you get a
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hang of the mechanisms, there’s definitely a lot of fun things you can do with it such as

telling/animating a story from a storybook, for example. // I think it’s a very good tool for

exploring your imagination. // I’m thinking about this in a very programming/Scratch

way.

When asked about other use cases:

P4𝑒𝑥𝑝𝑙 : I imagine this could be good for making a dress-up game.

A lot of this is kind of more in the educational classroom in terms of use cases. ... demonstrate visual

interaction to other people. I would only do that in an educational setting.

This is good for kids in elementary school for them to practice in a computer class (or something)

and I think that in that case it would be really important to make sure that they know how to use

the program and to introduce them to the terms (key words) slowly, as well as demonstrating.

When I was first doing it, it was a bit of a slow process. I’m also curious if there’s a way you can

make it so that there’s a simpler, straightforward way. it seems there are multiple ways to name.

I think the the linking/tap difference was confusing sometimes.

As a beginner maybe I only want to be introduced to certain features.

Specifically, P4𝑒𝑥𝑝𝑙 is suggesting that DrawTalking introduce fewer features more slowly, or

in a way integrated into the application. We agree that a short 1-hour study cannot easily cover

all features in an ideal pace. P4𝑒𝑥𝑝𝑙 again emphasizes that once they had enough practice, they

were able to see several use cases within education (e.g. for kids), videogames, and storytelling.

P4𝑒𝑥𝑝𝑙 goes on:

P4𝑒𝑥𝑝𝑙 : When I’m working in an art file with lots of layers. "This layer is this/that layer is that"

for efficiency’s sake a good tool I can use.

Presentation [of a] slide deck. Group certain things. e.g. "this is the text. this is the graphic."

where the use cases move more into application-level control and productivity.

Overall, P4𝑒𝑥𝑝𝑙 emphasizes a positive experience and was able to learn and understand the

system. As with many new tools and programming languages, DrawTalking is new/unfamiliar
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enough to require some time to learn, but from observation we found that the hour-long session

was about enough.

11.1.5 P5𝑒𝑥𝑝𝑙

P5𝑒𝑥𝑝𝑙 is excited by DrawTalking being used as a coding playground.

P5𝑒𝑥𝑝𝑙 : I could imagine playing with this for a really long time and enjoying exploring it.

I just want to play with this. drawing and animating and thinking about rules. It’s like a toy.

This is like a natural language way of adding logic and code to a scene.

What’s kind of cool about this beyond drawing an interface and using it – I can execute different

rules of things that are happening. scene is playing out here AND physical thing is happening.

On the topic of being used for presentation:

5: "[It could be used for] live explanation [and] presentation about the basics of foundational

game design concepts.", suggesting it would be exciting to involve the audience as participants in

the talk by asking them to speak to the tool. e.g. a "room of 5th graders. get them to make fun

animations and interactions."

When asked about how DrawTalking might integrate into the participant’s work:

5: If I wanted to use this as complementary in teaching e.g programming in P5.js
1
, how would

it fit-in? Lot of value here in oh let’s look at what is a conditional statement? ... let’s look at this tool

where we can build these objects in and try using natural language to build these rules and see what

it does.

and now I could look at how text-based coding does the same thing. This might help students be

creative and think-through ideas and understand the concepts.

Then it could apply into their learning to code.

Mixing visual elements with language helps me understand it. more of that could be good.

drawing connections between visually as I’m speaking.

1JavaScript graphics programming framework
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There, P5𝑒𝑥𝑝𝑙 describes how DrawTalking could be used directly as a visual environment for

learning programming directly. They go on to suggest that an evolution of the DrawTalking

interface could convert user interactions and content sketches into actual code or a webpage.

e.g. "Export it to P5.js code: e.g. a ’star class’ with a point [x,y] with rules." We believe this is a

strong direction to avoid lock-in with a particular application of DrawTalking if it were developed

further. We agree that a promising directionmight be to treat the interfacemore as a development

phase with the ability to export to traditional code and code generation.

When asked about more use cases and potentially extending beyond sketching:

P5𝑒𝑥𝑝𝑙 : [A] tool to actually design an animation. build whole set of rules and drawings I could

export and maybe it would be a game.

UI elements make a lot of sense

audio/webcam support?

This interface is a starting point for developing all of these ideas [for speech and drawing control].

This could be refined or placed into other contexts. [It’s a] rapid prototyping environment.

Connect sketches to a controller for an LED panel? Physical/tangible interfaces.

P5𝑒𝑥𝑝𝑙 also suggested additional domains and research directions, with which we agree.

P5𝑒𝑥𝑝𝑙 : e.g. [Consider] this is a framework. Build on top of it for specific applications.

e.g. Focus [it] for particular context.

e.g. Keep as-is but refine (is there a version without need for paper printout with just self-guided)

Lastly, P5𝑒𝑥𝑝𝑙 is curious what a truly UI-less version of this tool is, which we believe to be a

valid future research direction.

11.1.6 P6𝑒𝑥𝑝𝑙

P6𝑒𝑥𝑝𝑙 praised the sense of playfulness and felt that it was fun discovering different actions or

different code that [they] could write with the speech and drawing. [The experience was] visual and

tactile. (Again we see the participant likening DrawTalking to a form of coding.) They describe
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DrawTalking as accessible to non-programmers. If you don’t know the language of code, you

can just speak English ... create actions that will animate something. Additionally, they

felt the direct integration of drawing was in some sense more accessible than using code because

it’s hard to draw a shape in JS exactly as you envision it, but here you can draw an object and give it

actions. [For] code, [you] have to write every single detail into it. i.e. the participant prefers directly

drawing what they want to using procedural code.

P6𝑒𝑥𝑝𝑙 appreciated the speed of speech as opposed to text in spite of additional potential for

error, and also appreciated the availability of the keyboard to correct words. (We showed this

feature.)

In terms of use cases: Game design. Roughly flesh-out a scene. Sketch-out how everything would

move around. You could do it very quickly here. Also, museum interactive exhibits., presentations

P6𝑒𝑥𝑝𝑙 also liked the ability to create buttons to perform actions. [I] felt the buttons were useful

so you didn’t need to redo the actions over and over. [I] felt more in-control. If giving a presentation,

[I] might make some buttons in-advance

This highlights an interesting flexibility in DrawTalking: the ability to create some ele-

ments in advance and some immediately as-needed.

11.1.7 P7𝑒𝑥𝑝𝑙

P7𝑒𝑥𝑝𝑙 as a professional artist thinks DrawTalking is a step towards helping non-programmers

build game worlds intuitively.

P7𝑒𝑥𝑝𝑙 : I can see it in the realm of a game engine.

Me instructing a game engine – someone like me who’s not a programmer and who is intimidated

by doing C# or even Unreal Blueprints and using visual scripting language like blueprints – this is a

really clean interface that I think can achieve you can get 90- or 80% the way there by instructing say

selecting a character – saying I want this character to limp or if I’m doing an animation to go to the

top of a mountain and I want it to be slower or faster. It just makes the user experience cleaner than
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having to use all these knobs and buttons or things like that or using scripting language or having

to actually write code.

You [the researcher] do not force to work with the scripting language. You can get close to what you

want without actually having to do visual scripting or programming.

You don’t want friction. Points to a bigger thing. A tool should be intuitive that anyone can pick it

up and use it to some extent. Like you can pick up a pencil. Hammer and nail. Without teaching.

Not all tools are like that. A car is intuitive to use and very complex. We’re all trying to get to that.

I look at it from the point of view of someone who uses Unreal and it really frustrates me to navigate

that interface. So the possibility of something where I can speak to it and have a conversation with

it and it can do what I want it to do is really enticing.

P7𝑒𝑥𝑝𝑙 sees DrawTalking’s approach as a potential bridge between art and programming for

non-programmers. They describe that it has less friction than traditional visual interfaces. The

main mode of interaction is speech, the participant believes the direction of using speech as the

main way to describe intent to the machine as a promising path forward for addressing common

frustrations.

P7𝑒𝑥𝑝𝑙 pointed-out that in the future they’d like to see a version of DrawTalking that required

no learning curve:

A tool should be intuitive so that anyone can pick it up and use it to some extent. Like you can

pick up a pencil. Hammer and nail. Without teaching. Not all tools are like that. A car is intuitive

to use and very complex. We’re all trying to get to that.

This would be a worthy direction. In-large part the learning curve (we observed) came from

the limitations in vocabulary, which is tied to the language processing component. However,

as P7𝑒𝑥𝑝𝑙 says, not all tools are instantly-learnable. For example, language is learned gradually

over time. We believe it makes sense that given the comparison with programming languages,

DrawTalking might require some exploration over time since it does not map 1-1 to full natural

language. Based on the current approach and as mentioned, it might be possible to support more
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natural forms of speech, thereby reducing the learning time.

However, we still need to account for learning how to use language in new contexts. It is

unclear whether we can simply perfect an interface by supporting greater language flexibility.

As P4𝑒𝑥𝑝𝑙 said, increasing the feature set and level of flexibility might have the inverse effect

of making the interface harder to learn. P7𝑒𝑥𝑝𝑙 touches-upon big open-questions in interface

design — how to balance between making interfaces self-revealing and simple, and making them

powerful, but potentially more complex and challenging to learn?

11.1.8 P8𝑒𝑥𝑝𝑙

P8𝑒𝑥𝑝𝑙 , a robotics and machine learning researcher, expressed that DrawTalking could easily

help create animations and presentations very easily P8𝑒𝑥𝑝𝑙 : "If I was an educator, lecturer, this

would be an amazing tool to explain things to people". More specific to their work, the sketching

capabilities could help in their process of building and trying-out machine learning models for

directing robots inmanual tasks. P8𝑒𝑥𝑝𝑙 felt the ability tomove boxes (sketches) around anywhere,

name them, and roughly sketch mathematical equations on them, was already compelling due to

the convenience of spatial organization and the ease of tagging sketches.

Additionally, P8𝑒𝑥𝑝𝑙 clearly could see how one could create a videogame e.g. a racing game.

When asked more directly about applicability to their work, P8𝑒𝑥𝑝𝑙 said more domain-specific

grammars would be necessary for working with finite state machines (FSM)s. Additionally, hav-

ing more granular control over the definition of walls and obstacles, paired with pathfinding

algorithms could make DrawTalking usable to help with reinforcement learning-based obstacle

avoidance. If such additions to DrawTalking’s featureset and DSL were made-available, then this

could be used for animations for debugging possible problems [in robotics]. i.e. DrawTalking could

be a visual debugger for real computer programs.

P8𝑒𝑥𝑝𝑙 goes on: For long animations could be complicated, but for first sketches for the system,

could be useful for picking-up [detecting] possible problems [with the models / algorithms]. . This
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is understandable, as the current version of DrawTalking does not include all production-level

features for saving and managing animations, but this could be integrated. The question would

be — what is the best way for saving much more complex state beyond singular rules. P8𝑒𝑥𝑝𝑙

suggests that simply extending the rules view to visualize and enable re-editing of dependencies

between rules might be enough. We find this idea of treating DrawTalking as a simulation and

controller of external processes and rules as an exciting possible direction.

11.1.9 P9𝑒𝑥𝑝𝑙

P9𝑒𝑥𝑝𝑙 is a robotics and machine learning PhD student. They saw the potential DrawTalking

as a step in the iteration process towards creating videos or animations. For example, creating

and performing animations (even simple movements), and recording them for composition in

video. 9: "If I want in my presentation to show something ... there aren’t going to be videos on the

internet for that. With this[DrawTalking] just by recording the screen I can literally make a video in

two minutes."

Secondly, P9𝑒𝑥𝑝𝑙 felt DrawTalking would also be useful as a form of game — a way to design

and play games with friends as part of a social experience. e.g. to create "random figures, stories,

see what happens.

P9𝑒𝑥𝑝𝑙 discussed avenues for integrating DrawTalking’s concepts into other contexts: this idea

can be extended to all kinds of [things] withmore actions, movements— if for some game development

where they already have the gadgets set-up. Just incorporate the language and control interface here.

We can easily create animations with the fancy stuff they have.

—indicating that they considered DrawTalking to serve as generic functionality.

When asked about possibly incorporating into robotics (their line of study), P9𝑒𝑥𝑝𝑙 agreed, but

with the caveat that for real-world environments, they might want to have even more control and

specification of commands for safety at the expense of automation:

For potential tangible interfaces, physical things like robots might need more specification (for
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safety? accuracy?). Would be more tolerant of extra specification to make sure it’s correct. Definitely

don’t want surprises. People won’t want it to be fully magical. [They want] more control.

