
CIMS-TR 2005-859
Algorithmic Algebraic Model Checking I:

The Case of Biochemical Systems and their
Reachability Analysis?

C. Piazza1, M. Antoniotti2, V. Mysore2, A. Policriti1, F. Winkler4, and
B. Mishra2,3

1 Dept. of Mathematics and Computer Science, University of Udine, Udine, Italy
2 Courant Institute of Mathematical Sciences, NYU, New York, NY, U.S.A.

3 Dept. of cell Biology, School of Medicine, NYU, New York, NY, U.S.A.
4 Research Inst. for Symbolic Computation, J. Kepler University, Linz, Austria

{piazza,policriti}@dimi.uniud.it, winkler@risc.uni-linz.ac.at,

{marcoxa,vm40,mishra}@nyu.edu

1 Prologue

Presently, there is no clear way to determine if the current body of biological
facts is sufficient to explain phenomenology. In the biological community, it is
not uncommon to assume certain biological problems to have achieved a cog-
nitive finality without rigorous justification. In these particular cases, rigorous
mathematical models with automated tools for reasoning, simulation, and com-
putation can be of enormous help to uncover cognitive flaws, qualitative simpli-
fication or overly generalized assumptions. Some ideal candidates for such study
would include: prion hypothesis, cell cycle machinery (DNA replication and re-
pair, chromosome segregation, cell-cycle period control, spindle pole duplication,
etc.), muscle contractility, processes involved in cancer (cell cycle regulation, an-
giogenesis, DNA repair, apoptosis, cellular senescence, tissue space modeling
enzymes, etc.), signal transduction pathways, circadian rhythms (especially the
effect of small molecular concentration on its robustness), and many others.

Fortunately, similar issues had been tackled in the past by other disciplines:
for instance, design of complex microprocessors involving many millions of tran-
sistors, building and controlling configurable robots involving very high degree-
of-freedom actuators, implementing hybrid controllers for highway traffic or air-
traffic, or even reasoning about data traffic on a computer network. The ap-
proaches developed by control theorists analyzing stability of a system with
? The work reported in this paper was supported by grants from NSF’s Qubic pro-

gram, NSF’s ITR program, Defense Advanced Research Projects Agency (DARPA),
Howard Hughes Medical Institute (HHMI) biomedical support research grant, the
US Department of Energy (DOE), the US Air Force (AFRL), National Institutes
of Health (NIH) and New York State Office of Science, Technology & Academic
Research (NYSTAR). F.W. was partially supported by the Austrian Science Foun-
dation (FWF) under the research project DET (P16357-N04).

feedback, physicists studying asymptotic properties of dynamical systems, com-
puter scientists reasoning about discrete or hybrid (combining discrete events
with continuous events) reactive systems—all have tried to address some aspects
of the same problem in a very concrete manner. We explore here how biological
processes could be studied in a similar manner, and how the appropriate tools
for this purpose can be created.

Biology poses new challenges. The most interesting biology combines unimag-
inable diversity with an understanding of molecular events in minute detail. A
single base-pair change can influence the folding of a protein, and alter the femto-
second dynamics of any of a tangle of interacting macromolecules. Of course, a
system of millions of ODEs and their accurate simulation via numerical integra-
tion will not have much effect on uncovering the key biological insights.

In this paper, we suggest a possible confluence of the theory of hybrid au-
tomata and the techniques of algorithmic algebra to create a computational basis
for systems biology. We start by discussing our basis for this choice, as we also
recognize its power and limitations. Admittedly, the work described here is built
on biological foundations that can be faulted for being simple and abstract. We
address those issues and argue in a conclusion and several follow-up technical
papers how to extend the methodology proposed here.

1.1 Biological Models

The central dogma of biology is a good starting point for understanding a math-
ematical formalism for biochemical processes involved in gene regulation. This
principle states that biochemical information flow in cells is unidirectional—DNA
molecules code information that gets transcribed into RNA, and RNA then gets
translated into proteins. To model a regulatory system for genes, we must also
include an important subclass of proteins (transcription activators), which also
affects and modulates the transcription processes itself, thus completing the cy-
cle. We can write down kinetic mass-action equations for the time variation of
the concentrations of these species, in the form of a system of ordinary differen-
tial equations (ODEs) – [?,?,?]. In particular, the transcription process can be
described by equations of the Hill type, with its Hill coefficient n depending on
the cooperativity among the transcription binding sites. If the concentrations of
DNA and RNA are denoted in lower case by x, y, etc., and those of proteins in
upper case by X, Y , etc., then the relevant equations are of the form:

ẋ = −k1x + k3
1 + θY n

1 + Y n
(1)

Ẋ = −k2X + k4x (2)

Each equation above is an algebraic differential equation consisting of two alge-
braic terms, a positive term representing synthesis and a negative term repre-
senting degradation. For both RNA and DNA, the degradation is represented by
a linear function; for RNA, synthesis through transcription is a highly nonlinear
but a rational Hill-type function; and for proteins, synthesis through translation

is a linear function of the RNA concentration. In the equation for transcription,
when n = 1, the equations are called Michaelis-Menten equations; Y denotes the
concentration of proteins involved in the transcription initiation of the DNA, k1

and k2 are the forward rate constants of the degradation of RNA and proteins,
respectively, k3 and k4 are the rate constants for RNA and protein synthesis and
θ models the saturation effects in transcription.

