
Magnitude-Preserving Ranking Algorithms

Technical Report Number: TR2007-887

Corinna Cortes

Google Research,

76 Ninth Avenue, New York, NY 10011

Mehryar Mohri

Courant Institute of Mathematical Sciences and Google Research,

251 Mercer Street, New York, NY 10012

Ashish Rastogi

Courant Institute of Mathematical Sciences,

251 Mercer Street, New York, NY 10012

March 15, 2007

Abstract

This paper studies the learning problem of ranking when one wishes not just to accurately predict

pairwise ordering but also preserve the magnitude of the preferences or the difference between ratings,

a problem motivated by its crucial importance in the design of search engines, movie recommendation,

and other similar ranking systems. We describe and analyze several algorithms for this problem and

give stability bounds for their generalization error, extending previously known stability results to non-

bipartite ranking and magnitude of preference-preserving algorithms. We also report the results of

experiments comparing these algorithms on several datasets and contrast these results with those obtained

using an AUC-maximization algorithm.

1 Motivation

The learning problem of ranking has gained much attention in recent years, in part motivated by the
development of new search engines and movie recommendation systems Freund et al. [1998], Crammer and
Singer [2001], Joachims [2002], Shashua and Levin [2003], Rudin et al. [2005], Agarwal and Niyogi [2005],
Herbrich et al. [2000]. The ordering of the list of documents returned by a search engine or an information
extraction system, or that of the list of movies supplied by a movie recommendation system is a key aspect
of their quality.

In most previous studies, the problem of ranking is formulated as that of learning a scoring function
with small pairwise misranking error from a labeled sample of pairwise preferences Freund et al. [1998],
Crammer and Singer [2001], Joachims [2002], Rudin et al. [2005], Agarwal and Niyogi [2005]. But, this
formulation of the problem and thus the scoring function learned ignore the magnitude of the preferences.
In many applications, it is not sufficient to determine if one example is preferred to another. One may
further request an assessment of how large that preference is. Taking this magnitude of preference into
consideration is critical for example in the design of search engines, which originally motivated our study,

1

but also in other recommendation systems. For a recommendation system, one may choose to truncate the
ordered list returned where a large gap in predicted preference is found. For a search engine, this may trigger
a search in parallel corpora to display more relevant results.

This motivated our study of the problem of ranking while preserving the magnitude of preferences, which
we will refer to in short by magnitude-preserving ranking. The problem that we are studying bears some
resemblance with that of ordinal regression McCullagh [1980], McCullagh and Nelder [1983], Shashua and
Levin [2003], Chu and Keerthi [2005]. It is however distinct from ordinal regression since in ordinal regression
the magnitude of the difference in target values is not taken into consideration in the formulation of the
problem or the solutions proposed. In the formulation of ordinal regression by Shashua and Levin [2003],
Chu and Keerthi [2005] the magnitude of the difference in the target values is not taken into consideration
in the cost function. A crucial aspect of the algorithms we propose is that they penalize misranking errors
more heavily in the case of larger magnitudes of preferences.

We describe and analyze several algorithms for magnitude-preserving ranking and give stability bounds
for their generalization error, extending previously known stability results to non-bipartite ranking and
magnitude of preference-preserving algorithms. In particular, our bounds extend the framework of Bousquet
and Elisseeff [2000, 2002] to the case of cost functions over pairs of examples, and extend the bounds of
Agarwal and Niyogi [2005] beyond the bi-partite ranking problem. Our bounds also apply to algorithms
optimizing the so-called hinge rank loss.

We also report the results of experiments comparing these algorithms on several datasets and contrast
these results with those obtained using RankBoost Freund et al. [1998], Rudin et al. [2005], an algorithm
maximizing the Area under the ROC Curve (AUC), or minimizing pairwise misranking.

The remainder of the paper is organized as follows. Section 2 presents stability-based generalization
bounds for a family of magnitude-preserving algorithms. Section 3 describes and analyzes these algorithms
in detail. Section 4 presents the results of our experiments with these algorithms on several datasets.

2 Stability bounds

In Bousquet and Elisseeff [2000, 2002] stability bounds were given for several regression and classification
algorithms. This section shows similar stability bounds for ranking and magnitude-preserving ranking algo-
rithms. This also generalizes the results of Agarwal and Niyogi [2005] which were given in the specific case
of bi-partite ranking.