This suggests that our emphasis on user control was necessary, and that it likely

requires further development for higher-risk contexts where safety is crucial. It also

suggests that there is a use case for reducing automation. Not everything has to feel

"magical" or instantaneous to be useful. Overall, configurability seems to be a major consid-

eration moving forwards with this and similar interfaces.

11.2 Points / Observations

We discuss additional points and observations.

11.2.1 DrawTalking as Programming by Speech

That participants generally described DrawTalking as a form of accessible programming us-

ing language, with the ability to move things around tangibly and physically — yet we never

described the interface as a "programming" interface. This indicates that participants understand

the capabilities and metaphors underpinning DrawTalking. P1𝑒𝑥𝑝𝑙 immediately understood that

the use of "over and over" is like a while loop. P3𝑒𝑥𝑝𝑙 asked whether labeling was like assigning

variables. Most other participants self-described actions as "functions." P7𝑒𝑥𝑝𝑙 , a non-programmer

familiar with some visual programming interfaces, interjected that DrawTalking is "true visual

programming." Most participants became especially excited once more complex examples using

repetitions and rules came into play, showing greater levels of programmability.
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11.2.2 Labeling by Speech is Generally More Intuitive Than by Linking:

Speech (Deixis) vs Linking

In the context of this study, participants overwhelmingly preferred labeling sketches using

speech (deixis) to labeling using linking with touch and pen. All users settled on using speech

after trying both methods. Participants generally reported wanting to learn one of the methods

and staying consistent, but felt both methods were useful. They thought using speech + touch

was more natural and direct. They appreciated pen-linking, however, because it guaranteed that

labeling was possible as long as the desired word was available; it offered flexibility in the way

the user could speak without being required to refer to an object directly. These guarantees and

flexibility could be most useful in presentation. In pilots prior to this study, we had roughly the

same feedback: speech is more intuitive, but linkingmight be less fatiguing andmore useful when

precision is required over a longer period.

Note that multimodal pen+touch and linking style operations have been available and used

since at least SketchPad for drawing and visual programming interfaces. The linking operation

was not self-revealing in this case, but was still useful.

P1𝑒𝑥𝑝𝑙 : [Linking] is harder to remember, but [I] would get used to it. [Speech] is much more

direct. "boom" (taps an object) – command associated with that.

P2𝑒𝑥𝑝𝑙 : [For] talk[ing] while drawing when other people are watching, [it’s] easier to say, "This

is going to be a ’blank’." Linking goes another way not conventional to drawing. But it is a nice guar-

antee that if something goes awry you can fix it. "This is a" feels much more intuitive. P2𝑒𝑥𝑝𝑙 thinks

linking might be more useful in cases the system might be more confused like with compound

words. "In most cases ’This is a’ would be better. [but] In some cases [’this’/’that’] might be too

obvious. When something doesn’t require explanation. (might feel a bit bad)"

P3𝑒𝑥𝑝𝑙 was "more impressed" by "this is a" compared with linking.

P4𝑒𝑥𝑝𝑙 in particular much-preferred labeling by speech and suggested that linking might re-
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quire greater dexterity and practice as someone unfamiliar.

I think that drawing while naming made a lot more sense to me.

I think the the linking/tap difference was confusing sometimes.

Kids will have smaller hands (multiple selection might be hard).

As a beginner maybe I only want to be introduced to certain features.

P5𝑒𝑥𝑝𝑙 reported that "it feels much more intuitive to do it this way" using speech. However,

they understood linking as useful when one might want to label without directly referencing the

object. P5𝑒𝑥𝑝𝑙 gave their own example, saying I often talk about arrows in the context of vectors in

my teaching and simultaneously linking a sketch of an arrow in the scene to the word "arrows"

in the transcript view.

P6𝑒𝑥𝑝𝑙 again would use tapping more (speech + touch) because it mapped better to how they’d

speak with someone, but appreciated both: "[Speech/tapping are] more intuitive. That’s how you

would talk to someone else. Having both is nice as a back-up."

P9𝑒𝑥𝑝𝑙 said that different people might choose different methods based on their workflow

(drawing everything first and then labeling, or drawing elements and labeling, element by ele-

ment), but preferred simply picking one method (speech). Linking with the pen was less discov-

erable. "Some people might talk about what they are drawing (this/that), some people might draw

everything first and then label. I might prefer to draw all objects first and then label them all at

once. Might not need functionality to do at the same time. Linking is less obvious, discoverable. If

they[users] know, should be intuitive. Happy labeling one way. (Tap, this is a ...). Might not need to

go back and forth. Because I know one way ... pretty convenient way ... to label.
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11.2.3 User Opinions on UI

11.2.3.1 Semantics Diagram

Participants understood and appreciated the semantics diagram because it provided a simple

representation of their command and a view into whether the machine understood a command

correctly.

P2𝑒𝑥𝑝𝑙 felt it was very important, especially for beginners and offered the suggested that it

might be integrated more compactly into the transcript view to representing larger commands

and for reducing redundant information. (Although if the transcript is empty, we still need a

representation.) P2𝑒𝑥𝑝𝑙 : [The diagram] is pretty important. Especially if you’re getting to used

to the program, you might say something wrong and it interprets it in a different way and you can

correct it that way [using the diagram]. It’s pretty important. As the program becomes more nuanced

and more development goes into it maybe it’s not as necessary because it’s already shown with the

subject or the noun or the noun highlighted in different ways (e.g. transcript view).

P5𝑒𝑥𝑝𝑙 was enthusiastic about how the diagram annotated their input and helped them under-

stand the relationships between their visuals and speech. "Mixing visual elements with language

helps me understand it. More of that could be good... drawing connections between [things] visually

as I’m speaking."

P7𝑒𝑥𝑝𝑙 felt the diagram was effective at communicating the system’s understanding in a sim-

plified and easy-to-process way: It’s isolating words. Showing what it’s going to do. It’s taking the

verbs and cutting all the other stuff out.

P8𝑒𝑥𝑝𝑙 specifically described the semantics diagram as the equivalent of a program debugger.

"This I really liked. I think this is a really cool debug thing. It’s very intuitive. I immediately

understand what happens [in the system] when I read it."

The feedback suggests that the semantics diagram successfully helped participants under-

stand the system’s behavior and feel more comfortable that it was about to do the right thing,
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and if not, that it was correctable. As to the exact design of the diagram, some feedback suggests

we might simplify it further or provide more editing capability through the diagram, depending

on how complex the command is. e.g. collapse the diagram into the transcript view. In short, this

visualization and correction interface is appreciated.

11.2.3.2 UI Design Layout

We acknowledge that as a prototype, DrawTalking has not yet gone through a UI beautifica-

tion step. Participants felt that changes to the text, colors, and borders wouldmake the experience

feel friendlier, but no one felt this detracted from the experience. Rather, the perception was that

the goal was to make all functionality available at the top level, as if for a developer’s menu.

Our understanding was that some participants in this case wanted less on-screen to avoid being

overwhelmed. P5𝑒𝑥𝑝𝑙 was curious what a 0-UI version of DrawTalking might be, if the technology

permitted it.

In terms of the effectiveness of placing UI elements at the top-level, participants wanted to see

functionality, such as the rules view, more easily accessible at the top level. Our implementation

nested it under button mixed with a keyword selection. This reportedly did not detract from the

experience, but some participants wanted to see more such functionality at the top-level since it

was useful.

The takeaway here is that there’s a delicate balance between keeping functionality spatially-

local and instantly accessible, and keeping the interface clean. Preferences will vary wildly per

user and per function. In the future, we mind consider a more dynamic and customizable UI to

meet more users’ needs at different levels of familiarity.

11.2.4 Habit: Clearing / Discarding the transcript view

Participants were (correctly) aware of the transcript view so they knew what speech the ma-

chine understood.
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We observed that participants habitually cleared the transcript view. On the one hand, this

is good because this is one way to ensure well-formed commands. P1𝑒𝑥𝑝𝑙 said that they used

"discard" and "speech" toggle buttons a lot because they wanted to "make the text clean." P5𝑒𝑥𝑝𝑙

similarly said they wanted it to be "blank." In some sense, this suggests that the design of the

interface works. The user chooses when their speech should be processed or discarded. However,

the comments also suggest that having an always-on transcript is a double-edged sword: it puts

the user into the habit of keeping the input clean for the machine due to a preference for a clean

transcript — but it raises the question of whether we canmore automatically hide this information

contextually so it’s only shown when needed. We believe that based on P1𝑒𝑥𝑝𝑙 ’s feedback, it

might be useful to hide the transcript automatically when speech recognition is toggled-off –

but optionally in case the user wants to access the words. Alternatively, we could separate the

transcript from an optional history for this purpose. Overall, participants e.g. P1𝑒𝑥𝑝𝑙 understood

and used the interface as intended and successfully came-upwith their ownworkflows for turning

on/off the speech input.

11.2.5 Potential for Adaptability and Extensions

Participants envisioned howDrawTalking could be integrated into or with other technologies

to support greater capability on-top of its existing interactions. Participants generally considered

DrawTalking a complementary system or potential plug-in as a feature in other applications.

Alternatively, DrawTalking could be enriched by different choices in input processing.

Some participants described a full pipeline for what they say a fully-matured DrawTalking

might look like. Namely, the key features to support next would be a robust import/export system

for both the interactive animations created in DrawTalking, as well as external content libraries

(images and actions). This would be most useful after creating the initial sketches. Possible use

of language models could help make language input more natural or supply a wider range of

generative content alongside the user-sketched content. Alternatively, DrawTalking could be
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integrated into existing feature-rich engines, purely as an interactive control mechanism.

P1𝑒𝑥𝑝𝑙 : After the kid prototypes the game, they’re going to want to drop in more professional

assets. Maybe it’s not the beginning – the playful piece of it.

Would there be a way to export actions and interactions to code? e.g. take actions and dump into

JavaScript. Your playful world suddenly becomes a template for building something in an open-ended

environment that can be manipulated using actual code.

On large-language model integration: Right now the grammar’s structured. You have to con-

form. I wonder if you could use a language model to parse human speech and transform it into the

desired grammar. So I could speak more conversationally. That might free people from having to

learn the specific grammar. Potentially lower the bar of entry.

I think it’s awesome the way it is. i.e. LLMs could supplement DrawTalking, but DrawTalking is

a good foundation.

Finally: If you build this as a basic generic toolset that can handle basic actions, the artwork

generation, and the exporting options – I think it could be a good engine, especially if you throw

LLMs (Large Language Models) in the front-end. You could sit here and have a conversation and

build up just using language your interactions and then you send that out for code. That’d be fun.

I’d do this all day.

There, P1𝑒𝑥𝑝𝑙 describes the creative process in DrawTalking as something one could export

into more production-ready code and assets. Using LLMs to process language input could support

more conversational speech. As of writing, LLMs are too slow to process speech at interactive

time compared with the libraries we used paired with structured speech parsing. In-spite of the

less-natural input requirements, our existing prototype is faster. However, if we assume LLMs

will reach interactive time (less than half a second) for simple tasks like speech transformation,

this would be an excellent possibility for a more fully-developed implementation of DrawTalking.

P5𝑒𝑥𝑝𝑙 wanted to see the ability to export to real code including variables and rules. Similarly

to P5𝑒𝑥𝑝𝑙 , they ask: "Have you thought of using language models with this? [Tell it: ]your job is to
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take any generic way people are describing things and turn it into this precise syntax."

P9𝑒𝑥𝑝𝑙 suggested the possibility of treating the user’s rough sketches as a phase 1 of an in-

teraction process. Phase 2 would focus on replacing the rough-sketched assets and animations

with higher-quality 3D models and motions. On the topic of LLM-integration, however, P9𝑒𝑥𝑝𝑙

cautions, "if I want to make a very specific video (e.g. a character ’digs gracefully’), an LLM is not

trivial" P9𝑒𝑥𝑝𝑙 describes DrawTalking overall as an extensible concept that could be adapted as

controller for functionality already existing in many other applications: "this idea can be extended

to all kinds of [things] with more actions, movements. If for some game development where they

already have the gadgets set-up ... just incorporate the language and control interface

here. We can easily create animations with the fancy stuff they have."