If one knew all the species involved in any one pathway, the mass-action
equations for the system could be expressed in the following form

ẋi = fi(x1, x2, . . . , xn), i = 1, 2, . . . , n (3)

When the number of species becomes large, the complexity of the system of
differential equations grows rapidly. Furthermore, the mathematics of the dy-
namical system becomes increasingly complex. The integrability of the system
of equations, for example, depends on the algebraic properties of appropriate
bracket operations [?,?]. We can approximately describe the behavior of such a
system using a hybrid automaton [?,?]. The discrete states of the hybrid system
describe regimes of system behavior which are qualitatively different in terms of
which species and reactions predominate, and so forth. The “flow”, “invariant”,
“guard”, and “reset” conditions can be approximated by algebraic systems and
the decision procedures for determining various properties of these biological
systems can be developed using the methods of symbolic algorithmic algebra.
As we enlarge the scopes of the biological models by considering metabolic pro-
cesses, signal transduction processes and subcellular biochemical processes that
are specific to locations and transportation between cellular compartments, the
challenges to the algorithmic complexity and approximability deepen the need
for better algorithmic algebraic techniques. In the process, we are also forced to
explore the connection among constructive approaches for differential algebra,
commutative algebra, Tarski-algebra, etc.

1.2 Cell Talks

Communication between adjacent cells are used by biological systems in coor-
dinating the roles, which can be ultimately assigned to any individual cell. For
instance, in both vertebrates as well as invertebrates, lateral inhibition through
the Delta-Notch signaling pathway leads to cells, starting initially in uniform
distribution, to differentiate in “salt-and-pepper,” regular spacing patterns. In
a communication mechanism employing lateral inhibition, two adjacent cells
interact by having one cell adopt a particular fate, which in turn inhibits its
immediate neighbors from doing likewise. In flies, worms and vertebrates, the
transmembrane proteins Notch and Delta (or homologs) mediate the reaction,
with Notch playing a receptor with its ligand being a Delta on a neighboring
cell. While intuitively it appears that such a mechanism must play a role in
fine-grained patterning of cells’ states of differentiation, there remain lingering
questions about this model’s adequacy (i.e., model completeness requirement)
and its need for other constraining requirements (i.e., model reachability require-
ment).

Thus, imagine that you have a description of this system in terms of a state-
space, its dynamics (i.e. rules for flows and state transitions), and the subregion
of its state space corresponding to a desired property (e.g., fine-grained pat-
terning of cells in a neighborhood). You may now wonder whether the model
adequately predicts that, when started in a biologically reasonable initial state
with all the model parameters assuming some known values, this system actu-
ally evolves into the subregion encoding the desired properties. If so, you may
next wonder whether you can completely and succinctly characterize all possi-
ble regions (“backward-reachable region”) from which the system also evolves
into the desired subregion. The volume of such a region, its symmetry and other
invariants may tell us quite a lot about those properties of the underlying biolog-
ical system, which may have attributed to its selective advantages. Furthermore,
the model is now amenable to verification by experimenting the system with
mutants, some of which “live” inside the reachable region and others outside.
Note also that to answer the first question, a good numerical simulation tool
suffices. However, it is less clear how best the second problem should be solved
computationally.

In a simplified continuous time model, the changes to normalized levels of
Notch nP and Delta dP activity in a cell P can be expressed as

ṅP = µ[f(d̄P)− nP]
˙dP = ρ[g(nP)− dP],

where

d̄P =
1

#nhbrs(P)

∑
P ′∈nhbrs(P)

dP ′

f(x) =
xk

a + xk
and g(x) =

b

b + xh
, etc.,

with µ, ρ, a, b > 0, k, h ≥ 1. Note that f monotonically increases from 0 to 1
and g monotonically decreases from 1 to 0 as x takes increasing value from 0 to
∞. See Collier et al. [?] for details of the model. Collier et al. concluded that
the feedback loop was adequate for generating spatial patterns from random
stochastic fluctuations in a population of initially equivalent cells, provided that
feedback is strong enough. Though they also observed that the model does not
account for the longer-range patterns.

In a related computational analysis Ghosh et al. [?] proposed a piece-wise
linear approximation to the continuous time model to generate a hybrid automa-
ton. On this automaton, they conducted a symbolic reachability analysis using
SAL, a heuristic symbolic decision procedure, to characterize the reachable re-
gion by numerical constraints, further sharpening the observations of Collier et
al. [?]

Our model described below, shows that reachable set computed by Ghosh et
al. lacks a completeness in description. The differences are identified by noting
the existence of state-space values from which final equilibrium is reachable but

yet not included in the invariant characterizations of Ghosh et al. The more com-
plete characterizations are important for many biological reasons: for instance,
they provide a better description of biological robustness and its effect on the
organism’s selection advantages.

