
Theory of Symmetric Neural Networks

by

Aaron Zweig

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January, 2024

Professor Joan Bruna

© Aaron Zweig

all rights reserved, 2024

Acknowledgements

Foremost, thanks to my advisor Joan. Primarily for helping me learn the ineffable mixture of

curiosity and perseverance that’s necessary for making progress on a problem, but also for always

reminding me that research is meant to be a joy. And separate from research entirely, for offering

heroic kindness to me when I needed to prioritize health over work. It takes more humanity to

show compassion than to set a struggling grad student on fire, and I am grateful. Thanks as well

to my collaborators, Loucas, Nesreen, Ted, and Guixiang.

Thanks to my colleagues, office mates and friends; Mark, Aahlad, David, Adriel and Mukund,

who’ve offered professional wisdom and tolerated my sense of humor. Much love in particular

to Min Jae, Raghav and Mimee, who thwarted my introversion and pressured me into having far

more fun these past years.

Love beyond all reason to my family. Mom, Ben, that you always had faith in me, and would

politely nod while I babbled about machine learning minutiae, means everything to me.

Getting to talk about my work with my dad has been one of the greatest highlights of the

PhD. Once, driving into New Jersey, my father and I realized that the spherical harmonics I was

studying and the Zernike polynomials he studied as a grad student in optical engineering were

very nearly the same object. It’s magical, the realization that someone you’ve known forever was

once in your shoes, staring wide-eyed at weird polynomials and banging their head against the

wall. Dad, if I’ve understood any math at all, it’s because I was excited to share it with you.

iii

Abstract

Symmetric functions, which take as input an unordered, fixed-size set, find practical applica-

tion in myriad physical settings based on indistinguishable points or particles, and are also used

as intermediate building blocks to construct networks with other invariances. Symmetric func-

tions are known to be universally representable by neural networks that enforce permutation

invariance. However the theoretical tools that characterize the approximation, optimization and

generalization of typical networks fail to adequately characterize architectures that enforce in-

variance.

This thesis explores when these tools can be adapted to symmetric architectures, and when

the invariance properties lead to new theoretical findings altogether. We study and prove approx-

imation limitations on the extension of symmetric neural networks to infinite-sized inputs, the

approximation capabilities of symmetric and antisymmetric networks relative to the interaction

between set elements, and the learnability of simple symmetric functions with gradient methods.

iv

Contents

Acknowledgements iii

Abstract iv

List of Figures vii

1 Introduction 1

1.1 Challenges of Symmetric Networks . 2

1.2 Summary of Contributions . 3

2 Preliminaries 8

2.1 Permutation Invariance . 8

2.2 DeepSets Architecture . 9

2.3 Empirical Risk Minimization . 9

2.4 Inner Products . 10

2.5 Symmetric Polynomials . 11

3 The Limit of Sets to Measures 13

3.1 Preliminaries . 14

3.2 From Set to Measure Functions . 17

3.3 Neural Functional Spaces for Learning over Measures 21

v

3.4 Separation of S1 from S2 . 24

3.5 Separation of S2 from S3 . 31

3.6 Experiments . 33

4 Approximating symmetric functions with high interaction 36

4.1 Preliminaries . 38

4.2 One-dimensional Separation Result . 40

4.3 Interaction Separation Statement . 48

4.4 Proof of Lower Bound . 59

4.5 Proof of Upper Bound . 71

5 Approximating antisymmetric functions with high interaction 79

5.1 Preliminaries . 81

5.2 Separation Statement . 85

5.3 Proof of Lower Bound . 87

5.4 Proof of Upper Bound . 93

6 Learning a Single Symmetric Neuron 100

6.1 Preliminaries . 101

6.2 Analytic Expression for Population Loss . 106

6.3 Derivation of Gradient Flow ODE . 107

6.4 Bounding ODE Convergence . 112

6.5 Experiments . 132

Bibliography 135

vi

List of Figures

1.1 Neural Networks that enforce symmetry . 2

3.1 Planted neurons for 𝑚 = 100 (left two) and 𝑚 = 200 (right two). The smooth neuron

has weights sampled consistently with F2 while the regular neuron has weights sampled

distinctly from the network initialization. 35

5.1 Example of Young diagram and conjugate partition 84

5.2 𝜆 and 𝜆 + 𝛿 for 𝜆 doubly even. 90

6.1 The learning trajectory, over ten independent runs, of the three summary statis-

tics in the case of our chosen loss function 𝐿 . 133

vii

1 | Introduction

Deep learning theory begins with universal approximation, and an optimist might hope that

would be the end of it. In the limit of infinite data there would be no need to move beyond two-

layer vanilla neural networks. But regardless of how large datasets become, practitioners still

seek to apply some kind of prior knowledge to improve optimization and generalization.

Typically, this prior knowledge is adapted to nature of the data. Self-attention, for instance,

appears to be the appropriate prior to handle sequence data [Vaswani et al. 2017]. But often, this

prior knowledge takes the form of underlying symmetry.

Classically, image data greatly benefits from architectures that enforce equivariance to trans-

lation [LeCun et al. 1998]. Likewise, for graphs we enforce invariance to node relabeling [Scarselli

et al. 2008], for molecules we enforce rotational invariance [Cohen et al. 2018], for fermionic

wavefunctions we enforce antisymmetry [Moreno et al. 2021], and so on.

For sets, the appropriate geometric prior is permutation invariance [Zaheer et al. 2017; Qi

et al. 2017; Santoro et al. 2017]. Set data occurs organically in settings of particle physics or pop-

ulation statistics. But permutation invariance is also an essential primitive to be applied inside of

other architectures, most notably for graphs [Kipf and Welling 2016] and antisymmetric wave-

functions [Pfau et al. 2020]. So we see permutation invariant architectures as first-class citizens

in their own right, worthy of explicit study.

1

(a) DeepSets with symmetric width 𝐿 (b) Relational Network with symmetric width 𝐿

Figure 1.1: Neural Networks that enforce symmetry

1.1 Challenges of Symmetric Networks

In some sense, permutation invariant networks provoke the same questions as vanilla networks.

Namely, what functions can we approximate, when does gradient-based optimization succeed,

and when do we successfully generalize?

These questions have been thoroughly explored for vanilla networks. To give only a cursory

summary, great effort has been invested on the approximation capabilities of vanilla networks

according to depth [Telgarsky 2016; Eldan and Shamir 2016; Daniely 2017; Safran and Shamir

2017; Venturi et al. 2021], the ability to learn a single neuron efficiently [Soltanolkotabi 2017; Frei

et al. 2020; Yehudai and Shamir 2020; Wu 2022; Arous et al. 2021; Dudeja and Hsu 2018], and

bounds on generalization [Neyshabur et al. 2017; Jiang et al. 2019].

The greatest quantitative progress on these questions for vanilla networks has been accom-

plished on two-layer networks, in part because this is the setting where high dimensional inte-

grals may be calculated analytically. For finite networks, a common theme is relying on proper-

ties of Hermite polynomials [Arous et al. 2021] or spherical harmonics [Bach 2017] to calculate

expectations over high-dimensional inputs, but this tactic breaks when handling the functions

compositions inherent to deeper networks.

In general, moving towards higher depth networks, while not impossible, poses numerous

2

difficulties. There is a smaller family of work considering deeper networks in the mean-field

regime [Chen et al. 2022; Sirignano and Spiliopoulos 2022] in the limit of infinite widths. Pes-

simistically, the main theorem of [Vardi and Shamir 2020], dictates that depth separations above

depth 4would resolve long-standing open problems in circuit complexity, thought to be extremely

difficult to address.

Two of the most common symmetric architectures are given in Figure 1.1, and notably they

are both necessarily deeper than two layers. Although there are ways to enforce symmetry in

two-layer networks [Bietti et al. 2021; Mei et al. 2021], this comes at a hefty cost to efficiency,

so the typical architectures have at least three. This provokes substantial questions: when do

the tricks for two-layer networks generalize? What new tactics are needed to understand this

intermediate setting, with three layers but architectural restrictions that (in some cases) may

make analysis easier?

Some works have broached lower bounds on the power of symmetric networks for one-

dimensional inputs [Wagstaff et al. 2019, 2022]. Meanwhile, upper bounds on approximation

either constructively require exponential size [Han et al. 2019a], or non-constructively show uni-

versality without quantitative bounds over the entire network [Wang et al. 2023; Dym and Gortler

2022]. But quantitative separations and learning guarantees remain unanswered questions.

1.2 Summary of Contributions

This thesis is primarily concerned with the results of four papers [Zweig and Bruna 2021, 2022a,b,

2023] concerning different facets of symmetric neural networks.

Measure Networks (Chapter 3): Motivated by symmetric functions defined over sets of any

size, we consider when symmetric networks may be generalized to treat all sets as empirical

measures, and therefore act on the space of probability measures itself. Under a simple continuity

3

condition, we can characterize which functions are representable as neural networks acting on

measures, where the dual product with test functions acts as a linear layer.

We observe three canonical function classes depending on which layers of the network are

trained. Informally, these normed spaces include an RKHS S3, the space of networks that only

interact with measures through smooth test functionsS2, and the space of fully general networks

S1. Feature learning is essential for approximating some families of functions, and we therefore

realize the following separation when the inputs are drawn from R𝑑 :

Theorem 1.1 (informal). There exist 𝑓1 with ∥ 𝑓1∥S1 ≤ 1 and 𝑓2 with ∥ 𝑓2∥S2 ≤ 1 such that:

inf
∥ 𝑓 ∥S3≤𝛿

∥ 𝑓 − 𝑓2∥∞ ≳ 𝑑−2𝛿−5/𝑑 (1.1)

inf
∥ 𝑓 ∥S2≤𝛿

∥ 𝑓 − 𝑓1∥∞ ≳ |𝑑−11 − 𝑑−𝑑/3𝛿 | (1.2)

Approximation Separations (Chapter 4): We consider two variants of symmetric architec-

tures: the class of networks which average over individual set elements Sym𝐿; or networks which

average over pairs of set elements Sym2
𝐿
. Here 𝐿 is the symmetric width, which controls how

many symmetric features the second half of the network takes as input (see Figure 1.1). Although

universality cannot separate these networks when the width parameter 𝐿 → ∞, we can formalize

the intuition that looking at pairwise interaction leads to more efficient representations.

Through the technical hammer of symmetric polynomial theory, we introduce an appropriate

inner product to measure the expressiveness of these classes under the assumption of analytic

activation functions.

The separation between these classes implies that singleton networks require exponentially

many symmetric features in order to compete with pairwise networks, which justifies quadratic

time spent in a forward pass of the latter.

Theorem 1.2 (informal). Fix some non-trivial data distribution 𝜇 on 𝐷 × 𝑁 copies of the unit

4

complex circle (𝑆1)𝐷×𝑁 . Then there exists an analytic symmetric function 𝑔 : C𝐷×𝑁 → C such that

∥𝑔∥𝐿2 (𝜇) = 1 and the following is true:

For 𝐿 ≤ 𝑁 −2 exp(𝑂 (min(𝐷,
√
𝑁)),

min
𝑓 ∈Sym𝐿

∥ 𝑓 − 𝑔∥2
𝐿2 (𝜇) ≥

1
12

(1.3)

There exists a polynomially-sized 𝑓 ∈ Sym2
𝐿
with 𝐿 = 1 such that over (𝑆1)𝐷×𝑁 :

∥ 𝑓 − 𝑔∥∞ ≤ 𝜖 (1.4)

Antisymmetric Approximation Separations (Chapter 5): We focus now on the unusual in-

variance of antisymmetry, equivalent to symmetry up to a sign flip. This small change never-

theless has huge consequences for the architectures that enforce this property, and we consider

two of the simplest architectures that are classical in quantum chemistry. Informally, these are

the Slater ansatz, which is a sum of rank-one tensors projected into antisymmetric space; and

the Jastrow ansatz, which is similar but augmented with a symmetric prefactor. In the interest

of approximately solving Schrödinger’s equation, we are motivated to understand when a more

complicated model translates to more efficient representation.

When the symmetric prefactor is parameterized as a pairwise network, we are confronted

with the a parallel question as Chapter 4, namely when allowing set elements (or in this case,

electrons) to interact provably improves the approximation capacity of the function class. Again,

enabling this interaction allows for an exponential improvement:

Theorem 1.3 (informal). Assume an input domain with arbitrary 𝑁 > 1 set elements that are each

one-dimensional. Consider a Slater ansatz 𝐹 with 𝐿 terms and a Jastrow ansatz 𝐺 with 1 term and

a relational network as symmetric prefactor. Then there is a hard antisymmetric function 𝐺∗ with

5

∥𝐺∗∥ = 1, such that 𝐺 is polynomially-sized and

∥𝐺 −𝐺∗∥∞ < 𝜖 (1.5)

but for 𝐿 ≤ 𝑒𝑁 2
:

min
𝐹

∥𝐹 −𝐺∗∥2 ≥ 3
10

(1.6)

Symmetric Single Index Learning (Chapter 6): We introduce a setting of symmetric single

index models, a student-teacher model, where the student and teacher are both DeepSets ar-

chitectures with fixed final layers. Equivalently, the teacher is a single neuron with inputs first

mapped to fixed symmetric features. This is essentially the simplest setting for learning a family

of non-trivial symmetric functions. By way of comparison, where the vanilla single index setting

seeks to learn a function 𝑥 ↦→ 𝑓 (⟨𝜃 ∗, 𝑥⟩), our setting considers a set of one-dimensional inputs

and seeks to learn 𝑥 ↦→ 𝑓 (⟨ℎ∗, 𝑝 (𝑥)⟩) where 𝑝 (𝑥) is an infinite-dimensional vector of symmetric

polynomials acting on 𝑥 . In both cases, there is a notion of how non-linear 𝑓 is, deemed the

information exponent 𝑠 .

Again, through symmetric polynomial theory it’s possible to give analytic formulas for the

population loss under very specific conditions, and even then one must choose a loss carefully to

ensure the landscape, while non-convex, is nevertheless benign and easy to learn.

Consider a comparison to the vanilla single index model. There, using the population loss and

under Gaussian inputs, the high-dimensional loss landscape can be simplified by only considering

the correlation between the learned weight vector and the true hidden weight vector, reducing

the problem to one-dimensional ODE where the correlation increases monotonically towards

one [Arous et al. 2021]. Due to the three-layer nature of symmetric models, none of these facts

hold true in our new setting, dramatically complicating the flow of the sufficient statistics that

govern the loss. Nevertheless, we can still provably recover the hidden weight vector:

6

Theorem 1.4 (Informal). Let 𝑤 ∈ C𝑀 be a learnable weight and 𝐴 ∈ C∞×𝑀 is a frozen weight

matrix. Consider a correlational loss function 𝐿 that only accesses ℎ∗ through 𝑓 (⟨ℎ∗, 𝑝 (𝑥)⟩), and

is minimized when 𝐴𝑤 = ℎ∗. With constant probability under appropriate initialization, running

gradient flow on 𝐿(𝑤) recovers ℎ∗ (up to phase) with 𝜖 accuracy in time

𝑇 ≤


𝑂

(
log 1

𝜖

)
𝑠 = 1

𝑂

(
2𝑠2
𝑁 7𝑠 + log 1

𝜖

)
𝑠 > 1 .

(1.7)

where 𝑠 is the information exponent of 𝑓 .

7

2 | Preliminaries

2.1 Permutation Invariance

We will consider the following setup in the sequel: consider an input domain Ω ⊆ R𝐷 (or C𝐷),

and a set of 𝑁 elements 𝑋 = {𝑥1, . . . 𝑥𝑁 } where 𝑥𝑛 ∈ Ω for all 𝑛 ≤ 𝑁 .

Then a function 𝑓 : Ω𝑁 → R (or C) is symmetric if, for every permutation 𝜋 ∈ 𝑆𝑁 acting on

𝑁 elements,

𝑓 (𝑥1, . . . 𝑥𝑁) = 𝑓 (𝑥𝜋 (1), . . . , 𝑥𝜋 (𝑁)) (2.1)

Equivalently, if one considers a matrix 𝑋 of dimension 𝐷 × 𝑁 , and assume 𝑓 acts the set of

its column vectors, the symmetry condition is equivalent to requiring that, for all permutation

matrices Π ∈ R𝑁×𝑁 :

𝑓 (𝑋Π) = 𝑓 (𝑋) (2.2)

Traditionally, the algebra of continuous symmetric functions was considered in the con-

text of symmetric polynomials. For real-valued functions, there are several canonical algebraic

bases [Rydh 2007], and for complex-valued functions one must include symmetric Laurent poly-

8

nomials in order to account for non-analytic functions.

2.2 DeepSets Architecture

Although there is more than one neural network architecture that is a universal approximator for

the space of symmetric functions [Qi et al. 2017], in this work we will focus on DeepSets [Zaheer

et al. 2017].

Definition 2.1. We consider the DeepSets architecture with symmetric width 𝐿, as functions 𝑓

of the form:

𝑓 (𝑋) = 𝜌 (𝜙1(𝑋), . . . , 𝜙𝐿 (𝑋)) (2.3)

𝜙𝑙 (𝑋) =
𝑁∑︁
𝑛=1

𝜓𝑙 (𝑥𝑛) (2.4)

where {𝜓𝑙 : Ω𝐷 → Ω′}𝐿
𝑙=1 and 𝜌 : (Ω′)𝐿 → Ω′′ are arbitrary neural networks. Again, the domains

Ω′,Ω′′ are either R or C depending on the setting.

Furthermore, in some cases we will use the notation Φ(𝑋) = (𝜙1(𝑋), . . . , 𝜙𝐿 (𝑋)) as the vector

of all symmetric features in the network.

2.3 Empirical Risk Minimization

The motivating task for every problem we consider is learning a symmetric neural network from

data. We mainly consider the regression setting for empirical risk minimization [Shalev-Shwartz

and Ben-David 2014; Bach 2017], where given data {(𝑋𝑖, 𝑓 ∗(𝑋𝑖)}𝑛𝑖=1 with𝑋𝑖 drawn i.i.d. from some

distribution over sets, we seek to learn

𝑓 ∈ arg min
𝑓 ∈F

1
𝑛

𝑛∑︁
𝑖=1

ℓ (𝑓 ∗(𝑋𝑖), 𝑓 (𝑋𝑖)) , (2.5)

9

where F is a class of realizable DeepSets architectures, and ℓ is some convex loss (typically

the squared loss).

2.4 Inner Products

Our choice of input distributions on sets will be motivated by the 𝐿2 inner products they induce,

and their associated properties. We introduce two 𝐿2 inner products (defined with respect to

probability measures) we’ll use throughout the thesis.

For symmetric functions 𝑓 , 𝑔 : C𝑁 → C, define:

⟨𝑓 , 𝑔⟩𝑉 =
1

(2𝜋)𝑁𝑁 !

∫
[0,2𝜋]𝑁

𝑓 (𝑒𝑖𝜽)𝑔(𝑒𝑖𝜽) |𝑉 (𝑒𝑖𝜽) |2𝑑𝜽 , (2.6)

where for 𝑧 ∈ C𝑁 , we have the Vandermonde determinant

𝑉 (𝑧) =
∏

1≤𝑖< 𝑗≤𝑁
(𝑧 𝑗 − 𝑧𝑖) . (2.7)

This inner product is well-known in the theory of symmetric polynomials, as a finite-variable

analogue of the Hall inner product [Macdonald 1998]. Equivalently, if we let 𝑉 denote the joint

density of eigenvalues of a Haar-distributed unitary matrix in C𝑁×𝑁 , it is known [Diaconis and

Shahshahani 1994] that this inner product may be written as

⟨𝑓 , 𝑔⟩𝑉 = E𝑦∼𝑉
[
𝑓 (𝑦)𝑔(𝑦)

]
. (2.8)

For arbitrary functions 𝑓 , 𝑔 : C𝐷 → C, we also consider the 𝐿2 inner product given as an

10

expectation over 𝐷 random variables

⟨𝑓 , 𝑔⟩𝑆1 =
1

(2𝜋)𝐷

∫
[0,2𝜋]𝐷

𝑓 (𝑒𝑖𝜽)𝑔(𝑒𝑖𝜽)𝑑𝜽 (2.9)

= E𝑞∼(𝑆1)𝐷
[
𝑓 (𝑞)𝑔(𝑞)

]
, (2.10)

with the notation 𝑞 ∼ (𝑆1)𝐷 meaning each entry of 𝑞 is i.i.d. uniform on 𝑆1.

For this inner product, we will introduce the following notation. For a multi-index 𝛼 ∈ N𝐷

and a dummy variable 𝑞 of dimension 𝐷 , we let 𝑞𝛼 denote the polynomial function 𝑧 ↦→ 𝑧𝛼 . Then

orthogonality of the Fourier basis can be stated as the fact that

⟨𝑞𝛼 , 𝑞𝛽⟩𝑆1 = 1𝛼=𝛽 . (2.11)

Note that we will consider this inner product over varying dimensions throughout the thesis, but

it will be clear from context the dimension, i.e. how many i.i.d. random variables uniform on 𝑆1

we are sampling over.

2.5 Symmetric Polynomials

The primary technical tool enabling fine-grained analysis of symmetric neural networks is the

theory of symmetric polynomials [Macdonald 1998].

Definition 2.2. For 𝑘 ∈ N and 𝑥 ∈ C𝑁 , the normalized powersum polynomial is defined as

𝑝𝑘 (𝑥) =
1
√
𝑘

𝑁∑︁
𝑛=1

𝑥𝑘𝑛

Definition 2.3. An integer partition 𝜆 is non-increasing, finite sequence of positive integers 𝜆1 ≥

𝜆2 ≥ · · · ≥ 𝜆𝑘 . The weight of the partition is given by |𝜆 | = ∑𝑘
𝑖=1 𝜆𝑖 . The length of a partition 𝑙 (𝜆)

is the number of terms in the sequence.

11

Then we characterize a product of powersums by:

𝑝𝜆 (𝑥) =
∏
𝑖

𝑝𝜆𝑖 (𝑥) (2.12)

Finally, define the combinatorial constant 𝑡𝜆 =
∏|𝜆 |
𝑖=1(𝑚𝑖)! where 𝑚𝑖 denotes the number of

parts of 𝜆 equal to 𝑖 .

The first significance of the powersum polynomials is that they form a natural to study the

properties of the DeepSets architecture, as they obey the same simple structure of summing over

all set indices to induce permutation invariance. The second significance of considering power-

sum products specifically, is that under a degree constraint, they form an orthogonal basis:

Theorem 2.4 ([Macdonald 1998, Chapter VI (9.10)]). For partitions 𝜆, 𝜇 with |𝜆 | ≤ 𝑁 :

⟨𝑝𝜆, 𝑝𝜇⟩𝑉 = 𝑡𝜆1𝜆=𝜇 (2.13)

In symmetric polynomial theory, this theorem is typically stated under the assumption that 𝑥

is a countable sequence of indeterminates, in which case partition size condition disappears and

the powersums form a complete orthogonal basis over the space of symmetric polynomials.

This constraint on |𝜆 |, or equivalently the degree of 𝑝𝜆 , arises from the restriction to sets of

size 𝑁 . Such a restriction is inescapable, as the fundamental theorem of symmetric polynomi-

als [Macdonald 1998] dictates that 𝑝1, . . . , 𝑝𝑁 is a maximal algebraically independent set when

𝑥 is of dimension 𝑁 . So, for example, 𝑝𝑁+1 can be written in the algebraic span of lower pow-

ersums, which contradicts orthogonality over all degree polynomials. Nevertheless, this limited

orthogonality will suffice for decompositions of the DeepSets architecture.

12

3 | The Limit of Sets to Measures

For functions with invariance to permutation of the input elements, several universal architec-

tures encode this invariance by treating the input as a set [Zaheer et al. 2017; Qi et al. 2017].

However, these formulations assume a constant input size, which precludes learning an entire

family of symmetric functions.

Such symmetric functions appear naturally across several domains, including particle physics,

computer graphics, population statistics and cosmology. Yet, in most of these applications, the

input size corresponds to a sampling parameter that is independent of the underlying symmetric

function of interest. As a motivating example, consider the function family induced by the max

function, where for varying 𝑁 , 𝑓𝑁 ({𝑥1 . . . 𝑥𝑁 }) = max𝑖≤𝑁 𝑥𝑖 . It is natural to ask if a network can

simultaneously learn all these functions.

In this chapter, we interpret an input set as an empirical measure defined over the base space

Ω, and develop families of neural networks defined over the space of probability measures of

Ω, as initially suggested in [Pevny and Kovarik 2019; De Bie et al. 2019]. We identify functional

spaces characterized by neural architectures and provide bounds that showcase a natural hierar-

chy among spaces of symmetric functions. In particular, our framework allows us to understand

the question of generalizing across input sizes as a corollary. Our constructions rely on the theory

of infinitely wide neural networks [Bengio et al. 2006; Rosset et al. 2007; Bach 2017], and provide

a novel instance of depth separation leveraging the symmetric structure of the input.

There is a wide literature considering neural networks that act on elements on functional data.

13

These results mainly consider universal approximation [Sandberg and Xu 1996; Stinchcombe

1999; Rossi and Conan-Guez 2005]. The work [Mhaskar and Hahm 1997] bears some similarity

to the present topic, as they prove a quantitative separation between the class of neural networks

and the class of functionals with bounded norm, while our main result shows separations among

several neural network classes. Regarding variable input size, the work from [Wagstaff et al. 2019]

proves lower bounds on representation of the max function in the DeepSets architecture with a

dependency on input size.

A separate question concerns the approximation power of kernels constrained to respect per-

mutation invariance. Previous work [Bietti et al. 2021; Mei et al. 2021] concerns the sample com-

plexity of learning invariant functions, and demonstrates how kernels constrained to obey this

invariance improve learning. However, for large groups such as the symmetric group, these mod-

els are made impractical by the need to project into the subspace of invariant functions, i.e. by

averaging over all the group elements.

We consider the infinite-width limit of neural networks taking as domain the space of prob-

ability measures in order to formalize learning of symmetric function families. We prove a nec-

essary and sufficient condition for which symmetric functions can be learned. By controlling

the amount of non-linear learning, we partition the space of networks on measures into several

function classes, proving a separation result among the classes.