Our takeaway is that participants understand DrawTalking to be an generic interme-

diate interface for controlling and programming elements across many possible appli-

cations.

11.2.6 Participants’ Quality-of-Life Suggestions

As a non-production tool, DrawTalking could be improved with many production-level fea-

tures to make it more complete and faster-to-master. For example, ... Participants felt that a built-

in tutorial system and in-application listing of possible verbs (as opposed to a manual) would

speed-up their learning process. Offering an optional master list per-object of active verbs being

performed would provide additional insight into the current state of the world (P1𝑒𝑥𝑝𝑙 ).

11.2.7 Flexibility to Speak with an Agent or Created Characters

We chose to support narrative third-person form inspired more by how we might present or

tell a story, but it would be useful to have the flexibility address the machine in any possible way

for different use cases. For example, some participants found themselves trying to speak to one of
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their sketch characters in imperative form (i.e. telling the character to do something rather than

describing it). This indicates they were at some level immersed in the world they were creating,

rather than always detached.

P1𝑒𝑥𝑝𝑙 suggested, we can think of how the machine could alternatively talk back to you: ’What

should I call this object?’ — meaning sometimes it’s useful to have direct communication with a

machine agent as when thinking-aloud.

We agree that this greater flexibility in input would be very useful when extending the audi-

ence and scenarios DrawTalking or similar approaches might be used.

11.2.8 Possible Immediate Grammar Extensions

We noted categories of vocabulary and sentence structure that were missing, but likely sim-

ple to implement in a future revision or with the aid of more feature-rich language processing.

Namely:

1. synonyms/analogues e.g. "touch" or "hit" might be equivalent to "collide with" or "overlap."

"separate" might be an event analogous to "after X collides with Y." "follow" might some-

times be analogous to "move to" even if it is implemented as a continuous action. Others

are simple addition such as "point at" that might alias "rotate to." "If" could alias "when."

The interface already provides some suggestions for remapping unknown verbs to known

ones, but we could extend this further with a larger library or using more powerful models

in the backend. However, the meaning of these verbs might change per-person and per-use

case, and might require much more contextual information. The user might wish to be able

to swap-out a vocabulary and/or an implementation might want to integrate models for

predicting context.

2. passive tense structure
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3. imperatives Sometimes the participantmightwant to command their own character directly

e.g. P2𝑒𝑥𝑝𝑙 : "When the squirrel collides with the collider, stop" or the machine (often if an

editor operation) as in "Make a copy of the star." We can transform these different forms

into narrative form with an implicit subject, or support them directly. It would be good to

support all manner of speech input, whether it’s narrative, dialogue with elements, direct

dialogue with the machine. We simply chose to focus on the first.

4. implicit subjects It would be more natural to remove the need to re-specify the subjects in

different clauses of a sentence. For example, "When X collides with Y, X <action>" could

be replaced with "When X collides with Y, it <action>". "X <action> and then X <action2>"

could be replaced with "X <action> and then <action2>."This alreadyworks in DrawTalk-

ing for most of these types of cases. However, as is the case in actual English, less specifi-

cation introduces possibilities for ambiguity. "It" above could refer to X instead of Y, but in

the original example, it’s unambiguously clear that "X" is the subject. There is a trade-off

between "naturalness" and possibly confusing the machine. In this case, re-specification is

much more likely to work.

5. additional speech-labeling capabilityWe could think ofways to attachmore properties faster

to sketches by recognizing that e.g. "This is my house" might establish an ownership re-

lationship between a character representing the user (such as an avatar) and the house

sketch.

6. additional English-as-A-Second-Language (ESL) Flexibility DrawTalking assumeswe can dif-

ferentiate between singular and plural forms of words using articles (The, an) to effect dif-

ferent commands. In many languages, these don’t exist or are less intuitive to ESL users.

We can think about ways to achieve similar effects using context even if the user forgets or

omits altogether these parts-of-speech. The underlying NLP libraries we used support some

flexibility here, but are more prone to fail if the English input has grammatical errors and
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too many fragments. Handling these kinds of errors was out-of-scope, but is an important

thing to consider for fully free-form speech input and a larger potential audience.

7. Multiple Commands at Once To support additional flexibility, we could allow the user to

create and segment multiple commands at the same time. This might be useful to create

(or suggest) related commands faster. For example, one might want to set-up a UI button

with an event upon press, and a stop event upon release. It would be good to set-up both

of these together.

8. More complex prepositions, idiomatic phrases We omitted structures such as "all of the" in

e.g. "The character jumps onto all of the platforms" for simplicity, but it’s reasonable to

recognize this use of prepositions to specify number.

9. Recurring Inverse OperationsWemight often say something like "This moves up and down."

Interpreted literally, up and down directions would cancel each other out. For some cases, it

might be obvious that this is actually meant to be a looped sequence, but that might require

additional contextual information or built-in known structures.

11.3 Artifacts

See appendix 13 for artifacts from the sessions.

11.4 Summary

Participants identify DrawTalking as a new approach to working-out visual problems and in-

teractively programming worlds using speech. It’s promising in part because it doesn’t require

explicit coding experience, yet affords many of the capabilities of programming and visual think-

ing. It enables spatial interaction and control in a creative environment. Participants felt it was
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intuitive, fluid, and flexible once they overcame learning it for the first time, and could see its

potential across many use cases.

We found, generally, as we moved to increasingly complex programmatic features such as

repetitions and rules, the participants becamemore excited e.g. 1: "I want to try that" — pointing

to rules on the info sheet13.

The comparisonswith other visual programming-like environmentsmade sense – e.g. Scratch

– and we consider this a good thing considering that Scratch is often used professionally as a

programming-onboarding tool or as a model for other such tools. Participants identified (when

comparing with Scratch) that the speech controls combined with drawing all-in-one generally

made the tool even more accessible and simpler in terms of number of steps. This line of discus-

sion (when it occurred) suggested that knowledge from Scratch was transferable to DrawTalking.

DrawTalking was also perceived better in particular by P7𝑒𝑥𝑝𝑙 in the sense that it doesn’t expose

an explicit coding interface or textual blocks. The semantics diagram, despite its visual similarity

to node diagrams in blocks visual programming, was perceived more as a visual indicator rather

than a programming interface. P7𝑒𝑥𝑝𝑙 appreciated that it simplified the English input while pre-

serving the readability. Had DrawTalking exposed more of a coding interface, it’s clear that it

would be perceived as less accessible to non-programmers. Note, that Scratch is generally an on-

boarding tool for learning programming, whereas here, the feedback suggests that DrawTalking

could be a model for achieving programming capability without needing to learn the traditional

model of textual coding, other than the logic present in language. We consider this a very promis-

ing for supporting wider audiences.

The use cases that people identified all aligned with our original goals of supporting creative

exploratory use cases involving imagination, prototyping, and working-out problems through

drawing, or, alternatively for more deliberate activities like presentation and learning. The use

cases fit into multiple categories across prototyping, visual thinking, design, and iteration, ex-

planation, and system-level control. The most distinct categories deal with real-time creativity,
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real-time presentation to an audience, and the system-level application control (a lower-level el-

ement of control). We can also think in terms of "personal/private" e.g. thinking-to-oneself or a

with a friend/collaborator, out-loud, versus "public" where there is an audience. Our user testing

looked at the first. This indicates how DrawTalking’s approach could be incorporate at many

levels of interactive control.

Our use of language for labeling was cited as a natural intuitive input, and the visual feed-

back afforded by the semantics diagram gave users confidence that the machine was doing the

right thing, and that the user could correct errors if not. Participants felt the flattened UI and

system control by speech reduced the complexity they encountered in their experiences other

comparable tools and environments.

Participants also understood DrawTalking as a complementary tool that could plug-into other

applications, and could serve as a feature to enrich the controllability of other UI, animation/game

engines, toolkits, or systems. In the reverse, participants noted that without changing the core

ideas in DrawTalking, extending it with more powerful language models in the future (given

speed improvements) could make it even more flexible in terms of capability and language flexi-

bility. In short, DrawTalking’s primary benefits come from the interaction techniques for control

and programming by speech. The combination of speech and drawing control was liked and use-

ful based on feedback. Additionally, there is potential to transfer these general features into other

domains or systems, even including those with no specific relation to drawing.

We also identified additional potential audiences including children and ESL learners who

could be the target of future extensions of DrawTalking.

As technology evolves, DrawTalking might become increasingly accessible and natural —

either the interface itself or as a general feature. As-designed, DrawTalking can accept a specific

input inform, and external tools can convert to that input. This might make it easier to test

interoperability with language models to support more natural and complex speech inputs, while

keeping the research and results reproducible.
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Lastly, we identified areas for improvement in the interface and language understandingmod-

ules and grammars themselves. Participants felt that DrawTalking’s capability far outweigh the

restrictions on the language structure and grammar. We observed that participants learned label-

ing by speech immediately. Most participants felt that the system needed time to learn mainly

due to the language structure limitations and the large number of possibilities of what could be

created in the environment. Even with the limited verbs and and other parts-of-speech, they felt

the system was rich with things to try. As several participants stated, the experience of trying

DrawTalking for the first time was like learning a new programming language, so it’s arguably

normal for there to be a short-term learning curve. All participants were confident that with more

time with the tool they could achieve mastery. i.e. the interactions were clear; the feature set just

needed more internalization. Participants such as P2𝑒𝑥𝑝𝑙 wanted to take DrawTalking home to

explore it more fully. We expected this outcome.

We consider it a success that all participants were able to understand and learn DrawTalking’s

mechanics, identify several use cases, and speak deeply about the interfaces strengths, limitations,

and perception. It’s a strong indicator that DrawTalking is a useful, understandable tool, that par-

ticipants can identify how it might improve or otherwise make their workflows and experiences

more interesting, productive, and enjoyable. It’s also a success to see that participants identified

and enjoyed the programming elements, and overwhelmingly likened it to a playful exploratory

experience that could work in several contexts, and that might be enjoyable to children.
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12 | Discussion and Future Work

The core concept behind DrawTalking is the control mechanism: users speak to label sketches

with semantics; the machine uses this information to empower the user with computational ca-

pability; the user’s speech and direct manipulation via pen and touch directs the world with the

support of that computational capability. Our design places the user in control and gives them

the flexibility to make decisions for how to create the world – how should it look and how should

it behave.

Through our explorations and evaluations, we’ve identified that beyond our initial motiva-

tions, DrawTalking has become multiple things:

DrawTalking is a specification for input/output (IO) that combines elements of drawing, lan-

guage, and AI mediation.

It is also a creative-social medium inspired by storytelling, presentation, and making-believe.

We can also think of DrawTalking as an interactive approach to programming by speechwith-

out code. User study participants compared it directly to visual programming environments like

Scratch and discussed many use cases for the interaction concept, ranging from playful explo-

ration to demanding creative productions and games.

Sketches in DrawTalking, one might observe, are just containers with variables encoding

semantics, values, and flexible representations. The machine searches for and evaluates these

"variables."

We’ve designed our implementation of DrawTalking to accept a generic format to which mul-
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tiple natural language frameworks and models could likely "compile" to. Then, different imple-

mentations of DrawTalking-like applications could interpret a more deterministic, stable input

as long as the underlying technology could continue compiling reliably, even if the technology

changed. Using deterministic inputs in general could aid in the the development and (repro-

ducible) research of systems and reduce dependencies on the underlying language technologies.

User study participants, also, suggested how the underlying functionality of DrawTalking

could be extended by other technologies (e.g. language models), or be integrated directly into

other applications. Through the combination of drawing and programming elements, DrawTalk-

ing acts as a step in a creative iteration process, potentially with links to other applications in the

pipeline. Unified interactivity in the style of DrawTalking might enable a seamless dataflow of

content between applications, facilitating a more fluid iteration loop at a system-level.

All of the above can be thought of, collectively, as a metaphor and proof-of-concept for a

unified operating system.

We think that DrawTalking calls back and pays tribute to visual computing, language inter-

faces, and intelligent sketching. These are fundamental ideas developed since (at least) Sketch-

Pad[Sutherland 1963], Visual Programming[Sutherland 1966], SHRDLU[Winograd 1972], and the

Smalltalk environment[Ingalls 2020]. Smalltalk is a particularly apt comparison, as it was a pro-

gramming language with human-readability in-mind, a mental model inspired by communica-

tion between biological organisms, a unified programming environment with interoperability

between applications, and the progenitor of more visual-oriented and playful variants for kids

(Scratch). DrawTalking in a sense tries to synthesize these ideas together in light of newer tech-

nologies, enabling easier communication, creating expression, and thinking. As Bret Victor ar-

gues in his talk on humane computing interfaces([Victor 2014]), humans have a wealth of senses

and modes of thought. We should consider how to bring them together. We tried to take some

steps towards this with DrawTalking.

