
Oriented Overlays For Clustering Client Requests
To Data-Centric Network Services

Congchun He and Vijay Karamcheti
Computer Science Department

Courant Institute of Mathematical Sciences
New York University, New York, NY 10003

{congchun, vijayk}@cs.nyu.edu

Abstract— Many of the data-centric network services deployed
today hold massive volumes of data at their origin websites,
accessing the data to dynamically generate responses. Such
dynamic responses are poorly supported by traditional caching
infrastructures and result in poor performance and scalability for
such services. One way of remedying this situation is to develop
alternative caching infrastructures, which can dynamically detect
the often large degree of service usage locality and leverage
such information to on-demand replicate and redirect requests to
service portions at appropriate network locations. Key to building
such infrastructures is the ability to cluster and inspect client
requests, at various points across a wide-area network.

This paper presents a zone-basedscheme for constructing
oriented overlays, which provide such an ability. Oriented overlays
differ from previously proposed unstructured overlays in sup-
porting network traffic flows from many sources towards one (or
a small number) of destinations, and vice-versa. A good oriented
overlay would offer sufficient clustering ability without adversely
affecting path latencies. Our overlay construction scheme orga-
nizes participating nodes into different zones according to their
latencies from the origin server(s), and has each node associate
with one or more parents in another zone closer to the origin.
Extensive experiments with a PlanetLab-based implementation of
our scheme shows that it produces overlays that are (1) robust
to network dynamics; (2) offer good clustering ability; and (3)
minimally impact end-to-end network latencies seen by clients.

I. I NTRODUCTION

In recent years, the World Wide Web has undergone a trans-
formation from its read-only, information-centric roots into an
infrastructure that provides programmatic access to a variety
of sophisticated services. Many of these services hold massive
volumes of data at their origin web sites and serve requests
by dynamically generating responses. Illustrative examples
include Amazon Web Services [1], the Google Web APIs
service [2], and imagery services such as Microsoft’s Map-
Point [3], TerraServer [4] and SkyServer [5]. Suchdata-centric
services do not see much scalability or performance benefit
either from traditional caching infrastructures (responses are
considered as “uncacheble”) or from content delivery networks
(CDNs) (the massive volumes of data prevent replicating the
whole website contents on edge servers). Fortunately, data-
centric services present a high degree of locality in service
usage patterns across several dimensions:dataspace, network
regions and timescales. This characteristic offers the potential
of developing alternative caching infrastructures, which can
dynamically detect service usage locality and leverage such

information to on-demand replicate service portions on and
redirect requests to appropriate locations. Key to building
such infrastructures is the ability to cluster and inspect client
requests, at various points across a wide-area network, in other
words to route client requests across an appropriately designed
overlay network.

Building an efficient and scalable peer-to-peer (P2P) overlay
network for data-sharing has been well studied by many
researchers. Proposed approaches fall into two main cate-
gories: structured and unstructured overlays. Structured P2P
overlays, like Tapestry [6], CAN [7], Chord [8], Pastry [9]
and Coral [10], were designed principally to support data
discovery and cooperative data storage. To do so, they make
use of distributed hash tables (DHTs) whereby a data item is
identified by a key and nodes are organized into a structured
graph topology that maps each key to a responsible node
where the data or a pointer to the data is stored. Unstructured
P2P overlays, like Gnutella [11], Freenet [12] and Kazaa [13],
organize nodes into a random graph topology and use floods or
random walks for data discovery and other queries. However,
data discovery in such overlays might travel arbitrarily long
distances (for random walks) or use a lot of extra network
bandwidth (for floods), resulting in inefficiencies. To address
this problem, several researchers, [14]–[17], have proposed
exploiting the network proximity among participating nodes to
improve efficiency and scalability. These systems advocate the
concept of locality-awareness: nodes that are relatively close
to each other in the underlying network are clustered/grouped
together to ensure that communication between two nodes in
a group does not travel outside of this group. Although both
structured and locality-aware unstructured overlays provide an
efficient scheme for file-sharing in a system where any peer
is likely to communicate with any other peer, they are not a
good match to the requirement of data-centric services. The
latter requires that the participating nodes be organized with
an orientation “bias” towards an (or a small number of) origin
server(s) such that (1) service usage locality can be detected
dynamically by inspecting the underlying traffic flows; and
(2) such locality can yield clustering and reuse benefits by
replicating a small portion of data from the origin server(s) at
a few locations.

In this paper, we present azone-basedscheme for construct-
ing suchoriented overlaysto facilitate locality detection in

data-centric service usage patterns. Oriented overlays differ
from previously proposed unstructured overlays in supporting
network traffic flows from many sources towards one (or a
small number) of destinations, and vice-versa. A good oriented
overlay would offer sufficient clustering ability without ad-
versely affecting path latencies. The term “clustering” is used
differently in our work than in locality-aware unstructured
overlays: we are not attempting to providing connectivity
among grouped nodes, instead, the nodes being clustered will
redirect requests to and receive responses from the same set
of parent(s)1. The intent is to provide a merge point in the
network where requests from clients that are “close” to each
other can be grouped together and inspected for service usage
locality. Although the metric used in clustering can, in general,
be application-specific, in this paper, we work with network
latency.

Our overlay construction scheme organizes participating
nodes into different zones according to their latencies from
the origin server(s), and has each node associate with one
or more parents in another zone closer to the origin. By
clustering nearby nodes at different levels of the network,
dynamic detection of service usage locality is possible at
different granularities of network regions, enabling consequent
replication of the associated service portions to be performed
on-demand.

The rest of the paper is organized as follows. Section II
introduces some illustrative data-centric services deployed in
the Internet. In Section III and IV, we describe our zone-based
scheme and parent selection algorithm for construction of
oriented overlays. In Section V, we report our experiences on
implementing oriented overlays on PlanetLab, a scalable, real-
world network, and evaluate the characteristics of the resulting
overlays. Finally, we discuss related work in Section VI, and
summarize and discuss possible extensions in Section VII.

II. BACKGROUND

Clients of data-centric network services are typically geo-
graphically distributed, and access the services across a wide-
area network. Service providers usually host the services at
their origin web site and serve requests at one or a small
number of web servers, which are responsible for dynamically
generating responses by querying again a back-end database
(virtual or physical). The volumes of data accessed by such
data-centric services are usually extremely large, which pre-
vent services from being replicated on CDN systems like Aka-
mai’s. For example, in the SkyServer service, which provides
Internet access to the public Sloan Digital Sky Survey(SDSS)
data, the magnitude of data is on the order of 10 terabytes. For
other high energy and nuclear physics services, data volumes
can be as large as on the order of petabytes.

1We use “parent” and “child”, instead of neighbors, due to the asymmetric
relationship between the nodes. In our oriented overlays, one node can be
a parent of an other node only if it is closer to the origin server. Hence, a
parent can only receive requests from and send responses to a child, but not
vice-versa.