3.1 Preliminaries

3.1.1 Convex Neural Networks

By considering the limit of infinitely many neurons [Bengio et al. 2006; Rosset et al. 2007],

[Bach 2017] introduces two norms on shallow neural representation of functions 𝜙 defined over

14

R𝑑 . For a constant 𝑅 ∈ R, a fixed probability measure 𝜅 ∈ P(S𝑑) with full support, a signed

Radon measure 𝜈 ∈ M(S𝑑), a density 𝑝 ∈ 𝐿2(𝑑𝜅), and the notation that 𝑥 = [𝑥, 𝑅]𝑇 , define:

𝛾1(𝜙) = inf
{
∥𝜈 ∥TV; 𝜙 (𝑥) =

∫
S𝑑
𝜎 (⟨𝑤, 𝑥⟩)𝜈 (𝑑𝑤)

}
, and (3.1)

𝛾2(𝜙) = inf
{
∥𝑝 ∥𝐿2 (𝑑𝜅) ; 𝜙 (𝑥) =

∫
S𝑑
𝜎 (⟨𝑤, 𝑥⟩)𝑝 (𝑤)𝜅 (𝑑𝑤)

}
, (3.2)

where ∥𝜈 ∥TV := sup|𝑔 |≤1
∫
𝑔𝑑𝜈 is the Total Variation of 𝜈 and 𝜎𝛼 (𝑡) = max(0, 𝑡)𝛼 is the ReLU

activation raised to the positive integer power 𝛼 . These norms measure the minimal represen-

tation of 𝜙 , using either a Radon measure 𝜈 over neuron weights, or a density 𝑝 over the fixed

probability measure 𝜅. The norms induce function classes:

F1 = {𝜙 ∈ 𝐶0(Ω) : 𝛾1(𝜙) < ∞} , and F2 = {𝜙 ∈ 𝐶0(Ω) : 𝛾2(𝜙) < ∞} . (3.3)

We also assume that the input domain Ω is bounded with sup𝑥∈Ω ∥𝑥 ∥2 ≤ 𝑅.

These two functional spaces are fundamental for the theoretical study of shallow neural net-

works and capture two distinct regimes of overparametrisation: whereas the so-called lazy or

kernel regime corresponds to learning in the space F2 [Chizat and Bach 2018; Jacot et al. 2018],

which is in fact an RKHSwith kernel given by 𝑘 (𝑥,𝑦) = E𝑤∼𝜅 [𝜎𝛼 (⟨𝑤, 𝑥⟩)𝜎𝛼 (⟨𝑤,𝑦⟩)] [Bach 2017],

the mean-field regime captures learning in F1, which satisfies F2 ⊂ F1 from Jensen’s inequality,

and can efficiently approximate functions with hidden low-dimensional structure, as opposed

to F2 [Bach 2017]. Finally, we can consider the unit ball in these functional spaces, namely

A𝑖 = {𝜙 ∈ F𝑖 : 𝛾𝑖 (𝜙) ≤ 1} for 𝑖 = 1, 2.

3.1.2 Spherical Harmonics and Kernel Norm Background

We’ll use ≃ to denote equality up to universal constants. To understand functions in A2, we

require the following details of spherical harmonics [Efthimiou and Frye 2014].

15

A basis on S𝑑 is given by the orthogonal polynomials 𝑌𝑘,𝑗 , where 𝑘 ≥ 0 and 1 ≤ 𝑗 ≤ 𝑁 (𝑑, 𝑘)

where

𝑁 (𝑑, 𝑘) ≃ 𝑘 + 𝑑
𝑘

Γ(𝑘 + 𝑑 − 1)
Γ(𝑑)Γ(𝑘)

≃ 𝑘 + 𝑑
𝑘

(𝑘 + 𝑑)𝑘+𝑑−3/2

𝑑𝑑−1/2𝑘𝑘−1/2

The Legendre polynomials 𝑃𝑘 (𝑡) act on one dimensional real inputs and satisfy the addition

formula

𝑁 (𝑑,𝑘)∑︁
𝑗=1

𝑌𝑘,𝑗 (𝑥)𝑌𝑘,𝑗 (𝑦) = 𝑁 (𝑑, 𝑘)𝑃𝑘 (⟨𝑥,𝑦⟩)

Finally, given a function 𝑔 : S𝑑 → R, the 𝑘th spherical harmonic of 𝑔 is the degree 𝑘 compo-

nent of 𝑔 in the orthogonal basis, equivalently written as

𝑔𝑘 (𝑥) = 𝑁 (𝑑, 𝑘)
∫
S𝑑
𝑔(𝑦)𝑃𝑘 (⟨𝑥,𝑦⟩)𝜅 (𝑑𝑦)

We also require several calculations on functions with bounded functional norm and pro-

jections [Bach 2017], where we remind that we’re using the activation 𝜎 (𝑥)2. For 𝑔 ∈ A2 or

𝑔(𝑥) = 𝜎 (⟨𝑤, 𝑥⟩)2 for any𝑤 ∈ S𝑑 , we have that 𝑔2𝑘 = 0 for all 𝑘 ≥ 2.

For 𝑔 ∈ A2, the norm of each harmonic satisfies ∥𝑔𝑘 ∥2
2 = 𝜆

2
𝑘
𝑁 (𝑑, 𝑘), and the kernel norm can

be calculated explicitly as

16

𝛾2(𝑔)2 =

∞∑︁
𝑘=0,𝜆𝑘≠0

𝜆−2
𝑘
∥𝑔𝑘 ∥2

𝐿2

We have that 𝜆1 ≃ 𝑑−1, 𝜆𝑘 = 0 for 𝑘 ≥ 3 and 𝑘 even, and for 𝑘 ≥ 3 and 𝑘 odd:

𝜆𝑘 ≃ ±𝑑
𝑑/2+1/2𝑘𝑘/2−3/2

(𝑑 + 𝑘)𝑘/2+𝑑/2+1 (3.4)

3.2 From Set to Measure Functions

Suppose we consider a slight alteration to DeepSets where we average set elements instead of

taking a sum, in order to keep magnitude independent of the number of set elements, i.e.

𝑓𝑁 (𝑥) = 𝜌
(

1
𝑁

𝑁∑︁
𝑛=1

Φ(𝑥𝑛)
)
. (3.5)

for Φ : Ω → R𝐿 and 𝜌 : R𝐿 → R.

Universality is only proven for fixed 𝑁 . Given a symmetric function 𝑓 ∈ F we might hope to

learn 𝜌 and Φ such that this equation holds for all 𝑁 . In other words, if we consider the powerset

Ω =
⋃∞
𝑁=1 Ω

𝑁 , we might hope to define 𝜌 and Φ such that we can define an extension 𝑓 that acts

on probability measures and agrees with 𝑓 on any measure supported on Ω.

Treating the input to 𝜌 as an average motivates moving from sets to measures as inputs, as

proposed in [Pevny and Kovarik 2019; De Bie et al. 2019]. Given 𝑥 ∈ Ω𝑁 , let 𝜇 (𝑁) = 1
𝑁

∑𝑁
𝑖=1 𝛿𝑥𝑖

denote the empirical measure in the space P(Ω) of probability measures over Ω. Then (3.5) can

be written as 𝑓𝑁 (𝑥) = 𝜌
(∫

Ω
Φ(𝑢)𝜇 (𝑁) (𝑑𝑢)

)
.

17

3.2.1 Continuous Extension

In general, the functions we want to represent don’t take in measures 𝜇 ∈ P(Ω) as inputs. In

this section, we want to understand when a function 𝑓 defined on the power set 𝑓 : Ω → R can

be extended to a continuous map 𝑓 : P(Ω) → R in the weak topology, in the sense that for all

𝑁 ∈ N and all (𝑥1, . . . 𝑥𝑁) ∈ Ω𝑁 , 𝑓
(

1
𝑁

∑𝑁
𝑖=1 𝛿𝑥𝑖

)
= 𝑓 (𝑥1, . . . , 𝑥𝑁).

Observe that by construction 𝑓 captures the permutation symmetry of the original 𝑓 . Define

the mapping 𝐷 : Ω → P(Ω) by 𝐷 (𝑥1, . . . , 𝑥𝑁) = 1
𝑁

∑𝑁
𝑖=1 𝛿𝑥𝑖 . Let P̂𝑁 (Ω) := 𝐷 (Ω𝑁) and P̂ (Ω) =⋃∞

𝑁=1 P̂𝑁 (Ω), so that P̂ (Ω) is the set of all finite discrete measures. For 𝜇 ∈ P̂(Ω), let 𝑁 (𝜇)

be the smallest dimension of a point in 𝐷−1(𝜇), and let 𝑥 be this point (which is unique up to

permutation). Then define 𝑓 : P̂ (Ω) → R such that 𝑓 (𝜇) = 𝑓𝑁 (𝑥).

We also write𝑊1(𝜇, 𝜇′) as the Wasserstein 1-metric under the ∥ · ∥2 norm [Villani 2008]. The

following proposition establishes a necessary and sufficient condition for continuous extension

of 𝑓 :

Proposition 3.1. There exists a continuous extension 𝑓 iff 𝑓 is uniformly continuous with regard

to the𝑊1 metric on its domain.

Proof. We remind our notation. Given 𝑓 : Ω → R, the empirical extension 𝑓 : P̂ (Ω) → R is

defined as 𝑓 (𝜇) := 𝑓 (𝑥𝜇) where 𝑥𝜇 ∈ 𝐷−1(𝜇) and ∥𝑥𝜇 ∥0 = min𝑥∈𝐷−1 (𝜇) ∥𝑥 ∥0. And for 𝑓 : P(Ω) →

R, we say this is a continuous extension of 𝑓 if 𝑓 is continuous in under the Wasserstein metric,

and 𝑓 (𝑥) = 𝑓 (𝐷 (𝑥)) for every real, finite-dimensional vector 𝑥 .

For the forward implication, if 𝑓 is a continuous extension, then clearly 𝑓 = 𝑓 restricted to

P̂ (Ω).

Furthermore, continuity of 𝑓 and compactness of P(Ω) implies 𝑓 is uniformly continuous,

and therefore 𝑓 is as well.

For the backward implication, we introduce 𝑓𝜖 (𝜇) = sup
𝜈∈𝐵𝜖 (𝜇)∩P̂(Ω) 𝑓 (𝜈) where the ball 𝐵𝜖 (𝜇)

is definedwith theWassersteinmetric. Note that 𝑓𝜖 is defined over arbitrary probabilitymeasures,

18

not just discrete measures. Now, we introduce 𝑓 (𝜇) = inf𝜖>0 𝑓𝜖 (𝜇), where density of the discrete

measures and uniform continuity of 𝑓 guarantees that 𝑓 is well-defined and finite.

Uniform continuity implies if 𝜇 ∈ P̂(Ω) then 𝑓 (𝜇) = 𝑓 (𝜇). Consider any 𝑦 ∈ Ω𝑀 such

that 𝜇 = 𝐷 (𝑦), and define a sequence of vectors 𝑦𝑖 = (𝑧𝑖, 𝑦2, . . . , 𝑦𝑀) where 𝑧𝑖 → 𝑦1 and all 𝑧𝑖

are distinct from elements of 𝑦. Every point 𝑦𝑖 ∈ Ω𝑀 has a unique coordinate and therefore

𝑓 (𝐷 (𝑦𝑖)) = 𝑓𝑀 (𝑦𝑖). Because 𝐷 (𝑦𝑖) ⇀ 𝐷 (𝑦), continuity implies 𝑓 (𝐷 (𝑦)) = 𝑓𝑀 (𝑦). Thus, for any

𝑦 ∈ Ω𝑀 , 𝑓 (𝐷 (𝑦)) = 𝑓𝑀 (𝑦), which implies 𝑓 is an extension.

Now, suppose we have an arbitrary convergent sequence of probability measures 𝜇𝑛 ⇀ 𝜇.

By the density of discrete measures, we can define sequences 𝜇𝑚𝑛 ⇀ 𝜇𝑛 where 𝜇𝑚𝑛 ∈ P̂(Ω). In

particular, we may choose these sequences such that for all 𝑛,𝑊1(𝜇𝑚𝑛 , 𝜇𝑛) ≤ 1
𝑚
. Then for any

𝜖 > 0,

|𝑓 (𝜇) − 𝑓 (𝜇𝑛) | ≤ |𝑓 (𝜇) − 𝑓𝜖 (𝜇) | + |𝑓𝜖 (𝜇) − 𝑓 (𝜇𝑛𝑛) | + |𝑓 (𝜇𝑛𝑛) − 𝑓𝜖 (𝜇𝑛) | + |𝑓𝜖 (𝜇𝑛) − 𝑓 (𝜇𝑛) | .

Consider the simultaneous limit as 𝑛 → ∞ and 𝜖 → 0. On the RHS, the first term vanishes

by definition, and the fourth by uniform continuity. For any 𝜈 ∈ 𝐵𝜖 (𝜇) ∩ P̂(Ω), 𝑊1(𝜈, 𝜇𝑛𝑛) ≤

𝑊1(𝜈, 𝜇) +𝑊1(𝜇, 𝜇𝑛) +𝑊1(𝜇𝑛, 𝜇𝑛𝑛) → 0 in the limit. So the second term vanishes as well by uniform

continuity of 𝑓 . Similarly, for any 𝜈 ∈ 𝐵𝜖 (𝜇𝑛) ∩ P̂(Ω),𝑊1(𝜈, 𝜇𝑛𝑛) ≤ 𝑊1(𝜈, 𝜇𝑛) +𝑊1(𝜇𝑛, 𝜇𝑛𝑛) → 0,

and the third term vanishes by uniform continuity. This proves continuity of 𝑓 . □

This result formalises the intuition that extending a symmetric function from sets to mea-

sures requires a minimal amount of regularity across sizes. We next show examples of symmetric

families that can be extended to P(Ω).

19

3.2.2 Examples of Eligible Symmetric Families

Moment-based Functions: Functions based on finite-range interactions across input elements

admit continuous extensions. For example, a function of singleton and pairwise interactions

𝑓 (𝑥) = 𝜌
(

1
𝑁

𝑁∑︁
𝑖=1

𝜙1(𝑥𝑖),
1
𝑁 2

𝑁∑︁
𝑖1,𝑖2=1

𝜙2(𝑥𝑖1, 𝑥𝑖2)
)

is a special case of the continuous measure extension 𝑓 (𝜇) = 𝜌 (⟨𝜙1, 𝜇⟩, ⟨𝜙2, 𝜇 ⊗ 𝜇⟩) when 𝜇 =

𝐷 (𝑥).

Ranking: Suppose that Ω ⊆ R. The max function 𝑓𝑁 (𝑥) = max𝑖≤𝑁 𝑥𝑖 cannot be lifted to a

function on measures due to discontinuity in the weak topology. Specifically, consider 𝜇 = 𝛿0 and

𝜈𝑁 = 𝑁−1
𝑁
𝛿0 + 1

𝑁
𝛿1. Then 𝜈𝑁 ⇀ 𝜇, but for 𝑓 as in Proposition 3.1, 𝑓 (𝜈𝑁) = 1 ≠ 0 = 𝑓 (𝜇).

Nevertheless, we can define an extension on a smooth approximation via the softmax, namely

𝑔𝜆
𝑁
(𝑥) = 1

𝜆
log 1

𝑁

∑𝑁
𝑖=1 exp(𝜆𝑥𝑖). This formulation, which is the softmax up to an additive term,

can clearly be lifted to a function on measures, with the bound ∥𝑔𝜆
𝑁
− 𝑓𝑁 ∥∞ ≤ log𝑁

𝜆
. Although we

cannot learn the max family across all 𝑁 , we can approximate arbitrarily well for bounded 𝑁 .

Counterexamples: Define the map Δ𝑘 : R𝑁 → R𝑘𝑁 such that Δ𝑘 (𝑥) is a vector of 𝑘 copies of

𝑥 . Then a necessary condition for the function 𝑓 introduced in Proposition 3.1 to be uniformly

continuous is that 𝑓𝑁 (𝑥) = 𝑓𝑘𝑁 (Δ𝑘 (𝑥)) for any 𝑘 . Intuitively, if 𝑓𝑁 can distinguish the input set

beyond the amount of mass on each point, it cannot be lifted to measures. This fact implies any

continuous approximation to the family 𝑓𝑁 (𝑥) = 𝑥 [2] , the second largest value of 𝑥 will incur

constant error.

20

3.3 Neural Functional Spaces for Learning over Measures

Equipped with knowledge of what kinds of symmetric functions can be understood as acting on

general probability measures, we can define an appropriate neural network parameterization to

learn them. We consider shallow neural networks that take probability measures as inputs, with

test functions as weights.

Let A be a subset of 𝐶0(Ω), equipped with its Borel sigma algebra. For 𝜇 ∈ P(Ω), and a

signed Radon measure 𝜒 ∈ M(A), define 𝑓 : P(Ω) → R as

𝑓 (𝜇; 𝜒) =
∫
A
𝜎 (⟨𝜙, 𝜇⟩)𝜒 (𝑑𝜙) . (3.6)

where 𝜎 is again a scalar activation function, such as the ReLU, and ⟨𝜙, 𝜇⟩ :=
∫
Ω
𝜙 (𝑥)𝜇 (𝑑𝑥).

Crucially, the space of functions given by 𝑓 (·; 𝜒) were proven to be dense in the space of real-

valued continuous (in the weak topology) functions on P(Ω) in [Pevny and Kovarik 2019; De Bie

et al. 2019], and so this network exhibits universality.

Keeping in mind the functional norms defined on test functions in Section 3.1.1, we can

introduce analogous norms for neural networks on measures. For a fixed probability measure

𝜏 ∈ P(A), define

∥ 𝑓 ∥1,A = inf
{
∥𝜒 ∥TV; 𝑓 (𝜇) =

∫
A
𝜎 (⟨𝜙, 𝜇⟩)𝜒 (𝑑𝜙)

}
, (3.7)

∥ 𝑓 ∥2,A = inf
{
∥𝑞∥𝐿2 ; 𝑓 (𝜇) =

∫
A
𝜎 (⟨𝜙, 𝜇⟩)𝑞(𝜙)𝜏 (𝑑𝜙)

}
, (3.8)

wherewe take the infima over Radonmeasures 𝜒 ∈ M(A) and densities𝑞 ∈ 𝐿2(𝑑𝜏). Analogously

these norms also induce the respective function classes G1(A) = {𝑓 : ∥ 𝑓 ∥1,A < ∞}, G2(A) =

{𝑓 : ∥ 𝑓 ∥2,A < ∞}. The argument in Appendix A of [Bach 2017] implies G2(A) is an RKHS, with

associated kernel 𝑘G (𝜇, 𝜇′) =
∫
A 𝜎 (⟨𝜙, 𝜇⟩)𝜎 (⟨𝜙, 𝜇

′⟩)𝜏 (𝑑𝜙).

Moving from vector-valued weights to function-valued weights presents an immediate issue.

21

The space𝐶0(Ω) is infinite-dimensional, and it is not obvious how to learn a measure 𝜒 over this

entire space. Moreover, our ultimate goal is to understand finite-width symmetric networks, so

we would prefer the function-valued weights be efficiently calculable rather than pathological.

To that end, we choose the set of test functionsA to be representable as regular neural networks.

Explicitly, using the function norms of Section 3.1.1, we define

A1,𝑚 :=

{
𝜙 ; 𝜙 (𝑥) =

𝑚∑︁
𝑗=1

𝛼 𝑗𝜎 (⟨𝑤 𝑗 , 𝑥⟩) , ∥𝑤 𝑗 ∥2 ≤ 1, ∥𝛼 ∥1 ≤ 1

}
,

A2,𝑚 :=
{
𝜙 ∈ F2,𝑚 : 𝛾2,𝑚 (𝜙) ≤ 1

}
.

A1,𝑚 thus contains functions in the unit ball of F1 that can be expressed with𝑚 neurons, and

A2,𝑚 contains functions in the (random) RKHS F2,𝑚 obtained by sampling𝑚 neurons from 𝜅. By

definition A2,𝑚 ⊂ A1,𝑚 for all 𝑚. Representational power grows with 𝑚, and observe that the

approximation rate in the unit ball of F1 or F2 is in𝑚−1/2, obtained for instance with Monte-Carlo

estimators [Bach 2017; Ma et al. 2019]. Hence we can also consider the setting where 𝑚 = ∞,

with the notation A{𝑖,∞} = {𝜙 ∈ F𝑖 : 𝛾𝑖 (𝜙) ≤ 1}. Note also that there is no loss of generality in

choosing the radius to be 1, as by homogeneity of 𝜎 any 𝜙 with 𝛾𝑖 (𝜙) < ∞ can be scaled into its

respective norm ball.

We now examine the combinations of G𝑖 with A𝑖 :

• S1,𝑚 := G1(A1,𝑚); the measure 𝜒 is supported on test functions in A1,𝑚 .

• S2,𝑚 := G1(A2,𝑚); 𝜒 is supported on test functions in A2,𝑚 .

• S3,𝑚 := G2(A2,𝑚); 𝜒 has a density with regards to 𝜏 , which is supported on A2,𝑚 .

• The remaining class G2(A1,𝑚) requires defining a probability measure 𝜏 over A1,𝑚 that

sufficiently spreads mass outside of any RKHS ball. Due to the difficulty in defining this

measure in finite setting, we omit this class.

22

Note that from Jensen’s inequality and the inclusion A2,𝑚 ⊂ A1,𝑚 for all 𝑚, we have the

inclusions S3,𝑚 ⊂ S2,𝑚 ⊂ S1,𝑚 . And S3,𝑚 is clearly an RKHS, since it is a particular instantiation

of G2(A). In the sequel we will drop the subscript𝑚 and simply write A𝑖 and S𝑖 .

These functional spaces provide an increasing level of adaptivity: while S2 is able to adapt

by selecting ‘useful’ test functions 𝜙 , it is limited to smooth test functions that lie on the RKHS,

whereas S1 is able to also adapt to more irregular test functions that themselves depend on low-

dimensional structures from the input domain. We let ∥ 𝑓 ∥S𝑖
denote the associated norm, i.e.

∥ 𝑓 ∥S1 := ∥ 𝑓 ∥1,A1 .

Finite-Width Implementation: For any𝑚, these classes admit a particularly simple interpre-

tation when implemented in practice. On the one hand, the spaces of test functions are imple-

mented as a single hidden-layer neural network of width 𝑚. On the other hand, the integral

representations in (3.7) and (3.8) are instantiated by a finite-sum using𝑚′ neurons, leading to the

finite analogues of our function classes given in Table 3.1. Specifically,

𝑓 (𝜇) = 1
𝑚′

𝑚′∑︁
𝑗 ′=1

𝑏 𝑗 ′𝜎

(
1
𝑚

𝑚∑︁
𝑗=1
𝑐 𝑗 ′, 𝑗

∫
𝜎𝛼 (⟨𝑤 𝑗 ′, 𝑗 , 𝑥⟩)𝜇 (𝑑𝑥)

)

One can verify [Neyshabur et al. 2015] that the finite-width proxy for the variation norm is

given by

∥ 𝑓 ∥1 =
1
𝑚′

∑︁
𝑗 ′

|𝑏 𝑗 ′ |∥𝜙 𝑗 ′ ∥1 ≤ 1
𝑚𝑚′

∑︁
𝑗 ′, 𝑗

|𝑏 𝑗 ′ | |𝑐 𝑗 ′, 𝑗 |∥𝑤 𝑗 ′, 𝑗 ∥ ,

which in our case corresponds to the so-called path norm [Neyshabur et al. 2014]. In partic-

ular, under the practical assumption that the test functions 𝜙 𝑗 ′ are parameterized by two-layer

networks with shared first layer, the weight vectors 𝑤 𝑗 ′, 𝑗 only depend on 𝑗 and this norm may

be easily calculated as a matrix product of the network weights. We can control this term by

constraining the weights of the first two layers to obey our theoretical assumptions (of bounded

weights and test functions in respective RKHS balls), and regularize the final network weights.

23

First Layer Second Layer Third Layer
S1 Trained Trained Trained
S2 Frozen Trained Trained
S3 Frozen Frozen Trained

Table 3.1: Training for finite function approximation

3.4 Separation of S1 from S2

Our goal in this section is to demonstrate the superior approximation power of using general test

functions rather than ones restricted to an RKHS.

For the remainder of this chapter, we consider 𝜎 = 𝜎 as the ReLU activation, and choose 𝛼 = 2

such that 𝜎2(𝑡) = 𝜎 (𝑡)2 is the squared ReLU.

Theorem 3.2. There is some measure network 𝑓1 such that we have ∥ 𝑓1∥S1 ≲ 1, and

inf
∥ 𝑓 ∥S2≤𝛿

∥ 𝑓 − 𝑓1∥∞ ≳ |𝑑−11 − 𝑑−𝑑/3𝛿 | (3.9)

Let 𝑔(𝑥) = 𝜎 (⟨𝑥,𝑤⟩)2 for an arbitrary 𝑤 ∈ S𝑑 , we have that ∥𝑔𝑘 ∥2
2 = 𝜆2

𝑘
𝑁 (𝑑, 𝑘). Define

𝑔 = 𝑔 − ∑𝑑2−1
𝑖=0 𝑔𝑖 .

The following lemmas capture that 𝑔 has high correlation with 𝑔 and exponentially small

correlation with functions in A2.

Lemma 3.3. The correlation lower bound ⟨𝑔,𝑔⟩ ≳ 𝑑−21/2 holds.

Proof. Note that

⟨𝑔,𝑔⟩ =
∑︁
𝑘=𝑑2

∥𝑔𝑘 ∥2
2 =

∑︁
𝑘=𝑑2

𝜆2
𝑘
𝑁 (𝑑, 𝑘) (3.10)

We can calculate, because 𝑘 + 𝑑 ≤ 2𝑘 :

24

𝜆2
𝑘
𝑁 (𝑑, 𝑘) ≃ 𝑑𝑑+1𝑘𝑘−3

(𝑑 + 𝑘)𝑘+𝑑+2 · 𝑘 + 𝑑
𝑘

(𝑘 + 𝑑)𝑘+𝑑−3/2

𝑑𝑑−1/2𝑘𝑘−1/2

≃ 𝑑3/2𝑘−7/2(𝑘 + 𝑑)−7/2

≳ 𝑑3/2𝑘−7

And therefore

⟨𝑔,𝑔⟩ ≳
∞∑︁
𝑘=𝑑2

𝑑3/2𝑘−7 ≥ 𝑑3/2
∫ ∞

𝑑2
𝑘−7𝑑𝑘 ≃ 𝑑3/2(𝑑2)−6

which yields the desired lower bound.

□

Lemma 3.4. The value of the optimization problem

max
𝜙

⟨𝜙,𝑔⟩𝐿2

s.t. 𝛾2(𝜙)2 ≤ 𝛿2

is upper bounded by 𝛿 · 𝑑1/2−𝑑/3

Proof. By orthogonality we may assume 𝜙𝑘 = 𝛼𝑘𝑔𝑘 = 𝛼𝑘𝑔𝑘 , where 𝛼𝑘 = 0 for 𝑘 < 𝑑2. Then the

problem is equivalently

min
𝛼

−
∞∑︁
𝑘=𝑑2

𝛼𝑘 ∥𝑔𝑘 ∥2
2

s.t.
∞∑︁
𝑘=𝑑2

𝛼2
𝑘
𝜆−2
𝑘
∥𝑔𝑘 ∥2

2 ≤ 𝛿2

Taking 𝜆 as a Lagrangian multiplier yields the optimality condition 𝛼𝑘 = (2𝜆)−1𝜆2
𝑘
.