We’ve demonstrated initial working proof-of-concept in the space of rough sketching, but we
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think of the interface as a more general. It is a potential model for how user-centered human-AI

collaboration could work in future computer systems. We hope our research can raise questions

about how to balance user control with machine automation; how best to use the advancing

capabilities we’re seeing as artificial intelligence and compute evolve.

We can think about the various improvements we’ve identified so-far in the prior user testing,

in the short-term. There are several more far-reaching directions we could take as well:

12.1 Future Work

The next steps in research should look into how to make the workflowmore natural and fluid.

The far-reaching "vision," so-to-speak, continues to be to find ways to integrate computing into

our everyday interactions to increase our range of creative expression and communication.

In terms of what a true interface of this sort might look like–it might be fully-invisible, with

no UI at all, or it might incorporate machine agents, or both.

Much like how DrawTalking was inspired by how the machine could use the semantics in

people’s natural speaking patterns, we should look for more opportunities for the machine to

introspect natural human behavior at low cognitive cost to the user. Simultaneously, we should

consider the privacy and safety of the user.

12.1.1 Towards Incorporating Language snf Multimodal Models

Towardsmaking input to aDrawTalking-inspired systemmore "natural": thismight involve to

integration with complementary technologies such as large language models to support a wider

palette of inputs and features. At present, these models do not return results fast enough to

achieve interactive time, so our current implementation better-approximates the speed we’d like

to see for quick interactive sketching+speaking. However, we’ve already begun thinking about

how to use them. Participants in our user study suggested that an LLM translate fully natural
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language into themore structured, domain-specific representations at the application level. We’ve

successfully segmented sentences, simplified structures, and disambiguated context with some

reliability. We could output the reformatted sentence to DrawTalking by generating commands

directly or by first processing through an intermediate rule-based model or compiler.

We’ve also thought about asking LLMs to generate commands. We’ve tried prompting the

LLMOpenAI ChatGPTwith a simple scene description corresponding to names and IDs of objects

wemight create in DrawTalking. Given a narrative and the task to output DrawTalking-formatted

commands, we’ve found that the model can often generate several intermediate commands from

a single prompt to create a more believable narrative with less user-specification. For example,

following several carefully-articulated prompts to the bot, we can describe a scene with just a

pirate and a treasure chest that is underground. We can also tell the bot that it has the ability

to create objects as needed. We can say, "The pirate gets the treasure.", which often will output

commands that generate a shovel sketch, direct the pirate to move to the shovel and pick it up,

then dig underground to the treasure. Here, the bot generated hidden context leading to several

intermediary animation commands. We use the word, "often," though, as we find the output is still

unreliable and easy-to-break. There are ways to coerce an LLM into creating more deterministic

outputs by combining with rule-based approaches. Encoding a scene model into the memory of

an LLM might not be the ideal way to proceed, but this test was encouraging.

Another use case we’ve tried was prompting the LLM to take a sequence of speech com-

mands and user interactions in DrawTalking and output a full story based on the input. The LLM

could help provide some suggestions for creativity-support. This is something we could do today

because it does not necessarily need interactive speeds.

We gather that LLMs will be promising for storytelling use cases because they’ve likely been

trained on gigantic collections of stories, and therefore have many examples of context for filling-

in intermediate steps. However, this still doesn’t mean the LLMwill be able to "be creative" in the

event that the user wants a more unexpected or illogical result, or even something very specific.
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We think the LLM might still need to remain in the role of "advisor" rather than "director," which

is why we still need a way to tune between levels of user control and machine automation.

Lastly, multimodal models could help more easily identify and store information about the

relationships between sketches and objects given the sketch (or a representation of it) as input.

(We can rasterize the scene and feed as an image.)

12.1.2 Towards Greater Editability and Context-Sensitivity

Depending on who the user is and what their background is, the domain-specific language

will likely need to change. We’ve already encountered this with user study participants who

wanted greater flexibility in the language input, with looser requirements on the use of articles

to specify different types and objects.

DrawTalking’s DSL was made with the assumption that the user would want side-view 2D

sketch animation, for the most part. If the user wanted to reinterpret the verbs from a different

"camera angle," we’d need support for a greater number of verb variants, with the ability to detect

the context from the user’s previous commands. This is achievable with our current rules-based

approach. For example, if the user talks about looking at a "world map, top-down" the system

might infer that the camera should face downwards and that the verbs should make sense for

"top-down" viewpoints.

If we were to add sketch recognition and image recognition, the user’s cultural background,

geographical location, and/or profession might influence suggestions for how a sketch should

look and how it should behave. For a simple example, a "temple" will look different depending

on whether the user’s narration is currently describing ancient Greece or Thailand. The machine

could store this contextual information without requiring the user to re-specify in a prompt, and

automatically a "house" would generate the most fitting image.

We think, however, the next unsolved question is how to support more automatic

generation, suggestion, or editability of animation based on context, without explicit
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coding. Moreover, how should these libraries be defined? Research in cognitive science has

tried understanding how people formulate "concept libraries" for deconstructing objects and tasks

[Wong et al. 2022]. Taking closer look into how we think about language and visuals at a cog-

nitive level may help because regardless of whether we use a large library or LLMs to aid in

code-generation, there might be too many assumptions at-play. The user will almost always find

a point at which they want something different and new. (Even with our user study, we found

several cases in which a logical mapping between some simple verbs like "follow" contextually did

not alignwithwhat theywanted e.g. "move to and then stop.")We believe a solutionmight require

more rigorous theoretical study, while building open-libraries from a combination of users’ previ-

ous sketches, programming by demonstration, coding by experts, and suggestions from language

models. i.e. it will be a combination of everything. We would be excited to see how we might

find ways to create new verbs using pure language, beyond the programming-by-composition

supported in our implementation.

12.1.3 Collaboration

In our user study, we simulated a collaborative whiteboarding scenario with the researcher

and participant at the same board. However, we would be interested in seeing how to adapt

to multiple user and spatial configurations. How does one collaborate in-person with multiple

people talking, at the same board or at different boards? How would a team-based collaboration

work? A 1-1 conversation or a brainstorming session over a diagram? This might require own-

ership semantics on top of sketches to track information about each contributor. This might also

become important when asymmetric roles come into play, for example, in a teacher/student en-

vironment. Furthermore, we might need to devise ways to hide information selectively, per-user.

We’ve also started to play with the idea of connecting multiple devices, where iPads could be

remote "portals" visible on others’ screens. It would be a worthy challenge to find intuitive ways

for multiple users to edit the same world at once.
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Furthermore, DrawTalking should in-principle support any natural language so anyone could

collaborate. Should the representation and behavior of content change, per-user, depending on

their language? Can we auto-translate from one language to another to overcome language bar-

riers, in addition to helping language learners practice with a single target language? Can we

also aid in communication with people who suffer from hearing impairments?

12.1.4 Cross-Applications / Cross-Experience

A next logical step would be to demonstrate focused proofs-of-concept for the use cases iden-

tified. For example, generically plugging-in DrawTalking functionality into a production applica-

tion such as Adobe After Effects, or making our tablet application talk to a version of DrawTalking

for 3D scenes. There are many possible design considerations for how to make communication

between applications sensible given different visual representations. One possibility is to treat

the tablet mode as a map for navigating and editing a scene, with a connected desktop or immer-

sive device as a 3D environment for a user to experience. This form of asymmetric control and

views could facilitate interesting types of improvisational and procedural storytelling, controlled

by an external user, and experienced by an audience. Take a role-playing-game, for example. This

could also be a mode of teaching, or playing or designing of games

12.1.5 Multimodal Content

We’ve focused on freehand sketching, but DrawTalking objects can have a flexible represen-

tation mapped to any object: we can consider spatial audio design, digital musical instrument

automation and music composition, and even physical objects (Internet-of-Things or robotic)

control.
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12.1.6 Immersive Experience Control

Spatial-immersive computing (XR, AR, VR) offer new ways to introduce computing into a

real-world, spatial context. This is promising because it could place computing capability di-

rectly in the hand of the user without any device, other than a pen. Participants in our study

highlighted that one of DrawTalking’s strengths included the combination of spatial manipula-

tion, interactivity, and natural inputs. This translates well into immersive technologies. We’re

excited at the potential for non-intrusive social engagement and collaboration with the addition

of the ideas we’ve explored in DrawTalking. Research and industry have long tried to transi-

tion from mouse/keyboard/controller input to more natural inputs like hand gestures and gaze.

We’re still in the process of developing a scalable and affordable solution to a trackable pen, as

of writing. How would DrawTalking’s controls translate to immersive environments? We be-

lieve the interoperation between speech, text, and gesture is a promising direction. Rather than

have explicit text and semantics views, we might want to create equivalents that fit into a real-

world environment better, and compare against the current captions-like visuals. Further into the

future, non-invasive brain-computer interfaces1 might make it possible for the user to register

intent without interaction with a UI, period. A version of DrawTalking combined with fully-

natural input would likely feel freezing. This is one reason why thinking about a no-UI version

of DrawTalking would be most exciting. Imagine a version of DrawTalking that registers intent

perfectly. This is partly why we think it’s important to think about and prototype the possibilities

now, to help understand use cases for the future.

On another note, DrawTalking’s labeling mechanic might complement scene-understanding

algorithms. If the user labels their own environment, we can potentially rely less on computer

vision to understand the full environment. Rather, labels could be combined with computer vi-

sion, or in some cases, they might be enough. This could help side-step privacy concerns with
1See CTRL Labs
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exposing camera and sensor data to applications.

12.1.7 Targeted User Studies

We universally identified that DrawTalking might be a strong educational and creative tool

for children. We would like to learn how DrawTalking might help children learn program, as

well as teachers create engaging learning experiences. It would be motivating to design and

run longitudinal and co-design studies with educators and artists using a more polished version

of DrawTalking, to learn about people’s experiences over a longer period of time after they’ve

achieved mastery.

Developing alternative versions and improvements to DrawTalking for collaborative purposes

or specifically for presentation might help us uncover additional needs and pain-points.

Another direction might be to study DrawTalking-like interactions in a wizard-of-oz setup–

the researcher (as a human) can potentially match the user’s intent closely and type perfectly-

formatted commands from the user’s speech, possibly at lower latency than could an LLM. It

might be easier to accelerate design of the interactions and users’ true response to them with

little to no technical hindrances. The disadvantage of this approach is that it would not help

explore usability or directly benefit people.

We believe all of the above directions combined could be worth studying using ideas from

DrawTalking as a starting point.
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13 | Conclusion

In this thesis, we have introduced and demonstrated a tablet implementation of DrawTalk-

ing. DrawTalking enables the user to create, program, and interact with their own worlds using

sketching and speech improvisationally. We were inspired by our use of speech to explain and

tell stories, and to "make-believe" to communicate information. We wanted to design interaction

techniques that would help extend our creative capabilities with computation, while keeping the

user in control. We drew upon work in dynamic and programmatic illustration, visual program-

ming, and natural language speech interfaces. Simultaneously, we looked at sketching in the

wild. We arrived at an interaction technique in which the user embeds semantics into sketches

with their speech to label them. This telegraphs to the machine what those sketches are and

how they should behave. The user can then narrate and describe rules to direct the machine

in building-up and animating the world. This enables simple storytelling, explanation, and pro-

gramming using speech, multitouch, and the pen. We found through our design and testing

process that our approach generalized to many use cases and reapplications involving human-AI

collaboration. DrawTalking, in the end, synthesizes decades of work in HCI and describes a pos-

sible approach to designing a full computing system marrying human interaction and machine

intelligence, where the user remains in control. We establish our work as a proof-of-concept and

starting point that we hope will serve as a helpful blueprint for future natural interface.

In closing, when designing human-computer interaction(s), perhaps most importantly we

should ask : "what are the roles of the human and the machine," and "how do we privilege the
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user’s intent?"

