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Abstract

The notion of records, which are used to organize closely related groups of data

so the group can be treated as a unit, and also provide access to the data within

by name, is almost universally supported in programming languages. However, in

virtually all cases, the operations permitted on records in statically typed languages

are extremely limited. Providing greater flexibility in dealing with records, while

simultaneously retaining the benefits of static type checking is a desirable goal.

This problem has generated considerable interest, and a number of type systems

dealing with records have appeared in the literature. In this work, we present

the first polymorphic type system that is expressive enough to type a number of

complex operations on records, including three forms of concatenation and natural

join. In addition, the precise types of the records involved are inferred, to eliminate

the burden of explicit type declarations. Another aspect of this problem is an

efficient implementation of records and their associated operations. We also present

a compilation method which accomplishes this goal.
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Chapter 1

Introduction

The history of programming languages is a study in ever increasing expressiveness.

The earliest programming languages (e.g. assembly) were close to the machine.

That is, translation to the machine code that was understood by the computer was

relatively straightforward. In fits and starts, languages evolved into higher-level

beasts which dealt with increasingly powerful abstractions. These abstractions

could be used to represent entities and actions in various problem domains. As

the ability to do this in a “natural” fashion increased, the gap between higher-level

languages and machine language grew larger. This required increasingly intricate

translation techniques in order to generate executable code.

One simple but effective step in this direction was the use of records. Records

provide a way to group a number of related values together, and be able to refer to

each value with a comprehensible name.

One fruitful avenue of exploration leads to static type systems. It is natural for

humans to categorize things in terms of their similarities and differences. In fact,
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the act of categorization is so basic that it is usually automatic and unconscious. A

static type system is used to categorize each value in the language at compile time,

and limits what can be done with a value. These constraints actually have several

benefits:

1. they prevent the programmer from making some sorts of mistakes, e.g. adding

a string to a list

2. they reduce the amount of run-time checking that needs to be done to check

for the mistakes of the sort mentioned in the previous item

3. they can also be used to guide the translation to machine language and in-

crease the efficiency of the generated code

4. in the hands of an experienced programmer, a static type system can be used

to enforce various design invariants

Most non-machine-level programming languages have some sort of type system.

One major way in which they differ is when (and if) type errors (i.e. attempts to

use values in ways not sanctioned by the type system) are detected. This can be

done either at run-time or at compile-time. Languages such as Lisp and Perl have

run-time checking, while most conventional languages such as FORTRAN, C, Ada,

ML, etc. check for type errors at compile-time. Of course, it is possible to have a

mixture of the two. An example of this is Java.

Another dimension is the degree of strictness in the type system. For example,

C is notorious for the ease in allowing the use of a value of one type as if it were

another. Languages such as Ada, ML, and Scheme are at the other extreme.
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Most interesting work has been done in type systems which detect violations

at compile-time. These are known as static type systems. Because there is less

information available at compile-time than at run-time, static type systems are

necessarily more restrictive than dynamic ones. There will be programs which

verifiably do not cause any type errors at run-time that will be rejected by the

static type checking phase. Type systems in conventional imperative languages

such as Pascal, C/C++, Ada, etc. are particularly restrictive. Ironically, this is the

case even though C’s type system, for example, is not particularly strict.

One particularly interesting approach has been the development of type infer-

ence systems, in languages such as SML [38], Haskell [45] and Miranda [54, 55].

These are static type systems where the types of variables need not be declared, as

they are inferred from context. The motivation of type inference is to reduce the

inconvenience of variable declarations while retaining all the benefits of static type

systems. Interestingly, even though it is clearly more difficult to have a system that

infers all types rather than simply checking that the types variables are explicitly

assigned, languages with type inference typically have more expressive power than

those that rely on extensive type declarations.

1.1 Beginnings

The beginnings of modern type theory have their origins in the lambda calculus

conceived by Church [11], as part of a theory of computable functions. This theory
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did not have types. The syntax of the pure1 lambda calculus is:

E ::� x variable

| EE application

| λx.E abstraction

Unless otherwise indicated, the name of the syntactic category will be used to range

over the set of terms in that category. For example, E will range over the set of

lambda calculus terms, and x ranges over the set of term variables. By convention,

we will also use M and N to range over terms, and x, y, z to range over variables.

Application is left-associative, so E1E2 . . . En means pp. . . pE1E2q . . . qEnq.

In the style of proof system used here, we have rules (and axioms). A rule has

the general form

pnameq
antecedentpsq

consequent

The antecedents above the horizontal line, and the consequent below, are judge-

ments. Such a rule means that the proofs of the antecedents (if they exist) can be

combined to prove the consequent. Another way of reading it is “if the antecedents

are true, then so is the consequent”. It is often more useful to think of rules in

the opposite direction, i.e. in order to prove the consequent via a given rule,2 the

antecedent(s) must be proven. Each rule generally has a name as indicated. In the

case where there are no antecedents in a rule, we use the abbreviated notation:

pnameq judgement

1The term pure refers to the lack of predefined constants or variables.
2This caveat is necessary as more than one rule may apply to a given consequent
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Such rules are called axioms. The exact judgement forms allowed depend on the

particular inference system in question. In the simply-typed λ � calculus, there is

one judgement form:

A $ M : τ

In this judgement form, M is an expression, and A is an environment, which is

a set of variable type bindings, written x : τ , where x is a variable, and τ is the

associated type. We read this judgement as saying that expression M has type τ

in environment A.

A proof in this system consists of a finite tree of judgements, where each judge-

ment is either an instance of an axiom, or follows from judgements above it in the

tree by the application of a rule. Each of the judgements in this tree is said to be

proven.

There is one significant reduction rule for the untyped lambda calculus3:

pβq pλx.MqN ÝÑ rx ÞÑ NsM

rx ÞÑ Ns is our notation for a substitution, which can be considered a function

on terms. When applied to a term M , this function returns the term obtained by

replacing all free occurrences of variable x with N in M . We use the symbol ÝÑÑ

to mean the reflexive, transitive closure of ÝÑ. We say:

 A term M is in normal form if there is no N such that M ÝÑ N .

 A term M has a normal form N if M ÝÑÑ N and N is a normal form.
3Actually, there are also the α-rule and the η-rule, but these do not even begin to approach the

usefulness of the β-rule, and are unnecessary for our discussion.
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One problem with the untyped λ-calculus is that it is too powerful in some

sense. For example, it is possible to write terms that have no normal forms:

pλx.x xqpλx.x xq

This causes difficulties when attempting to provide models of the untyped λ-

calculus. Adding types to the λ-calculus is an attempt to curtail its unruliness.

There are two distinct styles of type systems, typified by the two versions of the

earliest (and simplest) type system for the λ-calculus: the simply-typed λ-calculus,

or λÑ. These are due to Curry and Feys [13] and Church [10]. In a Church-style

system, types are explicit in the syntax, while in a Curry-style system, also referred

to as a type assignment system, types are implicit and are inferred from context.

The process of determining the possible type(s) of a term is known as the type

inference problem.

Many type systems have Church-style and Curry-style counterparts4. Infor-

mally, terms in the Curry-style system have less type information than its Church-

style counterpart. A transformation of terms in a Church-style system into the

corresponding terms in the Curry-style system is defined in terms of what is known

as an erasure function.

4This is not always the case, however. For example, the system of intersection types described in [3,12]

has no obvious Church-style counterpart. Conversely, the Calculus of Constructions, a Church-style

system at the apex of Barendregt’s cube, has no Curry version.
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λÑ-Church has the syntax:

E ::� x identifier

| E E application

| λx : τ.E abstraction

τ ::� t type constant

| τ Ñ τ function type

Note that this is the syntax of the untyped lambda calculus, with the addition of

explicitly tagging variable bindings with their type, represented by τ . The type

expression τ1 Ñ τ2 Ñ . . . Ñ τn is used as an abbreviation for τ1 Ñ pτ2 Ñ p. . . Ñ

τnq . . . q.

The type rules for this system are:

pvarq A $ x : τ if x : τ P A

pappq
A $ M : τ 1 Ñ τ A $ N : τ 1

A $ M N : τ

pabsq
A, x : τ 1 $M : τ

A $ pλx : τ 1.Mq : τ 1 Ñ τ

The syntax of λÑ-Curry is the same as that of the untyped lambda calculus. Its

type rules are the same as those for λÑ-Church, with the modification that rule abs

uses the Curry syntax for the λ-term in the consequent. the modified abs rule is:

pabsq
A, x : τ 1 $M : τ

A $ pλx.Mq : τ 1 Ñ τ

7



Note that it is possible to give the same lambda term different types in the Curry

system.

We can informally define the erasure function transforming terms from λÑ-

Church to terms in λÑ-Curry as the function which lops off all occurrences of “: τ”

in the term.

1.2 The Hindley-Milner type system

1.2.1 Type abstraction

In λÑ, there are many terms which have overly restrictive types. The problem is

similar to one often encountered in languages such as Pascal and C. An example

is a function that determines the length of a list. When written in Pascal or C,

we need to fix the element type of the list even though the length routine never

examines any element. The code for determining the length of a list of integers is

identical to code which determines the length of a list of any other type, yet we

are forced to write multiple definitions of these routines if we wish to apply them

to different sorts of lists. One step on the road toward eliminating this restriction

is to extend λÑ with type abstraction. This would allow us to write a function

which could then be applied to any list type. We need additional syntax for terms

to allow for type abstraction and application:

E ::� . . .

| E τ type application

| Λα.E type abstraction

8



The syntax of types also needs to be extended. To represent the type of a term

of the form Λα.E, we will use the notation Πα.τ , where τ is the type of E. We

now face an important choice of what kinds of types we can apply such a term to.

In particular, we can allow application to a type of the form Πβ.τ 1, or restrict it

to only Π-less types. The former choice leads to the Church-style system λÑ,Π, an

example of a predicative type system, while the latter leads to System F, or λ2,

which is impredicative. A predicative definition of a type is built up of simpler

types; this is not the case for an impredicative definition. The differences between

these two systems are vast. The type inference problem for the former system is

decidable, whereas for System F, the question has been open until fairly recently,

when it was answered in the negative [60]. There are also difficulties in developing

semantic models for System F which do not occur for λÑ,Π. For example, it is not

possible to interpret terms of System F in a set-theoretic way.

Despite its nice properties, λÑ,Π is not really any more powerful than λÑ. The

reason for this is simple. We can have polymorphic terms in λÑ,Π, but we can use

each of these terms at only one type. For example,

Λα.λx : α.x

is polymorphic, but we cannot bind it to a variable. This is because the only

method we have to bind a value to a variable is function application, and unlike in

System F, functions may be applied only to monomorphic values. In other words,

we cannot pass the term above as an argument to a function.

The Hindley-Milner (HM) type system [36] is an extension of λÑ,Π that solves

this problem. Alternatively, it can be viewed as a predicative restriction of System
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F. It accomplishes these dual goals by allowing the binding of polymorphic terms to

variables, which can then be used multiple times, but restricting where this binding

can occur to a specific syntactic construct, the let. The HM type system is the first

formal type system to be implemented in a widely-used5 programming language,

ML [37]. It has a number of desirable properties, including the principal type

property, decidable type inference and, in fact, a simple type inference algorithm.

It also has the interesting feature that the translation of a well-typed ML expression

is independent of how polymorphic types are instantiated.

For some time, it was believed that ML type inference was doable in polyno-

mial time. Counter-examples to this conjecture were found by various researchers.

Kanellakis and Mitchell [30] showed that the problem was PSPACE-hard. It was

finally proven to be DEXPTIME-complete in [33], and independently, in [31].

We will describe the type system and various enhancements in terms of type

rules for a ‘core’ of ML. The syntax of expressions is:

E ::� x identifier

| E1 E2 function application

| λx.E function abstraction

| let x � E1 in E2 let expression

| fix x.E fix-point

The abstract syntax of types and type schemes, which will be used in the type rules

5Widely used by academic standards.
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FVpσq � set of free variables in type scheme σ

FVpAq �
�
px:σqPA FVpσq

Instp@α1, . . . , αn . τq � rα1 ÞÑ τi, . . . , αn ÞÑ τnsτ

GenpA,σq � @α1, . . . , αn . σ where tα1, . . . , αnu � FVpσq � FVpAq

Figure 1.1: Functions used in type rules

to be presented, are:

τ ::� t type constant

| α type variable

| τ Ñ τ function type

| τ � � � � � τ cartesian product type

| τ rτ, . . . , τ s type application

σ ::� τ simple type

| @α . σ quantified type

In the type rules, the metavariables α and β will range over type variables, and

t will range over type constants. Similarly, τ and σ will be used as metavariables

representing types and type schemes, respectively. We write @α1, . . . , αn as short-

hand for @α1. . . . .@αn, and likewise for quantifiers other than @ to be introduced

later.

To keep ML predicative, types and type schemes are distinguished. Type

schemes are only allowed in certain contexts. A is used to represent an environ-

ment, which is a set of items, the form of which will differ among the type systems
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Judgement Read as:

$ A env A is a well-formed environment.

A $ τ type Given environment A, we can infer that τ is a well-formed type.

A $ E : τ Given environment A, we can infer that expression E is of type τ .

Figure 1.2: Core ML judgements

discussed. We use the notation A, item as shorthand for A
�
titemu. Judgements

for ML are of the forms indicated in Table 1.2.

The shorthand $ . . . means H $ . . . .

In the basic ML type system, the environment formation rules are:

pempty-envq H env

pvar-envq
A env

pA, x : σq env
x : σ R A

ptype-envq
A env

pA, c typeq env
c type R A

In the sequel, it is understood that all environments and types mentioned in rules

are well-formed unless otherwise indicated.
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The type rules for this system are:

pvarq
px : σq P A

A $ x : τ

τ � Instpσq

pappq
A $ E1 : τ 1 Ñ τ A $ E2 : τ 1

A $ pE1 E2q : τ

pabsq
A, x : τ $ E : τ 1

A $ pλx . Eq : τ Ñ τ 1

pletq
A $ E1 : τ A, x : σ $ E2 : τ 1

A $ plet x � E1 in E2q : τ 1
σ � GenpA, τq

This set of rules is syntax directed. In other words, the correct rule to apply can

always be determined syntactically. There is no need to do further analysis or to

“guess” which rule to apply.

A number of functions are used in the type rules. They are defined in Figure 1.1.

Others will be defined in the appropriate sections as necessary. The functions

defined on type schemes are extended to work with environments in the usual way.

There is a well-known type inference algorithm for ML, due to Milner. This

algorithm, W, makes use of unification, due to Robinson [51], in an essential way.

W takes as input the expression form in the left-hand side of Figure 1.3, and

performs the actions specified on the right.

The auxiliary functions FreshVar , Inst , and Unify have the types:
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WrrxssA ñ return px, InstpAxqq

WrrfessA ñ pθf , τf q �W rrf ssA

pθe, τeq �WrrEsspθf Aq

β � FreshVar pq

θ � Unifypθeτf , τe Ñ βq

return pθ � θe � θf , θβq

Wrrλx.essA ñ τ � FreshVar pq

pθ, τeq �WrrEsspA Y tx : τuq

return pθ, θτ Ñ τeq

Wrrlet x � E1 in E2ssA ñ pθ1, τ1q �WrrE1ssA

pθ2, τ2q �WrrE2sspθ1AY tx : Genpθ1A, τ1quq

return pθ2 � θ1, τ2q

Wrrfix x.EssA ñ β � FreshVar pq

pθ, τq �WrrEsspA Y tx : βuq

θ1 � Unifypθβ, τq

return pθ1 � θ, θ1τq

Figure 1.3: Algorithm W
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FreshVar unitÑ type

Inst type-scheme Ñ type

Unify type� typeÑ substitution

FreshVar returns a new type variable.

Inst is defined:

Instp@α1, . . . , αn . τq � rαi ÞÑ βisτ

where all βi are fresh type variables.

Unify obeys the properties:

1. If Unifypτ1, τ2q succeeds, it returns a substitution θ which unifies τ1 and τ2,

i.e. θτ1 � θτ2. Also, θ involves only variables in τ1 and τ2.

2. If there exists a substitution θ which unifies τ1 and τ2, the Unifypτ1, τ2q suc-

ceeds, yielding a substitution θ1 such that, for some substitution θ2, θ � θ2θ1.

It may seem at first glance that the language presented above is extremely

limited in its expressiveness, because it lacks common language features, such as ML

datatype declarations, expression sequences (i.e. E1; E2; . . . ; En), if expressions,

a module system, mutable variables, or even any built-in types. However, some of

these deficiencies can be remedied by populating the environment with predefined

types and terms.

1.3 Haskell

One of the weak points of the ML type system is its treatment of overloaded opera-

tions. These are sets of related operations which cannot be given a single polymor-
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phic type. One set of examples are arithmetic operations such as addition. Integer

and floating point addition are two distinct operations for which it is customary to

use the symbol �.

int� intÑ int

float� floatÑ float

These two types are instances of the type scheme

@α . α� α Ñ α

Unfortunately, addition is not definable for all instances of this type scheme.

ML treats addition (and several similar operations) as special cases. Addition is

overloaded on both integers and floating point values. Programmers cannot define

their own overloaded operations. In addition, this sort of overloading interferes

with type inference. In ML, the function

fun add (x, y) � x � y

cannot be typed, because there is no way to assign a single most general type

to add. The programmer can choose either integer or floating point addition with

the addition of an explicit type constraint:

fun add (x, y : int) � x � y

This gives ML enough information to determine that integer addition is meant

in this case.

Another example is the operation of equality. This operation is defined on

many, but not all types. For example, there is no non-trivial computable definition

of equality on functions6. All instances of equality have types which are instances

6There is, of course, extensional equality, but this is not computable.
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of the type scheme:

@α . α� α Ñ bool

Unlike the case with addition, equality is defined on an infinite number of types.

ML’s solution to this is to make equality a special case. Equality is predefined

on most types. We can abstract over all of these types by using an equality types

variable. Whereas the syntax for a regular type variable is a single quote followed

by the variable name, the syntax for an equality type variable is two single quotes

followed by the variable name.

A clean solution to these problematic areas exists in Haskell. Haskell allows a

controlled form of overloading which can accommodate operations which are defined

on a finite set of types, such as addition, as well as equality, which is defined on

an infinite set of types. In Haskell, we can define a class, which declares a set of

operations on a type, and instances of the class, which are specific definitions of

the definitions in the class for a specific type. For example, we can define the class:

class Addable a where

(�) :: a Ñ a Ñ a

and instances

instance Addable Int where

(�) � ... �� definition of integer addition

instance Addable Float where

(�) � ... �� definition of floating point addition

We can now abstract over all types which have addition:

sum3 x y z � (x � y) � z
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The type of sum3 is @α . Addable a ñ a Ñ a Ñ a Ñ a. We read this as “for all

types a which are in the class Addable the function takes three a’s and returns an

a. Equality is handled similarly:

class Eq a where

(��) :: a Ñ a Ñ Bool

Equality is defined on most basic types, e.g., integers, booleans, etc. Equality is

also defined on lists of any type for which equality is defined. This is accomplished

with the definition:

instance Eq a ñ Eq [a] where

[] �� [] � True

(x::xs) �� (y::ys) � x �� y && xs �� ys

_ �� _ � False

The notation [a] denotes a list of type a. Informally, we can read the first

line as saying that if type a is an instance of the Eq class, then so is [a]. The

definition of equality on lists is recursive. Note that in the second clause, we invoke

the equality operation twice, at different types. In the expression x ��y, we are

invoking equality at type a, and in the expression xs ��ys, we are simply making

a recursive call. That is, we are invoking it at type [a].

1.4 Qualified types

This area has spawned a great deal of research in the recent past. The term qualified

type was coined by Mark Jones [25, 29]. This system subsumes and generalizes

Haskell’s type system.
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In the HM type system, if fpαq is a type, then @α . fpαq represents the set of

types:

tfpτq | τ is a typeu

There are times when we wish to restrict α to a subset of all types. Mark Jones

expresses this as:

πpαq ñ fpαq

where π is a type predicate. The interpretation of this is the set of types:

tfpτq | τ is a type such that πpτq holdsu

In [29], individual predicates are written π � p τ1τ2 . . . τn describing an n-place

relation p between the types τ1τ2 . . . τn. There is an entailment relation (,) between

sets of predicates P, Q, whose properties depend on the specific system. As a

shorthand, where sets of predicates are required, individual predicates π may be

used to indicate the singleton set containing that predicate.

Jones proves various useful results about such a system, as long as the predicate

sets obey several simple properties:

monotonicity:
P � P 1

P , P 1

transitivity:
P , Q and Q , R

P , R

closure property:
P , Q

θP , θQ
for any type substitution θ

The idea of predicates on types that satisfy the conditions mentioned above has

wide applicability, encompassing such disparate features as Haskell type classes,

flexible records, and subtyping.
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Features Predicates

Haskell type classes C τ

flexible records r lacks l

subtyping τ 1 � τ

A system that supports subtyping has the predicate form τ 1 � τ , which means that

type τ 1 is a subtype of type τ . Such a system typically has the inference rule of

subsumption:

psubq
P |A $ e : τ 1 P , τ 1 � τ

P |A $ e : τ

These three systems are more fully described in [29].

The type judgements in the system of qualified types are of the form:

P |A $ E : τ

Note that the left-hand side of the judgement has a P in addition to the usual

environment A. P is a set of predicates satisfied in the environment. The judgement

can be read as follows: “Expression E has type τ in the presence of type assignment

A and predicates P .”

Figure 1.4 has the syntax-directed rules.

The two functions Inst and Gen are similar to their counterparts in the HM type

rules, the difference being that Inst now returns an instantiated type and context,

and Gen considers free variables in the context in addition to the rest of the type.

One of the properties proven for this system is the existence of principal types

for the type inference algorithm given. The definition of a principal type retains its
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pvarq
px : σq P A

P |A $ x : τ

pP ñ τq � Instpσq

pappq
P |A $ E1 : τ 1 Ñ τ P |A $ E2 : τ 1

P |A $ pE1 E2q : τ

pabsq
P |A,x : τ 1 $ E : τ

P |A $ pλx.Eq : τ 1 Ñ τ

pletq
P |A $ E1 : τ P 1|A,x : σ $ E2 : τ 1

P 1|A $ plet x � E1 in E2q : τ 1
σ � GenpA,P ñ τq

Figure 1.4: Typing rules for qualified types

intuitive meaning, but details change due to the need to deal with predicates. We

need a few definitions:

Constrained type scheme A pair of the form pP |σq, where P is a set of predi-

cates, and σ is a type scheme.

Generic instance A qualified type R ñ τ is a generic instance of the constrained

type pP |@α1, . . . , αn.Q ñ τ 1q if there exist types τi such that R , P Y rαi ÞÑ

τisQ and τ � rαi ÞÑ τisτ
1.

Generality The constrained type scheme pQ|σ1q is more general than pP |σq if

every generic instance of pQ|σ1q is also a generic instance of pP |σq.

A principal type scheme for a term M under type assignment A is a con-
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strained type scheme pP |σq such that P |A $ M : σ, and pP 1|σ1q ¤ pP |σq whenever

P 1|A $M : σ1.

The typical code generation strategy for terms in such a system involves the

translation of predicates into evidence. That is, a value of a type of the form

@α.πpαq ñ τ is translated into a function taking a parameter representing the

predicate πpαq, and returning a value of type τ .7 The evidence is used to implement

the capabilities implied by the predicate. For example, the evidence for the Haskell

predicate Show τ is typically a function of type τ Ñ String which returns the

string representation of its argument. The Haskell function

prList xs � concat (map show xs)

has the type

@α . Show α ñ rαs Ñ String

The types of the functions used in the body of prList are

Name Type

concat @α . rrαss Ñ rαs

map @α, β . pα Ñ βq Ñ prαs Ñ rβsq

show @α . Show α ñ α Ñ String

prList would be translated into a function whose type is

@α . pα Ñ Stringq Ñ prαs Ñ Stringq

The translated function would be
7Typically, τ is a function type, and a simple optimization is to increase the arity of the function, i.e.

passing the evidence as an extra parameter rather than to generate a curried function.
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prList f xs � concat (map (show f) xs)

f is the evidence parameter corresponding to the Show α predicate. Note that

it is passed to the expanded show function, because show’s type has the predicate

Show α.

Strictly speaking, therefore, qualified types do not increase the power of a typing

system, in that they do not increase the set of typable terms. It does, however,

increase the convenience (which is admittedly hard to define or measure) of using

a language, because it allows the programmer to omit certain parameters with the

knowledge that the type-directed translation process will fill them in correctly.

There are a number of further issues raised. The system, as described, generates

translations with redundancies which can cause inefficiencies. For example, consider

the let rule in Figure 1.4. If P 1 , Q, for some Q such that Q � P , then there

is no need to pass in any evidence parameters represented by Q, since they are

guaranteed to be the same for every use of the variable. In addition, depending on

the nature of the predicates in a given system, it may be possible to simplify the

set of predicates in a qualified type. For example, in a naive implementation of the

system of extensible records described in [29], the function

fun f x = (x.a, x.a)

would have the inferred type:

@α, β, r.xr lacks ay ñ ta : α, a : β; ru ñ α � β

although because a field name may not be used multiple times within a record, the

simpler type

@α, r.xr lacks ay ñ ta : α; ru ñ α � α
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can be used without any loss of generality. Simplification is subject to ongoing

research [24].

Another issue is the possibility that for an inferred type of the form P ñ τ , the

set of predicates P may be unsatisfiable. This possibility may be ignored without

violating any correctness criteria, because a value of such a type cannot ever be

used if we cannot present evidence for the predicates. Nevertheless, it would be

desirable for the system to warn the programmer of such types, since they are likely

to indicate programming errors.

1.5 Contribution

Our contribution is the development of a polymorphic type system for records which

supports a number of operations, including three kinds of concatenation, natural

join, and, in fact, most of the record operations discussed in the literature. This is

the first system to combine such a large set of powerful record operations. We prove

that the type system is sound and present a type inference algorithm. The principal

difficulty for type inference is the determination of predicate entailment. We give

two algorithms to accomplish this. The second of these is used in the compilation

algorithm, where we translate our implicitly typed record calculus into a simpler,

explicitly typed implementation calculus where the predicates become evidence

parameters. We prove this implementation calculus to be sound with respect to

its semantics. Although record concatenation can be found in the literature, and a

compilation method for polymorphic records is described by Ohori in [41], this is

the first work in which a compilation method for concatenation is discussed.
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Chapter 2

A Simply-typed record calculus

Before discussing the full system designed in this dissertation, we define a simplified

simply-typed system in this chapter, and prove various properties. The essential

simplification is that all types in the first-order system are monomorphic. This

precludes us from expressing various constraints of types, but we will introduce the

predicate forms that do make sense in this system, and solve the entailment relation

for them. This gives us the opportunity to introduce various issues that will be the

concern of subsequent chapters.

We distinguish between expressions and values, which are a subset of expres-

sions. This distinction will be useful when we define the semantics of the language.

Types are those standard from the simply-typed lambda calculus, augmented with

record types. A record type is the record type constructor t�u applied to a row,

which is a finite mapping from labels to types. The notation

l1 : τ1, . . . , ln : τn,

where li � lj for all i, j P t1..nu such that i � j, denotes the row which is defined
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on the set of labels tl1, . . . , lnu, and which maps label li to type τi, for all i P t1..nu.

Each l : τ element is a field. We say that field l : τ has label l and type τ . Because

a row is a map, the order in which fields are written is not relevant. There is a

natural view of a map as a set of fields whose labels are unique.

Expressions and types are defined in Figure 2.1.

We need a set of type rules to tell us if an expression is well-formed, and what

its type is. Figure 2.2 is a set of the usual set of type rules for the simply-typed

lambda-calculus1 augmented with several rules for record operations.

In order to type some record operations, we need to ensure that the types

involved satisfy certain conditions, which we call predicates. For example, our

record concatenation operation is strict; i.e., two records may be concatenated only

if their fields have no labels in common. The simply-typed system has two sorts of

predicates:

 row 1 # row 2 – which means that row 1 and row2 have disjoint domains. In

other words, the labels in row1 and row2 are disjoint.

 row 1 � row2 – which means that row 1 consists of all the fields in row 2, with

matching types, and possibly others. We read this as “row1 is coerceable to

row 2”.

We let π range over predicates. We have an entailment relation on predicates

which we write , π. This means that predicate π is true. ,{ is the negation of this

relation. For example,

1See [4] for details.
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E ::� V value

| E E function application

| tl � E, . . . , l � Eu record

| E.l field selection

| E & E record concatenation

| Ezl field elimination

| pE :¡ τq record coercion

V ::� c constant

| x variable

| λx : τ . E lambda abstraction

| tl � V, . . . , l � V u record value

τ ::� t predefined types

| τ Ñ τ function type

| trowu record type

row ::� H empty row

| l : τ field

| row , row row concatenation

Figure 2.1: Simply-typed expressions
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pvarq A $ x : τ px : τq P A

pabsq
A, px : τ1q $ e : τ2

A $ pλx : τ1.eq : τ1 Ñ τ2

pappq
A $ e : τ 1 Ñ τ A $ e1 : τ 1

A $ pe e1q : τ

precordq
A $ ei : τi @i P 1..n

A $ tl1 � e1, . . . , ln � enu : tl1 : τ1, . . . , ln : τnu

l1, . . . , ln unique

pselq
A $ e : tpl : τq, rowu , row # pl : τq

A $ pe.lq : τ

prestrictq
A $ e : tpl : τq, rowu , row # pl : τq

A $ pezlq : trowu

pconcatq
A $ e1 : trow 1u A $ e2 : trow 2u , row 1 # row 2

A $ pe1 & e2q : trow 1, row 2u

pcoerceq
A $ e : trow 1u , row 1

� row

A $ pe :¡ trowuq : trowu

Figure 2.2: Type rules for simply-typed records
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pdisjointq
tl1, . . . , lnu X tl 11, . . . , l

1
mu � H

, pl1 : τ1, . . . , ln : τnq # pl 11 : τ 11, . . . , l 1m : τ 1mq

pcoerceableq
tl1 : τ1, . . . , ln : τnu � tl 11 : τ 11, . . . , l

1
m : τ 1mu

, pl1 : τ1, . . . , ln : τnq � pl 11 : τ 11, . . . , l 1m : τ 1mq

Figure 2.3: Predicate rules for simply-typed records

c V ÝÑ δpc, V q

pλx : τ.EqV ÝÑ rx ÞÑ V sE

t
ÝÝÝÑ
l � V u& t

ÝÝÝÝÑ
l 1 � V 1u ÝÑ t

ÝÝÝÑ
l � V ,

ÝÝÝÝÑ
l 1 � V 1u

tl1 � V1, . . . , l � V, . . . , ln � Vnu.l ÝÑ V

tl1 � V1, . . . , ln � Vnuzli ÝÑ
tl1 � V1, . . . , li�1 � Vi�1,

li�1 � Vi�1, . . . , ln � Vnu

tl1 � V1, . . . , ln � Vnu :¡ tli1 : τi1, . . . , lim : τimu ÝÑ tli1 � Vi1 , . . . , lim � Vimu

Figure 2.4: Simply-typed notions of reduction

, pa : int , b : realq # pc : boolq

,{ pa : int , b : realq # pb : boolq

, pa : int , b : realq � pb : realq

,{ pa : int , b : realq � pb : boolq

,{ pa : int , b : realq � pc : boolq

The predicate entailment rules are given in Figure 2.3.

We use a syntactic rewriting scheme, as described in [61], to define the semantics
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E ::� r s

| E e

| V E
| E & E

| V & E
| E .l

| Ezl
| tl1 � V1, . . . , li�1 � Vi�1, li � E , li�1 � Ei�1, . . . , ln � Enu

Figure 2.5: Untyped Context

of this language. The rewriting scheme is built up in several stages. At the lowest

level, we have a set of rewriting rules called notions of reduction. We write this

relation on pairs of programs like so:

e1 ÝÑ e2

For our simply-typed system, the notions of reduction are given in Figure 2.4.

The function δ is used to abstract the semantics of any predefined functions, e.g.

addition.

We cannot simply use these rules as is because they do not explain how to

reduce subterms. The rules apply to any program which matches one of the forms

on the right side of the relation symbol. However, there are programs which do not

match any of these forms, yet which may contain subexpressions which do match.

An example of this is the expression

ta � pλx : int . succ xq1u& ptb � 2u& tc � 3uq
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This does not match the notion

t
ÝÝÝÑ
l � V u& t

ÝÝÝÝÑ
l 1 � V 1u ÝÑ t

ÝÝÝÑ
l � V ,

ÝÝÝÝÑ
l 1 � V 1u

(where
ÝÝÝÑ
l � V means l1 � V1, . . . , ln � Vn) because the right operand of the outer-

most concatenation does not match the form

t
ÝÝÝÝÑ
l 1 � V 1u

Adding more notions of reduction to cover more cases does not help, because

subterms where we would like to apply a notion can be nested arbitrarily deep.

Instead, we define how to rewrite programs which contain subexpressions for which

a notion is applicable.

Consider the program above. There are two subexpressions where we can apply

a notion of reduction. They are:

pλx : int . succ xq 1 and

tb � 2u& tc � 3u

We have a choice as to which subexpression to rewrite first. For this particular

language, the choice is actually irrelevant, because all subexpressions must eventu-

ally be evaluated, and termination is guaranteed. However, this would not be the

case if we add side-effects or an if-expression to the language, among other things.

We will therefore choose a strict order of evaluation. There are two guidelines:

1. the operands of a function or operation are evaluated before it is applied

2. subexpressions are evaluated in a left-to-right order
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We formalize these guidelines by defining another relation on pairs of programs,

written

e1 ÞÝÑ e2.

We restrict the subexpressions where the notions of reduction are applicable by

defining a context. Informally, a context is an expression with a “hole”, which is

written rs, where one of its subexpressions would be. We denote contexts by E and

C. Eres denotes the context E with its hole filled in with e.

In our case, the hole is the place in the expression where we allow a notion of

reduction to be applied. The evaluation context E that we will use is defined in

Figure 2.5. We can now define ÞÝÑ:

Ere1s ÞÝÑ Ere2s iff e1 ÝÑ e2

The reflexive and transitive closure of ÞÝÑ is ÞÝÑÑ .

