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Abstract

Requests for dynamic and personalized content increasingly dominate current-day Internet traffic, driven both
by a growth in dynamic web services and a “trickle-down” effect stemming from the effectiveness of caches
and content-distribution networks at serving static content. To efficiently serve this trend, several server-side and
cache-side techniques have recently been proposed. Although such techniques, which exploit different forms of
reuse at the sub-document level, appear promising, a significant impediment to their widespread deployment is
(1) the absence of good models describing characteristics of dynamic web content, and (2) the lack of effective
synthetic content generators, which reduce the effort involved in verifying the effectiveness of a proposed solution.

This paper addresses both of these shortcomings. Its primary contribution is a set of models that capture
the characteristics of dynamic content both in terms of independent parameters such as the distributions of ob-
ject sizes and their freshness times, as well as derived parameters such as content reusability across time and
linked documents. These models are derived from an analysis of the content from six representative news and
e-commerce sites, using both size-based and level-based splitting techniques to infer document objects. A sec-
ondary contribution is a Tomcat-based dynamic content emulator, which uses these models to generate ESI-based
dynamic content and serve requests for whole document and separate objects. To validate both the models and the
design of the content emulator, we compare the bandwidth requirements seen by an idealized cache simulator that
is driven by both the real trace and emulated content. Our simulation results verify that the output of the content
emulator effectively and efficiently models real content.
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1 Introduction

Dynamic and personalized content delivery has attracted a great deal of attention recently from both commercial

and research communities. One reason is of course the growing popularity of dynamic web services, exemplified

by news sites and personalized sites (e.g., myyahoo.com) both of which require dynamic generation of content. The

other reason is the trickle-down effect [15] of widely deployed proxy caches and content delivery networks (CDNs),

which effectively filter incoming requests for static web content and presumably shift the dominant loads seen on

the Internet from popular static objects to less popular objects and dynamic web content.

To efficiency serve and deliver such dynamic and personalized content, researchers have recently proposed sev-

eral server-side and cache-side mechanisms. Server-side techniques, exemplified by techniques such as data update

propagation [8], fragment-based page generation [9, 14], and the Cachuma [35] class-based page classification



scheme reduce the burden on the server by allowing reuse of previously generated content to serve new requests.

Cache-side techniques, exemplified by systems such as Active Cache [7], Gemini [24], CONCA [29], and the con-

tent assembly technique proposed by Wills et al [32], attempt to reduce the latency of dynamic content delivery

by moving some functionality to the edge of network. Similar trends are also visible in commercial caching and

edge server products, most notably IBM’s WebSphere [10] and Akamai’s Edgesuite [18]. Despite their focus on

different aspects of the problem, these approaches share the same rationale, specifically that it is possible to view

the document in terms of a quasi-statictemplate(expressed using formatting languages such as XSL-FO [16] or

edge-side include (ESI) [30]), which is filled out with multiple individually cacheable and/or uncacheableobjects.

This object composition assumption enables surrogates and downstream proxy caches to reuse templates and cached

objects to efficiently serve subsequent requests and additionally reduces server load, bandwidth requirements and

user-perceived latencies by allowing only the unavailable objects to be fetched.

Although the above techniques appear promising, it is difficult to predict to what extent their stated benefits apply

to a workload different than the one they were evaluated on. As an example of the challenges, consider the following

questions that we were faced with when trying to come up with general policies for our CONCA architecture [29]:

At what granularity must objects be cached to achieve sufficient reuse? Is their a sharp threshold for choosing this

granularity, or is it the case that the benefits are continuously varying? Can we estimate likely freshness times of

objects from the duration they have been present in the cache? Is their a correlation between object size and their

reuse?

While trying to answer these questions we encountered the problem that unlike the wealth of models on the

nature of static web content, ranging from the zipf-like request distribution to the pareto distribution of document

sizes [22], there is an absence of anything corresponding for dynamic content. Even if such models were present, an

additional problem one encounters while trying to evaluate a new technique is the absence of template-based content.

At this time, web servers do not explicitly supply the template and component objects making up the document (even

if to a human eye, it is often clear what these are). The lack of such content rules out simulation-based studies of the

kind that have resulted in tremendous advances in the state of the art for delivery and caching of static content.

This paper addresses both of these shortcomings. Its primary contribution is a set of models that capture the

characteristics of dynamic content both in terms of independent paramters such as the distributions of component

object sizes and their freshness times, as well as derived parameters such as whole-document content reusability

across time and linked documents. To derive these models, we analyzed dynamic content collected every five minutes

over a two-day period from six representative news and e-commerce sites:www.cnn.com , dailynews.yahoo.

com, www.nytimes.com , www.amazon.com , www.barnesnoble.com , andwww.windowsmedia.com . To cope

with the absence of an explicit template in the documents, we inferred both the template and the component objects

using parameterized level-based and size-based splitting techniques. The main analysis results are summarized

below:

• The sizes of component objects making up a dynamic web page can be captured very well using anExponential

distribution. This is in contrast to how static documents are modeled, usually with a heavy-tailed pareto

distribution.

• Except for a considerable fraction of objects that change very infrequently, the freshness times of component

objects can be captured using aWeibull distribution. For two of the sites above (www.amazon.com and
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www.bn.com ), this distribution degenerates into a sharp bimodal one: all of the objects either change on

almost every access or change very infrequently.

• Content from all of the six sites demonstrated significant opportunity for reuse across both the temporal and

spatial (in linked documents) dimensions. More interesting is the relationship between content reuse and

the object granularity: for four of the sites (www.cnn.com , dailynews.yahoo.com , www.nytimes.com ,

www.windowsmedia.com ), there was a graceful degradation of reusability with increasing object granularity,

while the degradation was much sharper for the other two.