We believe technology should just be a tool for improving lives. A positive reminder for the

future: even as we find new ways to create, think, and automate via machine, none of this is

possible without the human element contributing its ingenuity and creativity. We re-emphasize

that cross-disciplinary collaboration between human-centered, and more computation-centered

sub-fields is necessary for the best outcome.
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DrawTalking Language Info

Naming Object Mechanics:

● Method 1
○ hold object with your finger and tap a word in the transcript view with the pen
○ create a text object by holding the background with your finger
○ create a number object by holding with background with your finger and tapping a

number in the transcript view with the pen
● Method 2

○ tap objects with finger + speak "This is/that is/these are/those are <noun>" to
label an object with a noun

○ tap objects + speak "This is/that is/these are/those are <adjective> <noun>" to
label an object with a noun and an adjective

○ tap objects + speak "This is/that is/these are/those are <adverb> <adjective>
<noun>" to label an object with a noun and an adjective, and the adverb
describes the adjective

○ *no passive tense (Verbed by noun)

Useful Patterns:

Basic Sentences:
● Use "The" to refer to specific things. Use "a"/"an" to refer to random things. Omit either,

and usually it will be treated as referring to random things.
e.g.

● The dog jumps
○ A specific dog jumps upwards

● The frog hops on a pad.
○ A specific frog hops on a random pad.

Conjunctions:
Something AND something else -> events happen simultaneously

Sequencing:
Something AND THEN something else -> events happen sequentially
* use the verb stop or stop <verb>ing to end infinite actions such as "moving right," which have
no definite ending

e.g. The dog and the cat jump onto the bed and then the cat jumps onto the floor

Appendix: User Study Sheet — Sept. 2023
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Timing (in seconds)
<something verbs> "every # seconds" or "for # seconds"

Repetitions (# times)
twice, # times

Infinitely-Repeating Events
● over and over
● repeatedly
● infinitely
● forever
● endlessly

e.g. Forever the dog jumps two times and then the cat jumps => these two events will happen in
order and then repeat
e.g. The dog jumps and then the cat jumps forever => the dog jumps once and then the cat will
jump forever, without repeating the beginning

Trigger/Responses:
● When (something does something / something happens) (something else happens)

This is used to define behaviors for all things with specific labels, or for specific things.
e.g. When dogs jump on beds, dogs destroy beds
e.g. When lights flicker lights disappear for 0.5 seconds and then lights appear for 0.5 seconds
e.g. When ghosts appear, the villagers jump

● After (something does something / something happens) (something else happens)
○ ... if the trigger event is at the end of an event

● As (something does something / something happens) (something else happens)
○ Use if the trigger should be continuous
○ e.g. As dogs overlap with cats cats jump

Verbs

Movements
● jump

○ can be combined with target (on, beside, under, between)
● swim

○ can be combined with target (on, beside, under, between)
● dive

○ * under
● pounce
● move

○ up, down, left, right
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● run
○ up, down, left, right

● fall (down by default)
○ up, down, left, right

● climb
● follow
● attract, repel

○ source objects pull target objects to them, repl does the reverse

Rotations
● rotate

○ clockwise, counterclockwise
● revolve

○ around something

Retrieval
● give, bring, take

○ (something to someone/something)
● get

○ (something)
● throw (something to someone/something)

State Changes
● create/make/spawn/copy/clone/duplicate

○ "create" will place the object in the center of the screen.
○ "create at" will paste the object at the location of multiple objects you specify

● appear/reappear. disappear
● destroy, demolish, delete

○ something must destroy a target. e.g. the dog destroys the couch
● teleport/warp

○ object teleports to another object
● transform

○ "transform into" <a thing you've saved> or <a thing on the canvas>
● stop

○ stop + <verb>ing to stop a particular action
● become

○ Another way to attach adjectives to objects, but using speech-only or automatic
commands instead of touching + speaking

● attach, detach
○ Attach or detach an object to another in a hierarchy

Numerical
● increase/increment, decrease/decrement, multiply, divide

○ (label of a number thing + <operation> + by + number) to operate on that number
● equal

○ sets a number to the value e.g. X equals 5.2
● activate, deactivate
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○

Miscellaneous
● shiver
● shiver
● oscillate

Special Verbs
These occur only as a result of user input or changes in the world, and cannot be commanded

● collide
○ upon start of a collision or end. Useful for trigger/responses

● overlap
○ as long as a collision is happening. Useful for continuous checks, but less

common.
● press, select / release

○ Useful for creating events when pressing and releasing a button you've made
● exceed (used to check if a number has a value greater than a given value)

○ e.g. when the score exceeds 10, do something

Special Nouns
● I

○ If you need some object to perform an action, but have no objects, you can use
"I" for an always-there invisible object

● view
○ Say "the view follows <something>" to have the camera track the object.
○ Say "the view stops" to untrack

Adjectives (persistent properties on an object)
fierce 2.5
energetic, 2.0
hyper, 2.0
swift 2.0
excited 1.9
speedy 1.5
quick 1.5
fast 1.5
happy 1.5
slow 0.5
sluggish 0.5
unhappy 0.5
sad 0.5
lethargic 0.1
tired 0.1
labored 0.05
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strained 0.05
exhausted 0.05
motionless 0.0
immobile 0.0

Special Adjectives
● finished

○ prevents you from drawing on an object
● unfinished

○ lets you draw on an object again.
● static

○ an object is frozen to the screen and cannot be edited, only pressed. This is
useful if you want to create user interface elements such as buttons on the
screen.

● dynamic
○ unfreezes an object from the screen and can be edited

● new/unique
○ When you say to do an action to a "new" thing over and over, the system will try

to find new objects to move to next. e.g. "Over and over the dog brings a new ball
to <somewhere>"

magnitude words:

(use these to strengthen the adjectives. You can say them repeatedly to make them even
stronger. e.g. "very very, ...") - adjectives on objects as well as these words can be removed
dynamically

too 3.0
overly 3.0
excessively 3.0
extraordinarily 2.6
exceedingly 2.6
contagiously 2.2
completely 2.0
absolutely 2.0
entirely 2.0
fiercely 1.96
extremely 1.9
super 1.8
really 1.8
very 1.8
abundantly 1.8
fairly 1.7
moderately 1.0
somewhat 0.45
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slightly 0.29
barely 0.09
marginally 0.0
doubtfully 0.01

Adverbs (one-time effect on verbs)
fiercely 2.5
strenuously 2.4
energetically 2.0
hyperactively 2.0
swiftly 2.0
spryly 1.9
excitedly 1.9
speedily 1.5
quickly 1.5
quick 1.5
fast 1.5
happily 1.5
slow 0.5
slowly 0.5
sluggishly 0.5
unhappily 0.5
sadly 0.5
sluggish 0.5
lethargically 0.1
tiredly 0.1
exhaustedly 0.05
laboriously 0.05
antigravitationally 0.01
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Appendix: User Exploration Artifacts

The following are selected screens from each of the sessions, captured on-device:

Session P1𝑒𝑥𝑝𝑙

a b

c d
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Figure A.1: P1𝑒𝑥𝑝𝑙
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Session P2𝑒𝑥𝑝𝑙

a b

c d
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Figure A.2: P2𝑒𝑥𝑝𝑙
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Session P3𝑒𝑥𝑝𝑙

a b
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Figure A.3: P3𝑒𝑥𝑝𝑙
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Session P4𝑒𝑥𝑝𝑙
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c d
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Figure A.4: P4𝑒𝑥𝑝𝑙
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Session P5𝑒𝑥𝑝𝑙
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Figure A.5: P5𝑒𝑥𝑝𝑙
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Session P6𝑒𝑥𝑝𝑙
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Figure A.6: P6𝑒𝑥𝑝𝑙
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Session P7𝑒𝑥𝑝𝑙

a
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Figure A.7: P7𝑒𝑥𝑝𝑙
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Session P8𝑒𝑥𝑝𝑙
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Figure A.8: P8𝑒𝑥𝑝𝑙
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Session P9𝑒𝑥𝑝𝑙
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Figure A.9: P9𝑒𝑥𝑝𝑙
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Appendix: Abstract Semantic Structure

The following defines the basic structure of S29.1.2, which is a simplified semantic structure

graph representing an interpretable command. The concrete implementation of DrawTalking

traverses this structure to generate final execution commands S39.1.2.

Listing A.1: S2 Data Structure
S2_Element : Type_Definition {

type :=

CMD_LIST |

ACTION |

AGENT | DIRECT_OBJECT | OBJECT | INDIRECT_OBJECT |

PREPOSITION |

TRIGGER_RESPONSE | TRIGGER | RESPONSE |

SEQUENCE_SIMULTANEOUS | SEQUENCE_THEN |

PROPERTY | PLURAL | COUNT | SPECIFIC_OR_UNSPECIFIC | TIME |

COREFERENCE

value :=

Number | // e.g. any of Float64, Float32, Uint64, etc.

Thing_ID |

Thing_Type |

String |

Boolean |

// e.g. pointer or int ID to dynamic-allocated object

Reference |

List[Value_Type]

// S2_Elements should be allocated with stable pointers, or use stable IDs

parent : Reference(S2_Element)

// Similar to JSON, but elements are always lists (can have multiple children for the same key

// (although the layout is not a hard requirement)

key_to_value := Map[String : List[S2_Element]]

// property can refer to another property e.g. for coreference

refers_to : Reference(S2_Element)

user_feedback_ref : Reference(Anything)... // usually refer to some user feedback UI element

token : Reference(Token) // optional: stable pointer or ID to the raw token in the language input used to create this element

}
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Listing A.2: Possible structures for S2
// Note that each right-hand-side can be a list.

CMD_LIST -> any of the rest

ACTION -> any combination of

SOURCE,

DIRECT_OBJECT,

INDIRECT_OBJECT,

OBJECT,

PREPOSITION,

PROPERTY, // contains a "trait" with a string value for the property name e.g. how adverbs or adjectives are used.

SEQUENCE_SIMULTANEOUS,

SEQUENCE_THEN,

TIME // usually how long the action should last

COREFERENCE,

TRIGGER_RESPONSE -> TRIGGER + RESPONSE

TRIGGER, RESPONSE -> ACTION

// equivalent to ACTION

// (but handled differently to generate rules.

// TRIGGER should be used to generate rules.

// RESPONSE should be used to generate commands invoked in the future with arguments generated from rule evaluation)

PREPOSITION -> OBJECT

SOURCE, DIRECT_OBJECT, INDIRECT_OBJECT, OBJECT -> any combination of

PLURAL, // whether plural or not

COUNT, // number of elements

SPECIFIC_OR_UNSPECIFIC // referring to a specific object or not

PROPERTY

PLURAL, COUNT, SPECIFIC_OR_UNSPECIFIC, TIME are terminal

SEQUENCE_THEN -> ACTION

SEQUENCE_SIMULTANEOUS -> ACTION

COREFERENCE // contains a pointer to another node in the value, usually noun-like.
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Listing A.3: Output from "Forever the person throws the ball into the pond and then the dog gives the
ball to her." prior to object selection

{

label=[], tag=[], type=[], kind=[], key=[], idx=[0] id=[1931]

[CMD_LIST] = [

{

label=[], tag=[], type=[CMD], kind=[], key=[CMD_LIST], idx=[0] id=[1932]

[ACTION] = [

{

label=[throw], tag=[VERB], type=[ACTION], kind=[ACTION], key=[ACTION], idx=[0] id=[1933]

[PREPOSITION] = [

{

label=[into], tag=[], type=[into], kind=[], key=[PREPOSITION], idx=[0] id=[1934]

[OBJECT] = [

{

label=[pond], tag=[NOUN], type=[], kind=[THING_INSTANCE], key=[OBJECT], idx=[0] id=[1935]

value={

THING_INSTANCE=[609]

}

[SPECIFIC_OR_UNSPECIFIC] = [

{

label=[the], tag=[DET], type=[VALUE], kind=[SPECIFIC], key=[SPECIFIC_OR_UNSPECIFIC], idx=[0] id=[1936]

value={

FLAG=[true]

}

}

,

]

[COUNT] = [

{

label=[], tag=[], type=[VALUE], kind=[], key=[COUNT], idx=[0] id=[1937]

value={

NUMERIC=[1.000000]

}

}

,

]

[PLURAL] = [

{

label=[], tag=[], type=[VALUE], kind=[], key=[PLURAL], idx=[0] id=[1938]

value={

FLAG=[false]

}

}

,

]

}

,

]

}

,

]