Finally, we define the evaluation of a program e as the partial function eval :

evalpeq � v iff e ÞÝÑÑ v

Here is an example of the use of these evaluation rules:

pλx : ta : intu . px & tb � x.a � 1uqq ta � 2u

ÞÝÑ ta � 2u& tb � ta � 2u.a � 1u

ÞÝÑ ta � 2u& tb � 2� 1u

ÞÝÑ ta � 2u& tb � 3u

ÞÝÑ ta � 2, b � 3u

Theorem 2.0.1 (Progress). If E is a closed, well-typed term, then either E is a

value, or there exists some E 1 such that E ÝÑ E 1.
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Proof. The proofs of the Theorems in this chapter are subsumed by the proofs

of the corresponding Theorems of Chapter 4 and are therefore not repeated. In

general, proofs of propositions, lemmas and theorems which do not appear in the

text can be found in Appendix B.

Theorem 2.0.2 (Subject Reduction). If A $ E : τ and E ÞÝÑ E 1, then

A $ E 1 : τ .

Theorem 2.0.3 (Type Soundness). If A $ E : τ , then E ÞÝÑÑ V and A $ V : τ .
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Chapter 3

Overview of a Polymorphic

Record Calculus

In this chapter, we informally describe the various operations on records that are

supported by our system. Because it makes essential use of the predicate forms

# , } , and � , we will refer to the system as λ#,},�.

3.1 Overview

Our system of records, λ#,},�, is based on rows, introduced by Wand [56]. The

type system uses qualified types, as described by Mark Jones [26]. A row is a finite

map from labels to types. The record type constructor t�u applied to a row yields

a record type. Our records are unordered. That is, there is no notion of whether

one field in a record precedes another.

Note that a row is not a type; it is considered a different kind. Informally, a

kind is the type of a type. The kind of an entity determines what sort of operations
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is may be subjected to. For example, the most basic kind is the kid of simple

types, typically written �. Examples of types with this kind are int, bool, and

int Ñ bool Ñ int. The function type constructor, Ñ, is not of kind �. It takes

two types (i.e., the argument and result types) and yields a type. For example,

int Ñ bool is considered the application of Ñ to int and bool. This kind of Ñ

is therefore � Ñ � Ñ �. We assign a new kind to rows: R. In this framework, the

record type constructor has kind R Ñ �.

To support polymorphic operations on records, we can use row variables when

we have a record whose components are not all statically known. For example,

tl : τ, ρu

is the type of a record which contains a field l of type τ , and possibly other fields,

represented by row variable ρ.

A contribution of our work is that, unlike in previous systems using rows, [18,

20,28,56,57], etc., the concatenation of two rows (which must satisfy a disjointness

condition) is itself a row. This allows us to express various record operations in a

natural way.

3.2 Basic operations

The most basic record operation is field selection. We will use the notation .l to

denote the name of the field selection operation, specialized for label l . In general,

if an operation is written using any notation other than the standard prefix format,

we will write the name of the operation by writing an instance of the expression

and replacing all arguments with . An attempt to fix a type for field selection may
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result in

p .lq : @α, ρ . tl : α, ρu Ñ α

However, because we do not allow a record to have two fields with the same

label, we must ensure that ρ does not also have a field labeled l . We accomplish

this by the use of a predicate:

p .lq : @α, ρ . ρ # l ñ tl : α, ρu Ñ α

The predicate ρ # l asserts that the domain of ρ, i.e., the labels in the fields

denoted by ρ, do not include l . In general, the # predicate asserts that the sets

of labels denoted by the two operands are disjoint. When either operand is a

row variable or row, as in the case above, the domain of that row variable or row is

denoted, respectively. If either operand is a single label, the singleton set containing

that label is denoted. Labelsets are ranged over by lset .

Because functional languages do not support in-place modification of fields, it

would be nice to have a way to create a record value which has all the fields of an

existing record value, except for one field whose new value is specified. We can give

this operation a type:

p update l � q : @α, ρ . tρ, l : αu � α Ñ tρ, l : αu

A related operation is record extension. This takes a record and a new field

value, and constructs a new record value which has all the fields of the old value

and a new field. We have the choice of prohibiting the record operand from having

the new field, or allowing it. We call the former operation strict extension and the

latter non-strict extension. The strict version is easier to type:
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p with l � q : @α, ρ . ρ # l ñ tρu � α Ñ tρ, l : αu

Our system can also give the latter operation a type, which requires the predicate

form lset1 } lset2, which is read “lset1 is parallel to lset2”. This predicate asserts

that the two labelsets are equal. (We do not use the standard � symbol the two

labelsets are equal to avoid overloading it – a third predicate using it is coming up.)

p with l :� q : @α, ρ, ρ1 . pρl , ρ
1
lq } l ñ tρ, ρlu � α Ñ tρ, l : αu

The complementary basic operation is restriction. This operation removes a

field with the given label l from a record. Just as for extension, we have the choice

of requiring that the record contain a field with this label or not. We will call the

first choice strict restriction. Our system can give this operation an appropriate

type:

p zlq : @α, ρ . ρ # l ñ tl : α, ρu Ñ tρu

We can also give an appropriate type to a relaxed version, which we will call

non-strict:

p � lq : @α, ρ, ρ1 . ρ # l , pl : αq � ρ1 ñ tρ, ρ1u Ñ tρu

Note that the predicate ρ # ρ1 must be satisfied for the type of the function

operand above, i.e., tρ, ρ1u, to be well-formed. This predicate is not explicit in the

qualification of the type above, however, because it is implied by the combination of

the two that are explicitly mentioned. The first predicate prohibits ρ from having a

field labeled with l , and the second predicate restricts ρ1 to either being the empty

row, or consisting solely of the field l : α. Therefore it must be true that the two
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row variables have no labels in common. We say that ρ # ρ1 is entailed by the two

predicates ρ # l and pl : αq � ρ1.

3.3 Concatenation

In addition to defining record extension, which adds a single field to an existing

record, we can use the power of our system to define concatenation. Concatenation

is generally regarded as one of the more difficult record operations to statically type.

There are several different concatenation operations described in the literature.

The simplest and most common is symmetric concatenation [20], in which the two

operands are prohibited from having any fields with the same label. In our system,

this is enforced by the # predicate. The type of symmetric concatenation is:

p & q : @ρ1, ρ2 . ρ1 # ρ2 ñ tρ1u � tρ2u Ñ tρ1, ρ2u

A more complex variant allows fields to overlap, but only if their types are the

same. For fields that overlap, the value of the field in the second operand is selected.

We will call this variant compatible concatenation and write the operation |&|. For

example,

ta � 5, b � ”Hi”u |&| tb � ”Bye”, c � 2.3u

would be legal, and result in

ta � 5, b � ”Bye”, c � 2.3u.

However,

ta � 5, b � ”Hi”u |&| tb � 0, c � 2.3u
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Symbol Description Qualified Type

& symmetric ρ1 # ρ2 ñ tρ1u � tρ2u Ñ tρ1, ρ2u

|&| compatible
ρ1 # ρ2, ρ1 # ρ3, ρ2 # ρ3

ñ tρ1, ρ2u � tρ2, ρ3u Ñ tρ1, ρ2, ρ3u

&& unrestricted
ρ1 # ρ2, ρ1 # ρ3, ρ2 # ρ3, ρ3 } ρ13

ñ tρ1, ρ
1
3u � tρ2, ρ3u Ñ tρ1, ρ2, ρ3u

Figure 3.1: Types for different concatenation operations

would be prohibited, because field b is a string in the first operand, and an integer

in the second. To give compatible concatenation a proper type, we need another

predicate form: lset1 } lset2. This asserts that the two labelsets are equal. Just

as for the disjointness predicate, we extend this to take rows and single labels as

operands.

The type of compatible concatenation is:

p |&| q : @ρ1, ρ2, ρ3 . ρ1 # ρ2, ρ1 # ρ3, ρ2 # ρ3 ñ ptρ1, ρ2u � tρ2, ρ3uq Ñ tρ1, ρ2, ρ3u

Finally, there is the variant which has no restrictions with respect to field over-

lap. As before, values (and types) of fields in the second operand take precedence.

This variant, which we call unrestricted concatenation, would allow the previous

prohibited example:

ta � 5, b � ”Hi”u |&| tb � 0, c � 2.3u ÝÑ ta � 5, b � 0, c � 2.3u

Our system can statically type each of these variants. The type schemes for

each are summarized in Figure 3.1.
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In any of these variants, when we statically know the type of the right operand

(either operand for symmetric concatenation), it is possible to dispense with the

polymorphic concatenation operation and define concatenation as a series of record

extensions of the right flavor. For example,

x & tl1 � e1, . . . , ln � enu

can be rewritten as

p. . . px with l1 � e1q . . . with ln � enq

It is only when the operands’ types are not statically known where we need

polymorphic concatenation.

3.4 Join

Our system can also type the relational join operation (assuming an equality oper-

ation on records). This is essentially a variant of concatenation. The parameters of

the operation are two sequences of records, and it returns a sequence of the “joined”

records. Let us initially ignore the “sequence” part and consider an operation join0

that takes two records and returns a single record. The type of this would be1:

join0 : @ρ1, ρ2, ρ3 . ρ1 # ρ2, ρ1 # ρ3, ρ2 # ρ3 ñ ptρ1, ρ2u � tρ2, ρ3uq Ñ tρ1, ρ2, ρ3u

In order to type the actual join operation, we need to consider two complications:

1Note that this is identical to the type for compatible concatenation
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1. The operands and result are actually sequences of records rather than single

records.

2. We need to be able to test the common fields of the two parameters for

equality.

The most obvious way of dealing with point (1) is for join to take two lists (of

records) and return a list (of records). In the presentation of our system, we do not

consider lists or other type constructors (except for Ñ), as it would distract from

the crucial points. In SML [38], the ability to compare two values of some arbitrary

type for equality is expressed by equality type variables. This is considered one of

the weak points of SML. For an explanation, see [2]. In Haskell [45], the class Eq

is used for this purpose. We do not consider classes either in our presentation, for

the same reason. Nevertheless, it should be straightforward to extend this system

with the various features found in the type systems of languages such as SML and

Haskell.

If we combine our system with Haskell’s type system, we can give the join

operation the type:

@ρ1, ρ2, ρ3 . pEq tρ2u, ρ1 # ρ2, ρ1 # ρ3, ρ2 # ρ3q

ñ rtρ1, ρ2us � rtρ2, ρ3us Ñ rtρ1, ρ2, ρ3us

In Haskell, a list of τ is written rτ s, and the predicate Eq τ means that there exists

an equality operation operating on values of type τ .

We can write the code for this in Haskell, using the lower-level operation rcomm.

This operation takes two compatible records and returns a 4-tuple which contains

the non-common fields of the first operand, the common field of the first, the
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common fields of the second, and the remainder of the second record value. For

example, evaluation of

rcomm ta � 1, b � 2u tb � 3, c � 4u

results in

pta � 1u, tb � 2u, tb � 3u, tc � 4uq.

The type of this operation is:

@ρ1, ρ2, ρ3 . pρ1 # ρ2, ρ1 # ρ3, ρ2 # ρ3q

ñ ptρ1, ρ2u � tρ2, ρ3uq Ñ ptρ1u � tρ2u � tρ2u � tρ3uq

A sample implementation of join is:

join xs ys �

[ x1 & y2 & y3 | (x1, x2, y2, y3) Ð segments, x2 �� y2 ]

where segments � [ rcomm x y | (x,y) Ð xys ]

xys � concat (map (\ x Ñ map (\ y Ñ (x,y)) ys) xs)

(concat takes a list of lists and concatenates them.)

Our system also understands that join is associative. That is, it infers the same

type scheme for the two functions f and g:

f (x, y, z) � join (join (x, y), z)

g (x, y, z) � join (x, join (y, z))

The type scheme for both f and g is

@ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7 . Eq tρ3, ρ4u, Eq tρ2, ρ4, ρ6u, . . .

ñ prtρ1, ρ2, ρ3, ρ4us � rtρ3, ρ4, ρ5, ρ6us � rtρ2, ρ4, ρ6, ρ7usq

Ñ rtρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7us
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ρ1
ρ3

ρ2

ρ4

ρ5

ρ6

ρ7

Figure 3.2: Venn diagram for associative join

where the . . . represents the necessary disjointness predicates.

The relationship between the various row variables can better be visualized

using the Venn diagram in Figure 3.2. The three sets represent the three rows in

the parameters, represented as sets of fields. For right to left, top to bottom order,

the sets represent the first, second and third arguments, respectively. The various

ρ variables label various intersections of the three rows.

As we can see from the Venn diagram, the row variables are all pairwise disjoint.

Because # is symmetric, i.e., ρ # ρ1 Ø ρ1 # ρ, p7�6q{2 � 21 disjointness predicates

are necessary.

3.5 Optional arguments

We can also express the types of functions with optional arguments. To do this, we

use the � predicate.

A function which takes multiple keyword parameters can be emulated by a

function which takes a single record as its argument. The fields of this record
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correspond to the keyword parameters. If we denote the optional and mandatory

parts of this record by rowO and rowM , respectively, and the function returns a

value of type τ , then the type of the function is:

@ρ . rowO � ρ ñ trowM , ρu Ñ τ

It must be the case that rowM and rowO have no fields in common; this is of

course statically checkable.

As an example, if we have a function f which takes mandatory keyword argu-

ments a : τa and b : τb, and optional keyword arguments c : τc and d : τd, then f’s

type would be:

@ρ . pc : τc, d : τdq � ρ ñ ta : τa, b : τb, ρu Ñ τ

The predicate constrains ρ to be a subset of the row pc : τc, d : τdq. The function

argument, therefore, must be a record with fields a and b, and possibly c and/or d,

each of which must be of the appropriate type. The type for f will admit no other

type for its argument.

Note that the predicates ρ # a and ρ # b must be satisfied for ta : τa, b : τb, ρu

to be a well-formed type. However, they are not required to be explicitly stated in

the predicate set because they are entailed by the coercion predicate.

To clarify how this scheme would work, we show how to translate a function

which takes optional arguments into our system:

If we have a function

fun f { a, b, c � "xyz", d � 0 } � . . .

where a and b are mandatory, and c and d are optional with the specified defaults,

we can translate this into
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fun f r � let val r’ � { c � "xyz", d � 0 } |&| r

val a � r’.a

val b � r’.b

val c � r’.c

val d � r’.d

in . . .

end

r’ will have the values for all arguments. If an optional argument is omitted,

the concatenation

{ c � "xyz", d � 0 } |&| r

will ensure that the default values are provided.

f would have the type

@ρ, ρ1 . pρ, ρ1q � pc : string, d : intq, ρ # ρ1 ñ ta : τa, b : τb, ρu Ñ τ ,

In Section 5.3.1, page 74, we will see that this is equivalent to

@ρ . pc : string, d : intq � ρ ñ ta : τa, b : τb, ρu Ñ τ
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Chapter 4

A Second-Order Record Calculus

4.1 Overview

We first describe our type system for λ#,},�, and follow by developing a type infer-

ence system which derives the most general type allowed by the type rules. The

type inference rules rely on the P , Q entailment relation between sets of predi-

cates. An algorithm for deciding entailment is given in section 5.5. In section 5.3,

we describe a problem with ambiguous types and how this problem is solved by

making use of the implicit dependency information in predicates. In Chapter 6, we

consider the augmentation of the system with evidence, in preparation for compi-

lation. The type rules of the original type system and the type inference algorithm

are easily augmented with rules to handle evidence. We show that the algorithm

given for entailment cannot be so augmented, due to its reliance on classical logic

instead of constructive logic. Section 6.4 discusses the difference between these two

systems of logic. In section 6.5, we show that is it possible to restrict the use of

classical logic to a portion of the algorithm where its power is not a liability.
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E ::� V value

| E E function application

| let x � E in E let expression

| tl � E, . . . , l � Eu record

| E.l field selection

| Ezl field elimination

V ::� c constant

| x variable

| λx.E lambda abstraction

| tl � V, . . . , l � V u record value

Figure 4.1: Syntax of expressions and values

4.2 Type system elements

For the full system, we use system OML described in [26], which is the core ML

type system extended with qualified types. We in turn add rows, row variables, and

labelsets. Our predicates involve rows and labelsets. Figures 4.1 give the syntax

of expressions and values. The syntax of types and rows is provided by Figure 4.2.

Figure 4.3 defines the syntax of predicates.

We will see later that type equality, row equality and row coercion predicates

can be eliminated. A labelset element is either a label or a row variable. le ranges

over labelset elements. Similarly, re ranges over row elements, which are either a

field or a row variable. We will, when convenient, abuse the notation for labelsets

by writing a row where a labelset is expected. This is shorthand for the domain
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τ ::� t predefined type

| α type variable

| τ Ñ τ function type

| trowu record type

row ::� H empty row

| re row element

| row , row disjoint row union

lset ::� H empty set

| le labelset element

| lset , lset disjoint labelset union

le ::� l single label

| ρ domain of row variable

re ::� l : τ field

| ρ row variable

Figure 4.2: Syntax of types and rows

48



τ � τ type equality

row � row row equality

row � row coerceable rows

lset # lset disjoint label sets

lset } lset equal label sets

Figure 4.3: Predicate syntax

of the row. We will enclose labelsets and rows in parentheses where necessary to

clarify grouping. Because we interpret a row as a finite mapping from labels to

types, and the comma separating rows as disjoint union, the order of fields in a row

is not significant. We will therefore rearrange them as convenient, and sometimes

write a row as a sequence of more than two elements. For example, each of the

following denote the same row:

pl1 : τ1, l2 : τ2, l3 : τ3, ρq

pppl1 : τ1, l2 : τ2q, l3 : τ3q, ρq

ppl1 : τ1, l2 : τ2q, pl3 : τ3, ρqq

pρ, l1 : τ1, l2 : τ2, l3 : τ3q

pρ, pl2 : τ2, l3 : τ3q, l1 : τ1q

π ranges over predicates. P and Q range over sets of predicates. X and Y

range over sets of type and row variables. The notation Azx means A with any

occurrence of x : τ removed, and A|X is A restricted to the set of variables in X.

Qualified types are:

η ::� P ñ τ

We use η to denote qualified types, rather than ρ, as in [26], because ρ is already
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occupied by row variables in our system.

Type schemes are:

σ ::� @X . η

We abbreviate a type scheme with no quantified variables @H . η as η, and the

qualified type with no predicates Hñ τ as τ .

Definition: We use the notation TRVpKq to denote the set of free type and

row variables in K, which may be a type, qualified type, type scheme, row, or

environment. The notion of free variable is defined in the usual way.

4.3 Predicates

4.3.1 Disjointness

The disjointness predicate, written lset1 # lset2, is the underlying predicate used

in ensuring that rows are well-formed. This predicate is used in the types of all

interesting record operations. The remaining predicates are supporting players at

best.

4.3.2 Type, row and labelset equality

It is possible for two rows to be equal, yet not have a most general unifier. There

are numerous substitutions for the row variables in rows pρ1, ρ2q and pρ3, ρ4q which

make them equal, yet there is no single most general unifier. We cannot simply

unify ρ1 with ρ3, and ρ2 with ρ4, because this does not capture all cases. For

example, the substitution

rρ1 ÞÑ a : τ, ρ2 ÞÑ b : τ, ρ3 ÞÑ pa : τ, b : τq, ρ4 ÞÑ Hs

50



will also unify the two rows. This situation suggests the need for a row equality

predicate, which allows us to substitute one row for another that it is equal to. A

motivating example is:

fun f (a, b) � (a & b) z l

The type of a & b must be of both of the forms:

 tl : τ, rowu, where row # l

 trow 1, row 2u, where trow 1u and trow 2u are the types of a and b, respectively.

In the absence of the row equality predicate, we can choose either of the following

two types for f :

 @α, ρ1, ρ2 . ρ1 # ρ2, ρ1 # l , ρ2 # l ñ ptl : α, ρ1u � tρ2uq Ñ tρ1, ρ2u

 @α, ρ1, ρ2 . ρ1 # ρ2, ρ1 # l , ρ2 # l ñ ptρ1u � tl : α, ρ2uq Ñ tρ1, ρ2u

Unfortunately, there is no single most general type. The ability to specify a row

equality predicate allows us to assign this function the most general type:

@α, ρ, ρ1, ρ2.pρ1, ρ2q � pl : α, ρq ñ ptρ1u � tρ2uq Ñ tρu

The two previous type schemes are both instances of this one. We can obtain

each of the two type schemes above by applying the two substitutions:

rρ1 ÞÑ pl : τ, ρ11q, ρ2 ÞÑ ρ12, ρ ÞÑ pρ11, ρ
1
2qs and

rρ1 ÞÑ ρ11, ρ2 ÞÑ pl : τ, ρ12q, ρ ÞÑ pρ11, ρ
1
2qs

to the most general type scheme and renaming the row variables.
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Note that the equality predicate cannot always be reduced, e.g., via unification.

We know that the concatenation of the two rows has a field labeled l , but we do not

know which of the two rows is responsible for contributing it to the concatenation.

The row equality predicate captures this information.

We also have the labelset equality predicate, written }, because it is also conve-

nient to have the same substitutability for labelsets. This allows us to define one

of the asymmetric versions of record concatenation.

4.3.3 Coercion

We do not have subsumption, in which coercion is implicit, but we do assume the

existence of a predefined generic thinning operation:

thin : @ρ1, ρ2.ρ1 � ρ2 ñ tρ1u Ñ tρ2u

which can be used explicitly in the cases where subtyping is desired.

4.4 Well-formedness

Unlike the case for core ML, the question of whether a type is well-formed cannot

be decided purely on the basis of syntax, because of the complication caused by

rows. Specifically, the elements of a row must be disjoint in order for the row to be

well-formed. In the case of fixed fields, this can be determined syntactically. For

example,

pl1 : τ, l2 : τq

is a well-formed row, but

pl1 : τ, l2 : τ, l1 : τq
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is not.

Because we cannot syntactically determine if two row variables are disjoint, the

presence of row variables in rows means that determining the well-formedness of

the rows is not possible by syntactic means alone.

We therefore need inference rules that tell us when rows are well-formed, and

because other constructs may contain rows, when these other constructs are well-

formed as well. These are given in Figures 4.4, 4.5, 4.6, and 4.7. The judgements

P $ τ TYPE

P $ row ROW

P $ lset LSET

state that τ , row , and lset is a well-formed type, row, and labelset, respectively, in

the context P , and

$ P PSET

states that P is a well-formed row predicate set. In the sequel, we require that all

types, rows, labelsets and row predicate sets occurring in the premises of inference

rules be well-formed without stating this explicitly. It will be possible to prove the

well-formedness of any types, etc., occurring in the conclusion of the rules from the

premises and the well-formedness of the entities therein.

The essential property of a well-formed predicate set is given by the following

proposition:

Proposition 4.4.1. For any well-formed predicate set P ,

1. if prow1, row2q occurs in P , then P , row1 # row2.

2. if plset1, lset2q occurs in P , then P , lset1 # lset2.
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pWF-type-tyconstq $ c TYPE

pWF-type-tyvarq $ α TYPE

pWF-type-funq
P $ τ1 TYPE P $ τ2 TYPE

P $ τ1 Ñ τ2 TYPE

pWF-type-recq
P $ row ROW

P $ trowu TYPE

pWF-type-qtypeq
$ π PSET P $ η TYPE

P $ π ñ η TYPE

pWF-type-tyschemeq
P $ η TYPE

P $ @X . η TYPE

Figure 4.4: Well-formed types, qualified types and type schemes

pWF-row-Hq $ H ROW

pWF-row-rowvarq $ ρ ROW

pWF-row-fieldq
P $ τ TYPE

P $ l : τ ROW

pWF-row-unionq
P $ row 1 ROW P $ row 2 ROW P , row 1 # row 2

P $ prow 1, row 2q ROW

Figure 4.5: Well-formed rows

54



pWF-lset-Hq $ H LSET

pWF-lset-labelq $ l LSET

pWF-lset-rowvarq P $ ρ LSET

pWF-lset-unionq
P $ lset1 LSET P $ lset2 LSET P , lset1 # lset2

P $ plset1, lset2q LSET

Figure 4.6: Well-formed labelsets

pWF-pset-Hq $ H PSET

pWF-pset-�q
$ P PSET P $ row 1 ROW P $ row 2 ROW

$ P Y trow 1 � row 2u PSET

pWF-pset-�q
$ P PSET P $ row 1 ROW P $ row 2 ROW

$ P Y trow 1 � row 2u PSET

pWF-pset-#q
$ P PSET P $ lset1 LSET P $ lset2 LSET

$ P Y tlset1 # lset2u PSET

pWF-pset-}q
$ P PSET P $ lset1 LSET P $ lset2 LSET

$ P Y tlset1 } lset2u PSET

Figure 4.7: Well-formed row predicate sets
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c V ÝÑ δpc, V q

pλx.EqV ÝÑ rx ÞÑ V sE

let x � V in E ÝÑ rx ÞÑ V sE

tl1 � V1, . . . , l � V, . . . , ln � Vnu.l ÝÑ V

tl1 � V1, . . . , ln � Vnuzli ÝÑ
tl1 � V1, . . . , li�1 � Vi�1,

li�1 � Vi�1, . . . , ln � Vnu

Figure 4.8: Notions of reduction for λ#,},�

E ::� rs

| E e

| V E
| let x � E in E

| E .l

| Ezl
| tl1 � V1, . . . , li�1 � Vi�1, li � E , li�1 � Ei�1, . . . , ln � Enu

Figure 4.9: Evaluation context for λ#,},�

4.5 Semantics

We define the semantics for λ#,},� using the same method as in Chapter 2. The

differences are in the notions of reduction, which are given in Figure 4.8, and the

evaluation context, which is defined in Figure 4.9.

We first need to establish two properties of type derivations:

Lemma 4.5.1 (Type Substitution). If P |A $ E : τ , and θ is an arbitrary sub-
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stitution, then θP |θA $ E : θτ .

Lemma 4.5.2 (Value Substitution). If P |A, x : p@ÝÑα .Q ñ τq $ E : τ 1, when x R

DpAq, P |A $ V : τ and ÝÑα XpTRVpAqYTRVpP qq � H, then P |A $ rx ÞÑ V sE : τ 1.

We use the previous two Lemmas in the proof of the Subject Reduction Lemma:

Lemma 4.5.3 (Subject reduction). If P |A $ E : τ , and E ÝÑ E 1, then

P |A $ E 1 : τ .

Subject reduction is not sufficient to establish type soundness. To do that, we

need to prove that we cannot assign a type for expressions that are “wrong”. These

are expressions whose evaluation gets stuck; that is, expressions E for which there is

no E 1 such that E ÞÝÑ E 1. Because this property is undecidable in general, we will

conservatively approximate it with the set of expressions containing a subexpression

c V for which δpc, V q is not defined. We say that such expressions are faulty.

The proof of type soundness rests on another property, stated in the following

lemma:

Lemma 4.5.4 (Uniform Evaluation). For closed E, if there is no E 1 such that

E ÞÝÑÑ E 1 and E 1 is faulty, then either E diverges, or E ÞÝÑÑ V .

We can now state the main theorem of this chapter:

Theorem 4.5.1 (Syntactic Type Soundness). If $ E : τ , then E ÞÝÑÑ V and

$ V : τ .
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4.6 Type System Mechanics

4.6.1 Type rules

There is a complication in developing a syntax-directed set of rules, caused by the

proposed rule

peqtypeq
P |A $ E : τ 1 P , τ 1 � τ

P |A $ E : τ

It is not possible to eliminate this rule in a trivial way. We cannot simply fold

this into one of the other rules. We can fold it into every other inference rule,

but this would make the inference rules messy. An equivalent solution is described

in [29:section 10.5] to deal with the subsumption rule. Rather than complicating

the inference rules, the expression is decorated with calls to a function which has

the same effect as the rule. In Jones’ case, each subexpression e1 of e is replaced

by the call coerce e1. The type of coerce is @α, β . α � β ñ α Ñ β. Type inference

is then performed on the preprocessed term. In our case, we define the function

equerse, of type @α, β . α � β ñ α Ñ β. The preprocessing step is described in

Figure 4.11. In the remainder of this work, we assume that we are always dealing

with preprocessed terms.

The type rules given in Figure 4.12 are a superset of the syntax-directed rules

in Jones [26]. The additional rules involve records. In fact, the preliminary devel-

opment of the type system parallels the one in [26]. There are no type rules for

record operations such as concatenation, because they are assumed to be part of

the default environment, given in Figure 4.10.
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Operation Type

. l @ρ, α.ρ # l ñ tρ, l : αu Ñ α

z l @ρ, α.ρ # l ñ tρ, l : αu Ñ tρu

& @ρ1, ρ2.ρ1 # ρ2 ñ tρ1u � tρ2u Ñ tρ1, ρ2u

Figure 4.10: Default environment

EQrxs � EQrequerse xs

EQrE1E2s � EQrE1sEQrE2s

EQrλx.Es � λx.EQrEs

EQrlet x � E1 in E2s � let x � EQrE1s in EQrE2s

EQrtl � E1, . . . , l � Enus � tl � EQrE1s, . . . , l � EQrEnsu

EQrE.ls � EQrEs.l

EQrEzls � EQrEszl

Figure 4.11: Preprocessing step to make the eqtype rule explicit

These rules use the Gen function, which is defined:

GenpA, ηq � @pTRVpηq � TRVpAqq.η

Theorem 4.6.1 (Preservation of Well-Formedness). The type rules preserve

well-formedness. That is, for every type rule which concludes P |A $ E : τ , if any

predicates, type assumptions, and types appearing in the premises or introduced in

the conclusion are well-formed, then P , A|X, and τ are well-formed, where X is

the set of free variables in E.
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pvarq
x : σ P A pP ñ τq ¤ σ

P |A $ x : τ

pappq
P |A $ E1 : τ 1 Ñ τ P |A $ E2 : τ 1

P |A $ pE1 E2q : τ

pabsq
P |Azx, x : τ1 $ E : τ2

P |A $ pλx.Eq : τ1 Ñ τ2

pletq
P |A $ E1 : τ 1 P 1|Azx, x : σ $ E2 : τ

P 1|A $ plet x � E1 in E2q : τ

σ � GenpA,P ñ τ 1q

precordq
P |A $ Ei : τi @i P 1..n

P |A $ tl1 � E1, . . . , ln � Enu : tl1 : τ1, . . . , ln : τnu

l1, . . . , ln distinct

pselq
P |A $ E : tl : τ, rowu P , row # l

P |A $ E.l : τ

pextractq
P |A $ E : tl : τ, rowu P , row # l

P |A $ Ezl : trowu

Figure 4.12: Syntax-directed inference rules
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pvarq
px : @X .P ñ τq P A

rX ÞÑ Y sP |A W$ x : rX ÞÑ Y sτ

Y new

pappq
P |θ1A

W$ E : τ Q|θ2θ1A
W$ F : τ 1 pθ,Rq � Simprrθ2τ � τ 1 Ñ αss

pR, θpθ2P,Qqq|pθθ2θ1Aq
W$ pE F q : θα

α new

pabsq
P |θpAzx, x : αq W$ E : τ

P |θA W$ pλx.Eq : θαÑ τ

α new

pletq
P |θA W$ E : τ 1 Q|θ1pθAzx, x : σq W$ F : τ σ � GenpθA,P ñ τ 1q

Q|θ1θA W$ plet x � E in F q : τ

precordq
Pi|pθi . . . θ1Aq

W$ Ei : τi @i P 1..n

Q|pθn . . . θ1Aq
W$ tl1 � E1, . . . , ln � Enu : tl1 : τ1, . . . , ln : τnu

where Q � Pn, θnpPn�1, θn�1p. . . , θ1P1q . . .q

pselq
P |θA W$ E : τ 1 pθ1, Rq � Simprrτ 1 � tl : α, ρuss

pR, θ1pρ # l , P qq|pθ1θAq W$ E.l : θ1α

α, ρ new

pextractq
P |θA W$ E : τ 1 pθ1, Rq � Simprrτ 1 � tl : α, ρuss

pR, θ1pρ # l , P qq|pθ1θAq W$ Ezl : tθ1ρu
α, ρ new

Figure 4.13: Type inference algorithm
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4.7 Type Inference Algorithm

The rules in Figure 4.13 describe a type inference algorithm in the style of [46],

which is an adaptation of the type inference algorithm found in [26]. The rules

describe an attribute grammar, where the environment A and the expression to be

typed are inherited attributes, while the rest, i.e., substitutions, predicate sets and

types, are synthesized attributes. Figure 4.14 gives a more traditional presentation

of the algorithm.

The most common type inference question to be asked is: given a set of pred-

icates P , environment A, and an expression E, does there exist a type τ such

that

P |A $ E : τ

This is the principal type question.

For a whole program analysis, P will be empty for our system. If we have

modules that we wish to compile separately which have parameters however, it

may be the case that the parameters impose a predicate environment in which to

elaborate the module. In such a case, P would not be empty.

We may also wish to ask if an expression has a principal typing. This asks if,

given an expression E, do there exist P , A, and τ such that

P |A $ E : τ

For satisfiability, discussed in section 5.6, we ask an intermediate question.

Given an environment A and expression E, do there exist P and τ such that

P |A $ E : τ
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WrrEssA � pP, θ, τq

WrrxssA � prX ÞÑ Y sP , r s, rX ÞÑ Y sτq

where px : @X .P ñ τq P A

Y new

WrrEF ssA � ppR, θpθ2P,Qqq, θθ2θ1, θαq

where pP, θ1, τq �WrrEssA

pQ, θ2, τ 1q �WrrF sspθ1Aq

α new

pθ,Rq � Simprrθ2τ � τ 1 Ñ αss

Wrrλx.EssA � pP, θ, θαÑ τq

where pP, θ, τq �WrrEsspAzx, x : αq

α new

Wrrlet x � E in F ssA � pQ, θ1θ, τq

where pP, θ, τ 1q �WrrEssA

pQ, θ1, τq �WrrF sspθAzx, x : σq

σ � GenpθA,P ñ τ 1q

Wrrtl1 � E1, . . . , ln � EnussA � pQ, θn . . . θ1, tl1 : τ1, . . . , ln : τnuq

where pPi, θi, τiq �WrrEisspθi . . . θ1Aq

forall i P 1..n

Q � Pn, θnpPn�1, θn�1p. . . , θ1P1q . . .q

WrrE.lssA � ppR, θ1pρ # l , P qq, θ1θ, θ1αq

where pP, θ, τ 1q �WrrEss

pθ1, Rq � Simprrτ 1 � tl : α, ρuss

α, ρ new

WrrEzlssA � ppR, θ1pρ # l , P qq, θ1θ, tθ1ρuq

where pP, θ, τ 1q �WrrEss

pθ1, Rq � Simprrτ 1 � tl : α, ρuss

α, ρ new

Figure 4.14: Type inference algorithm (traditional style)
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In general, we need to be able to determine if P , Q for arbitrary predicates.