A secondary contribution of the paper is a dynamic content emulator (DCE), which uses these models to generate

parameterizable dynamic content that adheres to the ESI specification. DCE builds on top of the Tomcat web server

from the Jakarta open source initiative, and can service requests for both whole documents as well as individual

components. DCE is easy to configure, extend, and use and should prove a useful tool for other researchers in this

area. To validate both our models and their use in DCE, we wrote an idealized cache simulator that can works off

both the real trace data as well as the output of DCE. Comparing the outputs of this simulator for the two cases

verifies that DCE effectively models real content, and at a significant simulation cost advantage.

The rest of this paper is organized as follows. Section 2 describes the methodology used in this study, specifically

the extraction of information about document templates and component objects. The analysis results for content

from the six sites and derived models are presented in Section 4. Section 5 describes the design, implementation,

and validation of the stand-alone dynamic content emulator. Section 6 discusses related work and we conclude in

Section 7.

2 Characterizing Dynamic Content

We first discuss the metrics of interest in dynamic content and then describe our approach for characterizing them.

2.1 Metrics of Interest

The consensus view for thinking about dynamic content appears to be based upon the notion of object composition.

A document is viewed as consisting of a quasi-static documenttemplateand individualobjectsexhibiting different

characteristics, which fill out this template. These characteristics can include attributes such as whether the object

is cacheable or not, what its update frequency is, whether it can be shared across multiple requests/users or if it is

personalized, etc. Figure 1 shows the snapshot of a personalizedmyyahoo!.com page, and what the corresponding

document template and component objects might look like.S* andP* represent objects that are shared and private

respectively, andTTL captures the length of time this object remains valid.

From the perspective of surrogates and proxy caches that are attempting to improve delivery of dynamic content,

there are several metrics of interest. Clearly both thenumber of objectsand theirsize distributionare important: the

first indicates the opportunity for reuse, while the second determines whether or not this opportunity can be traded

off against object management overheads. Another metric of interest is the document-levelcontent reusability,

both across repeated requests for the same document (the temporal dimension) as well as across requests for other

documents that are linked from this one (the spatial dimension). Content reusability, which we define to be the
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Document Template

Figure 1: Dynamic content can be viewed in terms of a quasi-static document template and individual objects, which
exhibit different sharing, cacheability, and freshness time characteristics.

fraction of the document that can be reused is in some sense a derived metric that depends on several independent

parameters: the sizes of individual objects, theirfreshness time(the length of time the object remains valid), and

the correlation between the two. The larger the content reusability, the more the likely benefits from techniques that

either reuse or cache individual component objects.

Section 4 characterizes dynamic content from a representative set of web sites in terms of these independent and

derived metrics.

3 Methodology

If one has access to the web server and/or application server of content providers, it is a relatively straightforward

exercise to instrument these to obtain the above metrics of interest. Unfortunately, many commerical web sites

which create dynamic content are proprietary. Therefore, we adopt an alternative approach based on the analysis of

dynamic content (an HTML file) downloaded from various web sites.

The biggest difficulty that must be overcome in our chosen approach is the lack of an explicit template associated

with the document, which can help identify its component objects. To work around this difficulty, we make the

assumption thatthe document template can be expressed as a nested table. Figure 2(a) shows an example: here, the

document includes head and body tags, with the body including 2 tables. We have been unable to find a web site

whose pages are fully dynamically generated, where this assumption is not satisfied.

Given this assumption, our approach first extracts the template associated with the document, then identifies

the (logical) objects that fill out this template (grouping neighboring objects that exhibit the same freshness time

characteristics), and finally aggregates logical objects into physical objects that serve as the granularity at which

document characteristics are modeled in Section 4. These steps are described in additional detail below:

1. Data Collection: In this first step, a dynamic document is downloaded everyT time units from its web site

to set up a series. Since the time interval used in the data collection determines the minimum value of the
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freshness interval, this time interval should be set as small as possible. The documents in this series are

denoted as(d1, d2, · · · , dn).

2. Tree Building: Our assumption about the document structure allows the document to be represented as a tree

of objects. In principle, this should be an easy affair: since HTML has an associated XML DTD associated

with it, one could just build the object tree from the corresponding XML tree. However, we found that the

HTML produced by many servers does not fully comply with the specification. Therefore, we first preprocess

the document usingtidy [28] to make it comply with the W3C XHTML 4.01 standard.

Each leaf node in the tree is a possible object. To assist with the comparison step described next, each node

in the tree is annotated with acontent digest. The latter is computed using the collision-resistant SHA-1 hash

function [1]. Internal nodes are associated with a hash of the content digests of their child nodes. Continuing

with our example, the corresponding object tree of the document in Figure 2(a) is shown in Figure 2(b). Such

object trees are computed for all document instances producing(t1, t2, · · · , tn).

<html>
    <head>
    </head>
    <body>
        <table>
            <tr> 1</tr>

<tr> 2</tr>
        </table>
        <table>

<tr> 3 </tr>
         </table>
     </body>
</html>

(a)

<html size="40"
hash="ABC">

<head size="12"
hash="XYZ">

<body size="26"
hash="UVW">

<table size="12"
hash="DEF">

<table size="12"
hash="HJK">

(b)

<tr size="6"
hash="BDC">

<tr size="6"
hash="IJK">

1
2

3

<tr size="10"
hash="KMU">

<html  freshness=0>

<head  freshness=20> <body freshness=5>

<table freshness=10> <table freshness=5>

(c)

<tr freshness=10>

<tr freshness=10> <table freshness=10>

<html  freshness=0>

<head  freshness=20> <body freshness=5>

<table freshness=10> <table freshness=5>

(d)

<tr freshness=10>

<tr freshness=10>

<table freshness=10>

(e)

Figure 2: Identifying the objects making up a document involves five steps, going from (a) a simple documentd, to
(b) the corresonding object tree of documentd, to (c) the object tree annotated with freshness times, to (d) logical
groupings of objects, to (e) the final objects chosen to represent this document.