[SEQUENCE_THEN] = [
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{

label=[give], tag=[VERB], type=[ACTION], kind=[ACTION], key=[SEQUENCE_THEN], idx=[0], @=[MUST_FILL_IN_AGENT] id=[1939]

[PREPOSITION] = [

{

label=[to], tag=[], type=[to], kind=[], key=[PREPOSITION], idx=[0] id=[1940]

[OBJECT] = [

{

label=[person], tag=[NOUN], type=[], kind=[THING_INSTANCE], key=[AGENT], idx=[0] id=[1968]

<coreference substitution> id=[1960]

value={

THING_INSTANCE=[606]

}

[SPECIFIC_OR_UNSPECIFIC] = [

{

label=[the], tag=[DET], type=[VALUE], kind=[SPECIFIC], key=[SPECIFIC_OR_UNSPECIFIC], idx=[0] id=[1969]

value={

FLAG=[true]

}

}

,

]

[COUNT] = [

{

label=[], tag=[], type=[VALUE], kind=[], key=[COUNT], idx=[0] id=[1970]

value={

NUMERIC=[1.000000]

}

}

,

]

[PLURAL] = [

{

label=[], tag=[], type=[VALUE], kind=[], key=[PLURAL], idx=[0] id=[1971]

value={

FLAG=[false]

}

}

,

]

}

,

]

}

,

]

[DIRECT_OBJECT] = [

{

label=[ball], tag=[NOUN], type=[], kind=[THING_INSTANCE], key=[DIRECT_OBJECT], idx=[0] id=[1964]

<coreference substitution> id=[1955]

value={

THING_INSTANCE=[607]

}

[SPECIFIC_OR_UNSPECIFIC] = [
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{

label=[the], tag=[DET], type=[VALUE], kind=[SPECIFIC], key=[SPECIFIC_OR_UNSPECIFIC], idx=[0] id=[1965]

value={

FLAG=[true]

}

}

,

]

[COUNT] = [

{

label=[], tag=[], type=[VALUE], kind=[], key=[COUNT], idx=[0] id=[1966]

value={

NUMERIC=[1.000000]

}

}

,

]

[PLURAL] = [

{

label=[], tag=[], type=[VALUE], kind=[], key=[PLURAL], idx=[0] id=[1967]

value={

FLAG=[false]

}

}

,

]

}

,

]

[AGENT] = [

{

label=[dog], tag=[NOUN], type=[], kind=[THING_INSTANCE], key=[AGENT], idx=[0] id=[1951]

value={

THING_INSTANCE=[608]

}

[SPECIFIC_OR_UNSPECIFIC] = [

{

label=[the], tag=[DET], type=[VALUE], kind=[SPECIFIC], key=[SPECIFIC_OR_UNSPECIFIC], idx=[0] id=[1952]

value={

FLAG=[true]

}

}

,

]

[COUNT] = [

{

label=[], tag=[], type=[VALUE], kind=[], key=[COUNT], idx=[0] id=[1953]

value={

NUMERIC=[1.000000]

}

}

,

]
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[PLURAL] = [

{

label=[], tag=[], type=[VALUE], kind=[], key=[PLURAL], idx=[0] id=[1954]

value={

FLAG=[false]

}

}

,

]

}

,

]

}

,

]

[DIRECT_OBJECT] = [

{

label=[ball], tag=[NOUN], type=[], kind=[THING_INSTANCE], key=[DIRECT_OBJECT], idx=[0] id=[1955]

value={

THING_INSTANCE=[607]

}

[SPECIFIC_OR_UNSPECIFIC] = [

{

label=[the], tag=[DET], type=[VALUE], kind=[SPECIFIC], key=[SPECIFIC_OR_UNSPECIFIC], idx=[0] id=[1956]

value={

FLAG=[true]

}

}

,

]

[COUNT] = [

{

label=[], tag=[], type=[VALUE], kind=[], key=[COUNT], idx=[0] id=[1957]

value={

NUMERIC=[1.000000]

}

}

,

]

[PLURAL] = [

{

label=[], tag=[], type=[VALUE], kind=[], key=[PLURAL], idx=[0] id=[1958]

value={

FLAG=[false]

}

}

,

]

}

,

]

[PROPERTY] = [

{
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label=[modifier], tag=[ADV], type=[PROPERTY], kind=[], key=[PROPERTY], idx=[0] id=[1959]

value={

TEXT=[forever]

}

}

,

]

[AGENT] = [

{

label=[person], tag=[NOUN], type=[], kind=[THING_INSTANCE], key=[AGENT], idx=[0] id=[1960]

value={

THING_INSTANCE=[606]

}

[SPECIFIC_OR_UNSPECIFIC] = [

{

label=[the], tag=[DET], type=[VALUE], kind=[SPECIFIC], key=[SPECIFIC_OR_UNSPECIFIC], idx=[0] id=[1961]

value={

FLAG=[true]

}

}

,

]

[COUNT] = [

{

label=[], tag=[], type=[VALUE], kind=[], key=[COUNT], idx=[0] id=[1962]

value={

NUMERIC=[1.000000]

}

}

,

]

[PLURAL] = [

{

label=[], tag=[], type=[VALUE], kind=[], key=[PLURAL], idx=[0] id=[1963]

value={

FLAG=[false]

}

}

,

]

}

,

]

}

,

]

}

,

]

}
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Listing A.4: Output from "Every few seconds the frog hops to a lily." prior to object selection

{

label=[], tag=[], type=[], kind=[], key=[], idx=[0] id=[1018]

[CMD_LIST] = [

{

label=[], tag=[], type=[CMD], kind=[], key=[CMD_LIST], idx=[0] id=[1019]

[ACTION] = [

{

label=[hop], tag=[VERB], type=[ACTION], kind=[ACTION], key=[ACTION], idx=[0] id=[1005]

[PREPOSITION] = [

{

label=[to], tag=[], type=[to], kind=[], key=[PREPOSITION], idx=[0] id=[1013]

[OBJECT] = [

{

label=[lily], tag=[NOUN], type=[], kind=[THING_INSTANCE], key=[OBJECT], idx=[0] id=[1014]

value={

THING_INSTANCE=[0]

}

[SPECIFIC_OR_UNSPECIFIC] = [

{

label=[a], tag=[DET], type=[VALUE], kind=[UNSPECIFIC], key=[SPECIFIC_OR_UNSPECIFIC], idx=[0] id=[1016]

value={

FLAG=[false]

}

}

,

]

[COUNT] = [

{

label=[], tag=[], type=[], kind=[], key=[COUNT], idx=[0] id=[1017]

value={

NUMERIC=[1.000000]

}

}

,

]

[PLURAL] = [

{

label=[], tag=[], type=[VALUE], kind=[], key=[PLURAL], idx=[0] id=[1015]

value={

FLAG=[false]

}

}

,

]

}

,

]

}

,

]

[TIME] = [

{
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label=[second], tag=[TIME], type=[INTERVAL], kind=[], key=[TIME], idx=[0] id=[1006]

[PROPERTY] = [

{

label=[trait], tag=[ADJ], type=[PROPERTY], kind=[], key=[PROPERTY], idx=[0] id=[1008]

value={

TEXT=[few]

}

}

,

]

}

,

]

[AGENT] = [

{

label=[frog], tag=[NOUN], type=[], kind=[THING_INSTANCE], key=[AGENT], idx=[0] id=[1009]

value={

THING_INSTANCE=[0]

}

[SPECIFIC_OR_UNSPECIFIC] = [

{

label=[the], tag=[DET], type=[VALUE], kind=[SPECIFIC], key=[SPECIFIC_OR_UNSPECIFIC], idx=[0] id=[1011]

value={

FLAG=[true]

}

}

,

]

[COUNT] = [

{

label=[], tag=[], type=[VALUE], kind=[], key=[COUNT], idx=[0] id=[1012]

value={

NUMERIC=[1.000000]

}

}

,

]

[PLURAL] = [

{

label=[], tag=[], type=[VALUE], kind=[], key=[PLURAL], idx=[0] id=[1010]

value={

FLAG=[false]

}

}

,

]

}

,

]

}

,

]

}
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,

]

}
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Appendix: System Code Samples

Listing A.5: "Make The Thing" World Code Sample

1

2 struct World {

3 usize step_count;

4 Thing_Archetype_Collection archetypes;

5 Thing_Collection things;

6

7 Eval_Connection_Graph root_graph;

8 Eval_Connection_Graph* current_graph = &root_graph;

9 Eval_Connection_Graph* saved_graph = &root_graph;

10 Runtime runtime;

11

12 Message_Passer message_passer;

13

14 mem::Allocator allocator;

15

16 mem::Memory_Pool_Fixed memory_pool;

17 mem::Allocator pool_allocator;

18

19 mem::Pool_Allocation drawable_pool = {};

20

21 mem::Buckets_Allocation buckets;

22 mem::Buckets_Allocation message_allocation;

23 mem::Buckets_Allocation arg_allocation;

24

25 bool no_deletion_zone_on = false;

26

27

28 MTT_String_Pool string_pool;

29

30 float64 time_seconds = 0.0;

31 float64 timestep = 0.0f;

32 float64 time_seconds_prev = 0.0;

33 uint64 time_ns = 0;

34 uint64 time_ns_prev = 0;

35 uint64 timestep_ns = 0;

36 usize eval_count = 0;

37
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38 std::deque<Thing_To_Make_Info> to_make;

39 std::deque<Destroy_Command> to_destroy;

40 std::deque<mtt::Thing_ID> to_destroy_end;

41

42 std::vector<To_Clear> to_clear;

43

44 std::deque<Thing_ID> to_disable;

45 std::deque<Thing_ID> to_enable;

46

47 flecs::world ecs_world;

48

49 flecs::entity IS_ATTRIBUTE_TAG;

50

51 External_World ext_worlds[2];

52 usize curr_ext_world_id = 1;

53

54 b2World* physics_world;

55

56 void (*on_thing_make)(mtt::World* world, mtt::Thing* thing);

57

58 flecs::query<mtt::Thing_Info, mtt::Sensor> sensor_query;

59

60 sd::Renderer* renderer;

61

62 std::vector<mtt::Trigger_Response_Command> rules;

63

64 void* user_data;

65

66 Priority_Layer priority_layer = PRIORITY_LAYER_DEFAULT;

67

68 std::vector<Priority_Layer> priority_layer_stack = {};

69

70

71 mtt::Collision_System collision_system;

72 mtt::Collision_System collision_system_canvas;

73

74 mtt::Collision_System_Group_World_Canvas collision_system_group = {

75 .world = &collision_system,

76 .canvas = &collision_system_canvas

77 };

78

79 Instancing instancing;

80

81 inline bool Thing_try_get(Thing_ID id, Thing** thing)

82 {

83 return mtt::Thing_try_get(this, id, thing);

84 }

85

86 inline Thing* Thing_try_get(Thing_ID id)

87 {

88 return mtt::Thing_try_get(this, id);

89 }

90
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91 inline Thing* Thing_get(Thing_ID id)

92 {

93 return mtt::Thing_get(this, id);

94 }

95

96 inline void Thing_get(Thing_ID id, Thing** thing)

97 {

98 mtt::Thing_get(this, id, thing);

99 }

100

101 inline bool Thing_Archetype_try_get(Thing_Archetype_ID id, Thing_Archetype** arch)

102 {

103 return mtt::Thing_Archetype_try_get(this, id, arch);

104 }

105

106 inline void Thing_Archetype_get(Thing_Archetype_ID id, Thing_Archetype** arch)

107 {

108 mtt::Thing_Archetype_get(this, id, arch);

109 }

110

111 std::deque<mtt::Thing_ID> traversal_queue;

112 std::vector<Thing*> thing_buffer;

113 std::vector<Thing*> to_enable_list;

114 std::vector<Thing*> to_disable_list;

115

116 // need per-frame transient memory

117

118 // per simulation step

119 mem::Allocator allocator_temporary_[ALLOCATOR_TEMPORARY_COUNT];

120 mem::Arena memory_temporary_[ALLOCATOR_TEMPORARY_COUNT];

121 // only reset the arena after a few frames

122 usize per_frame_reset_counter_ = 0;

123

124 inline mem::Allocator& allocator_temporary(void) { return allocator_temporary_[0]; }

125 inline void allocator_temporary_begin_frame(void) {

126

127 if (per_frame_reset_counter_ >= 32) {

128 per_frame_reset_counter_ = 0;