In previous work [18], we identified that there exists a
high degree of locality in data-centric service usage across
several dimensions:dataspace, network regions and multiple
timescales. An illustrative example from a 4-month trace (Jan.
1 2004 - Apr. 30, 2004) of the SkyServer service shows that:
(1) 10% of client IP addresses contribute to about 99.95% of
requests, and (2) 84.04% of these requests hit on 30% of the
regions in the data space. (The results came from an analysis
where the astronomic database of the North American Sky was
partitioned into 1024 by 1024 regions using the sky coordinate
systems, and we accumulated client requests directed towards
an individual region). In addition to such spatial and end-host
locality, our analysis reveals that similar locality structures
can found across multiple network levels. These results imply
that a small subset of service data, which accounts for a
large fraction of the overall request load, can be replicated
at a small number of of network locations, where a large
fraction of requests originate, to significantly improve overall
system scalability and performance. Similar trends are also
observed in the TerraServer service, and are expected in other
services such as Microsoft’s MapPoint, MapQuest, Google’s
Web API’s, etc.

Our results suggest the possibility of building novel caching
infrastructures where network intermediaries that can dynami-
cally inspect traffic flowing between clients and services, infer
models for service access patterns, and potentially improve
service scalability by taking actions such as replication, request
redirection, or admission control. We described the design and
implementation of one such infrastructure in [19].

However, benefits from such infrastructures depend on how
the underlying network is organized. Clearly, if requests are
routed among intermediaries in a way that makes locality
detection hard, the infrastructures can not take replication and
redirection actions. Similarly, if all requests are forced to go
directly through a central server, not much benefits can be
expected even if requests exhibit locality at the network level
and in the targeted data space.

The first observation suggests that client requests must be
routed through the network in a way that permit intermediate
locations to identify and hopefully exploit request similar-
ity. The second observation requires that these locations be
distributed across the network as opposed to being clustered
around the origin server(s). The challenge addressed in this
paper is how to tradeoff between these two considerations.

III. D ESIGN

Our solution to the above challenge is to build what we
call “oriented overlays”. We describe in turn their design,
construction and maintenance, and the properties they offer.
We assume that our overlays will involve on the order of100

— 101 origin server(s) and102 — 103 participating nodes.

A. Overview

Overlay networks are constructed by participating nodes.
Each node runs a protocol to communicate with other nodes
and feeds the collected information into a centralized or

Zone 0

Zone 1

Zone 2

Origin Service Maintained Network
DataSlicer Maintained Network
Origin Web Service

Service Replicas
DataSlicer Enhanced Router
Service Usage Pattern

1

2

3

4
5

6

7

8

Fig. 1. Overview of an Oriented Overlay for Data-centric Network Services

distributed algorithm which organizes the participating nodes
into a logical topology based on some metrics like latency,
network bandwidth, etc.

In our oriented overlay networks, we assume there exist
reliable origin servers that are physically close to the service
web sites. The participating nodes consist of application-
level routers that are responsible for relaying service requests
and responses. Instead of pursuing optimal distances between
nodes as other locality-aware overlays do, our primary goal is
to build an overlay that can cluster and inspect client requests
at various points in the network, without adversely affecting
path latencies. To realize this goal, we propose azone-based
scheme.

A zonedefines a range of distances (in terms of network
latency) from an origin server: the higher the level of a
zone, the farther away from the origin it is. According to
their distances from the origin, the participating nodes are
partitioned into different zones. Each participating node then
selects one or more parents to connect to, forming an overlay.
The parent selection has an orientation “bias” towards the
origin: (1) a participating nodeA can only select another node
B as its parent ifB resides in a lower level zone; (2) the
candidate parents for nodeA come from the nodes which
reside inA’s next non-empty lower zone; and (3) to avoid
adversely introducing additional overhead on latency for the
path fromA to the origin,A usually selects the closest node(s)
from the candidates as its parent(s).

Figure 1 illustrates a desirable overlay for a data-centric
service with a single origin server. In this illustration, nodes1
and2 that are close to each other share a common pattern when
accessing the service. Similarly, nodes4 and5 share another
pattern. Node3, located between these two groups, shares
both patterns. Using our zone-based scheme, the participating
nodes are partitioned into three zones: the first zone consists of
nodes that are up to 20 msec away from the origin; the second

Zone 0
(<= 20 msec)

Zone 1
(<= 60 msec)

1

2

3

3

4

4

Fig. 2. Zone-based Scheme for Node Partitioning

zone consists of nodes whose distances from the origin are
between 20 msec and 60 msec; and the third zone consists of
nodes whose distances from the origin are larger than 60 msec.
Ideally, nodes1 and2 will be directed to a node like node6
for relaying service requests and responses, because node6
provides a shorter path to the origin, compared to alternatives
such as node8. On the other hand, node3 would not be
selected as a parent for nodes1 and 2 because it belongs to
the same zone and could potentially adversely increase the
latencies of the path between node1 or 2 and the origin. The
example overlay shown in the figure has the advantage that
the intermediate nodes can easily detect service usage locality
in client requests and hence allow actions such as service
replication to be taken. For example, node6 is able to detect
the similarity in service usage patterns from nodes1 and 2
and create a replica nearby node6 to hold only a portion of
the data corresponding to that usage pattern.

Our zone-based scheme can support building oriented over-
lays in situations where there are multiple origin servers. In
this case, each origin server can have its own overlay which
consists of a disjoint subset of participating nodes: each node
selects the closest origin server and participates in only that
origin server’s overlay construction, assuming that this overlay
potentially provides the best path latency. Since the network
status changes dynamically, we allow a node to switch to
another origin server’s overlay from the current one if it detects
that origin server to be closer.

In the rest of this section, we describe the construction and
maintenance protocols for our zone-based oriented overlays,
and discuss the properties our designed overlays possess.

B. Construction Protocols

A participating node needs to take two important steps to
join in our overlays: Node Startup and Parent Selection.

1) Node Startup: A node joins in the system by first
registering itself to the closest origin server. To do so, the

Inputs:
S: set of origin servers
K: number of parents a node wants to connect to
N : number of children an intermediate node allows
D: threshold on times a node is reported as being dead

n, m: overlay node
ln,m: round-trip latency between noden andm

rn: zone rank of noden assigned by an origin
Cn: candidate parents for noden as advised by an origin
Pn: parent list selected by noden
L: list of participating nodes maintained at an origin

Origin Server (s):
upon a join/update request: (n, ln,s)
computern for noden using ln,s

r := rn − 1
while Cn is empty andr ≥ 0

addm ∈ L into Cn for all m whererm = r
r := r − 1

if Cn is empty
add the origin server intoCn

send (rn, Cn) to noden
if n is in L

update the rank ofn with rn

resetn.counter andn.timer
else

insertn into L

upon a leave request: (n)
removen from L
foreachm whererm = rn − 1

notify m that n has left

upon a nodedead message: (n)
increasen.counter in L
setn.timer if not set
if n.counter > D or n.timer expires

removen from L
foreachm whererm = rn − 1

notify m that n is left

Node Startup (n, S):
probe the round-trip latencies{ln,s} for all s ∈ S
select the closests
send a join request (n, ln,s) to s
receive a response (rn, Cn) from s
run parent selection