3. Tree Comparison: Based on the object tree constructed in Step 2, the freshness time of each object is com-

puted by comparing the rest of the series with the first documentt1. The comparison is computed in a bottom-

up fashion by comparing the digest of each node; the freshness time of the object is set to the time interval
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corresponding to the earliest document where the digests differ. Figure 2(c) shows the results of this step,

which is also represented as an XML tree.

4. Object Grouping: This step clusters contiguous objects (in the object tree) with similar properties into a

single large logical object. The algorithm again proceeds in a bottom-up fashion from the leaf nodes: sibling

nodes with the same freshness times are combined with each other, and a singleton (grouped) node is combined

with its parent under the same conditions.

Figure 2(d) shows the result of object grouping: the dark circles represent objects remaining as the leaf nodes.

In this specific example, the first twotr nodes1,2 are combined with their parent nodetable , while the

third tr node exhibits a different freshness time than its parent node, and hence cannot be combined. These

remaining leaf nodes define the component objects of the document, with the rest of the tree representing the

template.

5. Tree Splitting: The last step of the object identification process groups one or more of the logical objects into

physical objects; the latter represent the granularity at which surrogates and proxy caches work with the doc-

ument objects. Ideally, this decision ought to be driven by the document semantics, taking into consideration

factors such as freshness times, relationships between objects, etc.

In the absence of such information, we have to use heuristic means. In this paper, we use two techniques

to split the object tree generated in Step 4 into component objects:size-basedand level-based. Size-based

splitting chooses nodes whose size exceeds a certain threshold (and whose child nodes have size smaller than

the threshold). Level-based splitting follows the logical structure of the document: all nodes below a certain

depth are grouped together. Returning to our example, if only two levels are allowed, there will be only

two nodes in the document, the<head> and<body> . Note that although we employ these two heuristics

independently, they can be combined to choose document objects.

4 Analysis of Dynamic Content Characteristics

To model the characteristics of dynamic content, both in terms of independent parameters such as the number, sizes,

and freshness times of objects, as well as derived parameters such as content reusability, we analyzed traces collected

from six web sites using the methodology described in the previous section.

The main pages at these sites, which included three news sites (www.cnn.com , dailynews.yahoo.com ,

www.nytimes.com ), two e-commerce sites (www.amazon.com , www.barnesnoble.com ), and an entertainment

site (www.windowsmedia.com ), were downloaded every five minutes over a two-day interval.1 Table 1 lists the

dates during which the traces were collected. A point that needs to be made here is that we intentionally chose

collection periods, where the web site was functioning in a “stable” mode. The primary reason for this choice is

our perception that such information is more useful for longer-term surrogate and proxy cache planning as opposed

to the unpredictable behavior of a web site during “unstable” periods (consider for example the nature of dynamic

content that news sites generated in the period 09/10 - 09/12).

1We actually collected traces over a two-week duration for most of the sites, but these exhibit the same behavior as the two-day traces.
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Site cnn yahoo nytimes amazon bn wmedia
Date 08/23 - 08/25 09/14 - 09/16 10/16 - 10/18 10/28-10/30 10/25-10/27 11/05-11/07

Table 1: Periods during which data traces were collected from various web sites. All periods are in the year 2001.

Each document was split into physical objects according to six different size limits (0, 200, 500, 750, 1000,

and 2000 bytes), and three different level limits. We only report on a subset of these experiments in this section,

primarily to improve the readability of the figures and tables. An additional point needs to be made here. In the

size-based splitting scheme, it is possible to have some objects that are smaller in size than the specified limit. This

comes about because we assume a static template structure across the document series, which has the consequence

that whenever we mark a logical object as being a physical object we also need to apply the same marking for its

siblings (even if their size is smaller than the limit).

4.1 Number of Objects

The number of objects in a dynamic document helps determine what opportunity, if any, is available for exploiting

reuse. Unlike well-studied corresponding questions in the static content case, for example, the number of embedded

images in a document [5], the number of physical objects in a document is influenced by means using which we

choose objects. The average number of objects for each document is shown in Table 2. Each row in the table shows,

for a fixed level limit, the number of chosen objects for different size limit settings. These counts verify intuition:

the larger the size limit, the fewer the number of objects. Similarly, the deeper the chosen level, the more objects

there will be.

Unless explicitly stated to the contrary, the measurements in the rest of the section refer to the largest level

limit for each of the documents. We have experimented with lower limit settings and have found that the results

overall have the same flavor. Note also that although the number of objects in a given document is sometimes small,

considering these objects over the entire 2-day series provides a statistically significant sample.

4.2 Distribution of Object Sizes

Similar to the size distribution of static documents, we need to understand the size distribution of objects embedded

in a dynamic web document. Many previous studies have verified that the size of a static resource, characterized by

a heavy tail, is captured well by a pareto distribution (withα = 1.0 ∼ 1.5). However, intuition suggests that this

characterization may not apply to objects within a dynamic document for two reasons: first, dynamic content itself

tends not to have overly large sizes, and second, the size of an embedded object is restricted to be smaller than that

of the overall document. Figure 3 shows the distribution of object sizes for our six document series, which verifies

this intuition. We find that a large number (about 90%) of objects in our documents are of relatively small size (less

than 500 bytes). This fact is better highlighted in the cumulative distribution function graphs shown in Figure 4.