Plugging this into the constraint and introducing notation 𝑆 yields

25

(2𝜆)−2𝑆 := (2𝜆)−2
∞∑︁
𝑘=𝑑2

𝜆2
𝑘
∥𝑔𝑘 ∥2

2 ≤ 𝛿2

Then the objective (returned to a maximum) obeys the bound

∑︁
𝑘=𝑑2

(2𝜆)−1𝜆2
𝑘
∥𝑔𝑘 ∥2

2 = (2𝜆)−1𝑆

≤ 𝛿
√
𝑆

So it remains to calculate 𝑆 . Plugging in the value of ∥𝑔𝑘 ∥2
2 gives

𝑆 =

∞∑︁
𝑘=𝑑2

𝜆4
𝑘
𝑁 (𝑑, 𝑘)

We can give the form of each term, using that 𝑘 ≥ 𝑑2:

𝜆4
𝑘
𝑁 (𝑑, 𝑘) ≲ 𝑑3/2𝑘−7 𝑑𝑑+1𝑘𝑘−3

(𝑑 + 𝑘)𝑘+𝑑+2

≲ 𝑑3/2𝑘−7𝑑
𝑑+1𝑘𝑘−3

𝑘𝑘+𝑑+2

≲ 𝑑5/2𝑘−12
(
𝑑

𝑘

)𝑑
≲ 𝑑5/2𝑘−12

(
𝑑

𝑘1/2 · 1
𝑘1/2

)𝑑
≲ 𝑑5/2𝑘−12𝑘−𝑑/2

For sufficiently large 𝑑 , we may ignore the lower terms and reduce the exponential term to

26

𝑘−𝑑/3, then:

𝑆 ≲
∞∑︁
𝑘=𝑑2

𝑘−𝑑/3 ≃
∫ ∞

𝑑2
𝑘−𝑑/3 ≃ 𝑑−1(𝑑2)1−𝑑/3

The bound follows.

□

Let ℎ = 𝑔−𝑔0 −𝑔2, and define 𝑓1(𝜇) = 𝑑−1𝜎 (⟨ℎ, 𝜇⟩), remembering that we’re using the regular

ReLU for the measure network activation.

Lemma 3.5. ∥ 𝑓1∥S1 ≲ 1.

Proof. It suffices to bound 𝛾1(ℎ), remembering that our test functions are defined using networks

with the squared ReLU activation. Clearly 𝛾1(𝑔) ≤ 1 as it itself a single neuron. For the other

terms, we can write the harmonics explicitly, using the fact that 𝑃0(𝑡) = 1 and 𝑃2(𝑡) = (𝑑+1)𝑡2−1
𝑑

.

Starting with the constant term 𝑔0:

𝑔0(𝑥) =
∫
S𝑑
𝑔(𝑦)𝜅 (𝑑𝑦)

=

∫
S𝑑
𝜎 (⟨𝑤,𝑦⟩)2𝜅 (𝑑𝑦)

=

∫
S𝑑
𝜎 (𝑦1)2𝜅 (𝑑𝑦)

=
1

2(𝑑 + 1)

Note that 𝜎 (𝑧)2 + 𝜎 (−𝑧)2 = 𝑧2, so we can represent a constant function as a neural network

via:

27

𝑑+1∑︁
𝑖=1

𝜎 (⟨𝑒𝑖, 𝑥⟩)2 + 𝜎 (⟨−𝑒𝑖, 𝑥⟩)2 =

𝑑+1∑︁
𝑖=1

⟨𝑒𝑖, 𝑥⟩2

= ∥𝑥 ∥2 = 1

So we have 𝛾1(𝑔0) ≤ 1.

The second spherical harmonic is given as:

𝑔2(𝑥) = 𝑁 (𝑑, 2)
∫
S𝑑
𝑔(𝑦) (𝑑 + 1)⟨𝑥,𝑦⟩2 − 1

𝑑
𝜅 (𝑑𝑦)

=
𝑁 (𝑑, 2)
𝑑

(
(𝑑 + 1)

∫
S𝑑
𝑔(𝑦)⟨𝑥,𝑦⟩2𝜅 (𝑑𝑦) −

∫
S𝑑
𝑔(𝑦)𝜅 (𝑑𝑦)

)
We can represent the constant term as above, and the first integral as

∫
S𝑑
𝜎 (⟨𝑤,𝑦⟩)2⟨𝑥,𝑦⟩2𝜅 (𝑑𝑦) =

∫
S𝑑
𝜎 (⟨𝑤,𝑦⟩)2(𝜎 (⟨𝑥,𝑦⟩)2 + 𝜎 (⟨𝑥,−𝑦⟩)2)𝜅 (𝑑𝑦)

=

∫
S𝑑
𝜎 (⟨𝑥,𝑦⟩)2(𝜎 (⟨𝑤,𝑦⟩)2 + 𝜎 (⟨𝑤,−𝑦⟩)2)𝜅 (𝑑𝑦)

=

∫
S𝑑
𝜎 (⟨𝑥,𝑦⟩)2⟨𝑤,𝑦⟩2𝜅 (𝑑𝑦)

This last line is a convex neural network representation using the squared ReLU activation,

and thus we have 𝛾1

(∫
S𝑑
𝑔(𝑦)⟨𝑥,𝑦⟩2𝜅 (𝑑𝑦)

)
≤

∫
S𝑑
⟨𝑤,𝑦⟩2𝜅 (𝑑𝑦) = 1

𝑑+1 .

Thus, 𝛾1(𝑔2) ≤ 𝑁 (𝑑,2)
𝑑

(1 + 1) ≲ 𝑑 . And all together, 𝛾1(ℎ) ≤ 𝛾1(𝑔) + 𝛾1(𝑔0) + 𝛾 (𝑔2) ≲ 𝑑 .

So by homogeniety the bound on ∥ 𝑓 ∥S1 follows.

□

Our choice of 𝑓1 induces a separation between S1 and S2.

28

Proof of Theorem 3.2. Because we’ve subtracted out the 0th and 2nd harmonics, and all other even

harmonics are zero, 𝑔 and ℎ are odd functions.

Consider the signed measure 𝜈 (𝑑𝑥) := 2𝑔(𝑥)
∥𝑔∥𝐿1

𝜅 (𝑑𝑥), with Jordan decomposition 𝜈 = 𝜈+ − 𝜈−

with the positive measures 𝜈+(𝑑𝑥) := 2𝜎 (𝑔(𝑥))
∥𝑔∥𝐿1

𝜅 (𝑑𝑥) and 𝜈−(𝑑𝑥) := 2𝜎 (−𝑔(𝑥))
∥𝑔∥𝐿1

𝜅 (𝑑𝑥).

Note that from the oddness of 𝑔 and symmetry of 𝜅:

𝑇𝑉 (𝜈−) = 2
∥𝑔∥𝐿1

∫
S𝑑
𝜎 (−𝑔(𝑥))𝜅 (𝑑𝑥)

=
2

∥𝑔∥𝐿1

∫
S𝑑
𝜎 (𝑔(−𝑥))𝜅 (𝑑𝑥)

=
2

∥𝑔∥𝐿1

∫
S𝑑
𝜎 (𝑔(𝑥))𝜅 (𝑑𝑥)

= 𝑇𝑉 (𝜈+)

Because𝑇𝑉 (𝜈+) +𝑇𝑉 (𝜈−) = 𝑇𝑉 (𝜈) = 2, we conclude 𝜈+ and 𝜈− are both probability measures.

We’ll use these measures to separate 𝑓 and 𝑓1. By Lipschitz continuity of 𝜎 :

|𝑓 (𝜈+) − 𝑓 (𝜈−) | =
����∫
S𝑑
𝜎 (⟨𝜙, 𝜈+⟩) − 𝜎 (⟨𝜙, 𝜈−⟩)𝜒 (𝑑𝜙)

����
≤

∫
S𝑑

|𝜎 (⟨𝜙, 𝜈 + 𝜈−⟩) − 𝜎 (⟨𝜙, 𝜈−⟩) |𝜒 (𝑑𝜙)

≤ sup
𝛾2 (𝜙)≤1

|⟨𝜙, 𝜈⟩|∥ 𝑓 ∥S2

≤ 2
∥𝑔∥𝐿1

sup
𝛾2 (𝜙)≤1

|⟨𝜙,𝑔⟩|∥ 𝑓 ∥S2

≲
2

∥𝑔∥𝐿1

𝑑1/2−𝑑/3𝛿

where in the last line we use Lemma 3.4.

Concerning the function 𝑓1, we first use oddness again to notice:

29

⟨ℎ, 𝜈−⟩ = 2
∥𝑔∥𝐿1

∫
S𝑑
ℎ(𝑥)𝜎 (−𝑔(𝑥))𝜅 (𝑑𝑥)

=
2

∥𝑔∥𝐿1

∫
S𝑑
ℎ(𝑥)𝜎 (𝑔(−𝑥))𝜅 (𝑑𝑥)

=
2

∥𝑔∥𝐿1

∫
S𝑑
ℎ(−𝑥)𝜎 (𝑔(𝑥))𝜅 (𝑑𝑥)

= −⟨ℎ, 𝜈+⟩

So ⟨ℎ, 𝜈⟩ = ⟨ℎ, 𝜈+ − 𝜈−⟩ = 2⟨ℎ, 𝜈+⟩, and therefore from Lemma 3.3 with 𝛼 = 2,

𝑑−21/2 ≲ ⟨𝑔,𝑔⟩ = ⟨ℎ,𝑔⟩

=
∥𝑔∥𝐿1

2
⟨ℎ, 𝜈⟩

= ∥𝑔∥𝐿1 ⟨ℎ, 𝜈+⟩

So ⟨ℎ, 𝜈+⟩ ≳ 𝑑−21/2

∥𝑔∥𝐿1
, and we conclude

|𝑓1(𝜈+) − 𝑓1(𝜈−) | = 𝑑−1 |𝜎 (⟨ℎ, 𝜈+⟩) − 𝜎 (⟨ℎ, 𝜈−⟩) |

= 𝑑−1𝜎 (⟨ℎ, 𝜈+⟩)

≳
𝑑−23/2

∥𝑔∥𝐿1

30

Now, suppose ∥ 𝑓 − 𝑓1∥∞ ≤ 𝜖 . Then

𝑑−23/2

∥𝑔∥𝐿1

≲ |𝑓1(𝜈+) − 𝑓1(𝜈−) |

≤ |𝑓1(𝜈+) − 𝑓 (𝜈+) | + |𝑓 (𝜈+) − 𝑓 (𝜈−) | + |𝑓 (𝜈−) − 𝑓1(𝜈−) |

≲ 𝜖 + 2
∥𝑔∥𝐿1

𝑑1/2−𝑑/3𝛿 + 𝜖

So for sufficiently large 𝑑 , we have |𝑑−23/2−𝑑1/2−𝑑/3𝛿 |
∥𝑔∥𝐿1

≲ 𝜖 . Finally, note by Jensen’s inequality

and spherical harmonic orthogonality that ∥𝑔∥𝐿1 ≤ ∥𝑔∥𝐿2 ≤ ∥𝑔∥𝐿2 ≲ 𝑑
−1/2.

□

3.5 Separation of S2 from S3

The goal of this section is to show an analogous separation result, reiterating that feature learning

is necessary even in the case of measure networks, rather than just learning in an RKHS space of

measure-input functions.

In order to instantiate the class S3, we must fix 𝜏 , the base probability measure over test func-

tions inA2. Consider some probability distribution 𝜁 over the square-summable sequences 𝑙2(R+)

such that for 𝑐 ∈ 𝑠𝑢𝑝𝑝 (𝜁), ∑∞
𝑘=0 𝑐

2
𝑘
= 1. Furthermore, we will make the simplyfing assumption

that 𝑐0 = 0. For each 𝑘 let 𝜅𝑘 be uniform over S𝑁 (𝑑,𝑘)−1, and note that 𝑁 (𝑑, 1) = 𝑑 + 1 so 𝜅 = 𝜅1.

Then we sample 𝜙 ∼ 𝜏 as 𝜙 =
∑∞
𝑘=1

∑𝑁 (𝑑,𝑘)
𝑗=0 𝜆𝑘𝑐𝑘𝛼𝑘 𝑗𝑌𝑘 𝑗 where 𝑐 ∼ 𝜁 and 𝛼𝑘 ∼ 𝜅𝑘 . Observe that

𝛾2(𝜙)2 =

∞∑︁
𝑘=1,𝜆𝑘≠0

𝑁 (𝑑,𝑘)∑︁
𝑗=1

𝜆−2
𝑘
𝜆2
𝑘
𝑐2
𝑘
𝛼2
𝑘 𝑗

= 1

so 𝜏 indeed samples functions from A2.

We define 𝑓2(𝜇) = 𝜎 (⟨𝑔, 𝜇⟩) where 𝑔 = 𝜆1𝑌1,1. Clearly 𝛾2(𝑔)2 = 𝜆−2
1 𝜆2

1∥𝑌1,1∥2
𝐿2

= 1, so ∥ 𝑓2∥S2 ≤

1.

31

Theorem 3.6. We have that ∥ 𝑓2∥S2 ≤ 1, and

inf
∥ 𝑓 ∥S3≤𝛿

∥ 𝑓 − 𝑓2∥∞ ≳ 𝑑−2𝛿−5/𝑑 (3.11)

Proof. Consider the function ℎ(𝑥) = ∑𝑁 (𝑑,1)
𝑗=1 𝛽1, 𝑗𝑌1, 𝑗 and measure 𝜇∗

𝛽
(𝑑𝑥) = ℎ(𝑥)+∥ℎ∥∞

∥ℎ+∥ℎ∥∞∥𝐿1
𝜅 (𝑑𝑥) where

𝜇∗
𝛽
is chosen to be a probability measure. Observe that

𝑓2(𝜇∗𝛽) =
𝜆1

∥ℎ + ∥ℎ∥∞∥𝐿1

𝜎 (⟨𝑒1, 𝛽⟩)

For a function 𝑓 ∈ S3 with density 𝑞 with respect to 𝜏 , we have:

𝑓 (𝜇∗
𝛽
) =

∫
A2

𝜎 (⟨𝜙, 𝜇∗
𝛽
⟩)𝑞(𝜙)𝜏 (𝑑𝜙)

=
𝜆1

∥ℎ + ∥ℎ∥∞∥𝐿1

∫
𝑙2 (R+)

∫
S𝑑
𝜎 (⟨𝑐1𝛼1, 𝛽⟩)𝑞(𝑐, 𝛼1)𝜅 (𝑑𝛼1)𝜁 (𝑑𝑐)

=
𝜆1

∥ℎ + ∥ℎ∥∞∥𝐿1

∫
S𝑑
𝜎 (⟨𝛼1, 𝛽⟩)

[∫
𝑙2 (R+)

𝑐1𝑞(𝑐, 𝛼1)𝜁 (𝑑𝑐)
]
𝜅 (𝑑𝛼1)

where 𝑞 marginalizes out all other 𝛼𝑘 terms. Let 𝑞(𝛼1) =
∫
𝑙2 (R+)

𝑐1𝑞(𝑐, 𝛼1)𝜁 (𝑑𝑐). From the fact

that 𝑐1 ≤ 1, and by Jensen’s inequality, ∥𝑞∥𝐿2 (𝜅) ≤ ∥𝑞∥𝐿2 (𝜅×𝜁) ≤ ∥𝑞∥𝐿2 (𝜏) .

Nowwemay appeal to a separation of test function representations acting on spherical inputs.

From D.5 in [Bach 2017], there exists some 𝛽 ∈ S𝑑 such that

|𝜎 (⟨𝑒1, 𝛽⟩) −
∫
S𝑑
𝜎 (𝛼1, 𝛽)𝑞(𝛼1)𝜅 (𝑑𝛼1)∥ ≳ ∥𝑞∥−5/𝑑

𝐿2
≥ ∥𝑞∥−5/𝑑

𝐿2

Therefore

32

|𝑓2(𝜇∗𝛽) − 𝑓 (𝜇
∗
𝛽
) | ≳ 𝜆1

∥ℎ + ∥ℎ∥∞∥𝐿1

∥𝑞∥−5/𝑑
𝐿2

Finally, note that 𝜆1 ≃ 𝑑−1, and by the addition formula and the fact 𝑃𝑘 (1) = 1 for all 𝑘 :

∥ℎ + ∥ℎ∥∞∥𝐿1 ≤ 2∥ℎ∥∞

= 2 max
𝑥∈S𝑑

𝑁 (𝑑,1)∑︁
𝑗=1

𝛽1, 𝑗𝑌1, 𝑗 (𝑥)

≤ 2 max
𝑥∈S𝑑

∥𝛽 ∥2

√√√𝑁 (𝑑,1)∑︁
𝑗=1

𝑌1, 𝑗 (𝑥)2

≤ 2𝑁 (𝑑, 1)

≲ 𝑑

So we arrive at the desired bound.

□

3.6 Experiments

We instantiate our three function classes in the finite network setting, as outlined in Table 3.1.

We use input dimension 𝑑 = 10. For the finite realization of S1, we use first hidden layer size

𝑚 = 100 and second hidden layer size ℎ = 100. Crucially, after fixing the finite architecture

representing S1, we scale up the width by 10 for the models with frozen weights. That is, the

first hidden layer in S2, and both hidden layers in S3, have width equal to 1000. Increasing the

width makes the S2 and S3 models strictly more powerful, and this setup allows us to inspect

whether a larger number of random kernel features can compensate for a smaller, trained weight

33

in approximation. For each model, we use its associated functional norm for regularization.

Each network is trained on a batch of 100 input sets. For our data distribution we consider

the base domain Ω = [−3, 3]𝑑 , and the distribution over input measures 𝜉 places all its mass

on the uniform measure 𝑈 ([−3, 3]𝑑). We choose to train with 𝑁 = 4, i.e. all networks train

on input sets of size 4, and test on sets of varying size. From the results we can measure out-

of-distribution generalization of finite sets. We observe that these input measures will typically

concentrate for symmetric functions like the softmax in the limit of high dimension, and that an

interesting open question is the behavior under repulsive symmetric measures like the squared

Vandermonde density.

Following the proofs of Theorem 3.2 and Theorem 3.6, we instantiate the functions that realize

these separations as a planted neuron 𝑓1 and a smooth planted neuron 𝑓2.

For all experiments we use the same architecture. Namely, for an input set 𝑥 = (𝑥1, . . . , 𝑥𝑁),

the network is defined as 𝑓𝑁 (𝑥) = 𝑤𝑇3 𝜎 (𝑊2
1
𝑁

∑𝑁
𝑖=1 𝜎 (𝑊1𝑥𝑖)), where we choose the architecture as

𝑊1 ∈ Rℎ1×𝑑 ,𝑊2 ∈ Rℎ2×ℎ1 , and 𝑤3 ∈ Rℎ2 . Here, ℎ1, ℎ2 = 100 for S1, ℎ1 = 100 and ℎ2 = 1000 for S2,

andℎ1 = ℎ2 = 1000 forS3. The weights are initialized with the uniform Kaiming initialization [He

et al. 2015] and frozen as described in Table 3.1.

We relax the functional norm constraints to penalties, by introducing regularizers of the form

𝜆∥ 𝑓𝑁 ∥S𝑖
for 𝜆 a hyperparameter. Let 𝐾 (·) map a matrix to the vector of row-wise squared norms,

and let | · | denote the element-wise absolute value of a matrix. Then we calculate the functional

norms via the path norm as follows:

• For S1, ∥ 𝑓𝑁 ∥S1 = |𝑤3 |𝑇 |𝑊2 |𝐾 (𝑊1)

• For S2, we explicitly normalize the frozen matrix𝑊1 to have all row-wise norms equal to

1, then ∥ 𝑓𝑁 ∥S2 = |𝑤3 |𝑇𝐾 (𝑊2)

• For S3, we normalize the rows of𝑊1 and𝑊2, which simply implies ∥ 𝑓𝑁 ∥S3 = ∥𝑤3∥2

We optimized via Adam [Kingma and Ba 2014] with an initial learning rate of 0.0005, for 5000

34

iterations. Under this architecture, all S1, S2 and S3 functions achieved less than 10−15 training

error without regularization on all objective functions on training sets of 100 samples.

Figure 3.1: Planted neurons for 𝑚 = 100 (left two) and 𝑚 = 200 (right two). The smooth neuron has
weights sampled consistently with F2 while the regular neuron has weights sampled distinctly from the
network initialization.

The essential takeaway is the performance of the three models on the planted neurons in

Figure 3.1. By using a distinct weight initialization for the neuron, its first layer will have very

little mass under 𝜅, and its first two layers will have little mass under 𝜏 , and therefore random

features will not suffice to approximate this neuron. This is true even with the scaling of S2 and

S3 to enable more random kernel features, reiterating that these single neuron functions realize

a meaningful separation between the classes. We observe a more similar performance of S1 and

S2 on the smooth_neuron, as this function is chosen to be exactly representable with the random

kernel features sampled by S2. According to the function class inclusion it is still representable

by S1, but from Theorem 3.6 not efficiently representable by S3, which is consistent with the

results.

35

4 | Approximating symmetric functions

with high interaction

The first symmetric architecture enabling explicit pairwise interaction was introduced in [San-

toro et al. 2017], in the context of relationships between objects in an image. More complicated

symmetric architectures, allowing for higher-order interaction and more substantial equivariant

layers, were built on top of attention primitives [Ma et al. 2018; Lee et al. 2019]. And the notion

of explicit high-order interactions between set elements before symmetrizing is formalized in the

architecture of Janossy pooling [Murphy et al. 2018].

The question of expressiveness in symmetric networks may also be generalized to graph

neural networks, with a focus on distinguishing non-isomorphic graphs as compared to the

Weisfeiler-Lehman test[Xu et al. 2018] and calculating invariants such as substructure count-

ing[Chen et al. 2020]. In particular, one may understand expressiveness in symmetric networks

incorporating pairwise interaction as the ability to learn functions of the complete graph deco-

rated with edge features.

Both the DeepSets and Relational Networks architectures are universal approximators for the

class of symmetric functions. But empirical evidence suggests an inherent advantage of sym-

metric networks using pairwise interaction in synthetic settings [Murphy et al. 2018], on point

cloud data [Lee et al. 2019] and in quantum chemistry [Pfau et al. 2020]. Intuitively, the increased

complexity of calculating k-tuples should be rewarded with better approximation, but again the

36

nature of these architectures is that three layers stymies easy analysis, and often one can only

observe that they are all universal with sufficient depth and width.

Very careful geometric arguments can demonstrate that models with no interaction over 1-D

elements cannot approximate some symmetric functions in the infinity norm unless network size

scales linearly with set size [Wagstaff et al. 2022]. But this lower bound is not powerful enough

to show superpolynomial advantages to using symmetric models with higher interaction. In a

parallel but related line of work, [Sanford et al. 2023] proves bounds on shallow transformers

based on the degree of interaction in the self-attention layers using a communication complexity

argument.

Conversely, there are architectures that can demonstrate universal approximationwhile keep-

ing the symmetric width parameter 𝐿 polynomially small relative to the other problem parame-

ters [Wang et al. 2023; Dym and Gortler 2022]. However, these results rely on non-constructive

arguments that only guarantee approximation with a continuous network, without controlling

the size of the networks overall.

In this chapter, we formalize this question in terms of approximation power, and explic-

itly construct symmetric functions which provably require exponentially-many neurons in the

DeepSets model, yet are efficiently approximated with self-interaction. This exponential separa-

tion bears notable differences from typical separation results. In particular, while the expressive

power of a vanilla neural network is characterized by depth and width [Eldan and Shamir 2016;

Daniely 2017], expressiveness of symmetric networks with analytic activations is controlled par-

ticularly by a single parameter, the symmetric width. We observe the architectures with no inter-

action (even with arbitrary depth) require exponential symmetric width to match the expressive

power of interacting architectures.

37

4.1 Preliminaries

We’ll use N to denote the naturals including 0. The indicator function for the condition 𝑥 = 𝑦 is

written as 1𝑥=𝑦 . Given an integer weak composition 𝛼 ∈ N𝐷 , we will often consider the multidi-

mensional polynomial 𝑧𝛼 =
∏𝐷
𝑑=1 𝑧

𝛼𝑑
𝑑
. For two vectors 𝑥, 𝑥′ ∈ C𝐷 , we denote their elementwise

product by 𝑥 ◦ 𝑥′.

4.1.1 Symmetric Architectures

Given the symmetric width parameter 𝐿, we consider two primary symmetric architectures, as

pictured in Figure 1.1:

Definition 4.1. Let Sym𝐿 denote the class of singleton symmetric networks with symmetric width

𝐿, i.e. functions 𝑓 of the form:

𝑓 (𝑋) = 𝜌 (𝜙1(𝑋), . . . , 𝜙𝐿 (𝑋)) (4.1)

𝜙𝑙 (𝑋) =
𝑁∑︁
𝑛=1

𝜓𝑙 (𝑥𝑛) (4.2)

where {𝜓𝑙 : C𝐷 → C}𝐿
𝑙=1 and 𝜌 : C𝐿 → C are arbitrary neural networks with analytic activations.

The class Sym𝐿 is exactly the architecture of DeepSets [Zaheer et al. 2017] restricted to an-

alytic activations. However, we introduce this notation to differentiate this class from the more

expressive architectures that allow for pairwise interaction among set elements.

From the theory of symmetric polynomials, if 𝐿 ≥ 𝐿∗ :=
(𝑁+𝐷
𝑁

)
−1, then 𝑓 ∈ Sym𝐿 is a universal

approximator for any analytic symmetric function [Rydh 2007]. Therefore we will primarily be

interested in the expressive power of Sym𝐿 for 𝐿 < 𝐿∗.

Definition 4.2. Let Sym2
𝐿
denote the class of pairwise symmetric networks with symmetric width

38

𝐿, i.e. functions 𝑓 of the form:

𝑓 (𝑋) = 𝜌 (𝜙1(𝑋), . . . , 𝜙𝐿 (𝑋)) (4.3)

𝜙𝑙 (𝑋) =
𝑁∑︁

𝑛,𝑛′=1
𝜓𝑙 (𝑥𝑛, 𝑥𝑛′) (4.4)

where {𝜓𝑙 : C𝐷×𝐷 → C}𝐿
𝑙=1 and 𝜌 : C𝐿 → C are arbitrary neural networks with analytic activa-

tions.

Similarly, the class Sym2
𝐿
is exactly the architecture of Relational Pooling [Santoro et al. 2017]

with analytic activations. We note this architecture is also equivalent to the 2-ary instantiation

of Janossy Pooling [Murphy et al. 2018].

4.1.2 Multisymmetric Powersum Polynomials

When𝐷 > 1, in order to approximate our network with polynomials, we introduce the multivari-

ate analog of symmetric polynomials. For example, suppose𝐷 = 2, and we write our set elements

the following way:

𝑋 =



𝑦1

𝑧1

 ,

𝑦2

𝑧2

 , . . .