129 mem::Arena_rewind(&memory_temporary_[0]);

130 } else {

131 per_frame_reset_counter_ = (per_frame_reset_counter_ + 1);

132 }

133 }

134

135 mtt::Map<mtt::Thing_ID, Input_Triggers> input_triggers;

136

137 Thing_Child_List saved_children;

138

139 Thing_Archetype_Drawable_Instances archetype_drawables;

140

141 dt::Word_Dictionary_Entry* collide;

142

143 flecs::entity collide_tag;
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144 flecs::entity collide_begin_tag;

145 flecs::entity collide_end_tag;

146

147 dt::Word_Dictionary_Entry* select;

148

149 flecs::entity select_tag;

150 flecs::entity select_begin_tag;

151 flecs::entity select_end_tag;

152

153 dt::Word_Dictionary_Entry* overlap;

154

155 flecs::entity overlap_tag;

156 flecs::entity overlap_begin_tag;

157 flecs::entity overlap_end_tag;

158

159 dt::Word_Dictionary_Entry* equivalent_to;

160 std::vector<Collision_Record> collisions_to_remove;

161 usize collisions_to_remove_count;

162

163 mtt::Map<mtt::String, mtt::Interaction_Trigger> interactions;

164

165

166 mtt::Map_Stable<mtt::Thing_ID, Thing_Metadata> id_to_metadata;

167

168

169 void (*custom_on_thing_make) = [](mtt::Thing* thing) {};

170

171

172 void clear_all_of_type(mtt::ARCHETYPE arch);

173 void clear_all_of_type_ignore_flags(mtt::ARCHETYPE arch);

174

175 mem::Pool_Allocation field_list_pool;

176

177

178 std::vector<bool(*)(

179 mtt::World* world,

180 float32 fixed_dt,

181 float32 time_prev,

182 float32 time,

183 float32 realtime_dt,

184 MTT_Core* core,

185 void* ctx)> deferred_per_frame;

186

187 bool show_verbose = true;

188 bool show_attachment_links = false;

189 bool show_debug = false;

190 bool show_script_eval_print = false;

191

192 mtt::Map_Stable<mtt::String, mtt::Set<mtt::Thing_ID>> thing_saved_presets = {};

193 };

194

195 struct alignas(16) Thing {

196 // main ID
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197 Thing_ID id;

198 // ID of the "type"

199 Thing_Archetype_ID archetype_id;

200 Thing_ID root_thing_id;

201 // if this thing is a proxy,

202 //this ID is the original Thing being proxied

203 Thing_ID mapped_thing_id;

204 // handle to the query library

205 Entity ecs_entity;

206 // contains info about how to "run" the Thing

207 // based on its type, per simulation step

208 Logic logic;

209 // dynamic data description

210 Field_List_Descriptor field_descriptor;

211 // dynamic data (that are currently active/swapped-in)

212 Field_List active_fields;

213 // inputs and outputs for data flow

214 Port_Descriptor ports;

215 uint64 eval_index;

216 usize eval_priority;

217

218 // simulation graph

219 Context_ID ctx_id = Context_ID_DEFAULT;

220 Eval_Connection_Graph* graph = nullptr;

221 Evaluation_Output* eval_out = nullptr;

222

223 inline bool operator==(const Thing& other) const { return this->id == other.id; }

224

225 // flags

226 struct alignas(16) {

227 bool is_resident;

228 bool is_root;

229 bool is_visible;

230 bool is_locked;

231 bool is_visited;

232 bool is_user_destructible;

233 bool is_user_drawable;

234 bool do_evaluation;

235 bool is_user_movable;

236 bool lock_user_movement_if_not_root;

237 bool lock_to_canvas;

238 bool forward_input_to_root;

239 bool should_defer_destruction = false;

240 bool is_static = false;

241 bool is_reserved;

242 THING_FLAG flags;

243 };

244 // visuals

245 Representation representation;

246 // user input handlers

247 Input_Handlers input_handlers;

248

249 void (*message_handler)(Message* msg);
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250

251 // gets the world

252 inline World* world()

253 {

254 return mtt::ctx();

255 }

256

257

258 Thing_ID next_id;

259 Thing_ID prev_id;

260 Thing_ID first_child;

261 Thing_ID parent_thing_id;

262

263 Thing_ID saved_parent_thing_id;

264

265

266 Thing_Child_List child_id_set;

267

268 void (*on_destroy)(Thing* thing);

269

270

271

272 usize selection_count;

273

274 void (*on_run_init)(Thing* thing) = nullptr;

275

276 // syste

277 MTT_String_Ref label;

278 };

279

280

281

282 struct Eval_Connection_Graph {

283

284 Evaluation_Output output = {};

285

286 typedef Thing* Eval_Op;

287 std::vector<Eval_Op> sorted_things_direct = {};

288 usize visited_count = 0;

289

290 bool is_modified = false;

291

292

293 Map<Thing_ID, Port_Input_List> incoming = {};

294 Map<Thing_ID, std::vector<Port_Input_List>> outgoing = {};

295

296 Map_Stable<Thing_ID, mtt::Set<Thing_ID>> incoming_execution = {};

297 Map_Stable<Thing_ID, mtt::Set<Thing_ID>> outgoing_execution = {};

298 };

299

300 void evaluate_world(World* world)

301 {

302 world->no_deletion_zone_on = true;
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303

304 broad_phase(&world->collision_system, 0);

305

306 if (root_graph(world)->is_modified) {

307 root_graph(world)->is_modified = false;

308

309 sort_things_in_root_ctx(world, world->things.instances, *root_graph(world));

310 }

311

312 auto* rtime = Runtime::ctx();

313 Signal_Mailbox_clear(&rtime->signal_mailbox);

314

315

316 {

317 std::stable_sort(

318 rtime->script_tasks.rules_list.begin(),

319 rtime->script_tasks.rules_list.end(),

320 Script_Instance_compare__ID_and_Priority());

321

322 auto& task_list = rtime->script_tasks.rules_list;

323 for (isize i = task_list.size() - 1; i >= 0; i -= 1) {

324

325 auto* task = task_list[i];

326

327 switch (task->status) {

328 case SCRIPT_STATUS_CANCELED: {

329 Script_Instance_cancel(task);

330 MTT_FALLTHROUGH

331 }

332 case SCRIPT_STATUS_DONE_SHOULD_TERMINATE:

333 case SCRIPT_STATUS_TERMINATED:

334 case SCRIPT_STATUS_DONE: {

335 Script_Instance_terminate(task);

336 rtime->id_to_rule_script.erase(task->id);

337 Script_Instance_destroy(task);

338 std::swap(task_list[i], task_list[task_list.size() - 1]);

339

340 task_list.pop_back();

341 continue;

342 }

343 default: { break; }

344 }

345

346 process_script(world, task);

347 }

348 }

349

350 while (!world->message_passer.system_messages_deferred_before_scripts.empty()) {

351 auto& msg = world->message_passer.system_messages_deferred_before_scripts.front();

352

353 Procedure_Input_Output io = {};

354

355 Thing* sender = nullptr;
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356 world->Thing_try_get(msg.sender, &sender);

357 io.caller = sender;

358 io.input = (void*)&msg;

359 msg.proc(&io);

360

361 world->message_passer.system_messages_deferred_before_scripts.pop_front();

362 }

363

364 std::stable_sort(

365 rtime->script_tasks.list.begin(),

366 rtime->script_tasks.list.end(),

367 Script_Instance_compare__ID_and_Priority());

368

369 auto& task_list = rtime->script_tasks.list;

370 for (isize i = task_list.size() - 1; i >= 0; i -= 1) {

371

372 auto* task = task_list[i];

373

374 switch (task->status) {

375 case SCRIPT_STATUS_CANCELED: {

376 Script_Instance_cancel(task);

377 MTT_FALLTHROUGH

378 }

379 case SCRIPT_STATUS_DONE_SHOULD_TERMINATE:

380 case SCRIPT_STATUS_TERMINATED:

381 case SCRIPT_STATUS_DONE: {

382 Script_Instance_terminate(task);

383 Script_Instance_destroy(task);

384 std::swap(task_list[i], task_list[task_list.size() - 1]);

385

386 task_list.pop_back();

387 continue;

388 }

389 default: { break; }

390 }

391

392 process_script(world, task);

393 }

394

395 process_things(world, *root_graph(world));

396 }

397

398 void process_script(World* world, Script_Instance* script)

399 {

400 Eval_Connection_Graph& G = script->source_script->connections;

401

402 usize sorted_things_count = G.sorted_things_direct.size();

403 if (sorted_things_count == 0) {

404 return;

405 }

406

407 Evaluation_Output& eval_out = G.output;

408
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409 auto* prev_graph = mtt::curr_graph(world);

410 mtt::set_graph(world, &G);

411

412 Thing** sorted_things = &G.sorted_things_direct[0];

413 usize port_index = 0;

414

415 auto& thing_local_fields = script->thing_local_fields;

416

417 bool is_done = true;

418 const usize ctx_count = script->contexts.size();

419 if (script->status == SCRIPT_STATUS_NOT_STARTED) {

420 script->status = SCRIPT_STATUS_STARTED;

421

422 if (script->agent != mtt::Thing_ID_INVALID) {

423 auto& label = script->source_script->label;

424 auto* rtime = Runtime::ctx();

425 auto& task_list = rtime->script_tasks.list;

426

427 for (isize i = task_list.size() - 1; i >= 0; i -= 1) {

428 auto& tsk = task_list[i];

429 if (tsk != script && !tsk->allow_duplicates_for_agent && tsk->label == label && tsk->agent == script->agent) {

430 Script_Instance_stop(tsk);

431 }

432 }

433 }

434

435 for (usize ctx_idx = 0; ctx_idx < ctx_count; ctx_idx += 1) {

436 auto* const script_ctx = &script->contexts[ctx_idx];

437 script_ctx->is_done = false;

438 script_ctx->slot_idx = ctx_idx;

439 }

440

441

442 if (script->on_start != nullptr) {

443 for (usize i = 0; i < sorted_things_count; i += 1) {

444 mtt::Thing* thing = sorted_things[i];

445 }

446

447 auto res = script->on_start(world, script, script->args);

448 auto [result_type, result_continuation, result_value] = res;

449 }

450 }

451

452 if (script->on_begin_frame != nullptr) {

453 auto res = script->on_begin_frame(world, script, script->args);

454 auto [result_type, result_continuation, result_value] = res;

455 switch (result_type) {

456 case LOGIC_PROCEDURE_RETURN_STATUS_TYPE_DONE_SHOULD_TERMINATE: {

457 script->status = SCRIPT_STATUS_DONE_SHOULD_TERMINATE;

458 is_done = true;

459 goto LABEL_EXIT;

460 break;

461 }
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462 default: {

463 break;

464 }

465 }

466 }

467

468 for (isize ctx_idx = ctx_count - 1; ctx_idx >= 0; ) {

469 script->contexts[ctx_idx].slot_idx = ctx_idx;

470 if (script->contexts[ctx_idx].is_done) {

471 ctx_idx -= 1;

472 continue;

473 }

474

475 Script_set_current_context(script, ctx_idx);

476

477

478 auto* ctx_state = &Script_current_context_state(script);

479

480 Script_Instance_start_or_resume(script);

481

482

483 for (; ctx_state->instruction_idx < sorted_things_count; ) {

484 Thing* const thing = sorted_things[ctx_state->instruction_idx];

485 Thing_ID const thing_id = thing->id;

486

487 {

488 usize iteration = mtt::get_loop_iteration(script);

489

490 mtt::set_active_fields(thing, &thing_local_fields[thing->eval_index][iteration]);

491 thing->eval_out = &script->output;

492 script->output.set_port_entries_index(iteration);

493

494 }

495

496 Port_Input_List* input_list = nullptr;

497 map_get(curr_graph(world)->incoming, thing_id, &input_list);

498

499 auto res = thing->logic.proc(world, thing, input_list, script, &ctx_state, nullptr);

500 auto [result_type, result_continuation, result_value] = res;

501 ctx_state = &Script_current_context_state(script);

502 switch (result_type) {

503 case LOGIC_PROCEDURE_RETURN_STATUS_TYPE_ENTER_SCOPE: {

504 ctx_state->instruction_idx += 1;

505 break;

506 }

507 case LOGIC_PROCEDURE_RETURN_STATUS_TYPE_EXIT_SCOPE: {

508 break;