To develop a model for the object size distributions seen for different size limits, we use standard statistical

methods similar to those used by Paxson et al. in [27]. We use both Chi-Square and Anderson-Darling (A2)

empirical distribution functions (EDF) for estimation of goodness-of-fit [12]. We found that most of object size

distributions have a very good fit to theExponentialdistribution, whose cumulative distribution function isF (x) =
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Figure 3: The distribution of object sizes at different web sites assuming a size limit of 0. Each bar represents the
number of objects contained in the size range bounded above by the value on the X-axis and below by the value of
the bar to its immediate left.
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Figure 4: The cumulative distribution function (of the number of objects) versus object size for different size limit
settings.
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Site Level Size Limit
0 200 500 750 1000 2000

level=18 142 90 71 59 49 33
cnn level=12 118 90 71 59 49 33

level=6 35 35 32 30 30 26

level=26 113 105 64 45 38 35
yahoo level=20 113 105 64 45 38 35

level=14 85 81 58 42 37 35

level=23 69 53 34 30 29 23
nytimes level=17 67 51 34 30 29 23

level=11 63 49 32 28 28 23

level=21 178 55 28 26 22 16
amazon level=15 106 54 27 25 22 16

level=9 54 31 22 20 20 16

level=21 114 60 51 45 36 19
bn level=15 80 45 38 34 30 19

level=9 55 31 27 26 22 11

level=19 73 40 30 26 17 15
wmedia level=13 47 36 30 26 17 15

level=7 17 14 14 13 13 12

Table 2: The mean number of objects corresponding to different size and level limits for the six web sites.

1 − e−λx. amazon andwmedia are two exceptions, exhibiting a slightly better fit to aWeibull distribution. We

note that the Weibull distribution (with a CDFF (x) = 1 − e−(λx)b
) is a variant of the Exponential distribution, so

these anomalies are likely not very crucial. Table 3 shows the parameters of the Exponential or Weibull distributions

that best fit our trace data for various size limits. The results of the Chi-Square tests were in the range 0.1 to 2.5,

showing a very close fit. The results of theA2 test showed no significance in terms of goodness of fit for most of

the documents; however, this failure, which is a common problem with EDF [5, 27], was primarily due to the fact

that a fairly large data set was used. The fit improved significantly when we sub-sampled the data set. Although not

shown, we observed similar distribution fits for different settings of the level limit.

Site Distribution Size Limit
0 500 1000 2000

cnn Exponential 0.0040 0.0017 0.0011 7.3×10−4

yahoo Exponential 0.0034 0.0014 8.5×10−4 7.8×10−4

nytimes Exponential 0.0024 8.5×10−4 8.5×10−4 8.5×10−4

amazon Weibull λ = 0.0058 λ = 0.0011 λ = 7.68× 1004 λ = 5.10× 10−4

b = 0.8 b=0.5 b=0.6 b=0.6
bn Exponential 0.0030 0.0015 0.0011 8.5×10−4

wmedia Weibull λ = 0.0037 λ = 9.52× 10−4 λ = 5.03× 1004 λ = 5.03× 10−4

b = 0.8 b=0.7 b=1.0 b=0.9

Table 3: Parameters of Exponential and Weibull distributions best fitting the measured object size distributions for
the six web sites.
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4.3 Distribution of Object Freshness Times

As described in Section 2, object freshness times are computed by comparing objects in a particular document

against each subsequent document in the series. Each object is associated with the shortest time interval where

the corresponding object in the template differs from the current one. Figure 5 shows the measured cumulative

distribution function (of the number of objects) versus average object freshness times in the documents for different

settings of size limit. A point(x, y) on the curve represents the number of objects (y) in the document that have a

freshness time belowx. The reason the CDF curve does not reach 1 at the extreme right of the plots is because the

freshness time of the remainder of the objects is significantly higher than the right limit (of 1435 minutes∼ 1 day).

These latter objects essentially stay fixed throughout a document series.
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Figure 5: The distribution of freshness time within different sizelimit.

The following observations can be made from the figures:

• As noted above, a large fraction of objects (incnn ’s case, this number is about 40%) in all six of the documents

do not change within the timescale of a day. In fact, the objects do not change even over timescales of a week,

indicating that significant reuse can be exploited even by just focusing on objects that exhibit this relatively

simple behavior.

• For those objects that do change within the timescale of a day, we found that a large fraction of objects have

small freshness times, and that this fraction drops off as the freshness time increases. It would seem that such

behavior can be captured by theparetodistribution (F (x) = 1 − (k/x)−α, x > k). However, similar to the

observation made by other researchers [5], we found that although pareto is effective at capturing the heavy tail

nature of the freshness time distribution, it does not fit well with the body, particularly for low freshness times.

We then looked at the Weibull distribution, which has been previously used to model lifetimes of components
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in computer systems, and found that it can characterize our measured behavior much better.

Table 4 shows the parameters of the Weibull distribution that best fit the data: with the exception of the

commercial sites discussed below, our results show that the object freshness times can be effectively modeled

using a Weibull distribution.

