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Abstract
Approximate adders are adders with conventional architectures run in an overclocked mode. With this mode,

erroneous sums may be produced at the savings of energy required to execute the computation. The results presented in
this report lead to a procedure for allocating the available energy budgets among the adders modules so as to minimize
the expected error. For simplicity, only the uniform distribution of the inputs is considered.

1 Introduction
The simplest and the most straightforward binary adder is the ripple-carry adder [1]. In [2], energy-error tradeoffs in
approximate ripple carry adders were studied. Approximate adders have standard architectures but are overclocked and
therefore for some inputs they produce incorrect sums. An approach was presented to optimize the allocation of the
available energy budgets to the adder’s components so that the average error is minimized.

The techniques in that paper relied on the specific architecture of ripple carry adders and were not applicable to
general adders. We generalize those techniques so that they are applicable to other adders and use the Kogge-Stone
adder [1] as an example. We will use the notation of [2] but modify it where it makes the presentation of our results
clearer. Although this report is largely self contained, familiarity with that paper will be helpful, especially for the
motivation and the technological constraints assumed.

2 Carry chains
We will be concerned with the addition of two integers in the range Œ0; : : : ; 2n � 1�, for some fixed n. Using standard
powers of 2 representation, such numbers are in one-to-one correspondence with vectors of length n over f0; 1g. For
an integer in the range Œ0; : : : ; 2n � 1�, say a, the corresponding vector will be denoted by a and also written as
.an�1 : : : a0/. Such numbers and vectors will be referred to also as n-bit numbers and n-bit vectors. We will also
consider some numbers in the range Œ0; 2nC1 � 1� and corresponding vectors of length nC 1; they will naturally be
referred to as .nC 1/-bit numbers and vectors. Generally a number discussed will be an n-bit number. Otherwise, its
length will be stated explicitly or will be clear from the context.

Given two numbers a and b, we define two .nC 1/-bit numbers c and s by

ci D

�
0 if i D 0 or i > 0 and ai�1 C bi�1 C ci�1 � 1

1 otherwise,

si D

˚
cn if i D n
0 if i < n and ai C bi C ci 2 f0; 2g

1 otherwise.
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Thus, considering a standard right to left addition of two n-bit numbers si is the sum and ciC1 is the carry produced in
position i , for i D 0; : : : ; n � 1. By convention, c0 D 0. Of course, s D aC b.

We adapt a standard definition of a carry chain [1] as follows

Definition 1. Given n-bit numbers there a and b, there is a carry chain starting at i and ending at j for 1 � i � j � n
if and only if

1. ai�1 D bi�1 D 1

2. ak 6D bk for i � k � j � 1

3. aj D bj or j D n

We will say that such a carry chain is induced by i � 1 and also refer to it as an i-j carry chain or as carry chain from i

to j . The set of all the carry chains will be denoted by C.a; b/.

The following notation will be helpful:

Cij .a; b/ D

�
> if there is a carry chain starting at i and ending at j
? otherwise.

When a and b are understood from the context, we may omit them.
There are two useful properties:

1. If Cij .a; b/ D > and s D aC b, then sk D 0, for k D i; : : : ; j � 1 and sj D 1.

2. If Cij .a; b/ D Cpq.a; b/ D > and .i; j / 6D .p; q/, then the intervals Œi; j � and Œp; q� are disjoint, or informally,
the two carry chains do not overlap.

3 Graph model
The n-bit adders we consider are constructed out of n 1-bit adders (either full or half, depending on the design) and
additional auxiliary circuitry. An n-bit adder will be modeled as a DAG G D .V;E/. The vertices in V are themselves,
in general, circuits and are chosen so that it is possible to supply a specific voltage to the gates of a vertex, but it is
not possible to supply different voltages to the gates in the vertex’s circuit. We assume for now some specific voltage
assignments, and will optimize them later.