Let S be a sample of m labeled examples drawn i.i.d. from a set X according to some distribution D:

(x1, y1), . . . , (xm, ym) ∈ X × R. (1)

For any i ∈ [1, m], we denote by S−i the sample derived from S by omitting example (xi, yi), and by Si

the sample derived from S by replacing example (xi, yi) with an other example (x′
i, y

′
i) drawn i.i.d. from X

according to D. For convenience, we will sometimes denote by yx = yi the label of a point x = xi ∈ X .
The quality of the ranking algorithms we consider is measured with respect to pairs of examples. Thus,

a cost functions c takes as arguments two sample points. For a fixed cost function c, the empirical error
R̂(h, S) of a hypothesis h : X 7→ R on a sample S is defined by:

R̂(h, S) =
1

m2

m∑

i=1

m∑

j=1

c(h, xi, xj). (2)

The true error R(h) is defined by
R(h) = Ex,x′∼D[c(h, x, x′)]. (3)

The following definitions are natural extensions to the case of cost functions over pairs of those given by
Bousquet and Elisseeff [2002].

2

Definition 1. A learning algorithm L is said to be uniformly β-stable with respect to the sample S and cost
function c if there exists β ≥ 0 such that for all S ∈ (X × R)m and i ∈ [1, m],

∀x, x′ ∈ X, |c(hS , x, x′) − c(hS−i , x, x′)| ≤ β. (4)

Definition 2. A cost function c is is σ-admissible with respect to a hypothesis set H if there exists σ ≥ 0
such that for all h, h′ ∈ H, and for all x, x′ ∈ X,

|c(h, x, x′) − c(h′, x, x′)| ≤ σ(|∆h(x′)| + |∆h(x)|), (5)

with ∆h = h′ − h.

2.1 Cost functions

We introduce several cost functions related to magnitude-preserving ranking. The first one is the so-called
hinge rank loss which is a natural extension of the pairwise misranking loss Cortes and Mohri [2004], Rudin
et al. [2005]. It penalizes a pairwise misranking by the magnitude of preference predicted or the nth power
of that magnitude (n = 1 or n = 2):

cn
HR(h, x, x′) ={

0, if (h(x′) − h(x))(yx′ − yx) ≥ 0∣∣(h(x′) − h(x))
∣∣n, otherwise.

(6)

cn
HR does not take into consideration the true magnitude of preference yx′ − yx for each pair (x, x′) however.

The following cost function takes into consideration the true magnitude of preference and penalizes deviations
of the predicted magnitude with respect to that. Thus, it matches our objective of magnitude-preserving
ranking (n = 1, 2):

cn
MP(h, x, x′) =

∣∣(h(x′) − h(x)) − (yx′ − yx)
∣∣n. (7)

A one-sided version of that cost function penalizing only misranked pairs is given by (n = 1, 2):

cn
HMP(h, x, x′) ={

0, if (h(x′) − h(x))(yx′ − yx) ≥ 0∣∣(h(x′) − h(x)) − (yx′ − yx)
∣∣n, otherwise.

(8)

Finally, we will consider the following cost function derived from the ǫ-insensitive cost function used in SVM
regression (SVR) Vapnik [1998] (n = 1, 2):

cn
SVR(h, x, x′) ={

0, if
[
(h(x′) − h(x)) − (yx′ − yx)

]
≤ ǫ∣∣∣∣(h(x′) − h(x)) − (yx′ − yx)

∣∣ − ǫ
∣∣n , otherwise.

(9)

Note that all of these cost functions are convex functions of h(x) and h(x′).

2.2 Magnitude-preserving regularization algorithms

For a cost function c as just defined and a regularization function N , a regularization-based algorithm can
be defined as one minimizing the following objective function:

F (h, S) = N(h) + C
1

m2

m∑

i=1

m∑

j=1

c(h, xi, xj), (10)

where C ≥ 0 is a constant determining the trade-off between the emphasis on the regularization term versus
the error term. In much of what follows, we will consider the case where the hypothesis set H is a reproducing

3

Hilbert space and where N is the squared norm in a that space, N(h) = ‖h‖2
K for a kernel K, though some of

our results can straightforwardedly be generalized to the case of an arbitrary convex N . By the reproducing
property, for any h ∈ H , ∀x ∈ X, h(x) = 〈h, K(x, .)〉 and by Cauchy-Schwarz’s inequality,

∀x ∈ X, |h(x)| ≤ ‖h‖K

√
K(x, x). (11)

Assuming that for all x ∈ X, K(x, x) ≤ κ2 for some constant κ ≥ 0, the inequality becomes: ∀x ∈ X, |h(x)| ≤
κ‖h‖K . With the cost functions previously discussed, the objective function F is then strictly convex
and the optimization problem admits a unique solution. In what follows, we will refer to the algorithms
minimizing the objective function F with a cost function defined in the previous section as magnitude-
preserving regularization algorithms.