𝑦𝑁

𝑧𝑁




Then a basis of symmetric functions is given by the multisymmetric power sum polynomials,

some examples:

p(2,3) (𝑋) =
1

√
2 + 3

∑︁
𝑛

𝑦2
𝑛𝑧

3
𝑛 (4.5)

p(4,1) (𝑋) =
1

√
4 + 1

∑︁
𝑛

𝑦4
𝑛𝑧

1
𝑛 . (4.6)

For general 𝑁 and 𝐷 , our input is 𝑋 ∈ C𝐷×𝑁 where we want functions that are invariant to

permuting the columns 𝑥𝑛 of this matrix. Note that we write scalar entries of this matrix as 𝑥𝑑𝑛 .

39

Definition 4.3. For a multi-index 𝛼 ∈ N𝐷 , the normalized multisymmetric powersum polynomial

is defined as:

p𝛼 (𝑋) =
1√︁
|𝛼 |

∑︁
𝑛

𝑥𝛼𝑛 (4.7)

=
1√︁
|𝛼 |

∑︁
𝑛

∏
𝑑

𝑥
𝛼𝑑
𝑑𝑛

(4.8)

with p0 = 1.

An algebraic basis of symmetric functions in this setting is given by all p𝛼 for all |𝛼 | ≤ 𝑁 ,

where |𝛼 | = ∑
𝑑 𝛼𝑑 (for a proof see [Rydh 2007]).

We remind the notation where 𝐿∗(𝑁, 𝐷) = |{𝛼 ∈ N𝐷 : 0 < |𝛼 | ≤ 𝑁 }| =
(𝑁+𝐷
𝑁

)
− 1 is the

size of this algebraic basis (discounting the constant polynomial). Intuitively then it’s clear why

𝐿 ≥ 𝐿∗ will make Sym𝐿 a universal approximator, as each of the 𝐿 symmetric features {𝜙𝑙 }𝐿𝑙=1 will

calculate one of these basis elements.

4.2 One-dimensional Separation Result

To begin, we consider the simpler case where 𝐷 = 1, i.e. where we learn a symmetric function

acting on a set of scalars. It was already observed in [Zaheer et al. 2017] that the universality

of DeepSets could be demonstrated by approximating the network with symmetric polynomials.

We first demonstrate that through this approximation, we can relate the symmetric width 𝐿 to

expressive power.

4.2.1 Projection Lemma

Before we can proceed to prove a representational lower bound, we need one tool to better un-

derstand 𝑓 ∈ Sym𝐿 . Utilizing the orthogonality properties of the inner product ⟨·, ·⟩𝑉 allows us

to project any 𝑓 ∈ Sym𝐿 to a simplified form, while keeping a straightforward dependence on 𝐿.

40

For example, consider some uniformly convergent power series 𝜙 (𝑥) = ∑∞
𝑖=1 𝑐𝑖𝑘𝑝𝑘 (𝑥) with no

constant term. We claim ⟨𝑝2𝑝1, 𝜙
3⟩𝑉 = 0. Indeed, expanding 𝜙3, one exclusively gets terms of the

form 𝑝𝑘1𝑝𝑘2𝑝𝑘3 , and because the partition {𝑘1, 𝑘2, 𝑘3} is of a different length than {2, 1}, they are

clearly distinct partitions so by orthogonality ⟨𝑝2𝑝1, 𝑝𝑘1𝑝𝑘2𝑝𝑘3⟩𝑉 = 0.

Motivated by this observation, we can project 𝑓 to only contain products of two terms. Let

us introduce P1 to be the orthogonal projection onto 𝑠𝑝𝑎𝑛({𝑝𝑡 : 1 ≤ 𝑡 ≤ 𝑁 /2}), and P2 to be the

orthogonal projection onto 𝑠𝑝𝑎𝑛({𝑝𝑡𝑝𝑡 ′ : 1 ≤ 𝑡, 𝑡 ′ ≤ 𝑁 /2}).

Lemma 4.4. Given any 𝑓 ∈ Sym𝐿 , we may choose coefficients 𝑣𝑖 𝑗 over 𝑖 ≤ 𝑗 ≤ 𝐿, and symmetric

polynomials 𝜙𝑖 over 𝑖 ≤ 𝐿, such that:

P2𝑓 =

𝐿∑︁
𝑖≤ 𝑗

𝑣𝑖 𝑗 (P1𝜙𝑖) (P1𝜙 𝑗) . (4.9)

Proof. Consider the general parameterization of 𝑓 given in Equation 4.1. Because all network

activations are analytic, we can write all maps parameterizing 𝑓 by power series.

Note that the inner product ⟨·, ·⟩𝑉 integrates over a compact domain, therefore the projection

P2𝑓 will be determined by the value of 𝑓 restricted to that domain. Thus, all power series in the

sequel will converge uniformly and we may freely interchange infinite sums with each other as

well as with inner products.

Explicitly, to parameterize 𝑓 we write𝜓𝑙 (𝑥𝑛) = 𝑐𝑙0 +
∑∞
𝑘=1

𝑐𝑙𝑘√
𝑘
𝑥𝑘𝑛 so that 𝜙𝑙 (𝑥) =

∑𝑁
𝑛=1𝜓𝑙 (𝑥𝑛) =

𝑁𝑐𝑙0 +
∑∞
𝑘=1 𝑐𝑙𝑘𝑝𝑘 (𝑥).

Because 𝜌 is also given as a power series, it can be equivalently written as a power series with

all variables having constant offsets. So we can subtract the constant terms from every 𝜙𝑙 and

41

write:

𝜌 (𝑦) =
∑︁
𝜂∈N𝐿

𝑣𝜂𝑦
𝜂 , (4.10)

𝜙𝑙 =

∞∑︁
𝑘=1

𝑐𝑙𝑘𝑝𝑘 , (4.11)

where 𝑦𝜂 =
∏𝑁
𝑛=1𝑦

𝜂𝑛
𝑛 . Hence

𝑓 = 𝜌 (𝜙1, . . . , 𝜙𝐿) =
∑︁
𝜂

𝑣𝜂𝜙
𝜂 . (4.12)

We proceed to calculate P2𝑓 . To begin, consider ⟨𝑝𝑡𝑝𝑡 ′, 𝜙𝜂⟩ for any choice of indices 1 ≤ 𝑡, 𝑡 ′ ≤

𝑁 /2. To illustrate, suppose 𝜂𝑖 = 𝜂 𝑗 = 𝜂𝑘 = 1 and 𝜂 is 0 everywhere else. Then we may write

⟨𝑝𝑡𝑝𝑡 ′, 𝜙𝜂⟩𝑉 = ⟨𝑝𝑡𝑝𝑡 ′, 𝜙𝑖𝜙 𝑗𝜙𝑘⟩𝑉 =

∞∑︁
𝑖′=1

∞∑︁
𝑗 ′=1

∞∑︁
𝑘 ′=1

𝑐𝑖𝑖′𝑐 𝑗 𝑗 ′𝑐𝑘𝑘 ′ ⟨𝑝𝑡𝑝𝑡 ′, 𝑝𝑖′𝑝 𝑗 ′𝑝𝑘 ′⟩𝑉 = 0 . (4.13)

In other words, after distributing the product 𝜙𝑖𝜙 𝑗𝜙𝑘 , we are left with a sum of terms of the form

𝑝𝑖′𝑝 𝑗 ′𝑝𝑘 ′ . So treated as partitions, we clearly have {𝑖′, 𝑗 ′, 𝑘′} ≠ {𝑡, 𝑡 ′}, where all these indices are

positive. Thus, because 𝑡 + 𝑡 ′ ≤ 𝑁 , we can apply the orthogonality property of the inner product

to conclude ⟨𝑝𝑡𝑝𝑡 ′, 𝑝𝑖′𝑝 𝑗 ′𝑝𝑘 ′⟩𝑉 = 0.

By similar logic, ⟨𝑝𝑡𝑝𝑡 ′, 𝜙𝜂⟩ = 0 whenever |𝜂 | ≠ 2, so we may cancel all such terms in the

expansion of 𝑓 to get

P2𝑓 = P2
©­«
∑︁
𝜂∈N𝐿

𝑣𝜂𝜙
𝜂ª®¬ =

∑︁
|𝜂 |=2

𝑣𝜂P2𝜙
𝜂 .

Here we can simplify notation. Let {𝑒𝑖}𝐿𝑖=1 denote the standard basis vectors in dimension 𝐿.

42

Every 𝜂 ∈ N𝐿 with |𝜂 | = 2 can be written as 𝜂 = 𝑒𝑖 + 𝑒 𝑗 , so let 𝑣𝑖 𝑗 := 𝑣𝑒𝑖+𝑒 𝑗 . Then we can rewrite:

P2𝑓 =

𝐿∑︁
𝑖≤ 𝑗

𝑣𝑖 𝑗P2𝜙𝑖𝜙 𝑗 .

Finally, note again by orthogonality we have that P2(𝑝𝑖′𝑝 𝑗 ′) = 0 if it is not the case that 1 ≤

𝑖′, 𝑗 ′ ≤ 𝑁 /2. So observe that we may pass from P2 to P1:

P2𝜙𝑖𝜙 𝑗 = P2

(∞∑︁
𝑖′=1

𝑐𝑖𝑖′𝑝𝑖′

) (∞∑︁
𝑗 ′=1

𝑐 𝑗 𝑗 ′𝑝 𝑗 ′

)
(4.14)

= P2

∞∑︁
𝑖′=1

∞∑︁
𝑗 ′=1

𝑐𝑖𝑖′𝑐 𝑗 𝑗 ′𝑝𝑖′𝑝 𝑗 ′ (4.15)

=

𝑁 /2∑︁
𝑖′=1

𝑁 /2∑︁
𝑗 ′=1

𝑐𝑖𝑖′𝑐 𝑗 𝑗 ′𝑝𝑖′𝑝 𝑗 ′ (4.16)

=

(
𝑁 /2∑︁
𝑖′=1

𝑐𝑖𝑖′𝑝𝑖′

) (
𝑁 /2∑︁
𝑗 ′=1

𝑐 𝑗 𝑗 ′𝑝 𝑗 ′

)
(4.17)

= (P1𝜙𝑖) (P1𝜙 𝑗) . (4.18)

So ultimately we get

P2𝑓 =

𝐿∑︁
𝑖≤ 𝑗

𝑣𝑖 𝑗 (P1𝜙𝑖) (P1𝜙 𝑗) . (4.19)

□

4.2.2 Rank Lemma

Given the reduced form of 𝑓 above, we may now go about lower bounding its approximation

error to a given function 𝑔.

By the properties of orthogonal projection, we have ∥ 𝑓 − 𝑔∥2
𝑉

≥ ∥P2(𝑓 − 𝑔)∥2
𝑉
. And by

43

Parseval’s theorem, the function approximation error ∥P2𝑓 − P2𝑔∥2
𝑉
equals

∑︁
𝑡≤𝑡 ′

(〈
P2𝑓 ,

𝑝𝑡𝑝𝑡 ′

∥𝑝𝑡𝑝𝑡 ′ ∥𝑉

〉
𝑉

−
〈
P2𝑔,

𝑝𝑡𝑝𝑡 ′

∥𝑝𝑡𝑝𝑡 ′ ∥𝑉

〉
𝑉

)2
.

Rearranging the orthogonal coefficients in the form ofmatrices, we have the following fact (stated

very generally, since we will need to apply it later for a different commutative algebra than the

one-dimensional powersums):

Lemma 4.5. Consider a commutative algebra equipped with an inner product, and a set of ele-

ments {𝑝𝑡 }𝑇𝑡=1. Suppose the terms 𝑝{𝑡,𝑡 ′} = 𝑝𝑡𝑝𝑡 ′ , indexed by sets {𝑡, 𝑡 ′}, are pairwise orthogonal, and

normalized such that

∥𝑝𝑡𝑝𝑡 ′ ∥2 ≥


1 𝑡 ≠ 𝑡 ′

2 𝑡 = 𝑡 ′

Consider the terms:

𝜙𝑙 =

𝑇∑︁
𝑡=1

𝑐𝑙𝑡𝑝𝑡 ,

𝑓 =

𝐿∑︁
𝑙≤𝑙 ′

𝑣𝑙𝑙 ′

1 + 1𝑙=𝑙 ′
𝜙𝑙𝜙𝑙 ′ ,

𝑔 =

𝑇∑︁
𝑡≤𝑡 ′

𝑔𝑡𝑡 ′

1 + 1𝑡=𝑡 ′
𝑝𝑡𝑝𝑡 ′ .

Then we have the bound

∥ 𝑓 − 𝑔∥2 ≥ 1
2
∥𝐶𝑇𝑉𝐶 −𝐺 ∥2

𝐹 , (4.20)

where 𝐶𝑙𝑡 = 𝑐𝑙𝑡 ,𝑉𝑙𝑙 ′ = 𝑣𝑙𝑙 ′,𝐺𝑡𝑡 ′ = 𝑔𝑡𝑡 ′ , where we define 𝑉 and 𝐺 to be symmetric.

44

Proof. To begin, we calculate inner products for 𝑡 ≠ 𝑡 ′:

〈
𝑓 ,

𝑝{𝑡,𝑡 ′}
∥𝑝{𝑡,𝑡 ′}∥

〉
=

1
∥𝑝{𝑡,𝑡 ′}∥

〈
𝐿∑︁
𝑙≤𝑙 ′

𝑇∑︁
𝑡,𝑡 ′=1

𝑣𝑙𝑙 ′

1 + 1𝑙=𝑙 ′
𝑐𝑙𝑡𝑐𝑙 ′𝑡 ′𝑝𝑡𝑝𝑡 ′, 𝑝𝑡𝑝𝑡 ′

〉
(4.21)

= ∥𝑝𝑡𝑝𝑡 ′ ∥
𝐿∑︁
𝑙≤𝑙 ′

𝑣𝑙𝑙 ′

1 + 1𝑙=𝑙 ′
(𝑐𝑙𝑡𝑐𝑙 ′𝑡 ′ + 𝑐𝑙𝑡 ′𝑐𝑙 ′𝑡) (4.22)

= ∥𝑝𝑡𝑝𝑡 ′ ∥
(
𝐿∑︁
𝑙=𝑙 ′

𝑣𝑙𝑙

2
(𝑐𝑙𝑡𝑐𝑙𝑡 ′ + 𝑐𝑙𝑡 ′𝑐𝑙𝑡) +

𝐿∑︁
𝑙<𝑙 ′

𝑣𝑙𝑙 ′ (𝑐𝑙𝑡𝑐𝑙 ′𝑡 ′ + 𝑐𝑙𝑡 ′𝑐𝑙 ′𝑡)
)

(4.23)

= ∥𝑝𝑡𝑝𝑡 ′ ∥
(
𝐿∑︁
𝑙=𝑙 ′

𝑣𝑙𝑙𝑐𝑙𝑡𝑐𝑙𝑡 ′ +
𝐿∑︁
𝑙<𝑙 ′

𝑣𝑙𝑙 ′ (𝑐𝑙𝑡𝑐𝑙 ′𝑡 ′ + 𝑐𝑙𝑡 ′𝑐𝑙 ′𝑡)
)
. (4.24)

Defining 𝑣𝑙𝑙 ′ = 𝑣𝑙 ′𝑙 , we may reindex and write the second sum as:

𝐿∑︁
𝑙<𝑙 ′

𝑣𝑙𝑙 ′ (𝑐𝑙𝑡𝑐𝑙 ′𝑡 ′ + 𝑐𝑙𝑡 ′𝑐𝑙 ′𝑡) =
𝐿∑︁
𝑙<𝑙 ′

𝑣𝑙𝑙 ′𝑐𝑙𝑡𝑐𝑙 ′𝑡 ′ +
𝐿∑︁
𝑙<𝑙 ′

𝑣𝑙𝑙 ′𝑐𝑙𝑡 ′𝑐𝑙 ′𝑡 (4.25)

=

𝐿∑︁
𝑙<𝑙 ′

𝑣𝑙𝑙 ′𝑐𝑙𝑡𝑐𝑙 ′𝑡 ′ +
𝐿∑︁
𝑙>𝑙 ′

𝑣𝑙𝑙 ′𝑐𝑙𝑡𝑐𝑙 ′𝑡 ′ . (4.26)

So putting this together we get

〈
𝑓 ,

𝑝{𝑡,𝑡 ′}
∥𝑝{𝑡,𝑡 ′}∥

〉
= ∥𝑝𝑡𝑝𝑡 ′ ∥

(
𝐿∑︁
𝑙,𝑙 ′

𝑣𝑙𝑙 ′𝑐𝑙𝑡𝑐𝑙 ′𝑡 ′

)
= ∥𝑝𝑡𝑝𝑡 ′ ∥ [𝐶𝑇𝑉𝐶]𝑡,𝑡 ′ .

By a similar calculation we conclude:

〈
𝑓 ,

𝑝{𝑡,𝑡}
∥𝑝{𝑡,𝑡}∥

〉
=

∥𝑝𝑡𝑝𝑡 ∥
2

[𝐶𝑇𝑉𝐶]𝑡,𝑡 .

45

For 𝑔, we can directly calculate:

〈
𝑔,

𝑝{𝑡,𝑡 ′}
∥𝑝{𝑡,𝑡 ′}∥

〉
= ∥𝑝𝑡𝑝𝑡 ′ ∥ [𝐺]𝑡,𝑡 ′ (4.27)〈

𝑔,
𝑝{𝑡,𝑡}
∥𝑝{𝑡,𝑡}∥

〉
=

∥𝑝𝑡𝑝𝑡 ∥
2

[𝐺]𝑡,𝑡 . (4.28)

Finally, by Parseval’s Theorem we calculate:

∥ 𝑓 − 𝑔∥2 =
∑︁
𝑡

(〈
𝑓 ,

𝑝{𝑡,𝑡}
∥𝑝{𝑡,𝑡}∥

〉
−

〈
𝑔,

𝑝{𝑡,𝑡}
∥𝑝{𝑡,𝑡}∥

〉)2
+

𝑇∑︁
𝑡<𝑡 ′

(〈
𝑓 ,

𝑝{𝑡,𝑡 ′}
∥𝑝{𝑡,𝑡 ′}∥

〉
−

〈
𝑔,

𝑝{𝑡,𝑡 ′}
∥𝑝{𝑡,𝑡 ′}∥

〉)2
(4.29)

=
∑︁
𝑡

(〈
𝑓 ,

𝑝{𝑡,𝑡}
∥𝑝{𝑡,𝑡}∥

〉
−

〈
𝑔,

𝑝{𝑡,𝑡}
∥𝑝{𝑡,𝑡}∥

〉)2
+ 1

2

𝑇∑︁
𝑡≠𝑡 ′

(〈
𝑓 ,

𝑝{𝑡,𝑡 ′}
∥𝑝{𝑡,𝑡 ′}∥

〉
−

〈
𝑔,

𝑝{𝑡,𝑡 ′}
∥𝑝{𝑡,𝑡 ′}∥

〉)2
(4.30)

=

𝑇∑︁
𝑡

∥𝑝{𝑡,𝑡}∥2

4
[𝐶𝑇𝑉𝐶 −𝐺]2

𝑡,𝑡 +
1
2

𝑇∑︁
𝑡≠𝑡 ′

∥𝑝{𝑡,𝑡 ′}∥2 · [𝐶𝑇𝑉𝐶 −𝐺]2
𝑡,𝑡 ′ (4.31)

≥ 1
2

𝑇∑︁
𝑡

[𝐶𝑇𝑉𝐶 −𝐺]2
𝑡,𝑡 +

1
2

𝑇∑︁
𝑡≠𝑡 ′

[𝐶𝑇𝑉𝐶 −𝐺]2
𝑡,𝑡 ′ , (4.32)

where in the last line we use our assumption on the lower bound of ∥𝑝{𝑡,𝑡 ′}∥2 and ∥𝑝{𝑡,𝑡}∥2. Hence:

∥ 𝑓 − 𝑔∥2 ≥ 1
2
∥𝐶𝑇𝑉𝐶 −𝐺 ∥2

𝐹 . (4.33)

□

The significance of this lemma is the rank constraint: it implies that choosing symmetric

width 𝐿 corresponds to a maximum rank 𝐿 on the matrix 𝐹 . From here, we can use standard

arguments about low-rank approximation in the Frobenius norm to yield a lower bound.

4.2.3 Separation in one-dimensional case

Ourmain goal in this section is to construct a hard symmetric function𝑔 that cannot be efficiently

approximated by Sym𝐿 for 𝐿 ≤ 𝑁 /4. It is not particularly expensive for the symmetric width 𝐿

46

to scale linearly with the set size 𝑁 : however, we will use the same proof structure to prove

Theorem 4.8, which will require 𝐿 to scale exponentially.

Theorem 4.6.

max
∥𝑔∥𝑉 =1

min
𝑓 ∈Sym𝐿

∥ 𝑓 − 𝑔∥2
𝑉 ≥ 1 − 2𝐿

𝑁
. (4.34)

In particular, for 𝐿 = 𝑁
4 we recover a constant lower bound.

Proof. We first build our counterexample 𝑔 by choosing its coefficients in the powersum basis,

say:

𝑔 =
1

√
𝑁

𝑁 /2∑︁
𝑡=1

𝑝𝑡𝑝𝑡 . (4.35)

From orthogonality and the fact that ∥𝑝𝑡𝑝𝑡 ∥2
𝑉
= 2 it’s clear that ∥𝑔∥𝑉 = 1, and note that P2𝑔 = 𝑔.

Applying Lemma 4.4, for any 𝑓 ∈ Sym𝐿 we can write P2𝑓 in the form

P2𝑓 =

𝐿∑︁
𝑖≤ 𝑗

𝑣𝑖 𝑗 (P1𝜙𝑖) (P1𝜙 𝑗) . (4.36)

One may confirm that the Vandermonde inner product satisfies the requirements of Lemma 4.5

when restricted to the range of P2, owing to the orthogonality property and the fact that for

1 ≤ 𝑡, 𝑡 ′ ≤ 𝑁 /2:

⟨𝑝𝑡𝑝𝑡 ′, 𝑝𝑡𝑝𝑡 ′⟩𝑉 =


1 𝑡 ≠ 𝑡 ′

2 𝑡 = 𝑡 ′

47

So we’ve met all the necessary requirements to apply Lemma 4.5 to P2𝑓 and P2𝑔, thus we have:

min
𝑓 ∈Sym𝐿

∥ 𝑓 − 𝑔∥2
𝑉 ≥ min

𝑓 ∈Sym𝐿

∥P2𝑓 − P2𝑔∥2
𝑉 (4.37)

≥ min
𝐶,𝑉

1
2
∥𝐶𝑇𝑉𝐶 − 2 ∗ 1

√
𝑁
𝐼 ∥2
𝐹 (4.38)

= min
𝐶,𝑉

1
𝑁 /2

∥𝐶𝑇𝑉𝐶 − 𝐼 ∥2
𝐹 , (4.39)

where the factor of 2 appears based on the definition of the matrix 𝐺 in Lemma 4.5

Note that 𝐶𝑉𝐶𝑇 ∈ C𝑁 /2×𝑁 /2, but 𝑉 ∈ C𝐿×𝐿 . So if 𝑁 /2 > 𝐿, then 𝐶𝑉𝐶𝑇 is a rank-deficient

approximation of the identity, and clearly we have

min
𝑓 ∈Sym𝐿

∥ 𝑓 − 𝑔∥2
𝑉 ≥ 𝑁 /2 − 𝐿

𝑁 /2
= 1 − 2𝐿

𝑁
. (4.40)

□

4.3 Interaction Separation Statement

4.3.1 Theorem Statement

We state the main result, where for convenience we will change from 𝑁 set elements to 2𝑁 .

We introduce the notation �̂� := min
(
𝐷, ⌊

√︁
𝑁 /2⌋

)
. We also introduce the 𝐿2 inner product

⟨𝑓 , 𝑔⟩A = E𝑦∼𝑉 ;𝑞,𝑟∼(𝑆1)𝐷
[
𝑓 (𝑋 (𝑦, 𝑞, 𝑟))𝑔(𝑋 (𝑦, 𝑞, 𝑟))

]
, (4.41)

48

where the set input 𝑋 (𝑦, 𝑞, 𝑟) ∈ C𝐷×2𝑁 with matrix entries 𝑥𝑑𝑛 (𝑦, 𝑞, 𝑟) is defined by:

𝑥𝑑𝑛 (𝑦, 𝑞, 𝑟) =


𝑞𝑑𝑦𝑛 1 ≤ 𝑛 ≤ 𝑁 ,

𝑟𝑑𝑦𝑛−𝑁 𝑁 + 1 ≤ 𝑛 ≤ 2𝑁 .

(4.42)

And we state an activation assumption in this new notation:

Assumption 4.7. The activation 𝜎 : C → C is analytic, and for a fixed 𝐷, 𝑁 there exist two-

layer neural networks 𝑓1, 𝑓2 using 𝜎 , both with 𝑂
(
𝐷2 + 𝐷 log 𝐷

𝜖

)
width and 𝑂 (𝐷 log𝐷) bounded

weights, such that:

sup
|𝜉 |≤3

|𝑓1(𝜉) − 𝜉2 | ≤ 𝜖, sup
|𝜉 |≤3

����𝑓2(𝜉) − (
1 − (𝜉/4)min(𝐷,

√
𝑁 /2)

) 𝜉 − 1/4
𝜉/4 − 1

���� ≤ 𝜖 (4.43)

Essentially, this condition checks if a small network can approximate the square map and a

rescaled Blaschke product. It is easy to confirm that, for example, the exp activation satisfies this

assumption.

Then our main theorem is thus:

Theorem 4.8 (Exponential width-separation). Fix 2𝑁 and 𝐷 such that �̂� > 1, and consider set

elements 𝑋 ∈ C𝐷×2𝑁 . Define

𝑔(𝑋) = −4𝑁 2

4�̂�
+

2𝑁∑︁
𝑛,𝑛′=1

�̂�∏
𝑑=1

(
1 − (𝑥𝑑𝑛𝑥𝑑𝑛′/4)�̂�

) 𝑥𝑑𝑛𝑥𝑑𝑛′ − 1/4
𝑥𝑑𝑛𝑥𝑑𝑛′/4 − 1

(4.44)

(4.45)

and 𝑔′ = 𝑔

∥𝑔∥A . Then the following is true:

49

• For 𝐿 ≤ 𝑁 −2 exp(𝑂 (�̂�)),

min
𝑓 ∈Sym𝐿

∥ 𝑓 − 𝑔′∥2
A ≥ 1

12
. (4.46)

• For 𝐿 = 1, there exists 𝑓 ∈ Sym2
𝐿
, parameterized with an activation 𝜎 that satisfies As-

sumption 4.7, with width 𝑝𝑜𝑙𝑦 (𝑁, 𝐷, 1/𝜖), depth 𝑂 (log𝐷), and maximum weight magnitude

𝑂 (𝐷 log𝐷) such that over the unit torus:

∥ 𝑓 − 𝑔′∥∞ ≤ 𝜖 . (4.47)

Remark 1. In the sequel, we will assume 𝐷 ≤
√︁
𝑁 /2 so that �̂� = 𝐷 . This is not a necessary

assumption; in the case that 𝐷 >
√︁
𝑁 /2, we can simply replace all instances of 𝐷 with �̂� in the

definition of𝑔 and the subsequent proof. Because the data distribution has each row of𝑋 ∈ C𝐷×2𝑁

is i.i.d., the proof goes through exactly. Indeed, it would be equivalent to truncating each set vector

to the first �̂� elements. This will only impact the bounds by replacing 𝐷 with �̂� .