Site Distribution Size Limit
0 500 1000 2000

cnn Weibull λ = 5.59× 10−4 λ = 5.03× 10−4 λ = 5.49× 10−4 λ = 8.55× 10−4

b=0.6 b=0.5 b=0.4 b=0.3
yahoo Weibull λ = 5.03× 10−4 λ = 6.02× 10−4 λ = 0.001 λ = 0.001

b=0.7 b=0.5 b=0.5 b=0.5
nytimes Weibull λ = 0.0011 λ = 0.0018 λ = 0.0021 λ = 0.0017

b=0.3 b=0.2 b=0.2 b=0.1
amazon Bimodal 0 : 0.42, 0 : 0.40, 0 : 0.45, 0 : 0.43,

> 1435 : 0.46 > 1435 : 0.53 > 1435 : 0.5 > 1435 : 0.57
bn Bimodal 0 : 0.35, 0 : 0.38, 0 : 0.38, 0 : 0.37,

> 1435 : 0.55 > 1435 : 0.54 > 1435 : 0.55 > 1435 : 0.58
wmedia Weibull λ = 5.03× 10−4 λ = 5.03× 10−4 λ = 5.03× 10−4 λ = 5.03× 10−4

b=0.7 b=0.7 b=0.5 b=0.5

Table 4: Parameters of distributions best fitting the freshness time measurements for the six web sites. The two
commercial sites show a degenerate case of the Weibull distribution: almost all of the objects have either near zero
freshness time or very large freshness times. The fraction of objects falling into each category are denoted using the
form a : b: a indicates the freshness time andb reflects the fraction.

• The freshness time distributions for the two commercial web sites (amazon andbn) markedly differ from that

of the other sites in that all of the objects appear to fall into one of two categories corresponding to either a

near-zero freshness time (accounts for about 40% of the objects) or those that have a very large freshness time

exceeding one day. This behavior, which can be attributed to frequently changing dynamic advertisements

included in the page, can be thought of as a degenerate case of the more general behavior that is captured

using the Weibull distribution. Table 4 shows the fraction of the objects that fall into each category for the two

sites corresponding to different size limits.

4.4 Correlation between Object Size and Freshness Time

To ascertain if there was a relationship between the sizes and freshness times of objects in the documents, we

computed the correlation coefficient for the two series (see Table 5). While we had hoped to see a strong positive

correlation between object size and freshness time (i.e., smaller objects exhibit smaller freshness times and vice-

versa), we found that for our traces there was no conclusive indication of any correlation between the two metrics.

4.5 Extent of Content Reusability

As noted in the beginning of this paper, one of our main motivations for undertaking this study was to better under-

stand the nature of content reusability in dynamic web content. Content reusability is a derived parameter, which
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Site Size Limit
0 500 1000 2000

cnn -0.199 -0.280 -0.305 -0.477
yahoo 0.048 0.075 -0.013 -0.053

nytimes -0.134 -0.196 -0.451 -0.549
amazon -0.153 -0.900 -0.936 -0.999

bn -0.064 -0.365 -0.329 -0.641
wmedia -0.204 -0.254 -0.329 -0.316

Table 5: Correlation between object size and freshness time for the six sites, expressed in terms of the correlation
coefficient.

is affected both by the distribution of object sizes and freshness times; however, this dependence is unpredictable,

particularly in the absence of any correlation between the two.

There are two dimensions across which surrogates and proxy caches can benefit from content reuse. The first

dimension, time, benefits repeated downloads of the same document: reuse in this case refers to the fraction of

objects that remain valid across multiple downloads. The second dimension, document links, improves performance

for downloading a group of linked documents. Reuse in this latter case refers to the fraction of objects that are shared

across two (different) documents. We examine these two dimensions in turn.

4.5.1 Reusability across time

There are two ways to determine content reusability across time in the same document, based upon one’s assumptions

about the existence of a document template. The first, referred to hereafter ascontent reusability, assumes that each

document is associated with a static template, and defines an object to be reusableonly if it occupies the same place

within the template. The second, which we callobject reusability, takes a more general view in defining an object

to be reusable if it appearsanywherein a new document.

Figure 6 shows the content reusability (in terms of the bytes in the document that can be reused) over a one-day

interval for the homepages of our six web sites. A few points need to be made here. First, each curve is an average of

288 contiguous documents (corresponding to a one day trace spaced at five minute intervals), each of which has been

compared with 288 subsequent documents in the series. Second, for the measurements reported here, the level limit

was set to the highest possible in each case to ensure that we obtained the maximum potential content reusability.

Finally, the curves include reuse of the template, which occupies between 10%–20% of the whole document.

Several observations can be made from these figures:

1. The smaller the granularity of objects, the more the reusability, which complies with our intuition. For ex-

ample, 75% of the document bytes are resuable in the case ofcnn after 12 hours have elapsed when the size

limit for defining objects is set to 0 (i.e., there are no restrictions on how small an object can be), while the

corresponding reusability is 20% when the size limit is set to 2000 bytes.

2. Content reusability stabilizes after a time period, and thereafter stays flat for a long time. We redid these

measurements using two-week traces but the results stayed the same, indicating that a certain fraction of the

document remains usable over extended periods of time.
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Figure 6: Content reusability of different web sites averaged over a one day period, assuming a static document
template.

3. The content reusability curves for the two commercial web sites are flat, corresponding to the bimodal nature

of their freshness time distributions. It is only possible to reuse the unchanged portions of the document, since

the rest changes too frequently for there to be any reuse.

4. For the remaining four sites, acceptable levels of reusability (larger than 40%) require that the size limit of

objects be set less or equal to 500 bytes. However, what is encouraging (from the perspective of someone

trying to design a proxy cache system) is that the amount of content reusability degrades gracefully as the size

limit is increased. Thus, there is a range of size limits, based on the efficiency and overheads associated with

caching at the object granularity, where a proxy cache can see benefits from reuse.