Parent Selection (n):
probem ∈ Cn and sortCn by ln,m

i := k := 0
while k ≤ K and i ≤ |Cn|

send aparent sel request toCn[i]
if Cn[i] grants the request

Pn := Pn ∪ {Cn[i]}
k := k + 1

i := i + 1
establish connections to the selected parents

Participating Node (n):
upon a parentsel request fromm
if m exists in child list

grantm’s request
else if number of children is less thanN

grantm’s request and addn into child list
else

rejectm’s request

upon a parentcancel request fromm
removem from child list

upon a nodedead (m) message froms
removem from Cn andPn

Overlay Switching (n, s, s′):
send a leave request (n) to s
send a join request (n, ln,s′) to s′

receive a response (rn, Cn) from s′

re-run parent selection

Node Maintenance (n, s):
periodically, probes′ ∈ S
if exists s′ ∈ S, s.t. ln,s′ < ln,s

switch to the overlay oriented towardss′

periodically, randomly selectC′
n ⊂ Cn

foreachm ∈ C′
n

probeln,m

if fail
removem from Cn andPn

sendnode dead(m) to s
sort Cn in ascending order byln,m

replacePn with first K nodes inCn that can ben’s parent
establish connections to the selected parents

Fig. 3. Distributed algorithm for construction of oriented overlays (Independently run for each origin server)

node probes the round-trip latencies between itself and all of
the origin servers, selects the one with the smallest latency, and
passes this information to that chosen origin in thenodejoin
request. Upon receiving anodejoin request, an origin server
extracts the round-trip latency information from the request
message, computes the rank of the zone that this node belongs
to, and assigns the rank to this node. As a response, the
origin server sends the assigned rank, along with an advised
candidate parent list, back to the node. In Figure 2, steps 1
and 2 demonstrate this procedure.

Each origin server maintains a table of participating nodes
and their assigned ranks.

2) Parent Selection:The parent selection algorithm is de-
signed to ensure that paths are chosen with an orientation
“bias” towards an origin server. When the origin receives a
nodejoin request from a node, it responds with an assigned
zone rank and advises that node of a list of parent candidates
with lower ranks. The node then probes the round-trip latencies
between itself and these parent candidates and selectsK nodes
with minimum latencies as its parents, whereK is a threshold
on the maximum number of parents that a node can have.

To avoid overload on some intermediate nodes, i.e., a
situation where a large number of nodes select the same node
as their parent, we also impose a restriction on the maximum

number of children that an intermediate node can have. Hence,
a node needs to communicate with its selected parent node
first to confirm that indeed that node can serve as its parent.
In Figure 2, steps 3 and 4 demonstrate this procedure.

Figure 3 shows the detailed actions taken on overlay nodes
for our oriented overlay construction.

C. Maintenance Protocols

A good overlay should adapt itself to changes of the
underlying network conditions as well as nodes joining and
leaving. Key to this adaptation is the ability to effectively
detect the changes and efficiently propagate such information.

1) Origin Server: In our oriented overlay networks, the
origin server receives four kinds of messages:nodejoin,
nodeupdate, nodeleaveandnodedead. The first is sent by a
new joining node, which registers itself to join in the overlay;
the second is sent by a node which is already participating
in the overlay and periodically updates the probed round-
trip latency to the origin; the third is sent by a node in the
overlay which has determined that it wants to switch to another
overlay; and the fourth comes from a node to report that
another node is “dead” when it tried to probe that node and
failed.

The origin server handles the first and the second type of
messages by inserting a new record into the maintained list of
participating nodes if the sender does not exist, otherwise, it
just updates the node information appropriately (e.g., update
the assigned rank for the sender). The origin then sends the
rank of the sender and an advised list of candidate parents
back to the sender. For the third type of message, the origin
server removes the node from the maintained list and notifies
all other nodes at zones immediately higher than the one of the
node which has left. For the fourth type of message, the origin
does not eagerly remove the node reported as dead. Instead,
it marks that node by setting a timer and increases a counter
which keeps track of number of times that node has been
reported as dead. In the case that either the counter exceeds a
threshold or the timer expires, the node then is removed and
notifications are sent to all nodes with a rank one higher than
the removed one’s. The counter and the timer will be reset if
either anodejoin or a nodeupdatemessage is received from
the suspected node before the timer expires.

2) Participating Node: Each node maintains a list of all
origin servers and the round-trip latencies between itself and
these origin servers. At startup, a node selects the closest origin
server to participate in its overlay construction. Periodically,
a node probes all of the origin servers to update the round-
trip latencies and switches to another overlay if there exists
a closer origin server. In the case that a switch happens, a
node sends anodeleave to the origin server in its current
participating overlay, and then sends anodejoin to the new
selected origin server. The node then needs to re-run the parent
selection algorithm in the new overlay.

After a node participates in a particular overlay, the node
maintains a candidate parent list advised by the origin server
in that overlay and the round-trip latencies between itself and

these candidate parents. Periodically, a node probes the origin
for the round-trip latency and sends this latest information in a
nodeupdatemessage to the origin. Upon receiving a response
from the origin, the node merges the advised candidate list in
the response with its own copy by (1) removing nodes from
the current list that are not in the new one; (2) for nodes that
are in the new list but not in the old one, probing these nodes
and inserting them into the current list.

Each node maintains the round-trip latencies between itself
and its candidate parents by periodically probing a random
subset of the candidates, and updates its parent selection if
there exists any candidate that can still accept new children and
has smaller round-trip latency than any of its chosen parents.
If any such probes fails, the node reports the failure to the
origin with nodedeadmessages.

There are four types of messages used to exchange infor-
mation between participating nodes:parentsel, parentcancel,
parentgrant and parent reject. A node can only select a
candidate as a parent by first sending aparent sel message
to and receiving aparentgrant message from that candidate.
In the case that the contacted candidate finds that its number of
children has exceeded a threshold, it responds to theparentsel
request with aparent reject message. If a node updates its
parent selection, as discussed above, aparentcancelmessage
needs to be sent to the parent node that was chosen not to
be its parent. Upon receiving aparentcancelmessage, a node
just removes the corresponding node from its child list.

D. Overlay Properties

Our zone-based overlay construction scheme is (1) rela-
tively simple — no support from any external measurement
infrastructure is needed; (2) efficient — an origin server acts
as a rendezvous point by maintaining participating nodes and
advising about candidate parent lists such that a node joining
in the system needs only query the origin once, following a
small number of probes; (3) distributed — parent selection
and maintenance are pair-wise distributed algorithms; and (4)
incurs minimal communication cost — the traffic contributed
to our overlay construction and maintenance is light-weight
compared with other unstructured overlays which rely on
network floods.

Our oriented overlays are also robust in the face of high-
network-churn because a node that has left the system can
be detected quickly with high probability and reported to
the origin, which in turn propagates this information to all
of the affected nodes. Node leaves don’t really impact the
connectivity of our overlays because a node can not reach the
origin server only if all of its paths are broken.