This is traditionally defined in terms of inference rules, and an algorithm is provided

which is proven to yield the same results as the system of inference rules. We provide

a set of inference rules in section 5.4. However, it is not clear that these inference

rules are complete. That is, it may be the case that π holds whenever P does, but

there is no derivation of

P , π

Therefore, in section 5.5, we describe an alternative formulation of the entail-

ment relation which is not based on rules of inference and is complete.

4.8 Implied predicates

It is possible to use the information embedded in a type to reduce the number of

predicates that need to be explicitly given. For example, consider the qualified type

ρ1 # ρ2 ñ ptρ1u � tρ2uq Ñ tρ1, ρ2u

Using the well-formedness criteria for types, we can infer that ρ1 # ρ2 must be

the case in order for the result type of the function, tρ1, ρ2u, to be well-formed. We

can use this fact to rewrite the qualified type above as simply

ptρ1u � tρ2uq Ñ tρ1, ρ2u

The type is abbreviated only for display purposes; this is a shorthand for the fully

qualified type, which can be recovered by adding any predicates that are implied

by the well-formedness criteria. We will make extensive use of this observation to

simplify the presentation of types.
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Chapter 5

Predicates

In this chapter, we discuss entailment of sets of predicates, which we denote by

P , Q. Informally, entailment means that any substitution that makes the all of

the predicates in P true makes all predicates in Q true as well. There are various

problems that come up in determining entailment, and we discuss how they can be

overcome. In addition, we discuss satisfiability of sets of predicates. Informally, a

set of predicates P is satisfiable if there exists a substitution which makes all of the

predicates in P true.

5.1 Semantics

Well-formed rows are finite maps from labels to types, or equivalently, sets of pl , τq

pairs such that there is at most one pair pl , τq in a well-formed row for any given

label l . This implies that when we concatenate two rows, we have the implicit

constraint that the two rows have no labels in common. It will be convenient to

make this constraint explicit; we will therefore expand the semantic domain of rows
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to allow such duplicates, and disallow them by the use of explicit constraints. The

expanded domain of a row will be a finite multiset of l � τ pairs, or, equivalently, a

finite multimap of labels to types. A multiset can be viewed as a map from multiset

elements to non-negative integers which represent the number of occurrences of

the element. Syntactically, a multiset can be written as a sequence, where it is

understood that the order of elements does not matter. A multimap from labels to

types is the same as a map from labels to multisets of types.

The set operations P, Y, X and � have multiset counterparts, written 9P, 9Y, 9X

and 9�. We write a multiset just like a set, except that we use the brackets t�, �u.

We commandeer the empty set symbol H to do double duty and denote the empty

multiset as well.

5.1.1 Multiset semantics

If T is a multiset containing n occurrences of x, we say that T pxq � n. Similarly,

if T is a multimap, then we write T pxq to denote the multiset of elements that T

maps x to. Note that each set S can be viewed as a multiset 9S where

x P S ùñ 9Spxq � 1

x R S ùñ 9Spxq � 0

The semantics of the basic multiset operations and relations are given in Figure 5.1.

Like the corresponding set operations, multiset union and intersection are com-

mutative and associative. Multiset union distributes over multiset intersection.

However, unlike the corresponding set operation, multiset intersection does not

distribute over multiset union. Finally, A 9XA � A for all A, but B 9YB �� B for all

non-empty multisets B.
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x 9P A Ø Apxq ¡ 0

A � B Ø @x.Apxq � Bpxq

C � A 9YB Ø @x.Cpxq � Apxq �Bpxq

C � A 9XB Ø @x.Cpxq � minpApxq, Bpxqq

A 9� B Ø @x.Apxq ¤ Bpxq

Figure 5.1: Multiset semantics

5.1.2 Interpretations of predicates

The semantics of a syntactic entity depends on its syntactic structure, as well as

on the values assign to any free variables that it may contain.

We define the semantics of such an entity as a mapping from the syntax to a

semantic formula in the appropriate domain which may contain free variables. We

use rrSss to denote the semantics of entity S. In many cases, we will also provide

an interpretation, which is a mapping from variables to semantic values in the

appropriate domain(s). We use I to range over interpretations, and we use IrrSss
to denote the semantics of entity S with respect to interpretation I. This is simply

the same as rrSss, except that any free variables in rrSss are replaced with their image

in I.

Figure 5.2 lists the semantic domains of the various syntactic entities in our

system.

Because there is some overlap between the syntactic categories of row and lset ,

we will subscript the semantic brackets with ROW and LS to distinguish them

when not clear from context. The semantics of the predicates is given in Figure 5.3.

Note that an interpretation maps row variables ρ to a finite map (from labels
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Syntactic entity Domain of IrrSyntactic entityss

lset finite multiset of labels

row finite multimap from labels to types

π truth values

ρ finite map from labels to types

α non-recursive types

Figure 5.2: Predicate semantic domains

to types), whereas it maps rows to a finite multimap (from labels to types). This

is done because a row can be made up of multiple row elements, each of which

can be a map. We need to accommodate the possibility that two or more of these

elements may map the same label to a type. We do not consider such rows well-

formed, but this is prevented by explicit row disjointness predicates rather than by

hidden restrictions on the domain.

5.2 Definitions

lset ranges over sets of labels. We write ρ1, . . . , ρn, l1, . . . , lm, or some permutation

thereof, to denote the set tl1, . . . , lmu Y Dpρ1, . . . , ρnq. In a similar spirit, we will

abuse the notation where convenient by specifying a row where a set of labels is

expected. The set of labels that is meant in such cases is the domain of the row.

Two rows are equal if they denote the same mapping. lset1 # lset2 is true if the

sets lset1 and lset2 are disjoint, and row1 � row2 is true if the map denoted by row 1

is a superset of the map denoted by row 2.
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IrrHssLS � H

IrrHssROW � H

IrrlssLS � t�l �u

IrrρssROW �

$''''''&
''''''%

K if Iρplq � H

τ if Iρplq � t�τ �u

� if |Iρplq| ¡ 1

IrrρssLS � DpIpρqq
Irrl : τ ssROW � t�pl , τq�u

Irrl : τ ssLS � t�l �u

Irrlset1, lset2ssLS � Irrlset1ssLS 9Y Irrlset2ssLS

Irrrow 1, row 2ssROW � Irrrow 1ssROW 9Y Irrrow 2ssROW

Irrlset1 # lset2ss � Irrlset1ssLS 9X Irrlset2ssLS � H

Irrlset1 } lset2ss � Irrlset1ssLS � Irrlset2ssLS

Irrrow 1 � row 2ss � Irrrow 1ssROW 9� Irrrow 2ssROW

Irrrow 1 � row 2ss � Irrrow 1ssROW � Irrrow 2ssROW

IrrP ss �
�

πPP Irrπss

Figure 5.3: Row predicate semantics
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F and V range over non-empty fixed and variable portions of a row, respectively.

That is,

F ::� l : τ | l : τ, F

V ::� ρ | ρ, V

R ranges over non-empty rows.

We say that l P F if F � l1 : τ1, . . . , ln : τn, and l � li for some 1 ¤ i ¤ n.

Definition: Lp�q is the set of labels explicitly occurring in its argument. We

define it for row, type, and predicate arguments in Figure 5.4, and extend it in the

natural way for sets of predicates.

The empty predicate set will sometimes be written as OK, and a simplified un-

satisfiable predicate will be written as Fail. Fail will not appear in programs; it

is used primarily in the predicate algorithms.

5.3 Functional dependencies

In a traditional qualified type system, a type scheme @X.P ñ τ is unambiguous

if all the variables in X which appear free in P also appear free in τ . That is,

TRVpP q X X � TRVpτq X X. Ambiguous type schemes are problematic because

when instantiated, we do not have enough information to pick unique types for the

type variables in X X pTRVpP q � TRVpτqq. This may lead to a lack of coherence,

which means that the same expression can have differing semantics, depending on

how the ambiguous type variables are instantiated. However, this is not necessarily

always the case. There are cases where the traditional notion of ambiguity does
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LpP q �
¤
πPP

Lpπq

Lplset1 # lset2q � Lplset1q Y Lplset2q

Lplset1 } lset2q � Lplset1q Y Lplset2q

Lprow 1 � row 2q � Lprow 1q Y Lprow 2q

Lpple1, . . . , lenqq �
¤

iP1..n

Lpleiq

Lppre1, . . . , renqq �
¤

iP1..n

Lpre iq

Lplq � tlu

Lpl : τq � tlu Y Lpτq

Lpαq � H

Lpτ1 Ñ τ2q � Lpτ1q Y Lpτ2q

Lptrowuq � Lprow q

Figure 5.4: Explicit labels

not lead to incoherence. For example, consider the type scheme:

@ρ, ρ1.pl : intq � pρ, ρ1q ñ tρu Ñ int

This would be considered ambiguous, because the quantified variable ρ1 appears

in the predicate but not in the body of the type. However, any instantiation of ρ

uniquely determines ρ1.

In [27], this idea was developed for the case of multi-parameter type classes [16]

in Haskell [45]. In [15], Duck et al prove that, under certain conditions, functional

dependencies allow for sound and decidable type inference. We adapt the ideas in
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these papers for use in our system. The major difference is that whereas functional

dependencies are imposed by the user in Haskell, they occur “naturally” and can

be inferred automatically in λ#,},�.

We will use the notation in [27]; if the set of variables X uniquely determines

the disjoint set of variables Y , we express this by writing X ù Y . For the above

example, we would say that ρ ù ρ1 (and also that ρ1 ù ρ). In our system, we can

infer a set of functional dependencies for each instance of a row equality predicate.

Given a row equality predicate

pρ1, . . . , ρn, l1 : τ1, . . . , lm : τmq � pρ
1
1, . . . , ρ

1
n1 , l

1
1 : τ 11, . . . , l

1
m1 : τ 1m1q

let

S � tρ1, . . . , ρnu

T � tρ11, . . . , ρ
1
n1u

Si � tρ1, . . . , ρi�1, ρi�1, ρnu

Ti � tρ11, . . . , ρ
1
i�1, ρ

1
i�1, ρ

1
n1u

Then we can infer the set of functional dependencies:

tpS Y Tiqù ρ1i | i P 1..n1u Y tpSi Y T qù ρi | i P 1..nu

For example, given the predicate

pρ1, ρ2, l : τq � pρ3, ρ4, ρ5q
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we can infer the functional dependencies

tρ2, ρ3, ρ4, ρ5uù ρ1

tρ1, ρ3, ρ4, ρ5uù ρ2

tρ1, ρ2, ρ4, ρ5uù ρ3

tρ1, ρ2, ρ3, ρ5uù ρ4

tρ1, ρ2, ρ3, ρ4uù ρ5

In short, knowing any four of the row variables, we can immediately determine

the fifth.

Let us consider another example: the unreduced predicate pρ1, ρ2q � pρ1, ρ2q. If

we apply the rules above, we get the dependencies:

tρ1, ρ2uù ρ2

tρ1, ρ2uù ρ1

These dependencies are correct, but trivial. Better results would be obtained

by reducing the predicate, which would result in its disappearance, as it is always

satisfied, and no functional dependencies would then be generated.

We can now define an improved notion of an unambiguous type scheme. The

closure of a set of variables Z with respect to the functional dependencies implied

by a predicate set P , written Z�
P , is the smallest set such that Z � Z�

P , and, if

X ù Y is implied by P , and X � Z�
P , then Y � Z�

P . This is the set of variables

that is uniquely determined, either directly or indirectly, by the variables in Z.

A type scheme @X.P ñ τ is unambiguous if TRVpP q � Z�
P , where Z � TRVpτq.

The closure of a set of variables with respect to a set of predicates can easily be

calculated:
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Given a set of predicates, we can determine the functional dependencies as shown

above. Let F be a set of function dependencies, and Z be a set of row variables.

We can calculate Z�
P by the iterative algorithm:

Z0
P � Z

Zn�1
P � Zn

P Y tρ | X ù ρ P P, X � Zn
P u

Z�
P � Zn

P where Zn
P � Zn�1

P

Given a type scheme @X . P ñ τ , we will call qualified variables in P that

1. do not appear in τ ,

2. are uniquely determined by variables in τ , and

3. occur only once in the predicate,

uninteresting. When we display a type scheme, we do not need to name any unin-

teresting variables, and may choose to display them as (or . . .) instead.

5.3.1 Row Coercion

The notion of functional dependencies in the previous section gives us a way to

eliminate row coercion by rewriting it in terms of more fundamental predicates,

namely row equality and labelset disjointness. We can regard the row coercion

predicate as a shorthand. The translation is:

row 1 � row 2 ùñ prow 1 � prow 2, ρqq, pρ # row2q

The new row variable ρ appears only in these two predicates. Because it is

uniquely determined by the variables in row1 and row2, there is no danger of it

causing ambiguity when it appears in the predicates of a type scheme.
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An example of this translation is the type for the optional arguments example

from page 43, where rowO and rowM are rows specifying the optional and manda-

tory fields, respectively. This type can be rewritten

@ρ, ρ1 . rowO � pρ, ρ1q ñ trowM , ρu Ñ τ

The type for the thin operation, introduced on page 52, can be rewritten as

@ρ1, ρ2 . tρ1, ρ2u Ñ tρ2u

In both cases, we omit the implied disjointness predicate.

In the sequel, we will continue to use the row coercion predicate where conve-

nient. It is understood to be shorthand for the translation above. In fact, it will

often be convenient for types to be displayed with the coercion predicate where

possible instead of in their “translated” form.

5.4 Inference rules

We provide here our first formulation of the predicate entailment relation, which

is based on inference rules. The rules, grouped by predicate type, are given in

Figures 5.5, 5.6, and 5.7. In addition, we have the rule:

pelemq
π P P

P , π

Proposition 5.4.1. Using the predicate inference rules in Figures 5.5, 5.6, and

5.7, together with rule elem, if P , π, then |ù @I.IrrP ss Ñ Irrπss, i.e. the predicate

inference rules are sound with respect to the predicate semantics in Figure 5.3.
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p#-nullq P , H # lset

p#-fieldsq P , l # l 1 l � l 1

p#-symq
P , lset1 # lset2

P , lset2 # lset1

p#-eqq
P , lset1 # lset2 P , lset2 } lset 12

P , lset1 # lset 12

p#-composeq
P , lset1 # lset P , lset2 # lset P , lset1 # lset2

P , plset1, lset2q # lset

p#-decomposeq
P , plset1, lset2q # lset P , lset1 # lset2

P , lset1 # lset

Figure 5.5: Predicate rules for #

.

Proof. A straightforward induction of the structure of predicate derivations.

Lemma 5.4.1. Predicate entailment, as defined in Figures 5.5, 5.6, and 5.7, and

rule elem, satisfy the closure, monotonicity, and transitivity properties. To reiter-

ate, these properties are:

Monotonicity: If P � P 1, then P , P 1.

Transitivity: If P1 , P2 and P2 , P3, then P1 , P3.

Closure property: If P , P 1, then θP , θP 1 for any substitution θ.

Proof.

Monotonicity: This follows from the elem rule.
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p}-fieldq P , l } l

p}-varq P , ρ } ρ

p}-symq
P , lset1 } lset2

P , lset2 } lset1

p}-transq
P , lset1 } lset2 P , lset2 } lset3

P , lset1 } lset3

p}-pd-nullq
P , lset } lset 1 P , lset # lset 1

P , lset } H

p}-pcq
P , lset1 } lset2 P , lset1 � plset2, lset 12q

P , lset 12 } H

p}-coerceq
P , lset1 } plset2, lset 11q P , lset2 } plset1, lset 12q

P , lset1 } lset2

p}-composeq
P , lset1 } lset2 P , lset # lset1

P , plset , lset1q } plset , lset2q

Figure 5.6: Predicate rules for }

.
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peq-fieldq
P , τ1 � τ2

P , l : τ1 � l : τ2

peq-varq P , ρ � ρ

peq-symq
P , row 1 � row 2

P , row 2 � row 1

peq-transq
P , row 1 � row 2 P , row 2 � row 3

P , row 1 � row 3

peq-pd-nullq
P , row } row 1 P , row # row 1

P , row � H

peq-pcq
P , row 1 } row 2 P , row 1 � prow 2, row 1

2q

P , row 1
2 � H

peq-coerceq

P , row 1 � prow 2, row 1
1q P , row 2 � prow 1, row 1

2q

P , row 2 # row 1
1 P , row 1 # row 1

2

P , row 1 � row 2

peq-composeq
P , row 1 � row 2 P , row # row 1

P , prow , row 1q � prow , row 2q

Figure 5.7: Predicate rules for row equality

.
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peq-type-conq P , t � t

peq-type-varq P , α � α

peq-funq
P , τ11 � τ21 P , τ12 � τ22

P , pτ11 Ñ τ12q � pτ21 Ñ τ22q

peq-tupleq
P , τi � τ 1i @i P t1..nu

P , pτ1 � . . . � τnq � pτ
1
1 � . . . � τ 1nq

peq-recordq
P , row 1 � row 2

P , trow 1u � trow 2u

Figure 5.8: Predicate rules for type equality

.

Transitivity: The derivation of P , Q is a forest of derivation trees, one for each

predicate π in Q. We can generate a derivation forest for P1 , P3

by starting with the derivation forest for P2 , P3, and replacing

each occurrence of any predicate π P P2 by the derivation tree for

P1 , π, which we have from the premises.

Closure property: Satisfaction of the closure property can be seen by induction on

the structure of derivations.

Note that the premise of the #-decompose rule is also the conclusion of the

#-compose rule, and its conclusion is one of the premises. This causes difficulties

for any algorithm, because we cannot always decompose complex queries into sim-
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pler ones. Unfortunately, both of these rules are necessary. For example, consider

the entailment

P , pρ1, ρ2q # l2

where

P � tpl1 } pρ1, ρ3qq, pρ1 # ρ2q, pρ1 # ρ3q, pρ2 # l2qu

A derivation of this is

P , l2 # l1 P , l1 } pρ1, ρ3q

P , l2 # pρ1, ρ3q
#-eq

P , pρ1, ρ3q # l2
#-sym

P , ρ1 # l2
#-decompose

P , ρ2 # l2 P , ρ1 # ρ2

P , pρ1, ρ2q # l2
#-compose

It would not be possible to derive this without using both #-compose and

#-decompose rules.

The row and labelset equality rules present another difficulty: there are poten-

tially many derivations of a particular judgement P , lset1 } lset2, but except in

some trivial cases, the forms of the lset1 and lset2 are of no use in deciding how to

guide the search.

Basing an algorithm directly on a set of inference rules appears to be problem-

atic. Instead, we take a different approach in the next section.

5.5 A different approach: checking validity

In seeking to establish the truth of a proposition, there are generally two available

methods: syntactic and semantic.
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The syntactic (aka proof-theoretic) method involves defining a set of inference

rules which can be used to construct proofs of propositions. We need to ensure

that the inference rules are sound with respect to the semantics of propositions.

That is, we need to ensure that each inference rule respects the semantics of the

propositions, which simply means that, for each inference rule, the consequent is

guaranteed to be true whenever the antecedents are.

On the other hand, the semantic (aka model-theoretic) approach attempts to

determine whether the proposition is true, without regard to a particular set of

inference rules. One advantage of the syntactic approach is that in limiting oneself

to a weaker system of rules (or logic, as it is generally called), it may be easier to

prove termination properties of the proof system. Conversely, limiting oneself to a

weaker system also runs the risk that the inference rules are not complete. That is,

there may be propositions which are true but that the set of rules cannot prove.

In our case, it seems that relying on inference rules does not make termination

of the system easy to prove. We therefore try the semantic approach. Rather than

using inference rules to determine P , π, we will determine if π follows from P

by using an algorithm that calculates if |ù @I.IrrP ss Ñ Irrπss in the structure of

sets. In other words, our approach will be model- rather than proof-theoretic. The

algorithm transforms the entailment judgement into a formula in first order logic

which respects the stated semantics of predicates. Specifically,

P , π Ñ @I.IrrP ss Ñ Irrπss

Along the way, we will decompose and simplify the formula so that the search

space is substantially reduced. We write P æ Q to denote that the algorithm
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described below succeeds when given the arguments P and Q. We read æ as

algorithmically entails. We will prove that the æ relation is sound and complete

with respect to the semantics defined by Irr�ss. In other words,

P æ π Ø |ù @I.IrrP ss Ñ Irrπss

for all P, π. Because æ is complete, it may find that π follows from P in cases

where the inference rules do not.

Earlier, we defined a row to be a partial finite map from labels to types. In the

context of the predicate entailment algorithm, we will use a different but equivalent

semantics. To review, a row is written as a sequence of fields and/or row variables,

and, under an interpretation, a row variable denotes a finite set of fields, which are

label � type pairs, written “label : type”. A well-formed row row , i.e., one for

which A $ row ROW, has the additional constraint that no two fields may have the

same label. It will be convenient to loosen this constraint, and regard rows as being

a total map from labels to field types. A field type captures the relevant aspects of

a multiset of types. We use τ̂ to range over field types. The domain of field types

is given in Figure 5.9. Because we are ultimately only interested in well-formed

rows, i.e., rows which map labels to either the empty set or to a singleton type,

once we know that a row contains more than one field with the same label, we are

not concerned with the exact nature of this multiset. We will therefore denote any

such multiset by � (pronounced “clash”).

For example, the (non-well-formed) row

pl1 : τ1, l2 : τ2, l1 : τ1q

can be viewed as mapping l1 to �, l2 to τ2, and all other labels to K.
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Element Field with given label in the record

K no such field exists

τ a single field exists

� multiple fields exist

Figure 5.9: Field type domain

The example row above is not well-formed because it contains two fields labeled

l1. The fact that the types are the same does not help. A set containing the two

identical types would have a cardinality of one; hence the need to use multisets,

and with it, the possibility of confusion when using standard set brackets t. . .u, or

unfamiliarity when using a non-standard notation. We pick this notation rather

than using multisets because our notation is more concise, and also because there is

no well-known notation for multi-sets that distinguishes it from sets. Representing

a singleton set containing τ as simply τ is actually quite natural in this context.

We can regard the domain of field types as the domain of type, lifted, with two

distinguished elements: K and �.

5.5.1 Conversion to field predicates

The semantic interpretation of a row is a finite partial map from labels to types,

and predicates are interpreted as relations on these maps. Because such a map

is equivalent to a set of pairs with some additional constraints, by the axiom of

extensionality [17], we have the following equivalences, one for each of the three
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sorts of predicates:

Irrlset1 } lset2ss � Irrlset1ss � Irrlset2ss

� @l .l P Irrlset1ss Ø l P Irrlset2ss

Irrlset1 # lset2ss � Irrlset1ss X Irrlset2ss � H

� @l . pl P Irrlset1ss ^ l P Irrlset2ssq

Irrrow1 � row2ss � Irrrow 1ss � Irrrow 2ss

� @l .pDτ1, τ2.l : τ1 P Irrrow 1ss ^ l : τ2 P Irrrow 2ss ^ τ1 � τ2q_

pp@τ.l : τ R Irrrow 1ssq ^ p@τ.l : τ R Irrrow 2ssqq

For each equivalence, the right side can be viewed as a conjunction of an infinite

set of pointwise versions of the semantics of the original predicate. It will be

convenient to define a purely syntactic translation of a predicate (and also labelsets,

rows, row variables, and sets of predicates) into their pointwise version at a specific

label, called a slice. K@l denotes this syntactic translation of entity K into its slice

at label l . This translation introduces a number of new entities:

 A slice of a labelset is a label presence. lp ranges over label presences. The

semantics of a label presence is a truth value denoting the presence or absence

of a label in a labelset. We use t and f to denote the values true and false,

respectively.

 A slice of a row is a field. fld ranges over fields. The semantics of a field is

the field type the label maps to in the row.

 A slice of a row variable is a field variable, indexed by row variable and label,

denoted by φpρ, lq. This field variable is distinct from φpρ1, l 1q iff either ρ and
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fe ::� τ type

| K absent field

| φ field variable

lpe ::� t label present

| f label not present

| φ field variable

fld ::� H empty field

| fe field element

| fld ,fld disjoint field union

lp ::� H empty label presence

| lpe label presence element

| lp, lp disjoint label presence union

Figure 5.10: Syntax of fields and label presences

ρ1 denote distinct variables, or l and l 1 denote distinct labels. φ ranges over

field variables1 We saw in the previous chapter that the meaning of a row

variable differs depending on whether it is encountered in a row or labelset

context. Analogously, the semantics of a field variable under an interpretation

is either a label presence or a field, depending on its context.

We will also need, for reasons which will be revealed in section 5.5.3, page 101,

1“phi” sounds like “field”. Also, the line through the circle is reminiscent of slicing, n’est-ce pas?
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shorthand canonical form

fe{f K

fe{K K

fe{t fld

fe{τ fld

fe{φ fld{tφu

fe{LP{LP 1 fe{pLP Y LP 1q

fe{plp{LPq fe{LP

Figure 5.11: Restriction shorthand translation

restricted field elements and restricted label presence elements, written lpe{LP and

fe{LP , respectively. The LP is a set of label presences. We say that fe{LP restricts

fe by LP . We will write fe{fe 1 as a shorthand for the restriction of fe by the

appropriate set of label presences LP . In this case, we say that fe 1 is the restricting

field element. We can also restrict by a label presence element. The meaning of

the shorthand is given in Figure 5.11. By convention, φ{LP has φ P LP .

The syntax of fields and label presences is given in Figure 5.10. Slicing is defined

in Figure 5.13, and the semantics of slices are given in Figure 5.14. We define the

semantics of the translation so that it matches the pointwise semantics. In other

words, we want the following equivalence to hold:

Irrπss � @l .Irrπ@lss

Indeed, this hope is justified by the proposition below:
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WFCrplpe1, . . . , lpenqs � tlpe i # lpej | 1 ¤ i, j ¤ n, i �� ju

WFCrpfe1, . . . , fenqs � tfei # fej | 1 ¤ i, j ¤ n, i �� ju

WFCrlp1 # lp2s � WFCrlp1s YWFCrlp2s

WFCrlp1 } lp2s � WFCrlp1s YWFCrlp2s

WFCrfld1 � fld2s � WFCrfld1s YWFCrfld2s

WFCrF s �
�

πPF WFCrπs

Figure 5.12: Well-formedness constraints

Proposition 5.5.1.

Irrπss � @l .Irrπ@lss

We will also need to show that slicing maintains another property – well-

formedness. Well-formedness of a field predicate set is defined analogously to the

well-formedness of a row predicate set (on page 53). We define WFCrKs to be the

well-formedness predicates implied by entity K. WFCrKs is defined in Figure 5.5.1.

A field predicate set F is well-formed if whenever a field pfe1, . . . , fenq or label

presence plpe1, . . . , lpenq occurs in F , then @I.IrrF ss Ñ Irrfei # fejss for all 1 ¤ i, j ¤

n such that i �� j. Equivalently, F is well-formed if @I.IrrF ss Ñ IrrWFCrF sss.

Proposition 5.5.2. Slice well-formedness preservation If row predicate set P is

well-formed, then so is P@l , for any label l .

Because the semantics of fields and label presences is independent of the order

of the elements, we are justified in arranging said elements in whatever order is

convenient. In addition, we define “field former” and “label presence former” no-

tations, analogous to the “set former” notation, using parentheses to enclose the
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former rather than set braces. For example,

pfe|fe P tfe1, . . . , fenu, fe �� Kq

is shorthand for:

pfe 11, . . . , fe
1
mq where tfe 11, . . . , fe

1
mu � tfe| P tfe1, . . . , fenu, fe �� Ku

Where necessary, we will distinguish the unsliced form of a predicate from the

sliced form. The former will be known as a row predicate; the latter as a field

predicate. We will continue to use the term “predicate” where the form can be

determined from context, or when we do not want to distinguish between sliced

and unsliced forms.

5.5.2 Restriction to finite set of labels

A crucial step on the road to an algorithm is the ability to restrict the universe of

labels in expressions of the form

@I.@l .IrrP@lss Ñ @l .Irrπ@lss

to a finite set. The intuition that allows us to do this is that slices at any two labels

which do not explicitly appear in the predicates “act” the same. That is,

Proposition 5.5.3.

p@I.Irrπ@l1ssq Ø p@I.Irrπ@l2ssq

if l1 and l2 are not in Lpπq.

Proof. The slices π@l1 and π@l2 are the same except that, for all ρ, each occurrence

of φpρ, l1q in the former is replaced by φpρ, l2q in the latter. This can be seen by

88



P@l � tπ@l | π P P u

plset1 # lset2q@l � plset1@lq # plset2@lq

plset1 } lset2q@l � plset1@lq } plset2@lq

prow 1 � row 2q@l � prow 1@lq � prow 2@lq

ple1, . . . , lenq@l � ple1@l , . . . , len@lq

pre1, . . . , renq@l � pre1@l , . . . , ren@lq

ρ@l � φpρ, lq

l 1@l �

$''&
''%
t if l � l 1

f otherwise

pl 1 : τq@l �

$''&
''%

τ if l � l 1

K otherwise

Figure 5.13: Slice definitions

inspecting the translation rules for slices, and the semantics of field predicates. This

is necessarily the case only if l1, l2 do not occur in π. For example, consider slices

89



Irrφpρ, lqssFLD � Irrρssplq
Irrφpρ, lqssLP � l 9P DpIrrρssq
Irrtss � true

Irrfss � false

Irrτ ss � t�τ �u

IrrKss � H

Irr�ss � �

IrrHssFLD � H

IrrHssLP � false

Irrplpe1, . . . , lpenqss �
�

iP1..n Irrlpeiss

Irrpfe1, . . . , fenqss � 9
�

iP1..n Irrfeiss

Irrlp1 # lp2ss � ¬Irrlp1ss _ ¬Irrlp2ss

Irrlp1 } lp2ss � Irrlp1ss Ø Irrlp2ss

Irrfld1 � fld2ss � Irrfld1ss � Irrfld2ss

Irrfld{LP ss �

$''&
''%
Irrfld ss if ^lpPLPIrrlpssLP

H otherwise

Irrlp{LP ss �

$''&
''%
Irrlpss if ^lp1PLPIrrlp 1ssLP

false otherwise

IrrP ss �
�

πPP Irrπss

Figure 5.14: Field predicate semantics
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of predicate plaq # plb, ρq at several labels:

pla # plb, ρqq@la � pla@laq # plb@la, ρ@laq

� t # pf, φpρ, laqq

pla # plb, ρqq@lb � pla@lbq # plb@lb, ρ@lbq

� f # pt, φpρ, lbqq

pla # plb, ρqq@l1 � pla@l1q # plb@l1, ρ@l1q

� f # pf, φpρ, l1qq

pla # plb, ρqq@l2 � pla@l2q # plb@l2, ρ@l2q

� f # pf, φpρ, l2qq

Note that although the slices at l1 and l2 have the same form, the other two

slices are different.

Moving on to the semantics, observe that every occurrence of l in Irrπ@lss is in

an atomic subformula of the form l P Irrρss, for some ρ. Furthermore, the remaining

atoms and logical connectives of the formula are the same if l does not occur in

π. The values of these atoms are fixed; they do not depend on the particular

interpretation.

For example, let us examine the semantics of these four predicates:

Irrpla # plb, ρqq@lass � ¬t_ ¬pf_ Dτ.pla, τq P Irrρssq
Irrpla # plb, ρqq@lbss � ¬f_ ¬pt_ Dτ.plb, τq P Irrρssq

Irrpla # plb, ρqq@l1ss � ¬f_ ¬pf_ Dτ.pl1, τq P Irrρssq
Irrpla # plb, ρqq@l2ss � ¬f_ ¬pf_ Dτ.pl2, τq P Irrρssq

In general, the only parts of the formula which depend on the interpretation are
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of one of the two forms:

tτ | pl , τq P Irrρssu
Dτ.pl , τq P Irrρss

Instead of quantifying over all interpretations, we can replace each occurrence

of

pl , τq P Irrρss

in the formula with a variable indexed by ρ, and universally quantify over all such

variables:

@I.Irrπ@l1ss � @I.@xρ1 , . . . , xρn.IrrVarify l1pπ@l1qss

It is clear that the formulas corresponding to π@l1 and π@l2 can thus both be

translated into the same form. Therefore,

p@I.Irrπ@l1ssq � p@I.Irrπ@l2ssq

if l1 and l2 do not occur in π.

Because this is the case, we only need to consider the labels that explicitly

appear in the problem, and one additional arbitrary label that does not. We give

two examples to demonstrate the need for this extra label:

1. It may be the case that there no explicit labels appear in the predicate sets.

For example, consider the predicate sets:

P � tρ1 # ρ2u

Q � tρ1 # ρ3u

If we do not have the extra label, then @I.
�

lPH IrrP ss Ñ
�

lPH IrrQss is

trivially true for any P and Q.

92



2. Even if explicit labels appear in the predicate sets, use of an additional label

gives us information on whether fields whose labels do not explicitly appear

may exist in a row. For example, consider the existence of a field labeled b

in the rows a : τ and ρ. There is definitely no such field in the former row.

For the latter row, however, the question is open in the absence of further

information.

An entailment may hold for each explicit label, but may not hold for other

possible labels. For example, consider the predicate sets

P � tρ # lu

Q � tl : τ � pl : τ, ρqu

Clearly, it is not the case that P , Q. A counterexample is rρ ÞÑ pl 1 : τ 1qs,

for any l 1 �� l . However, if we consider just the slice at l , which is the only

explicit label, we get

P@l � tφpρ, lq # tu

Q@l � tτ � pτ, φpρ, lqqu

It is the case that P@l , Q@l , because φpρ, lq must be K for P@l to be true,

which allows us to simplify pτ, φpρ, lqq to τ , which in turn forces Q to be true.