Figure 7 shows the corresponding figures for object reusability. As noted earlier, this represents the fraction

of the document bytes that can be reused after a certain time period, assuming that an object in the first document

appears somewhere in the second. Intuitively, object reusability should be greater than content reusability. However,

while comparing the set of objects, we do not consider the document template and objects that are smaller than a

certain threshold. Table 6 shows the fraction of document bytes accounted for by the objects that are considered. As

we can see, the unaccounted for objects end up contributing a sizeable fraction of the overall document bytes and

because they are deemed not reusable, object reusability ends up being slightly lower than the corresponding content

reusability. Other than this difference, object reusability exhibits the same characteristics as content reusability and

the same observations apply.

4.5.2 Reusability across linked documents

Content reuse is also possible across dynamically generated documents from the same site that end up, for various

reasons, to share the same set of objects. If these documents are linked to each other, then one can exploit this reuse
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Figure 7: Object reusability of different web sites averaged over a one day period, assuming the document does not
have a template.

Site Size Limit
0 200 500 750 1000 2000

cnn 89.4% 85.0% 73.5% 76.4% 60.3% 64.2%
yahoo 93.5% 83.0% 87.6% 83.7% 73.0% 50.8%

nytimes 96.4% 93.5% 88.0% 90.8% 88.0% 79.3%
amazon 82.4% 87.3% 93.3% 90.7% 90.9% 93.4%

bn 98.2% 98.0% 96.4% 96.4% 96.2% 96.2%
wmedia 91.0% 90.8% 91.8% 91.3% 88.8% 89.7%

Table 6: The fraction of the document bytes accounted for by objects selected in the object reusability computation.

across traversals of the links. As an example, consider thecnn web page, which contains links to pages that contain

additional detail about headlines, as well as news in various categories. Given that all of these pages are generated

on the same server, it appears reasonable that they would share some objects.

To verify this intuition, as part of our trace collection process, we also collected a set of documents that were

linked in from the home page of each of our sites. To takecnn as an example, we collected fifteen other documents

in addition to the home page:local , travel , weather , career , health , special , technology , US, world ,

and the top two headlines, all of which are hosted on the CNN server, as well as two linkssports andasia , which

are hosted on different servers (sportscnn.cnn.com andasia.cnn.com ).

Although these 15 documents do not share the same document template, our analysis results show that large parts

of them are in fact shared. Figure 8 shows the object reusability across the different documents, using as reference

the document from a particular page. For instance, Figure 8 (a) and (b) show the reuse with respect to the main

cnn page when the size limit is 0 bytes and 200 bytes respectively. For the smaller size limit, we see that 25% of

the document bytes can be shared across other documents that are also hosted on the same server, while the sharing
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Figure 8: Object reusability across documents from thewww.cnn.com web site with respect to (a) thecnn default
page (with size limit 0); (b) thecnn default page (with size limit 200); (c) a headline page; and (d) the career news
page.

across documents that are hosted elsewhere is not so good. This verifies our intuition about server activity. The

measurements for the larger size limit shows that achieving these gains requires the ability to reuse objects at a fine

granularity.

Figure 8 (c) and (d) show the corresponding measurements using one of the headline pages and the career page

as a reference. We find that the amount of reusability is higher (between 40%–50%), primarily attributable to the

smaller size of the overall document in these cases. Thus, our results verify that there is substantial opportunity for

reusing objects across dynamic documents that are linked from each other.

4.6 Implications

Our study of object characteristics of dynamic web content has several implications for future research in optimizing

the generation and delivery of dynamic web content:

• An immediate implication, which we explore in the rest of this paper, is that such models enable the de-

velopment of synthetic content generators, a prerequisite for simulation-based studies of the kind that have

previously proved very successful in the static content case.

• Our results also answered most of the questions we posed in Section 1. Specifically, our results show that there

is a significant opportunity for content reuse, although one needs to distinguish between content that exhibits

a graceful degradation of reusability with object size (e.g.,cnn , yahoo , nytimes , andwmedia ) and the kind

that exhibits a sharper degradation (e.g.,amazon andbn). That some dynamic content exhibits the first kind

15



of behavior is encouraging: it frees up a surrogate or proxy cache designer to work with a range of object sizes

in order to achieve benefits from reusability.

• The Weibull nature of the freshness times distribution suggests that because a large number of objects get

updated very frequently, client-initiated cache consistency protocols as opposed to server-initiated ones such

as volume leases [34], may be more appropriate for these dynamic objects.

• Knowledge of object size and freshness time distributions can be exploited by a cache designer who can

incorporate them into heuristics to decide which objects to cache and which to refetch. For example, based on

the caching history, an object can be tagged as being more likely to provide an increased reuse opportunity if

it has already been reused a certain number of times.

5 DCE: Dynamic Content Emulator

Although several researchers have proposed server-side and cache-side techniques for improving generation and

delivery of dynamic content, these techniques have not as yet been widely adopted by either content providers or

content deliverers. We attribute this situation to the following: content providers need to be first convinced of the

benefits of such techniques before they modify their content to support composition and reuse at the granularity of

sub-document objects. Unfortunately, it is difficult to verify the efficacy of a proposed technique in the absence of

either real or synthetic content that adheres to the consensus view of dynamic content as consisting of a document

template and individual objects.

In this section, we describe the design of a dynamic content emulator (DCE), which alleviates the above situation.

DCE uses the models of object size and freshness time obtained in the previous section to emulate a web server that

serves dynamic content, which incorporates support for document templates and identification of component objects.

5.1 Design

DCE separates out the functions of content generation and content representation into two modules: thedynamic

content generator(DCG) and thedynamic content presentor(DCP). DCP interfaces with requesters and appears as

a traditional web server augmented with additional functionality described later in the section (see Figure 9).

<object id=12344>
</object>
<object id=23671>
</object>
<object id=32478>
</object>

Web Server

Dynamic
Content
Warden

Dynamic Content
Generator

Reply:
template
# of objects
o1, o2, ....

