The Supervisor Synthesis
Problem for Unrestricted CTL is
N'P-complete

Marco Antoniottif Bud Mishrai*

November 1995

i International Computer Science Institute
Berkeley, CA, USA

marcoxa@icsi.berkeley.edu

i Courant Institute of Mathematical Sciences
New York University
New York, NY, USA

mishra@cs.nyu.edu

Abstract

The problem of restricting a finite state model (a Kripke structure) in order to satisfy
a set of unrestricted CTL formule is named the “Unrestricted CTL Supervisor Synthe-
sis Problem” . The finite state model has the characteristics described in [RW8Tb],
that is, its transitions are partitioned between controllable and uncontrollable ones.
The set of CTL formulae represents a specification of the desired behavior of the sys-
tem, which may be achieved through a control action. This note shows the problem
to be N"P-complete.

*This TR also appears as TR-95-062 at ICSI.

i

1 Introduction

This note contains a proof of the AN/P-completeness for the Unrestricted CTL Supervisor
Synthesis Problem as defined in [Ant95].

The problem is defined in terms of a model of the unrestrained behavior of a discrete
system or plant P (typically represented as a Finite State Machine) and a specification S
of the desired behavior of the system, given as a set of CTL formula [Eme90].

The model of the system is given following the conventions established by Ramadge and
Wonham [RW87b]. The plant is modeled as a generator P = (X, 5,6, sg). In particular the
set of transitions (or events) ¥ of the plant is partitioned into two subsets of controllable
and uncontrollable events, . and ¥, = X — ¥.. Controllable events can be enabled or
disabled by a supervisor, while uncontrollable ones are always enabled.

The Supervisor Synthesis problem for CTL specifications consists in searching for ways to
enable and disable the transitions of a finite state model in order to satisfy the specification.
Le. the problem is to synthesize map ¢ : S X ¥ — {0, 1} which given a state and a transition
will tell us whether the transition is enabled or not.

The choice of the map ¢ must be such that the constrained plant becomes a model, in
the modal logic sense, of the CTL specification!. The notation

AlPlp,s [ES

indicates that the language generated by P (A[P]), under the supervision of ¢ satisfies the
specification § . (The abbreviated notation A[P],s |= S will also be used as well as the
standard one P, s |= §. The meaning should always be clear from the context.)

1.1 An Introduction to the CTL Supervisor Synthesis Problem

This section contains a brief and intuitive example of the Supervisor Synthesis Problem (for
CTL specifications).

Consider the simple representation of the behavior of two pieces of equipment M; and
M in Figure 1.1. My and M; have to request and use a given resource. The interleaving
composition M;||M; yields the 9-state machine also shown in Figure 1.1.

Using the standard CTL semantics (e.g. as described in [Eme90]) it is immediate to
realize that the combined behavior of M; and M satisfies the following liveness condition:

if a machine requests the resource, it will eventually use it.
This condition is translated in CTL as
AG(Request; = AF(Use;)), fori e {1,2}.
However, the following mutual exzclusion property (a safety property) is not satisfied:

no more than one machine can use the resource at a time.

!The definitions and the overall construction used here are different from Ramadge and Wonham’s. The
reasons behind such differences are discussed in [Ant95], but are not relevant in the current discussion.

Idle Idle
rl i1 r2 2
ul:cl u2:c2
Request Use Request Use
M1 M2
Idiel,ldle2 il
O A
=/ N L
rl ul:cl
r2 r2 r2
i1
Z\/ Usel,Request2
aKe O 5 |
rl ul:cl
u2:c2 u2:c2 2 u2:c2
Use2,Requestl L‘/
i A,
rl ulel Usel,Use2

i1

M1|M2

Figure 1: The figure depicts the behavior of the two machines My and My and their result-
ing shuffle product My||My. The transitions uy and uy are controllable (via the “control
variables” ¢1 and ¢3). It is immediate to note that the state labeled [Use,, Usey| is reachable
from the start state of the composed system. A control action is therefore needed at the

states marked by x in order to satisfy AG(—(Use; A Usey)).

This condition has the following CTL form.
AG(—(Usey A Usey)).

A supervisor that makes the model satisfy the mutual exclusion specification has

o([Requesty, Useg])(uq 1 1) ,
o([Request, Usey])(i2) — ,
([Nur e
[)

) —

il) —

Usey, Request

@ Uy
©([Usey, Request

0
1
2] 07
2] 1-
All the other transitions are enabled, i.e. ¢ is set to 1. The finite state machine obtained
from M;||M; by disabling the transitions u; in states [Requesty, Usey] and [Use;, Request,]
is a model for the mutual exclusion specification.