2 Technical Preliminaries

2.1 Semi-Algebraic Hybrid Automata: Syntax

The notion of Hybrid Automata was first introduced [?] as a model and specifi-
cation language for systems with both continuous and discrete dynamics, i.e., for
systems consisting of a discrete program within a continuously changing envi-
ronment. The simplest class of such models studied in computer science was the
class of timed-automata to model asynchronous systems with many local clocks
evolving at different but constant rates τ̇ = ki, while the system made discrete
state transitions according to the local time. Subsequently, the field has seen
many interesting and nontrivial generalizations. Here, we focus on one that is
motivated by our interest in modeling biochemical processes for systems biology.

Thus, we introduce the notion of semi-algebraic hybrid automata whose defin-
ing conditions are built out of polynomials over the reals, and reflect the alge-
braic nature of the DAEs (differential algebraic equations) appearing in kinetic
mass-action models of regulatory, metabolic and signal transduction processes.

Definition 1. Semi-Algebraic Hybrid Automata. A k-dimensional hy-
brid automaton is a 7-tuple, H = (Z, V , E, Init, Inv, Flow, Jump), consisting
of the following components:

– Z = {Z1, . . . , Zk} a finite set of variables ranging over the reals R; Ż =
{Ż1, . . . , Żk} denotes the first derivatives with respect to the time t ∈ R
during continuous change; Z ′ = {Z ′

1, . . . , Z
′
k} denotes the set of values at

the end of a discrete change;
– (V,E) is a directed graph; the vertices of V are called control modes, the

edges of E are called control switches;
– Each vertex v ∈ V is labeled by “initial”, “invariant” and “flow” labels:

Init(v), Inv(v), and Flow(v); the labels Init(v) and Inv(v) are constraints
whose free variables are in Z; the label Flow(v) is a constraint whose free
variables are in Z ∪ Ż;

– Each edge e ∈ E is labeled by “jump” conditions: Jump(e), which is a con-
straint whose free variables are in Z ∪ Z ′.

We say that H is semi-algebraic if the constraints in Init, Inv, Flow, and Jump
are unquantified first-order formulæ over the reals (i.e., over (R,+,×,=, <)).
We say that H is in explicit form if each Flow(v) is of the form

∧k
i=1 Żi =

fi(Z1, . . . , Zk).

In this paper we consider only semi-algebraic hybrid automata in explicit form.
Notice that although, as defined, semi-algebraic hybrid automata in explicit form

apply only to the cases where the fi’s of the flow conditions are all polynomi-
als, the definitions can be immediately extended to deal with rational functions
instead without significant changes to the basic approach.

Example 1. Consider the following simple semi-algebraic hybrid automaton in
explicit form.

Inv: 1 ≤ Z ≤ 3

Flow: Ż = 1

Init: Z = 1

Flow: Ż = −1

Init: Z = 3

Inv: 1 ≤ Z ≤ 3

Jump: Z = Z′ = 3

Jump: Z = Z′ = 1

The initial mode of this hybrid automaton is shown on the left, where from
the starting value of Z = 1, Z grows with a constant rate of 1. At time t = 3,
when the automaton reaches a value of Z = 3, it jumps to the other mode on
the right. In this second mode, Z wanes with a constant rate of −1 and upon
reaching the value of Z = 1, it jumps back to the initial mode.

2.2 Hybrid Automata: Semantics

Let H be a hybrid automaton of dimension k. For any given a control mode
v ∈ V , we denote with Φ(v) the set of functions from R+ to Rk satisfying the
constraints in Flow(v). In addition, for any given r ∈ Rk, we use Init(v)(r)
(Inv(v)(r) and Flow(v)(r)) to denote the Boolean value obtained by pairwise
substitution of r with Z in Init(v) (Inv(v) and Flow(v), respectively). Simi-
larly, for any given r, s ∈ Rk, we use Jump(e)(r, s) to denote the boolean value
obtained by pairwise substitution of r with Z and s with Z ′ in Jump(e). The
semantics of hybrid automata can now be given in terms of execution traces as
in the definition below.

Definition 2. Semantics of Hybrid Automata. Let H = (Z, V , E, Init,
Inv, Flow, Jump) be a hybrid automaton of dimension k.

A location ` of H is a pair 〈v, r〉, where v ∈ V is a state and r ∈ Rk is
an assignment of values to the variables of Z. A location 〈v, r〉 is said to be
admissible, if Inv(v)(r) is satisfied.

The continuous reachability transition relation, →C , between admissible lo-
cations is defined as follows:

〈v, r〉 →C 〈v, s〉

iff ∃t > 0, f ∈ Φ(v)
(

f(0) = r ∧ f(t) = s ∧ ∀t′ ∈ [0, t](Inv(v)(f(t′)))
)

.

The discrete reachability transition relation, →D, between admissible loca-
tions is defined as follows:

〈v, r〉 →D 〈u, s〉
iff 〈v, u〉 ∈ E ∧ Jump(〈v, u〉)(r, s)

A trace of H is a sequence `0,`1, . . ., `n, . . . of admissible locations such that

∀i ≥ 0 `i →C `i+1 ∨ `i →D `i+1.