Relying on just this slice would lead us to an incorrect conclusion. Looking

at an “extra” slice at l 1, we get

P@l 1 � tφpρ, l 1q # fu

Q@l 1 � tH � φpρ, l 1qu

P@l 1 is true for any value of φpρ, l 1q. This is clearly not the case for Q@l 1;

any non-K value of φpρ, l 1q makes it false.
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Throughout the course of the next few sections, we will need the capability to

refer to a particular set of distinct labels. Rather than overloading the l symbol

with two different rôles, we will use an indexed lpiq to indicate a specific label. Two

such labels with different indices denote distinct labels. We also impose an ordering

on the set of labels lpiq:

lpiq ¤ lpjq iff i ¤ j

The usual l remains a metavariable which ranges over the set of labels.

We now define L�p�q, which is the explicit set of labels occurring in its argument,

and one additional label. For convenience, we will use lp0q to denote this label, and

define it to be strictly smaller than all other labels:

L�pP YQq � LpP YQq Z tlp0qu, where @l P LpP YQq.lp0q   l

We can now conveniently state the lemma which allows us to consider only a

finite set of labels:

Lemma 5.5.1.

@I.@l .Irrπ@lss Ø @I.
©

lPL�pπq
Irrπ@lss

Proof. We can split @l .Irrπ@lss into a conjunction of two subformulas:

� ©
lPLpπq

Irrπ@lss
�
^
� ©
lRLpπq

Irrπ@lss
�

We pick an arbitrary label which is not in Lpπq, an exemplar, if you will, to

represent all of the labels not in Lpπq. Let us call this label l0. By Proposition 5.5.3,

this is equivalent to

@I.Irrπ@l0ss � @I.
©

lPL�pπq
Irrπ@lss
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Lemma 5.5.2.

|ù @I.p@l .IrrP@lssq Ñ p@l .IrrQ@lssq

Ø |ù @I.p
�

lPL�pPYQq IrrP@lssq Ñ p
�

lPL�pPYQq IrrQ@lssq

A well-formed field is one which does not have multiple field elements of the

form τ . Similarly, a well-formed labelset does not have multiple t elements. A well-

formed field predicate set is a field predicate set for which each field and labelset

expression is well-formed.

In the previous chapter, we defined TRVpKq to denote the set of free row and

type variables in entity K. We are now replacing row variables by field variables,

and will use TFVpKq to denote the free type and field variables in entity K.

We will employ an abuse of notation analogous to the one described in the

previous chapter where we permitted ourselves to write a row where a labelset was

expected. A field expression in a label presence context is defined to be f if the

field expression evaluates to tu, and t otherwise.

Let L�pP YQq � tlp0q, . . . , lpNqu. With each row variable ρ in TRVpP Y Qq,

associate distinct field variables φpρ, lp0qq, . . . , φpρ, lpNqq.

We say that the sliced versions of K are the set tK@l | l P Lu. For the particular

case of sets of predicates P , we define

P@L �
¤
lPL

P@l

We use F , G and H to range over sets of field predicates.

Proposition 5.5.4. IrrlsetssLS X L �
�

lPLtl | Irrlset@lssLP u
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Proof.

�
lPLtl | Irrlset@lssLP u �

�
lPLtl | l P IrrlsetssLSu by definition of Irrlset@lssLP

� IrrlsetssLS X L

Proposition 5.5.5. Irrrowss|L �
�

lPLtpl , τq | Irrrow@lss � τu

Proof.

�
lPLtpl , τq | Irrrow@lss � τu �

�
lPLtpl , τq | pl , τq P Irrrow ssu

by definition of Irrrow@lss

� Irrrowss|L

Theorem 5.5.1.

|ù @I.IrrP ss Ñ IrrQss Ø |ù @I.p
©

lPL�pPYQq

IrrP@lssq Ñ p
©

lPL�pPYQq

IrrQ@lssq

Proof. Follows directly from Proposition 5.5.1 and Lemma 5.5.2.

We are now ready to apply the crucial transformation of the problem: replace

each predicate in the sentence

@I.pIrrP ss Ñ IrrQssq

by the conjunction of all of its slices:

@I.
� ©
lPL�pPYQq

IrrP@lss
�
Ñ
� ©
lPL�pPYQq

IrrQ@lss
�
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The meaning of these predicates on fields and booleans are analogous to the

corresponding predicates on rows and labelsets, respectively. This is summarized

in Figure 5.14.

We will use as our example the predicates in the entailment on page 80. We

repeat the predicate sets, renaming the labels for convenience:

P � tplp1q } pρ1, ρ3qq, pρ1 # ρ2q, pρ1 # ρ3q, pρ2 # l2qu

Q � tpρ1, ρ2q # lp2qu

For this example,

L�pP YQq � tlp0q, lp1q, lp2qu
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Here are the slices of P and Q:

P@lp0q � t f } pφpρ1, lp0qq, φpρ3, lp0qqq,

φpρ1, lp0qq # φpρ2, lp0qq,

φpρ1, lp0qq # φpρ3, lp0qq,

φpρ2, lp0qq # f u

P@lp1q � t t } pφpρ1, lp1qq, φpρ3, lp1qqq,

φpρ1, lp1qq # φpρ2, lp1qq,

φpρ1, lp1qq # φpρ3, lp1qq,

φpρ2, lp1qq # f u

P@lp2q � t f } pφpρ1, lp2qq, φpρ3, lp2qqq,

φpρ1, lp2qq # φpρ2, lp2qq,

φpρ1, lp2qq # φpρ3, lp2qq,

φpρ2, lp2qq # t u

Q@lp0q � t pφpρ1, lp0qq, φpρ2, lp0qqq # f u

Q@lp1q � t pφpρ1, lp1qq, φpρ2, lp1qqq # f u

Q@lp2q � t pφpρ1, lp2qq, φpρ2, lp2qqq # t u

5.5.3 Field predicate simplification

For our problem P æ Q, once P and Q are decomposed into the sliced versions

F and G, we can simplify the problem by using a reduction algorithm on F and

applying any substitutions thus generated to G. This reduction procedure will also

be useful in a later stage of the algorithm. We will define the reduction relation in

several stages.

First, we define a one-step reduction relation. We write π ÝÑ pθ, Hq to mean
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pfe1, . . . , fen,Kq ÝÑ pfe1, . . . , fenq where n ¥ 1

plpe1, . . . , lpen, fq ÝÑ plpe1, . . . , lpenq where n ¥ 1

pφ1, . . . , φn, τ, fe1, . . . , femq ÝÑ
prφ1 ÞÑ K, . . . , φn ÞÑ Ks,

pτ, fe1, . . . , femqq
where n ¥ 1,m ¥ 0

pφ1, . . . , φn, t, lpe1, . . . , lpemq ÝÑ
prφ1 ÞÑ K, . . . , φn ÞÑ Ks,

pt, lpe1, . . . , lpemqq
where n ¥ 1,m ¥ 0

Figure 5.15: Field and label presence simplification

that predicate π reduces to field predicate set H in one step via application of

substitution θ. When H is a singleton tπ1u, we will usually omit the set braces

and simply write π1. If the substitution is omitted, it is understood to be the null

substitution. Similarly, if the predicate set is omitted, it is understood to be the

empty set. We solemnly promise not to omit both in the same rule. Furthermore,

we overload ÝÑ so that it also applies to fields and label presences: fld ÝÑ pθ,fld 1q

and lp ÝÑ pθ, lp1q.

We will define the one-step reduction relation in three steps.

1. We define some reduction rules based solely on the value of one of the two

arguments of a predicate:

 Field expressions can be simplified by removing redundant K’s. For ex-

ample, the field expression

pK, τ, φ,Kq

can be simplified to pτ, φq. The general rule is that an occurrence of K
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can be removed as long as it is not the last field element.

 Similarly, label presence expressions can be simplified by removing re-

dundant f elements. For example, the label presence expression

pf, t, φ, fq

can be simplified to

pt, φq

Just as for field expressions, all occurrences of f but the last can be

removed from a label presence expression.

 Any predicate which has pτ, φ1, . . . , φnq as one of its arguments reduces to

the same predicate with that argument replaced by τ , via the substitution

rφi ÞÑ K | i P 1..ns. For example,

lp } pτ, φ1, φ2q ÝÑ prφ1 ÞÑ K, φ2 ÞÑ Ks, lp } τq

These reduction rules are formalized in Figure 5.15.

2. If we reduce a field or label presence expression, we can reduce any predicate

which has that expression as one of its operands. Formally, we have the rules
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fld1 ÝÑ pθ,fld 11q

fld1 � fld2 ÝÑ pθ,fld 11 � fld2q

fld2 ÝÑ pθ,fld 12q

fld1 � fld2 ÝÑ pθ,fld1 � fld 12q

lp1 ÝÑ pθ, lp11q

lp1 } lp2 ÝÑ pθ, lp11 } lp2q

lp2 ÝÑ pθ, lp12q

lp1 } lp2 ÝÑ pθ, lp1 } lp 12q

lp1 ÝÑ pθ, lp11q

lp1 # lp2 ÝÑ pθ, lp11 # lp2q

lp2 ÝÑ pθ, lp12q

lp1 # lp2 ÝÑ pθ, lp1 # lp 12q

3. We can simplify predicates such as

pfe1, fe2q � pfea, febq

The key observation is that we can “split” each field element in the predicate

into a set of new field, each of which represents the “intersection” of the

original field element with one of the field elements occurring on the opposite

side of the equality. In the case of the predicate above, we can split fe1 into

pfld 1a,fld1bq, for some appropriate fields fld1a and fld1b, and similarly for the

rest of the field elements in the predicate, giving us:

pfe1, fe2q � pfea, febq ÝÑ tpfe1 � pfld1a,fld1bqq, pfe2 � pfld2a,fld 2bqq,

pfea � pfld1a,fld2aqq, pfeb � pfld1b,fld 2bqquq
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We need to determine what would be appropriate values for fld 1a, etc. For

fld 1a, we want something that represents the intersection of the field elements

fe1 and fea. If either of these field elements evaluate to K, then fld1a should as

well. Otherwise, fe1 and fea must both evaluate to some type τ , in which case

fld 1a should as well. The restricted field construct that we had the foresight

to define in Figure 5.14 has the correct semantics:

fld{LP �

$''&
''%
Irrfld ss if ^lpPLP IrrlpssLP

H otherwise

Specifically, fld 1a would be fe1{fea, and similarly for the other intersections.

We will show that all necessary disjoint conditions are satisfied by this sub-

stitution.

4. We can apply a transformation similar to the one in the previous point when

the predicate is } instead of �. However, there is a complication. Consider

the predicate

plpe1, lpe2q } plpea, lpebq

We cannot have equate the field elements on the left-hand and right-hand

sides to common field elements, because this would force both the labels and

types associated with the original field elements to be the same, instead of

just the labels. We will instead map the variables on opposite sides of the }

to distinct field elements which themselves are related by }. In this particular
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case, we have:

plpe1, lpe2q } plpea, lpebq ÝÑ tplpe1 � plpe1{lpea, lpe1{lpebqq,

plpe2 � plpe2{lpea, lpe2{lpebqq,

plpea � plpea{lpe1, lpea{lpe2qq,

plpeb � plpeb{lpe1, lpeb{lpe2qquq

The general reduction rules for � and } are given in Figure 5.17.

We have now replaced a single } (or �) predicate with four � predicates. How-

ever, the substitutions may cause already simplified } predicates to become

subject to this transformation. If unchecked, this may prevent the transfor-

mation process from terminating. A closer look at what is occurring reveals

that the process is terminating. Each “new” field element introduced is a

restriction of an existing field element. The restriction can always be written

as a set of flat (i.e., unrestricted) label presences. No new field variables are

introduced. Therefore, there is a limit to the number of distinct restrictions.

Because there is a finite number of unrestricted label presences, at some point,

we simply run out of new restrictions. For example, if the process does not

otherwise terminate, we will reach a point where we have:

pfe1{LP 1, fe2{LP 2q � pfea{LPa, feb{LP bq

and LP1 � LPa. Then the equation

fe1{LP 1 � pfe1{LP 1{pfea{LPaq, fe1{LP 1{pfeb{LP bqq

can be rewritten as fe1{LP 1 � pfe1{LP 1, fe1{pLP1 Y LP bqq, and this can be

simplified to fe1{pLP1 Y LP bqq � K.
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f # lp ÝÑ OK

φ # t ÝÑ rφ ÞÑ Ks

t # t ÝÑ Fail

pφ1, . . . , φnq # lp ÝÑ tφi # lp | i P 1..nu

f } f ÝÑ OK

t } t ÝÑ OK

t } f ÝÑ Fail

φ } t ÝÑ rφ ÞÑ αs α new

pφ, lpq } pφ, lp 1q ÝÑ lp } lp 1

pφ1, . . . , φnq } f ÝÑ rφ1 ÞÑ K, . . . , φn ÞÑ Ks

K � K ÝÑ OK

α � τ ÝÑ

$''&
''%
rα ÞÑ τ s if α does not occur in τ

Fail otherwise

φ � τ̂ ÝÑ rφ ÞÑ τ̂ s if φ does not occur in τ̂

t � τ ÝÑ

$''&
''%
OK if τ � t

Fail otherwise

τ1 Ñ τ2 � τ ÝÑ

$''&
''%
tτ1 � τ 11, τ2 � τ 12u if τ � τ 11 Ñ τ 12

Fail otherwise

trowu � τ ÝÑ

$'''''''''&
'''''''''%

trow@lp0q � row 1@lp0q,

. . . ,

row@lpnq � row 1@lpnqu

if τ � trow 1u

Fail otherwise

τ � K ÝÑ Fail

pφ, τ̂ q � pφ, τ̂ 1q ÝÑ τ̂ � τ̂ 1

pφ1, . . . , φnq � K ÝÑ rφ1 ÞÑ K, . . . , φn ÞÑ Ks

Figure 5.16: Field predicate simplification

104



plpe1, . . . , lpenq } plpe
1
1, . . . , lpe

1
mq ÝÑ H if n,m ¡ 1

where H �
� ¤

iP1..n

t lpe i � plpe i{lpe
1
1, . . . , lpe i{lpe

1
mq u

	
Y

� ¤
jP1..m

t lpe 1j � plpe
1
j{lpe1, . . . , lpe

1
j{lpenq u

	

pfe1, . . . , fenq � pfe
1
1, . . . , fe

1
mq ÝÑ H if n,m ¡ 1

where H �
� ¤

iP1..n

t fei � pfei{fe
1
1, . . . , fei{fe

1
mq uY

¤
jP1..m

t fe 1j � pfe1{fe
1
j, . . . , fen{fe

1
jq u
	

Figure 5.17: Field equality predicate simplification

pfailureq pθ, F Z tFailuq ÞÝÑ pθ, tFailuq

punitq
π ÝÑ pθ1,Hq

pθ, F Z tπuq ÞÝÑ pθ1 � θ, θ1F Y θHq

Figure 5.18: Predicate set reduction

Figure 5.16 gives the remainder of the rules.

Proposition 5.5.6. Given a well-formed field predicate set F , if a field expression

occurring as either argument of any predicate in F has the form pfld 1, . . . ,fldnq

then if there is more than one fld i which is τ , then F is not satisfiable.

Proof. Two field elements in a field F can be types only if two fields with the same

label occur in the row F is a slice of. Because each distinct pair of field elements

in each field is related by # in a well-formed field, the field predicate τ # τ 1 occurs

in F , and this predicate is unsatisfiable.
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If P is a well-formed predicate set, and F is the result of converting P to a set of

field predicates, then any field expressions pτ̂1, . . . , τ̂nq in F correspond to a slice of

a row with n elements in P . Furthermore, because of the well-formedness criteria

for rows and labelsets, it is the case that F |ù τ̂i # τ̂j , for i, j P 1..n and i �� j.

Lemma 5.5.3 (Single Step Simplification Equivalence). If we have a simpli-

fication rule π ÝÑ pθ, Hq, then for any θ1, well-formed F and G, where θ1F � F ,

p@I.Irrtπu Z F ss Ñ IrrGssq Ø p@I.IrrH Y θF ss Ñ IrrθGssq

Next, we use the one-step reduction relation on predicates ÝÑ to define a one-

step reduction on predicate sets: we write pθ, F q ÞÝÑ pθ1θ, Gq to mean that substi-

tution θ and predicate set F reduce to predicate set G in one step via application

of substitution θ1. The rules for this relation are given in Figure 5.18.

Thirdly, we define the reflexive, transitive closure of ÞÝÑ , i.e. ÞÝÑÑ :

pÞÝÑÑ -reflexq pθ, F q ÞÝÑÑ pθ, F q

pÞÝÑÑ -unitq
pθ, F q ÞÝÑ pθ1, Gq

pθ, F q ÞÝÑÑ pθ1, Gq

pÞÝÑÑ -transq
pθ1, F1q ÞÝÑÑ pθ2, F2q pθ2, F2q ÞÝÑÑ pθ3, F3q

pθ1, F1q ÞÝÑÑ pθ3, F3q

Finally, we define the Norm function: NormpF q � pθ, F 1q iff pr s, F q ÞÝÑÑ pθ, F 1q,

and there is no rule pθ, F 1q ÞÝÑ pθ1, F 2q.

Given a pair of field predicate sets pF, Gq, where F is the antecedent, we compute

the normalized version F 1, where NormpF q � pθ, F 1q. For our example, we simplify
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the set of predicates P@L:

f } pφpρ1, lp0qq, φpρ3, lp0qqq ÝÑ prφpρ1, lp0qq ÞÑ K, φpρ3, lp0qq ÞÑ Ks,Hq

rφpρ1, lp0qq ÞÑ Kspφpρ1, lp0qq # φpρ2, lp0qqq

� K # φpρ2, lp0qq

ÝÑ OK

rφpρ1, lp0qq ÞÑ K, φpρ3, lp0qq ÞÑ Kspφpρ1, lp0qq # φpρ3, lp0qqq

� K # K

ÝÑ OK

φpρ2, lp0qq # f ÝÑ OK

φpρ2, lp1qq # f ÝÑ OK

f } pφpρ1, lp2qq, φpρ3, lp2qqq ÝÑ prφpρ1, lp2qq ÞÑ K, φpρ3, lp2qq ÞÑ Ks,Hq

rφpρ1, lp2qq ÞÑs # φpρ1, lp2qqφpρ2, lp2qq

� K # φpρ2, lp2qq

ÝÑ OK

φpρ1, lp2qq # φpρ3, lp2qq � K # φpρ3, lp2qq

ÝÑ OK

φpρ2, lp2qq # t ÝÑ prφpρ2, lp2qq ÞÑ Ks,Hq

Summarizing:

NormpP@Lq � prφpρ1, lp0qq ÞÑ K, φpρ3, lp0qq ÞÑ K, φpρ1, lp2qq ÞÑ K,

φpρ2, lp2qq ÞÑ K, φpρ3, lp2qq ÞÑ Ks,

tt } pφpρ1, lp1qq, φpρ3, lp1qqq,

φpρ1, lp1qq # φpρ2, lp1qq,

φpρ1, lp1qq # φpρ3, lp1qquq
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Let θ be the substitution above. This needs to be applied to the consequent:

θpG@Lq � tpf # fq, ppφpρ1, lp1qq, φpρ2, lp1qqq # fq, pf # tqu

Each of these three predicates are trivially true. For this problem, there is no

need to proceed further. Q is true whenever P is.

Observation: The normalized predicates are all in one of the forms given in

Figure 5.20.

Proposition 5.5.7. The process of computing NormpF q for a well-formed field

predicate set F terminates.

Proof. We define the size of a predicate in Figure 5.19. Using this, we define a

metric on pθ, F q which has no infinite descending chains and strictly decreases with

every transformation. We call this metric the problem size. The problem size is a

pair whose elements are:

1. The number of field variables.

2. A tuple pc1, c2, . . . , cnq, where ci is the number of predicates in F of size i, and

the size of the largest predicate in F is n.

Given two such tuples, pc1, . . . , cnq, and pd1, . . . dmq, we define the first to be

larger, or equivalently, the second to be smaller, if either n ¡ m, or n � m

and there exists an i such that ci ¡ di, and cj � dj for all i   j  � n. For
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example, the following tuples are in ascending order:

p2, 3q

p1, 1, 1q

p0, 2, 0, 1q

p1, 1, 1, 1q

p2, 1, 1, 1q

p0, 2, 1, 1q

The crucial element that causes a predicate to be larger than the previous is

written in boldface.

It can be seen by inspection that this metric decreases for each of the simplifi-

cation rules described above. For example, for the rule

pφ, τ̂q � pφ, τ̂ 1q ÝÑ τ̂ � τ̂ 1

the metric of any set with this element decreases when this rule is applied be-

cause the second element in the problem size pair decreases, while the first element

remains the same. For another example, consider either of the two rules in Fig-

ure 5.17. This reduces a single predicate to a number of other, simpler predicates,

each of which is strictly smaller.

The need for the first element of the problem size pair is due to the rules which

reduce to substitutions of field variables. If we simply rely on the number and

size of the predicates as our metric, such rules cannot be depended on to decrease

it. A substitution may make other predicates in the set more complex, because it

replaces a single field variable (of size 1) with fields of size potentially much larger.
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sizepKq � 1

sizeptq � 1

sizepφq � 1

sizeptq � 1

sizepfq � 1

sizepτ1 Ñ τ2q � 1� sizepτ1q � sizepτ2q

sizeppτ̂1, . . . , τ̂nqq � 1�
°

iP1..n sizepτ̂iq

sizeplp1 } lp2q � sizeplp1q � sizeplp2q

sizeplp1 # lp2q � sizeplp1q � sizeplp2q

sizepτ̂1 � τ̂2q � sizepτ̂1q � sizepτ̂2q

sizepFailq � 1

Figure 5.19: Predicate size

p1q φ # φ1

p2q φ } φ1

p3q pφ1{LP1, . . . , φn{LPnq } t

p4q pφ1{LP1, . . . , φn{LPnq � τ

p5q pφ1{LP1, . . . , φn{LPnq � φ{LP

Figure 5.20: Field predicate normal forms

Fortunately, each new substitution eliminates a field variable, of which there is only

a finite number.

The following proposition asserts that our field simplification rules are correct:

Proposition 5.5.8 (Simplification Equivalence). If F is a well-formed field
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predicate set, and NormpF q � pθ, Hq, then

p@I.IrrF ss Ñ IrrGssq Ø p@I.IrrHss Ñ IrrθGssq

Proof. This is true by a trivial induction on the length of a reduction sequence,

where each step is true by Lemma 5.5.3.

5.5.4 Decomposition

We can decompose the universally quantified formula into a conjunction of simpler

cases using the equality

@φ.p � p@φ.pφ � Kq Ñ pq ^ p@φ.pφ �� Kq Ñ pq

rφ ÞÑ Ksp^ @α.rφ ÞÑ αsp α new

Using this equality, we can eliminate all field variables from our formula:

@~φ, ~α.prrF ss Ñ rrGssq �
©

@ ~φZ , ~φN . ~φZZ ~φN�~φ

r ~φZ ÞÑ Ksp@ ~αN , ~α.r ~φN ÞÑ ~αN sprrF ss Ñ rrGssqq

where ~αN is new.

5.5.5 Evaluation

The decomposition in the previous section yields 2n conjuncts, where n � |~φ|. Each

of these conjuncts has the form:

@~α.prrF ss Ñ rrGssq

where F has no free field variables. We can now completely evaluate F , as shown by

the following proposition. If F evaluates to Fail, then we can discard this conjunct.

Otherwise, we need to remember the evaluating substitution θ, and apply it to G,

yielding θG.
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Proposition 5.5.9. If we have a field predicate set F with no free field variables,

then one of the following is true:

NormpF q � pθ, Failq

NormpF q � pθ, OKq

Proof. All field expressions pfld1, . . . ,fldnq which have no field variables can be fully

evaluated to either K, some type τ , or � in a field context, and either t or f in a

label presence context. This can be seen by inspection of the semantic rules in

Figure 5.14. Because of this, in conjunction with the simplification rule for �, we

can limit our scrutiny to predicates whose field operands are either K or some type

τ , and predicates whose label presence operands are either t or f.

With one exception, all of the applicable simplification rules reduce such a pred-

icate to either Fail or OK. The remaining rule is:

τ � τ 1
θ
ÝÑ H where τ

θ;H
� τ 1

The field predicate set H may be non-empty only in the case where we are uni-

fying two record types. H needs to be simplified and decomposed, possibly yielding

more field predicates. Because of the occurs check, however, we are guaranteed that

the process will terminate.

The simplification problem, then, reduces to a conjunction of type unifications.

The end result of each unification must be either a substitution, with no predicate

set, or failure.

In summary,

@~α.rrF ss Ñ rrGss �

$''&
''%
@~α.rrθGss if NormpF q � pθ, OKq

true if NormpF q � pθ, Failq.
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Because G is a conjunction of type equalities, we can evaluate θG by substituting

distinct type constants which do not appear in G for the universally quantified

variables. The choice of distinct type constants for the substitutions has the effect

of preventing each universally quantified variable α from being equal to any other

type. Because none of the predicates are satisfied as a result of two types being non-

equal, this choice for the substitution value will prevent inadvertent satisfaction of

the formula. This results in a conjunct of type equalities which has no free type or

field variables. The truth or falsity of each can then easily be determined.

5.5.6 Algorithm summary

We summarize the entailment algorithm here for the reader’s convenience.

Algorithm to calculate P æ Q:

1. Restate as a logical implication:

@I.pIrrP ss Ñ IrrQssq

2. Slice into field predicates:

@I.pIrrF ssq Ñ pIrrGssq

where L � L�pP YQq, F � P@L, and G � Q@L.

3. Simplify the antecedent:

NormpF q � pθ, Hq

and put back into the formula:

@I.pIrrHss Ñ IrrθGssq
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4. Split:

©
@ ~φZ , ~φN . ~φZZ ~φN�~φ

@ ~αN , ~α.r ~φZ ÞÑ K, ~φN ÞÑ ~αN sprrHss Ñ rrθGssq

where ~αN are new, ~φ � FFV pθGq, and Irrαss � α.

5. Evaluate:

©

@ ~φZ , ~φN . ~φZ Z ~φN � ~φ

NormpθZNHq � pθ1, OKq

@ ~αN , ~α, ~φ1.Irrθ1 � θZN pθGqss

where θZN � r ~φZ ÞÑ K, ~φN ÞÑ ~αN s, and ~αN are new.

Proposition 5.5.10. The algorithm to calculate P æ Q, summarized above, ter-

minates.

Proof. We show that each step of the algorithm terminates. For step 1, this is clear.

For step 2, because the process of constructing a single slice terminates, and there

are a finite number of slices, the entire step terminates. Step 3, i.e., simplification,

terminates by Proposition 5.5.7. Step 4, “split”, terminates because there are a

finite number of variables in the formulae. Similarly, step 5 terminates because the

formula to be evaluated is finite.

5.5.7 Incorporating functional dependencies

The addition of functional dependencies requires a modification to the algorithm.

Consider the type scheme

@ρ, ρ1 . pl : intq � pρ, ρ1q ñ tρu Ñ int
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As explained in section 5.3, this is not ambiguous, because although ρ1 does

not appear in tρu Ñ int, it is uniquely determined by ρ, which does. In logical

terms, ρ1 is existentially quantified; its value is a skolem function of ρ. This seems

to flatly contradict the universal quantification given to ρ1 in the type scheme, but

it is actually the case that the two quantifications are equivalent in this particular

context, as shown by the following proposition.

Proposition 5.5.11. Let p and q be propositions. If variable x is not free in q,

then @x.pp Ñ qq is equivalent to pDx.pq Ñ q.

Proof. We consider two cases for both formulas.

Case  Dx.p

Then both @x.pp Ñ qq and pDx.pq Ñ q are true. To see this, consider an

arbitrary value v. rx ÞÑ vsp is not true, and hence the implication rx ÞÑ vspÑ

q is true. Since this is true for all values of x, the universally quantified formula

is true. pDx.pq Ñ q is true simply by virtue of the tautology p P q Ñ pP Ñ Qq.

Case Dx.p

In this case, the formula with the existential quantifier reduces to q.

For those x for which p is not true, p Ñ q is true. Otherwise, p Ñ q is

equivalent to q. The universally quantified formula then, also reduces to q.

If we can pick either quantification for functionally determined variables, the

question is “which is correct?”. To determine this, we must examine how universal
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and existential quantification of these variables behaves in a context where it mat-

ters. We find this situation when the variable in question appears on the right of an

implication. For example, application of the expansion of row coercion described

in section 4.3.3 to ρ � l : int yields

tρ � pl : int, ρ1q, l : int # ρ1u

where ρ1 is functionally determined by ρ. Let us write the pair of implications

@ρ.pIrrρ � l : intss Ñ @ρ1.Irrtρ � pl : int, ρ1q, l : int # ρ1ussq

and

@ρ.pIrrρ � l : intss Ñ Dρ1.Irrtρ � pl : int, ρ1q, l : int # ρ1ussq

The implication using the “correct” quantification should be true. It is easy to

see that the formula using universal quantification is false. To provide a counterex-

ample, it is sufficient to find one value of ρ1 for which the implication

Irrρ � l : intss Ñ Irrtρ � pl : int, ρ1q, l : int # ρ1uss

does not hold. l : int is such a value.

For the other formula, given any value of ρ for which Irrρ � l : intss holds, we

can always determine a value of ρ1 which makes Irrtρ � pl : int, ρ1q, l : int # ρ1uss

true, namely, Irrρss � t�pl , intq�u.
In the original problem, P , Q, we were able to universally quantify all free

variables. We cannot do so now. Because of proposition 5.5.11, we can universally

quantify all of the free variables in P , but the functionally dependent variables in

Q must be existentially quantified. The formulation becomes

@Y.prrP ss Ñ DX.rrQssq
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where X is the set of functionally determined free variables in Q, and Y is the union

of the set of free variables in P and the set of non-functionally determined free vari-

ables in Q . The simplification of P can proceed unchanged. After decomposition,

the formula looks like this:

©
@ ~φZ , ~φN . ~φZZ ~φN�~φ

r ~φZ ÞÑ Ksp@ ~αN , ~α.r ~φN ÞÑ ~αN sprrF ss Ñ DX.rrGssqq

We can use the equality

Dφ.p � Dφ.pφ � K Ñ pq _ Dφ.pφ �� K Ñ pq

� rφ ÞÑ Ksp_ Dα.rφ ÞÑ αsp α new

to decompose each subformula of the form rrF ss Ñ D~φ, ~α.rrGss into a disjunction of

simpler cases, resulting in:

rrF ss Ñ D~φ1, ~α1.rrGss �
�

@ ~φ1Z , ~φ1N . ~φ1ZZ
~φ1N�

~φ1
r ~φ1Z ÞÑ KsprrF ss Ñ D ~α1N , ~α1.r ~φ1N ÞÑ

~α1N srrGssq

As explained in section 5.5.5, we can replace the universally quantified type

variables by unique type constants. This leaves the existentially quantified type

variables. Because there are no field variables, the predicate forms we can en-

counter are limited. Some of these contain no variables, and their truth value can

immediately be determined. An example of this is t # t. Similarly, others contain

type variables, but their truth value can be determined without regard to the spe-

cific value of the type variable. An example of this sort of predicate is α # K. The

only remaining predicate forms are:

α � c

c � α

α � α1
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Determining the truth or falsity of a conjunction of these is straightforward.

We are now ready to state the main result of this chapter:

Theorem 5.5.2. If P is a well-formed row predicate set, then

@I.pIrrP ss Ñ IrrQssq Ø P æ Q

Proof. The algorithm consists of a series of transformations of the problem. We have

shown that, at each step, the formulation of the problem before the transformation

is equivalent to the formulation after the transformation. We summarize how we

conclude this for each step:

1. Slice into field predicates.

This is correct by Lemma 5.5.2.

2. Simplify the antecedent.

This is correct by Proposition 5.5.8.

3. Split.

This makes use of the logical equality given in section 5.5.4.

4. Evaluate.

This relies on the correctness of substituting unique type constants for each

free type variable, as discussed in section 5.5.5.
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5.6 Satisfiability

If we have a value whose type is inferred to be @ÝÑα ,ÝÑρ .P ñ τ , we can only ultimately

use this value if we can instantiate the variables ÝÑα ,ÝÑρ in such a way that P is

satisfied. This assures us that we can never incorrectly instantiate these variables.

However, it may be the case that there is no possible instantiation that satisfies P .

For example, for the function

fun f x � { b � x & { a � 1 },

c � x \ a }

we can infer the type scheme:

@α, ρ.ppρ, aq # aq, pρ # aq ñ tρ, a : αu Ñ tb : tρ, a : int , a : αu, c : tρuu

We say that such a type scheme is unsatisfiable. The type system would allow

us to write such a function, but we will never be able to use it. It is desirable

from a language usability viewpoint for the compiler to proactively report this fact,

because this is almost certainly an error on the part of the programmer. A warning

at the point of definition of such a function would be preferable to an error at the

point of use2.

In this particular case, the type of the result is not well-formed, because field b

of the return value has two fields labeled a. In addition, simplification of the first

predicate would reveal the unsatisfiability of the type scheme

pρ, aq # a Ñ tρ # a, a # au

2This is an application of the well-known folk theorem which states that “a stitch in time saves nine”.
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However, for more complex sets of predicates, this may not be the case. In the

following example, we will posit the existence of a function id2 whose type scheme

is @α . α Ñ α Ñ α. Our example is:

fun unsat a b c d � { x � id2 ((a & b) & (c & d)) { l � 1 },

y � id2 (a & b) (c & d) }

The inferred type scheme for this function is:

@ρa, ρb, ρc, ρd . ppρa, ρb, ρc, ρdq � pl : intqq, ppρa, ρbq � pρc, ρdqq

ñ tρau Ñ tρbu Ñ tρcu Ñ tρdu Ñ tx : tρa, ρb, ρc, ρdu, y : tρa, ρbuu

This type scheme is not satisfiable. To see this, note that according to the first

predicate, pρa, ρb, ρc, ρdq � pl : intq, three of the four row variables must be empty.