The impact of overlay paths on the latency of propagating
a request from a participating node to an origin server (and
vice-versa) is minimal because a node’s candidate parents
always reside in a lower level zone and our parent selection
algorithm selects the closest candidates as parents. In this way,
we ensure that a path is constructed with strong orientation
“bias” towards the origin with minimal latency overhead being
introduced.

Our overlays approximately position the participating nodes
in the network using the measured latencies between the nodes.
Given the lack of accuracy in network proximity, nodes that
are clustered in our built overlay could be rather far away
from each other. Such inaccuracies can affect the goodness of
clustering of our overlay construction. Obviously, if additional
information such as node coordinates is available (for example,
a participating node can provide its position to the origin at
the registration step), the clustering in our overlay can be
further improved. Similarly, some other application-specific
information, if provided, can also help our overlay clustering.
Such information can also reduce the traffic used for our
overlay construction and maintenance: the origin can advise
joining nodes of more accurate parent candidate lists and hence
reduce the amount of probes needed in parent selection.

IV. I MPLEMENTATION

We have implemented our proposed oriented overlay con-
struction algorithm in a wide area network environment. The
communication protocols described above are implemented in
C code, using the UDP protocol. The total length of our C
programs is about 3,000 lines.

On the server side, our server program listens on a public
port to receive messages from participating nodes and pro-
cesses these messages in an event-driven fashion. There is
a tradeoff between notifying the participating nodes of the
up-to-date status of the overlay and reducing the communica-
tion cost in overlay maintenance. In the implementation, the
server does not respond to everynodeupdate request from
a participating node. Instead, it updates the information about
the participating nodes with the incoming requests. The server
then periodically (every 5 minutes) sends its advised candidate
parent list to each participating node based on the latest
information of its overlay. The advantage of doing so is clear:
the traffic contributed to overlay maintenance is significantly
reduced fromO(N2) to O(N), whereN is the number of
nodes that participate in the overlay.2

On the participating node side, our client program also
listens on a public port to receive messages from the server(s)
and other nodes, using an event-driven model. The client
program responds to messages immediately. Every 30 seconds,
the client program probes all of the origin servers and a
subset of its candidate parents using the system tool “PING”.
Specifically, the client program is configured to send out 10
ICMP ECHOREQUEST packets to another node within 2
seconds, one for each 200 ms interval. If the client program
does not receive any ICMP ECHORESPONSE packets within
this 2 seconds period, the corresponding node is considered as
“dead”. Based on the probing results, the client program takes
appropriate actions such as switching overlays, reporting dead

2Assuming that nodes are evenly partitioned into each zone, for a
nodeupdaterequest from a node in an intermediate zone, the origin server
needs to sends outO(N) notification messages. The communication cost is
thereforO(N2). In our implementation, an origin server integrates all of the
changes that happen to the overlay during a period, and only needs to send
out O(N) messages.

nodes or changing its parent selection. Each participating node
is configured to allow a maximum of 25 children nodes and
connect itself to up to 3 parents.

To support the client and server programs above, we rely
upon a coordinator program running on a node that is assumed
reliable. The coordinator is responsible for starting up the
client and server programs (using SSH), periodically checking
for liveness, and restarting the programs as required after
individual nodes fail and recover.

V. EVALUATION

To study to what degree our zone-based oriented overlays
demonstrate the desired properties discussed in Section III, we
experimented with a prototype of our implementation on the
PlanetLab network [20]. Our testbed on PlanetLab consists of
195 hosts distributed across North America, South America
and Europe. In the rest of this section, we present the results
of our experiments in building zone-based oriented overlays
using both a single origin server with and without network
churn, and using multiple origin servers.

A. Single Origin Server

1) Experiment Setup:We ran multiple experiments to con-
struct our zone-based oriented overlays using different sets of
PlanetLab hosts. In each experiment, we used the same origin
server located at New York University in New York, USA.
However, we randomly chose half of the hosts to participate
in overlay construction. Each experiment lasted for 30 minutes
and the origin server was reset to cope with the overlay
construction on a different set of PlanetLab hosts.

Our zone-based scheme partitioned nodes into different
zones in terms of their round-trip latencies from the origin
server:Zone0corresponds to0 ∼ 20 ms, Zone1corresponds
to 20 ∼ 60 ms, Zone2corresponds to60 ∼ 100 ms, Zone3
corresponds to100 ∼ 200 ms, andZone4corresponds to more
than200 ms. Intuitively, we expect nodes in north-east United
States to fall into Zone0, nodes in the central portions of the
United States to fall into Zone1, nodes on the west coast of
the United States to fall into Zone2, and nodes in Europe or
South America to fall into Zone3 or Zone4.

2) Results: We evaluate our oriented overlays according
to the following aspects: (1) the nature of the overlay (how
nodes are partitioned into zones, and what kind of connectivity
the overlay provides), (2) the performance of the overlay (to
what extent is network latency improved/impaired), and (3)
the ability of the overlay to cluster client requests.

We ran 50 experiments, 9 randomly selected ones of which
are presented in this paper. In the rest of this section, we
focus our discussion on one illustrative example highlighted
in the tables. In this experiment, 95 PlanetLab hosts were
chosen to build the overlay. Among these, 6 hosts terminated
our programs and rejected all further SSH connections during
the experiment. Therefore, only 89 nodes (including the origin
server at NYU, which is not shown in the tables) were actually
used.

 30

 35

 40

 45

 50

 55

 60

 65

 70

-120 -100 -80 -60 -40 -20 0 20

La
tit

ud
e

Longitude

Origin Server

link
zone 0
zone 1
zone 2
zone 3
zone 4

Fig. 4. An Oriented Overlay with a Single Origin Server Constructed on
PlanetLab. Notice that one node (belonging to Zone 4) in South America is
not shown to better show the remaining nodes in the network.

Figure 4 shows the oriented overlay that got built in the
illustrative experiment. In this overlay, nodes in the northeast
of the United States were partitioned into Zone0, nodes in
the midwest and southeast regions of the United States were
partitioned into Zone1, nodes in the west of the United States
and some nodes in Europe were partitioned into Zone2, the
rest of the nodes in Europe were partitioned into Zone 3,
and finally, the nodes in South America were partitioned into
Zone4. Note that the latter are not shown in the figure to obtain
a better view of the constructed overlays.

Overlay Nature Table I shows how nodes were distributed
into different zones in the constructed overlays: each column
shows the number of nodes partitioned into the corresponding
zone and the average number of parents (out-degree) and
children (in-degree) of these nodes. Each row corresponds to
an overlay constructed in a particular experiment.

The illustrative example (the highlighted row) shows that
25 (28.41%) nodes were partitioned into Zone0, 18 (20.45%)
nodes into Zone1, 34 (38.64%) nodes into Zone2, 10 (11.36%)
nodes into Zone3 and only 1 (1.14%) node into Zone4. For
the nodes in Zone0, the out-degree was always 1 since these
nodes can only select the origin web server as their parent.
The average out-degree of nodes in other zones was 3, the
maximum allowed for nodes in parent selection. This implies
that all of the nodes were able to select 3 parents to connect to.
Notice that the average in-degree of nodes in Zone0 and Zone1
were higher than those for the other three zones, because
Zone1 and Zone2 contained more nodes.