To complete the theorem statement, we build the (unnormalized) hard function 𝑔, ultimately

for the sake of Lemma 4.11. This lemma characterizes all the properties of 𝑔 that we need to

guarantee the lower and upper bounds.

50

4.3.2 Mobius transform

We begin with the following, with 𝜉 ∈ C and |𝜉 | = 1. And in the sequel, we always fix 𝑟 = 1/4.

Consider the 1-D Mobius transformation, with its truncated variant with 𝑡 ≥ 1:

𝜇 (𝜉) = 𝜉 − 𝑟
𝑟𝜉 − 1

(4.48)

𝜇𝑡 (𝜉) =
(
1 − (𝑟𝜉)𝑡

)
· 𝜇 (𝜉) (4.49)

= (𝑟 − 𝜉) ·
(
1 + 𝑟𝜉 + (𝑟𝜉)2 + · · · + (𝑟𝜉)𝑡−1) (4.50)

Lemma 4.9. The following properties hold (where infinity norms are defined with respect to 𝑆1):

1. ∥𝜇∥∞ = 1

2. ∥𝜇∥𝑆1 = 1

3. ∥𝜇𝑡 ∥∞ ≤ 1 + 𝑟 𝑡

4. ∥𝜇𝑡 ∥2
𝑆1 = 1 + 𝑟 2𝑡

5. ⟨𝜇𝑡 , 1⟩𝑆1 = 𝑟 , ⟨𝜇𝑡 , 𝜉⟩𝑆1 = 𝑟 2 − 1 and |⟨𝜇𝑡 , 𝜉𝑎⟩𝑆1 | < 1 − 𝑟 2 for all 𝑎 ≥ 2

6. For |𝜉 | = 1, |𝜔 | ≤ 1 + 1
𝑡
,

|𝜇𝑡 (𝜉) − 𝜇𝑡 (𝜔) | ≤ 6|𝜉 − 𝜔 | (4.51)

Proof. It is a fact [Garnett 2007] that 𝜇 analytically maps the unit disk to itself, and additional the

unit circle to itself, i.e. for any |𝜉 | = 1 we have |𝜇 (𝜉) | = 1. Hence ∥𝜇∥∞ = ∥𝜇∥𝑆1 = 1.

51

We can see that truncation gently perturbs this fact, so for |𝜉 | = 1:

|𝜇𝑡 (𝜉) | = |1 − (𝑟𝜉)𝑡 | · |𝜇 (𝜉) | (4.52)

≤ 1 + 𝑟 𝑡 (4.53)

Additionally, we can calculate the coefficient on each monomial in 𝜇:

⟨𝜇𝑡 , 𝜉𝑎⟩𝑆1 =



𝑟 𝑎 = 0

−(𝑟𝑎−1 − 𝑟𝑎+1) 1 ≤ 𝑎 ≤ 𝑡 − 1

−𝑟 𝑡−1 𝑎 = 𝑡

0 𝑎 ≥ 𝑡

(4.54)

It is easy to confirm that the value of |⟨𝜇𝑡 , 𝜉𝑎⟩𝑆1 | is maximized at 𝑎 = 1. Hence, we can write the

𝐿2 norm:

∥𝜇𝑡 ∥2
𝑆1 =

∞∑︁
𝑎=0

|⟨𝜇𝑡 , 𝜉𝑎⟩𝑆1 |2 (4.55)

= 𝑟 2 +
𝑡−1∑︁
𝑎=1

(
𝑟𝑎−1 − 𝑟𝑎+1)2 + 𝑟 2𝑡−2 (4.56)

= 𝑟 2 +
𝑡−1∑︁
𝑎=1

(
𝑟 2𝑎−2 − 2𝑟 2𝑎 + 𝑟 2𝑎+2) + 𝑟 2𝑡−2 (4.57)

= 1 + 𝑟 2𝑡 (4.58)

Finally, for |𝜉 | = 1, |𝜔 | ≤ 1 + 1
𝑡
≤ 2:

|𝜇 (𝜉) − 𝜇 (𝜔) | =
���� 𝜉 − 𝑟𝑟𝜉 − 1

− 𝜔 − 𝑟
𝑟𝜔 − 1

���� (4.59)

=

���� (𝑟 2 − 1) (𝜉 − 𝜔)
(𝑟𝜉 − 1) (𝑟𝜔 − 1)

���� . (4.60)

52

So noting 𝑟 = 1
4 we get

|𝜇 (𝜉) − 𝜇 (𝜔) | ≤ 8
3
|𝜉 − 𝜔 | . (4.61)

Thus:

|𝜇 (𝜉) − 𝜇 (𝜔) | =
�� (1 − (𝑟𝜉)𝑡

)
· 𝜇 (𝜉) −

(
1 − (𝑟𝜔)𝑡

)
· 𝜇 (𝜔)

�� (4.62)

≤
�� (1 − (𝑟𝜉)𝑡

)
· 𝜇 (𝜉) −

(
1 − (𝑟𝜔)𝑡

)
· 𝜇 (𝜉)

�� + �� (1 − (𝑟𝜔)𝑡
)
· 𝜇 (𝜉) −

(
1 − (𝑟𝜔)𝑡

)
· 𝜇 (𝜔)

��
(4.63)

≤ |𝜇 (𝜉) | · 𝑟 𝑡 |𝜉𝑡 − 𝜔𝑡 | + |1 − (𝑟𝜔)𝑡 | · |𝜇 (𝜉) − 𝜇 (𝜔) | (4.64)

≤ 𝑟 𝑡 |𝜉𝑡 − 𝜔𝑡 | + |1 − (𝑟𝜔)𝑡 | · 8
3
|𝜉 − 𝜔 | . (4.65)

Note that for |𝜉 | = 1, |𝜔 | ≤ 1 + 1
𝑡
, because |𝜔 |𝑘 ≤ 𝑒 for 𝑘 ≤ 𝑡 , we have

��𝜉𝑡 − 𝜔𝑡 �� = ��(𝜉 − 𝜔) (𝜉𝑡−1 + 𝜉𝑡−2𝜔 + · · · + 𝜉𝜔𝑡−2 + 𝜔𝑡−1�� ≤ 𝑒𝑡 |𝜉 − 𝜔 | . (4.66)

Further plugging in that 𝑟 = 1
4 and 𝑡 ≥ 1:

|𝜇 (𝜉) − 𝜇 (𝜔) | ≤ 4−𝑡𝑒𝑡 |𝜉 − 𝜔 | +
(
1 + 4−𝑡𝑒

)
· 8

3
|𝜉 − 𝜔 | (4.67)

< 6|𝜉 − 𝜔 | . (4.68)

□

53

4.3.3 ℎ function

Now, consider 𝑧 ∈ C𝐷 with |𝑧𝑖 | = 1 for all 𝑖 . We now define:

ℎ(𝑧) =
𝐷∏
𝑖=1

𝜇𝐷 (𝑧𝑖) . (4.69)

Lemma 4.10. The following are true:

1. ∥ℎ∥∞ ≤ 1 + 2−𝐷

2. 1 ≤ ∥ℎ∥2
𝑆1 ≤ 1 + 2−𝐷

3. For 𝑧, 𝑧′ ∈ (𝑆1)𝐷

|ℎ(𝑧) − ℎ(𝑧′) | ≤ 12∥𝑧 − 𝑧′∥1 .

Proof. We can immediately bound:

∥ℎ∥∞ =

𝐷∏
𝑖=1

∥𝜇𝐷 ∥∞ (4.70)

(𝑎)
≤

(
1 + 𝑟𝐷

)𝐷
(4.71)

(𝑏)
≤ 1 + 2𝐷 · 𝑟𝐷 (4.72)

≤ 1 + 2−𝐷 , (4.73)

where (𝑎) follows from Lemma 4.9.3 and (𝑏) follows from the binomial identity that (1 + 𝑥)𝑡 ≤

1 + 2𝑡𝑥 for 𝑥 ∈ [0, 1], 𝑡 ≥ 1. In the last line we simply plug in 𝑟 = 1/4.

54

Similarly by Lemma 4.9.4,

∥ℎ∥2
𝑆1 =

𝐷∏
𝑖=1

∥𝜇𝐷 ∥2
𝑆1 (4.74)

=

(
1 + 𝑟 2𝐷

)𝐷
(4.75)

≤
(
1 + 𝑟𝐷

)𝐷
. (4.76)

And so by the same binomial inequality, we have

1 ≤ ∥ℎ∥2
𝑆1 ≤ 1 + 2−𝐷 . (4.77)

Finally, observe that:

|ℎ(𝑧) − ℎ(𝑧′) | ≤
𝐷∑︁
𝑖=1

�����
(
𝑖−1∏
𝑗=1

𝜇𝐷 (𝑧 𝑗)
)
(𝜇𝐷 (𝑧𝑖) − 𝜇𝐷 (𝑧′𝑖))

(
𝐷∏

𝑗=𝑖+1
𝜇𝐷 (𝑧′𝑗)

)����� (4.78)

(𝑎)
≤

𝐷∑︁
𝑖=1

��𝜇𝐷 (𝑧𝑖) − 𝜇𝐷 (𝑧′𝑖)�� (1 + 𝑟𝐷)𝐷−1 (4.79)

(𝑏)
≤ 6

𝐷∑︁
𝑖=1

|𝑧𝑖 − 𝑧′𝑖 |
(
1 + 2−𝐷

)
(4.80)

≤ 12∥𝑧 − 𝑧′∥1 , (4.81)

where in (𝑎) we apply 4.9.3, and in (𝑏) we apply 4.9.6 and the same binomial identity as above. □

4.3.4 𝑔 function

Now, reminding 𝑧𝑛,𝑛′ = 𝑥𝑛 ◦ 𝑥𝑛′ , let:

𝑔(𝑋) = −4𝑁 2𝑟𝐷 +
2𝑁∑︁

𝑛,𝑛′=1
ℎ(𝑧𝑛,𝑛′) . (4.82)

55

Note that we subtract a constant here to ensure 𝑔 has no constant term, which will be neces-

sary for the fact P2𝑔 = 𝑔.

Remark 2. The following lemma is the only place we explicitly require the assumption 𝐷 ≤√︁
𝑁 /2, as this guarantees that P2𝑔 = 𝑔. In the case that 𝐷 >

√︁
𝑁 /2, we simply replace all

instances of 𝐷 in this section with �̂� = min(𝐷,
√︁
𝑁 /2). This ensures 𝑔 is only supported on p{𝛼,𝛼}

with |𝛼 | ≤ �̂�2 ≤ 𝑁 /2. And the subsequent proofs are identical.

Lemma 4.11. The following are true:

1. ∥𝑔∥∞ ≤ 12𝑁 2.

2. 1 ≤ ∥𝑔∥2
A ≤ 3𝑁 2(1 + 2−𝐷).

3. P2𝑔 = 𝑔.

4. We may write 𝑔 =
∑

1≤|𝛼 |≤𝑁 /2 𝑔𝛼p{𝛼,𝛼}, where |𝑔𝛼 |2 ≤ 𝑁 2(1 − 𝑟 2)2𝐷 .

5. Lip(𝑔) ≤ 48𝑁
√
𝑁𝐷 .

Proof. First, it’s easy to see from Lemma 4.10.1

∥𝑔∥∞ ≤ | − 4𝑁 2𝑟𝐷 | + 4𝑁 2∥ℎ∥∞ (4.83)

≤ 4𝑁 2
(
2−2𝐷 + 1 + 2−𝐷

)
(4.84)

≤ 12𝑁 2 . (4.85)

Let us expand ℎ as

ℎ(𝑧) =
∑︁

∥𝛼 ∥∞≤𝐷
ℎ𝛼𝑧

𝛼 , (4.86)

noting that by definition of 𝜇𝐷 and Lemma 4.9.5 we have the constant term ℎ0 = 𝑟
𝐷 .

56

Now we can expand

𝑔(𝑋) = −4𝑁 2𝑟𝐷 +
2𝑁∑︁

𝑛,𝑛′=1
ℎ(𝑧𝑛,𝑛′) (4.87)

= −4𝑁 2𝑟𝐷 +
2𝑁∑︁

𝑛,𝑛′=1

𝑟𝐷 +
∑︁

1≤∥𝛼 ∥∞≤𝐷
ℎ𝛼𝑧

𝛼
𝑛,𝑛′

 (4.88)

=

2𝑁∑︁
𝑛,𝑛′=1

∑︁
1≤∥𝛼 ∥∞≤𝐷

ℎ𝛼𝑧
𝛼
𝑛,𝑛′ (4.89)

=
∑︁

1≤∥𝛼 ∥∞≤𝐷
ℎ𝛼

2𝑁∑︁
𝑛,𝑛′=1

𝐷∏
𝑑=1

(𝑥𝑑𝑛𝑥𝑑𝑛′)𝛼𝑑 (4.90)

=
∑︁

1≤∥𝛼 ∥∞≤𝐷
ℎ𝛼 |𝛼 |

(
1√︁
|𝛼 |

2𝑁∑︁
𝑛=1

𝐷∏
𝑑=1

𝑥
𝛼𝑑
𝑑𝑛

) (
1√︁
|𝛼 |

2𝑁∑︁
𝑛′=1

𝐷∏
𝑑 ′=1

𝑥
𝛼𝑑′
𝑑 ′𝑛′

)
(4.91)

=
∑︁

1≤∥𝛼 ∥∞≤𝐷
ℎ𝛼 |𝛼 |p{𝛼,𝛼} (𝑋) . (4.92)

Note that ∥𝛼 ∥∞ ≤ 𝐷 implies |𝛼 | ≤ 𝐷2 ≤ 𝑁 /2, so it clearly follows thatP2𝑔 = 𝑔. So by Lemma 4.12,

⟨p{𝛼,𝛼}, p{𝛽,𝛽}⟩A = 12 · 1𝛼=𝛽 whenever 1 ≤ |𝛼 |, |𝛽 | ≤ 𝑁 /2, so we can handily calculate:

∥𝑔∥2
A =

∑︁
1≤∥𝛼 ∥∞≤𝐷

ℎ2
𝛼 |𝛼 |2∥p{𝛼,𝛼}∥2

A (4.93)

≤ 12 · (𝑁 /2)2
∑︁

1≤∥𝛼 ∥∞≤𝐷
ℎ2
𝛼 (4.94)

≤ 3𝑁 2∥ℎ∥2
𝑆1 (4.95)

≤ 3𝑁 2
(
1 + 2−𝐷

)
, (4.96)

where the last line uses Lemma 4.10.2.

57

And likewise

∥𝑔∥2
A =

∑︁
1≤∥𝛼 ∥∞≤𝐷

ℎ2
𝛼 |𝛼 |2∥p{𝛼,𝛼}∥2

A (4.97)

≥ 12 ©­«−𝑟𝐷 +
∑︁

∥𝛼 ∥∞≤𝐷
ℎ2
𝛼

ª®¬ (4.98)

= 12(−𝑟𝐷 + ∥ℎ∥2
𝑆1) (4.99)

≥ 1 , (4.100)

and the last line again uses Lemma 4.10.2. Finally, note that for any 𝛼 such that |𝛼 | ≤ 𝑁 /2,

applying Lemma 4.9.5.

|𝑔𝛼 |2 = |ℎ𝛼 |𝛼 | |2 = |𝛼 |2
𝐷∏
𝑖=1

|⟨𝜇𝐷 , 𝜉𝛼𝑖 ⟩𝑆1 |2 (4.101)

≤ 𝑁 2(1 − 𝑟 2)2𝐷 . (4.102)

Finally we consider the Lipschitz norm. For 𝑋,𝑋 ∈ C𝐷×2𝑁 with each entry of unit norm, it’s easy

58

to confirm by Lemma 4.10.3 that:

|𝑔(𝑋) − 𝑔(𝑋) | ≤
2𝑁∑︁

𝑛,𝑛′=1
|ℎ(𝑧𝑛,𝑛′) − ℎ(𝑧′𝑛,𝑛′) | (4.103)

≤ 12
2𝑁∑︁

𝑛,𝑛′=1
∥𝑧𝑛,𝑛′ − 𝑧𝑛,𝑛′ ∥1 (4.104)

= 12
2𝑁∑︁

𝑛,𝑛′=1

𝐷∑︁
𝑑=1

|𝑥𝑑𝑛𝑥𝑑𝑛′ − 𝑥𝑑𝑛𝑥𝑑𝑛′ | (4.105)

≤ 12
2𝑁∑︁

𝑛,𝑛′=1

𝐷∑︁
𝑑=1

|𝑥𝑑𝑛 | · |𝑥𝑑𝑛′ − 𝑥𝑑𝑛′ | + |𝑥𝑑𝑛′ | · |𝑥𝑑𝑛 − 𝑥𝑑𝑛 | (4.106)

= 48𝑁
2𝑁∑︁
𝑛=1

𝐷∑︁
𝑑=1

|𝑥𝑑𝑛 − 𝑥𝑑𝑛 | (4.107)

= 48𝑁 ∥𝑋 − 𝑋 ∥1 (4.108)

≤ 48𝑁
√

2𝑁𝐷 ∥𝑋 − 𝑋 ∥2 (4.109)

□

4.4 Proof of Lower Bound

4.4.1 An 𝐿2 inner product

We must first motivate the chosen 𝐿2 inner product, before we can prove a lower bound on func-

tion approximation. To that end, we will define an input distribution for the set inputs 𝑋 .

Let us introduce several random variables: let 𝑦 ∼ 𝑉 as in the definition of the inner product

⟨·, ·⟩𝑉 over 𝑁 variables. Let 𝑞 and 𝑟 be two random vectors of dimension 𝐷 , with each entry 𝑖 .𝑖 .𝑑 .

uniform on 𝑆1.

59

Then we can define an input distribution for 𝑋 ∈ C𝐷×2𝑁 with matrix entries 𝑥𝑑𝑛:

𝑥𝑑𝑛 =


𝑞𝑑𝑦𝑛 1 ≤ 𝑛 ≤ 𝑁

𝑟𝑑𝑦𝑛−𝑁 𝑁 + 1 ≤ 𝑛 ≤ 2𝑁 .

(4.110)

The point of this assignment is how it transforms multisymmetric power sums:

p𝛼 (𝑋) =
1√︁
|𝛼 |

2𝑁∑︁
𝑛=1

∏
𝑑

𝑥
𝛼𝑑
𝑑𝑛

(4.111)

=
1√︁
|𝛼 |

𝑁∑︁
𝑛=1

∏
𝑑

𝑦
𝛼𝑑
𝑛 𝑞

𝛼𝑑
𝑑

+ 1√︁
|𝛼 |

𝑁∑︁
𝑛=1

∏
𝑑

𝑦
𝛼𝑑
𝑛 𝑟

𝛼𝑑
𝑑

(4.112)

= 𝑝 |𝛼 | (𝑦) · (𝑞𝛼 + 𝑟𝛼) . (4.113)

Then consider the inner product:

⟨𝑓 , 𝑔⟩A = E𝑦∼𝑉 ,𝑞∼(𝑆1)𝐷 ,𝑟∼(𝑆1)𝐷
[
𝑓 (𝑋)𝑔(𝑋)

]
. (4.114)

From our choices above we may use separability to write ⟨·, ·⟩A in terms of previously introduced

inner products. For example:

⟨p𝛼 , p𝛽⟩A = E𝑦,𝑞,𝑟

[
𝑝 |𝛼 | (𝑦) (𝑞𝛼 + 𝑟𝛼)𝑝𝛽 | (𝑦) (𝑞𝛽 + 𝑟 𝛽)

]
(4.115)

= E𝑦

[
𝑝 |𝛼 | (𝑦)𝑝𝛽 | (𝑦)

]
E𝑞,𝑟

[
(𝑞𝛼 + 𝑟𝛼) (𝑞𝛽 + 𝑟 𝛽)

]
(4.116)

= ⟨𝑝 |𝛼 |, 𝑝 |𝛽 |⟩𝑉 · ⟨𝑞𝛼 + 𝑟𝛼 , 𝑞𝛽 + 𝑟 𝛽⟩𝑆1 . (4.117)

We can now observe this inner product grants a “partial" orthogonality:

60

Lemma 4.12. Consider 𝛼, 𝛽 ∈ N𝐷 with 1 ≤ |𝛼 |, |𝛽 | ≤ 𝑁 /2. Then for 𝛾𝑘 ∈ N𝐷 \ {0}, if 𝐾 ≠ 2〈
p𝛼p𝛽,

𝐾∏
𝑘=1

p𝛾𝑘

〉
A

= 0 . (4.118)

Otherwise, for 𝐾 = 2, we have:

⟨p𝛼p𝛽, p𝛾p𝛿⟩A = 2 · (1 + 1|𝛼 |=|𝛽 |) · 1{|𝛼 |,|𝛽 |}={|𝛾 |,|𝛿 |} · (1𝛼+𝛽=𝛾+𝛿 + 1(𝛼,𝛽)=(𝛾,𝛿) + 1(𝛼,𝛽)=(𝛿,𝛾)) . (4.119)

Proof. By separability, we can confirm that

⟨p𝛼p𝛽,
𝐾∏
𝑘=1

p𝛾𝑘 ⟩A = ⟨𝑝 |𝛼 |𝑝 |𝛽 |,
𝐾∏
𝑘=1

𝑝 |𝛾𝑘 |⟩𝑉 ·𝐶 , (4.120)

where 𝐶 is the value of the expectation on the random variables 𝑞 and 𝑟 . Thus if 𝐾 ≠ 2, because

|𝛼 | + |𝛽 | ≤ 𝑁 , this term is 0 by orthogonality of the Vandermonde inner product.

For the 𝐾 = 2 case, we begin again by using separability:

⟨p𝛼p𝛽, p𝛾p𝛿⟩A =
〈
𝑝 |𝛼 |𝑝 |𝛽 |, 𝑝 |𝛾 |𝑝 |𝛿 |

〉
𝑉
·
〈
(𝑞𝛼 + 𝑟𝛼) (𝑞𝛽 + 𝑟 𝛽), (𝑞𝛾 + 𝑟𝛾) (𝑞𝛿 + 𝑟𝛿)

〉
𝑆1
. (4.121)

Let’s consider first the inner product of power sums. Plugging in the definition of the normalizing

constant 𝑧𝜆 gives:

〈
𝑝 |𝛼 |𝑝 |𝛽 |, 𝑝 |𝛾 |𝑝 |𝛿 |

〉
𝑉
= (1 + 1|𝛼 |=|𝛽 |) · 1{|𝛼 |,|𝛽 |}={|𝛾 |,|𝛿 |} .

Consider now the second inner product term. Noting that each element 𝑞𝑑 , 𝑟𝑑 is i.i.d. uniform

on the unit circle, orthogonality of the Fourier basis implies we can calculate this inner product

by only including terms with matching exponents. Bearing in mind that 𝛼, 𝛽,𝛾, 𝛿 ≠ 0, we must

61

always have terms of the form ⟨𝑞𝛼+𝛽, 𝑞𝛾𝑟𝛿⟩𝑆1 = 0, and therefore we distribute and calculate:

〈
𝑞𝛼+𝛽 + 𝑞𝛼𝑟 𝛽 + 𝑞𝛽𝑟𝛼 + 𝑟𝛼+𝛽, 𝑞𝛾+𝛿 + 𝑞𝛾𝑟𝛿 + 𝑞𝛿𝑟𝛾 + 𝑟𝛾+𝛿

〉
𝑆1

= ⟨𝑞𝛼+𝛽, 𝑞𝛾+𝛿⟩𝑆1 + ⟨𝑞𝛼𝑟 𝛽 + 𝑞𝛽𝑟𝛼 , 𝑞𝛾𝑟𝛿 + 𝑞𝛿𝑟𝛾 ⟩𝑆1 + ⟨𝑟𝛼+𝛽, 𝑟𝛾+𝛿⟩𝑆1

= 2 · 1𝛼+𝛽=𝛾+𝛿 + 2 · 1(𝛼,𝛽)=(𝛾,𝛿) + 2 · 1(𝛼,𝛽)=(𝛿,𝛾) .

Collecting the terms of both products and evaluating the indicator functions under all cases

gives the result. □

Looking at Equation 4.119, we can see inner product ⟨·, ·⟩A does not grant full orthogonal-

ity. The inner product gives orthogonality between powersum products of different lengths, but

⟨p𝛼p𝛽, p𝛾p𝛿⟩A can be non-zero if 𝛼 + 𝛽 = 𝛾 + 𝛿 , even in the cases where {𝛼, 𝛽} ≠ {𝛾, 𝛿}.

Nevertheless, this inner product still suffices to prove a similar result about projection for the

𝐷 > 1 case.

Let P1 be the orthogonal projection onto 𝑠𝑝𝑎𝑛({p𝛼 : 1 ≤ |𝛼 | ≤ 𝑁 /2}) and P2 be the orthog-

onal projection onto 𝑠𝑝𝑎𝑛({p𝛼p𝛽 : 1 ≤ |𝛼 |, |𝛽 | ≤ 𝑁 /2}). Here by orthogonal, we mean with

respect to ⟨·, ·⟩A .

Lemma 4.13. Given any 𝑓 ∈ Sym𝐿 with 𝐷 > 1, we may choose coefficients 𝑣𝑖 𝑗 over 𝑖 ≤ 𝑗 ≤ 𝐿, and

multisymmetric polynomials 𝜙𝑖 over 𝑖 ≤ 𝐿, such that:

P2𝑓 =

𝐿∑︁
𝑖≤ 𝑗

𝑣𝑖 𝑗 (P1𝜙𝑖) (P1𝜙 𝑗) . (4.122)

Proof. As in Lemma 4.4, if we approximate 𝜓𝑙 (𝑥𝑛) = 𝑐𝑙0 +
∑
𝛼≠0

𝑐𝑙𝛼√
|𝛼 |
𝑥𝛼𝑛 , then symmetrizing gives

𝜙𝑙 (𝑋) = 𝑁𝑐𝑙0 +
∑
𝛼≠0 𝑐𝑙𝛼p𝛼 .

By a similar approximation as in Lemma 4.4 that allows us to subtract out constant terms, we

62

write:

𝑓 =
∑︁
𝜂∈N𝐿

𝑣𝜂𝜙
𝜂 , (4.123)

𝜙𝑙 =
∑︁
𝛼≠0

𝑐𝑙𝛼p𝛼 . (4.124)

Note that by Lemma 4.12, ⟨p𝛼p𝛽, 𝜙𝜂⟩A = 0 unless |𝜂 | = 2. So similarly to before, we may rewrite

P2𝑓 =
∑︁
|𝜂 |=2

𝑣𝜂P2𝜙
𝜂 .

Here we can simplify notation. Let {𝑒𝑖}𝐿𝑖=1 denote the standard basis vectors in dimension 𝐿.