Lemma 1. Assume that the hypothesis in H are bounded, that is for all h ∈ H and x ∈ S, |h(x)− yx| ≤ M .
Then, the cost functions cn

HR, cn
MP, cn

HMP, and cn
SVR are all σn-admissible with σ1 = 1, σ2 = 4M .

Proof. We will give the proof in the case of cn
MP, n = 1, 2, the other cases can be treated similarly.

By definition of c1
MP, for all x, x′ ∈ X ,

|c1
MP(h′, x, x′) − c1

MP(h, x, x′)| =
|(h′(x′) − h′(x)) − (yx′ − yx)| − |(h(x′) − h(x))−
(yx′ − yx)|.

(12)

Using the identity |X ′ − Y | − |X − Y | ≤ |X ′ − X |, valid for all X, X ′, Y ∈ R, this shows that

|c1
MP(h′, x, x′) − c1

MP(h, x, x′)|≤ |∆h(x′) − ∆h(x)|
≤ |∆h(x′)| + |∆h(x)|,

(13)

which shows the σ-admissibility of c1
MP with σ = 1. For c2

MP, for all x, x′ ∈ X ,

|c2
MP(h′, x, x′) − c2

MP(h, x, x′)| =
||(h′(x′) − h′(x)) − (yx′ − yx)|2

−|(h(x′) − h(x)) − (yx′ − yx)|2|
≤ |∆h(x′) − ∆h(x)|(|h′(x′) − yx′ |+
|h(x′) − yx′ | + |h′(x) − yx| + |h(x) − yx|)
≤ 4M(|∆h(x′)| + |∆h(x)|),

(14)

which shows the σ-admissibility of c2
MP with σ = 4M .

Proposition 1. Assume that the hypotheses in H are bounded, that is for all h ∈ H and x ∈ S, |h(x)−yx| ≤

M . Then, a magnitude-preserving regularization algorithm as defined above is β-stable with β =
4Cσ2

nκ2

m
.

Proof. Fix the cost function to be c, one of the σn-admissible cost function previously discussed. Let hS

denote the function minimizing F (h, S) and hS−k the one minimizing F (h, S−k). We denote by ∆hS =
hS−k − hS .

Since the cost function c is convex with respect to h(x) and h(x′), R̂(h, S) is also convex with respect to
h and for t ∈ [0, 1],

R̂(hS + t∆hS , S−k) − R̂(hS , S−k) ≤

t
[
R̂(hS−k , S−k) − R̂(hS , S−k)

]
.

(15)

Similarly,

R̂(hS−k − t∆hS , S−k) − R̂(hS−k , S−k) ≤

t
[
R̂(hS , S−k) − R̂(hS−k , S−k)

]
.

(16)

4

Summing these inequalities yields

R̂(hS + t∆hS , S−k) − R̂(hS , S−k)+

R̂(hS−k − t∆hS , S−k) − R̂(hS−k , S−k) ≤ 0.
(17)

By definition of hS and hS−k as functions minimizing the objective functions, for all t ∈ [0, 1],

F (hS , S) − F (hS + t∆hS , S) ≤ 0
F (hS−k , S−k) − F (hS−k − t∆hS , S−k) ≤ 0.

(18)

Multiplying Inequality 17 by C and summing it with the two Inequalities 18 lead to

A + ‖hS‖
2
K − ‖hS + t∆hS‖

2
K + ‖hS−k‖2

K

−‖hS−k − t∆hS‖
2
K ≤ 0.

(19)

with A = C
(
R̂(hS , S) − R̂(hS , S−k)+

R̂(hS + t∆hS , S−k) − R̂(hS + t∆hS , S)
)
. Since

A = C
m2

[∑
i6=k c(hS , xi, xk) − c(hS + t∆hS , xi, xk)+

∑
i6=k c(hS , xk, xi) − c(hS + t∆hS , xk, xi)

]
,

(20)

by the σn-admissibility of c,

|A| ≤ 2Ctσn

m2

∑
i6=k(|∆hS(xk)| + |∆hS(xi)|)

≤ 4Ctσnκ
m

‖∆hS‖K .