The results validate our proposed zone-based scheme by
demonstrating that (1) the participating nodes can be appro-
priately clustered using the network latency metric; and (2) the
overlay provides good connectivity for participating nodes.

Impact on Latency To understand what kind of impact our
overlay construction has on a node’s network latencies, we
compare the average latency seen by a node (computed by

taking the average of the latencies of all paths from the node to
the origin) in the constructed overlay with that experienced by
a direct connection between the node and the origin server. The
ration of these values is calledLatency Dilation. Table II
summarizes the latency dilations for participating nodes in
each constructed overlay. An entry in the table shows that
(1) the number of nodes whose latency dilations fall into a
particular range; and (2) how these nodes were partitioned
among the zones in the overlay. For example, the first entry
in the third column of the table, “23(14/4/5/0/0)”, should
be read as “there are23 nodes in the overlay whose latency
dilations are between0.8 ∼ 0.95; 14 of these nodes were
partitioned into Zone0,4 into Zone1 and5 into Zone2”.

In the illustrative example, most of the nodes in Zone0 and
Zone1 did not get affected because of the overlay: for nodes
in Zone0, the latency is the same as would be seen by a direct
connection to the origin.3 Surprisingly, a few of the nodes
in Zone1 (7 out of 18) and Zone2 (5 out of 34) achieved
a better latency. On the other hand, 22 out of the 34 nodes
in Zone2, and all of the nodes in Zone3 and Zone4 found
their performance impaired by a factor of up to 2. Due to
the extra hop(s) introduced by the constructed overlay, this is
not surprising. In fact, if such “far” nodes can be clustered
together and connected to the same intermediate node(s), a
service replica can then be created near these intermediate
nodes to significantly improve their performance.

By computing the average latency dilation of all nodes in
an overlay, we found that among all 50 overlays constructed
in our 50 experiments, the overhead introduced by our overlay
construction was in the range5% ∼ 15%, with an average of
9%. Our results show that our overlay construction scheme
does not adversely impact node-perceived latency.

Clustering Ability One of the primary goals of our overlay
construction was to provide an ability to cluster participating
nodes in terms of their service access patterns.

While clustering effectiveness is necessarily influenced by
application metrics, we use a model that is based on the anal-
ysis of access patterns of imagery services, such as SkyServer
or TerraServer, and is also likely to be seen for map services
such Microsoft’s MapPoint or MapQuest. For such services,
client nodes are geographically distributed. However, nodes
that are geographically close tend to share some commonness
in requesting services. In our model, we approximate such
locality using geographical proximity of participating nodes.
Our model for service usage is as follows. Each node is
associated with a geographic region where it itself sits at the
center. This region represents the portion of the service data
accessed by client requests originating at that node. A measure
of request clustering on an intermediate node is the overlap
between the geographic regions of its child nodes. We define
the overlapratio to be the ratio of the area of the union of

3The fact that some Zone0 nodes are shown with latency dilation values
smaller than 1 is attributable to small (expected) measurement perturbations
because of dynamic network conditions. Given the low absolute values
of latencies in these cases, these perturbations sometimes result in large
variations in the latency dilation value.

Zone 0 Zone 1 Zone 2 Zone 3 Zone 4

(0 ∼ 20 ms) (20 ∼ 60 ms) (60 ∼ 100 ms) (100 ∼ 200 ms) (200+ ms)
nodes inDeg. outDeg. nodes inDeg. outDeg. nodes inDeg. outDeg. nodes inDeg. outDeg. nodes inDeg. outDeg.

25 2.16 1.00 18 5.67 3.00 34 0.74 3.00 10 0.80 3.00 1 0.00 3.00
18 4.00 1.00 25 4.68 3.00 40 0.75 2.93 9 0.33 3.00 1 0.00 3.00
25 1.56 1.00 13 3.69 3.00 23 1.09 2.22 10 0.30 2.20 1 0.00 3.00
24 1.88 1.00 15 5.20 3.00 29 0.86 2.69 12 1.17 3.00 1 0.00 3.00
19 2.58 1.00 15 4.73 3.00 29 0.52 2.48 5 0.60 3.00 1 0.00 3.00
22 2.86 1.00 21 3.29 3.00 23 1.17 3.00 9 0.00 3.00 0 0.00 0.00
18 3.50 1.00 21 5.14 3.00 37 0.81 3.00 9 1.33 3.00 4 0.00 3.00
19 2.53 1.00 18 4.11 2.67 30 0.57 2.60 6 0.50 2.17 1 0.00 3.00
22 1.91 1.00 15 4.80 2.80 25 0.96 2.88 8 0.00 3.00 0 0.00 0.00

TABLE I

NODE DISTRIBUTION ON ZONE-BASED OVERLAYS WITH A SINGLE ORIGIN SERVER

Distribution of Latency Dilation (Average Overlay Latency / Direct Latency) Values

[0, 0.5) [0.5, 0.8) [0.8, 0.95) [0.95, 1.05] (1.05, 1.2] (1.2, 1.5] (1.5, 2.0]
3 (3/0/0/0/0) 3 (0/3/0/0/0) 23 (14/4/5/0/0) 26 (8/11/7/0/0) 5 (0/0/5/0/0) 11 (0/0/6/4/1) 17 (0/0/11/6/0)
5 (4/0/1/0/0) 1 (0/1/0/0/0) 12 (9/3/0/0/0) 43 (5/19/19/0/0) 13 (0/2/8/2/1) 11 (0/0/5/6/0) 8 (0/0/7/1/0)
11 (3/0/6/2/0) 2 (0/1/1/0/0) 13 (11/2/0/0/0) 19 (11/8/0/0/0) 12 (0/2/9/0/1) 9 (0/0/5/4/0) 6 (0/0/2/4/0)
7 (3/0/3/1/0) 3 (0/3/0/0/0) 19 (15/4/0/0/0) 28 (6/6/15/1/0) 15 (0/2/4/8/1) 6 (0/0/4/2/0) 3 (0/0/3/0/0)
9 (3/0/5/1/0) 0 (0/0/0/0/0) 10 (9/1/0/0/0) 18 (7/11/0/0/0) 18 (0/3/13/1/1) 10 (0/0/10/0/0) 4 (0/0/1/3/0)
4 (4/0/0/0/0) 4 (0/4/0/0/0) 14 (11/3/0/0/0) 31 (7/12/12/0/0) 3 (0/2/1/0/0) 9 (0/0/5/4/0) 10 (0/0/5/5/0)
2 (2/0/0/0/0) 3 (1/2/0/0/0) 28 (9/5/14/0/0) 20 (6/13/1/0/0) 9 (0/1/8/0/0) 15 (0/0/7/4/4) 12 (0/0/7/5/0)
3 (3/0/0/0/0) 1 (0/1/0/0/0) 12 (9/3/0/0/0) 23 (6/13/4/0/0) 15 (1/1/13/0/0) 12 (0/0/7/4/1) 8 (0/0/6/2/0)
2 (2/0/0/0/0) 2 (0/2/0/0/0) 28 (13/4/11/0/0) 25 (9/9/7/0/0) 12 (0/5/2/5/0) 12 (0/0/6/4/2) 8 (0/0/5/3/0)

TABLE II

LATENCY DILATION IN ZONE-BASED OVERLAYS WITH A SINGLE ORIGIN SERVER.