We will refer to the vertices as modules , n of which are 1-bit adders. We assume that

1. The inputs a and b are provided at time 0

2. The sum s is read at time T

3. For each i , if ci D 0, then the correct value of si is produced at time � T

We now consider some fixed a and b. For each i , the correct value of si is produced and does not change any more
at time di .a; b/. All di .a; b/’s form vector d.a; b/.

Consider some k, 1 � k � n, and the case where for some i and j , i � k � j , and Cij D >. Then the information
that ck D 1 must be obtained from the inputs in positions i � 1; : : : ; k � 1. The time to account for the propagation
of this information and the computation of the correct value of depends on the topology of G and the delays in the
vertices in V . We denote this time interval by dik . All the diks are collected into an array D, in which only entries in
positions .i; j / for i � j are not empty; di i denotes the time to compute si if ci D 0.

4 Carry chains and the errors
We fix D and T , so we do not list them for a while, though many of the variables depend on them. Given a and b, s
and sA are defined. Though they depend on a and on b, we do not indicate that explicitly if no confusion will result.
Let ı D s � sA. Define

ık D

˚
�1 if dik > T and for some i and j; Cij .a; b/ D 1 and i � k < j

1 if dik > T and for some i and j; Cij .a; b/ D 1 and i � k D j

0 otherwise.
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Then the error in the computation is

Er.T;D; a; b/ D jıj D

ˇ̌̌̌
ˇ̌ nX
kD0

ık2
k

ˇ̌̌̌
ˇ̌; (1)

and the average error is

Eravg.T;D/ D avg
a;b

Er.T;D; a; b/ D
1

22n

X
a;b

Er.T;D; a; b/: (2)

So we need to compute X
a;b

ˇ̌̌̌
ˇ̌ nX
kD0

ık2
k

ˇ̌̌̌
ˇ̌; (3)

which is the a sum of 22n terms, and therefore this task is impractical even for n D 32.
The set of all the carry chains has n.n C 1/=2 elements. We will use C as a variable varying over this set. If

C contributes an error for a pair inputs, we call it an error-contributing chain for those inputs and denote the error
contributed by it by EC.C /. For other chains, EC.C / D 0. We can rewrite (3) as

X
a;b

ˇ̌̌̌
ˇ̌ X
C2C.a;b/

EC.C /

ˇ̌̌̌
ˇ̌: (4)

For the special case where the adder considered is an RCA, the condition

EC.C / � 0; for every C (5)

is true. Therefore, for RCA, [2] used the following

X
a;b

ˇ̌̌̌
ˇ̌ X
C2C.a;b/

EC.C /

ˇ̌̌̌
ˇ̌ DX

a;b

X
C2C.a;b/

EC.C / D
X
C

EC.C / � card
˚
.a; b/ j C 2 C.a; b/

	
;

where card f: : :g stands for the cardinality of f: : :g. Expression card
˚
.a; b/ j C 2 C.a; b/

	
can be easily computed for

each chain C from Definition 1.
However, for adders other than RCA, (5) does not necessarily hold. So a different procedure for computing (4)

must be established, which we do next.
Consider the case when C.a; b/ has at least one carry chain contributing to error for inputs a and b. Take the

leftmost (largest position numbers) chain contributing an error, and denote it by CL.a; b/. Its error dominates the sum
of the other errors contributed by all the other chains: in C.a; b/

ˇ̌
EC
�
CL.a; b/

�ˇ̌
>

ˇ̌̌̌
ˇ̌ X
C2C.a;b/nCL.a;b/

EC.C /

ˇ̌̌̌
ˇ̌;

and therefore,

sgn
�

EC
�
CL.a; b/

��
D sgn

0@ X
C2C.a;b/

EC.C /

1A :
Define

csgn.a; b/ D

(
sgn

�
EC
�
CL.a; b/

��
if CL.a; b/ exists

0 otherwise:

Then, we may rewrite (4) as X
a;b

0@csgn.a; b/
X

C2C.a;b/

EC.C /

1A
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Positions Inputs

0; : : : ; i � 2 00, 01, 10, 11
i � 1 11

i; : : : ; j � 1 01, 10
j 00, 11
j C 1; : : : ; p � 2 00, 01, 10, 11
p � 1 11

p; : : : ; q � 1 01, 10
q 00

q C 1; : : : ; n � 1 00, 01, 10

Figure 1: Input conditions for an i-j carry chain and for the leftmost p-q carry chain. The left column lists the positions
and the right column the pairs of inputs allowed in the positions. Note that the sequence q C 1; : : : ; n � 1 could be
empty.

(we are multiplying the inner sum by �1 if it is negative, and byC1 if it is positive). Therefore (1) can be written as

X
a;b

ˇ̌̌̌
ˇ̌ X
C2C.a;b/

EC.C /

ˇ̌̌̌
ˇ̌ DX

a;b

X
C2C.a;b/

csgn.a; b/ � EC.C / (6)

D

X
C

EC.C /
X

�2f�1;C1g

� � card
˚
.a; b/ j C 2 C.a; b/ ^ csgn.a; b/ D �

	
:

Note that the number of terms to be summed is approximately n2. So to compute (4) efficiently, it is enough to compute
all the terms efficiently.

For every C it is easy to compute its EC.C / as this does not depend on the inputs, other than some very specific
inputs. Indeed, if we have a carry chain from i to j , we just need to examine what happens for the two inputs of length
j � i C 1, namely .1; : : : ; 1; 1/ and .0; : : : ; 0; 1/. This will allow us to compute the error. What remains to be done is
to account for csgn.a; b/ for all inputs .a; b/ in which the carry chain under consideration occurs.

So consider then a carry chain C from i to j . If there is no error inducing carry chain to its left for some .a; b/ in
which it occurs, then csgn.a; b/ D sign.EC.C //. This case is simpler to handle, so we will consider here the case where
there are such chains, and let the leftmost carry chain be from p to q. For this situation, n � q � p > j � i � 1 and
the conditions in Fig. 1 hold. The number of input configurations producing such carry chains is

1. If q D n then 2n�p2j�i4.p�1/�.j�iC1/.

2. If q < n then 3n�qC12q�p2j�i4.p�1/�.j�iC1/.

Keeping i and j fixed, we consider all the possible values for p and q. For some inputs, the i-j carry chain is the
leftmost error-inducing chain, and for some inputs there are p and q for which there is an error-inducing p-q carry
chain and it is the leftmost such carry chain. By examining all the cases, we can easily computeX

�2f�1;C1g

� � card
˚
.a; b/ j i-j carry chain 2 C.a; b/ ^ csgn.a; b/ D �

	
;

and from here, iterating over all applicable i and j , we comput the needed Eravg.T;D/, using (2).

5 Example: Kogge-Stone adder
The Kogge-Stone adder (KSA) works in three seperate stages. In the first stage, the KSA computes information that
represents whether a carry is generated or propagated at a certain bit position based on the inputs to the adder. In the
second stage, it uses the information computed in the first stage to determine whether a set of consecutive positions
generates a carry or propagates a carry. This can be computed fully in parallel. A complete description of these
functions can be found in [3]. At the end of the second stage the carry inputs to all bit positions of the sum are known.
In the third stage, the final sum bits are computed.
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7 6 5 4 3 2 1 0

7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

2 2

7:6 6:5 5:4 4:3 3:2 2:1 1:0

7:4 6:3 5:2 4:1 3:0 2:0

7:0 6:0 5:0 4:0

Figure 2: An 8-bit Kogge-Stone adder. The delays of the modules are written inside the vertices representing them.