The remaining row variable has one field. Regardless of which row variable we

pick to consist of the one field, the second predicate, pρa, ρbq � pρc, ρdq, cannot be

satisfied.

In addition to entailment, it would be desirable to have a way of deciding satisfi-

ability of a given predicate. The formulation of the satisfiability problem is similar

to that of entailment. Specifically, if we have a type scheme @Y.Q ñ τ , and a

predicate context P , is there any substitution θ, whose domain is limited to Y ,

such that P satisfies θQ? The algorithm to check for satisfiability is a minor varia-

tion of the entailment algorithm. The two algorithms are the same until we do the

transformation into first-order logic with equality. Instead of

@~φ.pF1 Ñ @~φ1.F2q

we have

@~φ.pF1 Ñ D~φ1.F2q
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We define a solution to a closed formula Dφ1, . . . , φn.F to be a substitution

rφi ÞÑ τi | i P 1..ns, and a principal solution to be a substitution θ such that each

solution can be written θ1 � θ for an appropriate substitution θ1.

Proposition 5.6.1. Let F be a well-formed field predicate set. Then the closed

formula

D ~φZ .D ~φN .p
©
iPZ

φi � Kq ^ p
©
iPN

φi �� Kq ^ F

is either unsatisfiable, or has a principal solution.

Proof. Note that, since we have a closed formula, each free variable in F is either

a member of ~φZ , in which case it is constrained to be K, or a member of ~φN , in

which case it is constrained to not be K. We do a case analysis on the form of each

conjunct in F:

1. pφ1, . . . , φnq � τ

(a) If tφu � tφ1, . . . , φnu X ~φN for some φ, the predicate becomes φ � τ .

(b) Otherwise, Fail.

2. pφ1, . . . , φnq � pφ
1
1, . . . , φ

1
mq

(a) If tφu � ptφ1, . . . , φnu X ~φNq and tφ1u � ptφ11, . . . , φ
1
mu X

~φNq for some

φ, φ1, the predicate becomes φ � φ1.

(b) If tφ1, . . . , φnu � ~φZ and tφ11, . . . , φ
1
mu �

~φZ , then the predicate becomes

OK.

(c) Otherwise, Fail.

3. φ # φ1
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(a) If φ P ~φZ or φ1 P ~φZ , then the predicate reduces to OK.

(b) Otherwise, Fail.

4. pφ1, . . . , φnq } t

(a) If |tφ1, . . . , φnu X ~φN | � 1, then OK.

(b) Otherwise, Fail.

5. pφ1, . . . , φnq } pφ
1
1, . . . , φ

1
mq

(a) If |tφ1, . . . , φnuX ~φN | � 1, and |tφ11, . . . , φ
1
muX

~φN | � 1, then the predicate

reduces to OK.

(b) If tφ1, . . . , φnu � ~φZ and tφ11, . . . , φ
1
mu �

~φZ , then OK.

(c) Otherwise, Fail.

After this reduction, we have a set of equations E which are each of one of two

forms:

φ � φ1

φ � τ

We can repeatedly simplify equations of these forms to the corresponding sub-

stitutions. This may result in equations of the form

τ � τ 1

as in the example:

ρ1 � τ1, ρ2 � τ2, ρ1 � ρ2

These equations can be solved by unification. Because we do not allow recursive

types, this process is guaranteed to terminate.
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For each conjunct in our simplified formula,

r ~φZ ÞÑ Ksp@ ~φN .p
©
iPN

φi �� Kq Ñ pF1 Ñ D~φ1.F2qq

we solve

r ~φZ ÞÑ Kspp
©
iPN

φi �� Kq ^ F1q

If no solution exists, then the conjunct is satisfied. Otherwise, we have a prin-

cipal solution θ. Let ~α � TRVpθq. Then we test the formula

@~α.rφi ÞÑ τi | i P Ns � r ~φZ ÞÑ KspD~φ1.F2q

If this is satisfiable, then the conjunct is as well. Otherwise, it is not, and the

entire problem is not satisfiable.

5.7 Algorithm Analysis

5.7.1 NP-hardness

Proposition 5.7.1. The predicate satisfiability problem is NP-hard.

Proof. We reduce one-in-three SAT to the row predicate satisfiability problem.

One-in-three SAT:

Given: A set X of variables, and collection C of clauses over X such that each

clause c P C has three literals. A literal is either a variable (written x) or a negated

variable (written x̄. We use z to range over literals.

Question: Is there a truth assignment for X such that each clause in C has exactly

one true literal?

The row predicate satisfiability problem:
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Given: A set RV of row variables, TV of type variables, and a collection P of

predicates.

Question: Is there an assignment for RV and TV such that all predicates in P

are satisfied?

The transformation:

TV � H

RV �
�

xPXtρx, ρx̄u

P �
�

xPXtρx # ρx̄, pρx, ρx̄q } lu

Y
�
pz1_z2_z3qPC

tpρz1 , ρz2, ρz3q } l , ρz1 # ρz2 , ρz1 # ρz3 , ρz2 # ρz3u

The idea is that each literal in the original problem becomes a row variable in

the transformation. Specifically, the variable x is mapped to the row variable ρx,

and the literal x̄ is mapped to the row variable ρx̄. A truth value of “true” in

the original problem corresponds to a row value of l : τ for any τ , while a truth

value of “false” corresponds to a row value of H. We ensure that exactly one of

ρu and ρū is assigned l : τ , and the other is assigned H with the pρu, ρūq } l

predicate. The corresponding ρu # ρū ensures that the pρu, ρūq row is well-formed.

The pρz1 , ρz2, ρz3q } l predicate is a translation of the clause z1 _ z2 _ z3, and the

remaining row disjointness predicates ensure that pρz1, ρz2 , ρz3q is well-formed.

5.7.2 Discussion

The NP-hardness is not a result of the number of fields in a row, but the fact that

a row can be the union of an arbitrary number of row variables.

If a row cannot contain more than one row variable, the problem is in P. In this
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case, each simplified predicate would be of one of the forms:

φ # φ1 or φ } φ1

If each row occurring in each predicate is restricted to contain no more than two

row variables, then we will have predicates of the forms:

pφ1, φ2q� τ

pφ1, φ2q } τ

φ#φ1

Unfortunately, we can encode rows with more than 2 row variables in this frame-

work. To do this, replace each 3-variable row pφ1, φ2, φ3q by (φp1,2q, φ3q, where φp1,2q

is a fresh row variable, and add the predicate pφp1,2q, φ
1
p1,2qq � pφ1, φ2q, t � φ1p1,2q

and t1 � φ1p1,2q, where t � t1. To prevent this, we need to prohibit predicates of

the form pφ1, φ2q � pφ
1
1, φ

1
2q. There seems to be no elegant way of achieving this

restriction. One way is to allow record concatenation only when the resulting label

set is statically known. This is a severe limitation.

Fortunately, there is hope that this is not a problem in practice, as experience

with ML and Haskell has shown. These languages have type inference algorithms

which are exponential [31,33], but this behavior has mainly been observed on con-

trived examples. In fact, McAllester [35] proves that the running time is actually

nearly linear for “reasonable” code.
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Chapter 6

Compilation

We will show how to compile the record calculus into Core ML augmented with

untyped tuples and tuple selection.

Unlike type systems for records, there has not been a great deal of work done in

compilation methods for records. Notable exceptions are Ohori [40,41], Remy [50],

and Gaster and Jones [18].

6.1 Evidence

When compiling a language which uses qualified types, one important choice to be

made is whether to ignore the predicates in the qualified types after type checking

is complete, or to make use of them in the generated code. It is often the case that

the latter choice leads to more efficient code. An example of how predicates can

be transformed into run-time entities can be found in Haskell [45] compilers. See

Hall, Hammond, Peyton Jones, and Wadler [19] for an exposition of this method.

Consider the Haskell function:
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eq3 a b c � a �� b && b �� c

The process of type inference will yield the type scheme of

@α . Eq α ñ α Ñ α Ñ α Ñ Bool

This function takes three arguments and compares the first and last two for

equality. In Haskell, one may define specialized equality functions for different

types, so the system cannot use a single, predetermined equality function. The

compilation process transforms the Eq α predicate into an additional parameter

to the eq3 function, which represents the correct equality function to be used.

Pseudocode for the compiled function would be:

eq3 eq a b c � (eq a b) && (eq b c)

A call to eq3 would pass in the correct equality function, depending on the

instantiated type of the function. For example,

eq3 1 2 1

would be translated into

eq3 eqInt 1 2 1

where eqInt is the integer equality function.

A more complex example would be:

eq3 [1,2] [1,2] [1,2]

which requires the equality for lists of integers. The definition of that is:

(��) [] [] � True

(��) (x:xs) (y:ys) � x �� y && xs �� ys
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(��) _ _ � False

This has the type scheme

@α . Eq α ñ rαs Ñ rαs Ñ Bool

and is translated into:

eqList eq [] [] � True

eqList eq (x:xs) (y:ys) � (eq x y) && eqList eq xs ys

eqList eq _ _ � False

Note that eqList by itself is not the equality function for lists of, e.g. Ints. To

get the equality for lists of type t, we need to pass eqList the equality function

for type t. Getting back to our last example, where we need the equality function

for lists of Ints, the translation would be:

eq3 (eqList eqInt) [1,2] [1,2] [1,2]

Another example, and one closer to the subject of this dissertation, involves the

record calculus described in [18]. In this system, a row is represented by a sequence

of fields and at most one row variable. The single predicate form is rowzl , which

denotes that row row does not contain a field with label l . A proposed compilation

method translates records into vectors of values. The fields are arranged according

to the lexicographic order of their labels. The labels themselves do not appear at

runtime. In this system, the predicate rowzl translates into an index which specifies

where to insert a field whose label is l into the vector implementing a value of type

trowu. Two of the operations supported are record extension:

pl � | q : @α, ρ . ρzl ñ α � tρu Ñ tl : α|ρu
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and record restriction:

p � lq : @α, ρ . ρzl ñ tl : α|ρu Ñ tρu

In the translation, we will use the following notations:

Notation Meaning

[ e1, . . ., en ] a record, represented as a list of elements e1 through en

a�� b concatenation of lists a and b

a[i] i’th element of list1 a

a[..i] list consisting of elements of a, from the first to the ith, in-

clusive

a[i..] list consisting of elements of a, from the ith to the last, in-

clusive

As an example, consider the function

fun f (r1, r2) �

if r1.old ¡ 0

then { new � 0 | r1 � old }

else { new � r1.old | r2 }

This function has the type

@ρ . ρzold , ρznew ñ told : int , ρu � tρu Ñ tnew : int , ρu

We can write the translation as:

fun f iold inew (r1, r2) �

1The first element is at index 0.
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if r1[iold] ¡0

then let val r � r1[..iold�1]�� r1[iold�1..]

in r[..inew�1]�� [0]�� r[inew..]

end

else r2[..inew�1]�� [r1[iold]]�� r2[inew..]

The call

f { old � 1, oak � "strong", pun � "fore" }

{ oak � "tall", pun � "yore" }

would be translated into

f 1 0 ["strong", 1, "fore"] ["tall", "yore"]

and yield [0, "strong", "fore"].

6.2 Compilation into tuples

Our compilation method translates each record value into record tuple. This is

simply a tuple, which we will write enclosed in special braces, i.e. t||u, to distinguish

it from “regular” tuples. Specifically, each field value of the record will compile

into an element of the tuple. The fields are arranged according to the lexicographic

ordering of their labels. The labels themselves are dropped. For example, the

record:

{ b = 1, d = "hello", a = 3.2 }

will compile into:

t|3.2, 1, "hello"|u
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Field selection will compile into tuple element selection, and predicates will

compile into evidence parameters.

For this compilation method, the evidence for a row disjointness predicate will

be a vector, i.e. a sequence of elements. v will range over vectors. |v| is the number

of elements in vector v, also known as the length of the vector. We will use the same

notation for rows to denote the number of fields in the row. |v|s is the number of

occurrences of element s in vector v. v1 �v2 is the concatenation of vectors v1 and v2.

Where clear from context, a vector element x will denote the vector whose single

element is x. vris denotes the ith element of v, where the first element of vector

v is denoted by vr1s. vri..js denotes a vector which consists of the ith through

jth elements of v, inclusive. It must be the case that 1 ¤ i ¤ j ¤ |v|. We will

sometimes write a vector as a sequence of optionally comma-separated elements

enclosed by angle brackets (e.g. x 1, 2, 3 y) in order to make clear where the vector

begins and ends. v1 � v2 denotes the point-wise sum of vectors v1 and v2, which

must be of the same length. For example, x 3, 1, 0, 4 y � x 1, 2, 1, 2 y is x 4, 3, 1, 6 y.

The empty vector is denoted x y. sn denotes the vector composed of n instances of

element s.

The evidence for a predicate of the form row1 # row 2 is a vector of length

|row1| � |row2|, where each element of the vector is either 
 or � (pronounced

“left” and “right”, respectively). This evidence is used to determine how to merge

a value of type trow 1u with a value of type trow 2u. The element 
 indicates that

the corresponding element of trow 1, row 2u is taken from the left value, while the

element � indicates that it is taken from the right value.
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For example, consider the following two records, along with their types and

translations:

Record value Type Translation

{ b = 1, d = "hello", a = 3.2 } trow 1u t|3.2, 1, "hello"|u

{ f = "world", c = 42 } trow 2u t|42, "world"|u

where row1 � pa : real , b : int , d : stringq, and row 2 � pc : int , f : stringq.

The evidence for row1 # row2 is the merge value x
,
,�,
,�y. When used

to concatenate the two record values, it specifies that the first, second, and fourth

elements of the resulting value are taken from row1, and the third and fifth are

taken from row2:

Merge value: 
 
 � 
 �

First record: 3.2 1 "hello"

Second record: 42 "world"

Concatenated record: 3.2 1 42 "hello" "world"

Predicates of the form row 1 � row2 do not have evidence values associated

with them. To see why, we need to consider what evidence values are used for.

Informally, an evidence value v for a predicate π allows us to perform actions in

the value domain analogous to what the predicate π allows us to do in the type

domain. In the case of a row disjointness predicate, if we know that row1 # row2,

and that row 1 and row 2 are well-formed, then prow1, row 2q is also a well-formed

row. The corresponding “action” in the value domain is to concatenate a record

of type trow 1u with a record of type trow2u, resulting in a record value of type

trow 1, row2u.
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In the case of a row equality predicate row1 � row2 on the other hand, the

“action” in the type domain is the ability to substitute a type trow1u for trow 2u

which is identical except that the corresponding sub-term is trow 2u. In the value

domain, the evidence value would make it possible to substitute a value of the

type trow 1u for a value of type trow 2u. This could be accomplished by having

the evidence value tell us how to perform the translation from trow 1u to trow 2u.

However, we already know how to do this; in every case where we know row 1 �

row2, this translation is the identity function! To be pedantic, we could construct

evidence values which are identity functions, and apply them to values whenever the

translation from trow 1u to trow 2u is necessary. This, however, serves no practical

purpose.

For the same reason, predicates of the form lset1 } lset2 also do not have

evidence values associated with them.

The syntax of the target language is given in Figure 6.1.

The language is stratified into two levels: “regular” expressions E, and “evi-

dence” expressions M . Regular expressions may contain evidence expressions as

sub-terms, but not the converse.

133



E ::� x variable

| λx.E lambda abstraction

| E E application

| let x � E in E let expression

| t|E, . . . , E|u record tuple

| mergeM pE,Eq merge

| extract
 M E | extract� M E left/right extract

| index
ME | index�ME left/right index

| λm.E merge abstraction

| E M merge application

M ::� m merge variable

| x s, . . . , s y literal merge

| flipM merge flip

| xtrct
 M M | xtrct� M M left/right merge extract

| mrg
 pM,M q | mrg� pM,M q left/right merge merge

s ::� 
 | � merge elements

Figure 6.1: Target language syntax
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Simple types and qualified types are merged into the same syntactic entity; type

schemes remain separate:

τ ::� t

| α

| τ Ñ τ

| trowu

| π ñ τ

σ ::� τ

| @α . σ

The type rules for the target language are in Figures 6.2 and 6.3. Note that the

target language does not enjoy the principal type property, because of the record

rule. Because the record labels are omitted, a record tuple may have one of many

types, differing in the labels assigned to each element of the record tuple. For

example, the value

t|1, "hi"|u

can be assigned any of the types:

ta : int , b : stringu

tc : int , d : stringu

ta : int , c : stringu

It cannot be assigned the type

tb : int , a : stringu

however, because of the restriction that the labels must be in ascending order. The

restriction on the type of the record tuple cannot be expressed in a single type (or
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pvarq
x : σ P A pP ñ τq ¤ σ

P |A T$ x : τ

pappq
P |A T$ E1 : τ 1 Ñ τ P |A T$ E2 : τ 1

P |A T$ pE1 E2q : τ

pabsq
P |Azx, x : τ1

T$ E : τ2

P |A T$ pλx.Eq : τ1 Ñ τ2

pletq
P |A T$ E1 : τ 1 P 1|Azx, x : σ T$ E2 : τ

P 1|A T$ plet x � E1 in E2q : τ

σ � GenpA,P ñ τ 1q

pmerge-absq
P zm,m : π|A T$ E : τ

P |A T$ λm.E : π ñ τ

pmerge-appq
P |A T$ E : π Ñ τ P ,M : π

P |A T$ E M : τ

Figure 6.2: Target language type rules (non-records)

even any finite disjunction of types) in this system.
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precordq
P |A T$ Ei : τ1 @i P 1..n

P |A T$ t|E1, . . . , En|u : tl1 : τ1, . . . , ln : τnu

l1   l2   . . .   ln

pmergeq
P |A T$ E1 : trow 1u P |A T$ E2 : trow 2u P ,M : row 1 # row 2

P |A T$mergeM pE1, E2q : trow 1, row 2u

pextract-leftq
P |A T$ E : trow 1, row 2u P ,M : row 1 # row 2

P |A T$ extract
 M E : trow 1u

pextract-rightq
P |A T$ E : trow 1, row 2u P ,M : row 1 # row 2

P |A T$ extract� M E : trow 2u

pindex-leftq
P |A T$ E : trow , l : τu P ,M : l # row

P |A T$ index
ME : τ

pindex-rightq
P |A T$ E : trow , l : τu P ,M : row # l

P |A T$ index�ME : τ

Figure 6.3: Target language type rules for records
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We will use V to range over regular values (i.e. completely evaluated expressions

E). V is a subset of E. Specifically,

V ::� x variable

| λx.E lambda abstraction

| t|V, . . . , V |u record tuple

| λm.E merge abstraction

Similarly, W ranges over merge values, which are:

W ::� m merge variable

| x s, . . . , s y literal merges

Semantics of the familiar constructs is standard; we follow the style in Wright

and Felleisen [61]. We need to define several auxiliary functions:

We define 
 and � to be � and 
, respectively, and extend this definition in

the natural way to vectors of these elements.

Figures 6.8 and 6.9 defines a pair of relations we call notions of reduction. The

discerning reader will recall that we previously defined notions of reduction for

expressions in the source language in Chapter 4, on page 29. Here, we define

the analogous relation on both target language “regular” expressions and target

language evidence expressions.

In Chapter 4, we needed to define an evaluation context in order to specify in

what order subexpressions were evaluated. For the target language, because the

expressions are stratified into two levels, we also need to take this into consideration

when defining the evaluation context. Firstly, we split the evaluation context into

two contexts: E and M. We also need to expand the standard context syntax. The

target language has two distinct sorts of terms: “ordinary” expressions, and merge
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E ::� r sE | E e | V E | let x � E in e | V M
| mergeM pE,Eq | mergeW pE , Eq | mergeW pV, Eq
| extractsME | extracts W E
| indexsME | indexsWE

M ::� r sM

| mrgs pM,M q | mrgs pW,Mq

| flipM
| xtrctsMM | xtrcts W M

Figure 6.4: Target language evaluation contexts

expressions. Ordinary expressions may contain both ordinary and merge expres-

sions as subterms, but merge expressions may not contain ordinary expressions as

subterms. We distinguish the sort of subterm in an expression evaluation context E
by superscripting the brackets with the sort of the subterm: either E (for ordinary

expressions) or M (for merge expressions). We may leave off the superscript where

it is obvious from context. The two contexts are defined in Figure 6.4.

As before, we define the relation ÞÝÑ to be the union of:

ErE1s
E ÞÝÑ ErE2s

E iff E1 ÝÑ E2

ErM1s
M ÞÝÑ ErM2s

M iff M1 ÝÑ M2

The reflexive and transitive closure of ÞÝÑ is ÞÝÑÑ .

Finally, the evaluation function eval is defined for closed expressions:

evalpEq � V iff E ÞÝÑÑ V

We explain the merge, extract, and index operations as follows. merge p , q

takes a merge value and two record values and merges them according to the merge
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value. For example,

merge x
 
 �
�y pt|1, 2, 3|u, t|’a’, ’b’|uq ÝÑ t|1, 2, ’a’, 3, ’b’|u

The left (right) extract operator takes a merge value and a record value, and

extracts the elements from the record value that correspond to the 
 (�) elements

of the merge vector. For example,

extract
 x
 
 �
�y t|1, 2, 3, 4, 5|u ÝÑ t|1, 2, 4|u

extract� x
 
 �
�y t|1, 2, 3, 4, 5|u ÝÑ t|3, 5|u

Finally, the index operator is used to extract a single field from a record. The

restriction on the merge argument ensures that only one filed is chosen. One can

think of it as an extract (with the same arguments), which would result in a record

with a single component, followed by an “unwrapping” of the record constructor to

get the field within.

6.3 Type Soundness

The evidence expression in the conclusion of the #-compatible-} rule is the same

as the one in one of its premises; only its type changes. We will call any instance

of this rule non-productive. Instances of all other rules are unsurprisingly called

productive. A derivation is called productive (non-productive) if its last rule is

productive (non-productive). A derivation is purely productive if it consists solely

of productive rules. Note that a productive derivation may include instances of

non-productive rules.

Proposition 6.3.1. Any derivation of P , M : lset1 # lset2 can be rewritten as a

derivation where:
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1. Each productive rule is followed by exactly one non-productive rule.

2. Each non-productive rule is either the last rule in the derivation, or is followed

by a productive rule.

We will make extensive use of this proposition in proving various properties of

these type rules.

Lemma 6.3.1 (Subject Reduction for evidence). If there is a derivation of

P , M1 : lset1 # lset2 where P is satisfiable, and M1 ÝÑ M2, then there is a

derivation of P ,M2 : lset1 # lset2.

Lemma 6.3.2 (Subject Reduction – target version). For a target language

expression E1, where P |A T$ E1 : τ , for some P , A, and τ , and E1 ÝÑ E2, then

P |A T$ E2 : τ .

Just as in Section B.1, we need to define what a faulty expression is, and establish

a crucial lemma. For the target language, there are a number of faulty expressions.

These are summarized in Figures 6.5 and 6.6.

Lemma 6.3.3 (Uniform evaluation – target version). For closed target lan-

guage expression E, if there is no E 1 such that E ÞÝÑÑ E 1 and E 1 is faulty, then

either E diverges, or E ÞÝÑÑ V .

Theorem 6.3.1 (Type soundness). If T$ E : τ , then E ÞÝÑÑ V and T$ V : τ .

The compilation rules are a modification of the type rules given in Figure 4.12.

This is done by augmenting the type judgments with a compilation result, and also

augmenting predicate judgments with an evidence result. We write

P |A $ E : τ ù E 1
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c V where δpc, V q is not defined

V1 V2 unless V1 is of the form λx.E1

mergeM pV1, V2q unless V1 and V2 are record literals such that

|V1| � |M |
and |V2| � |M |�

extract
 W V and extract� W V unless V is a record literal where |V | � |W |

index
ME and index�ME unless V is a record literal where |V | � |W |

Figure 6.5: Faulty target expressions

xtrcts W1 W2 unless W1 � x s11, . . . , s1n y, W2 � x s21, . . . , s2m y,

and |W2|
s � |W1|

mrgs pW1,W2q unless W1 � x s11, . . . , s1n y, W2 � x s21, . . . , s2m y,

and | spansspW1q| � | spansspW2q|

Figure 6.6: Faulty evidence expressions

to mean that expression E has type τ under the type assumption set A and predicate

set P , and compiles to expression E 1 in the target language. Figure 6.7 has the

compilation rules.

Predicate sets and predicate entailment judgments are also augmented. Each

element of a predicate set will now have the form:

m : π

where m is the evidence variable for π.

Even though we do not use any evidence values for row or labelset equality, we

will, where convenient, use the same notational form for uniformity. Conversely,
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pvarq
x : @~α, ~ρ .Qñ τ 1 P A P ,M : r~α ÞÑ ~τ , ~ρ ÞÑ ~row sQ

P |A $ x : r~α ÞÑ ~τ , ~ρ ÞÑ ~row sτ 1 ù xM

pappq
P |A $ E1 : τ 1 Ñ τ ù E1

1 P |A $ E2 : τ 1 ù E1
2

P |A $ pE1 E2q : τ ù pE1
1 E1

2q

pabsq
P |Azx, x : τ1 $ E : τ2 ù E1

P |A $ pλx.Eq : τ1 Ñ τ2 ù pλx.E1q

pletq

m : P 1|A $ E1 : τ 1 ù E1
1

P |Azx, x : σ1 $ E2 : τ ù E1
2

σ1 � GenpA,P 1 ñ τ 1q

P |A $ plet x � E1 in E2q : τ ù plet x � λm.E1
1 in E1

2q

precordq
P |A $ Ei : τi ù E1

1
@i P 1..n @i, j P 1..n . i   j Ñ li   lj

P |A $ tl1 � E1, . . . , ln � Enu : tl1 : τ1, . . . , ln : τnuù t|E1
1, . . . , E

1
n|u

pselq
P |A $ E : tl : τ, rowuù E1 P ,M : row # l

P |A $ E.l : τ ù index�ME1

pextractq
P |A $ E : tl : τ, rowuù E1 P ,M : row # l

P |A $ Ezl : trowuù extract
 M E1

Figure 6.7: Compilation rules
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when we are not interested in the evidence for a predicate, we may omit it and use

the old form instead.

A predicate entailment judgment is written:

P , M : π

which denotes that P entails predicate π with evidence M .

Theorem 6.3.2 (Type Preservation). If P |A $ E : η ù E 1, then using the

target language type rules, P |A T$ E 1 : η.

Proof. By induction on the structure of derivations. For each rule, the result follows

immediately from the induction assumptions.

We wish to also show that translation preserves the semantics of terms as well

as their types. For base types, we would like the source and target values to be

identical. For records, the essential difference between source and target is that the

target value has no labels and the fields are ordered. We need to lift this equivalence

to all types, qualified types, and type schemes. To do this, we use the notion of

logical relations; the development is similar to that of Ohori’s in [40, 41].

We define a family of relations R, indexed by type, which relate source and

target terms of that type. We denote the set of source terms of type τ by Termτ
Src

and the set of target terms by Termτ
Tgt . These are defined:

Termτ
Src � tE | $ E : τu

Termτ
Tgt � tE | $ E : τu

We cannot use this definition for qualified types or type schemes, because there

are no source judgements which state that an expression is of some qualified type
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or type scheme. Therefore, we will define these terms somewhat differently. For

qualified types, we define

Termπñτ
Src � tE | π|H $ E : τu

Termπñτ
Tgt � tE | $ E : π ñ τu

and for type schemes

Term@α.σ
Src � tE | @τ.E P Term

rαÞÑτ sσ
Src u

Term@α.σ
Tgt � tE | @τ.E P Term

rαÞÑτ sσ
Src u

Let R be a family of binary relations tRty � Term ty
Src � Term ty

Tgtu, where ty is

either a type, qualified type, or a type scheme. We define R by induction on ty :

pE, E 1q P Rty where E ÞÝÑÑ V and E 1 ÞÝÑÑ V 1,

if one of the following holds:

1. ty � t, then V � V 1.

2. ty � τ1 Ñ τ2, and, for any pE0, E
1
0q P Rτ1 , pV E0, V

1 E 1
0q P Rτ2 .

3. ty � tl1 : τ1, . . . , ln : τnu, V � tl1 � V1, . . . , ln � Vnu, V 1 � t|V 1
1 , . . . , V

1
n|u, and

pVi, V
1
i q P Rτi for 1 ¤ i ¤ n.

4. ty � π ñ τ , and, for all M such that ,M : π, pV, V 1 Mq P Rτ .

5. ty � @α . η, and for all τ , pV, V 1q P RrαÞÑτ sη.

A value environment is a mapping from variables to values. Specifically, a source

value environment ES maps variables to source values. A target value environment

ET maps variables to target values. We extend target value environments to a

mapping from both regular and evidence variables to regular and evidence values,
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respectively. We write ET
P for the target value environment whose domain is ex-

tended to the evidence variables in predicate set P and where , ET
P pmq : π iff

m : π P P . We extend R to pairs of value environments, where pES, ET q P RA iff

for any x : σ P A, pESpxq, ET pxqq P Rσ. We use ESpEq to indicate the result of

replacing each free variable x in E by ESpxq, and similarly for target environments.

We can now state our theorem:

Theorem 6.3.3 (Semantics Preservation). If P |A $ E : τ ù E 1, then for any

ground substitution θ such that , θP , and for any pair of value environments

pES, ET
P q P RθA, pE, E 1q P Rτ .

We cannot easily augment the entailment algorithm described in section 5.5

with evidence. Instead, we take a different approach, described in section 6.4.

Figure 6.10 gives the implementation of various possible record operations.

6.4 Predicate entailment with evidence

In chapter 5, we presented an algorithm which determines, given sets of predicates

P and Q, whether P , Q. Unfortunately, we cannot use this algorithm to generate

evidence values, because the algorithm uses the methods of classical as opposed to

intuitionistic logic. Intuitionistic logic grew out out the philosophy of intuitionism

first espoused by Brouwer [5, 6].

An exemplar of the difference between classical and intuitionistic logic is the

law of the excluded middle:

A $ p_ p
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pλx.EqV ÝÑ rx ÞÑ V sE

let x � V in E ÝÑ rx ÞÑ V sE

pλm.EqW ÝÑ rm ÞÑ W sE

extracts W t|V1, . . . , Vn|u ÝÑ t|Vi1, . . . , Vim |u

where W rjs � s iff j P ti1, . . . , imu

if |W | � n

mergeW pt|V1, . . . , Vn|u, t|V
1
1 , . . . , V

1
m|uq ÝÑ t|V 2

1 , . . . , V 2
n�m|u

where V 2
i �

$''&
''%

V|W r1..is|
 if W ris � 


V 1
|W r1..is|�

if W ris � �

if |W | � n�m

indexsW t|V1, . . . , Vn|u ÝÑ Vi

where W ris � s and W rjs � s for all j �� i

if |W | � n

Figure 6.8: Notions of reduction for “regular” expressions

This rule is present in classical logic, but not in intuitionistic logic. The philo-

sophical difference between the two camps is that in classical logic, the raison

d’être2 of a proof is to establish the truth of a formula, while in constructive logic,

its purpose is to construct a mathematical object that exemplifies, or bears witness

to, the formula. Specifically, in classical logic, in order to prove that a formula is

always true, we need to show that it is true for all possible instantiations of the

free variables. In constructive logic, we construct a proof object that computes a

witness value that shows the formula is true. For example, to constructively prove

2Or “reason deeter”, as I like to pronounce it.
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flippW q ÝÑ W

mrgs p
i1 ,
i2q ÝÑ 
i1�i2

mrgs p�i1 ,�i2q ÝÑ �i1�i2

mrgs pW1,W2q ÝÑ spanss�1
pspansspW1q � spansspW2qq

if | spansspW1q| � | spansspW2q|

xtrcts W1 W2 ÝÑ merge-extract s pW1,W2q

if |W2|
s � |W1|

where we define spans s and merge-extract s as follows:

spansspsn � s � vq � n � spansspvq

spansspsnq � n

merge-extract s pW, s �W 1q � s � pmerge-extract s pW, W 1qq

merge-extract s ps �W, s �W 1q � s � pmerge-extract s pW, W 1qq

merge-extract s ps �W, s �W 1q � merge-extract s pW, W 1q

merge-extract s px y, x yq � x y

Figure 6.9: Notions of reduction for evidence expressions
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Operation : Type

� Implementation

.l : @α, ρ . ρ # l ñ tρ, l : τu Ñ α

� index�

zl : @α, ρ . ρ # l ñ tρ, l : τu Ñ tρu

� extract


& : @ρ1, ρ2 . ρ1 # ρ2 ñ tρ1u � tρ2u Ñ tρ1, ρ2u

� merge

|&| :
@ρ1, ρ2, ρ3 . pρ1 # ρ2, ρ2 # ρ3, ρ1 # ρ3q

ñ tρ1, ρ2u � tρ2, ρ3u Ñ tρ1, ρ2, ρ3u

� λm12.λm23.λm13.

λpx12, x23q .merge pmrg� pm12,m13qq pextract� m12 x12, x23q

&& :
@ρ1, ρ2, ρ

1
2, ρ3 . pρ1 # ρ2, ρ2 } ρ12, ρ2 # ρ3, ρ1 # ρ3q

ñ tρ1, ρ
1
2u � tρ2, ρ3u Ñ tρ1, ρ2, ρ3u

� λm12.λm23.λm13.

λpx12, x23q .merge pmrg� pm12,m13qq pextract� m12 x12, x23q

thinp q : @ρ, ρ1 . ρ1 � ρ ñ tρ1u Ñ tρu

� extract�

Figure 6.10: Record operations
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p^ q, we need a proof of p and a proof of q. For p_ q, we need a proof of either p

or q, and an indication of which sub-proposition it is a proof of. Clearly, the rule

of excluded middle cannot be proven in this way, because we do not know which of

two alternatives is in reality true. The Ñ connective is particularly interesting. To

prove pÑ q, we need a procedure that transforms a proof of p into a proof of q.

Another example of the difference between classical and constructive logic in-

volves the treatment of double negation. In classical logic, both of the following

are axioms,

p ùñ   p

  p ùñ p

whereas only the first is valid in constructive logic. To see this, it is necessary

to understand that negation in constructive logic has a different meaning than

the familiar classical one. In classical logic,  p is true if the formula is false; in

constructive logic,  p is true if it is not possible to prove p. A double negative

applied to a formula p then, means that it is impossible to prove that a proof of

p is impossible. The first rule above makes sense in this interpretation: if we have

a proof of p, it is definitely impossible to prove that a proof of p is impossible.