Distribution of Overlay-Score Values
for a Node Region of3◦ Longitude by3◦ Latitude

[0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1]
6 10 14 6 0
14 16 2 7 2
5 9 6 3 0
5 9 4 3 3
4 5 5 9 0
2 10 9 7 0
9 8 14 9 1
8 12 6 4 4
5 3 19 7 3

Distribution of Overlay-Score Values
for a Node Region of5◦ Longitude by5◦ Latitude

[0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1]
5 9 6 16 0
13 10 8 7 3
5 9 6 3 0
5 8 3 5 3
4 5 3 11 0
2 9 7 9 1
7 9 10 8 7
4 15 2 8 5
2 4 19 8 4

(a) (b)

TABLE III

CLUSTERING IN ZONE-BASED OVERLAYS WITH A SINGLE ORIGIN SERVER.

the child regions to the sum of the areas of these regions. The
goodness of clustering is measured by a score that compares
this ratio to the ideal case — where all of the child nodes
reside at the same location (and hence the overlap ratio is
1/number of children):

Overlap Score =
(1− overlap ratio)/(1− (1/number of children))

The closer the overlap-score value to 1, the better the clus-
tering. Table III shows the scores computed on intermediate
nodes. We first set the region size as3.0◦ longitude by3.0◦

latitude. The results of the illustrative example show that

34.89% of intermediate nodes (14 out of 36) score between
0.4 ∼ 0.6, and 16.67% of intermediate nodes score higher
than 0.6. As we increase the size of region to5.0◦ by 5.0◦,
the percentages change to 16.67% and 44.44%, respectively.
In our other experiments, we also found that some nodes can
score as high as 0.95, very close to the ideal case.

Considering the approximation based on node’s coordinates
and the fact that nodes are rather geographically diverse,
our overlay construction scheme demonstrates good ability
to cluster nodes that are geographically close together. Such
clustering provides ample opportunity to inspect the traffic
flows between clients and the origin server to detect service
usage locality.

 110

 120

 130

 140

 150

 160

 170

 180

 190

 0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r

of
 N

od
es

Time (minutes)

Total Live Nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Number of Failures

73.91% of the nodes never fail

89.67% of the nodes fail at most once

(a) (b)

Fig. 5. Measurement of Network Churn on PlanetLab over a 3-day period.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200 1400

N
um

be
r

of
 N

od
es

Time (minutes)

Total Live Nodes
Node Joins/Leaves

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Number of Failures

13.48% of the nodes never fail

58.99% of the nodes fail at most 50 times

(a) (b)

Fig. 6. A Simulated Network with High Churn on PlanetLab over a 24-hour period.

 1

 1.05

 1.1

 1.15

 1.2

 0 200 400 600 800 1000 1200 1400

A
ve

ra
ge

 L
at

en
cy

 D
ila

tio
n

Time (minutes)

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000 1200 1400

P
er

ce
nt

ag
e

(%
)

Time (minutes)

(a) Latency Dilation (b) Communication Cost

Fig. 7. Overlay Performance on the Simulated Network with High Churn.

B. Effect of Network Churn

In this experiment, we study the impact of network churn
on our constructed overlays.

1) Churn on the PlanetLab Network:To better understand
what kind of churn happens on the PlanetLab network, we
measured the liveness of nodes over a 3-day period. Our
program first identified 184 nodes out of the overall 195 nodes
that were alive before the measurement, and then probed each
node for its liveness every 30 minutes from a reliable node
using the system tool PING. Our results show that during this
3-day period, the churn on the PlanetLab network was rather
low. Figure 5(a) shows that the number of nodes that were live
at a probe point was in the range of175 ∼ 184. The number of
nodes that were down increased a little bit as the experiment
progressed:1 ∼ 4 at the end of the first day and3 ∼ 9 at the
end of third day. Figure 5(b) provides addition detail about the
node failures over the 3-day period. The figure, which plots
the CDF of the number of failures seen by a node, shows that
73.91% of the nodes stayed up over the entire 3-day period,
and 15.76% of the nodes went down just once.

2) A Simulated Network with High Churn:Our goal is to
study the impact of high churn on our overlay construction.
Since the real network churn we observed on the PlanetLab
network was rather low, we ended up simulating a high-
churn network at application-level: we extended our client and
server programs so they could be either “up” or “down”. A
“down” node does not participate in overlay construction or
maintenance, nor does it respond to liveness enquiries.

In a real wide area network, a relatively large fraction of
nodes might stay up for a long time, while the others might
go down at any time. Once nodes go down, some might take
a short time to recover, while others might take an arbitrary
long time to do so. Nodes might also join/leave the network
arbitrarily. To model such kind of churn, we identified 178
nodes that were up when our experiment started and then
randomly selected 60% of these nodes (107) that would stay
up throughout the experiment. For the remaining 71 nodes,
each node was able to switch its status between “down” and
“up” (the initial status was “up”). Whenever a node wanted to
change its status, it succeeded in doing so with a probability of
0.25. As part of the status change, a node would also determine
how long it would stay in its new status: this period was
randomly selected to be in the range0 ∼ 60 minutes during
the first and third quarters of the experiments, and in the range
of 0 ∼ 20 minutes during the second and fourth quarters.

The origin server kept track of constructed overlay snap-
shots every 5 minutes, giving a total of 288 snapshots over a
24-hour period. Figure 6(a) shows that the number of nodes
live at a snapshot point was in the range of122 ∼ 178. 4

Not surprisingly, we observed a higher amount of network
churn: in each 5-minute period, the number of events of churn
(node joins/leaves) was in the range of7 ∼ 39. The ratio of

4There is a sharp decrease of this number within the period of [0, 10]
minutes. This is because all the 71 nodes simulating network churn are initially
configured with an “up” status so the number of nodes switching to “down”
is more than those going in the reverse direction.

the number of node joins/leaves compared to the number of
live nodes in each snapshot was about17.66% on average.
The CDF in Figure 6(b) also supports these measurements.
Only 13.48% of the nodes stayed up throughout the 24-hour
experiment.5 As expected, 40% of the nodes failed multiple
times (50 times or higher).

For each snapshot-overlay recorded at the origin server,
we computed the average latency dilation of all participating
nodes. Figure 7(a) shows that such latency dilation is in the
range of 1.1 ∼ 1.2. The average of all 288 snapshots is
about 1.16. Not surprisingly, the latency dilations we observed
in this experiment are slightly higher (by7%) than those
observed in the experiments without simulating churn. This
is because in the presence of churn, a node might lose the
connection(s) to its selected parent(s) and have to reconnect
itself to some other nodes which are farther away. However,
on the whole, this result is fairly positive: despite the relatively
high amount of network churn (40% of nodes go down and up
frequently), node-perceived latencies are affected by relatively
small amounts. This behavior attests to the robustness and
adaptability of our overlay maintenance protocols.