509 }

510 case LOGIC_PROCEDURE_RETURN_STATUS_TYPE_IMMEDIATE_SUSPEND: {

511 is_done &= false;

512 script->contexts[ctx_idx].is_done = false;

513 goto LABEL_CONTEXT_EVAL_END_STEP;

514 }
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515 case LOGIC_PROCEDURE_RETURN_STATUS_TYPE_JUMP: {

516 is_done &= false;

517 script->contexts[ctx_idx].is_done = false;

518 break;

519 }

520 case LOGIC_PROCEDURE_RETURN_STATUS_TYPE_JUMP_IMMEDIATE_SUSPEND: {

521

522

523 is_done &= false;

524 script->contexts[ctx_idx].is_done = false;

525 goto LABEL_CONTEXT_EVAL_END_STEP;

526 }

527 case LOGIC_PROCEDURE_RETURN_STATUS_TYPE_JUMP_IMMEDIATE_SUSPEND_NO_RESET: {

528

529

530 is_done &= false;

531 script->contexts[ctx_idx].is_done = false;

532 goto LABEL_CONTEXT_EVAL_END_STEP;

533 }

534 case LOGIC_PROCEDURE_RETURN_STATUS_TYPE_DONE: {

535 script->status = SCRIPT_STATUS_DONE;

536 is_done = true;

537 goto LABEL_EXIT;

538 }

539 case LOGIC_PROCEDURE_RETURN_STATUS_TYPE_DONE_SHOULD_TERMINATE: {

540 script->status = SCRIPT_STATUS_DONE_SHOULD_TERMINATE;

541 is_done = true;

542 goto LABEL_EXIT;

543 }

544 case LOGIC_PROCEDURE_RETURN_STATUS_TYPE_DONE_WAS_STOPPED: {

545 script->status = SCRIPT_STATUS_DONE;

546 goto LABEL_EXIT;

547 }

548 case LOGIC_PROCEDURE_RETURN_STATUS_TYPE_CONTEXT_DONE: {

549 is_done &= true;

550 script->contexts[ctx_idx].is_done = true;

551 goto LABEL_CONTEXT_EVAL_END_STEP;

552 }

553 default: {

554 ctx_state->instruction_idx += 1;

555 break;

556 }

557 }

558

559

560 }

561 if (ctx_state->instruction_idx >= sorted_things_count) {

562 script->contexts[ctx_idx].is_done = true;

563 }

564 is_done &= script->contexts[ctx_idx].is_done;

565

566 LABEL_CONTEXT_EVAL_END_STEP:;

567
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568 ctx_idx -= 1;

569 }

570

571 LABEL_EXIT:;

572

573

574

575

576 if (is_done) {

577 if (script->status != SCRIPT_STATUS_DONE_SHOULD_TERMINATE) {

578 script->status = SCRIPT_STATUS_DONE;

579 }

580

581 if (script->on_done != nullptr) {

582 auto res = script->on_done(world, script, script->args);

583 auto [result_type, result_continuation, result_value] = res;

584 }

585 }

586

587

588 mtt::set_graph(world, prev_graph);

589 }

590

591 // process root-level Things (i.e. "actors" like freehand sketches

592 void process_things(World* world, Eval_Connection_Graph& G)

593 {

594 Evaluation_Output& eval_out = G.output;

595

596 usize sorted_things_count = G.sorted_things_direct.size();

597 if (sorted_things_count == 0) {

598 return;

599 }

600

601 auto* prev_graph = mtt::curr_graph(world);

602 mtt::set_graph_to_root(world);

603

604 Thing** sorted_things = &G.sorted_things_direct[0];

605 usize port_index = 0;

606 for (usize thing_idx = 0; thing_idx < sorted_things_count; thing_idx += 1) {

607

608

609 Thing* const thing = sorted_things[thing_idx];

610 Thing_ID const thing_id = thing->id;

611

612 {

613 eval_out.list[thing_idx].first_port_index = port_index;

614

615 auto* const out_ports = &thing->ports.out_ports;

616 const usize port_count = out_ports->size();

617 usize next_port_index = port_index + port_count;

618 while (eval_out.port_entries().size() < next_port_index) {

619 eval_out.port_entries().push_back({});

620 }
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621 for (usize i = 0; i < port_count; i += 1) {

622 auto* const entry = (&eval_out.port_entries()[port_index + i]);

623 entry->ID = thing_id;

624 entry->out.type = (*out_ports)[i].type;

625 entry->out.contained_type = (*out_ports)[i].contained_type;

626

627 entry->is_ignored = false;

628 }

629 port_index += port_count;

630 }

631 }

632

633 for (usize thing_idx = 0; thing_idx < sorted_things_count; thing_idx += 1) {

634 Thing* const thing = sorted_things[thing_idx];

635 Thing_ID const thing_id = thing->id;

636

637

638 Port_Input_List* input_list = nullptr;

639 map_get(G.incoming, thing_id, &input_list);

640 auto return_status = thing->logic.proc(world, thing, input_list, NULL, NULL, NULL);

641 (void)return_status;

642 }

643

644 mtt::set_graph(world, prev_graph);

645 }
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Listing A.6: Scripting Structures
1

2 // the script template

3 struct Script {

4 Script_ID id = Script_ID_INVALID;

5 static inline Script_ID next_avail_ID = 1;

6 static mtt::Map_Stable<Script_ID, Script> scripts;

7 static mtt::Map_Stable<mtt::String, mtt::Map<SCRIPT_CALLING_CONVENTION, Script_ID>> scripts_by_name_and_calling_convention;

8

9

10 Script_Lookup lookup_ = {};

11 bool is_alias = false;

12

13 bool allow_duplicates_for_agent = false;

14

15 inline Script_Lookup& lookup(void)

16 {

17 return lookup_;

18 }

19

20 Script* alias_make(void)

21 {

22 // This works for now because an alias will just be readonly besides its lookup table

23 Script* s = &Script::scripts[Script::next_avail_ID];

24 s->id = Script::next_avail_ID;

25 Script::next_avail_ID += 1;

26

27 usize own_id = s->id;

28 *s = *this;

29 s->id = own_id;

30

31 s->is_alias = true;

32 s->ref_count = 0;

33

34 return s;

35 }

36

37

38

39 std::vector<Script_Precondition> preconditions;

40

41 void add_precondition(Script_ID script_id)

42 {

43 Script_Precondition pc = {};

44 pc.id = script_id;

45 preconditions.push_back(pc);

46 }

47

48 std::vector<Script_Precondition>& get_preconditions()

49 {

50 return this->preconditions;

51 }

52
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53 Script_Label label = {};

54 Script_Label sub_label = {};

55

56 SCRIPT_CALLING_CONVENTION calling_convention = {};

57

58 std::vector<Script_Contexts> contexts = {};

59

60 Eval_Connection_Graph connections = {};

61

62 bool preserve_lookup = false;

63 bool share_lookup_with_sub_scripts = false;

64 // if set to true, does not depend on child scripts

65 // e.g. trigger/response drivers do not need to check child statuses

66 bool detach_children = false;

67

68 usize ref_count = 0;

69 bool destroy_upon_ref_count_0 = false;

70 bool is_infinite = false;

71

72

73

74 mtt::Logic_Procedure_Return_Status (*on_start)(mtt::World* world, Script_Instance* self_script, void* args) = nullptr;

75 mtt::Logic_Procedure_Return_Status (*on_begin_frame)(mtt::World* world, Script_Instance* script_instance, void* args) = nullptr;

76 mtt::Logic_Procedure_Return_Status (*on_end_frame)(mtt::World* world, Script_Instance* script_instance, void* args) = nullptr;

77 mtt::Logic_Procedure_Return_Status (*on_cancel)(mtt::World* world, Script_Instance* self_script, void* args) = nullptr;

78 mtt::Logic_Procedure_Return_Status (*on_done)(mtt::World* world, Script_Instance* self_script, void* args) = nullptr;

79 mtt::Logic_Procedure_Return_Status (*on_terminate)(mtt::World* world, Script_Instance* self_script, void* args) = nullptr;

80

81 bool is_rule = false;

82 };

83

84 // instance of a running script constructed from a Script

85 struct Script_Instance {

86 Script_ID id = Script_ID_INVALID;

87 static inline Script_ID next_avail_ID = 1;

88 static inline const usize PRIORITY_FIRST = 0;

89

90 usize priority = PRIORITY_FIRST;

91

92 Script* source_script = nullptr;

93 Script_Instance* parent = nullptr;

94 mtt::Thing_ID caller = mtt::Thing_ID_INVALID;

95

96 uint64 creation_time = 0;

97 // This is where the per-evaluation data are stored (passed between Things during evaluation)

98 Evaluation_Output output = {};

99

100 mtt::String label = {};

101

102

103 std::vector<Field_List_Descriptor> thing_initial_fields = {};

104

105 std::vector<std::vector<Field_List>> thing_local_fields = {};
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106

107 std::vector<Active_Action> active_action_list = {};

108

109 mtt::Thing_ID agent = mtt::Thing_ID_INVALID;

110 bool allow_duplicates_for_agent = false;

111 void action(const mtt::String& a, mtt::Thing_ID src, mtt::Thing_ID dst);

112 void action(const mtt::String& a, mtt::Thing_ID src);

113 void remove_actions(void);

114 void remove_actions(mtt::Thing_ID t_id);

115

116 Script_Lookup lookup_ = {};

117 Script_Lookup* curr_lookup = &lookup_;

118

119 Script_Lookup lookup_initial = {};

120

121 bool is_own_lookup = true;

122 bool preserve_lookup = false;

123

124 Script_Lookup& lookup()

125 {

126 return *curr_lookup;

127 }

128

129 void set_lookup_copy(Script_Lookup* lu)

130 {

131 lookup_ = *lu;

132 curr_lookup = &lookup_;

133

134 is_own_lookup = true;

135 }

136

137 Script_Lookup* shared_lookup()

138 {

139 return curr_lookup;

140 }

141

142 void set_shared_lookup(Script_Lookup* lu)

143 {

144 curr_lookup = lu;

145

146 is_own_lookup = false;

147 }

148

149 void set_own_lookup()

150 {

151 curr_lookup = &lookup_;

152

153 is_own_lookup = true;

154 }

155

156 std::vector<Script_Contexts> contexts = {};

157 usize ctx_idx = 0;

158
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159 std::vector<mtt::Any> return_value = {};

160 SCRIPT_STATUS status = SCRIPT_STATUS_NOT_STARTED;

161

162 inline static mem::Pool_Allocation pool = {};

163 inline static Script_Instance* make()

164 {

165 auto* s_i = mem::alloc_init<Script_Instance>(&Script_Instance::pool.allocator);

166 s_i->id = Script_Instance::next_avail_ID;

167 Script_Instance::next_avail_ID += 1;

168 return s_i;

169 }

170 inline static void destroy(Script_Instance* s)

171 {

172 mem::deallocate<Script_Instance>(&Script_Instance::pool.allocator, s);

173 }

174

175 Script_Instance* init(Script* script, void (*post_init)(Script_Instance* s, void* data), void* data = nullptr);

176 Script_Instance* deinit(void);

177

178 mtt::Logic_Procedure_Return_Status (*on_start)(mtt::World* world, Script_Instance* self_script, void* args) = nullptr;

179 mtt::Logic_Procedure_Return_Status (*on_begin_frame)(mtt::World* world, Script_Instance* script_instance, void* args) = nullptr;

180 mtt::Logic_Procedure_Return_Status (*on_end_frame)(mtt::World* world, Script_Instance* script_instance, void* args) = nullptr;

181 mtt::Logic_Procedure_Return_Status (*on_cancel)(mtt::World* world, Script_Instance* self_script, void* args) = nullptr;

182 mtt::Logic_Procedure_Return_Status (*on_done)(mtt::World* world, Script_Instance* self_script, void* args) = nullptr;

183 mtt::Logic_Procedure_Return_Status (*on_terminate)(mtt::World* world, Script_Instance* self_script, void* args) = nullptr;

184

185 Script_Rules rules = {};

186 Script_Rules* rules_ref = nullptr;

187 std::vector<Rule_Var_Record_One_Result> rule_vars = {};

188 bool rules_are_valid = true;

189 bool rules_are_active = true;

190

191 void* args = nullptr;

192

193 inline bool is_rule(void)

194 {

195 return source_script->is_rule;

196 }

197 };
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