2.3 The Bounded Reachability Problem

Let H be a semi-algebraic k-dimensional hybrid automaton in explicit form,
S ⊆ Rk be a set of “start states”, characterized by the first order formula S(Z),
and B ⊆ Rk be a set of “bad states”, characterized by the first order formula
B(Z). We wish to check that there exists no trace of H starting from a location of
the form 〈v, s〉 with s ∈ S and reaching a location of the form 〈u, b〉 with b ∈ B
within a specified time interval [0, end]. If such traces exist we are interested
in a formal characterization of the points of S which reach B within the time
interval [0, end].

Note that for our applications of interest, it suffices to place an upper-bound
on the time interval. Furthermore, in the sequel, we will see that the general
problem remains undecidable even for rather simple hybrid-automata and for
fairly general models of computability.

3 Our Approach

In this paper, we explore solutions to the bounded-reachability problem through
symbolic computation methods, applied to the descriptions of the traces of the
hybrid automaton. Because the description of the automaton is through semi-
algebraic sets, the evolution of the automaton can be described even in cases
where system parameters and initial conditions are unspecified. Nonetheless,
semialgebraic decision procedures provide a succinct description of algebraic
constraints over the initial values and parameters for which proper behavior
of the system can be expected. In addition, by keeping track of conservation
principles (e.g., of mass and energy) in terms of constraint or invariant mani-
folds on which the system must evolve, we avoid many of the obvious pitfalls of
numerical approaches.

Note also that the “algorithmic algebraic model checking approach” that we
propose here naturally generalizes many of the basic ideas inherent to BDD-
based symbolic model checking or even the more recent SAT-based approaches.
We will show these connections in a sequel to the current paper.

Nonetheless, our method has an inherent incompleteness: we proceed on the
traces using a time step δ which implies that our answer is relative to a lim-
ited time interval. Furthermore, when the solutions of the differential equations
cannot be computed we approximate them using Taylor polynomials, hence the
error we accumulate is proportional to δ.

We start by presenting how our method applies to the case of a system of
differential equations, i.e., a hybrid automaton with only just one mode and no
Init , Inv , and Jump conditions.

3.1 The Basic Case

Consider a system of differential equations of the form Ż = f(Z), i.e.,
Ż1 = f1(Z1, . . . , Zk)

...
Żk = fk(Z1, . . . , Zk)

Let S, B ⊆ Rk be characterized by the first order formulæ S(Z) and B(Z),
respectively. As before, let [0, end] be a time interval and 0 < δ ≤ end be a
time step.

We use pj(Z0, δ) to denote the Taylor polynomial of degree j relative to the
solution Z(t) centered in Z0 with a step size of δ. For instance, p1(Z0, δ) is the
vector expression Z0 + f(Z0) · δ.

Consider the following first-order formula over the reals

Fδ(Z0, Z) ≡ S(Z0) ∧ ∃δ′
(

Z = pj(Z0, δ′) ∧ 0 ≤ δ′ ≤ δ

)
.

The points reachable from S in the time interval [0, δ] can be approximated with
the set of points satisfying the formula

∃Z0(Fδ(Z0, Z)).

Hence, the points in B and reachable from S in the time interval [0, δ] can be
approximated by the formula

∃Z0(Fδ(Z0, Z)) ∧ B(Z).

Symbolic algebraic techniques can be applied in order to both simplify (e.g.,
eliminate quantifiers) and decide the satisfiability of this formula. If the formula
is satisfiable, then the values of Z for which the formula is true represent the
portion of B that can be reached in time δ′ ≤ δ. Similarly, the points in S which
reach any point in B within the time interval [0, δ] can be characterized by the
formula

∃Z(Fδ(Z0, Z) ∧ B(Z)).

If these formulæ are not satisfiable then we can proceed with a second step,
getting the formula

F2δ(Z0, Z) ≡ S(Z0)

∧ ∃Z1, δ′
(

Z1 = pj(Z0, δ) ∧ Z = pj(Z1, δ′) ∧ 0 ≤ δ′ ≤ δ

)
.

The above reasoning can now be applied to F2δ(Z0, Z), i.e., use F2δ(Z0, Z)
instead of Fδ(Z0, Z), to check if S reaches B within the time interval [0, 2δ], etc.
Notice that the new variable Z1 which occur in F2δ(Z0, Z) can be eliminated
by applying substitutions. If after time end all the formulæ we generate are
unsatisfiable, then we conclude that B is not reachable from S within the time
interval [0, end].

It is important to notice that:

1. The only approximation we have introduced is due to the use of the Taylor
polynomials;

2. We have only used existential quantified formulæ;
3. The degree of the Taylor polynomial together with the degrees of the fi’s

influence the complexity of the first-order formulæ we create and the number
of steps needed to get a sufficient precision.

It is easy to see that our method can be generalized to the case in which the
fi’s are rational functions, i.e., ratios of polynomial functions. In fact, in this
case we only have to preprocess the formulæ by computing the LCMs of the
denominators and using them to get formulæ over polynomial functions.