To evaluate the impact of network churn on the com-
munication cost in our overlay maintenance protocols, we
distinguished the messages resulting from churn from other
messages of overlay maintenance. Such messages include
node join, node leave and node dead. Our results show
that over the 24-hour period, the extra communication cost
attributable to network churn is18% on average, as shown in
figure 7(b). This number is approximately equal to the ratio
of events of network churn, implying that our algorithms do
not introduce any unnecessary communication costs.

C. Multiple Origin Servers

Our oriented overlay construction algorithm can also sup-
port a network with multiple origin servers. The idea in this
case is to cluster the participating nodes as close as possible
to the origin servers. The advantage of such a strategy is that
it provides potentially lower path latencies for participating
nodes. We restrict that a node can participate in only one
overlay oriented towards its closest origin.

Figure 8 shows an overlay constructed with three origin
servers: one is in the east coast of the United States (NYU),
the second is in the west coast of the United States (UCSB),
and the last is in France (INRIA).

The results show that most of the nodes end up participating
in the overlay oriented towards an origin server which is
geographically closest. Not surprisingly, there exist a few
nodes that violate the geographical proximity rules: four nodes
in Europe selected NYU instead of INRIA to participate in
because of the smaller round-trip latency between the node
and NYU. Since the number of such violations is very small,
it does not affect the metrics of our constructed overlays.

5We had expected this number to be closer to 60%, but suspect that the
PlanetLab slice scheduling policy might manifest itself in some of our “up”
nodes being classified as being “down” over certain intervals. Note that these
nodes rarely suffer more than 8 failures.

Distribution of Latency Dilation (Average Overlay Latency / Direct Latency) Values

Origin [0, .5) [.5, .8) [.8, .95) [.95, 1.05] (1.05, 1.2] (1.2, 1.5] (1.5, 1.7] (1.7, 2.0]
NYU 1 (1/0/0/0/0) 0 (0/0/0/0/0) 26 (21/5/0/0/0) 23 (11/12/0/0/0) 1 (1/0/0/0/0) 1 (0/0/1/0/0) 3 (0/0/1/2/0) —
UCSB 1 (1/0/0/0/0) 6 (0/6/0/0/0) 26 (19/7/0/0/0) 25 (8/17/0/0/0) 0 (0/0/0/0/0) 0 (0/0/0/0/0) 0 (0/0/0/0/0) —
INRIA 1 (1/0/0/0/0) 1 (0/0/1/0/0) 0 (0/0/0/0/0) 30 (0/21/8/1/0) 2 (0/0/2/0/0) 2 (0/0/0/0/2) 3 (0/0/0/0/3) —
ALL 3 (3/0/0/0/0) 7 (0/6/1/0/0) 52 (40/12/0/0/0) 78 (19/50/8/1/0) 3 (1/0/2/0/0) 3 (0/0/1/0/2) 6 (0/0/1/2/3) —

TABLE IV

LATENCY DILATION IN ZONE-BASED OVERLAYS WITH MULTIPLE ORIGIN SERVER.

 30

 35

 40

 45

 50

 55

 60

 65

 70

-120 -100 -80 -60 -40 -20 0 20

La
tit

ud
e

Longitude

NYU

UCSB

INRIA

NYU
UCSB
INRIA

zone 0
zone 1
zone 2
zone 3
zone 4

Fig. 8. An Oriented Overlay with Multiple Origin Servers Constructed on
PlanetLab. Notice that 5 nodes (belonging to zone 4) in South America are
not shown to better show the remaining nodes in the network.

The resulting overlays end up exhibiting better quality in
terms of latency dilation (Table IV) and node clustering ability
(Table V) as compared to those built with a single origin
server. In the overlays shown in Figure 8, we found that (1) for
latency dilation, only 7.89% of nodes score larger than 1.05
while 85.53% of nodes score between0.8 ∼ 1.05, as compared
to 37.5% and 55.68% for the corresponding intervals in the
single origin server case (see Table II); and (2) for clustering
ability, 25.71% of the intermediate nodes have an overlap score
between0.4 ∼ 0.6, while 31.43% of the intermediate nodes
score higher than 0.6, as compared to 16.66% and 44.44%
respectively in the the single origin server case (see Table III).
Notice that the number of intermediate nodes is smaller than
the one in an overlay with single origin server. This is because
by partitioning nodes into different overlays, the number of
leaf-nodes in the resulting overlays is increased significantly.

VI. RELATED WORK

Our zone-based oriented overlays address the challenge of
building a “good” overlay network for data-centric services to
flow requests from geographically distributed clients towards
one or more origin servers. The main ideas underlying our
work are that (1) nodes with network proximity exhibit similar
service usage behaviors; and that (2) clustering nearby nodes
with an orientation “bias” towards the origin server(s) provides
ample opportunity to detect and dynamically leverage such

Distribution of Overlay-Score Values
for a Node Region of5◦ Longitude by5◦ Latitude

Origin [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1]
NYU 6 1 1 5 0
UCSB 3 2 1 3 2
INRIA 2 1 7 1 0
ALL 11 4 9 9 2

TABLE V

CLUSTERING IN ZONE-BASED OVERLAY WITH MULTIPLE ORIGIN

SERVERS.

service usage locality. Although addressing a somewhat dif-
ferent goal, our work is related to prior work that has looked at
building overlay networks and at enhancing their performance
with different kinds of information about network proximity.

In addition to the work on structured [6]–[10] and un-
structured [11]–[17], [21], [22] P2P overlay networks that
we discussed in Section I, researchers have also examined
construction of overlay networks to support multicast flow pat-
terns [23]–[26]. The focus in the former case is on supporting
an all-to-all flow pattern in the context of data sharing, and
unlike our medium-scale focus, the emphasis in such systems
is typically on supporting efficient routing in extremely large-
scale systems. The multicast networks address a more related
problem, that of delivering a content stream from a single
source to multiple locations. Unlike the bandwidth-centric
focus of these systems, our target applications are more latency
sensitive. Additionally, the reason for merging routes in the
network has less to do with elimination of redundant com-
munication, and more to do with discovering and leveraging
service usage locality.

Researchers have also looked into enhancing the perfor-
mance of the above overlay networks using some information
about network proximity. Krishnamurthy et al. [21], [22]
looked at topology-aware clustering of web clients using
border gateway protocol routing information. At the applica-
tion level, work on topology-aware unstructured overlays has
proposed a landmark clustering scheme [14], [16], which rely
upon the existence of a small number of carefully selected
landmark nodes that serve as location beacons for the other
(usually larger number of) nodes that participate in the overlay.
Given the smaller scale of our networks, we have relied
upon direct measurements of the latency between participating
nodes and origin servers and likely parent candidates. Recent
work on incorporating network locality considerations into

structured overlays (e.g., Coral [10]) have also pursued a sim-
ilar direct measurement approach. Unlike these systems, most
of which use network latency as an indicator of proximity,
recent work on topology-aware multicast networks [25], [26]
has looked into mechanisms for estimating and optimizing use
of network bandwidth. The latter is harder to measure directly,
and reasoning about its shared use requires a better model of
network utilization than our target applications provide.