The second stage is the most complex of all three. As we can see from Fig. 2, which we adapt from [4], the
KSA decreases time taken for computation by computing the carry bits for each position almost in parallel. This
creates the possibility that the carry bit reaches position k C 1 before it reaches position k given a certain allocation of
propagation delays to the various blocks. We will note here that irrespective of the allocation of propagation delays in
the ripple-carry adder that condition can never happen in its simple architecture.

The numbers in the modules in Fig. 2 are the delays introduced in these modules. In Fig. 3, we consider the
computation of s D a C b, where a D .001010110/ and b D .000111010/. There are two carry chains, C1 from
position 2 to position 4 induced by position 1 and C2 from position 5 to position 7 induced by position 4. The correct
sum is s D .010010000/, and is obtained at time instance of 10. Let us consider the case when T D 7, that is, the
adder is overclocked and an approximation sA is read instead of the true s.

Based on the topology of G and on the delays in Fig. 2, we compute D, and from this the values of sA at the various
instances of time. Note that sometimes the error is positive and sometimes negative. At time T , both of the carry
chains induce errors. We compute the absolute error produced at time T :

1. C2 the leftmost error-inducing carry chain and it contributes an error of �96, and therefore,

csgn.a; b/ D sgn
�

EC
�
CL.a; b/

��
D �1:

2. C1 is an error-inducing carry chain, but not the leftmost and it contributes an error ofC16.

Therefore, at time T D 7,
ˇ̌
s � sA

ˇ̌
D .�1/ � .�96/C .�1/ � .C16/ D C80.

6 Energy-error tradeoffs
This section briefly outlines an adaptation of the approach already presented in Sections IV–V of [2] for ripple-carry
adders, and an interested reader should consult that paper and its references, to fill out details omitted here.

The energy consumption E of a circuit consisting of the dynamic and the static energy consumption can be
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Position
7 6 5 4 3 2 1 0

a �! 0 0 1 0 1 0 1 1 0

b �! 0 0 0 1 1 1 0 1 1

Time sA s � sA

0 0 0 0 0 0 0 0 0 0 0 +145
1 0 0 1 1 0 1 1 0 1 109 C36

2 0 0 1 1 0 1 1 0 1 109 C36

3 0 0 1 1 0 1 1 0 1 109 C36

4 0 0 1 1 0 1 0 0 1 105 C40

5 0 0 1 1 0 0 0 0 1 97 C48

6 0 0 1 1 0 0 0 0 1 97 C48

7 0 1 1 1 0 0 0 0 1 225 �80

8 0 1 1 1 1 0 0 0 1 241 �96

9 0 1 1 1 1 0 0 0 1 241 �96

10 0 1 0 0 1 0 0 0 1 145 0

Figure 3: An example of addition in an overclocked Kogge-Stone adder. Carry chains are highlighted at the instances of
time in which they induce errors.

approximated as

E �
NX
`D1

 
`w`

�2
`
.�`/
C P`.�`/T

!
;

where N is the number of gates, ` varies over gate number, ` is a constant, �` is the voltage supplied to gate `, �`.�`/
is the worst-case propagation delay of gate ` when supplied with voltage �`, w` is the average switching activity of
gate ` during time Œ0; T �, and P`.�`/ is the static power consumption of gate ` during time Œ0; T �.

The elements of D can be expressed using �`, for ` D 1; : : : ; N , and it is also convenient to formulate the resulting
optimization problem as a geometric program [5]. To that end, the errors in a chain are approximated by a special
form, so that ultimately the optimization problem to be solved can be expressed as

minimize Eravg.T; �/ D
X
C

kC

NY
`D1

�
aC;`

`

subject to min-delay` � �k � max-delay`; ` D 1; : : : ; N

and
NX
`D1

 
`w`

�2
`

C P`.�`/T

!
� Energy Budget;

with appropriate constants kC ’s and aC;`’s. Here kC ’s are the coefficients of EC.C /’s in the second line of (6) for
each respective carry chain.

Please see [2] for the procedure to solve this optimization problem and for a simulation approach to evaluate the
solution using HSPICE.
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