Using the fact that ‖h‖2
K = 〈h, h〉 for any h, it is not hard to show that

‖hS‖
2
K − ‖hS + t∆hS‖

2
K + ‖hS−k‖2

K−
‖hS−k − t∆hS‖

2
K = 2t(1 − t)‖∆hS‖

2
K .

In view of this and the inequality for |A|, Inequality 19 implies 2t(1 − t)‖∆hS‖
2
K ≤ 4Ctσnκ

m
‖∆hS‖K , that is

after dividing by t and taking t → 0,

‖∆hS‖K ≤
2Cσnκ

m
. (21)

By the σn-admissibility of c, for all x, x′ ∈ X ,

|c(hS , x, x′) − c(hS−k , x, x′)|
≤ σn(|∆hS(x′)| + |∆hS(x)|)
≤ 2σnκ‖∆hS‖K

≤
4Cσ2

nκ2

m
.

This shows the β-stability of the algorithm with β =
4Cσ2

nκ2

m
.

To shorten the notation, in the absence of ambiguity, we will write in the following R̂(hS) instead of

R̂(hS , S).

Theorem 1. Let c be any of the cost functions defined in Section 2.1. Let L be a uniformly β-stable algorithm
with respect to the sample S and cost function c and let hS be the hypothesis returned by L. Assume that the
hypotheses in H are bounded, that is for all h ∈ H, sample S, and x ∈ S, |h(x) − yx| ≤ M . Then, for any
ǫ > 0,

Pr
S∼D

[
|R(hS) − R̂(hS)| > ǫ + 2β

]
≤ 2e

− mǫ2

2(βm+(2M)n)2 .

5

Proof. We apply McDiarmid’s inequality McDiarmid [1998] to Φ(S) = R(hS) − R̂(hS , S). We will first give
a bound on E[Φ(S)] and then show that Φ(S) satisfies the conditions of McDiarmid’s inequality.

We will denote by Si,j the sample derived from S by replacing xi with x′
i and xj with x′

j , with x′
i and

x′
j sampled i.i.d. according to D.

Since the sample points in S are drawn in an i.i.d. fashion, for all i, j ∈ [1, m],

ES [R̂(hS , S)]= 1
m2

∑m

i=1

∑m

j=1 E[c(hS , xi, xj)]

= ES∼D[c(hS , xi, xj)]
= ESi,j∼D[c(hSi,j , x′

i, x
′
j)]

= ES,x′

i
,x′

j
∼D[c(hSi,j , x′

i, x
′
j)].

(22)

Note that by definition of R(hS), ES [R(hS)] = ES,x′

i
,x′

j
∼D[c(hS , x′

i, x
′
j)]. Thus, ES [Φ(S)] = ES,x,x′[c(hS , x′

i, x
′
j)−

c(hSi,j , x′
i, x

′
j)], and by β-stability (Proposition 1)

|ES [Φ(S)]| ≤ ES,x,x′[|c(hS , x′
i, x

′
j) − c(hSi , x′

i, x
′
j)|]+

ES,x,x′[|c(hSi , x′
i, x

′
j) − c(hSi,j , x′

i, x
′
j)|] ≤ 2β.

Now,
|R(hS) − R(hSk)|= |ES [c(hS , x, x′) − c(hSk , x, x′)]|

≤ ES [|c(hS , x, x′) − c(hSk , x, x′)|]
≤ β.

For any x, x′ ∈ X , |c(hS , xk, xj) − c(hSk , xi, x
′
k)| < ES [|c(hSk , x, x′) − c(hSk , x, x′)|] ≤ (2M)n, where n = 1

or n = 2. Thus, we have

|R̂(hS) − R̂(hk
S)| ≤

1
m2

∑
i6=k

∑
j 6=k |c(hS , xi, xj) − c(hSk , xi, xj)|+

1
m2

∑m

j=1 |c(hS , xk, xj) − c(hSk , x′
k, xj)|+

1
m2

∑m

i=1 |c(hS , xk, xj) − c(hSk , xi, x
′
k)|

≤ 1
m2 (m2β) + m

m2 2(2M)n = β + 2(2M)n/m.

Thus,
|Φ(S) − Φ(Sk)| ≤ 2(β + (2M)n/m), (23)

and Φ(S) satisfies the hypotheses of McDiarmid’s inequality.

The following Corollary gives stability bounds for the generalization error of magnitude-preserving reg-
ularization algorithms.

