SOME NUMERICAL RESULTS USING AN ADDITIVE SCHWARZ
METHOD FOR MAXWELL’S EQUATIONS

ANDREA TOSELLI *

Abstract. We present some numerical results for a two-level additive overlapping Schwarz
method applied to the 2-D Maxwell’s equations. Nédélec finite elements defined on rectangles are
employed. Numerical examples show the convergence properties of the method, when varying the mesh
size of the coarse and fine problems, the overlap and the time step of the implicit finite difference
scheme employed.

1. Introduction. The numerical approximation of Maxwell’s equations generally
requires suitable finite element (FE) spaces that ensure the correct continuity prop-
erties for the physical fields involved across the elements of the triangulation of the
domain considered, see [6].

When time-dependent partial differential equations are discretized with implicit
finite difference (FD) schemes, a linear system is to be solved at each time step. The
condition number of such a system grows when the triangulation is refined. Overlap-
ping Schwarz methods generally ensure a condition number that is independent of the
problem size and, when applied in their additive form, are easily parallelizable. We
know of only one study closely related to ours; see [1]. In that paper, an overlapping
Schwarz method is applied to 2D mixed elements for H(div,); in two dimensions
their theoretical results are also valid for H (curl, Q).

In this paper, we will present some numerical results concerning low order Nédélec
FE spaces built on rectangles, and discuss the convergence properties of two additive
Schwarz methods, when varying the diameter of the triangulation, the time step, the
overlap, and the dimension of the coarse problem.

In section 2, we will introduce the problem and the FE spaces employed, while
in section 3 we will describe the additive Schwarz methods considered. Section 4 is
devoted to the discussion of the numerical results.

2. Continuous and discrete problems. Let  be an open, bounded, connected
set in R? and let a bilinear form a(+,-) be defined by

(1) a(u,v) = A(u,v) + (curlu,curlv),

for every u, v belonging to H (curl, Q). Here (-, -) denotes the L? inner product and A
is a strictly positive fixed parameter. For the properties of the Hilbert space H (curl, Q)
and its trace space, see [3]. In particular, we recall that for every function in H (curl, )
it is possible to define a tangential trace over Q2 as an element of H_%(aQ) and that
the functions of H (curl, £2) with vanishing tangential trace form a proper subspace of

H (curl, ), denoted by Hg(curl, ).
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Let f be a function of L?(Q): we are seeking the solution u € Hg(curl, Q) of the
variational problem

(2) a(u,v) = (f,v), Vv € Hy(curl, Q).

When f and the boundary of Q are sufficiently regular, u is also solution of the differ-
ential equation

(3) Au+ curlcurlu =1, inQ,
with the natural boundary condition
(4) uxn =0, ondQ,

where n is the normal to 9.

Suppose now that the domain € is a rectangle with sides parallel to the axes and
consider a quasiuniform triangulation 73, obtained by subdividing €2 into rectangles.
The mesh size h is defined as the maximum diameter of the rectangles in 7. Let
Vi C Hg(curl, Q) be the first Nédélec space of order k& = 1 based on rectangles, as
described in [5]. The degrees of freedom of the functions in V}, are defined on the sides
of 7. We are led to the linear system

(5) Az = (AA; + Ay)z = b,

where z is a vector consisting of the Nj, degrees of freedom of the approximation of
the solution u. The integer Nj is the number of sides of 75 not belonging to 9Q. The
matrices A; and Ay are built using the basis functions of V}, and their curls.

If {’l,bz}j\;hl are the basis functions of V}, then the matrix A; is defined by

(6) A= [az(]l)} = [(¥;.9:)],

and the matrix A5 by

(7) Ay = {ag)} = [(curl’(ﬁj,curl’(ﬁi)] )

In particular A; is a symmetric, positive definite matrix, while A, is symmetric and
positive semi-definite.
Equation (3) is obtained from

d%u 0J
(8) curlcurlu + pe 5z = - 5
once an implicit FD time scheme 1s employed: the parameter A i1s thus positive and
proportional to (A#)~2, where At is the time step.
Equation (8) is derived from Maxwell’s equations and gives the 2-D electric field
u, once the 2-D density of current J(x,t) is known. For an explanation of the physical
quantities involved and for further details on the FE approximation of time-dependent
Maxwell’s equations, see [6]; for error estimates for the semi-discrete problem, see [4],
and for a discussion of FE approximations of hyperbolic equations, see [7].
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3. An Additive Schwarz Method. Once A is fixed, the condition number
of A in equation (5) increases as h decreases, while for fixed h, it increases as A
decreases, or, equivalently, when the time step At increases. We have studied an
additive Schwarz-type algorithm for the solution of (5).