When we terminate, we are left with deciding the satisfiability of a semial-
gebraic formula involving n = 2+k · dend/δe+N(S)+N(B) variables in degree
d = max[j+deg(f),deg(S),deg(B)], where N and deg denote the number of vari-
ables and total degree, respectively used in the semialgebraic description of S and
B. In addition, if we assume that the coefficients of the polynomials can be stored
with at most L bits, then the total time complexity (bit-complexity) [?,?,?] of
the decision procedure is

(L log L log log L)dO(n).

We note that even with low degree polynomials this exponential complexity
in the number of variables makes it impractical to test for bounded-reachability
even when the specified time interval is relatively short. Here, we focus on rather
simple examples, where the complexity is rather manageable, and is achieved by
approximating polynomial and rational functions by piece-wise linear functions.
In the sequel, we will examine other approximation approaches, based on state-
space discretization, over-approximation of reachable sets and approaches based
on semi-definite programming.

Example 2. Next, examine the following toy example. The following system of
differential equations describes the dynamics

Ż = 2Z2 + Z,

with S and B characterized by

S ≡ Z > 4,

B ≡ Z2 < 4.

Now, consider the time interval [0, 0.5] and time step 0.5. After time 0.5, using
an approximation with Taylor polynomial of degree 2, we derive the formulæ
below:

∃Z0, δ′
(

Z0 > 4

∧ Z = Z0 + (2Z02 + Z0) · δ′ + (8Z03 + 6Z02 + Z0) · (δ′)2/2

∧ 0 ≤ δ′ ≤ 0.5 ∧ Z2 < 4
)

.

This formula is unsatisfiable, thus implying that the dynamical system reaches
no bad states in the specified time interval.

The formulæ involved in our method can be easily simplified, if we introduce
further approximations. For instance, we may approximate reachability by first
evaluating the maxima and the minima of the j-th Taylor polynomial pj(Z, δ′)s
over S and [0, δ], and then using them as upper and lower bounds.

Example 3. Next, consider the differential equation

Ż = 2Z,

with S and B characterized by

S ≡ 2 ≤ Z ≤ 4,

B ≡ 3 < Z < 5.

The Taylor polynomial of degree 1 with δ = 0.5 is Z +2Z · δ′, i.e., 2Z. Note that
since the maximum and the minimum in S are 8 and 4, respectively, and since
the interval [4, 8] intersects (3, 5), it is possible to reach B from S in time 0.5.

3.2 The General Case

Now, we are ready to deal with the case, where we have a polynomial k-dimensional
hybrid automaton H in explicit form.

Given a mode v of H, we use the notation pjv(Z, δ) to denote the Taylor
polynomial of degree j in the mode v centered in Z. The first-order formula,

F[v, S](Z0, Z) ≡ S(Z0) ∧ ∃δ′
(

Z = pjv(Z0, δ′) ∧ 0 ≤ δ′ ≤ δ

∧ ∀δ′′
(
0 ≤ δ′′ ≤ δ′ → Inv(v)(pjv(Z0, δ′′))

))
,

characterizes the points reached within time δ in the mode v, under the approx-
imation implied by the use of the Taylor polynomial. Notice that, if we assume
that the invariant regions are convex and we use the Taylor polynomial of degree
1, we can avoid the universal quantification. As before, the formula

∃Z0(F[v, S](Z0, Z)) ∧ B(Z)

is satisfiable if and only if the set B can be reached from S without leaving
mode v within the time step δ. In this case, the points of S which reach B are
characterized by

∃Z(F[v, S](Z0, Z) ∧ B(Z)).

If the preceding formula is not satisfiable, we have to consider all the possible
alternative situations: that is, either we continue to evolve within the mode v or
we discretely jump to another mode, u ∈ V . We define the formula Svu

δ

Svu
δ (Z) ≡

{
∃Z0(Fv

δ(Z0, Z), if u = v;
∃Z0, Z1(Fv

δ(Z0, Z1) ∧ Jump(〈v, u〉)(Z1, Z)), otherwise.

representing the values reached within time δ in the mode u. In this way, in the
worst case we generate |E| satisfiable formulæ on which we have to iterate the
method, treating them as we treated S(Z) in the first step. In practice, many of
these formulæ would be unsatisfiable, and hence at each iteration, the number of
formulæ we have to consider will remain considerably low. Moreover, we may use
an optimized traversal over the graph 〈V,E〉 to reduce the number of generated
formulæ.

Let end be the total amount of time during which we examine the hybrid
system’s evolution in terms of at most m = dend/δe time steps: the number
m ∈ N is such that (m− 1)δ < end ≤ mδ. Since at each iteration the jumps can
occur before δ instants of time have passed, just iterating the method for m steps
does not ensure that we have indeed covered the entire time interval [0, end]. In
particular, if there are Zeno paths starting from S, i.e., paths in which the time
does not pass since only the jumps are used, our method will fail to converge
in a finite number of steps. For these reasons, at each step, we must check the
minimum elapsed time before a jump can be taken. Let M(Z) ≡ Sv,u...,w(Z) be
one of the formulæ obtained after some number of iterations. Suppose now that
we intend to jump from this mode w to the next mode z. We will then need to
check whether the minimum amount of time has passed before the jump can be
taken. Consider the formula

T(w, z, M)(T)

≡ ∃Z0, Z1, Z

(
M(Z0) ∧ Z1 = pjv(Z0, T) ∧ 0 ≤ T ≤ δ

∧∀T ′(0 ≤ T ′ ≤ T → Inv(w)(pjv(Z0, T ′))) ∧ Jump(〈w, z〉)(Z1, Z)
)

.