Every 𝜂 ∈ N𝐿 with |𝜂 | = 2 can be written as 𝜂 = 𝑒𝑖 + 𝑒 𝑗 , so let 𝑣𝑖 𝑗 := 𝑣𝑒𝑖+𝑒 𝑗 . Then we can rewrite:

P2𝑓 =
∑︁
𝑖≤ 𝑗

𝑣𝑖 𝑗P2𝜙𝑖𝜙 𝑗 .

Again, by Lemma 4.12, we know P2 will annihilate any term of the form p𝛾p𝛿 if it’s not the

case that 1 ≤ |𝛾 |, |𝛿 | ≤ 𝑁 /2. One can see this by noting that, for 1 ≤ |𝛼 |, |𝛽 | ≤ 𝑁 /2, then

{|𝛼 |, |𝛽 |} ≠ {|𝛾 |, |𝛿 |}, and by the Lemma, ⟨p𝛼p𝛽, p𝛾p𝛿⟩A = 0.

63

So we may pass from P2 to P1:

P2𝜙𝑖𝜙 𝑗 = P2
©­«
∑︁
𝛾∈N𝐷

𝑐𝑖𝛾p𝛾
ª®¬
(∑︁
𝛿∈N𝐷

𝑐 𝑗𝛿p𝛿

)
(4.125)

= P2
∑︁
𝛾∈N𝐷

∑︁
𝛿∈N𝐷

𝑐𝑖𝛾𝑐 𝑗𝛿p𝛾p𝛿 (4.126)

=
∑︁

1≤|𝛾 |≤𝑁 /2

∑︁
1≤|𝛿 |≤𝑁 /2

𝑐𝑖𝛾𝑐 𝑗𝛿p𝛾p𝛿 (4.127)

=
©­«

∑︁
1≤|𝛾 |≤𝑁 /2

𝑐𝑖𝛾p𝛾
ª®¬ ©­«

∑︁
1≤|𝛿 |≤𝑁 /2

𝑐 𝑗𝛿p𝛿
ª®¬ (4.128)

= (P1𝜙𝑖) (P1𝜙 𝑗) . (4.129)

So ultimately we get

P2𝑓 =

𝐿∑︁
𝑖≤ 𝑗

𝑣𝑖 𝑗 (P1𝜙𝑖) (P1𝜙 𝑗) . (4.130)

□

4.4.2 A Diagonal Inner Product

Before we can apply Lemma 4.5, which lets us transform function approximation error into ma-

trix approximation error, we need a better inner product, one that is diagonal in the low-degree

multisymmetric powersum basis.

Consider two more inner products, defined for 𝑓 , 𝑔 in the range of P2:

⟨𝑓 , 𝑔⟩A0 = E𝑦∼𝑉 ,𝑞∼(𝑆1)𝐷 ,𝑟=0

[
𝑓 (𝑋)𝑔(𝑋)

]
. (4.131)

This is nearly the same distribution as before, except we fix 𝑟 = 0.

64

Then define

⟨𝑓 , 𝑔⟩∗ = ⟨𝑓 , 𝑔⟩A − 2⟨𝑓 , 𝑔⟩A0 . (4.132)

Because 𝑓 and 𝑔 are restricted to the range of P2, we demonstrate positive-definiteness of this

object, and therefore it is a valid inner product.

Theorem 4.14. The bilinear form ⟨·, ·⟩∗ is an inner product when restricted to the range of P2.

Furthermore, it is diagonal in the powersum basis 𝑝{𝛼,𝛽} for 1 ≤ |𝛼 |, |𝛽 | ≤ 𝑁 /2.

Proof. Given p𝛼p𝛽, p𝛾p𝛿 ∈ 𝑖𝑚(P2), we can consider ⟨p𝛼p𝛽, p𝛾p𝛿⟩A0 which can similarly be calcu-

lated via separability:

⟨p𝛼p𝛽, p𝛾p𝛿⟩A0 = ⟨𝑝 |𝛼 |𝑝 |𝛽 |, 𝑝 |𝛾 |𝑝 |𝛿 |⟩𝑉 · ⟨𝑞𝛼+𝛽, 𝑞𝛾+𝛿⟩𝑆1

= (1 + 1|𝛼 |=|𝛽 |) · 1{|𝛼 |,|𝛽 |}={|𝛾 |,|𝛿 |} · 1𝛼+𝛽=𝛾+𝛿 .

It follows from Lemma 4.12 that:

⟨p𝛼p𝛽, p𝛾p𝛿⟩∗ = ⟨p𝛼p𝛽, p𝛾p𝛿⟩A − 2⟨p𝛼p𝛽, p𝛾p𝛿⟩A0

= 2 · (1 + 1|𝛼 |=|𝛽 |) · (1(𝛼,𝛽)=(𝛾,𝛿) + 1(𝛼,𝛽)=(𝛿,𝛾)) .

To eliminate the ambiguity of p𝛼p𝛽 vs. p𝛽p𝛼 , let us define p{𝛼,𝛽} equal to both these terms.

Then we can equivalently write:

⟨p{𝛼,𝛽}, p{𝛾,𝛿}⟩∗ = 2 · (1 + 1|𝛼 |=|𝛽 |) · (1 + 1𝛼=𝛽) · 1{𝛼,𝛽}={𝛾,𝛿} .

65

Evaluating the indicator functions under all cases we can see:

⟨p𝛼p𝛽, p𝛾p𝛿⟩∗ =



0 {𝛼, 𝛽} ≠ {𝛾, 𝛿}

2 {𝛼, 𝛽} = {𝛾, 𝛿}, |𝛼 | ≠ |𝛽 |

4 {𝛼, 𝛽} = {𝛾, 𝛿}, |𝛼 | = |𝛽 |, 𝛼 ≠ 𝛽

8 {𝛼, 𝛽} = {𝛾, 𝛿}, 𝛼 = 𝛽

Then we’ve shown that the bilinear form ⟨·, ·⟩∗, treated as a matrix in the basis of all p{𝛼,𝛽}, is

positive-definite and diagonal. Since this basis spans the range of P2, it follows that the bilinear

form is an inner product. □

4.4.3 Proof of Lower Bound

We first prove a lower bound using a slightly simpler hard function 𝑔, before updating the argu-

ment to the true choice of 𝑔 further below.

Theorem 4.15. Let 𝐷 > 1. In particular, assume min(𝑁 /2, 𝐷 − 1) ≥ 2. Then we have

max
∥𝑔∥A=1

min
𝑓 ∈Sym𝐿

∥ 𝑓 − 𝑔∥2
A ≥ 1

6
− 𝐿

6 · 2min(𝑁 /2,𝐷−1) . (4.133)

So for 𝐿 ≤ 2min(𝑁 /2,𝐷−1)−3 we have a constant lower bound on the approximation error.

Proof. Define 𝑇 = |{𝛼 ∈ N𝐷 : |𝛼 | = 𝑁 /2}| and choose the bad function 𝑔 = 1√
12𝑇

∑
|𝛼 |=𝑁 /2 p{𝛼,𝛼}.

Observe that although ⟨·, ·⟩A is not fully orthogonal in the powersum basis, we can neverthe-

less calculate by Lemma 4.12 that for |𝛼 | = |𝛽 | = 𝑁 /2:

⟨p{𝛼,𝛼}, p{𝛽,𝛽}⟩A = 4 · (1𝛼+𝛼=𝛽+𝛽 + 1(𝛼,𝛼)=(𝛽,𝛽) + 1(𝛼,𝛼)=(𝛽,𝛽)) (4.134)

= 12 · 1𝛼=𝛽 . (4.135)

66

Therefore we can confirm that 𝑔 is normalized:

∥𝑔∥2
A =

1
12𝑇

∑︁
|𝛼 |=𝑁 /2

∑︁
|𝛽 |=𝑁 /2

⟨p{𝛼,𝛼}, p{𝛽,𝛽}⟩A (4.136)

=
1

12𝑇

∑︁
|𝛼 |=𝑁 /2

∑︁
|𝛼 |=𝑁 /2

12 · 1𝛼=𝛽 (4.137)

=
1
𝑇

∑︁
|𝛼 |=𝑁 /2

1 (4.138)

= 1 . (4.139)

Again, we have P2𝑔 = 𝑔. Now by Lemma 4.13, we may write:

P2𝑓 =

𝐿∑︁
𝑖≤ 𝑗

𝑣𝑖 𝑗 (P1𝜙𝑖) (P1𝜙 𝑗) .

Finally, note that ⟨·, ·⟩∗ obeys the inner product conditions of Lemma 4.5 on the range of P2,

following from orthogonality and the normalization:

⟨p𝛼p𝛽, p𝛼p𝛽⟩∗ =



2 |𝛼 | ≠ |𝛽 |

4 |𝛼 | = |𝛽 |, 𝛼 ≠ 𝛽

8 𝛼 = 𝛽

67

So we can apply Lemma 4.5 to P2𝑓 ,P2𝑔, and the inner product ⟨·, ·⟩∗. Hence, we can derive:

min
𝑓 ∈Sym𝐿

∥ 𝑓 − 𝑔∥2
A

(𝑎)
≥ min

𝑓 ∈Sym𝐿

∥P2𝑓 − P2𝑔∥2
A (4.140)

(𝑏)
≥ min

𝑓 ∈Sym𝐿

∥P2𝑓 − P2𝑔∥2
∗ (4.141)

(𝑐)
≥ min

𝐶,𝑉

1
2
∥𝐶𝑇𝑉𝐶 − 2 ∗ 1

√
12𝑇

𝐼 ∥2
𝐹 (4.142)

= min
𝐶,𝑉

1
6𝑇

∥𝐶𝑇𝑉𝐶 − 𝐼 ∥2
𝐹 . (4.143)

Here, (𝑎) follows from the definition of P2 as an orthogonal projection with respect to ⟨·, ·⟩A ,

(𝑏) follows from the fact that ∥ · ∥2
A ≥ ∥ · ∥2

∗, and (𝑐) follows from the application of Lemma 4.5.

These matrices are elements of C𝑇×𝑇 , but the term 𝐶𝑇𝑉𝐶 is constrained to rank 𝐿. Hence, as

before we calculate:

min
𝑓 ∈Sym𝐿

∥ 𝑓 − 𝑔∥2
A ≥ 𝑇 − 𝐿

6𝑇
=

1
6
− 𝐿

6𝑇
. (4.144)

Letting𝑚 = min(𝑁 /2, 𝐷 − 1) and assuming𝑚 ≥ 2, it is a simple bound to calculate

𝑇 =

(
𝑁 /2 + 𝐷 − 1

𝑁 /2

)
≥

(
2𝑚
𝑚

)
≈ 4𝑚

√
𝜋𝑚

≥ 2𝑚 ,

and the bound follows.

□

This theorem demonstrates a hard function 𝑔 that cannot be efficiently approximated by 𝑓 ∈

Sym𝐿 for 𝐿 = 𝑝𝑜𝑙𝑦 (𝑁, 𝐷), but it does not yet evince a separation. Indeed, observing that ∥𝑔∥∞ =

1√
12𝑇
𝑁 2𝑇 = 𝑁 2√𝑇√

12
, 𝑔 has very large magnitude, and there’s no obvious way to easily approximate

this function by an efficient network in Sym2
𝐿
.

Thus, we consider a more complicated choice for 𝑔, that allows for the separation:

68

Theorem 4.16. Let 𝐷 > 1. Then let 𝑔′ = 𝑔

∥𝑔∥A for 𝑔 as defined in Lemma 4.11, such that ∥𝑔′∥A = 1.

Then for 𝐿 ≤ 𝑁 −2 exp(𝑂 (𝐷)):

min
𝑓 ∈Sym𝐿

∥ 𝑓 − 𝑔′∥2
A ≥ 1

12
. (4.145)

Proof. The lower bound follows almost identically as before. By Lemma 4.11.4 we still have that

P2𝑔
′ = 𝑔′. So we can write

𝑔 =
∑︁

1≤|𝛼 |≤𝑁 /2
𝑔𝛼p{𝛼,𝛼} (4.146)

𝑔′ =
∑︁

1≤|𝛼 |≤𝑁 /2

𝑔𝛼

∥𝑔∥A
p{𝛼,𝛼} . (4.147)

Thus, by the same reasoning as Theorem 4.15 we recover the lower bound:

min
𝑓 ∈Sym𝐿

∥ 𝑓 − 𝑔′∥2
A ≥ min

𝑓 ∈Sym𝐿

∥P2𝑓 − P2𝑔
′∥2

A (4.148)

≥ min
𝑓 ∈Sym𝐿

∥P2𝑓 − P2𝑔
′∥2

∗ (4.149)

≥ min
𝐶,𝑉

1
2
∥𝐶𝑇𝑉𝐶 −𝐺′∥2

𝐹 , (4.150)

where 𝐺′ is the matrix induced by 𝑔′ as given in Lemma 4.5, i.e. the diagonal matrix indexed by

𝐺′
𝛼𝛼 =

2𝑔𝛼
∥𝑔∥A .

Now, by the partial orthogonality of ⟨·, ·⟩A noted in Lemma 4.12, we have:

∥𝑔∥2
A =

∑︁
1≤|𝛼 |≤𝑁 /2

∑︁
1≤|𝛽 |≤𝑁 /2

⟨𝑔𝛼p{𝛼,𝛼}, 𝑔𝛽p{𝛽,𝛽}⟩A (4.151)

=
∑︁

1≤|𝛼 |≤𝑁 /2

∑︁
1≤|𝛽 |≤𝑁 /2

𝑔𝛼𝑔𝛽 (12 · 1𝛼=𝛽) (4.152)

= 12
∑︁

1≤|𝛼 |≤𝑁 /2
|𝑔𝛼 |2 . (4.153)

69

Hence, we can say

∥𝐺′∥2
𝐹 =

∑︁
1≤|𝛼 |≤𝑁 /2

���� 2𝑔𝛼
∥𝑔∥A

����2 (4.154)

=
4
∑

1≤|𝛼 |≤𝑁 /2 |𝑔𝛼 |2

12
∑

1≤|𝛼 |≤𝑁 /2 |𝑔𝛼 |2
(4.155)

=
1
3
. (4.156)

Call 𝐺′
𝐿
the best rank-𝐿 approximation of 𝐺′ in the Frobenius norm. By classical properties of

SVD it follows that𝐺′
𝐿
is a diagonal matrix with 𝐿 entries corresponding to the 𝐿 largest elements

of 𝐺′. Then because ∥𝐺′∥2
𝐹
= 1

3 :

∥𝐺′
𝐿 −𝐺′∥2

𝐹 =
1
3
−

𝐿∑︁
𝑙=1

(|2𝑔𝛼𝑙 |
∥𝑔∥A

)2
, (4.157)

where we order |𝑔𝛼𝑙 | in non-increasing order.

Combining Lemma 4.11.2 and 4.11.4 yields the inequality that for all 𝛼 such that 1 ≤ |𝛼 | ≤

𝑁 /2:

(
|2𝑔𝛼 |
∥𝑔∥A

)2
≤ 4𝑁 2

(
1 −

(
1
4

)2
)2𝐷

, (4.158)

so we can conclude

min
𝑓 ∈Sym𝐿

∥ 𝑓 − 𝑔′∥2
A ≥ 1

2
∥𝐺′

𝐿 −𝐺′∥2
𝐹 (4.159)

≥ 1
6
− 2𝐿𝑁 2

(
1 −

(
1
4

)2
)2𝐷

. (4.160)

70

Hence, if 𝐿 ≤ 1
24 · 𝑁 −2 (16

15
)2𝐷 , we derive a lower bound:

min
𝑓 ∈Sym𝐿

∥ 𝑓 − 𝑔′∥2
A ≥ 1

12
. (4.161)

□

We remark here that in the instance 𝐷 >
√︁
𝑁 /2, we replace 𝐷 with �̂� in the above bound,

which is consistent with Theorem 4.8.

4.5 Proof of Upper Bound

In this section we prove the upper bound to representing 𝑔 with an admissible activation that

satisfies Assumption 4.7.

The strategy is as follows. In Section 4.5.1 we exactly encode the hard function 𝑔 with an ef-

ficient network, but allowing the choice of very particular activation functions. In Section 4.5.2,

we leverage Assumption 4.7 to build a network that approximates the exact one, using a given ac-

tivation. We complete the proof in Section 4.5.3 by showing the exact and approximate networks

stay close together, inducting through the layers.

4.5.1 Exact Representation

Let us first describe how to write 𝑔 exactly with a network in Sym2
𝐿
, using particular activations.

We can then demonstrate to approximate those activations, which only introduces a polynomial

dependence in the desired error bound 𝜖 .

For exact representation, the activations we will allow are 𝜉 → 𝜉2, and 𝜉 → 𝜇𝐷 (𝜉). Note

that from the fact that 𝜉 · 𝜔 = 1
2
(
(𝜉 + 𝜔)2 − 𝜉2 − 𝜔2) , we can exactly multiply scalars with these

activations.

71

Then consider the following structure for 𝑓 ∈ Sym2
𝐿
with 𝐿 = 1. Given 𝑥, 𝑥′ ∈ C𝐷 with

|𝑥𝑖 | = |𝑥′𝑖 | = 1 for all 𝑖 , we define𝜓 ∗
1 (𝑥, 𝑥′) via a network as follows. In particular, we will use · to

explicitly indicate all scalar multiplication:

𝑧∗ = (𝑥1 · 𝑥′1, . . . , 𝑥𝐷 · 𝑥′𝐷) (4.162)

𝑍 (1)∗ =
(
𝜇𝐷 (𝑧∗1), . . . , 𝜇𝐷 (𝑧∗𝐷)

)
∈ C𝐷 (4.163)

𝑍 (2)∗ =
(
𝑍
(1)∗
1 · 𝑍 (1)∗

2 , . . . , 𝑍
(1)∗
𝐷−1 · 𝑍

(1)∗
𝐷

)
∈ C𝐷/2 (4.164)

. . . (4.165)

𝑍 (log2 𝐷)∗ = 𝑍
(log2 𝐷−1)∗
1 · 𝑍 (log2 𝐷−1)∗

2 ∈ C (4.166)

𝜓 ∗
1 (𝑥, 𝑥′) = 𝑍 (log2 𝐷)∗ (4.167)

In other words, we exactly calculate𝜓 ∗
1 (𝑥, 𝑥′) = ℎ(𝑥 ◦𝑥′) through log2𝐷 layers by multiplying

the terms 𝜇𝐷 (𝑧𝑖) at each layer. Note that |𝑧∗𝑖 | = 1 for all 𝑖 . So by applying Lemma 4.9.3, it is the

case that each entry |𝑍 (𝑘)∗
𝑖

| = |𝜇𝐷 (𝑧∗𝑖) |𝑘 ≤ (1 + 𝑟𝐷)𝐷 ≤ 1 + 2−𝐷 for all 𝑘 ≤ log2𝐷 .

Now, for an input 𝜉 ∈ C we define the map

𝜌∗(𝜉) = −4𝑁 2𝑟𝐷 + 𝜉
∥𝑔∥A

, (4.168)

and it’s easy to confirm that we exactly represent:

𝑔′(𝑋) = 𝜌∗
(

2𝑁∑︁
𝑛,𝑛′=1

𝜓 ∗
1 (𝑥𝑛, 𝑥′𝑛)

)
. (4.169)

4.5.2 Approximate Representation

Now, we can imitate the network above using the exp activation, and control the approximation

error in the infinity norm. Let us assume we’ve chosen 𝑓1, 𝑓2 as in Assumption 4.7. Furthermore,

72

let us define 𝜉 ★𝜔 = 1
2 (𝑓1(𝜉 + 𝜔) − 𝑓1(𝜉) − 𝑓1(𝜔)), so that ★ approximates scalar multiplication.

Then we mimic the exact network via:

𝑧 = (𝑥1 ★ 𝑥
′
1, . . . , 𝑥𝐷 ★ 𝑥′𝐷) (4.170)

𝑍 (1) = (𝑓2(𝑧1), . . . , 𝑓2(𝑧𝐷)) ∈ C𝐷 (4.171)

𝑍 (2) =
(
𝑍
(1)
1 ★𝑍

(1)
2 , . . . , 𝑍

(1)
𝐷−1 ★𝑍

(1)
𝐷

)
∈ C𝐷/2 (4.172)

. . . (4.173)

𝑍 (log2 𝐷) = 𝑍
(log2 𝐷−1)
1 ★𝑍

(log2 𝐷−1)
2 ∈ C (4.174)

𝜓1(𝑥, 𝑥′) = 𝑍 (log2 𝐷) . (4.175)

In other words, we replace all instances of multiplication ·with★, and all instances of 𝜇𝐷 with

𝑓2. Finally, we define the map 𝜌 as:

𝜌 (𝜉) = 4𝑁 2

∥𝑔∥A
·
(
𝜉

4𝑁 2 ★ 1 − 𝑟𝐷
)
, (4.176)

where we can clearly represent the constant 𝑟𝐷 via one additional neuron.

4.5.3 Proof of Upper Bound

We complete the approximation of 𝑔′ by showing the exact and approximate networks are nearly

equivalent in infinity norm, leveraging the assumption on our activation.

Theorem 4.17. Consider 𝜖 > 0 such that 𝜖 ≤ min
(

1
100 ,

1
12𝐷2

)
. For 𝐿 = 1, there exists 𝑓 ∈ Sym2

𝐿
,

parameterized with an activation 𝜎 that satisfies Assumption 4.7, with width 𝑂 (𝐷3 + 𝐷2 log 𝐷𝑁
𝜖
,

depth 𝑂 (log𝐷), and maximum weight magnitude 𝐷 log𝐷 such that over inputs 𝑋 ∈ C𝐷×2𝑁 with

73

unit norm entries:

∥ 𝑓 − 𝑔′∥∞ ≤ 𝜖 . (4.177)

Proof. Let 𝑓 be given by the Sym2
𝐿
network calculated in the previous section, i.e.

𝑓 (𝑋) = 𝜌
(

2𝑁∑︁
𝑛,𝑛′=1

𝜓1(𝑥𝑛, 𝑥′𝑛)
)
. (4.178)

Clearly 𝐿 = 1. From Assumption 4.7 and what it guarantees about 𝑓1 and 𝑓2, it’s clear that

the maximum width of 𝑓 is 𝑂 (𝐷3 + 𝐷2 log 𝐷
𝜖
), the depth is 𝑂 (log𝐷), and the maximum weight

magnitude is 𝑂 (𝐷 log𝐷).

We can prove the quality of approximation by matching layer by layer. First we note a quick

lemma:

Lemma 4.18. For |𝜉 |, |𝜔 | ≤ 3
2 :

|𝜉 ★𝜔 − 𝜉 · 𝜔 | ≤ 3
2
𝜖 . (4.179)

Proof. Based on Assumption 4.7, note that for |𝜉 |, |𝜔 | ≤ 3
2 , we have that |𝜉 +𝜔 | ≤ 3 and therefore:

|𝜉 ★𝜔 − 𝜉 · 𝜔 | ≤ 1
2

(
|𝑓1(𝜉 + 𝜔) − (𝜉 + 𝜔)2 | + |𝑓1(𝜉) − 𝜉2 | + |𝑓1(𝜔) − 𝜉2 |

)
(4.180)

≤ 3
2
𝜖 . (4.181)

□

It follows that, because all |𝑥𝑖 | = 1:

∥𝑧∗ − 𝑧∥∞ = max
𝑖≤𝐷

|𝑥𝑖 ★ 𝑥′𝑖 − 𝑥𝑖 · 𝑥′𝑖 | ≤
3
2
𝜖 . (4.182)

74

Now, because |𝑧∗𝑖 | = 1, it follows from our assumption on 𝜖 that |𝑧𝑖 | ≤ 1 + 3
2𝜖 ≤ 1 + 1

𝐷
. Hence, we

can apply Lemma 4.9.6 and say

∥𝑍 (1)∗ − 𝑍 (1) ∥∞ = max
𝑖≤𝐷

|𝜇𝐷 (𝑧∗𝑖) − 𝑓2(𝑧𝑖) | (4.183)

≤ max
𝑖≤𝐷

|𝜇𝐷 (𝑧∗𝑖) − 𝜇𝐷 (𝑧𝑖) | + |𝜇𝐷 (𝑧𝑖) − 𝑓2(𝑧𝑖) | (4.184)

(𝑎)
≤ 6

(
3
2
𝜖

)
+ 𝜖 (4.185)

≤ 10𝜖 . (4.186)

where (𝑎) follows from Lemma 4.9.6 and Assumption 4.7 again.

Note, observe the following inequality, for any 𝑖:

|𝑍 (1)∗
2𝑖 · 𝑍 (1)∗

2𝑖+1 − 𝑍
(1)
2𝑖 · 𝑍 (1)

2𝑖+1 | ≤ |𝑍 (1)∗
2𝑖 · 𝑍 (1)∗

2𝑖+1 − 𝑍
(1)∗
2𝑖 · 𝑍 (1)

2𝑖+1 | + |𝑍 (1)∗
2𝑖 · 𝑍 (1)

2𝑖+1 − 𝑍
(1)
2𝑖 · 𝑍 (1)

2𝑖+1 | (4.187)

= |𝑍 (1)∗
2𝑖 | · |𝑍 (1)∗

2𝑖+1 − 𝑍
(1)
2𝑖+1 | + |𝑍 (1)

2𝑖+1 | · |𝑍
(1)∗
2𝑖 − 𝑍 (1)

2𝑖 | (4.188)

= |𝜇𝐷 (𝑧∗2𝑖) | · 10𝜖 + |𝑓2(𝑧2𝑖+1) | · 10𝜖 (4.189)
(𝑎)
≤ 10𝜖 (|𝜇𝐷 (𝑧∗2𝑖) | + |𝜇𝐷 (𝑧2𝑖+1) | + 𝜖) (4.190)
(𝑏)
≤ 10𝜖

(
|𝜇𝐷 (𝑧∗2𝑖) | + |𝜇𝐷 (𝑧∗2𝑖+1) | + 6

(
3
2
𝜖

)
+ 𝜖

)
(4.191)

(𝑐)
≤ 10𝜖 (1 + 𝑟𝐷 + 1 + 𝑟𝐷 + 4𝜖 + 𝜖) (4.192)
(𝑑)
≤ 10𝜖 (5/2) (4.193)

≤ 25𝜖 , (4.194)

where (𝑎) follows from Assumption 4.7, (𝑏) follows from Lemma 4.9.6, (𝑐) follows from Lemma

4.9.3, and (𝑑) follows from the fact that 𝜖 ≤ 1
100 .