However, the second rule is not justified. Just because we have a proof that it is

impossible to prove that a proof of p is impossible does not automatically mean

that we have a proof of p.

Strictly more formulas are provable in classical logic than in constructive logic.

In exchange for this, however, constructive proofs have more information than

classical proofs, because they show not only that a formula is true, but also how to

construct a witness of it, i.e., a mathematical object that exemplifies the truth of
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the formula. It is precisely this additional information that we will require for the

compilation of our record calculus.

In our case, one step of our entailment algorithm which is not constructive is the

transformation from row predicates to field predicates. We first show an example

where the transformation is not a problem.

If we know, a priori, that there are exactly three labels in a program, denoted

tlp1q, lp2q, lp3qu, and we have a predicate lset1 # lset2, this predicate will have three

slices, with an evidence value associated with each slice. The evidence for each slice

will either be an empty vector or a single 
 or � element. We use the same notation

for evidence at a slice as for other sorts of slices, i.e., M@l denotes the slice of M

at l . We can merge the evidence slices in a straightforward manner, namely:

M � M@lp1q �M@lp2q �M@lp3q

We can do this because we know, by definition, that lp1q   lp2q   lp3q.

However, in general, we do not know the complete set of labels, and hence we

need the “extra” label lp0q, which we use to stand in for the set of labels which do

not explicit appear. Because we have no way of knowing what the labels of these

fields are, and how they are ordered with respect to the known labels, we cannot

determine how to merge the evidence value at this slice with the others.

This difficulty does not exist for the other predicate forms, because we do not

require evidence values for those.

Our strategy is to use the algorithm described in the previous chapter for entail-

ment of labelset and row equality predicates. This is summarized in Figure 6.11.

We also modify the well-formedness judgment to incorporate evidence values:
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pparallelq
P æ lset1 } lset2

P , lset1 } lset2

pequalq
P æ row 1 � row 2

P , row 1 � row 2

Figure 6.11: Equality predicate inference rules

for each premise of the form P , row 1 # row 2 in the well-formedness rules, we

substitute the judgment P , M : row1 # row2.

For disjointness predicates, we use entailment inference rules augmented with

evidence. We start by giving a set of inference rules for all merge expressions in

Figure 6.12.

As is typically the case, these rules cannot be used directly, because they do

not specify an algorithm. We can, however, restrict the order in which the rules

are applied in such a way as to guarantee termination. To this end, we first de-

scribe a naive entailment algorithm for disjointness predicates, and then describe

refinements.

For this, we need to have a notion of equivalent evidence expressions. We say

that two evidence expressions M1 and M2 are equivalent, written M1 ≈ M2, if there

exists an evidence value W that both M1 and M2 reduce to.

Using the classical algorithm for the labelset equality predicate enables us to

make inferences which would otherwise be impossible. For example, let P be the
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pelemq
m : π P P

P , m : π

p#-null-nullq P , x y : H # H

p#-labels-leftq
P ,W : pl2, . . . , lnq # pl 11, . . . , l

1
mq l1   pl2, . . . , ln, l 11, . . . , l

1
mq

P , 
 �W : pl1, . . . , lnq # pl 11, . . . , l 1mq

p#-labels-rightq
P ,W : pl1, . . . , lnq # pl 12, . . . , l

1
mq l 11   pl1, . . . , ln, l 12, . . . , l

1
mq

P , � �W : pl1, . . . , lnq # pl 11, . . . , l 1mq

p#-flipq
P ,M : lset1 # lset2

P , pflipMq : lset2 # lset1

p#-merge-leftq
P ,M1 : lset1 # lset P ,M2 : lset2 # lset P , lset1 # lset2

P , pmrg
 pM1,M2qq : plset1, lset2q # lset

p#-merge-rightq
P ,M1 : lset # lset1 P ,M2 : lset # lset2 P , lset1 # lset2

P , pmrg� pM1,M2qq : lset # plset1, lset2q

p#-extract-leftq
P ,M12 : plset1, lset2q # lset P ,M : lset1 # lset2

P , pxtrct
 M M12q : lset1 # lset

p#-extract-rightq
P ,M12 : lset # plset1, lset2q P ,M : lset1 # lset2

P , pxtrct� M M12q : lset # lset1

p#-compatible-}q
P ,M : lset 11 # lset 12 P , lset 11 } lset1 P , lset 12 } lset2

P ,M : lset1 # lset2

Figure 6.12: Disjointness predicate inference rules with evidence
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set of predicates

M12 : ρ1 # ρ2, M13 : ρ1 # ρ3, M34 : ρ3 # ρ4,

M24 : ρ2 # ρ4, M35 : ρ3 # ρ5, M46 : ρ4 # ρ6,

ppρ1, ρ3q } pρ2, ρ4qq, ppρ1, ρ2q } pρ3, ρ4qq, ppρ3, ρ5q } pρ4, ρ6qq

Then ρ2 # ρ5 cannot be derived using the inference rules given in a previous chapter.

It can, however, be derived using classical entailment for } by the derivation:

P ,M : ρ3 # ρ5 P æ ρ3 } ρ2

P , M : ρ2 # ρ5

6.5 Predicate entailment

Entailment of row equality and labelset equality predicates is handled by the al-

gorithm given in the previous chapter. The remaining predicate type is labelset

disjointness.

We first outline a naive algorithm, and then give a refinement. The naive al-

gorithm is an exhaustive search among all possible derivations of a disjointness

predicate. We show how to organize this search so that termination is guaranteed.

Given a set of context reduced predicates P , and a disjointness predicate lset1 #

lset2, the algorithm first applies the context reduction rules to the predicate until

none is applicable. This yields a set of normalized# predicates of the form le1 # le2,

where at least one of le1, le2 is a row variable. A derivation of this predicate, if it

exists, can be written so that it has one of the forms:

 elem,

 elem followed by #-flip,
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 a derivation ending with #-compatible-}, #-flip, and #-extract-left, or

 a derivation ending with #-compatible and #-extract-right.

We can eliminate the first two cases from consideration by checking if either

M : le1 # le2 or M : le2 # le1 are in P . If they are, the algorithm reports success,

with an evidence value of M or flipM , respectively.

We can construct a single derived rule to cover the remaining two cases:

p#-disjointq

P , lset 11 } plset1, lset
2
1q P , M1 : lset1 # lset21

P , lset 12 } plset2, lset
2
2q P , M2 : lset2 # lset22

P ,M : lset 11 # lset 12

P , pxtrct
 M1 pxtrct� M2 Mqq : lset1 # lset2

The algorithm now does a depth-first search, applying the disjoint rule to the

predicate le1 # le2 for each possible value of lset 11, lset21, lset 12, and lset22, which

we call the parameters of the search. The values are taken from the powerset of

LpP qYRV pP q. Each attempt generates two labelset equality constraints and three

disjointness constraints. The former are handled by the entailment algorithm in

the previous chapter, while the disjointness predicates cause a recursive application

of the current algorithm. The algorithm returns failure if all branches of the search

return failure. A branch returns failure if any of the predicates result in failure,

or if a generated predicate is the same as one previously generated along the same

branch of the search. Figures 6.13 and 6.14 give pseudocode for the algorithm.

Since the universe of possible values for the parameters is finite, and the recursive
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ApP, row 1 � row 2q � P æ row 1 � row 2

ApP, lset1 } lset2q � P æ lset1 } lset2

ApP, lset1 # lset2q � ReducepP,H, lset1 # lset2q

ReducepP,D, l # Hq � return


ReducepP,D,H # lq � return�

ReducepP,D, l1 # l2q

| l1 � l2 � return FAIL

| l1   l2 � return 
�

| l1 ¡ l2 � return �


ReducepP,D, ple , row q # row 1q �

case pBpP,D, le # row 1q,

BpP,D, row # row 1q,

BpP,D, le # row qq of

pM1,M2,Mq Ñ return mrg
 pM1,M2q

otherwise Ñ return FAIL

ReducepP,D, row 1 # ple, row qq �

case pBpP,D, row 1 # leq,

BpP,D, row 1 # row q,

BpP,D, le # row qq of

pM1,M2,Mq Ñ return mrg� pM1,M2q

otherwise Ñ return FAIL

ReducepP,D, le1 # le2q � BpP,D, le1 # le2q

Figure 6.13: Entailment algorithm, part 1
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BpP,D, le1 # le2q

|M : le1 # le2 P P � return M

|M : le2 # le1 P P � return flipM

| le1 # le2 P D � return FAIL

| otherwise �

for plset 11, lset
2
1, lset

1
2, lset

2
2q P SearchSpacepP, le1, le2q

if ApP, lset 11 } ple1, lset21qq and

ApP, lset 12 } ple2, lset22qq

then let D1 � D Y le1 # le2

in case pBpP,D1, le1 # lset21q,

BpP,D1, le2 # lset22q,

BpP,D1, lset21 # lset22qq of

pM1,M2,Mq Ñ return xtrct
 M1 pxtrct� M2 Mq

otherwise Ñ continue

end let

end if

end for

return FAIL

SearchSpacepP, le1, le2q � LE � LE � LE � LE

where LE � PowersetpLpP q YRV pP q � tle1, le2uq

Figure 6.14: Entailment algorithm, part 2
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BpP,D, le1 # le2q

|M : le1 # le2 P P � return M

|M : le2 # le1 P P � return flipM

| le1 # le2 P D � return FAIL

|  pP æ le1 # le2q � return FAIL

| otherwise �

for plset 11, lset
2
1, lset

1
2, lset

2
2q P SearchSpacepP, le1, le2q

if ApP, lset 11 } ple1, lset21qq and

ApP, lset 12 } ple2, lset22qq

then let D1 � D Y le1 # le2

in case pBpP,D1, le1 # lset21q,

BpP,D1, le2 # lset22q,

BpP,D1, lset21 # lset22qq of

pM1,M2,Mq Ñ return xtrct
 M1 pxtrct� M2 Mq

otherwise Ñ continue

end let

end if

end for

return FAIL

SearchSpacepP, le1, le2q

� tplset 11, lset
2
1, lset

1
2, lset

2
2q | lset

1
1 P DPSpLEq, lset21 P DPSpLEq,

lset 12 P DPSpLEq, lset22 P DPSpLEq,

lset 11 X lset21 � H, lset 12 X lset22 � H,

lset 11 X lset22 � H, lset 12 X lset21 � Hu

where LE � LpP q YRV pP q � tle1, le2u

DPSpSq � tlset | lset P PowersetpSq,
�
@le1,le2Plset ,le1 ��le2

P æ le1 # le2u

Figure 6.15: Improved entailment algorithm, part 2
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applications of the algorithm use the same universe of values, the search must

ultimately terminate.

The search space, however, is huge. If we do not restrict the chosen values in

some way, the number of possible values for the four parameters is p2Nq4, where

N � |LpP q| � |RV pP q|.

Fortunately, a few observations can restrict the search space and prune the

search tree substantially.

For both the original and generated disjointness predicates, we can prune the

search tree if the non-constructive algorithm reports that the predicate is not en-

tailed, because æ is complete, and therefore, a negative result there precludes the

constructive algorithm from being successful. We can also reduce the search space

from the powerset of labelset elements to the set of well-formed labelsets, i.e. sets

of labelset elements which are mutually disjoint. We can approximate disjoint-

ness by using the non-constructive algorithm. This is the purpose of precomputing

P æ le # le 1 for all distinct ple, le 1q pairs. In addition, the following restrictions

can be enforced:

le1 R lset21 Y lset21 Y lset 12 Y lset22

le2 R lset21 Y lset21 Y lset 12 Y lset22

lset 11 X lset21 � H

lset 12 X lset22 � H

6.6 Constant folding

This compilation procedure will generate index�ME code even for cases where

all the fields of E are known. However, in all such cases, the value of M is stati-
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cally known, and a straightforward constant-folding pass can replace the expression

index�ME with a fixed index operation.

6.7 Concatenation with the empty record

The compilation system described has an unexpected blind spot: evidence for ρ #

H cannot be determined statically. It is clear that the correct evidence in this case

is a vector of length |ρ|, consisting solely of 
 elements. The problem is that we

statically do not know the length of this vector. To rectify this shortcoming, we

can extend our system so that in all cases where the length of the row in question

is not known, but the intention is that all elements of the evidence vector have the

same value (e.g., 
), we use a distinct evidence literal, which we can write such

evidence values as the intended element value with a superscript of �. In the case

above, the evidence would be written 
�.

We need to extend the definition of concatenation of two evidence literals to

incorporate the two new literals. It can easily be shown that we will never encounter

a case where 
� is concatenated with �n or ��. If we think of the superscript � as

denoting an unknown length, it is clear that the concatenation of s� with any literal

is s�. Similarly, the operation � is extended in the obvious way. Reduction rules and

type rules need to be extended, and various proofs need to have additional cases

covered.

An alternative way of handling this situation is to simply have an extra pass

which rewrites expressions of the form e & tu to e.
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6.8 Lazy merging

The compilation scheme we have developed merges record values eagerly. That is,

a new record value is created at the point where a concatenation is invoked. We

may instead choose to delay the actual concatenation until the result is needed.

This is known as lazy evaluation [23] and is used as a general evaluation scheme in

Haskell [45] and earlier, in Miranda [54, 55].

An interesting effect of using lazy evaluation is that various algorithms that

are difficult to express in an eager language can be elegantly expressed in a lazy

language. Laziness makes compilation more difficult, but on the other hand, in

some cases it can lead to more efficient programs, because it avoids computing

results which are not needed.

One pitfall of implementing lazy evaluation is the possibility that an expression

whose evaluation is delayed may inadvertently be evaluated multiple times, negating

any advantage lazy evaluation may have otherwise had. We first give a naive

implementation of non-eager record merging that suffers from this problem, and

then show how this can be corrected.

6.8.1 A naive lazy implementation

The merge operation takes three operands: the two records to be merged, and the

merge vector. A simple lazy implementation of the merge operation would be to

simply package these operands into a tuple. We will call this the merge tuple.

A record, then, would be either a traditional vector of field values, or a merge

tuple. The field extraction operation takes a record and an index, and returns the
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field value at that index in the vector implementing the record. If the record is

represented as a merge tuple, the operation needs to determine which of the two

records in the tuple the desired field is in, and what its index in that record is.

The following is ML pseudocode which implements the data structure and op-

erations:

type value � (� Universal�value�type �)

type merge � bool vector

datatype record � SIMPLE of value vector

| MERGE of merge � record � record

fun merge (m, r1, r2) � MERGE (m, r1, r2)

fun extract (SIMPLE v, i) � sub (v, i)

| extract (MERGE (m,r1,r2), i) �

case splitIndex (m, i) of

(Left, i’) ñ extract (r1, i’)

| (Right, i’) ñ extract (r2, i’)

fun splitIndex (m, i) � if sub (m, i)

then (Right, countOnes (m, i))

else (Left, i � countOnes (m, i))

fun countOnes (m, i) �

let exception Done of int
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in foldli (fn (j,b,count) ñ if j ¥ i

then raise (Done count)

else if b

then count � 1

else count) 0 m

end

countOnes (m, i) counts the number of 1 bits in the slice of vector m from indices

0 up to but not including i. This is a naive implementation. A more practical

implementation would use bit-twiddling tricks known in the folklore such as the

ones described by Manku in [34] or Anderson in [1].

6.8.2 An improved lazy implementation

A problem with the implementation in the previous section is that if we need

to extract a given field from a record more than once, we need to duplicate the

work. It would be better if we could remember the result of the first query so that

subsequent extractions of the same field were fast. This can be done by augmenting

the data structure with an extra datum, which is a mutable vector of fields. Each

field is either not initialized, or contains the correct value for the index it is at.

We assume that there is some way to determine whether a value is initialized. The

implementation is now:

type value � (� Universal value type �)

type merge � bool vector

datatype record � SIMPLE of value vector
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| MERGE of (value option array �

merge � record � record)

fun merge (m, r1, r2) �

let val initVals � Array.array (NONE, Vector.length m)

(� initVals is an array with all elements initialized

to NONE �)

in MERGE (initVals, m, r1, r2)

end

fun extract (SIMPLE v, i) � v[i]

| extract (MERGE (a, m, r1, r2), i) �

(case a[i] of

NONE ñ let val e � extract’ (m, r1, r2, i)

in a[i] :� e;

e

end

| SOME e ñ e)

and extract’ (m, r1, r2, i) �

case splitIndex (m, i) of

(Left, i’) ñ extract (r1, i’)

| (Right, i’) ñ extract (r2, i’)

fun splitIndex (m, i) � if sub (m, i)
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then (Right, countOnes (m, i))

else (Left, i � countOnes (m, i))

fun countOnes (m, i) �

let exception Done of int

in foldli (fn (j,b,count) ñ if j ¥ i

then raise (Done count)

else if b

then count � 1

else count) 0 m

end

Each concatenation creates a new merged record node, which has as children two

other merged record nodes, which may have other records as children themselves.

An important point is that an update anywhere within this tree reduces the amount

of work necessary to extract that field for any ancestor record.

6.9 Compilation into maps

An alternative to compiling into tuples is to discard the type information in the

compilation, and compile each record into a map, where the keys are the record

labels. There are a number of map implementations to choose from, with different

trade-offs among the time required to access a field, extend a record, and concate-

nate two records. Another consideration is the typical usage pattern and sizes of

records in an application. Several reasonable candidates are:
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 association list This may be the best choice if most records contain only

a handful of fields, in which case the overhead of creating and traversing a

balanced tree would not be overcome by its improved asymptotic performance.

 mergeable maps Described in [43], this is a persistent [14] balanced tree

implementation of a map, based on Patricia trees [39], which has the charac-

teristic that merges of two maps are fast.

In any case, type predicates would be discarded during the compilation process.

They would only serve the purpose of ensuring type correctness.

6.9.1 A second look

There is yet a third alternative: to compile into maps, but compile the type predi-

cates into some sort of information that helps speed up various record operations.

I explore this possibility for the case of maps implemented as balanced trees. For

this approach to be possible, knowing the type of the record, or, more precisely, the

labels that occur in the record fields must be enough to completely determine the

“shape” of the tree. A splay tree [53], for example, would not be suitable, because

the path from the root to the leaf where the value associated with a particular field

is located can vary, even among splay trees that represent the same exact record

value.
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Chapter 7

Related work

A fair amount of research has been done into type systems for records. A signif-

icantly smaller amount has been done on compilation of such systems. We start

by reviewing the support for records provided by a number of general purpose

programming languages.

7.1 Programming Language Implementations

7.1.1 C

Most programming languages provide support for records. Virtually all statically-

typed traditional imperative languages such as C, C++, and Ada have a very

similar design for records. In these languages, record types are generative. That is,

each definition of a record type generates an entirely new type. Two record type

definitions are considered distinct, even if they describe record types that have

exactly the same fields. Because of the similarities, we will consider records in C.
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If we have the declarations

typedef struct {

int i;

char c;

double z;

} A;

typedef struct {

int i;

char c;

double z;

} B;

A a1, a2;

B b;

then the assignment

a2 � a1;

is valid, but

b � a1;

is not. Another way to describe this is to say that record types obey name equiva-

lence in these languages. The only record operations provided are field access and

imperative field update. There is no polymorphism, except for those languages that

have object oriented features. In such languages, records can be modeled as objects
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with all public fields, and subtype polymorphism is available.

Records in such languages are laid out in memory as a sequence of field values,

modulo padding to ensure proper alignment of each field. There is no reason to

keep field names at runtime. For objects, there may be additional information to

keep track of associate methods and inheritance hierarchies.

7.1.2 ML

In ML, record types are not generative, and therefore record types do not need to

be defined in order to create record values. This significantly increases the ease of

using records. The declaration

val p � { name � "Joe", age � 28, height � 71 }

is a record with fields name, age, and height. Its type is

tname : string, age : int, height : intu

To access the field age, we use the appropriately named field selector function:

#age p

We can also use pattern matching to match on only a subset of a record’s fields.

For example,

fun canDrink { age � a, ... } � a ¥ 21

The pattern { age �a, ... } will bind to any record with an age field, and

bind a to the value of that field. Unfortunately, despite the promise of the syntax,

canDrink is not polymorphic. The ML type system is not expressive enough to

give a properly polymorphic type to this function. In fact, the way it is written, it
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will not typecheck due to ambiguity. This is one of the few instances in ML where

a type declaration is needed to disambiguate the type:

fun canDrink { age � a, ... }

: { age : int, name : string, height : int}

� a ¥ 21

Another limitation of ML is the lack of support for record update. In imperative

languages, fields of records can be updated in place. In functional languages, of

course, in-place update is not the modus operandi. Instead, a new record value

is constructed which has the same fields and values as the old one, except for the

field whose value we want to change. Because ML does not have any polymorphic

record operations, this is not a limitation of the type system, but simply a matter

of syntax. Instead of a succinct syntax for this operation, to construct the new

record, we need to explicitly construct it by specifying the values of each field.

7.1.3 Haskell

In Haskell, records are inextricably tied to individual datatypes. An example of the

use of records is:

data Person � P { name :: String, age :: Int, height :: Int }

This defines a new type called Person, a data constructor called P, and field

accessor functions:

name :: Person Ñ String

age :: Person Ñ Int

height :: Person Ñ Int
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A value of type Person can be constructed by using either positional or record

syntax. For example

P { age � 28, name � "Joe", height � 71 }

P "Joe" 28 71

both construct the same value. Similarly, the same choices are available for pattern

matching:

case e of P { name � n, height � h, age � a } ñ a�1

case e of P a n h ñ a�1

The selector functions and pattern matching deconstructors are specific to the

type Person; they cannot be reused for other types in the same namespace. In

summary, records in Haskell are essentially a convenient alternative syntax for

tuples.

Unlike ML, however, Haskell does provide a convenient syntax for functional

record update. If p is a value of type Person, then

p { age � age p � 1 }

constructs a new Person value with the age field incremented. Mark Jones and

Simon Peyton Jones propose a change to Haskell records in [28]. This proposal

outlines a system that is essentially the one presented in [18], with various details,

largely of a syntactic nature, that make it smoothly integrate with Haskell’s type

system. This proposal is not compatible with Haskell’s current support for records;

this seems unavoidable.
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7.1.4 OCaml

Records in OCaml [32] are generative, just as in Haskell. Unlike the case in Haskell,

however, records are not associated with specific datatypes.

In the cases where records are generative, records are implemented as sequences

of field values, in the same order as they are declared. For Haskell, because records

are associated with a particular variant of a datatype, the “record” value may also

need room for a tag. For ML, which has non-generative record types on the other

hand, we need to have an order for the fields which is independent of the order

they are declared in; an obvious choice is to order the fields by sorting them by

their labels. This is necessary to ensure that different record values which have

the same type, which may be defined with their labels in differing orders, have the

same memory layout.

7.2 Research

A great deal of research has been done on type checking and inference for type

systems incorporating records. The systems support a wide variety of capabilities,

ranging from basic field selection and record extension to more advanced operations

including concatenation and natural join, to esoteric capabilities such as first-class

labels. Several approaches have been studied, including bounded polymorphism,

rows, and predicates.
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7.2.1 Bounded polymorphism

A number of systems [41, 44, 62] support record polymorphism via a bound on the

type variables. In most of these, the bound on the type variable specifies that the

type is any record that includes a particular field or fields. These systems also

typically include the subsumption rule:

psubq
A $ E : τ 1 A $ τ 1 ¤ τ

A $ E : τ

where τ 1 ¤ τ denotes that τ 1 is a subtype of τ . In terms of records, there are two

distinct forms of subtyping:

 width: If record A has all the fields of record B, and possibly others, A is a

subtype of B.

 depth: If all the fields of record A are either subtypes of the fields of B or not

present in B, then A is a subtype of B. (Any system that has depth-subtyping

must also support width-subtyping.)

Subsumption has advantages and disadvantages. The advantage is that a limited

form of polymorphism is available “for free”, without even mentioning it in the type.

The disadvantage is that, like King Midas’ touch [52], it is impossible to turn it

off1.

Furthermore, there are implementation issues. Subsumption can either be im-

plemented by coercing the value of the subtype to the supertype, or by passing

1Unlike in the myth, there is no river Pactolus where subsumption can be washed off.
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the value as is and “forgetting” about the existence of some of its fields. The lat-

ter sounds more attractive, except that now we cannot efficiently access fields of

a record, even if the type of the record is statically known. This is because the

actual value may be a larger record where some of the fields have been forgotten.

Accessing the specified field now incurs a non-trivial run-time cost.

Cardelli and Mitchell [8] describe one of the earliest record type systems, called

λ}. This system supports symmetric concatenation, but, unlike our system, requires

explicit type abstraction and application. Bounded quantification is used, but

rather than specifying subtyping bounds, the bound is disjointness.

7.2.2 Rows

Remy introduced the concept of rows in [47] and also used them to good effect

in [48]. A row represents the set of fields in a record (or variant, for those systems

that support variants as well). This is a significant improvement over subtype-based

bounded polymorphism. In a system with subtype-based bounded polymorphism,

we can specify that an argument must be a record which contains a particular field:

@α ¤ ta : τu. . . . α . . .

In a system with rows, we can express the same constraint:

@ρ. . . . ta : τ, ρu . . .

but we have an additional piece of information; namely ρ, which represents the rest

of the fields in the record. We can use ρ in other parameters or in the result type,

thus expressing richer constraints than are possible with bounded polymorphism.
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For example, using rows, we can give a type to an operation that renames the field

with label a to a field with label b for an arbitrary record:

@α, ρ . ta : α, ρu Ñ tb : α, ρu

Using only bounded polymorphism, the best we can do is write:

@α, β ¤ ta : αu, γ ¤ tb : αu . β Ñ γ

This type is not quite correct, however, because there is no guarantee that the

fields in β and γ are in any way related.

In [47] Remy defines a row to be a finite map from labels to one of PREpτq or

ABS. The former indicates that the label is present and has a type of τ , while the

latter indicates that the field is absent. Furthermore, the system offers abstraction

(i.e., variables that range) over PREpτq and ABS:

θ ::� PREpτq

| ABS

This has the result that Remy’s system can support an operation that we cannot:

exchangeaØb : ta : θa, b : θb, ρu Ñ ta : θb, b : θa, ρu

This exchanges two fields in a record, whether or not they exist. In addition,

just as in our system, both strict and non-strict record extension and field removal

are supported. On the other hand, Remy’s system does not support concatenation.

In [48], Remy presents a slightly different system, where for all but a finite set of

fields, each field of a record may have a default value.
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7.2.3 Predicates

Predicates generalize bounded polymorphism by separating the bound on a type

variable from its binding. This has two distinct advantages:

1. One can specify multiple-type relations.

2. If one has a type scheme of the form @α.@β. . . ., then one can express con-

straints on β in terms of α, and constraints on α in terms of β. With bounded

polymorphism, only the former is possible, because variables need to be bound

before we can use them.

In [58,59], Wand and Mitchell anticipate predicates by describing a system which

supports concatenation by generating sets of pC, σq pairs for each expression, where

C is a set of constraints, and σ is a familiar type scheme. This is the forerunner

to Jones’ pP |σq notation. An example Wand and Mitchell give for the necessity of

generating a set of pC, σq pairs, rather than just one is in [58]:

Consider the term

λxy . ppx||yq.a� 1q

... This term does not have a principal type in any known system ... We

shall show its types are generated by two type schemes.

Note that our system is able to give this term a single most general type. In

fact, we used a similar example to motivate our need for the row equality predicate
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on page 50. This predicate allows us to infer a single most general type for the

example above, namely

@ρ1, ρ2, ρ . pρ1, ρ2q � pρ, a : intq ñ tρ1u Ñ tρ2u Ñ int

In [21], Harper and Pierce present a system that uses the disjointness predicate

and supports strict concatenation. This system, however, does not support type

inference; unlike ours, it is explicitly typed.

One system which supports natural join and several other database operations

is described by Ohori and Buneman in [7]. Rather that full predicates, a system of

“kinds” is used to restrict the instantiation of type variables. For example,

fun name x � x.Name

is assigned the type

@α :: rName : βs . αÑ β

α is limited to record types which contain an Name field. This sort of kind can be

seen as a restricted form of predicate; namely a unary relation on types. This is

also similar to systems which support record polymorphism via subtyping, except

that the subsumption rule is not present in this system. This system supports

type inference, but the database operations use special inference rules rather than

simply having some particular polymorphic type. In our system, there are no special

inference rules for these operations; they can be assigned a type scheme just like

other functions.

Ohori and Buneman describe a similar system in [42] where recursive concate-

nation is supported. This is a form of non-strict concatenation where, instead of
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picking the value of the second operand’s field for those fields which exist in both

operands, both fields are themselves recursively concatenated. For example, given

x � ta � 1, b � ti � 2, k � 3u, c � 4u

y � tb � tj � 5u, d � 6u

the concatenation of x and y would result in

ta � 1, b � ti � 2, j � 5, k � 3u, c � 4, d � 6u

Unfortunately, this complex capability comes at a price: types in record fields

cannot include function types. Our system has no such limitation.

In [62], Zwanenburg describes a system that supports the equivalent of our

compatible concatenation. Unlike our system, Zwanenburg’s system includes the

subsumption rule, and deep record subtyping. Type variables in type schemes are

given both subtyping and compatibility bounds. A compatibility bound, written

R # S, means that R and S have the same type for each label they have in common.

(Note that this is different from the meaning of # in our system.) However, there

is no type inference; type application and abstraction is explicit.

In [44], Palsberg and Zhao describe a system with a fast (Opn5q) type inference

algorithm. It has two forms of record type parameters: one for which exact field

information is available, and another which is known only to be a subtype of a

specific record type. Only width subtyping is supported. The former record type

can be concatenated; the latter cannot. Types may also be recursive, in order to

support OO programming.

Gaster and Jones describe polymorphic record system in [18] that supports

polymorphic record update and extension, but unlike our system, no concatenation.

178



Not surprisingly, predicates are used to constrain type variables. Like our system,

Gaster and Jones’ system offers full type inference.

Predicates are orthogonal to rows and can be combined to good effect (as in our

system).

We can divide the record type systems into those that support some sort of

concatenation operation and those that do not. Because concatenation is considered

the most difficult of the basic record operations, the earlier systems either do not

have it or have other serious limitations.

One of the earliest descriptions of an advanced record type system is given in

[9], which defines a second-order language with records, based on System F. This

language has subtyping and bounded quantification, which is a subtyping bound on

a type variable. It is explicitly typed, and does not solve the polymorphic record

update problem.

In [49], Remy gives an encoding of records that emulates record concatenation

in any language that supports record extension. Records are encoded as functions

that extend their argument with the fields in the record. For example, the record

ta � 5, b � ”hi”u

would be encoded as:

λr . r with ta � 5u with tb � ”hi”u

which has the polymorphic type:

@t.ta : ABS, b : ABS, ρu Ñ ta : PREpintq, b : PREpstringq, ρu
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System TI RU RE SC CC UC NJ CM

Remy [47] X X X

Wand [58] * X X X

Harper and Pierce [21] X X X

Ohori and Buneman [7] X * *

Zwanenburg [62] X X X

Palsberg and Zhao [44] X X X X

Cardelli and Mitchell [8] X X X

Gaster and Jones [18] X X X X

Our system X X X X X X X X

Key:

TI Type Inference

RU Polymorphic Record Update (r update { l �v })

RE Polymorphic Record Extension (r with { l �v })

SC Strict Concatenation (r1 & r2)

CC Compatible Concatenation (r1 |&| r2)

UC Unrestricted Concatenation (r1 && r2)

NJ Natural Join

CM Compilation Method

X System has feature

(blank) System does not have feature

* System has a restricted form of the feature

Figure 7.1: Record system comparison
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Unfortunately, this “free” capability has a significant limitation2. Because the

type of a record’s encoding is a polymorphic function, when passed as an argument,

it becomes monomorphic, and therefore cannot be applied to two different record

types. For example, If we pass the above record to the function

fun f a � (a || { x � 5 },

a || { y � 6 })

where || is Remy’s concatenation function, we would get a type error, because,

within the function f, a has a monomorphic type of the form

ta : ABS, b : ABS, ρu Ñ ta : PREpintq, b : PREpstringq, ρu

for some particular ρ. Unfortunately, f demands that a be used in a context where

ρ is x : int, as well as a context where ρ is y : int.

Significantly less research has been performed on compilation methods for record

type systems or record representation. In [50], Remy explores how extensible

records can be represented. He suggests a scheme where each record value is an

array of values; the first is a pointer to a header which is used to determine the

position of a field value given its label, and the rest are the field values. The header

can be shared among all records of the same type, so it need take up only one

“slot” per record value. The header is essentially a hash table that maps integers

representing field names to indices into the rest of the record array.

Gaster and Jones [18] describe how to translate the predicates in their system

into evidence values. Records are represented as sequences of field values, sorted

2One of many examples of the notion of TANSTAAFL, i.e. “There ain’t no such thing as a free lunch”.

See [22] for details and examples of this principle
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by an order on labels. An example is the type for the field selection operation for

label l :

@α, ρ . ρzl ñ tl : α, ρu Ñ α

The predicate ρzl specifies that row ρ is prohibited from having a field with label

l . This predicate is translated into the index into the sequence of fields represented

by ρ where a field with label l would be inserted. The correctness of the translation

is not proven. Our system can be seen as an extension of this work, where evidence

values are essentially bit vectors rather than indices, and allow for concatenation

of record values in addition to field selection.

The most complete and thorough presentation of a compilation method for

records is given in [41], where Ohori defines a record calculus that supports poly-

morphic update and field selection, and translates this implicitly typed language

into an explicitly typed, Church-style implementation calculus. Just as in ours,

in Ohori’s implementation calculus, records are represented as sequences of field

values. Ohori’s system does not allow polymorphic record update, but does al-

low polymorphic field selection. Type variable bounds, which specify which field a

record is required to have are translated into index values. The correctness of the

translation is proven. Our system can be seen as an extension of this system, as it

is somewhat more limited than the system described by Gaster and Jones.
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Chapter 8

Conclusion

In conclusion, we have developed and investigated a powerful polymorphic record

calculus, and presented both a type inference scheme and a compilation method.