Corollary 1. Let L be a magnitude-preserving regularization algorithm and let c be the corresponding cost
function and assume that for all x ∈ X, K(x, x) ≤ κ2. Assume that the hypothesis set H is bounded, that is
for all h ∈ H, sample S, and x ∈ S, |h(x) − yx| ≤ M . Then, with probability at least 1 − δ,

• for n = 1,

R(hS) ≤ R̂(hS) +
8κ2C

m
+ 2(2κ2C + M)

√
2

m
log

2

δ
;

• for n = 2,

R(hS) ≤ R̂(hS) +
128κ2CM2

m
+ 4M2(16κ2C + 1)

√
2

m
log

2

δ
.

Proof. By Proposition 1, these algorithms are β-stable with β =
4Cσ2

nκ2

m
.

These bounds are of the form R(hS) ≤ R̂(hS) + O(C√
m

). Thus, they are effective for values of C ≫ 1√
m

.

In the next sections, we will examine some of these magnitude preserving algorithms in more detail.

6

3 Algorithms

The regularization algorithms based on the cost functions cn
MP and cn

SVR correspond closely to the idea
of preserving the magnitude of preferences since these cost functions penalize deviations of a predicted
difference of score from the target preferences. We will refer by MPRank to the algorithm minimizing the
regularization-based objective function based on cn

MP:

F (h, S) = ‖h‖2
K + C

1

m2

m∑

i=1

m∑

j=1

cn
MP(h, xi, xj), (24)

and by SVRank to the one based on the cost function cn
SVR

F (h, S) = ‖h‖2
K + C

1

m2

m∑

i=1

m∑

j=1

cn
SVR(h, xi, xj). (25)

For a fixed n, n = 1, 2, the same stability bounds hold for both algorithms as seen in the previous section.
However, their running-time complexity is significantly different.

3.1 MPRank

We will examine the algorithm in the case n = 2. Let Φ : X 7→ F be the mapping from X to the
reproducing Hilbert space. The hypothesis set H that we are considering is that of linear functions h, that
is ∀x ∈ X, h(x) = w · Φ(x). The objective function can be expressed as follows

F (h, S) = ‖w‖2 + C
1

m2

m∑

i=1

m∑

j=1

[
(w · Φ(xj)−

w · Φ(xi)) − (yj − yi)
]2

= ‖w‖2 +
2C

m

m∑

i=1

‖w · Φ(xi) − yi‖
2−

2C‖w · Φ̄ − ȳ‖2,

where Φ̄ = 1
m

∑m

i=1 Φ(xi) and ȳ = 1
m

∑m

i=1 yi. The objective function can thus be written with a single sum
over the training examples, which translates in a more efficient computation of the solution.

Let N be the dimension of the feature space F . For i = 1, . . . , m, let Mxi
∈ R

N×1 denote the column
matrix representing Φ(xi), MΦ̄ ∈ R

N×1 a column matrix representing Φ̄, W ∈ R
N×1 a column matrix

representing the vector w, MY ∈ R
m×1 a column matrix whose ith component is yi, and MȲ ∈ R

m×1 a
column matrix with all its components equal to ȳ. Let MX ,MX̄ ∈ R

N×m be the matrices defined by:

MX = [Mx1 . . . Mxm
] MX = [MΦ̄ . . . MΦ̄]. (26)

Then, the expression giving F can be rewritten as

F = ‖W‖2 +
2C

m
‖M⊤

XW − MY ‖2 −
2C

m
‖M⊤

X̄
W − MȲ ‖2.

The gradient of F is then given by: ∇F = 2W + 4C
m

MX(M⊤
XW − MY) − 4C

m
MX̄(M⊤

X̄
W − MȲ). Setting

∇F = 0 yields the unique closed form solution of the convex optimization problem:

W = C′(I + C′(MX − MX̄)(MX − MX̄)⊤
)−1

(MX − MX̄)(MY − MȲ),
(27)

7

where C′ = 2C
m

. Here, we are using the identity MXM⊤
X − MX̄M⊤

X̄
= (MX − MX̄)(MX − MX̄)⊤, which

is not hard to verify. This provides the solution of the primal problem. Using the fact the matrices (I +

C′(MX − MX̄)(MX − MX̄)⊤
)−1

and MX − MX̄ commute leads to:

W = C′(MX − MX̄)
(
I + C′(MX − MX̄)

(MX − MX̄)⊤
)−1

(MY − MȲ).
(28)

This helps derive the solution of the dual problem. For any x′ ∈ X ,

h(x′) = C′K′(I + K̄)−1(MY − MȲ), (29)

where K′ ∈ R
1×m is the row matrix whose ith component is K(x′, xi) −

1
m

∑m

j=1 K(x′, xj) and K̄ is the
kernel matrix defined by

1
C′

(K̄)ij=K(xi, xj) −
1

m

m∑

k=1

(K(xi, xk) + K(xj , xk))