For this case, a partial trace of the Control-D system is

Maps at state (REQUEST1 REQUEST2)
(AG (NOT (STATE (USE1 USE2))))
unconstrained (null)
Maps at state (REQUEST1 USE2)
(AG (NOT (STATE (USE1 USE2))))
[UL -|-> ((USE1 USE2))] enabled? NIL
[I2 ---> ((REQUEST1 IDLE2))] enabled? T
Maps at state (USE1 IDLE2)
(AG (NOT (STATE (USE1 USE2))))
unconstrained (null)
Maps at state (USE1 REQUEST2)
(AG (NOT (STATE (USE1 USE2))))
[U2 -1-> ((USE1 USE2))] enabled? NIL
[I1 ---> ((IDLE1 REQUEST2))] enabled? T
Maps at state (USE1 USE2)
(AG (NOT (STATE (USE1 USE2))))
blocked

The notation is a prefix rendering of the standard CTL syntax and the terms (STATE s)
denote states in the composed machine.

1.1.1 Algorithms for the Supervisor Synthesis Problem.

Two algorithms for the original Supervisor Synthesis problem specified by Ramadge and
Wonham can be found in [RW87a]. An algorithm for the Supervisor Synthesis problem
for restricted CTL specifications is described in [Ant95]. This last algorithm is based on a
labeling scheme, which was used for the model checking algorithm by Emerson and Clarke

[CESS6].

2 NP-completeness of the CTL Supervisor Synthesis Prob-
lem

In [Ant95] the search for tractable algorithms for the CTL Supervisor Synthesis Problem
leads to a restriction on the form of CTL formulae admitted as specifications of the desired
behavior of a plant.

In particular, it was recognized that disjunctions of arbitrary CTL formulae, do not admit
a simple algorithm for the synthesis of a supervisor. The resulting implementation in the
Control-D system, therefore either allowed only disjunctions with only one path disjunct, or
used some heuristics to synthesize the supervisor.

The rationale behind this choices stemmed from the problematic example discussed in
Section 2.1, which eventually lead to the construction of a reduction from SAT [GJ79]
which proves that the supervisor synthesis problem for arbitrary CTL specifications is N'P-
complete.

2.1 Disjunction Problem

Figure 2 contains a problematic example for the temporal logic supervisor synthesis problem
with disjunction. A supervisor is needed that satisfies the formula

AX(AG(p1)) V AX(AG(p2))- (1)

for the plant language L of Figure 2.
The language L generated by the automata in fig. 2 is simply

L = o7 + 285 + asz(B] + 53). (2)

The controllable events are ay, as and as.
Suppose now that the following assignment of propositions to states are given.

(s1) = {p},
I(s2) = {p1,p2}s
H(SS) = {p2}-

With this assignment it is possible to start labeling the states with CTL formule in the
following way

82,83 |lE {AG(p2), AX(AG(p2))},
Bi,s1 |E {AG(p), AX(AG(p1))},

B, |lE {AG(p1)}, and

82,52 |lE {AG(p2)}.

Note that state sq cannot be labeled with a meaningful language. I.e., no meaningful
language L' (under a control action implemented by ¢) can be found such that
Viso |- AX(AG(p))VAX(AG(py), ice.
M[L' ¢l,s0 | AX(AG(p1))V AX(AG(p2)).

ﬁfvsl ||: y4I
Bi.s1 |F AG(p1)
oD
aq ﬂ
1
{p1,p2}
L,@ Bis2 |IFE m
ﬁ;ng ||: P2
ﬁLS? ||: AG(pl)
ﬁ*v*S? ||: AG(pQ)
s B2 2

op

{p2}

B2, 53 ||= P2
65753 ||: AG(pQ)

Figure 2: A counterexample which shows the difficulties for the synthesis of a supervisor for a
CTL disjunction. We cannot find a reasonable supervisor ¢ for AX(AG(p1))VAX(AG(p2))
even if the supervisors for the subformule are well defined.

In fact, when formula (1) is eventually considered in state sq, neither of the two AX
disjuncts can be satisfied unless some control action is enforced, either by disabling the a;
or the ay transitions (as it was implicitly assumed when labeling s3 with 57 | AG(p1) -
here it was assumed that f; was disabled).

For the two disjuncts AX(AG(p1)) and AX(AG(pz)) in (1), there are the following

cases.

1. disabling aq:

(a2 + a3)B3, 51 [F AX(AG(p2)), (3)
2. disabling ay:

(a1 + a3)B7, 51 [F AX(AG(p1))- (4)

The following abbreviations will be useful

>

Ly
L,

(al + a3)ﬁ>1k7
(o2 + 3)033.

>

It can now be noted that it is impossible to label sy with the union of L, and L5, as intuition
may suggest,

Ll U LQ,Sl ||I AX(AG(pl)) V AX(AG(])Q)),

because of the control action that must be performed in order to ensure that either of the
disjuncts is satisfied?. That is, by labeling state s; and formula (1) with L; U L, there is
some lost information about what control actions we are enforcing. This problem arises
because of the choice inherent to the disjunction.