The minimum amount of time can now be computed as solution of the following
formula

Min(w, z, M)(T) ≡ T(w, z, M)(T) ∧ ∀T ′
(

T ′ < T → ¬T(w, z, M)(T ′)
)

.

To avoid Zeno paths we could eliminate the paths in which the minimum is 0.
Along each generated path we have to iterate until the sum of the minimum
amounts reaches end. If all the paths accumulate a total amount of time greater
than end and B is never reached we can be sure that B cannot be reached from
S in the time interval [0, end]. If B is reached, i.e., one of the formulæ involving
B is satisfiable, before m iterations, then we can be sure that B is reachable
from S in the time interval [0, end]. If B is reached after the first m iterations,
then B is reachable from S but we are not sure about the elapsed time, since
we keep together flows of different length. It is possible that some paths do not
accumulate a total time greater than end, e.g., the sequence of the minimum
times converges rapidly to 0. In this case our method could not converge. Notice
that also in the general case we can extend the method to rational flows.

In order to provide a time-complexity, assume the special situation where
no path accrues more than M discrete jumps (i.e., our method has converged).

When we terminate, we are left with deciding the satisfiability of a quantified
semialgebraic formula with O(M) alternations and involving n = k · [dend/δe+
O(M)] + N(S) + N(B) variables in degree d = max[j + deg(Init , Inv , Jump),
deg(S), deg(B)], where N and deg denote the number of variables and total
degree, respectively as before. Assume that the coefficients of the polynomi-
als can be stored with at most L bits. Then the total time complexity (bit-
complexity) [?,?,?] of the decision procedure is

(L log L log log L)d2O(n)
,

i.e., double-exponential in the number of variables.

3.3 Rectangular Regions

When the formulæ Init(v)s, Inv(v)s, Jump(e)s, S, and B identify rectangular
(closed) regions (e.g., product of intervals) we can rely on other approaches from
symbolic computations, while achieving further simplifications along the way.

Given a mode v of H the region obtained from the intersection of Inv(v) and
S is of the form R(v) ≡ a(v) ≤ Z ≤ b(v). We can symbolically determine the
maximum max(v) and the minimum min(v) of pjv(Z, δ′) over R(v)× [0, δ]. We
can use the following formula to over approximate the points reached within the
time interval [0, δ].

Ov(Z) ≡ min(v) ≤ Z ≤ max(v) ∧ Inv(v)(Z).

The formulæ

Ov(Z) ∧ B(Z), and
Ov(Z1) ∧ Jump(〈v, u〉)(Z1, Z),

can be used to check if either the set B is reached or it is possible to jump to
another mode. Since these formulæ identify rectangular regions, we can iterate
the method.

4 A Case Study: the Delta-Notch Protein Signaling

Let us now return to the Delta-Notch protein signaling system that we had in-
troduced earlier. Delta and Notch are transmembrane proteins that signal when
cells are in direct contact. The Delta-Notch signaling mechanism has attracted
the attention of many researchers, since it is at the core of biological pattern for-
mation. The mathematical model for the Delta-Notch signaling, presented in [?]
and shown in an earlier section, can be approximated by simpler piece-wise linear
functions and results in a rectangular hybrid automaton that can be analyzed
symbolically.

For instance, in [?] a rather simple piecewise linear hybrid automaton model
was created, and was extensively studied through the predicate abstraction
method of [?]. The piecewise affine hybrid automaton of [?] is defined by:

– A set of global invariant conditions which must be always true;
– A finite number of modes;
– Each mode is characterized by a set of local invariant conditions and a set

of differential equations determining the flow of the variables.

The automaton modeling the evolution of a one cell system has been described
using the SAL language [?] in [?]. In this description all the fluxes have been
reversed in order to determine the set of initial conditions from which a particular
steady-state is reached by solving a forward reachability problem. The automata
relative to the two and four cell systems have also been similarly studied. Here we
consider the two cells piecewise affine hybrid automaton and apply our method
to the forward reachability problem. For a complete description of the automaton
we refer the reader to [?,?].

The system representing the evolution of two cells presented in [?] has the
following set of invariant conditions

0 ≤ d1, d2 ≤ RD/λD ∧ 0 ≤ n1, n2 ≤ RN/λN

∧ −RN/λN ≤ hD ≤ 0 ∧ 0 ≤ hN ≤ RD/λD.

The variables d1 and d2 represent the concentration of the Delta protein in the
first and in the second cell, respectively. The variables n1 and n2 represent the
concentration of the Notch protein in the first and in the second cell, respec-
tively. RD and RN are constants representing the Delta and Notch production
rates, respectively. λD and λN are the Delta and Notch protein decay constants,
respectively. hD is an unknown switching threshold which determines the Delta
protein production. hN , similarly to hD, is an unknown switching threshold
which determines the Notch protein production.