The central problem in the type inference algorithm was predicate entailment; we

have shown two methods of computing entailment, one of which was suited for the

compilation method shown.

8.1 Future work

There are a number of directions in which these results could be extended. An

alternative compilation method may use a representation of records different from

a simple sequence of field values, and therefore also a different representation of

predicate evidence. In particular, perhaps there is a way to support a faster con-

catenation operation while not compromising on the speed of more basic operations

such as field access. Our compilation method assumed that each field value occu-

pied a slot in an array. This corresponds to a simple implementation of polymorphic
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values, known as boxing. It would be useful to be able to apply unboxing optimiza-

tions to this representation, which presents challenges to representing predicate

evidence.

With respect to the type system itself, there are several small extensions that

we conjecture are possible:

 Extending the system to variants, which can be considered the dual of records

 Providing advanced pattern matching to match the available record opera-

tions. For example, allowing record extension and/or concatenation patterns

would be useful.

 Incorporating recursive types, to provide true OOP capabilities.

In Chapter 5, we discussed simplification of field predicates and gave a number

of simplification rules. All of the rules simplified individual predicates. One topic

that can be explored is the possibility of rules which consider multiple predicates

during simplification, using the ideas in [24]. For example, we can simplify the pair

of predicates:

ppρ, ρ1q � l : τq, ppρ, ρ2q � l : τq

by applying the substitution rρ2 ÞÑ ρ1s, yielding the singleton predicate set pρ, ρ1q �

l : τ .

It remains to be seen whether it is possible to combine Remy’s PREpτq{ABS

fields with our row variables. This would allow us to type the exchange operation

that our system cannot. Other powerful extensions would be first-class labels and

higher level operations on rows, both from [18].
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Appendix A

Summary of Notation

ra1 ÞÑ b1, . . . , an ÞÑ bns Substitution mapping ai to bi for all i P 1..n, and any

other variable to itself

α, β Type variables

ρ Row variable

row Row metavariable

l Label metavariable

lpiq Label

Lpxq Set of labels in entity x

L�pxq Set of labels in entity x and an extra label

θ Substitution metavariable

lp Label presence

lpe Label presence element

185



fld Field

fe Field element

LP Set of label presences

φ Field metavariable

φpρ, lq Field variable, indexed by row variable ρ and label l

fld{LP Restricted field

lp{LP Restricted field

I An interpretation, i.e., a mapping of variables to values

IrrKss Semantics of entity K under interpretation I

E Term metavariable

V Value metavariable

|v| Length of vector v

�,
 Vector evidence elements for #

s Merge metavariable

x s, . . . , s y Literal merge value

s, W Negated merge element and value, respectively

vris ith element of vector v

vri..js Vector consisting of ith through jth elements of v

v1 � v2 Vector concatenation

v1 � v2 Pointwise vector sum

π A single predicate
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F, G, H Sets of field predicates

P, Q, R Sets of row predicates

A Sets of type assignments, i.e., finite maps from

variables to types or type schemes

Azx A without x

K Metavariable for any entity

X, Y Sets of variables

ÝÑ
K A sequence or set of entity K. Often used as a

shorthand for K1, . . . , Kn

C, E Expression contexts

m Evidence variable

M Evidence expression

W Evidence value

t|E, . . . , E|u Translation of record expression in target language

TVpxq Free type variables in x

RVpxq Free row variables in x

FVpxq Free field variables in x

TRVpxq TVpxq Y RVpxq

TFVpxq TVpxq Y FVpxq

X ù Y Functional dependency: Y is functionally dependent

on X
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E1 ÝÑ E2 Notion of reduction; can also be used with evidence

expressions

E1 ÞÝÑ E2 Single evaluation step

E1 ÞÝÑÑ E2 Zero or more evaluation steps

evalpEq Value that E evaluates to

ES, ET Source and target value environments

188



Appendix B

Proofs

This chapter contains detailed proofs of various theorems in the dissertation.

To aid readability, the theorems are repeated in their entirety before each proof.

B.1 A Second-Order Record Calculus

Proposition 4.4.1 (Well-formedness). For any well-formed predicate set P ,

1. if prow1, row2q occurs in P , then P , row1 # row2.

2. if plset1, lset2q occurs in P , then P , lset1 # lset2.

Proof. Considering conclusion (1) above, if prow 1, row2q occurs in P , then P �

P 1Ytrow � row 1u, or P � P 1Ytrow �row 1u, where one of row , row 1 is prow1, row 2q.

Without loss of generality, let row � prow1, row2q. Then, by WF-pset-� or

WH-pset-�, we must have P 1 $ row ROW and P 1 $ row 1 ROW, implying that

P 1 $ prow 1, row2q ROW. By WF-row-union, P 1 , row 1 # row2, and hence that

P , row1 # row2.
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We can prove conclusion (2) using the same reasoning, but by using one of

the rules WF-pset-# or WF-pset-} in the first step, and WF-lset-union in the

second.

Theorem 4.6.1 (Preservation of Well-Formedness). The type rules preserve

well-formedness. That is, for every type rule which concludes P |A $ E : τ , if any

predicates, type assumptions, and types appearing in the premises or introduced in

the conclusion are well-formed, then P , A|X, and τ are well-formed, where X is

the set of free variables in E.

Proof. For each of the rules, this follows immediately from the well-formedness of

the premises and the WF-type-� rules.

Lemma B.1.1. If τ , row and τ 1 are well-formed, then so are rα ÞÑ τ sτ 1 and

rρ ÞÑ rowsτ 1.

Proof. This follows by induction on the structure of well-formedness type and row

derivations.

Observation. We will make use of the following observations, which follow

from inspection of the type equality rules:

1. If P , τ1 Ñ τ2 � τ , then τ is of the form τ 11 Ñ τ 12, for some τ 11 and τ 12.

2. If P , trowu � τ , then τ is of the form trow 1u for some row 1.

Lemma 4.5.1 (Type Substitution). If P |A $ E : τ , and θ is an arbitrary sub-

stitution, then θP |θA $ E : θτ .
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Proof. This proof is an adaptation of the proof of Proposition 3.10 in [29]. It

proceeds by induction of the structure of a derivation of P |A $ E : τ , and case

analysis of the last rule applied.

Most of the cases are straightforward. Several involve the use of the closure

property of predicates. We demonstrate one such case: sel.

In this case, the last rule applied is:

P |A $ E : tl : τ, rowu P , row # l

P |A $ E.l : τ
sel

We would like to justify the derivation:

θP |θA $ E : tl : θτ, θrowu θP , θrow # θl

θP |θA $ E.l : θτ
sel

The first antecedent, θP |θA $ E : tl : θτ, θrowu, justified by the induction hy-

pothesis. The second, θP , θrow # θl , is justified by the closure property of

predicates.

The cases for app, abs and extract proceed similarly.

The cases for var and let proceed exactly as in the proof of Proposition 5.20

in [26].

Lemma 4.5.2 (Value Substitution). If P |A, x : p@α1, . . . , αn.Q ñ τq $ E : τ 1,

and x R DpAq, P |A $ V : τ and tα1, . . . , αnu X pTRVpAq Y TRVpP qq � H, then

P |A $ rx ÞÑ V sE : τ 1.
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Proof. The proof is an adaptation of the proof of Lemma 4.4 in [61], which is by

induction on the structure of a derivation of P |Azx, x : @α1, . . . , αn.Q ñ τ $ E : τ 1,

and case analysis of the last step.

The main adaptations involve the fact that our judgements have the form

P |A $ E : τ , whereas the proof in [61] has judgements of the form A $ E : τ . This

requires that references to Lemma 4.5 in [61] be replaced by references to the anal-

ogous Lemma for our system, namely, the Type Substitution Lemma.

With this in mind, the cases for abs and let are the same as in the aforemen-

tioned proof. The cases for app, record, sel, and extract are straightforward –

they follow directly from the rule antecedents and the induction hypothesis, be-

cause for each of those rules, the same P and A are used in all antecedents and the

consequent.

This leaves var, which is also a slightly different adaptation of the proof in [61]:

x1 : σ P A pP ñ τ 1q ¤ σ

P |A $ x1 : τ 1
var

If x �� x1, then rx ÞÑ V sx1 � x1.

If x � x1, then, σ � @α1, . . . , αn.Q ñ τ . By var, pP ñ τ 1 ¤ @α1, . . . , αn.Q ñ

τq. By Proposition 3.4 in [26], we can find a substitution θ whose domain is

tα1, . . . , αnu such that θτ � τ 1 and P , θQ. If P |A $ V : τ , and tα1, . . . , αnu X

pTRVpAq YTRVpP qq � H, then P |A $ V : θτ and therefore P |A $ rx ÞÑ V sx : τ 1.

Lemma 4.5.3. Subject reduction If P |A $ E : τ , and E ÝÑ E 1, then

P |A $ E 1 : τ .
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Proof. This proof follows the steps of the proof of Main Lemma 4.3 in [61]. The

differences are that we have more notions of reduction. The proof proceeds by

induction and case analysis on ÝÑ.

Case c V ÝÑ δpc, V q

P |A $ c : τ 1 Ñ τ and P |A $ V : τ 1 by app and the structure of the type equal-

ity rules.

Case pλx.EqV ÝÑ rx ÞÑ V sE

This step is just as in Main Lemma 4.3 in [61].

Case let x � V in E ÝÑ rx ÞÑ V sE

This step is just as in Main Lemma 4.3 in [61].

Case tl1 � V1, . . . , ln � Vnu.lk ÝÑ Vk

We can derive this P |A $ tl1 � V1, . . . , ln � Vnu : tlk : τ, rowu.

We can write the derivation of this as:

P |A $ Vi : τi @i P 1..n

P |A $ t
ÝÝÝÑ
l � V u : t

ÝÝÑ
l : τu

record
P , pl1, . . . , lk�1, lk�1, . . . , lnq # lk

P |A $ t
ÝÝÝÑ
l � V u.lk : τk

sel

We can see that one of the antecedents of this derivation is exactly what we

want, namely, that P |A $ Vk : τk.

Case tl1 � V1, . . . , ln � Vnuzli ÝÑ
tl1 � V1, . . . , li�1 � Vi�1,

li�1 � Vi�1, . . . , ln � Vnu

The proof of this case is analogous to that of the preceding.
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Lemma 4.5.4 (Uniform Evaluation). For closed E, if there is no E 1 such that

E ÞÝÑÑ E 1 and E 1 is faulty, then either E diverges, or E ÞÝÑÑ V .

Proof. The proof of this is an adaptation of the proof of Lemma 4.10 in [61]. The

main difference is that we have more cases.

By induction on the length of the reduction sequence, we need only show that

one of the following cases must hold:

1. E is faulty,

2. E ÞÝÑ E 1 and E 1 is closed, or

3. E is a value.

Note that E ÞÝÑ E 1 iff E � ErE1s, E 1 � ErE 1
1s, and E1 ÝÑ E 1

1.

The proof proceeds by induction on the structure of E. We need only consider

the cases not covered in [61].

Case tl1 � E1, . . . , ln � Enu

Either all Ei’s are values, in which E is a value, or there exists k such that

all Ei for i   k are values, and Ek is not a value. If Ek is faulty, then so is E.

Otherwise, let Ek ÝÑ E 1
k. Then Ek � E∞re2ks, E 1

k � E∞re3k s, and E2
k ÝÑ E3

k .

Then E � ErE2
ks, where E � tl1 � E1, . . . , lk�1 � Ek�1, lk � E∞, lk�1 �

Ek�1, . . . , ln � Enu. Therefore, E ÞÝÑ ErE3
k s.

Case E 1.l
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If E 1 is faulty, then so is E. If E 1 is a value, then by the type rules, the

only sort of value for which we can derive a type for E is a record value:

tl1 � V1, . . . , ln � Vnu, and

Case E 1zl

If E 1 is faulty, then so is E. If E 1 is a value, then by the type rules, the

only sort of value for which we can derive a type for E is a record value:

tl1 � V1, . . . , ln � Vnu, where l � lk for some k P 1..n. Then E ÝÑ Vk.

Otherwise, E 1 ÝÑ E2, and E 1 � E∞E 1
1, and E2 � E∞E2

1 . Then E � tl1 �

V1, . . . , lk�1 � Vk�1, lk � E∞, lk�1 � Ek�1, . . . , ln � Enu, and E ÝÑ ErE2
1s.

Case tl1 � V1, . . . , ln � Vnuzli ÝÑ
tl1 � V1, . . . , li�1 � Vi�1,

li�1 � Vi�1, . . . , ln � Vnu

This follows the same reasoning as the previous case.

Theorem 4.5.1 (Syntactic Type Soundness). If $ E : τ , then E ÞÝÑÑ V and

$ V : τ .

Proof. The proof is the same as the one in [61], except that references to the Uniform

Evaluation Lemma are replaced by references to our version, i.e., Lemma 4.5.4.

B.2 Predicates

Proposition B.2.1.

Irrle@lssLP � l 9P IrrlessLS

Irrre@lssFLD � Irrressplq
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Proof. We consider row and labelset elements separately, and do case analysis on

the form of the element.

First, the labelset elements:

Case le � l 1

Expanding the left side:

Irrl 1@lssLP �

$''&
''%
t if l � l 1

f otherwise

Expanding the right side:

l 9P IrrlessLS � l 9P t�l 1�u �

$''&
''%
t if l � l 1

f otherwise

Case le � ρ

Expanding the left side:

Irrρ@lssLS � Irrφpρ, lqss � l 9P DpIrrρssq

Expanding the right side:

l 9P IrrρssLS � l 9P DpIrrρssq

Secondly, row elements:

Case re � l 1 : τ

Expanding the left side:

Irrpl 1 : τq@lssFLD �

$''&
''%

τ if l � l 1

K otherwise

196



Expanding the right side:

Irrpl 1 : τqssROW � t�pl 1, τq�u

Clearly, both sides of the equation evaluate to τ if l � l 1, and to K otherwise.

Case re � ρ

Expanding the left side:

Irrρ@lssFLD � Irrφpρ, lqss � Irrρssplq

The right side is already in the same form.

Proposition B.2.2.

Irrlset@lss � l 9P Irrlsetss
Irrrow@lss � Irrrow ssplq

Proof. We consider each of the two equations separately.

We start with Irrlset@lss � l 9P Irrlsetss:
Let lset � ple1, . . . , lenq. Expanding the left side,

Irrple1, . . . , lenq@lss � Irrple1@l , . . . , len@lqss

�
�

iP1..n Irrle i@lss

By Proposition B.2.1, this is equivalent to

ª
iP1..n

l 9P Irrleiss

Expanding the right side,

l 9P Irrple1, . . . , lenqss � l 9P
9
¤

iP1..n

Irrle iss
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By the definition of 9Y, this is the same as

ª
iP1..n

Irrlei@lss

Now, we consider Irrrow@lss � Irrrow ssplq:
Let row � pre1, . . . , renq.

Expanding the left side,

Irrpre1, . . . , renq@lss � Irrpre1@l , . . . , ren@lqss

� 9
�

iP1..n Irrre i@lss

Expanding the right side,

Irrpre1, . . . , renqssplq �
9
¤

iP1..n

Irrreissplq

By Proposition B.2.1, these expansions are equal.

Proposition 5.5.1.

Irrπss � @l .Irrπ@lss

Proof. We prove this for each form of predicate separately.

Case π � lset1 # lset2

We need to show that

Irrlset1 # lset2ss � @l .Irrplset1 # lset2q@lss

Expanding the left side:

Irrlset1 # lset2ss � pIrrlset1ss 9XIrrlset2ss � Hq
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By the definitions of 9X, �, and H, we have:

@l . minpIrrlset1ssplq, Irrlset2ssplqq � 0

Therefore,

@l .l � 9P Irrlset1ss _ l � 9P Irrlset2ss

Expanding the right side:

@l .Irrplset1 # lset2q@lss � @l .Irrplset1@lq # plset2@lqss

� @l . Irrlset1@lss _  Irrlset2@lss

By Proposition B.2.2, this is equivalent to

@l .l � 9P Irrlset1ss _ l � 9P Irrlset2ss

Case π � lset1 } lset2

Expanding the left side,

Irrlset1ssLS � Irrlset2ssLS

By definition of �, this is equivalent to

@l .pl 9P Irrlset1ssq Ø pl 9P Irrlset2ssq

Expanding the right side,

@l .Irrplset1@lq } plset2@lqss

@l .Irrlset1@lssLS Ø Irrlset2@lssLS

By Proposition B.2.2, this is equivalent to

@l .pl 9P Irrlset1ssq Ø pl 9P Irrlset2ssq
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Case π � row1 � row2

Expanding the left side,

Irrrow 1ss � Irrrow 2ss

By definition of �,

@l .Irrrow 1ssplq � Irrrow 2ssplq

Expanding the right side,

@l .Irrprow 1@lq � prow 2@lqss

@l .Irrrow 1@lss � Irrrow 2@lss

By Proposition B.2.2, this is equivalent to

@l .Irrrow 1ssplq � Irrrow 2ssplq

Proposition 5.5.2 (Slice well-formedness preservation). If row predicate set

P is well-formed, then so is P@l , for any label l .

Proof. Each pfe1, . . . , fenq occurring in P@l corresponds to a pre1, . . . , renq occur-

ring in P, and is in fact pre1@l , . . . , ren@lq.

Let Q � tre i # rej |1 ¤ i, j ¤ n, i �� ju. Then, by the definition of well-

formedness of row predicate sets, P , Q.

By definition,

pP , Qq Ñ p@I.IrrP ss Ñ IrrQssq.

By Proposition 5.5.1, we also have that

pIrrP ss Ñ IrrQssq Ø @l .IrrP@lss Ñ IrrQ@lss

200



Note that Q@l is tre i@l # rej@l |1 ¤ i, j ¤ n, i �� ju, which is simply tfei #

fej |1 ¤ i, j ¤ n, i �� ju.

Lemma 5.5.2.

|ù @I.p@l .IrrP@lssq Ñ p@l .IrrQ@lssq

Ø |ù @I.p
�

lPL�pPYQq IrrP@lssq Ñ p
�

lPL�pPYQq IrrQ@lssq

Proof. By Lemma 5.5.1, we can justify the equivalences

p@l .IrrP@lssq Ø p
©

lPL�pPYQq

IrrP@lssq

and

p@l .IrrQ@lssq Ø p
©

lPL�pPYQq

IrrQ@lssq

We need to have a conjunction over L�pP YQq so that the “extra” label repre-

sents the same infinite set in both antecedent and consequent.

Proposition B.2.3. @I.Irrπss � @I.Irr�lPL π@lss, where L � L�pπq.

Proof. By Proposition 5.5.1, we have that

Irrπss � @l .Irrπ@lss

Rewriting the left hand side slightly, we have the following which needs to be proven:

¤
l

Irrπ@lss �
¤
lPL

Irrπ@lss

We can rewrite the two sides as:

� ¤
lPLpπq

Irrπ@lss
�
^
� ¤

lRLpπq
Irrπ@lss

�
�

� ¤
lPLpπq

Irrπ@lss
�
^ pIrrπ@l0ssq

where tl0u � L�pπq � Lpπq.
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Reducing, we have:

� ¤
lRLpπq

Irrπ@lss
�

� Irrπ@l0ss

This is true by Proposition 5.5.3, which states that Irrπ@lss � Irrπ@l 1ss for any

l R Lpπq.

Lemma B.2.1. If F is a well-formed field predicate set, @I.IrrF 1ss Ñ IrrF ss, and

WFCrF 1s �WFCrF s, then F 1 is well-formed.

Proof. Let WFCrF s � WFCrF 1s ZG. Then, we have the tautology

pIrrF 1ss Ñ IrrF ssq^pIrrF ss Ñ pIrrWFCrF 1sZGssqq Ñ pIrrF 1ss Ñ IrrWFCrF 1sssq

The conclusion of the implication is simply the criteria for well-formedness of F 1.

Lemma B.2.2. For any field predicate set F ,

@I.IrrWFCrF sss Ñ IrrWFCrrφ ÞÑ KsF sss

Proof. We show a stronger result, namely, that

@I.Irrlp1 # lp2ss Ñ Irrrφ ÞÑ Kslp1 # lp2ss

From this, the lemma immediately follows. We consider two cases for each lp: it is

either φ, or something else.

Case neither lp1 nor lp2 are φ.

Clearly, rφ ÞÑ Ksplp1 # lp2q � lp1 # lp2, and the implication is trivially true.

Case one of lp1, lp2 is φ.

Because # is symmetric, we need only consider one case (pick lp1 � φ). Then
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we have that rφ ÞÑ Ksplp1 # lp2q � K # lp2. Because K # lp2 is always true,

so is the implication.

Case both of lp1, lp2 are φ.

Therefore, rφ ÞÑ Ksplp1 # lp2q � K # K, and, for the same reason as the

previous case, the implication is true.

Lemma B.2.3. If @I.IrrF ss Ñ pIrrφss � Irrτ̂ ssq, then

p@I.IrrF ss Ñ IrrGssq Ø p@I.Irrrφ ÞÑ τ̂ sF ss Ñ Irrrφ ÞÑ τ̂ sGssq

Proof. First, we do the forward direction. We proceed to prove that p@I.Irrrφ ÞÑ
τ̂ sF ss Ñ Irrrφ ÞÑ τ̂ sGssq holds, assuming that p@I.IrrF ss Ñ IrrGssq does. We can

also assume that @I.IrrF ss Ñ pIrrφss � Irrτ̂ ssq. We can combine and rearrange these

two assumptions:

pI.IrrF ss Ñ IrrGssq ^ pIrrF ss Ñ pIrrφss � Irrτ̂ ssqq
Ñ pIrrφss � Irrτ̂ ssq Ñ pI.IrrF ss Ñ IrrGssq

Given any I, we can construct I 1 � rφ ÞÑ τ̂ sI. Note that I 1rrφss � I 1rrKss � IrrKss.
By the assumption, we have I 1rrF ss Ñ I 1rrGss. But I 1rrF ss � Irrrφ ÞÑ τ̂ sF ss and

similarly for G.

Now, we do the backward direction. We need to prove @I.IrrF ss Ñ IrrGss,
assuming p@I.Irrrφ ÞÑ τ̂ sF ss Ñ Irrrφ ÞÑ τ̂ sGssq and @I.IrrF ss Ñ pIrrφss � Irrτ̂ ssq.

Pick an I such that IrrF ss. By the second assumption, we have that Irrφss �
Irrτ̂ ss, which means that IrrF ss is the same as Irrrφ ÞÑ τ̂ sF ss. It therefore follows

that Irrrφ ÞÑ KsGss, and by the previous argument, is the same as IrrGss.
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Lemma B.2.4. If Irrlp1 # lp2ss, then Irrlp1{lp # lp2{lpss.

Proof. We repeat the semantic rule for lp{LP for easy reference:

Irrlp{LP ss �

$''&
''%
Irrlpss if ^lp1PLP Irrlp 1ss

K otherwise

If Irrlp1 # lp2ss, by the semantics of #, the interpretation of at least one of

lp1, lp2 must be false. Without loss of generality, we assume that ¬Irrlp1ss. Then

 Irrlp1{lpss for any lp.

Lemma B.2.5. For any field predicate sets F and G, and any field variable φ and

field type τ̂ ,

p@I.IrrF ss Ñ IrrGssq Ñ p@I.Irrrφ ÞÑ τ̂ sF ss Ñ Irrrφ ÞÑ τ̂ sGssq

Proof. We need to prove

@I.Irrrφ ÞÑ τ̂ sF ss Ñ Irrrφ ÞÑ τ̂ sGss

assuming

@I.IrrF ss Ñ IrrGss

Let I 1 � rφ ÞÑ τ̂ sI for an arbitrary I. Then I 1rrrφ ÞÑ τ̂ sF ss � Irrrφ ÞÑ τ̂ sF ss �

I 1rrF ss. By the assumption, I 1rrGss. But I 1rrGss � Irφ ÞÑ τ̂ sG, and so we have that

Irrrφ ÞÑ τ̂ sF ss Ñ Irrrφ ÞÑ τ̂ sGss for an arbitrary I.

Lemma 5.5.3 (Single Step Simplification Equivalence). If F � F 1 Z tπu is

a well-formed field predicate set, and π ÝÑ pθ, Hq, then
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1. p@I.IrrF ss Ñ IrrGssq Ø p@I.IrrθF YHss Ñ IrrθGssq

2. θF YH is well-formed

Proof. We prove this by a case analysis of each rule.

Case Consider the first of these two rules:

pfe1, . . . , fen,Kq ÝÑ pfe1, . . . , fenq where n ¥ 1

plpe1, . . . , lpen, fq ÝÑ plpe1, . . . , lpenq where n ¥ 1

It is the case that @I.Irrpfe1, . . . , fen,Kqss � Irrpfe1, . . . , fenqsswhere n ¥ 1, and

similarly for the second rule. This follows directly from the semantic rules for

fields and label presences. Let π1 be the result of substituting pfe1, . . . , fenq

for pfe1, . . . , fen,Kq in π. Therefore, @I.IrrF 1 Z πss � IrrF 1 Y π1ss. Also,

WFCrπs �WFCrπ1s. By Lemma B.2.1, F 1 Y π1 is well-formed. The proof for

the second rule follows in the same manner.

Case Consider the first of these two rules:

pφ1, . . . , φn, t, lpe1, . . . , lpemq ÝÑ

prφ1 ÞÑ K, . . . , φn ÞÑ Ks,

pt, lpe1, . . . , lpemqq

where n ¥ 1, m ¥ 0

pφ1, . . . , φn, τ, fe1, . . . , femq ÝÑ

prφ1 ÞÑ K, . . . , φn ÞÑ Ks,

pτ, fe1, . . . , femqq

where n ¥ 1, m ¥ 0

The expression in the result of the simplification contains a strict subset of

the one in the source, just as in the first two rules. However, we also have a

substitution. For each i P 1..n, φi # t P WFCrF s. This is true only when
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φi � K. Let π1 be the result of substituting pfe1, . . . , fenq for pfe1, . . . , fen,Kq

in π. By Lemma B.2.3,

p@I.IrrF 1ss Ñ IrrGssq Ø p@I.IrrθF 1 Y tπ1uss Ñ IrrθGssq

where θ � rφ1 ÞÑ K, . . . , φn ÞÑ Ks. Because the substitution only maps field

variables to K, by repeated application of Lemma B.2.2 we can deduce that

θF 1 Y tπ1u is well-formed.

The second rule can be proved correct in the same manner.

Case Consider any rule of the form π ÝÑ OK

The rules in this group are:

f # lp ÝÑ OK

f } f ÝÑ OK

t } t ÝÑ OK

K � K ÝÑ OK

t � t ÝÑ OK

By a simple application of the semantic rules, we can verify that for all these

rules, @I.Irrπss. We can therefore always remove such a rule from our set of

predicates. Well-formedness is maintained as well, by Lemma B.2.1.

Case Consider any rule of the form π ÝÑ Fail

The rules in this group are:
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t # t ÝÑ Fail

t } f ÝÑ Fail

t � τ ÝÑ Fail if τ �� t

τ1 Ñ τ2 � τ ÝÑ Fail if τ is not of the form τ 11 Ñ τ 12

trowu � τ ÝÑ Fail if τ is not of the form trow 1u

τ � K ÝÑ Fail

By a simple application of the semantic rules, we can verify that for all these

rules, @I.¬Irrπss. Therefore, IrrF 1Ztπuss is always false, and @I.IrrF 1Ztπuss Ñ

IrrGss is trivially true. Similarly, @I.IrrF 1ZtFailuss Ñ IrrGss is trivially true.

The same argument holds for Point 2; namely, that @I.IrrF 1 Z tFailuss Ñ

IrrWFCrF 1 Z tFailusss.

Case Consider the rule pφ1, . . . , φnq # lp ÝÑ tφi # lp | i P 1..nu

To prove the first point, it is enough to show that @I.Irrpφ1, . . . , φnq # lpss Ø

Irrtφi # lp | i P 1..nuss.

Expanding the left side:

Irrpφ1, . . . , φnq # lpss � ¬Irrpφ1, . . . , φnqssLP _ Irrlpss
� ¬p�iP1..n IrrφissLSq _  Irrlpss

Expanding the right side:

Irrtφi # lp | i P 1..nuss �
�

iP1..n Irrφi # lpss

�
�

iP1..np¬IrrφissLS _ ¬Irrlpssq
�
�

iP1..np¬IrrφissLSq _ ¬Irrlpss
� ¬p�iP1..n IrrφissLSq _  Irrlpss DeMorgan’s law
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The second point follows from the fact that the well-formedness constraints

of the left side is a superset of the ones on the right.

Case Consider any rule of the form π ÝÑ θ:

φ # t ÝÑ rφ ÞÑ Ks

φ } t ÝÑ rφ ÞÑ αs α new

pφ1, . . . , φnq } f ÝÑ rφ1 ÞÑ K, . . . , φn ÞÑ Ks

α � τ ÝÑ rα ÞÑ τ s if α does not occur in τ

φ � τ̂ ÝÑ rφ ÞÑ τ̂ s if φ does not occur in τ̂

pφ1, . . . , φnq � K ÝÑ rφ1 ÞÑ K, . . . , φn ÞÑ Ks

In each of these cases, it is the case that the predicate implies that one or

more field variables is either K, or is anything other than K. The substitution

for the first case is obvious. In the second case, we can substitute a new type

variable α for the field variable, as this covers all values other than K. In each

case, we can apply Lemma B.2.3 to prove point 1. For point 2, we have two

cases:

1. the values substituted for each field variable are K

2. the value substituted for the field variable is not K

To prove point 2, we start by restating what needs to be proven: given that

F � F 1 Z tπu is well-formed, we need to prove that θF 1 is as well. By

Lemma B.2.5, we have that θpF 1 Z tπuq is well-formed. By the semantic

equivalence of F 1 Z tπu and θF 1,

pIrrF 1Ztπuss Ñ IrrWFCrF 1 Z tπusssq Ñ pIrrθF 1ss Ñ IrrWFCrF 1 Z tπusssq
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We also have that WFCrrφ ÞÑ τ̂ sF 1s � WFCrF 1s Y WFCrτ̂ s. For all of the

rules considered in this case, τ̂ is either K, a new type variable, or a type

which exists in the predicate π. In the first two cases, WFCrτ̂ s � H. In the

last case, we have WFCrτ̂ s � WFCrπs. We can combine these to get:

WFCrτ̂ s � WFCrπs

Therefore, we have

WFCrrφ ÞÑ τ̂ sF 1s � WFCrF 1s YWFCrπs

and therefore, the resulting θF 1 is well-formed.

Case pφ, τ̂q � pφ, τ̂ 1q ÝÑ τ̂ � τ̂ 1

Point 1 can be proven for this rule by expanding the semantics of both sides.

Expanding the left side:

Irrpφ, τ̂q � pφ, τ̂ 1qss � Irrpφ, τ̂qss � Irrpφ, τ̂ 1qss

� pIrrφss 9YIrrτ̂ ssq � pIrrφss 9YIrrτ̂ 1ssq
� Irrτ̂ ss � Irrτ̂ 1ss

The right side:

Irrτ̂ � τ̂ 1ss � Irrτ̂ ss � Irrτ̂ 1ss

Point 2: Using the conclusion for point 1, we can prove point 2 by a direct

application of Lemma B.2.1.

Case pφ, lpq } pφ, lp1q ÝÑ lp } lp 1
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We start by expanding the definition of Irr�ss applied to both sides of the rule:

Left side: Irrpφ, lpq } pφ, lp1qss

� pIrrφssLP _ Irrlpssq Ø pIrrφssLP _ Irrlp 1ssq
Right side: Irrlp } lp 1ss

� Irrlpss Ø Irrlp 1ss

By the well-formedness of F , we have

IrrF ss Ñ pIrrφ # lpss ^ Irrφ # lp 1ssq

Therefore, at least one of IrrφssLP , Irrlpss are false, and likewise for IrrφssLP ,

Irrlp 1ss.

There are two cases:

– IrrφssLP � false

Then the left hand side of the rule reduces to

Irrlpss Ø Irrlp 1ss

– IrrφssLP �� false

Then both Irrlpss and Irrlp 1ss must be false; the left hand side of the rule

reduces to

IrrφssLP Ø IrrφssLP

and the right hand side of the rule also reduces to true .

Case τ1 Ñ τ2 � τ 11 Ñ τ 12 ÝÑ tτ1 � τ 11, τ2 � τ 12u, and

trowu � trow 1u ÝÑ trow@lp0q � row 1@lp0q, . . . , row@lpnq � row 1@lpnqu
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The correctness of the first rule follows from the structure of the type equality

rules. The second rule follows from the composition of Proposition 5.5.1 and

Lemma 5.5.2.

The well-formedness of the transformed predicate set follows from the fact

that the WFC of both sides of the rules are equal.

Case Consider the rule

pfe1, . . . , fenq � pfe
1
1, . . . , fe

1
mq ÝÑ H

where H �
� ¤

iP1..n

t fei � pfei{fe
1
1, . . . , fei{fe

1
mq uY

¤
jP1..m

t fe 1j � pfe1{fe
1
j, . . . , fen{fe

1
jq u
	

By the well-formedness of F , the interpretation of at most one of the fe i’s is

not K, and similarly for the fe 1j’s.

By Lemma B.2.4, the same can be said for each set of the restricted label

presences

tfe i{fe
1
j |j P 1..mu where i P 1..n

and also

tfe 1j{fe i|i P 1..nu where j P 1..m

The interpretations of each of pfe1, . . . , fenq and pfe 11, . . . , fe
1
mq may be K or τ ,

giving us four possibilities. Because # is symmetric, we need only consider

three. Let lhs be the predicate on the left side of the rule, and rhs be the set

of predicates on the right side of the rule.

– Irrpfe1, . . . , fenqss � K and Irrpfe 11, . . . , fe 1mqss � K
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Then the interpretation of each fe i and fe 1j is K, and clearly Irrlhsss Ø
Irrrhsss.

– Irrpfe1, . . . , fenqss � τ and Irrpfe 11, . . . , fe 1mqss � K
We have that  Irrlhsss. Let Irrfekss � τ . Then Irrfe i{fe

1
jss � K and

Irrfe 1j{fe iss � K for all i, j, and the interpretation of

fei � pfei{fe
1
1, . . . , fei{fe

1
mq

is true for i �� k, and false for i � k. Therefore,  Irrfekss.