+
1

m2

m∑

k=1

m∑

l=1

K(xk, xl),

for all i, j ∈ [1, m]. The solution of the optimization problem for MPRank is close to that of a kernel ridge
regression problem, but the presence of additional terms makes it distinct, a fact that can also be confirmed
experimentally. However, remarkably, it has the same computational complexity, due to the fact that the
optimization problem can be written in terms of a single sum, as already pointed out above. The main
computational cost of the algorithm is that of the matrix inversion, which can be computed in time O(N3)
in the primal, and O(m3) in the dual case, or O(N2+α) and O(m2+α), with α ≈ .376, using faster matrix
inversion methods such as that of Coppersmith and Winograd.

3.2 SVRank

We will examine the algorithm in the case n = 1. As with MPRank, the hypothesis set H that we are
considering here is that of linear functions h, that is ∀x ∈ X, h(x) = w · Φ(x). The constraint optimization
problem associated with SVRank can thus be rewritten as

minimize F (h, S) = ‖w‖2 + C
1

m2

m∑

i=1

m∑

j=1

(ξij + ξ∗ij)

subject to

w · (Φ(xj) − Φ(xi)) − (yj − yi) ≤ ǫ + ξij

(yj − yi) − w · (Φ(xj) − Φ(xi)) ≤ ǫ + ξ∗ij
ξij , ξ

∗
ij ≥ 0,

for all i, j ∈ [1, m]. Note that the number of constraints are quadratic with respect to the number of examples.
Thus, in general, this results in a problem that is more costly to solve than that of MPRank.

Introducing Lagrange multipliers αij , α
∗
ij ≥ 0, corresponding to the first two sets of constraints and

βij , β
∗
ij ≥ 0 for the remaining constraints leads to the following Lagrange function

L = ‖w‖2 + C 1
m2

m∑

i=1

m∑

j=1

(ξij + ξ∗ij)+

m∑

i=1

m∑

j=1

αij(w · (Φ(xj) − Φ(xi)) − (yj − yi) − ǫ + ξij)+

m∑

i=1

m∑

j=1

α∗
ij(−w · (Φ(xj) − Φ(xi)) + (yj − yi) − ǫ + ξ∗ij)

+

m∑

i=1

m∑

j=1

(βijξij + β∗
ijξ

∗
ij).

8

Table 1: Performance results for MPRank, SVRank, and RankBoost.

Data set Mean Squared Difference Mean 1-Norm Difference

MPRank SVRank RBoost MPRank SVRank RBoost

MovieLens 2.01 2.43 12.88 1.04 1.17 2.59

20-40 ± 0.02 ± 0.13 ± 2.15 ± 0.05 ± 0.03 ± 0.04

MovieLens 2.02 2.36 20.06 1.04 1.15 2.99

40-60 ± 0.06 ± 0.16 ± 2.76 ± 0.02 ± 0.07 ± 0.12

MovieLens 2.07 2.66 21.35 1.06 1.24 3.82

60-80 ± 0.05 ± 0.09 ± 2.71 ± 0.01 ± 0.02 ± 0.23

Jester 51.34 55.00 77.08 5.08 5.40 5.97

20-40 ± 2.90 ± 5.14 ± 17.1 ± 0.15 ± 0.20 ± 0.16

Jester 46.77 57.75 80.00 4.98 5.27 6.18

40-60 ± 2.03 ± 5.14 ± 18.2 ± 0.13 ± 0.20 ± 0.11

Jester 49.33 56.06 88.61 4.88 5.25 6.46

60-80 ± 3.11 ± 4.26 ± 18.6 ± 0.14 ± 0.19 ± 0.20

Books 4.00 3.64 7.58 1.38 1.32 1.72

± 3.12 ± 3.04 ± 9.95 ± 0.60 ± 0.56 ± 1.05

Taking the gradients, setting them to zero, and applying the Karush-Kuhn-Tucker conditions leads to the
following dual maximization problem

maximize
1

2

m∑

i,j=1

m∑

k,l=1

(α∗
ij − αij)(α

∗
kl − αkl)Kij,kl−

ǫ

m∑

i,j=1

(α∗
ij − αij) +

m∑

i,j=1

(α∗
ij − αij)(yj − yi)

subject to 0 ≤ αij , α
∗
ij ≤ C, ∀i, j ∈ [1, m],

where Kij,kl = K(xi, xk) + K(xj , xl) − K(xi, xl) − K(xj , xk). This quadratic optimization problem can be
solved in a way similar to SVM regression (SVR) Vapnik [1998] by defining a kernel K ′ over pairs with
K ′((xi, xj), (xk, xl)) = Kij,kl, for all i, j, k, l ∈ [1, m], and associating the target value yi − yj to the pair
(xi, xj).