A possible equilibrium for the system is given by the point d∗1 = 0, n∗
1 =

RN/λN , d∗2 = RD/λD, n∗
2 = 0, which belongs to the mode v characterized by

the following invariant conditions

0 ≤ d1 ≤ hN ∧ −hD ≤ n1 ≤ RN/λN ∧ hN ≤ d2 ≤ RD/λD ∧ 0 ≤ n2 ≤ −hD,

and by the following flow conditions
ḋ1 = λDd1

ṅ1 = −RN + λNn1

ḋ2 = −RD + λDd2

ṅ2 = λNn2

We apply our method to the analysis of the admissible locations reachable from
v. In particular, in this case we can apply the simplifications described in Section
??. Even if we limit our attention to one possible evolution with relatively few
iterations, this suffices to compute a somewhat different result from what is
presented in [?].

The formula Ov(〈d1, n1, d2, n2〉) representing the points reached in the time
interval [0, δ] is

0 ≤ d1 ≤ hN + λD · hN · δ
∧ − hD −RN · δ − λN · hD · δ ≤ n1 ≤ RN/λN

∧ hN −RD · δ + λD · hN · δ ≤ d2 ≤ RD/λD

∧ 0 ≤ n2 ≤ −hD − λN · hD · δ.

Consider a mode u characterized by the following invariant conditions

hN ≤ d1 ≤ RD/λD ∧ −hD ≤ n1 ≤ RN/λN ∧ hN ≤ d2 ≤ RD/λD ∧ 0 ≤ n2 ≤ −hD.

Since the formula O(v) ∧ Inv(u) is satisfiable we can jump to the mode u. In
particular, assuming that δ is so chosen that hN + λD · hN · δ ≤ RD/λD, in the
interval [0, δ], we can reach the points satisfying

hN ≤ d1 ≤ hN + λD · hN · δ ∧ −hD ≤ n1 ≤ RN/λN

∧ hN ≤ d2 ≤ RD/λD ∧ 0 ≤ n2 ≤ −hD.

This formula in conjunction with d1 < d2 is easily seen to be satisfiable. For
instance, one can prove that with RN = RD = λN = λD = 1.0 and −hD =
hN = 0.5 and starting from v with values 〈0.5, 0.89, 0.68, 0.42〉, at time 0.5, we
can reach 〈0.84, 0.81, 0.47, 0.04〉. In [?], it was proven that all the points in

T =
{
〈d1, n1, d2, n2〉 | d1 < d2 ∧ n1 > n2

}
are reachable from the stable equilibrium state belonging to v. Our observation,
which does not contradict this result of [?], nonetheless, proves that our method
can be combined with that of [?] to obtain better approximations of the region
reachable from the equilibrium in v.

5 Related Literature

To place the results described here in the context of a large existing and contin-
ually growing literature, we mention few related results.

In [?] symbolic computation over (R,+, <, =) is used to compute precondi-
tions on automata with linear flow conditions. Avoiding multiplication allows
to get good performances, but the class of automata on which the result can
be applied is quite restricted, and of limited descriptive power in the context of
biochemical systems.

In the d/dt tool (see [?]), a method involving several successive time steps
is applied. Since the flow conditions (differential equations) are linear, the exact
solution after a time step dt is used to compute the set of points that can be
reached in that time. In another similar tool, CheckMate tool (see [?]), a more

sophisticated method involving time steps is introduced for the case of regions
defined by polyhedra and solvable flow differential equations.

In a much closer related result of [?], predicate abstraction was introduced to
map a hybrid automaton into a discrete one. The states of the discrete automaton
represent set of values which are indistinguishable with respect to a fixed set of
predicates over the reals. Symbolic computation is used to determine the edges
of the discrete automaton. In [?], the method was applied on piecewise linear
hybrid automata to study the Delta-Notch signaling process. In a sequel, we will
explain the connection and differences between these methods and what we have
proposed.

Recently in [?], predicate abstraction is combined with symbolic computa-
tions over the reals and with the use of time steps. The symbolic computation is
used to determine the transitions between the abstract states, but the differen-
tial equations are kept linear so that the exact solutions are used in the symbolic
computation. In particular, abstract states are forced to evolve at a given time
step and symbolic computation is used to draw transitions by determining if
intersections between (abstract) states are non empty.

The main differences with respect to our methods are as follows:

1. We do not use predicate abstraction;
2. We can apply our method also in the case of non-linear differential equations,

obtained through the Taylor polynomial.

6 Conclusions

Clearly, the approach outlined here provides a general framework, but still lacks
the needed degree of applicability, especially in the context of the biological
questions that initiated this journey. We enumerate these issues: (1) Can one deal
with unbounded time interval? (2) Can one deal with different and adaptively
chosen step sizes for time steps? This is particularly important if one is dealing
with slow reactions as well as reactions that are relatively fast. (3) Can one
conclude about the limiting situations when the time step sizes approach zero in
the limit? (4) Is there a purely differential algebraic approach (e.g., Ritt algebra)
for studying reachability?