75

Hence, to draw error bounds one layer higher, we calculate:

∥𝑍 (2)∗ − 𝑍 (2) ∥∞ = max
𝑖≤𝐷/2

|𝑍 (1)∗
2𝑖 · 𝑍 (1)∗

2𝑖+1 − 𝑍
(1)
2𝑖 ★𝑍

(1)
2𝑖+1 | (4.195)

≤ max
𝑖≤𝐷/2

|𝑍 (1)∗
2𝑖 · 𝑍 (1)∗

2𝑖+1 − 𝑍
(1)
2𝑖 · 𝑍 (1)

2𝑖+1 | + |𝑍 (1)
2𝑖 · 𝑍 (1)

2𝑖+1 − 𝑍
(1)
2𝑖 ★𝑍

(1)
2𝑖+1 | (4.196)

(𝑎)
≤ 25𝜖 + 3

2
𝜖 (4.197)

≤ 27𝜖 , (4.198)

where in line (a) we apply Lemma 4.18 under the assumption that |𝑍 (1)
𝑖

| ≤ 3
2 for all 𝑖 .

Note that from Lemma 4.9.3

|𝑍 (1)
𝑖

| ≤ |𝑍 (1)
𝑖

− 𝑍 (1)∗
𝑖

| + |𝑍 (1)∗
𝑖

| (4.199)

≤ 10𝜖 + 1 + 𝑟𝐷 <
3
2

(4.200)

so this assumption is guaranteed.

We induct upwards through layers: assume that ∥𝑍 (𝑘)∗ − 𝑍 (𝑘) ∥∞ ≤ 3𝑘+1𝜖 for 𝑘 ≥ 2. Then:

|𝑍 (𝑘)∗
2𝑖 · 𝑍 (𝑘)∗

2𝑖+1 − 𝑍 (𝑘)
2𝑖 · 𝑍 (𝑘)

2𝑖+1 | ≤ |𝑍 (𝑘)∗
2𝑖 · 𝑍 (𝑘)∗

2𝑖+1 − 𝑍 (𝑘)∗
2𝑖 · 𝑍 (𝑘)

2𝑖+1 | + |𝑍 (𝑘)∗
2𝑖 · 𝑍 (𝑘)

2𝑖+1 − 𝑍
(𝑘)
2𝑖 · 𝑍 (𝑘)

2𝑖+1 | (4.201)

= |𝑍 (𝑘)∗
2𝑖 | · |𝑍 (𝑘)∗

2𝑖+1 − 𝑍 (𝑘)
2𝑖+1 | + |𝑍 (𝑘)

2𝑖+1 | · |𝑍
(𝑘)∗
2𝑖 − 𝑍 (𝑘)

2𝑖 | (4.202)
(𝑎)
≤ 3𝑘+1𝜖 (|𝑍 (𝑘)∗

2𝑖 | + |𝑍 (𝑘)
2𝑖+1 |) (4.203)

(𝑏)
≤ 3𝑘+1𝜖 (|𝑍 (𝑘)∗

2𝑖 | + |𝑍 (𝑘)∗
2𝑖+1 | + 3𝑘+1𝜖) (4.204)

(𝑐)
≤ 3𝑘+1𝜖 ((1 + 𝑟𝐷)𝐷 + (1 + 𝑟𝐷)𝐷 + 3𝑘+1𝜖) (4.205)
(𝑑)
≤ 3𝑘+1𝜖

(
1 + 2−𝐷 + 1 + 2−𝐷 + 1

4

)
(4.206)

≤ 3𝑘+1𝜖

(
11
4

)
, (4.207)

where (𝑎) and (𝑏) are both applications of the inductive hypothesis, (𝑐) follows from Lemma

76

4.9.3, (𝑑) is the binomial inequality and the fact that for any 𝑘 ≤ log2𝐷 :

3𝑘+1𝜖 ≤ 3
(
4log2 𝐷

)
𝜖 (4.208)

=
𝜖

3𝐷2 (4.209)

≤ 1
4
. (4.210)

And as before:

∥𝑍 (𝑘+1)∗ − 𝑍 (𝑘+1) ∥∞ = max
𝑖

|𝑍 (𝑘)∗
2𝑖 · 𝑍 (𝑘)∗

2𝑖+1 − 𝑍 (𝑘)
2𝑖 ★𝑍

(𝑘)
2𝑖+1 | (4.211)

≤ max
𝑖

|𝑍 (𝑘)∗
2𝑖 · 𝑍 (𝑘)∗

2𝑖+1 − 𝑍 (𝑘)
2𝑖 · 𝑍 (𝑘)

2𝑖+1 | + |𝑍 (𝑘)
2𝑖 · 𝑍 (𝑘)

2𝑖+1 − 𝑍
(𝑘)
2𝑖 ★𝑍

(𝑘)
2𝑖+1 | (4.212)

(𝑎)
≤ 3𝑘+1𝜖

(
11
4

)
+ 3

2
𝜖 (4.213)

≤ 3𝑘+2𝜖 , (4.214)

where in line (a) we apply Lemma 4.18 under the assumption that |𝑍 (𝑘)
𝑖

| ≤ 3
2 for all 𝑖 .

Note that as before

|𝑍 (𝑘)
𝑖

| ≤ |𝑍 (𝑘)
𝑖

− 𝑍 (𝑘)∗
𝑖

| + |𝑍 (𝑘)∗
𝑖

| (4.215)

≤ 3𝑘+1𝜖 + (1 + 𝑟𝐷)𝐷 (4.216)

≤ 3𝑘+1𝜖 + 1 + 2−𝐷 ≤ 3
2
, (4.217)

so the assumption is granted.

Thus, completing the induction and remembering the definition of𝜓1, we conclude:

∥𝜓 ∗
1 (𝑥𝑛, 𝑥𝑛′) −𝜓1(𝑥𝑛, 𝑥𝑛′)∥∞ ≤ 3log2 𝐷+1𝜖 < 3𝐷2𝜖 . (4.218)

77

Hence, we can finally bound the final networks:

∥𝑔′ − 𝑓 ∥∞ =

𝜌∗
(

2𝑁∑︁
𝑛,𝑛′=1

𝜓 ∗
1 (𝑥𝑛, 𝑥𝑛′)

)
− 𝜌

(
2𝑁∑︁

𝑛,𝑛′=1
𝜓1(𝑥𝑛, 𝑥𝑛′)

)

∞

(4.219)

=
1

∥𝑔∥A

 2𝑁∑︁
𝑛,𝑛′=1

𝜓 ∗
1 (𝑥𝑛, 𝑥𝑛′) − 4𝑁 2

([
1

4𝑁 2

2𝑁∑︁
𝑛,𝑛′=1

𝜓1(𝑥𝑛, 𝑥𝑛′)
]
★ 1

)

∞

(4.220)

(𝑎)
≤ 4𝑁 2

 1
4𝑁 2

2𝑁∑︁
𝑛,𝑛′=1

𝜓 ∗
1 (𝑥𝑛, 𝑥𝑛′) −

([
1

4𝑁 2

2𝑁∑︁
𝑛,𝑛′=1

𝜓1(𝑥𝑛, 𝑥𝑛′)
]
★ 1

)

∞

(4.221)

(𝑏)
≤ 4𝑁 2

 1
4𝑁 2

2𝑁∑︁
𝑛,𝑛′=1

𝜓 ∗
1 (𝑥𝑛, 𝑥𝑛′) −

1
4𝑁 2

2𝑁∑︁
𝑛,𝑛′=1

𝜓 ∗
1 (𝑥𝑛, 𝑥𝑛′)

∞

+ 4𝑁 2 · 3
2
𝜖 (4.222)

≤ 4𝑁 2

𝜓 ∗
1 (𝑥, 𝑥′) −𝜓 (𝑥, 𝑥′)

∞ + 4𝑁 2 · 3

2
𝜖 (4.223)

≤ 12𝑁 2𝐷2𝜖 + 6𝑁 2𝜖 (4.224)

≤ 18𝑁 2𝐷2𝜖 , (4.225)

where in (𝑎) we apply the lower bound ∥𝑔∥𝐴 ≥ 1 from 4.11.2 and in (𝑏) we once again apply

Lemma 4.18, valid from the fact that for all 𝑋 with unit norm entries:����� 1
4𝑁 2

2𝑁∑︁
𝑛,𝑛′=1

𝜓1(𝑥𝑛, 𝑥𝑛′)
����� ≤ 3𝐷2𝜖 ≤ 3

2
. (4.226)

So it remains to map 𝜖 → 𝜖
18𝑁 2𝐷2 in order to yield that ∥ 𝑓 − 𝑔′∥ ≤ 𝜖 . Note that this remapping

only changes the maximum width to be 𝑂 (𝐷3 + 𝐷2 log 𝑁𝐷
𝜖
). □

78

5 | Approximating antisymmetric

functions with high interaction

In this chapter, we introduce a focus on networks that enforce antisymmetry, i.e. functions Ψ :

C𝑁 → C𝑁 with the constraint:

Ψ(𝑥𝜎 (1), . . . , 𝑥𝜎 (𝑁)) = sign(𝜎)Ψ(𝑥1, . . . , 𝑥𝑁) . (5.1)

In other words, antisymmetric functions are similar to symmetric functions, but when the in-

puts are permuted, the sign of the function is flipped according to the sign of the corresponding

permutation.

The antisymmetric constraint is an uncommon one, that primarily comes up in quantum

chemistry. Specifically, it appears when solving Schröndinger’s equation for quantum many-

body systems, which is an eigenvalue problem of the form:

𝐻Ψ = 𝜆Ψ .

where 𝐻 is some Hamiltonian operator, often based on a system of atomic nuclei and electrons.

Here one should consider 𝑁 electrons that each occupy a spatial location in some input do-

main Ω, and Ψ the wavefunction, a complex-valued map Ψ : Ω⊗𝑁 → C. The wavefunction com-

pletely characterizes the physical properties of the system: for example, the squared modulus

79

|Ψ(𝑥1, . . . , 𝑥𝑁) |2 gives the probability density of encountering the electrons in the spatial loca-

tions (𝑥1, . . . , 𝑥𝑁). A particularly important object is the ground state, which is the eigenfunction

Ψ that is associated with the smallest eigenvalue of 𝐻 . By definition, electrons are fermions,

which means the wavefunction must satisfy the additional property of antisymmetry. Efforts

to solve Schrödinger’s equation directly by parameterizing the ground-state wavefunction must

rely on an antisymmetric architecture [Pfau et al. 2020; Hermann et al. 2020], although we note

there are alternative strategies [Carleo and Troyer 2017; Zhao et al. 2023].

In general, simple changes to the symmetric architectures like DeepSets typically don’t suffice

to enforce this new type of invariance, and therefore antisymmetry demands unique architec-

tures. The focus of this work is on two of the simplest architectures that enforce antisymmetry.

They are both characterized via the Slater determinant [Szabo and Ostlund 2012], which is the

orthogonal projection of an arbitrary function over 𝑁 inputs into the linear subspace of antisym-

metric functions.

The first architecture, the Slater ansatz, models antisymmetric functions as a linear combi-

nation of several Slater determinants. This is akin to how a shallow, vanilla neural network is

formed as a linear combination of simple non-linear ridge functions. This ansatz defines a univer-

sal approximation class for antisymmetric functions, but the approximation rates may be cursed

by the dimensionality of the input space, as is the case when studying lower bounds for standard

shallow neural networks [Maiorov and Meir 1998].

A more complicated architecture is the Jastrow ansatz, where each Slater determinant is ‘aug-

mented’ with a symmetric prefactor [Jastrow 1955], which is to say multiplied by a permutation-

invariant function. One can confirm that the product of an antisymmetric function with a sym-

metric one is again antisymmetric.

However, both these models are universal approximators, and there is no quantitative result

that demonstrates the advantage of one model over the other via a particular hard antisymmet-

ric function. Among practitioners, it is common knowledge that the Slater ansatz is inefficient

80

for representing the ground state wavefunction Ψ for physically important electronic systems,

compared to Jastrow. But a formal proof of this intuition, even for this setting when the electron

domain Ω is one-dimensional, is absent from the literature. While advanced parameterizations

such as backflow [Luo and Clark 2019], hidden fermions [Moreno et al. 2021], and Vandermonde-

like parameterizations [Han et al. 2019a,b] are commonly used in practice, studying the simplest

models is a crucial first step to understanding more elaborate models.

In terms of separating antisymmetric classes, [Huang et al. 2021] proves a non-constructive

limit on the representability of the backflow ansatz, but requires exact representation rather than

approximation in some norm. Conversely, [Hutter 2020] demonstrates the universality of a sin-

gle backflow ansatz, but requires a highly discontinuous backflow transform that may not be

efficiently representable with a neural network. Consequently, constructing an explicit antisym-

metric function that realizes the separation is an open question, even in the seemingly simple

setting of one-dimensional particles.

We are interested in understanding quantitative differences in approximation power between

Slater and Jastrow. It turns out this question can be most easily addressed when the symmetric

prefactor on𝐺 is a relational network [Santoro et al. 2017], and so the question mirrors the issue

of depth separation based on set element interaction in Chapter 4. We prove the first explicit,

quantitative separation between the two ansätze, and construct an antisymmetric function 𝐺∗

that can be efficiently approximated with the Jastrow ansatz but requires exponential size to be

approximated with the Slater ansatz.

5.1 Preliminaries

We consider 𝑁 dimensional inputs, restricted to the complex unit circle. That is, 𝑥 ∈ Ω𝑁 with

Ω = {𝑧 ∈ C; |𝑧 | = 1}. We denote the tensor product ⊗ where, for 𝑓 , 𝑔 : Ω → C, we have

𝑓 ⊗ 𝑔 : Ω2 → C such that (𝑓 ⊗ 𝑔) (𝑥,𝑦) = 𝑓 (𝑥)𝑔(𝑦). Given a permutation 𝜎 ∈ S𝑁 , and 𝑥 ∈ Ω𝑁 ,

81

we denote by 𝜎.𝑥 = (𝑥𝜎 (1), . . . , 𝑥𝜎 (𝑁)) ∈ Ω𝑁 the natural group action.

Let A denote the antisymmetric projection operator, defined for rank-one functions and ex-

tended by linearity:

A(𝑓1 ⊗ · · · ⊗ 𝑓𝑁) (𝑥) =
1
𝑁 !

det



𝑓1(𝑥1) . . . 𝑓1(𝑥𝑁)

𝑓2(𝑥1) . . . 𝑓2(𝑥𝑁)

. . .

𝑓𝑁 (𝑥1) . . . 𝑓𝑁 (𝑥𝑁)


(5.2)

5.1.1 Antisymmetric Ansätze

We consider a Slater determinants as a term of the form A(𝑓1 ⊗ · · · ⊗ 𝑓𝑁) (up to rescaling). Each

𝑓𝑛 is referred to as an orbital. Thus the Slater determinant ansatz with 𝐿 terms can be written as:

𝐹 =

𝐿∑︁
𝑙=1

A(𝑓 𝑙1 ⊗ · · · ⊗ 𝑓 𝑙𝑁) . (5.3)

Similarly, the Jastrow ansatz (with only one term) [Jastrow 1955] can be written as:

𝐺 = 𝑝 · A(𝑔1 ⊗ · · · ⊗ 𝑔𝑁) (5.4)

where 𝑝 is a symmetric function, namely 𝑝 (𝜎.𝑥) = 𝑝 (𝑥) for any 𝜎 and 𝑥 . It is immediate to verify

that 𝐺 is antisymmetric.

Our primary goal in this work is to separate the Slater and Jastrow ansatz. But we make quick

mention of the Backflow ansatz [Feynman and Cohen 1956] which can be defined as

𝐺 (𝑥) = A(𝑔1 ⊗ . . . 𝑔𝑁) (Φ(𝑥)) , (5.5)

where Φ : Ω𝑁 → Ω̃𝑁 is an equivariant map, satisfying Φ(𝜎.𝑥) = 𝜎.Φ(𝑥).

82

Note that any Jastrow ansatz can be written in the form of a Backflow ansatz. Indeed, if

Φ(𝑥) =


𝑥1 . . . 𝑥𝑁

𝑝 (𝑥)1/𝑁 . . . 𝑝 (𝑥)1/𝑁

 and 𝑔𝑛 (𝑥 𝑗 , 𝑝) = 𝑔𝑛 (𝑥 𝑗)𝑝 , one can quickly verify that 𝐺 = �̃� .

Therefore, quantitative separations between Slater and Jastrow automatically imply the same

rates for Backflow.

5.1.2 Inner Products

Tomeasure the distance between the Slater ansatz and the Jastrow ansatz, we need an appropriate

norm. For univariate functions 𝑓 , 𝑔 : 𝑆1 → C we will use the 𝑆1 inner product, in this chapter

dropping the subscript:

⟨𝑓 , 𝑔⟩ := ⟨𝑓 , 𝑔⟩𝑆1 =
1

(2𝜋)

∫ 2𝜋

0
𝑓 (𝑒𝑖𝜃)𝑔(𝑒𝑖𝜃)𝑑𝜃 . (5.6)

For functions acting on 𝑁 particles, 𝐹,𝐺 : (𝑆1)𝑁 → C, the associated inner product is

⟨𝐹,𝐺⟩ :=
1

(2𝜋)𝑁

∫
[0,2𝜋]𝑁

𝐹 (𝑒𝑖𝜽)𝐺 (𝑒𝑖𝜽)𝑑𝜽 . (5.7)

Observe that these inner products correspond to the input distribution where each electron is

sampled uniformly iid from the complex unit circle. Then the orthogonality of the Fourier basis

may be expressed in this notation by the fact that ⟨𝑥𝛼 , 𝑥𝛽⟩ = 1𝛼=𝛽 .

5.1.3 Schur Polynomials

To construct relevant antisymmetric functions, we use several identities related to the symmetric

Schur polynomials. First, we introduce some properties of partitions as they will be used to index

Schur polynomials.

Partitions can be represented by their Young diagram, see Figure 5.1. Furthermore, we will

83

(a) 𝜆 = (5, 4, 1) (b) 𝜆′ = (3, 2, 2, 2, 1)

Figure 5.1: Example of Young diagram and conjugate partition

need the following notions:

Definition 5.1. Given a partition 𝜆, the conjugate partition 𝜆′ is gotten by reflecting the Young

diagram of 𝜆 along the line 𝑦 = −𝑥 . We call a partition 𝜆 even if every part 𝜆𝑖 is even. Further, we

call 𝜆 doubly even if 𝜆 and 𝜆′ are both even.

Reminding the Vandermonde written as:

𝑉 (𝑥) =
∏
𝑖< 𝑗

(𝑥 𝑗 − 𝑥𝑖) . (5.8)

Then we denote the Schur polynomial indexed by partition 𝜆 as:

𝑠𝜆 (𝑥) :=


𝑉 (𝑥)−1det

[
𝑥
𝜆 𝑗+𝑁− 𝑗
𝑖

]
𝑙 (𝜆) ≤ 𝑁 ,

0 𝑙 (𝜆) > 𝑁 .

(5.9)

Given two partitions 𝜆 and 𝜇, the following fact follows easily from linearity of the determinant:

⟨𝑠𝜆 ·𝑉 , 𝑠𝜇 ·𝑉 ⟩ = 𝑁 ! · 1𝜆=𝜇 . (5.10)

84

5.2 Separation Statement

Our main result is the characterization of a hard function𝐺∗, such that the Slater ansatz 𝐹 cannot

approximate 𝐺∗ without an exponential number of determinants (regardless of how the orbital

functions are parameterized), while the Jastrow ansatz 𝐺 can approximate 𝐺∗ with a single de-

terminant and efficient neural network parameterizations.

Theorem 5.2. Consider a Slater ansatz with 𝐿 terms:

𝐹 =

𝐿∑︁
𝑙=1

A(𝑓 𝑙1 ⊗ · · · ⊗ 𝑓 𝑙𝑁) (5.11)

parameterized by orbitals 𝑓 𝑙𝑛 : 𝑆1 → C, and a Jastrow ansatz

𝐺 = 𝑝 · A(𝑔1 ⊗ · · · ⊗ 𝑔𝑁) (5.12)

parameterized by orbitals 𝑔𝑛 : 𝑆1 → C and a symmetric Jastrow factor 𝑝 : (𝑆1)𝑁 → C.

Let 𝑁 ≥ 6 be even, and 1 > 𝜖 > 0. Then there is a hard antisymmetric function 𝐺∗ with

∥𝐺∗∥ = 1, such that𝐺 parameterized by a neural network with width, depth, and weights scaling in

𝑂 (𝑝𝑜𝑙𝑦 (𝑁, log 1/𝜖)) can approximate 𝐺∗:

∥𝐺 −𝐺∗∥∞ < 𝜖 (5.13)

but, for a number of Slater determinants 𝐿 ≤ 𝑒𝑁 2
:

min
𝐹

∥𝐹 −𝐺∗∥2 ≥ 3
10

. (5.14)

The definition of 𝐺∗ follows from the identity:

85

Theorem 5.3 ([Sundquist 1996] Theorem 5.2, [Ishikawa et al. 2006] Corollary 4.2).

∑︁
𝜆 doubly even

𝑠𝜆 ·𝑉 = Pf

[
𝑥𝑖 − 𝑥 𝑗

1 − 𝑥2
𝑖
𝑥2
𝑗

]
(5.15)

=
∏
𝑖< 𝑗

1
1 − 𝑥2

𝑖
𝑥2
𝑗

· 𝑁 ! · A(𝜙1 ⊗ · · · ⊗ 𝜙𝑁) , (5.16)

where we set the 𝜙 maps to be:

𝜙 𝑗 (𝑥𝑖) =


𝑥𝑖 (𝑥2

𝑖)𝑁 /2− 𝑗 (1 + 𝑥4
𝑖) 𝑗−1 1 ≤ 𝑗 ≤ 𝑁 /2

(𝑥2
𝑖)𝑁− 𝑗 (1 + 𝑥4

𝑖) 𝑗−1−𝑁 /2 𝑁 /2 + 1 ≤ 𝑗 ≤ 𝑁

(5.17)

For any 𝑟 ∈ Rwith |𝑟 | < 1, by mapping 𝑥 ↦→ 𝑟𝑥 and using homogeneity of 𝑠𝜆 and𝑉 , we define

𝐺∗ via the generating function identity:

𝐺∗ :=
𝐶

√
𝑁 !

∑︁
𝜆 doubly even

𝑟

(
|𝜆 |+𝑁 (𝑁−1)

2

)
𝑠𝜆 ·𝑉 = 𝐶

√
𝑁 ! ·

∏
𝑖< 𝑗

1
1 − 𝑟 4𝑥2

𝑖
𝑥2
𝑗

· A(𝜙 (𝑟)
1 ⊗ · · · ⊗ 𝜙 (𝑟)

𝑁
) , (5.18)

where

𝜙
(𝑟)
𝑗
(𝑥𝑖) =


𝑟𝑥𝑖 ((𝑟𝑥𝑖)2)𝑁 /2− 𝑗 (1 + (𝑟𝑥𝑖)4) 𝑗−1 if 1 ≤ 𝑗 ≤ 𝑁 /2

((𝑟𝑥𝑖)2)𝑁− 𝑗 (1 + (𝑟𝑥𝑖)4) 𝑗−1−𝑁 /2 if 𝑁 /2 + 1 ≤ 𝑗 ≤ 𝑁

(5.19)

where 𝐶 is chosen to normalize 𝐺∗.

Note that from the RHS, it is clear that 𝐺∗ is written in the form of a Jastrow ansatz. We will

discuss efficiency of computing 𝐺∗ in Lemma 5.9.

It remains to choose 𝑟 and 𝐶 such that ∥𝐺∗∥ = 1. Note that, if 𝑝 (𝑘) denotes the number of

partitions of 𝑘 , and and 𝑝′(𝑘) denotes the number of doubly even partitions of 𝑘 , it’s easy to see

86

that

𝑝′(𝑘) =


𝑝 (𝑘/4) 𝑘 ≡ 0 mod 4

0 𝑒𝑙𝑠𝑒

(5.20)

So we calculate by orthogonality:

∥𝐺∗∥2 =
𝐶2

𝑁 !

〈 ∑︁
𝜆 doubly even

𝑟

(
|𝜆 |+𝑁 (𝑁−1)

2

)
𝑠𝜆 ·𝑉 ,

∑︁
𝜇 doubly even

𝑟

(
|𝜇 |+𝑁 (𝑁−1)

2

)
𝑠𝜇 ·𝑉

〉
(5.21)

= 𝐶2𝑟𝑁 (𝑁−1)
∑︁

𝜆 doubly even
𝑟 2|𝜆 | (5.22)

= 𝐶2𝑟𝑁 (𝑁−1)
∞∑︁
𝑘=0

𝑟 2𝑘𝑝′(𝑘) (5.23)

= 𝐶2𝑟𝑁 (𝑁−1)
∞∑︁
𝑘=0

𝑟 8𝑘𝑝 (𝑘) (5.24)

= 𝐶2𝑟𝑁 (𝑁−1)
∞∏
𝑘=1

1
1 − 𝑟 8𝑘 (5.25)

where in the last line we employ the generating function for partition numbers. Then setting

𝐶 =

(
𝑟−𝑁 (𝑁−1) ∏∞

𝑘=1 1 − 𝑟 8𝑘
)1/2

gives ∥𝐺∗∥ = 1.

Finally, we will choose 𝑟 = 1 − 1
8𝑁 4+8 .

5.3 Proof of Lower Bound

We prove the lower bound of Theorem 5.2 by first bounding the Slater approximation in terms of

the Frobenius norm of the corresponding flattened matrices, and then using SVD to control this

bound.

87

5.3.1 Tensor Flattening

Definition 5.4. Let N𝑁> denote the set of sequences of length 𝑁 that are strictly decreasing non-

negative integers. Introduce the index sets:

𝔄1 = {𝛽 ∈ N𝑁 /2
> : 𝛽𝑖 ≡ 1 mod 2} (5.26)

𝔄2 = {𝛾 ∈ N𝑁 /2
> : 𝛾𝑖 ≡ 0 mod 2} (5.27)

For 𝛽 ∈ 𝔄1 and 𝛾 ∈ 𝔄2, let 𝛽 ∪ 𝛾 ∈ N𝑁 be the concatenation of 𝛽 and 𝛾 .

Then given a function 𝐹 acting on 𝑁 particles such as 𝐹 , define the matrix 𝑀 (𝐹) indexed by

the sets 𝔄1 and 𝔄2:

𝑀 (𝐹) =
[
⟨𝐹, 𝑥𝛽∪𝛾 ⟩

]
𝛽,𝛾

(5.28)

Lemma 5.5. For 𝐹 as in Theorem 5.2:

∥𝐹 −𝐺∗∥2 ≥ 𝑁 ! · ∥𝑀 (𝐹) −𝑀 (𝐺∗)∥2
𝐹 (5.29)

Proof. Note again that terms of the form 𝑥𝛼 for 𝛼 ∈ N𝑁 are orthonormal. Hence, we derive an

initial lower bound by Bessel’s inequality:

∥𝐹 −𝐺∗∥2 ≥
∑︁
𝛼∈N𝑁

(⟨𝐹, 𝑥𝛼⟩ − ⟨𝐺∗, 𝑥𝛼⟩)2
. (5.30)

Note that by antisymmetry of 𝐹 and 𝐺∗, if 𝛼 doesn’t have distinct elements then

⟨𝐹, 𝑥𝛼⟩ = ⟨𝐺, 𝑥𝛼⟩ = 0 . (5.31)

88

To see this, suppose 𝛼1 = 𝛼2, and let 𝑃12 be the permutation operator defined by

𝑃12𝐹 (𝑥1, 𝑥2, 𝑥3, . . .) = 𝐹 (𝑥2, 𝑥1, 𝑥3, . . .) (5.32)

It’s easy to see 𝑃12 is a symmetric operator with respect to ⟨·, ·⟩. Then for any antisymmetric

function 𝐻 ,

⟨𝐻, 𝑥𝛼⟩ = ⟨𝐻, 𝑃12𝑥
𝛼⟩ (5.33)

= ⟨𝑃12𝐻, 𝑥
𝛼⟩ (5.34)

= −⟨𝐻, 𝑥𝛼⟩ (5.35)

which implies ⟨𝐻, 𝑥𝛼⟩ = 0.