Finally, a number of recent systems such as IDMaps [27],
GNP [28], WNMS [29] and more recently, Vivaldi [30] have
been proposed to map nodes on the Internet onto locations
in a cartesian coordinate system. These systems provide a
global distance estimation service at the infrastructure level,
and if available and accurate enough can substitute for some of
the measurements our algorithms make currently. Given that
there are many applications where accurate geographical loca-
tion information (as opposed to merely proximity indicators)
yields a substantially better model of service usage, the wider
availability of such systems will end up further improving the
performance of our overlays.

VII. SUMMARY AND DISCUSSION

In this paper, we have presented a zone-based scheme
to construct oriented overlays and shown using extensive
experiments with a PlanetLab-based implementation that it
produces overlays that (1) are robust to network dynamics;
(2) offer good clustering ability; and (3) minimally impact
end-to-end network latencies seen by clients.

Our overlay construction algorithms attempt to define com-
mon routing paths for requests originating at nodes that are
close geographically, observing that for several data-centric
services, clients that are geographically close demonstrate
similarity in service usage patterns. Our approach determines
geographical proximity using network latency measurements,
an approximation shown in our experiments to be relatively
good. As noted earlier, more direct geographical location
indicators can be easily incorporated. More generally, the zone
partitioning and parent selection steps of our algorithms can be
extended to accommodate other, possibly application-specific,
scoring systems to influence request and response routing.
For instance, recognizing that clients with different levels
of network connectivity typically exhibit different service
usage patterns, one may wish to route requests from low-
bandwidth clients along different paths as compared to those
from higher bandwidth clients. Such differentiation opens up
many interesting possibilities for service specialization.

As noted in Section II, one of the motivations for this
work was to enable construction of alternative caching infras-
tructures for data-centric network services whose responses
are generated dynamically. We are currently building one
such infrastructure, extending an earlier design [19]. In this
context, a long-term challenge is to better understand the
interactions between the characteristics of the overlay network
and the routing and scheduling decisions taken at the level
of the infrastructure, particularly in situations where multiple
services are being co-hosted on the same resources.

ACKNOWLEDGMENT

This research was sponsored by DARPA agreements
N66001-00-1-8920 and N66001-01-1-8929; by NSF grants
CAREER:CCR-9876128, CCR-9988176, and CCR-0312956;
and Microsoft. The U.S. Government is authorized to repro-
duce and distribute reprints for Government purposes notwith-
standing any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and
should not be interpreted as representing the official policies or
endorsements, either expressed or implied, of DARPA, Rome
Labs, SPAWAR SYSCEN, or the U.S. Government.

REFERENCES

[1] Amazon Web Services. [Online]. Available:
http://www.amazon.com/gp/aws/landing.html

[2] Google Web APIs. [Online]. Available: http://www.google.com/apis/
[3] Microsoft Corporation. Microsoft MapPoint Web Services. [Online].

Available: http://www.microsoft.com/mappoint/default.mspx
[4] TerraServer.com. [Online]. Available: http://www.terraserver-usa.com/
[5] Sloan Digital Sky Servey. SkyServer Projects. [Online]. Available:

http://skyserver.sdss.org/
[6] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastructure

for fault-tolerant wide-area location and routing,” Univ. of California,
Berkeley, CA, Tech. Rep. TR-UCB/CSD-01-1141, Apr. 2001.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scal-
able content-addressable network,” presented at the ACM SIGCOMM,
San Diego, CA, Aug. 2001.

[8] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
presented at the ACM SIGCOMM ’01, San Diego, CA, Aug. 2001.

[9] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems,” presented at the
18th IFIP/ACM Int. Conf. Distributed Systems Platforms (Middleware
2001), Heidelberg, German, Nov. 2001.

[10] Coral: The NYU Distribution Network. [Online]. Available:
http://www.scs.cs.nyu.edu/coral/overview.html

[11] Gnutella Website. [Online]. Available: http://gnutella.wego.com/
[12] Freenet Website. [Online]. Available: http://freenet.sourceforge.net/
[13] Kazaa Website. [Online]. Available: http://www.kazaa.com/
[14] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-

aware overlay construction and server selection,” inProc. IEEE INFO-
COM’02, 2002.

[15] M. Waldvogel and R. Rinaldi, “Efficient topology-aware overlay net-
work,” in Proc. ACM HotNets 2002, SIGCOMM/CCR 2003.

[16] Z. Xu, C. Tang, and Z. Zhang, “Building topology-aware overlays using
global soft-state,” inProc. the 23rd ICDCS, Washington, DC, May 2003.

[17] X. Zhang, Q. Zhang, Z. Zhang, G. Song, and W. Zhu, “A construction of
locality-aware overlay network: mOverlay and its performance,” inIEEE
JSAC Special Issue on Recent Advances on Service Overlay Networks,
Washington, DC, Jan. 2004.

[18] C. He and V. Karamcheti, “An analysis of usage locality for data-centric
web services,” New York University, Tech. Rep. TR-2005-866, 2005.

[19] C. He and V. Karamcheti, “Improving scalability of data-centric services
using in-network traffic inspection,” inProc. IEEE 10th International
Workshop on Web Content Caching and Distribution (WCW), Sophia
Antipolis, France, September 2005.

[20] PlanetLab. [Online]. Available: http://www.planet-lab.org/
[21] B. Krishnamurthy and J. Wang, “On network-aware clustering of web

clients,” in ACM SIGCOMM ’00, Stockholm, Sweden, Aug. 2000.
[22] B. Krishnamurthy and J. Wang, “Topology modeling via cluster graphs,”

in ACM SIGCOMM IMW ’01, San Francisco, CA, Nov. 2001.
[23] Y. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,”

in Proc. of ACM Sigmetrics, Santa Clara, CA, June 2000.
[24] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W.

O’Toole, “Overcast: Reliable multicasting with an overlay network,” in
Proc. OSDI’00, San Diego, CA, 2000.

[25] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: High-bandwidth multicast in a cooperative
environment,” inProc. SOSP’03, Lake Bolton, New York, October 2003.

[26] L. Garces-Erice, E. W. Biersack, and P. A. Felber, “Multi+: Building
topology-aware overlay multicast trees,” inProc. of the Fifth Inter-
national Workshop on Quality of Future Internet Services (QofIS’04),
Barcelona, Spain, September 2004.

[27] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. F. Gryniewicz, and Y. Jin,
“An architecture for a global internet host distance estimation service,”
in Proc. IEEE INFOCOM ’99, New York, NY, 1999, pp. 210–217.

[28] T. S. E. Ng and H. Zhang, “Predicting internet network distance with
coordinates-based approaches,” inIEEE INFOCOM ’02, 2002.

[29] Y. Chen and R. Katz, “On the placement of network monitoring sites,”
2001. [Online]. Available: http://www.cs.berkeley.edu/yanchen/wnms/

[30] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: a decentralized
network coordinate system,” inProc. the 2004 conf. on Applications,
technologies, architectures, and protocols for computer communications,
Portland, Oregon, 2004.