2.2 N'P-completeness of Supervisor Choice

The example of Section 2.1 is problematic because of the inherent choice that must be made
in order to satisfy either of the disjuncts. In particular, there is no intuitive construction
of a reasonable supervisor and therefore no elementary characterization of the language
L satisfying the disjunction. This section proves a stronger result, i.e., it shows that any
algorithm capable of finding a nontrivial (nonempty) supervisor for a disjunction of the
kind (1) is A"P-complete.

A specific example of the reduction used is given in the next section, before giving the
full formalization of the A"P-completeness argument.

2The same problem happens in state sz.

2.2.1 Reduction Example

As already mentioned, the reduction used in the A"P-completeness proof is from SAT. The
problematic example of Section 2.1 yields the basic “gadget” used for the construction.
Consider the SAT formula

(z1VTZV 24) A (FZV TV 25) A (FTV 22 V 24 V T5). (5)

This formula is satisfied, e.g., by the assignment z; «— 1, 5 < 1, and z3 < 0.
Using the model relative to formula (1) as a basic gadget, formula (5) can now be
encoded in a CTL supervisor synthesis problem. Two things will be built.

1. A model derived from the structure of the SAT formula.

2. A set of CTL formulae whose satisfiability depends on the construction of an appro-
priate supervisor.

The model used is depicted in Figure 3. Each of the variables z1,..., x5 is represented
by a gadget, which will be used as a “truth-setting” device, rooted at states Xy,..., Xs.
Fach clause in formula (5) is represented by a state Cy,Cy, C3 connected to the variables
appearing in it. A start state Sy represents the conjunction.

The transitions labeled s are controllable, while those labeled v,, and v, , are uncon-
trollable.

It is immediate to note that this construction can be done in polynomial time, given an
arbitrary SAT formula.

The next step builds the following CTL formulee, corresponding to the SAT formula
in (5).

(X1 = (AXAG(pir)V AXAG(pi7))
(X3 = (AXAG(pyr) V AXAG(par))
AXAX | (X3= (AXAG(psr)V AXAG(psr))
(((par) (pat))
(((psF) (ps7))

> > > >

AXAG(psr)V AXAG(pyr
5 = (AXAG(psr) V AXAG(psT

e

e N e e e

(C1 = EX(AXAG(pi1) V AXAG(por) V AXAG(par)))

(Cy = EX(AXAG(psr) V AXAG(psr) V AXAG(pst))) (7)

(C3 = EX(AXAG(p1r)V AXAG(per) V '
AXAG(psr) VAXAG(psF)))

A
AX A

The formulee (6) and (7) are constructed in such a way as to force the supervisor to
make certain choices in order to ensure their satisfiability. Formula (6) controls whether
variable z; is set to 0 or 1, while formula (7) expresses the satisfiability of each clause C;
by encoding the structure of the SAT formula. The uncontrollable events also play a role,
by forcing the satisfaction of all the “next” states from Sy and the C}’s.

In order to satisfy the conjunction of formula (6) and (7) with a non-trivial supervisor
(i.e. a supervisor that would not simply yield an empty language), each of the states C;
must lead to at least one subsequent state where either the false or true state (i.e. the states
labeled only with p;7 and p;r) is removed. Because of the discussion regarding the gadget

Oj {plF}
@/
—>O {plFaplT}
\

Oj {nr}
Oj {p2r}

@<O {par, par}

Oj {par}
vy 3 K Oj {psr}

@ Vg @ (%) 1 @/(T)M{p:aF 5 pBT}

\ \cl)j)

Oj {par}
V2,3 .—>O {par, par}

\Oj (par)

Oj {psF}
o=
—’O {psF, PsT}
\

Oj {psT}

Figure 3: Encoding of the SAT formula. Fach clause C; of the original formula has a corre-
sponding state, and each variable is represented by a gadget rooted at X; (The selfloops on
the states with propositions p;r should be labelled k4 and similarly the ones with propositions
pir should be labelled ks — the labels were left out in order to make the picture cleaner.)

rooted at X; of Section 2.1, there are only two possibilities: one “cutting off” the upper
part of the gadget and the other cutting off the lower one.

Now, any algorithm capable of making the conjunction of (6) and (7) satisfiable, must
make an appropriate choice at each of the gadgets. But this means that such an algorithm
will be able to determine the satisfiability of the SAT formula (5). This algorithm is therefore
NP-hard.

The next section contains the formal proof of the N"P-completeness of the problem.

2.2.2 NP-completeness Proof

The N'P-completeness theorem is stated following the “format” used in [GJ79] and the
terminology introduced in [Ant95].