Suppose now that the triangulation 75 is obtained by refining a coarser regular
triangulation Ty = {Ql}jfl, with diameter H > h. Consider then a covering {2},
such that each € is the union of rectangles of 7, and contains Q;. Suppose also that
there is a constant @ such that every pont in Q is contained in at most 3 sets in {Qf}.
Let the overlapping parameter § be

9) Jd= miin {dist (995, )} .

Let Vi be the the first Nédélec space of order k = 1 built on the coarse triangulation
T and let V; be

(10) Vi={ueVi|ux)=0,vxe Q\Q},Vi=1,---,Jy.

The subspaces Vi and {V;} are contained in V4. Let R; (i = 1,---,Jg) be the
restriction matrix that returns the vector of coefficients defined in €} for every function
u € V3. The preconditioner Bp for the 1-level algorithm is defined as

Ju
(11) Bp =Y Rl (RiART)™'R;,

i=1
and the 1-Level Additive Algorithm (1LAA) consists of solving the system
(12) Br Az = Bpb,

with the conjugate gradient method, without any farther preconditioning, employing
the inner product (-, )4 defined by

(13) (z,9)a = 2T Ay, Vz,y € RV

For the 2-level algorithm define RI as the matrix representation of the linear inter-
polation from the coarse space Vg into the fine space V},, and define the preconditioner
B as

(14) B = RI(RyARY)™'Ry + nBr = B¢ + nBr,

where 7 is a suitable scaling parameter greater than zero. The 2-Level Additive Algo-
rithm (2LAA) consists of solving the system

(15) BAxz = Bb,

with the conjugate gradient method, without preconditioning, employing the inner
product (-, -)4. For further details on Schwarz Methods, see [2] and [8].

Our work has been inspired by [1], where two- and multi- level Schwarz algorithms
are studied for problems defined by the bilinear form @(u, v) = A (u, v) 4 (divu, divv),
with A > 1, for functions u,v in H(div,Q), Q C R*. Raviart-Thomas FE spaces,
defined on triangles, are employed in that study. In [1], in particular, it is proven
that the spectral condition number of problem (15) is bounded independently of h, H,
A>1,and ¢, if §/H is bounded away from zero. Note that, since in two dimensions
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functions in H (curl, Q) are obtained from functions in H (div, ) simply by a rotation
of 90 degrees and the basis functions of the first Nédélec space (defined on triangles
and rectangles) are obtained from those of the Raviart-Thomas space by the same
rotation, the matrices and the preconditioners for the bilinear form a(-, -) are the same
as those used for @(-, -). See [3] for further details, and [1] for some applications of the
space H (div, ).

4. Numerical Results. In our numerical tests, we have considered rectangular
domains and uniform triangulations. In particular, meshes are obtained by intersecting
straight lines parallel to the axes. For the 2LAA, all the results presented have been
obtained without rescaling (n = 1 in (14)). On each subdomain problem and for the
coarse problem an exact band Choleski solver has been employed.

A property of our method is that, once the domain €, the diameter of the coarse
triangulation H, and the overlap § are specified, the condition number of the precon-
ditioned problem is independent of the diameter of the fine mesh A, both for the 1LAA
and the 2LAA. Detailed results are not shown here, but, as an example, compare the
fourth column of Table 1 (H = 1/2) with the third column of Table 4 (A = 1), for the
1LAA, and the fourth column of Table 2 (H = 1/2) with the third column of Table 5
(A =1), for the 2LLAA. Tables 1 and 2 refer to a (64 x 64) triangulation of a square ,
while Tables 4 and 5 to a (32 x 32) mesh for the same domain: a detailed description
of these tables i1s given below.

H=2|H=1|H=1/2 | H=1/4
H/§=4 5.67 8.49 12.5 20.1
H/§=2 4.15 5.41 10.3 21.4
H/§=1 1.0 2.87 5.50 11.1
H/§=1/2 - 1.81 3.18 4.21
H/§=1/3 - 1.0 3.08 4.34

Table 1. The condition number of the preconditioned system as a function of H/§ and H:
1LAA, a square with side 4, mesh (64,64), A = 1, problem size n = 8064.

H=2|H=1|H=1/2 | H=1/4
H/§=4 4.47 4.82 4.94 4.84
H/§=2 4.39 4.71 4.85 4.82
H/§=1 1.0 2.36 3.81 6.48
H/§=1/2 - 1.89 2.84 5.47
H/§=1/3 - 1.0 2.94 4.00

Table 2. The condition number of the preconditioned system as a function of H/§ and H:
2LAA, a square with side 4, mesh (64,64), A = 1, problem size n = 8064.