– Irrpfe1, . . . , fenqss � τ and Irrpfe 11, . . . , fe 1mqss � τ 1

We have that Irrlhsss Ø Irrτ � τ 1ss. Let Irrfekss � τ , and Irrfe 1lss �
τ 1. Then Irrfei{fe

1
jss � K for all i, j, except i � k, j � l. Because

Irrfek{fe
1
lss � Irrfekss, Irrfek � pfek{fe

1
1, . . . , fek{fe

1
mqss. We also have

that Irrfei � pfei{fe
1
1, . . . , fei{fe

1
mqss for all i �� k. Similarly, Irrfe 1j �

pfe1{fe
1
j , . . . , fe1{fe

1
jqss for all j �� l. At j � l, we have that fe 1l �

pfe1{fe
1
l, . . . , fe1{fe

1
lq can be written as τ 1 � τ , and therefore Irrrhsss Ø

Irrτ � τ 1ss.

Case Consider the rule

plpe1, . . . , lpenq } plpe
1
1, . . . , lpe

1
mq ÝÑ H

where H �
� ¤

iP1..n

t lpei � plpei{lpe
1
1, . . . , lpei{lpe

1
mq u

	
Y

� ¤
jP1..m

t lpe 1j � plpe
1
j{lpe1, . . . , lpe

1
j{lpenq u

	

This can be proven using the same reasoning as the previous case.
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B.3 Compilation

Proposition 6.3.1. Any derivation of P , M : lset1 # lset2 can be rewritten as a

derivation where:

1. Each productive rule is followed by exactly one non-productive rule.

2. Each non-productive rule is either the last rule in the derivation, or is followed

by a productive rule.

All derivations of a judgement of the form P , M : lset1 # lset2 must include

one or more productive rules, because the non-productive rule relies on the result of

a productive rule in its premise. In any derivation, each productive rule is followed

by a sequence of zero or more non-productive rules. In the case where a productive

rule is not followed by a non-productive rule, we can insert one because the }

relation is symmetric:

P , M : lset1 # lset2 P , lset1 } lset1 P , lset2 } lset2

P , M : lset1 # lset2
#-compatible-}

Similarly, a sequence of non-productive rules can be collapsed into one due to

the transitivity of }.

Proposition B.3.1. If P , W : lset1 # lset2 for some P , W , lset1, and lset2,

then P ,W : lset2 # lset1.

Proof. Let W be x s1, . . . , sn y

Then all derivations of P , W : lset1 # lset2 consist of an application of

#-null-null, followed by a sequence of applications of the rules #-labels-left,
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#-labels-right, and #-compatible-}. Occurrences of 
 (�) in W correspond to

applications of #-labels-left (#-labels-right). There can be an arbitrary number

of occurrences of #-compatible-} interspersed before, between, and after the other

rules.

Without loss of generality, we will assume that there is always exactly one

application of this rule wherever a sequence may occur. This is justified by the

transitivity of }, which allows us to replace multiple applications of this rule by

one, and by the identity of }, which allows us to insert an application of this rule

where none occurred, without changing the result of the derivation. We will make

use of this convention in some of the proofs that follow.

We can take any such derivation, and replace each application of #-labels-left

with an application of #-labels-right and vice versa and simultaneously swap each

occurrence of lset1 # lset2 with lset2 # lset1 at each step in the derivation. The

result is a valid derivation of P ,W : lset2 # lset1.

Lemma B.3.1 (Subject Reduction for evidence (A)). If there is a productive

derivation of P , M1 : lset1 # lset2 where P is satisfiable, and M1 ÝÑ M2, then

there is a productive derivation of P , M2 : lset1 # lset2.

Proof. The proof proceeds by considering all the cases for the reduction and ap-

plying induction on the sizes of the subterms. The induction hypothesis in each

case is that, for some particular form of M and W , there is a reduction M ÝÑW ,

and if P , M : π, then P , W : π. For each such form of M , we have one or

more extensions of M , which we call M�, which reduce to W�, which we show is

some particular extension of W . We show that any judgement P , M� : π can be
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M ÝÑ W

. . .

M� ÝÑ W�

Figure B.1: Structure of the induction step in the proof of subject reduction for

evidence

derived in a particular way, and likewise for M , W , and W�. Finally, we show that

the premises and side conditions in the derivations of M� and W� are implied by

the derivations of M and W . This is described in Figure B.1.

Case flippW q ÝÑ W

By 6.3.1, the derivation of P , flip W : lset1 # lset2 can be decomposed into

four parts:

1. A derivation of P , W : lset21 # lset22

2. An application of #-compatible-}.

3. An application of #-flip.

4. Another application of #-compatible-}.

We can therefore construct a derivation of P , W : lset1 # lset2 by substi-

tuting a derivation of P , W : lset22 # lset21 for the first derivation in the list

above, and then collapsing the two applications of #-compatible-} into one.

Case mrgs pW1, W2q ÝÑ spanss�1
pspansspW1q � spansspW2qq

We prove this by induction on the lengths of W1 and W2.
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The base case is mrg
 px y, x yq. There is one productive derivation of this:

P , x y : H # H P , x y : H # H P , H # H

P , pmrg
 px y, x yqq : H # H

This reduces to spanss�1
pspansspx yq � spansspx yqq, which is x y. There is also

only one productive derivation of this:

P , x y : H # H

By induction, we are given that the proposition is true for mrgs pW1, W2q,

where |W1| � n and |W2| � m. Let W12 � spanss�1
pspansspW1q�spansspW2qq.

We can extend the result in three ways:

1. mrgs ps �W1, W2q ÝÑ s �W12

2. mrgs pW1, s �W2q ÝÑ s �W12

3. mrgs ps �W1, s �W2q ÝÑ s �W12

The structure of the proof for the first two cases is essentially the same.

Likewise, the two possibilities for s lead to essentially the same proof. We

therefore will give details for the first and third cases, where s � 
.

The first case: mrg
 p
 �W1, W2q ÝÑ 
 �W12

Using Proposition 6.3.1, we can write any productive derivation of

P , pmrg
 p
 �W1, W2qq : lset1 # lset2

in the form

P , 
 �W1 : lset1a # lset 12
P , W2 : lset1b # lset 12

P , lset1a # lset 11b

P , pmrg
 p
 �W1, W2qq : plset1a, lset1bq # lset 12
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where P , 
 �W1 : lset1a # lset 12 is derived

P , W1 : lset 11a # pl1, . . . , lnq P , plq # lset 11a

P , 
 �W1 : pl , lset 11aq # pl1, . . . , lnq
P , pl , lset 11aq } lset1a

P , pl1, . . . , lnq } lset 12

P , 
 �W1 : lset1a # lset 12

Using this, we can construct the derivation:

P ,W1 : lset 11a # pl1, . . . , lnq

P , pl1, . . . , lnq } lset 12

P ,W1 : lset 11a # lset 12
P ,W2 : lset1b # lset 12

P , lset 11a # lset1b

P , pmrg
 pW1, W2qq : plset 11a, lset1bq # lset 12

Each of the leaves of this derivation occurs in the derivation above, except for

P , lset 11a # lset1b. This can be derived:

P , lset1a # lset1b

P , pl , lset 11aq } lset1a

P , pl , lset 11aq # lset1b P , plq # lset 11a

P , lset 11a # lset1b

#-compose-left

By the induction hypothesis, there exists a productive derivation of

P ,W12 : plset 11a, lset1bq # lset2

From this, we can construct the productive derivation:

P , 
 �W12 : pl , lset 11a, lset1bq # pl1, . . . , lnq
P , pl , lset 11a, lset1bq } lset1

P , pl1, . . . , lnq } lset2

P , 
 �W12 : lset1 # lset2
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where P , 
 �W12 : pl , lset 11a, lset1bq # pl1, . . . , lnq is derived:

P , W12 : plset 11a, lset1bq # lset2 P , lset2 } pl1, . . . , lnq

P , W12 : plset 11a, lset1bq # pl1, . . . , lnq

P , 
 �W12 : pl , lset 11a, lset1bq # pl1, . . . , lnq

The third case: mrg
 p� �W1,� �W2q ÝÑ � �W12

By Proposition 6.3.1, the last rule of any productive derivation of the left

hand side is:

P , � �W1 : lset1a # lset2 P , � �W2 : lset1b # lset2 P , lset1a # lset1b

P , pmrg
 p� �W1,� �W2qq : plset1a, lset1bq # lset2

By Proposition 6.3.1, we can rewrite any derivation of

P , � �W1 : lset1a # lset2

into the form:

P ,W1 :
ÝÑ
l1a #

ÝÑ
l2a lA   p

ÝÑ
l1a,
ÝÑ
l2aq

P , � �W1 :
ÝÑ
l1a # pla,

ÝÑ
l2aq

P ,
ÝÑ
l1a } lset1a

P , pla,
ÝÑ
l2aq } lset2

P , � �W1 : lset1a # lset2

and similarly for P , � �W2 : lset1b # lset2

P ,W1 :
ÝÑ
l1b #

ÝÑ
l2b lb   p

ÝÑ
l1b,
ÝÑ
l2bq

P , � �W1 :
ÝÑ
l1b # plb,

ÝÑ
l2bq

P ,
ÝÑ
l1b } lset1b

P , plb,
ÝÑ
l2bq } lset2

P , � �W1 : lset1b # lset2

From the judgements P , pla,
ÝÑ
l2aq } lset2 and P , plb,

ÝÑ
l2bq } lset2, the side

conditions la  
ÝÑ
l2a and lb  

ÝÑ
l2b, and the fact that P is satisfiable, we can
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conclude that la � lb, and
ÝÑ
l2a �

ÝÑ
l2b. In the sequel, we will use l and

ÝÑ
l2 in place

of these labels and labelsets, respectively. We can now construct a productive

derivation of P ,mrg
 pW1, W2q : p
ÝÑ
l1a,
ÝÑ
l1bq #

ÝÑ
l2 :

P ,W1 :
ÝÑ
l1a #

ÝÑ
l2 P ,W2 :

ÝÑ
l1b #

ÝÑ
l2 P ,

ÝÑ
l1a #

ÝÑ
l1b

P , pmrg
 pW1, W2qq : p
ÝÑ
l1a,
ÝÑ
l1bq #

ÝÑ
l2

By the induction hypothesis, there exists a productive derivation of P ,

W12 : p
ÝÑ
l1a,
ÝÑ
l1bq #

ÝÑ
l2 . With this, we can construct a productive derivation of

P , � �W12 : p
ÝÑ
l1a,
ÝÑ
l1bq #

ÝÑ
l2 :

P , W12 : p
ÝÑ
l1a,
ÝÑ
l1bq #

ÝÑ
l2 l   p

ÝÑ
l1a,
ÝÑ
l1b,
ÝÑ
l2 q

P , � �W12 : p
ÝÑ
l1a,
ÝÑ
l1bq # pl ,

ÝÑ
l2 q

P , p
ÝÑ
l1a,
ÝÑ
l1bq } plset1a, lset1bq

P , pl ,
ÝÑ
l2 q } lset2

P , � �W12 : plset1a, lset1bq # lset2

Case xtrcts W1 W2 ÝÑ merge-extracts pW1, W2q

Just as for mrgs pW1, W2q, we use induction on the lengths of the arguments.

The two choices for s are symmetric; as in the last subproblem, we show the

proof for s � 
. However, we do not have symmetry in the arguments to

xtrcts , so more combinations need to be dealt with explicitly.

Base case: xtrct
 x y x y ÝÑ x y

There is only one productive derivation of the left hand side, namely:

P , x y : pH,Hq # H P , x y : H # H

P , pxtrct
 x y x yq : H # H
#-compose-left

Likewise, there is is only one productive derivation of the right hand side; the

#-null-null axiom.
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Induction cases: If the lemma holds for |W1| � n, and |W2| � m, then it holds

for various extensions of W1 and W2. There are three possible extensions

of W1 and W2, due to the constraints placed on the operands of xtrcts .

These follow directly from the definition of merge-extract
. In the following,

let W12 � merge-extracts pW1, W2q.

1. xtrcts W1 ps �W2q ÝÑ s �W12

2. xtrcts ps �W1q ps �W2q ÝÑ s �W12

3. xtrcts ps �W1q ps �W2q ÝÑ W12

As promised, we will only consider the situation where s � 
.

Firstly, any productive derivation of the left hand side of the induction hy-

pothesis has the form:

P ,W2 : pl11, . . . , l1n, l21, . . . , l2nq # pl1, . . . , lpq

P , W1 : pl11, . . . , l1nq # pl21, . . . , l2nq

P , pxtrct
 W1 W2q : pl11, . . . , l1nq # pl1, . . . , lpq

We now proceed by subcases:

– xtrcts W1 ps �W2q ÝÑ s �W12

By Proposition 6.3.1, any productive derivation of the left hand side can

be written in the form

P , � �W2 : plset1, lset2q # lset

P ,W1 :
ÝÑ
l1 #

ÝÑ
l2

P ,
ÝÑ
l1 } lset1

P ,
ÝÑ
l2 } lset2

P ,W1 : lset1 # lset2

P , pxtrct
 W1 p� �W2qq : lset1 # lset
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where P , � �W2 : plset1, lset2q # lset is derived:

P ,W2 :
ÝÑ
l12 #

ÝÑ
l

P , l #
ÝÑ
l

l  
ÝÑ
l12

P , � �W2 :
ÝÑ
l12 # pl ,

ÝÑ
l q

P ,
ÝÑ
l12 } plset1, lset2q

P , pl ,
ÝÑ
l q } lset

P , � �W2 : plset1, lset2q # lset

Because P is satisfiable, it is the case that p
ÝÑ
l1 ,
ÝÑ
l2 q �

ÝÑ
l12.

We can construct the productive derivation

P ,W2 : p
ÝÑ
l1 ,
ÝÑ
l2 q #

ÝÑ
l P , W1 :

ÝÑ
l1 #

ÝÑ
l2

P , pxtrct
 W1 W2q :
ÝÑ
l1 #

ÝÑ
l

By the induction hypothesis, there exists a productive derivation of P ,

W12 :
ÝÑ
l1 #

ÝÑ
l . We can use this derivation to construct a productive

derivation of P , p� �W12q : lset1 # lset :

P ,W12 :
ÝÑ
l1 #

ÝÑ
l P , l #

ÝÑ
l l  

ÝÑ
l1

P , p� �W12q :
ÝÑ
l1 # pl ,

ÝÑ
l q

P ,
ÝÑ
l1 } lset1

P , pl ,
ÝÑ
l q } lset

P , p� �W12q : lset1 # lset

– xtrcts ps �W1q ps �W2q ÝÑ s �W12

The last rule of any productive derivation of the left hand size is:

P , 
 �W2 : plset1, lset2q # lset P , 
 �W1 : lset1 # lset2

P , pxtrct
 p
 �W1q p
 �W2qq : lset1 # lset

By Proposition 6.3.1, we can rewrite any derivation of P , 
 � W2 :
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plset1, lset2q # lset into the form:

P , W2 :
ÝÑ
l12 #

ÝÑ
l lA   p

ÝÑ
l ,
ÝÑ
l12q

P , 
 �W2 : plA,
ÝÑ
l12q #

ÝÑ
l

P , plA,
ÝÑ
l12q } plset1, lset2q

P ,
ÝÑ
l } lset

P , 
 �W2 : plset1, lset2q # lset

and similarly for P , 
 �W1 : lset1 # lset2:

P , W1 :
ÝÑ
l1 #

ÝÑ
l2 lB   p

ÝÑ
l1 ,
ÝÑ
l2 q

P , 
 �W1 : plB,
ÝÑ
l1 q #

ÝÑ
l2

P , plB,
ÝÑ
l1 q } lset1

P ,
ÝÑ
l2 } lset2

P , 
 �W1 : lset1 # lset2

We can infer that plA,
ÝÑ
l12q � plB,

ÝÑ
l1 ,
ÝÑ
l2 q from the } predicates in the two

derivations. Because lA  
ÝÑ
l12 and lB   p

ÝÑ
l1 ,
ÝÑ
l2 q, lA is the minimum

element of plA,
ÝÑ
l12q, and lB is the minimum element of plB,

ÝÑ
l1 ,
ÝÑ
l2 q. Since

these two sets are equal, it follows that lA � lB. With this in mind, we can

now construct a productive derivation of P , pxtrct
 W1 W2q :
ÝÑ
l1 #

ÝÑ
l :

P , W1 :
ÝÑ
l1 #

ÝÑ
l2

P , W2 :
ÝÑ
l12 #

ÝÑ
l P ,

ÝÑ
l12 } p

ÝÑ
l1 ,
ÝÑ
l2 q

P , W2 : p
ÝÑ
l1 ,
ÝÑ
l2 q #

ÝÑ
l

P , pxtrct
 W1 W2q :
ÝÑ
l1 #

ÝÑ
l

By the induction hypothesis, we have a productive derivation of P ,

W12 :
ÝÑ
l1 #

ÝÑ
l , which we can use to construct a productive derivation of

P , 
 �W12 : lset1 # lset :

P , W12 :
ÝÑ
l1 #

ÝÑ
l lA   p

ÝÑ
l1 ,
ÝÑ
l q

P , 
 �W12 : pla,
ÝÑ
l1 q #

ÝÑ
l

P , pla,
ÝÑ
l1 q } lset1

P ,
ÝÑ
l } lset

P , 
 �W12 : lset1 # lset
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– xtrcts ps �W1q ps �W2q ÝÑ W12

The last rule of any productive derivation of the left-hand size is:

P , 
 �W2 : plset1, lset2q # lset P , � �W1 : lset1 # lset2

P , pxtrct
 p� �W1q p
 �W2qq : lset1 # lset

By Proposition 6.3.1, we can rewrite any derivation of P , 
 � W2 :

plset1, lset2q # lset into the form:

P ,W2 :
ÝÑ
l12 #

ÝÑ
l lA   p

ÝÑ
l ,
ÝÑ
l12q

P , 
 �W2 : plA,
ÝÑ
l12q #

ÝÑ
l

P , plA,
ÝÑ
l12q } plset1, lset2q

P ,
ÝÑ
l } lset

P , 
 �W2 : plset1, lset2q # lset

and similarly for P , � �W1 : lset1 # lset2:

P , W1 :
ÝÑ
l1 #

ÝÑ
l2 lB   p

ÝÑ
l1 ,
ÝÑ
l2 q

P , � �W1 :
ÝÑ
l1 # plB,

ÝÑ
l2 q

P ,
ÝÑ
l1 } lset1

P , plB,
ÝÑ
l2 q } lset2

P , � �W1 : lset1 # lset2

By the same reasoning as in the last case, we can conclude that lA � lB,

and construct a productive derivation of P , pxtrct
 W1 W2q :
ÝÑ
l1 #

ÝÑ
l :

P , W1 :
ÝÑ
l1 #

ÝÑ
l2

P , W2 :
ÝÑ
l12 #

ÝÑ
l P ,

ÝÑ
l12 } p

ÝÑ
l1 ,
ÝÑ
l2 q

P , W2 : p
ÝÑ
l1 ,
ÝÑ
l2 q #

ÝÑ
l

P , pxtrct
 W1 W2q :
ÝÑ
l1 #

ÝÑ
l

We can construct the productive derivation

P ,W2 : p
ÝÑ
l1 ,
ÝÑ
l2 q #

ÝÑ
l P , W1 :

ÝÑ
l1 #

ÝÑ
l2

P , pxtrct
 W1 W2q :
ÝÑ
l1 #

ÝÑ
l
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By the induction hypothesis, there exists a productive derivation of P ,

W12 :
ÝÑ
l1 #

ÝÑ
l . We can use this derivation to construct a productive

derivation of P , W12 : lset1 # lset :

P ,W12 :
ÝÑ
l1 #

ÝÑ
l

P ,
ÝÑ
l1 } lset1

P ,
ÝÑ
l } lset

P ,W12 : lset1 # lset

Lemma 6.3.1 (Subject Reduction for evidence). If P , M1 : lset1 # lset2

where P is satisfiable, and M1 ÝÑM2, then P , M2 : lset1 # lset2.

Proof. If there is a productive derivation of P , M1 : lset1 # lset2, the result is

immediate, by the previous Lemma. If the only derivation of P , M1 : lset1 # lset2

is non-productive, it can be written as:

P ,M1 : lset 11 # lset 12 P , lset 11 } lset1 P , lset 12 } lset2

P ,M1 : lset1 # lset2

where P , M1 : lset 11 # lset 12 is productive. From the previous lemma, it follows

that we have a productive derivation of P , M2 : lset 11 # lset 12, with which we can

derive:

P ,M2 : lset 11 # lset 12 P , lset 11 } lset1 P , lset 12 } lset2

P ,M2 : lset1 # lset2

Let L range over labelsets, possibly empty, which consist solely of labels (i.e.,

which, unlike lset , contain no variables). Let Lris be the ith smallest label in L.

That is, there are exactly i labels in L that are smaller than or equal to Lris.
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Lemma B.3.2. If P , W : La # Lb, then

W ris �

$''&
''%

 if pLa Y Lbqris P La

� if pLa Y Lbqris P Lb

for 1 ¤ i ¤ |La Y Lb|

Proof. The proof proceeds by induction on the length of a derivation.

The base case is w � x y, which is derived by the rule

p#-null-nullq P , x y : H # H

The consequent of the lemma is trivially true.

There are two induction cases, but they are symmetric, so we need only consider

one:

Let W � 
 �W 1. Then we have the derivation:

p#-labels-leftq
P ,W 1 : pL1

aq # pLbq l1   pL
1
a Y Lbqr1s

P , 
 �W 1 : La # Lb

where La � L1
a Y tl1u, for some L1

a, Lb, and l1. We have that W 1ris � W ri� 1s, so

by the induction hypothesis, we have that

W 1ris � W ri� 1s �

$''&
''%

 if pL1

a Y Lbqris P L1
a

� if pL1
a Y Lbqris P Lb

for 1 ¤ i ¤ |L1
a Y Lb|.

We have that W r1s � 
 by definition; it is also the case that pLa Y Lbqr1s �

l1 P La. Making use of this, and also the fact that pL1
a Y Lbqris � pLa Y Lbqri� 1s,

we can conclude that

W ris �

$''&
''%

 if pLa Y Lbqris P La

� if pLa Y Lbqris P Lb
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for 1 ¤ i ¤ |La Y Lb|.

Lemma 6.3.2 (Subject Reduction – target version). For a target language

expression E1, where P |A T$ E1 : τ , for some P , A, and τ , and E1 ÝÑ E2, then

P |A T$ E2 : τ .

Proof. The proof proceeds by considering all the cases for the reduction E1 ÝÑ E2.

Case pλx.EqV ÝÑ rx ÞÑ V sE

See [61].

Case let x � V in E ÝÑ rx ÞÑ V sE

See [61].

Case pλm.EqW ÝÑ rm ÞÑW sE

This case is exactly analogous to the “regular” app expression.

Case extract
 W t|V1, . . . , Vn|u ÝÑ t|Vi1 , . . . , Vim|u

We have that

P |A T$ t|V1, . . . , Vn|u : t|
ÝÝÝÑ
la : τa,

ÝÝÝÑ
lb : τb|u P ,W :

ÝÑ
la #

ÝÑ
lb

P |A T$ extract
 W t|V1, . . . , Vn|u : t|
ÝÝÝÑ
la : τa|u

extract-left

By Lemma B.3.2, the field values Vi1 , . . . , Vim extracted are exactly those

corresponding to the type t|
ÝÝÝÑ
la : τa|u, and so we can conclude that

P |A T$ t|Vi1, . . . , Vim|u : t|
ÝÝÝÑ
la : τa|u.
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Case extract� W t|V1, . . . , Vn|u ÝÑ t|Vi1 , . . . , Vim|u

Analogous to previous case.

Case mergeW pt|V1, . . . , Vn|u, t|V
1
1 , . . . , V

1
m|uq ÝÑ t|V 2

1 , . . . , V 2
n�m|u

where V 2
i �

$''&
''%

V|W r1..is|
 if W ris � 


V 1
|W r1..is|� if W ris � �

The proof of this case proceeds by induction on the structure of a derivation.

– W � x y (base case)

We have the derivation

P |A T$ V : trowu P |A T$ V 1 : trow 1u P , x y : row # row 1

P |A T$merge x y pV, V 1q : trow , row 1u

The only possible derivation of P , x y : row # row 1 is:

p#-null-nullq P , x y : H # H

Therefore, row and row 1 are both H, and therefore, V and V 1 are both

t||u. Summarizing, we have:

P |A T$ t||u : tu P |A T$ t||u : tu P , x y : H # H

P |A T$merge x y pt||u, t||uq : tu

This merge expression reduces to t||u, which has the derivation

P |A T$ t||u : tu
record
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– W � 
 �W 1 (induction case)

We have the derivations

P |A T$ t|
ÝÑ
V |u : t

ÝÝÝÑ
la : τau

P |A T$ t|
ÝÑ
V 1|u : t

ÝÝÝÑ
lb : τbu

P , 
 �W 1 :
ÝÑ
la #

ÝÑ
lb

P |A T$merge
 �W 1 pt|
ÝÑ
V |u, t|

ÝÑ
V 1|uq : t

ÝÝÝÑ
la : τa,

ÝÝÝÑ
lb : τbu

merge

and

P , W 1 : pla2, . . . , lanq #
ÝÑ
lb la1   pla2, . . . , lan,

ÝÑ
lb q

P , 
 �W 1 :
ÝÑ
la #

ÝÑ
lb

#-labels-left

Because la1 is strictly smaller than any of the other labels la2, . . . , lan,
ÝÑ
lb ,

V 2
1 � V1. We can also construct the derivation

P |A T$ t|V2, . . . , Vn|u : trowu

P |A T$ t|V 1
1 , . . . , V

1
n|u : t

ÝÝÝÑ
lb : τbu

P ,W 1 : row #
ÝÑ
lb

P |A T$mergeW 1 pt|V2, . . . , Vn|u, t|V
1
1 , . . . , V

1
m|uq : trow ,

ÝÝÝÑ
lb : τbu

merge

where row is pla2 : τa2, . . . , lan : τanq. This merge expression reduces to

t|V 2
2 , . . . , V 2

n�m|u. By the induction hypothesis,

P |A T$ t|V 2
2 , . . . , V 2

n�m|u : tla2 : τa2, . . . , lan : τan,
ÝÝÝÑ
lb : τbu.

– W � � �W 1.

This case proceeds the same way as the preceding.

Case indexsW t|V1, . . . , Vn|u

The proof of this case also proceeds by induction on the structure of a deriva-

tion.
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– W � 
 �
ÝÑ
�

We have the derivations

P , W 1 :H #
ÝÑ
l l  

ÝÑ
l

P , 
 �
ÝÑ
� : l #

ÝÑ
l

#-labels-left

and

P |A T$ t|V1, . . . , Vn|u : trow , l : τu P , p
 �
ÝÑ
�q : l #

ÝÑ
l

P |A T$ index
p
 �
ÝÑ
�qt|V1, . . . , Vn|u : τ

index-left

Because l is smaller than all the other labels in
ÝÑ
l , the index expression

reduces to V1, which, by the premises of the second derivation, is of type

τ .

– W � � �W 1 where W 1 contains exactly one occurrence of 
.

We have the derivations

P , W 1 : lk # pl2, . . . , lk�1, lk�1, . . . , lnq

P , � �W 1 : lk # pl1, . . . , lk�1, lk�1, . . . , lnq
#-labels-right

where l1   l2   . . .   ln, and

P |A T$ t|V1, . . . , Vn|u : tl1 : τ1, . . . , ln : τnu

P , p� �W 1q : lk # pl1, . . . , lk�1, lk�1, . . . , lnq

P |A T$ index
p� �W 1qt|V1, . . . , Vn|u : τk

index-left

We can construct the derivation

P |A T$ t|V2, . . . , Vn|u : tl2 : τ2, . . . , ln : τnu

P , W 1 : lk # pl2, . . . , lk�1, lk�1, . . . , lnq

P |A T$ index
W 1t|V2, . . . , Vn|u : τk

index-left
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By the inductive hypothesis, index
W 1t|V2, . . . , Vn|u reduces to Vk, and

P |A T$ Vk : τk. But index
p� �W 1qt|V1, . . . , Vn|u also reduces to Vk.

Lemma B.3.3 (Uniform Evaluation for evidence). For closed E, if there is

no E 1 such that E ÞÝÑÑ E 1 and E 1 is faulty, then either E diverges, or E ÞÝÑÑ V .

Proof. The proof of this is an adaptation of the proof of Lemma 4.10 in [61]. The

difference is that we have a number of different forms.

By induction on the length of the reduction sequence, we need only show that

one of the following cases must hold:

1. E is faulty,

2. E ÞÝÑ E 1 and E 1 is closed, or

3. E is a value.

Note that E ÞÝÑ E 1 iff E � ErE1s, E 1 � ErE 1
1s, and E1 ÝÑ E 1

1.

The proof proceeds by induction on the structure of E. We need only consider

the cases not covered in [61].

Case m

This is not a closed expression

Case x s, . . . , s y

This is a value.

Case flip M 1

If M is a value W , then we have E ÞÝÑ W . Otherwise, if M 1 ÞÝÑ M2,
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then M 1 �M1rM
1
1s and M2 �M1rM

2
1 s. Therefore, M ÞÝÑMrM2

1 s, where

M � flipM1.

Case xtrcts M1 M2

If M1 and M2 are values W1 and W2, respectively, and |W2|
s � |W1|, then

we have M ÞÝÑ merge-extractspW1, W2q. If, on the other hand, |W2|
s �� |W1|,

then E is faulty. Otherwise, one or both of M1, M2 are not values. If M1

is not a value, then M1 �M1rMas, M 1
1 �M1rM

1
as, and Ma ÝÑ M 1

a. Then

E ÞÝÑMrM 1
as, where M � xtrctsM1 M , and similarly if M2 is not a value.

Case mrgs pM, Mq

If M1 and M2 are values W1 and W2, respectively, and one of the three notions

of reduction for mrgs pW1, W2q can be applied, then we have M ÞÝÑ M 1 for

an appropriate M 1. If none of the three notions apply, then M is faulty.

Otherwise, one or both of M1, M2 are not values. If M1 is not a value, then

M1 �M1rMas, M 1
1 �M1rM

1
as, and Ma ÝÑM 1

a. Then E ÞÝÑMrM 1
as, where

M �mrgs pM1, Mq, and similarly if M2 is not a value.

Lemma 6.3.3 (Uniform evaluation – target version). For closed target lan-

guage expression E, if there is no E 1 such that E ÞÝÑÑ E 1 and E 1 is faulty, then

either E diverges, or E ÞÝÑÑ V .

Proof. The proof of this is an adaptation of the proof of Lemma 4.10 in [61]. The

main difference is that we have more cases.

By induction on the length of the reduction sequence, we need only show that

one of the following cases must hold:
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1. E is faulty,

2. E ÞÝÑ E 1 and E 1 is closed, or

3. E is a value.

Note that E ÞÝÑ E 1 iff E � ErE1s, E 1 � ErE 1
1s, and E1 ÝÑ E 1

1. Also, by the

definition of faultiness, if any subexpression is faulty, then the expression is faulty,

so we need not consider any cases where any subexpression is faulty.

The proof proceeds by induction on the structure of E. We need only consider

the cases not covered in [61].

Case t|E, . . . , E|u

This uses the same reasoning as in the analogous case in Lemma 4.5.4.

Case mergeM pE, Eq

If M � W , E1 � t|V11, . . . , V1n|u, E2 � t|V21, . . . , V2m|u (i.e., the subexpressions

are all values of the appropriate sort), and |W | � n�m, then we can apply the

appropriate notion of reduction. If M, E1, E2 are all values but do not satisfy

the conditions in the previous sentence, then E is faulty. Otherwise, at least

one of M, E1, E2 are not values, in which case we reduce the first non-value

subexpression using one of the three contexts

mergeM pE, Eq mergeW pE , Eq mergeW pV, Eq.

Case extract
 M E, index
ME

This uses the same line of reasoning as the previous case.

Case λm.E

This is a value.
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Case E M

This uses the same reasoning as in the analogous case in Lemma 4.5.4, but

makes use of Lemma B.3.3 for the case where M is not a value.

Theorem 6.3.1 (Type soundness). If T$ E : τ , then E ÞÝÑÑ V and T$ V : τ .

Proof. The proof is the same as the one in [61], except that the appropriate Uniform

Evaluation Lemma is used, namely, Lemma 6.3.3.

Theorem 6.3.3 (Semantics Preservation). If P |A $ E : τ ù E 1, then for any

ground substitution θ such that , θP , and for any pair of value environments

pES, ET
P q P RθA, pE, E 1q P Rτ .

Proof. This proof is a slight adaptation of Ohori’s, in [41]. It proceeds by induction

on the structure of a translation derivation, and case analysis of the last step. The

proofs for most of the cases are essentially the same as in [41]. We do the ones that

are different:

Case

pselq
P |A $ E : tl : τ, rowuù E 1 P , M : row # l

P |A $ E.l : τ ù index�ME 1

From the induction hypotheses, we have that E ÞÝÑÑ V where V � tl1 �

V1, . . . , ln � Vnu, and E 1 ÞÝÑÑ V 1 where V 1 � t|V 1
1 , . . . , V

1
n|u. From the Sub-

ject Reduction for Evidence Lemma, we have that M ÞÝÑÑ W where W �
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x s1, . . . , sn�1 y. By Lemma B.3.2, W ris � � only if l � li, i.e., the ith field is

the one labeled l . Therefore, index�WV 1 ÞÝÑ V 1
i , and V ÞÝÑ Vi, as desired.

Case

pextractq
P |A $ E : tl : τ, rowuù E 1 P ,M : row # l

P |A $ Ezl : trowuù extract
 M E 1

This is similar to the previous case, except for the last step, where we have:

extract
 W V 1 ÞÝÑ t|V 1
1 , . . . , V

1
i�1, V

1
i�1, . . . , V

1
n|u, and

V ÞÝÑ tl1 � V1, . . . , li�1 � Vi�1, li�1 � Vi�1, . . . , ln � Vnu, as desired.
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