Theorem 1 SUPERVISOR SYNTHESIS FOR UNRESTRICTED CTL SPECIFICATIONS:
INSTANCE: A Controlled Discrete Event System (cfr. [RW87b]) and a specification S

consisting of a set of CTL formule.
QUESTION: Is there a supervisor map ¢ such that

L7 ¥, S0 | |: §?
(Where sq is the “initial state” of the CDES.)
This problem is N'P-complete.

Proof.

NP Membership: The problem is in NP because of the following argument. Guess a
supervisor assignment and verify it using the MOoDEL CHECKING (linear) algorithm for CTL
[Eme90]. Since the model checking algorithm is linear, the whole algorithm is clearly in

NP.

NP-hardness: The argument is the same as the one used in the discussion of Sec-
tion 2.2.1. The construction is here formalized for generic SAT formulae.
We are given a SAT formula

7=\ (\n/fj)

=1 \j=1

Each (; ; is either a positive or negative literal built on the boolean variable z; (where
k=1,...,v).

The labeled graph is constructed by building a gadget for each variable ;. Name the
“start” node for each of these gadgets Xi. Next build a node C; for each of the m clauses.
The graph will contain a transition C; "oy for each ¢;; in C;. Finally, connect the
start state Sy corresponding to the whole formula f to each “clause” state by adding the
transitions So = C;.

Next the two CTL formulae which are part of the specification § , are constructed as
follows.

o Truth Setting formula

AXAX (/U\ (Xr = (AXAG(prr) V AXAG(ka)))) . (8)
k=1

o Clauses Encoding

AX (/31 (Ci = EX (\Z/ (AXAG(P)))) : (9)

where each of the P ; is either pyr or pir depending on the “sign” of ¢; ;.

It is immediate to note that the construction of the graph and of the two CTL formule is
a polynomial process.

After the construction of the “gadget graph” and of the two CTL formule, the remaining
step is to show that the SAT formula is satisfiable if and only if there exists a non trivial
supervisor for the CTL specification S .

Suppose that there exist a satisfying assignment for the SAT formula f. Then, by
cutting off the appropriate branches of the “end” gadgets we can ensure the satisfiability
of both formula (8) and (9). Each of the suffix languages generated from each of the X;
nodes is nonempty because of the choice imposed by the satisfying assignment of the SAT
formula f. Therefore, the language generated from the start state Sy is non empty too,
since the uncontrollable events between Sy, the (;, and the X; states cannot be disabled.
The satisfiability of the two formula (8) and (9) at state Sy follows immediately by their
construction.

Conversely, suppose that there exists a supervisor generating a nonempty language
starting at Sy. Since this supervisor must respect the controlled semantics, it must not
disable any of the uncontrollable events up to the X; states.

Consider now the formula (8) and (9). The first one must be satisfied by the supervisor
by “cutting off” either the true or false part of each gadget associated to each variable z;.
The second one is satisfied by a specific choice at each gadget (due to the encoding of the
clauses’ structure). Since the supervisor is assumed to produce a nonempty language, we
must conclude that the two CTL formulae are conjunctively satisfied. But this means that
we have created a satisfying assignment also for the SAT formula f.

The conclusion is therefore that an algorithm capable of producing a supervisor is also
capable of solving SAT. Hence the SUPERVISOR SYNTHESIS PROBLEM FOR CTL SPECIFI-
CATIONS is N'P-complete.

O

3 Concluding Remarks

In this paper we have shown that the supervisory synthesis problem based on unrestricted
CTL is AN'P-complete. However, the proof is based on a specific set of CTL disjunctive

10

formuleae.

Other CTL disjunctions do not lead to the inherent choices, resulting in a com-

binatorial explosion of the search space. Elsewhere we have shown that if one restricts the
attention to such a fragment of CTL then it is possible to build better algorithms for these
cases (e.g. by limiting one of the disjuncts to be fully propositional, as in [Ant95]).

References

[Ant95]

[CESS6]

[Eme90]

[GJ79]

[RW87a)

[RWS7b]

M. Antoniotti. Synthesis and Verification of Discrete Controllers for Robotics and
Manufacturing Devices with Temporal Logic and the Control-D System. PhD the-

sis, Courant Institute of Mathematical Sciences, New York University, September
1995.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-
State Concurrent Systems Using Temporal Logic Specifications. ACM Transac-
tions on Programming Languages and Systems, 8(2):244-263, 1986.

E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 16, pages 995-1072. MIT
Press, 1990.

M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman
and Company, 1979.

P. J. Ramadge and W. M. Wonham. On the Supremal Controllable Sublanguage
of a Given Language. SIAM J. Control and Optimization, 25(3):637-659, May
1987.

P. J. G. Ramadge and W. M. Wonham. Supervisory Control of a Class of Discrete
Events Processes. SIAM J. Control and Optimization, 25(1):206-230, 1987.

11