The first example considered (Example 1) is a square with side 4, with a uniform
fine mesh of (64 x 64) elements. For A = 1, Tables 1 and 2 show the condition number
of the preconditioned system for different values of the overlap parameter H/§ and the
coarse diameter H, for the 1LAA and 2LAA, respectively. The values shown should
be compared with the condition number of the unpreconditioned system; x(A) is equal
to 2314. When the condition number is equal to 1.0, an expanded subregion actually
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covers the whole domain: in this case the conjugate gradient method converges in
one iteration, but this requires the factorization of the original matrix A, and is thus
equivalent to a direct solver.

Table 1 shows that, as expected, for a given accuracy, the condition number grows
rapidly with 1/H for the 1ILAA, while it grows slowly for the 2LAA. In this case, and
this seems to be a general feature, the 2LA A presents a considerable improvement over
the 1ILAA, when the overlap is small (H/d > 1) and when the number of subregions is
large (H < 1/4).

We also remark that in some cases, for the same values of § and H, the 2LAA
gives a higher condition number. This can be avoided by scaling the fine problems,
making 1 # 1, but it is not clear exactly how to select . In Example 1, for instance,
a value p < 1 slightly reduces the number of iterations, while in Example 2, see below,
n > 1 is required.

In addition, for different values of the diameter of the fine mesh, the overlap, and
the number of subregions, our results, in term of the number of iterations required to
decrease the error by a fixed factor, are very close to the ones presented in [8] for the
Laplace operator and structured grids, both for the 1LAA and the 2LAA; these results
are not shown here.

my =8 | my =16 | my =32 | my, = 64
H/§=38 11 12 15 20
H/§=4 11 12 14 14
H/§=2 11 11 13 16
H/§=1 11 11 12 14
H/§=1/2 8 10 11 11
H/§=1/3 10 10 9 10
H/§=1/5 10 8 9 9

Table 3. The number of iterations to decrease the error by a factor 10~7, as a function of H/S
and my (my is the number of subregions and is proportional to 1/H): 2LAA with a (1 X 16) rectangle,
mesh (8,128), A = 0.1, problem size n = 1912.

The second test (Example 2) is a thin rectangle of dimension (1 x 16) subdivided
into (8 x 128) elements. For the 1LAA, the condition number of the preconditioned
problem increases as H decreases (as in Example 1). Table 3 shows the number of
iterations required in order to decrease the error of the residual norm by a factor 10~7,
for different values of the overlap and the coarse mesh diameter for the 2LAA.

In this example, once the overlap and the required precision are fixed, the number
of 1terations for the 2LAA is practically independent of H.

Tables 4 and 5 refer to Example 1: they show the condition number of the 1LAA
and the 2LAA, respectively, for (8 x 8) subdomains, when varying A and H/§. The
last row shows the condition number of the unpreconditioned system.

In this case, once the overlap and the number of subregions is fixed, the condition
number of the preconditioned system is bounded independently of A, both for the 1LAA
and the 2LAA. The same property is observed when choosing different domains and
varying the number of subdomains of the Schwarz method. This means that, when
discretizing (8) with an implicit time scheme and with Nédélec elements, the condition
number of the linear system that is to be solved at each step is practically independent
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of the time step At and the mesh size h of the fine problem.

A=10 | A=1|A=10"" | A=10"2 | A=10"3
H/5=4 710 | 132 | 177 15.96 15.99
H/5=2 482 | 103 | 149 14.9 15.1
H§=1 265 | 551 | 8.6l 9.16 9.19
H/=1/2| 276 | 3.18 | 452 4.95 5.01
H/3=1/3| 3.03 | 3.08 | 3.37 3.46 3.44
[<(A) [ 778 | 1003 | 5908 | 56062 | 446561 |

Table 4. The condition number of the preconditioned system, as a function of H/§ and \; the

last row shows the condition number of the unpreconditioned system for different A: 1LAA, a square
with side 4, mesh (32,32), H = 1/2 (64 subdomains).

A=10 | A=1|A=10"" | A=10"2 | A=10"3
H/S=4 | 4.67 | 485 | 4.92 5.06 5.10
H/5=2 467 | 482 | 489 4.97 4.99
HG=1 233 | 381 | 534 5.73 5.79
H/5=1/2| 279 | 2383 | 3.89 419 4.23
H/S=1/3| 3.03 | 294 | 3.16 3.23 3.21
[<(A) [ 778 | 1003 | 5908 | 56062 | 446561 |

Table 5. The condition number of the preconditioned system, as a function of H/§ and \; the

last row shows the condition number of the unpreconditioned system for different A: 2LLAA, a square
with side 4, mesh (32,32), H = 1/4 (64 subdomains).
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