The computational complexity of the quadratic programming with respect to pairs makes this algorithm
less attractive for relatively large samples.

4 Experiments

In this section, we report the results of experiments with two of our magnitude-preserving algorithms,
MPRank and SVRank.

The algorithms were tested on three publicly available data sets commonly used for collaborative fil-
tering: MovieLens, Book-Crossings, and Jester Joke. All datasets are available from the following URL:
http://www.grouplens.org/taxonomy/term/14.

4.1 MovieLens Dataset

The MovieLens dataset consists of approximately 1M ratings by 6,040 users for 3,900 movies. Ratings are
integers in the range of 1 to 5. For each user, a different predictive model is designed. The ratings of that

9

user on the 3,900 movies (not all movies will be rated) form the target values yi. The other users’ ratings of
the ith movie form the ith input vector xi.

We followed the experimental set-up of Freund et al. [1998] and grouped the reviewers according to the
number of movies they have reviewed. The groupings were 20 − 40 movies, 40 − 60 movies, and 60 − 80
movies.

Test reviewers were selected among users who had reviewed between 50 and 300 movies. For a given
test reviewer, 300 reference reviewers were chosen at random from one of the three groups and their rating
were used to form the input vectors. Training was carried out on half of the test reviewer’s movie ratings
and testing was performed on the other half. The experiment was done for 300 different test reviewers and
the average performance recorded. The whole process was then repeated ten times with a different set of
300 reviewers selected at random. We report mean values and standard deviation for these ten repeated
experiments for each of the three groups.

Missing review values in the input features were populated with the median review score of the given
reference reviewer.

4.2 Jester Joke Dataset

The Jester Joke Recommender System dataset contains 4.1M continuous ratings in the range -10.00 to
+10.00 of 100 jokes from 73,496 users. The experiments were set-up in the same way as for the MovieLens
dataset.

4.3 Book-Crossing Dataset

The book-crossing dataset contains 278,858 users and 1,149,780 ratings for 271,379 books. The low density
of ratings makes predictions very noisy in this task. Thus, we required users to have reviewed at least 200
books, and then only kept books with at least 10 reviews. This left us with a dataset of 89 books and 131
reviewers. For this dataset, each of the 131 reviewers was in turn selected as a test reviewer, and the other
130 reviewers served as input features. The results reported are mean values and standard deviations over
these 131 leave-one-out experiments.

4.4 Performance Measures and Results

The performance measures we report correspond to the problem we are solving. The cost function of MPRank
is designed to minimize the squared difference between all pairs of target values, hence we report the mean
squared difference (MSD) over all pairs in the test set of size m′ of a hypothesis h:

1

m′2

m′∑

i=1

m′∑

j=1

((h(xj) − h(xi)) − (yj − yi))
2
. (30)

The cost function of SVRank minimizes the absolute value of the difference between all pairs of examples,
hence we report the average of the 1-norm difference, M1D:

1

m′2

m′∑

i=1

m′∑

j=1

|(h(xj) − h(xi)) − (yj − yi)| . (31)

The results for MPRank and SVRank are obtained using Gaussian kernels. The width of the kernel and
the other cost function parameters were first optimized on a held-out sample. The performance on their
respective cost functions was optimized and the parameters fixed at these values.

The results are reported in Table 1. They demonstrate that the magnitude-preserving algorithms are
both successful at minimizing their respective objective. MPRank obtains the best MSD values and the
two algorithms obtain comparable M1D values. However, overall, in view of these results and the superior

10

Table 2: Comparison of MPRank and RankBoost for pairwise misrankings.

Data set Pairwise Misrankings

MPRank RBoost

MovieLens 0.471 0.476

40-60 ± 0.005 0 ± 0.007

MovieLens 0.442 0.463

60-80 ± 0.005 ± 0.011

Jester 0.414 0.479

20-40 ± 0.005 ± 0.008

Jester 0.418 0.432

40-60 ± 0.007 ± 0.005

Jester 0.400 0.417

60-80 ± 0.017 ± 0.008

computational efficiency of MPRank already pointed out in the previous section, we consider MPRank as
the best performing algorithm for such tasks.