In the other directions, one can ask similar questions about how to extend
these constructs for reachability to cases involving various modal (e.g., temporal)
operators. In particular, what will be the appropriate “next” operator, in our
context. These and other related questions are addressed in a forthcoming sequel.

Beyond these questions, the other remaining problems are of algorithmic
nature dealing with approximability, complexity, and probabilistic computations.
These are of enormous interest, if our approach is to be applicable for large
biological systems that can be modeled modularly and hierarchically.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The Algorithmic Analysis of Hybrid Systems.
Theoretical Computer Science, 138:3–34, 1995.

2. R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho. Hybrid Automata: An
Algorithmic Approach to the Specification and Verification of Hybrid Systems. In
R. L. Grossman, A. Nerode, A. P. Ravn, and H. Richel, editors, Hybrid Systems,
LNCS, pages 209–229. Springer-Verlag, 1992.

3. R. Alur, T. Dang, and F. Ivancic. Progress on Reachability Analysis of Hybrid
Systems Using Predicate Abstraction. In O. Maler and A. Pnueli, editors, Hybrid
Systems: Computation and Control (HSCC’03), volume 2623 of LNCS, pages 4–19.
Springer-Verlag, 2003.

4. R. Alur, T. A. Henzinger, and Pei-Hsin Ho. Automatic Symbolic Verification of
Embedded Systems. In IEEE Real-Time Systems Symposium, pages 2–11. IEEE
Press, 1993.

5. E. Asarin, T. Dang, O. Maler, and O. Bournez. Approximate Reachability Analysis
of Piecewise-Linear Dynamical Systems. In B. Krogh and N. Lynch, editors, Hybrid
Systems: Computation and Control (HSCC’00), volume 1790 of LNCS, pages 20–
31. Springer-Verlag, 2000.

6. S. Bensalem, V. Ganesh, Y. Lakhnech, C. Muñoz, S. Owre, H. Rueß, J. Rushby,
V. Rusu, H. Säıdi, N. Shankar, E. Singerman, and A. Tiwari. An overview of SAL.
In C. M. Holloway, editor, NASA Langley Formal Methods Workshop (LFM’00),
pages 187–196, 2000.

7. A. Chutinan and B. Krogh. Verification of Polyhedral-Invariant Hybrid Automata
Using Polygonal Flow Pipe Approximations. In F. W. Vaandrager and J. H. van
Schuppen, editors, Hybrid Systems: Computation and Control (HSCC’99), volume
1569 of LNCS, pages 76–90. Springer-Verlag, 1999.

8. J. R. Collier, N. A. M. Monk, P. K. Maini, and J. H. Lewis. Pattern Forma-
tion by Lateral Inhibition with Feedback: a Mathematical Model of Delta-Notch
Intercellular Signalling. Journal of Theor. Biology, 183:429–446, 1996.

9. A. Cornish-Bowden. Fundamentals of Enzyme Kinetics (3rd edn.). Portland Press,
London, 2004.

10. R. Ghosh, A. Tiwari, and C. Tomlin. Automated Symbolic Reachability Analysis;
with Application to Delta-Notch Signaling Automata. In O. Maler and A. Pnueli,
editors, Int.l Workshop on Hybrid Systems: Computation and Control (HSCC’03),
volume 2623 of LNCS, pages 233–248. Springer-Verlag, 2003.

11. R. Ghosh and C. Tomlin. Lateral Inhibition through Delta-Notch signaling: A
Piecewise Affine Hybrid Model. In M. D. D. Benedetto and A. Sangiovanni-
Vincentelli, editors, Int.l Workshop on Hybrid Systems: Computation and Control
(HSCC’01), volume 2034 of LNCS, pages 232–246. Springer-Verlag, 2001.

12. J.P. Keener and J. Sneyd. Mathematical Physiology. Springer, New York, 1998.

13. B. Mishra. Algorithmic Algebra. Springer-Verlag, New York, 1993.

14. B. Mishra. Computational Differential Algebra, pages 111–145. World-Scientific,
Singapore, 2000.

15. B. Mishra. A Symbolic Approach to Modeling Cellular Behavior. In S. Sahni,
V. K. Prasanna, and U. Shukla, editors, High Performance Computing (HiPC’02),
volume 2552 of LNCS, pages 725–732. Springer-Verlag, 2002.

16. B. Mishra. Computational Real Algebraic Geometry, 2004.

17. A. Nerode and W. Kohn. Hybrid Systems and Constraint Logic Programming. In
D. S. Warren, editor, International Conference on Logic Programming (ICLP’93),
pages 18–24. MIT Press, 1993.

18. A. Tiwari and G. Khanna. Series of Abstraction for Hybrid Automata. In C. J.
Tomlin and M. Greenstreet, editors, Hybrid Systems: Computation and Control
(HSCC’02), volume 2289 of LNCS, pages 465–478. Springer-Verlag, 2002.

19. E. O. Voit. Computational Analysis of Biochemical Systems. A Pratical Guide for
Biochemists and Molecular Biologists. Cambridge University Press, 2000.

20. F. Winkler. Polynomial Algorithms in Computer Algebra. Springer-Verlag, Wien,
New York, 1996.