Request:
type,
sizelimit,
levellimit

1.request for whole document
2.request for multiple objects

1. template for the document
2. ESI-enabled output in XML

Dynamic Content
Presentor

Figure 9: The architecture of dynamic content emulator (DCE), which includes two components: a dynamic content
generator (DCG) and a web server-like dynamic content presenter (DCP). The extra functionality of DCP is provided
by a module called the dynamic content warden.
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To simplify its use, DCP supports a fairly simple interface, servicing two kinds of requests, either for thedoc-

ument templateor for a set ofselected objects. In response to requests of the first kind, the DCP checks a local

cache to see if the document template exists, and if it is still valid. If both conditions are satisfied, it replies with the

template as described below. If not, it requests the DCG to generate this document. The DCG takes three parameters

as input to create the corresponding document template and individual objects: thedynamic content type, thesize

limit and thelevel limit. The latter two parameters have the same meanings as discussed earlier, while the first one

is used by the DCG to index into a database of canned distributions. For example, the request< cnn, 200,−1 >

results in the DCG generating acnn -like document (i.e., with the characteristics reflected in thecnn trace) with

objects larger than 200 bytes and a level limit set to infinite.

Requests for a single object are handled similarly. The DCP first checks the cache to verify validity, and if the

object freshness time has expired, then it requests the DCG to get a new version. The DCG services this request by

looking up the distribution corresponding to the document template. The DCP extends this basic scheme to support

requests for a set of objects.

5.2 Implementation

Our implementation builds the DCP on top of the Jakarta Tomcat 4.0 web server infrastructure. All functionality for

dealing with dynamic content (understanding templates, verifying validity times, etc.) is encapsulated in adynamic

content warden, which is implemented as a servlet. The DCG is implemented as a standalone Java application, and

interfaces with a database that contains parameters for modeling various kinds of dynamic content. Configuration

parameters associated with the dynamic content warden allow simulation of multiple web sites, and selection of

different object granularities for a particular site. Both the DCG and the dynamic content warden are easy to extend

to incorporate different representations of the document template and different distributions governing object size

and freshness time characteristics.

The content presented to requesters by the DCP is currently packaged as an HTML document augmented with

Edge Side Include (ESI)directives. We considered using theXSL-FOformatting language from W3C, however

felt that because of its complicated nature it would be a while before content providers and caching vendors would

support this standard. ESI, on the other hand, benefits from the fact that it is a natural extension to Server-Side

Include (SSI), which is widely adopted.

Our implementation had to extend the ESI specification in two ways. These extensions, which concern requests

and responses that involve multiple objects within the same document, might make sense to be included in the

ESI specification as it evolves. Logically, to support ESI, downstream surrogates and/or proxy caches will send

requests for all of the objects that are invalid in the local cache. Although these requests can be sent sequentially,

the absence of widespread support for HTTP 1.1 implies that one is likely to see sizeable overhead for creating a

different connection for each request. An alternative, which we have adopted, combines the requests into a single

message. Our suggestion for the combined requests is the comma separated values (CSV) format. For example, the

request for three objects in our example might look likehttp://128.122.142.137:8080/dcg/pageServer?

object=12344,23671,32478 where the last three numbers refer to unique IDs of objects. We also suggest using

XML to describe the reply for mutiple objects (see Figure 9). The second extension associates freshness times with

individual objects (instead of the entire document) by adding an attribute to the<esi:include > tag, which now

17



looks at<esi:include freshness=‘8’ src=‘URL’ >.

5.3 Validation of DCE

To validate both the DCE, and as a consequence our analysis models, we developed an idealized proxy cache simula-

tor that can be driven either from our collected traces or from emulated content generated by the DCE. The output of

the simulator is the number of response bytes transmitted between the server and the cache, assuming that requests

for the web page of interest arrive at the cache according to a poisson arrival model with meanλ = 1 minute.

When driven by real trace data, the simulator computes the transferred bytes by comparing the currently cached

document against the document corresponding to the request time, inferring the objects that have changed (using a

method similar to that described in Section 2), and replaces the cache contents with the new document. When driven

by DCE, the simulator maintains a cache of the document objects and requests new versions upon detecting expira-

tion: these requests are handled by the DCG, which looks up the database of distribution parameters (corresponding

to the trace data) to send an object with size and freshness properties randomly drawn from the corresponding dis-

tributions. Figure 10(a) and 10(b) show the results of the two cases while simulating client activity over a one day

period: RealSim refers to the simulation using the trace data, while DCESim refers to the simulation using DCE.
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Figure 10: The bandwidth requirements in RealSim and DCESim. The plots also show the predicted value of
bandwidth, obtained as discussed in the text.

As Figure 10 shows, the DCE-driven simulation is able to capture the behavior of the real trace data: the mean

bandwidth requirements in the two cases are identical, as are the lower and upper bounds of required bandwidth.

More importantly, and this is something that the figure does not show, DCE offers a significant advantage in simu-

lation time attesting to its utility as an efficient tool for evaluating new techniques. In particular, to simulate the one

day interval on a dual Pentium III-1GHz machine with 512 MB of memory, the simulator took 0.5 seconds when

driven by DCE, in contrast to the 2.5 minutes that it took to process the real trace.