To further examine the ranking properties of MPRank we conducted a number of experiments where
we compared the pairwise misranking performance of the algorithm to that of RankBoost, an algorithm
designed to minimize the number of pairwise misrankings Rudin et al. [2005]. We used the same features
for RankBoost as for MPRank that is we used as weak rankers threshold functions over other reviewers’
ratings. As for the other algorithms, the parameter of RankBoost, that is the number of boosting rounds
required to minimize pairwise misranking was determined on a held-out sample and then fixed at this value.

Table 2 shows a comparison between these two algorithms. It reports the fraction of pairwise misrankings
for both algorithms using the same experimental set-up as previously described:

∑m′

i,j=1 1yi>yj∧h(xi)≤h(xj)∑m′

i,j=1 1yi>yj

. (32)

The results show that the pairwise misranking error of MPRank is comparable to that of RankBoost. This
further increases the benefits of MPRank as a ranking algorithm.

We also tested the performance of RankBoost with respect to MSD and M1D (see Table 1). RankBoost
is not designed to optimize these performance measure and does not lead to competitive results with respect
to MPRank and SVRank on any of the datasets examined.

5 Conclusion

We presented several algorithms for magnitude-preserving ranking problems and provided stability bounds for
their generalization error. We also reported the results of several experiments on public datasets comparing
these algorithms. We view accurate magnitude-preserving ranking as an important problem for improving
the quality of modern recommendation and rating systems. An alternative for incorporating the magnitude
of preferences in cost functions is to use weighted AUC, where the weights reflect the magnitude of preferences
and extend existing algorithms. This however, does not exactly coincide with the objective of preserving the
magnitude of preferences.

11

References

Shivani Agarwal and Partha Niyogi. Stability and generalization of bipartite ranking algorithms. In COLT,
2005.

Olivier Bousquet and André Elisseeff. Stability and generalization. J. Mach. Learn. Res., 2:499–526,
2002. ISSN 1533-7928.

Olivier Bousquet and Andre Elisseeff. Algorithmic stability and generalization performance. In NIPS, pages
196–202, 2000. URL citeseer.ist.psu.edu/article/bousquet00algorithmic.html.

Wei Chu and S. Sathiya Keerthi. New approaches to support vector ordinal regression. In ICML ’05:
Proceedings of the 22nd international conference on Machine learning, pages 145–152, New York, NY,
USA, 2005. ACM Press. ISBN 1-59593-180-5. doi: http://doi.acm.org/10.1145/1102351.1102370.

Corinna Cortes and Mehryar Mohri. AUC Optimization vs. Error Rate Minimization. In Advances in Neural
Information Processing Systems (NIPS 2003), volume 16, Vancouver, Canada, 2004. MIT Press. URL
http://www.cs.nyu.edu/\∼{}mohri/postscript/auc.pdf.

K. Crammer and Y. Singer. Pranking with ranking. In Proceedings of the conference on Neural Information
Processing Systems (NIPS), 2001. URL citeseer.ist.psu.edu/crammer01pranking.html.

Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting algorithm for combin-
ing preferences. In Jude W. Shavlik, editor, Proceedings of ICML-98, 15th International Conference on
Machine Learning, pages 170–178, Madison, US, 1998. Morgan Kaufmann Publishers, San Francisco, US.
URL citeseer.ist.psu.edu/article/freund98efficient.html.

Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin rank boundaries for ordinal regression.
In Smola, Bartlett, Schoelkopf, and Schuurmans, editors, Advances in Large Margin Classifiers, pages
115–132. MIT Press, Cambridge, MA, 2000.

T. Joachims. Evaluating retrieval performance using clickthrough data, 2002. URL citeseer.ist.psu.

edu/article/joachims02evaluating.html.

P. McCullagh. Regression models for ordinal data. Journal of the Royal Statistical Society B, 42(2), 1980.

P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman & Hall, London, 1983.

Colin McDiarmid. Concentration. In Probabilistic Methods for Algorithmic Discrete Mathematics, pages
195–248, 1998.

Cynthia Rudin, Corinna Cortes, Mehryar Mohri, and Robert E. Schapire. Margin-Based Ranking Meets
Boosting in the Middle. In Proceedings of COLT 2005, volume 3359 of Lecture Notes in Computer Science,
pages 63–78. Springer, Heidelberg, Germany, June 2005.

A. Shashua and A. Levin. Ranking with large margin principle: Two approaches. In Proceedings of the con-
ference on Neural Information Processing Systems (NIPS), 2003. URL citeseer.ist.psu.edu/article/

shashua03ranking.html.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, New York, 1998.

12