Figure 10 also highlights an additional advantage of modeling the characteristics of dynamic content. In some

situations, as here, these models can be used to obtain a quick analytical estimate of the values of interest. For

example, we can use the following simple prediction model to estimate the average bandwidth requirement between

the proxy cache and the server. Assuming that the document consists ofN objects (o1, o2, · · ·,oN ), with sizes and

freshness times(s1, s2, · · · , sN ) and(f1, f2, · · · , fN ) respectively, the average bandwidth requirement seen by an

idealized proxy cache which receives requests according to a poisson-arrival model with meanλ is given by the

18



following expression:

BW =
M∑
i=1

szi ≈ N · S̄ · F (λ) (1)

whereM is the number of objects that have expired when the request comes in, and(z1, z2, · · · , zM ) are the sequence

numbers of those objects.F is the cumulative distribution function of the freshness times(f1, f2, · · · , fN ) andS̄

is the mean of the object sizes(s1, s2, · · · , sN ). The approximation comes about because an average request, that

arrives everyλ time units, findsN · F (λ) objects whose freshness times have expired (F (t) represents the fraction

of objects with freshness time less thant). One can assume that each of these objects has an average size of(̄S),
resulting in the expression above.

For the trace data simulated in this experiment, which consisted ofN = 137 objects with an object size dis-

tribution given by Exponential (λ = 0.004) and a freshness time distribution given by Weibull(F(λ) = 0.0086), the

estimated bandwith works out to be 294. As shown in Figure 10, this estimate closely approximates the bandwidth

requirements seen by both RealSim and DCESim.

6 Related Work

Web workload characterization has been extensively studied in the past five years from the perspective of proxies[6,

33, 13, 31], client browsers[11, 4, 20], and servers[3, 25]. However, many of these studies focus on the characteristics

of web resources at the granularity of the whole document, such as content type, resource size, response size,

resource popularity, modification frequency, temporal locality, clent access pattern, and the number of embedded

resources. Many of these previous research results accurately capture the characteristics of static web content.

However, for dynamic web content which introduces the notion of object composition, many of these characteristics,

such as request and response sizes need to be revisited. Moreover, dynamic content necessitates understanding of

new characteristics, such as the number and sizes of objects making up a document, the freshness times of these

objects. To the best of our knowledge, the work described in this paper is one of the first efforts trying to model

these latter characteristics.

Wills and Mikhailov [32] quantitatively analyzed the content reusability present in traces collected from several

web sites after a one day interval. Two notable difference of our characterization include the characterization of

content reusability at finer granularity (making explicit the time dependence), and the relationship between object

size and content reusability. Our results indicate the object granularity that must be supported in order to successfully

take advantage of potential reusability.

Challenger et al. [9] analyzed object size distributions based on server traces from the 2000 Olympics site.

Although related to our objectives, their work works with a different definition of what an object is: they include

not only the individual objects embedded within a document, but also the entire generated document itself. Because

of this reason, while a pareto distribution fits their findings, we conclude that the sizes of individual objects in the

document follow an exponential distribution.

Our work on the dynamic content emulator (DCE) resembles work done by Barford et al. on the SURGE static

workload generator [5]. However, unlike SURGE, which was designed to model client access patterns, DCE focuses

on the complementary goal of emulating server behavior, both in terms of its load properties as well as the nature of
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the content itself. To simulate an appropriate delay to model overheads of dynamic content generation, our emulator

uses delay models from previous research [19, 26, 17, 2, 21].

The work in this paper was motivated in part by our inability to extend, to our specific setting, the results previ-

ously obtained by researchers working on various aspects of dynamic and personalized content delivery. Such work,

which has focused on both server-side [8, 9, 35] and cache-side [7, 14, 23, 32, 24] has typically been validated with

specific, proprietary workloads. For example, Challenger et.al used the 1998 Olympic winter games workload in [8],

and the 2000 Olympic games workload in [9], and Douglis et.al used a modified internal AT&T web-based “recruit-

ing database” to evaluate their idea of HPP [14]. The work in this paper addresses this shortcoming, providing both

models and tools that allow researchers to efficiently evaluate their techniques on a variety of (synthetic) workloads.

We must note that our intention is not to replace experimentation with real workloads, but instead to complement it.

The work reported in this paper represents a particular view of dynamic content, which currently dominates

traffic from real web sites. With proposed techniques such as the class-based page classification scheme in [35], the

Active Cache system proposed by Cao et al. [7], and more recently the Gemini system proposed by Myers et al. [24],

which require web servers to provide both content and specialized code (applets in Active Cache, Java classes in

Gemini) to proxy caches, it is clear that the nature of dynamic content and therefore its characteristics will evolve

in the future. While this may require that we revisit some of our results, we believe that the methodology we have

adopted is sound and can be used to characterize these new forms of content as and when they become available.

7 Conclusions and Future Work

This paper has proposed a methodology for evaluating characteristics of dynamic web content, and used this method-

ology to obtain models for various independent and derived metrics of interest such as object sizes, freshness times,

and content reusabililty. To summarize our main findings, we have found that (1) object sizes in dynamic documents

can be modeled using an Exponential distribution; (2) for document objects that change over time, their freshness

times can be modeled in terms of a Weibull distribution, which sometimes degenerates to a case where all of the

objects change on every access; (3) there is significant opportunity for object reuse across both multiple accesses of

the same document as well as accesses of related documents. Our results have also made explicit the dependence

between the size at which document objects are managed and the corresponding reuse potential.

These models have also served as the foundation for the design of a tool, the Dynamic Content Emulator (DCE),

which emulates a web server serving dynamic content, both in terms of the load properties as well as the nature of

the generated content. DCE incorporates emerging standards such as ESI, permitting its use for evaluating object

composition-based optimizations for improving dynamic content delivery at the level of surrogates or caches.

Our future work consists of using DCE to evaluate and further refine the design of our CONCA prototype [29],

which incorporates a novel design for efficient caching of dynamic and personalized content.
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