Furthermore, let us define the equivalence class ∼ as 𝛼 ∼ 𝛼′ iff there exists a permutation 𝜋

such that 𝛼 = 𝜋.𝛼′. Then by similar reasoning, 𝛼 ∼ 𝛼′ implies:

⟨𝐹, 𝑥𝛼⟩ = (−1)𝜋
〈
𝐹, 𝑥𝛼

′
〉

(5.36)

⟨𝐺∗, 𝑥𝛼⟩ = (−1)𝜋
〈
𝐺∗, 𝑥𝛼

′
〉

(5.37)

From these facts, we can sum over all 𝑁 ! permutations acting on an 𝛼 with distinct parts, so

we can write:

∥𝐹 −𝐺∗∥2 ≥ 𝑁 ! ·
∑︁
𝛼∈N𝑁

>

(⟨𝐹, 𝑥𝛼⟩ − ⟨𝐺∗, 𝑥𝛼⟩)2 (5.38)

≥ 𝑁 ! ·
∑︁

𝛽∈𝔄1,𝛾∈𝔄2

(〈
𝐹, 𝑥𝛽∪𝛾

〉
−

〈
𝐺∗, 𝑥𝛽∪𝛾

〉)2
(5.39)

= 𝑁 ! · ∥𝑀 (𝐹) −𝑀 (𝐺∗)∥2
𝐹 (5.40)

□

89

(a) 𝜆 = (4, 4, 2, 2)

• • •
• •

•

(b) 𝜆 + 𝛿 = (7, 6, 3, 2)

Figure 5.2: 𝜆 and 𝜆 + 𝛿 for 𝜆 doubly even.

5.3.2 Low-rank Approximation

Lemma 5.6. Given 𝐹 as in Theorem 5.2:

𝑁 ! · ∥𝑀 (𝐹) −𝑀 (𝐺∗)∥2
𝐹 ≥ 3

10
(5.41)

Proof. To begin, let us calculate the entries of these matrices. Let 𝛿 = (𝑁 − 1, 𝑁 − 2, . . . , 1, 0), and

observe that:

⟨𝑠𝜆 ·𝑉 , 𝑥𝛽∪𝛾 ⟩ =


±1 𝜆 + 𝛿 ∼ 𝛽 ∪ 𝛾 ,

0 otherwise.
(5.42)

Note that ambiguity in sign depends on the sign of the permutation that maps 𝜆 + 𝛿 to 𝛽 ∪ 𝛾 .

By definition, 𝐺∗ is a sum of terms of the form 𝑠𝜆 · 𝑉 where 𝜆 is doubly even. This implies

that 𝜆 + 𝛿 = (2𝑎1 + 1, 2𝑎1, 2𝑎2 + 1, 2𝑎2, . . .) with 𝑎𝑖 > 𝑎𝑖+1. In other words, 𝜆 + 𝛿 ∼ (𝛾 + 1) ∪𝛾 with

𝛾 + 1 ∈ 𝔄1 and 𝛾 ∈ 𝔄2, where 1 is the all-ones vector. See Figure 5.2 for an example.

It follows that we may write:

⟨𝐺∗, 𝑥𝛽∪𝛾 ⟩ =


± 𝐶√

𝑁 !
𝑟

(
|𝜆 |+𝑁 (𝑁−1)

2

)
𝛽 = (𝛾 + 1), 𝜆 + 𝛿 ∼ (𝛾 + 1) ∪ 𝛾 ,

0 otherwise.
(5.43)

Supposewe index𝑀 (𝐺∗) such that the 𝑖th column is indexed by𝛾 (𝑖) , and the 𝑖th row is indexed

90

by 𝛾 (𝑖) + 1. Then 𝑀 (𝐺∗) is in fact a diagonal matrix. And given the functional form of 𝐺∗, we

have that the diagonal terms will include:

• ± 𝐶√
𝑁 !
𝑟

(
0+𝑁 (𝑁−1)

2

)
repeated 𝑝 (0) times,

• ± 𝐶√
𝑁 !
𝑟

(
4+𝑁 (𝑁−1)

2

)
repeated 𝑝 (1) times,

• ± 𝐶√
𝑁 !
𝑟

(
8+𝑁 (𝑁−1)

2

)
repeated 𝑝 (2) times,

• . . .

• ± 𝐶√
𝑁 !
𝑟

(
4𝑘+𝑁 (𝑁−1)

2

)
repeated 𝑝 (𝑘) times.

Second, let us consider 𝑀 (𝑓1 ⊗ · · · ⊗ 𝑓𝑁). We can calculate the inner product of a rank-one

function as the product of orbital inner products:

⟨𝑓1 ⊗ · · · ⊗ 𝑓𝑁 , 𝑥
𝛽∪𝛾 ⟩ =

𝑁 /2∏
𝑛=1

⟨𝑓𝑛, 𝑥𝛽𝑛𝑛 ⟩
𝑁 /2∏
𝑛=1

⟨𝑓𝑁 /2+𝑛, 𝑥
𝛾𝑛

𝑁 /2+𝑛⟩ (5.44)

Define vectors 𝑢 ∈ C|𝔄1 | and 𝑣 ∈ C|𝔄2 | such that

𝑢𝛽 =

𝑁 /2∏
𝑛=1

⟨𝑓𝑛, 𝑥𝛽𝑛𝑛 ⟩ , (5.45)

𝑣𝛾 =

𝑁 /2∏
𝑛=1

⟨𝑓𝑁 /2+𝑛, 𝑥
𝛾𝑛

𝑁 /2+𝑛⟩ . (5.46)

Then it’s clear that𝑀 (𝑓1 ⊗ · · · ⊗ 𝑓𝑁) = 𝑢𝑣𝑇 , i.e. it is rank-one. Consequently, because 𝐹 is the sum

of 𝐿 · 𝑁 ! rank-one tensors,𝑀 (𝐹) will be rank at most 𝐿 · 𝑁 !.

Thus, because𝑀 (𝐹) is low-rank and𝑀 (𝐺∗) is chosen to be diagonal, we have an approachable

infinite-dimensional matrix low-rank approximation problem.

By SVD, the optimal choice for 𝐹 is to produce a diagonal matrix 𝑀 (𝐹) of rank 𝐿 · 𝑁 ! with

the maximal singular values of𝐺∗ along the diagonal. So it only remains to calculate these terms,

and lower bound the approximation.

91

So suppose we choose 𝐿 ≤ 𝑒𝑁 2 . Noting that 𝑁𝑁 ≤ 𝑒𝑁 2/14 for 𝑁 ≥ 6:

𝐿 · 𝑁 ! ≤ 𝑒𝑁 2
𝑁𝑁 (5.47)

≤ 𝑒2𝑁 2/14 (5.48)

≤ 𝑝 (𝑁 4) (5.49)

where the last line follows from Corollary 3.1 in [Maróti 2003].

So clearly 𝐿 ≤ 𝑒𝑁 2 guarantees that 𝐿 · 𝑁 ! ≤ ∑𝑁 4

𝑘=0 𝑝 (𝑘).

Thus, since 𝑀 (𝐹) is constrained to have rank ≤ 𝐿 · 𝑁 !, it will be diagonal with ≤ ∑𝑁 4

𝑘=0 𝑝 (𝑘)

terms, so that:

𝑁 ! · ∥𝑀 (𝐹) −𝑀 (𝐺∗)∥2
𝐹 ≥ 𝑁 ! ·

∞∑︁
𝑘=𝑁 4+1

(
± 𝐶
√
𝑁 !
𝑟

(
4𝑘+𝑁 (𝑁−1)

2

))2
𝑝 (𝑘) (5.50)

= 𝐶2𝑟𝑁 (𝑁−1)
∞∑︁

𝑘=𝑁 4+1

𝑟 8𝑘𝑝 (𝑘) (5.51)

= 1 −𝐶2𝑟𝑁 (𝑁−1)
𝑁 4∑︁
𝑘=0

𝑟 8𝑘𝑝 (𝑘) (5.52)

where the last line follows as 𝐶 was chosen so that 𝐶2𝑟𝑁 (𝑁−1) ∑∞
𝑘=0 𝑟

8𝑘𝑝 (𝑘) = 1.

Note that

𝑁 4∑︁
𝑘=0

𝑟 8𝑘𝑝 (𝑘) ≤
𝑁 4∏
𝑘=1

1
1 − 𝑟 8𝑘 (5.53)

as the LHS is the generating function for partitions 𝜆 with |𝜆 | ≤ 𝑁 4, and the RHS is the

generating function for partitions with all parts ≤ 𝑁 4, which clearly dominates the LHS termwise.

92

So plugging back in the definition of 𝐶 =

(
𝑟−𝑁 (𝑁−1) ∏∞

𝑘=1 1 − 𝑟 8𝑘
)1/2

:

𝑁 ! · ∥𝑀 (𝐹) −𝑀 (𝐺∗)∥2
𝐹 ≥ 1 −𝐶2𝑟𝑁 (𝑁−1)

𝑁 4∏
𝑘=1

1
1 − 𝑟 8𝑘 (5.54)

= 1 −
∞∏

𝑘=𝑁 4+1

1 − 𝑟 8𝑘 . (5.55)

Finally, remembering 𝑟 = 1 − 1
8𝑁 4+8 , we have:

1 −
∞∏

𝑘=𝑁 4+1

1 − 𝑟 8𝑘 ≥ 1 −
(
1 − 𝑟 8𝑁 4+8

)
(5.56)

=

(
1 − 1

8𝑁 4 + 8

)8𝑁 4+8
(5.57)

≥
(
1 − 1

16

)16
(5.58)

≥ 3
10
, (5.59)

where we use that the limit
(
1 − 1

𝑛

)𝑛 increases monotonically in 𝑛. □

5.4 Proof of Upper Bound

We prove the upper bound of Theorem 5.2 by directly approximating each component part of𝐺∗,

and the bound follows simply from the fact that 𝐺∗ is already in the form of a Jastrow ansatz.

5.4.1 Approximation Lemmas

Observe first, the following well-known fact, essentially equivalent to the fact that the Discrete

Fourier transform matrix is unitary:

93

Lemma 5.7. Fix 𝐽 and let 𝛾 be a primitive 𝐽 th root of unity. Then

1
𝐽

𝐽−1∑︁
𝑗=0
𝛾 𝑖 𝑗 =


1 𝑖 ≡ 0 mod 𝐽

0 𝑖 . 0 mod 𝐽

(5.60)

From this fact and using an analytic activation function with sufficient decay, we can handily

approximate any polynomial function on the complex unit circle with a polynomially-bounded

shallow neural network.

Lemma 5.8. For any 𝑘, 𝐽 ∈ N with 4𝑒𝑘 < 𝐽 , there exists a shallow neural network 𝑓 (𝑘) using either

the exp, sinh, sin activations, with 𝑂 (𝐽) neurons and O(k) weights, such that

sup
|𝜉 |≤2

���𝑓 (𝑘) (𝜉) − 𝜉𝑘 ��� ≤ 2
(
2𝑒𝑘
𝐽

) 𝐽
(5.61)

(5.62)

The proof is straightforward, essentially using Lemma 5.7 to cancel all monomials not of the

form 𝜉𝑡 with 𝑡 ≡ 𝑘 mod 𝑁 , and using the quick decay to ignore all terms except 𝜉𝑘 .

5.4.2 Jastrow Approximation

Lemma 5.9. Let 𝐺 and 𝐺∗ be as in Theorem 5.2. Then for 𝜖 > 0 and 𝑁 ≥ 6 even, there is a

parameterization of 𝐺 , with constant depth, where the total number of neurons and neuron weights

are 𝑝𝑜𝑙𝑦 (𝑁, log 1
𝜖
) such that

∥𝐺 −𝐺∗∥∞ < 𝜖

Proof. We consider first the Jastrow factor of 𝐺∗. We will approximate it in 𝐺 using a Relational

Network [Santoro et al. 2017] with multiplication pooling. In what follows, we consider the

94

infinity norm restricted to the unit complex circle.

Define 𝑦𝑖 𝑗 = 𝑓 (2) (𝑥𝑖 + 𝑥 𝑗) − 𝑓 (2) (𝑥𝑖) − 𝑓 (2) (𝑥 𝑗). Note that because 𝑥𝑖𝑥 𝑗 = (𝑥𝑖 + 𝑥 𝑗)2 − 𝑥2
𝑖 − 𝑥2

𝑗 ,

by Lemma 5.8, we have for an appropriate choice of 𝐽 :

∥𝑦𝑖 𝑗 − 𝑥𝑖𝑥 𝑗 ∥∞ ≤ ∥ 𝑓 (2) (𝑥𝑖 + 𝑥 𝑗) − (𝑥𝑖 + 𝑥 𝑗)2∥∞ + ∥ 𝑓 (2) (𝑥𝑖) − 𝑥2
𝑖 ∥∞ + ∥ 𝑓 (2) (𝑥 𝑗) − 𝑥2

𝑗 ∥∞ (5.63)

≤ 6
(
4𝑒
𝐽

) 𝐽
(5.64)

Clearly it follows that for sufficiently large 𝐽 , ∥𝑦𝑖 𝑗 ∥∞ ≤ 2. Therefore, applying Lemma 5.8

again we have

𝑓 (2𝑘) (𝑦𝑖 𝑗) − 𝑥2𝑘
𝑖 𝑥

2𝑘
𝑗

∞
≤

𝑓 (2𝑘) (𝑦𝑖 𝑗) − 𝑦2𝑘
𝑖 𝑗

∞
+

𝑦2𝑘
𝑖 𝑗 − 𝑥2𝑘

𝑖 𝑥
2𝑘
𝑗

∞

(5.65)

≤ 2
(
2𝑒𝑘
𝐽

) 𝐽
+

2𝑘−1∑︁
𝑙=0

∥𝑦2𝑘−𝑙
𝑖 𝑗 (𝑥𝑖𝑥 𝑗)𝑙 − 𝑦2𝑘−𝑙−1

𝑖 𝑗 (𝑥𝑖𝑥 𝑗)𝑙+1∥∞ (5.66)

≤ 2
(
2𝑒𝑘
𝐽

) 𝐽
+

2𝑘−1∑︁
𝑙=0

∥𝑦2𝑘−𝑙−1
𝑖 𝑗 ∥∞∥(𝑥𝑖𝑥 𝑗)𝑙 ∥∞∥𝑦𝑖 𝑗 − 𝑥𝑖𝑥 𝑗 ∥∞ (5.67)

≤ 2
(
2𝑒𝑘
𝐽

) 𝐽
+ 2𝑘 · 22𝑘 · 6

(
4𝑘
𝐽

) 𝐽
(5.68)

Now, consider a network 𝑔 that takes in two inputs, defined via

𝑔(𝑥𝑖, 𝑥 𝑗) = 1 +
𝐾∑︁
𝑘=1

𝑟 4𝑘 𝑓 (2𝑘)
(
𝑓 (2) (𝑥𝑖 + 𝑥 𝑗) − 𝑓 (2) (𝑥𝑖) − 𝑓 (2) (𝑥 𝑗)

)
(5.69)

Then it follows that:

95

 1
1 − 𝑟 4𝑥2

𝑖
𝑥2
𝑗

− 𝑔(𝑥𝑖, 𝑥 𝑗)

∞
≤

𝐾∑︁
𝑘=1

𝑟 4𝑘𝑂

(
𝑘22𝑘

(
2𝑒𝑘
𝐽

) 𝐽)
+

 ∞∑︁
𝑘=𝐾+1

(𝑟 4𝑥2
𝑖 𝑥

2
𝑗)𝑘

∞

(5.70)

≤ 𝑂
(
𝐾222𝐾

(
2𝑒𝐾
𝐽

) 𝐽)
+𝑂

(
𝑟 4𝐾

1 − 𝑟

)
=: 𝛿1 (5.71)

Let us assume we choose 𝐽 , 𝐾 such that 𝛿1 ≤ 1. One can confirm that

max

(

 1
1 − 𝑟 4𝑥2

𝑖
𝑥2
𝑗

∞
, ∥𝑔(𝑥𝑖, 𝑥 𝑗)∥∞

)
≤ 1

1 − 𝑟 + 𝛿1 ≤ 2
1 − 𝑟 (5.72)

So it follows from routine calculation that

∏
𝑖< 𝑗

1
1 − 𝑟 4𝑥2

𝑖
𝑥2
𝑗

−
∏
𝑖< 𝑗

𝑔(𝑥𝑖, 𝑥 𝑗)

∞

≤ 𝑁

(
2

1 − 𝑟

)𝑁 2−1
𝛿1 (5.73)

Consider second the antisymmetric factor. Following the row transforms given in the proof

of Lemma 3.4 in [Ishikawa et al. 2006], the antisymmetric term may be equivalently written as:

A(𝜙 (𝑟)
1 ⊗ · · · ⊗ 𝜙 (𝑟)

𝑁
) = A(𝜓 (𝑟)

1 ⊗ · · · ⊗𝜓 (𝑟)
𝑁

) (5.74)

with

𝜓
(𝑟)
𝑗

(𝑥𝑖) =



𝑟𝑥𝑖 ((𝑟𝑥𝑖)2)𝑁 /2−1 𝑗 = 1 ,

𝑟𝑥𝑖 ((𝑟𝑥𝑖)2)𝑁 /2− 𝑗 (1 + (𝑟𝑥𝑖)4(𝑗−1)) 2 ≤ 𝑗 ≤ 𝑁 /2 ,

((𝑟𝑥𝑖)2)𝑁 /2−1 𝑗 = 𝑁 /2 + 1 ,

((𝑟𝑥𝑖)2)𝑁− 𝑗 (1 + (𝑟𝑥𝑖)4(𝑗−1−𝑁 /2)) 𝑁 /2 + 2 ≤ 𝑗 ≤ 𝑁 .

(5.75)

96

Expanding, we see that 𝜓 (𝑟)
𝑗

is a polynomial in degree ≤ 3𝑁 with only two non-zero coeffi-

cients, each bounded by 1. So by Lemma 5.8 it is easy to construct networks𝜓 𝑗 such that

∥𝜓 (𝑟)
𝑗

−𝜓 𝑗 ∥∞ ≤ 𝑂
((

6𝑒𝑁
𝐽

) 𝐽)
=: 𝛿2 (5.76)

.

Choose 𝐽 to ensure 𝛿2 ≤ 1, then we also clearly have that max
(
∥𝜓 (𝑟)

𝑗
∥∞, ∥𝜓 𝑗 ∥∞

)
≤ 2+𝛿2 ≤ 3.

Now, we calculate:

A(𝜓 (𝑟)
1 ⊗ · · · ⊗𝜓 (𝑟)

𝑁
) − A(𝜓1 ⊗ · · · ⊗𝜓𝑁)

∞
≤ 1
𝑁 !

∑︁
𝜎

(𝜓 (𝑟)
𝜎 (1) ⊗ · · · ⊗𝜓 (𝑟)

𝜎 (𝑁) −𝜓𝜎 (1) ⊗ · · · ⊗𝜓𝜎 (𝑁)
)

∞

(5.77)

< 𝑁 3𝑁−1𝛿2 (5.78)

Finally, we combine the Jastrow factor and antisymmetric component. Let

𝐺 (𝑥) = 𝐶
√
𝑁 !

∏
𝑖< 𝑗

𝑔(𝑥𝑖, 𝑥 𝑗)A(𝜓1 ⊗ · · · ⊗𝜓𝑁) (𝑥) . (5.79)

Again, we have the simple bounds

A(𝜓 (𝑟)

1 ⊗ · · · ⊗𝜓 (𝑟)
𝑁

)

∞

≤ 2𝑁 and

∏𝑖< 𝑗

1
1−𝑟 4𝑥2

𝑖
𝑥2
𝑗

∞

≤(2
1−𝑟

)𝑁 2
.

97

Then we calculate:

∥𝐺∗ −𝐺 ∥∞ = 𝐶
√
𝑁 !

∏
𝑖< 𝑗

1
1 − 𝑟 4𝑥2

𝑖
𝑥2
𝑗

· A(𝜙 (𝑟)
1 ⊗ · · · ⊗ 𝜙 (𝑟)

𝑁
) −

∏
𝑖< 𝑗

𝑔(𝑥𝑖, 𝑥 𝑗) · A(𝜓1 ⊗ · · · ⊗𝜓𝑁)

∞

(5.80)

≤ 𝐶
√
𝑁 !

(
𝑁 3𝑁−1𝛿2

(
2

1 − 𝑟

)𝑁 2

+ 𝑁
(

2
1 − 𝑟

)𝑁 2−1
𝛿12𝑁

)
(5.81)

≤
√
𝑁 !𝑁 3𝑁

(
2

1 − 𝑟

)𝑁 2

(𝛿1 + 𝛿2) (5.82)

From the choice 𝑟 = 1 − 1
8𝑁 4+8 and the assumption that 𝑁 ≥ 6, we can further bound

∥𝐺∗ −𝐺 ∥∞ ≤ 𝑁 2𝑁 (9𝑁 4)𝑁 2 (𝛿1 + 𝛿2) (5.83)

≤ 𝑁 5𝑁 2 (𝛿1 + 𝛿2) (5.84)

Choosing 𝐽 ≥ 12𝑒𝐾 , and 𝐾 ≥ 2 so that 𝐾2 ≤ 2𝐾 , we recall that

𝛿1 + 𝛿2 ≤ 𝑂
(
𝐾222𝐾

(
6𝑒𝐾
𝐽

) 𝐽)
+𝑂

(
𝑟 4𝐾

1 − 𝑟

)
(5.85)

≤ 𝑂
(
23𝐾−𝐽

)
+𝑂

(
𝑁 4

(
1 − 1

𝑁 4

)4𝐾
)

(5.86)

≤ 𝑂
(
2−9𝐾

)
+𝑂

(
𝑁 4𝑒−4𝐾/𝑁 4

)
(5.87)

≤ 𝑂
(
𝑁 4𝑒−4𝐾/𝑁 4

)
(5.88)

because the right-most term dominates in the second-to-last line.

Hence, if we’d like to control the error ∥𝐺∗−𝐺 ∥∞ by some 𝜖 , we require that for some universal

constant 𝐶 ,

98

𝜖 ≥ 𝐶𝑁 5𝑁 2+4𝑒−4𝐾/𝑁 4
(5.89)

Note that for 𝑁 ≥ 6, we have 𝑁 5𝑁 2+4 ≤ 𝑒𝑁 3 , and therefore it suffices to choose 𝐾 such that

𝜖 ≥ 𝐶𝑒𝑁 3−4𝐾/𝑁 4
(5.90)

And this condition is equivalent to the bound

𝐾 ≥ 1
4

(
𝑁 4 log

𝐶

𝜖
+ 𝑁 7

)
(5.91)

Note that 𝐽 is subject to the same bound up to constant factors. □

99

6 | Learning a Single Symmetric Neuron

A popular model for studying SGD in non-convex settings is the single-index model, based on

a student-teacher setup to provably learn a single neuron. Explicitly, the goal is to learn the

function 𝑥 ↦→ 𝑓 (⟨𝑥, 𝜃 ∗⟩) for some known map 𝑓 and hidden direction 𝜃 ∗ ∈ S𝑑−1, trained with

an identical architecture 𝑥 ↦→ 𝑓 (⟨𝑥, 𝜃⟩) and an appropriate loss. This setting is an excellent

testbed for two reasons: under a variety of assumptions, the non-convex optimization problem is

nonetheless tractable to control convergence in gradient-based methods; and the explicit form of

the true function means that generalization guarantees follow directly from accurate recovery of

𝑤∗ and weak assumptions on the smoothness of 𝑓 . Note that one could learn this model with a

wide vanilla neural network that stays close to initialization [Chen et al. 2019; Nitanda et al. 2019;

Ji et al. 2021], but this setting does not inform on the dynamics of feature learning as it doesn’t

exactly recover the hidden direction 𝜃 ∗.

The conditions under which single-index model learning is possible have been well-explored

in previous literature. The main assumptions that enable provably learning under gradient flow /

gradient descent are monotonicity of the link function [Kakade et al. 2011; Kalai and Sastry 2009;

Shalev-Shwartz et al. 2010; Yehudai and Shamir 2020] and Gaussian input distribution [Arous

et al. 2021]. The first assumption essentially corresponds to the setting where the information

exponent 𝑠 = 1, as it will have positive correlation with a linear term. Under the second assump-

tion, the optimal sample complexity was achieved in Damian et al. [2023], with study of learning

when the link function is not known in Bietti et al. [2022].

100

When both assumptions are broken, the conditions on the input distribution of rotation in-

variance or approximate Gaussianity are nevertheless sufficient for learning guarantees [Bruna

et al. 2023]. But more unusual distributions, especially in the complex domain that is most con-

venient for symmetric networks, are not well studied.

Adapting this setting to the case of DeepSets, we’re essentially interested in the question if

a student-teacher architecture can recover the simplest possible DeepSets model. As seen be-

low, this will essentially correspond to a single-index setting where the inputs are first mapped

through some symmetric feature extractor. But this prevents Gaussianity, and so without assum-

ing monotonicity, we need a different way to analysis the loss of training a DeepSets architecture.

Again, tricks from symmetric polynomial theory provide a way forward. We can analytically

write down the loss of learning a single symmetric neuron, and for a judicious choice of the loss

we obtain a complicated but ultimately tractable loss landscape. Hence, based on the information

exponent of the link function 𝑓 , we can with high probability recover the true hidden symmetric

function through gradient flow in polynomial time.

6.1 Preliminaries

For 𝑧 ∈ C, we will use 𝑧 to denote the complex conjugate, with the notation 𝑧∗ always being

reserved to denote a special value of 𝑧 rather than an operation. For complex matrices 𝐴 we will

use 𝐴† to denote the conjugate transpose. The standard inner product on C𝑁 is written as ⟨·, ·⟩,

whereas inner products on 𝐿2(𝛾) spaces for some probability measure 𝛾 will be written as ⟨·, ·⟩𝛾 .

Furthermore, for ℎ a vector and 𝑝 (𝑥) a vector-valued function, we will use ⟨ℎ, 𝑝⟩𝛾 as shorthand

for the notation ⟨ℎ, 𝑝 (·)⟩𝛾 .

101

6.1.1 Regression setting and Teacher function

We consider a typical regression setting, where given samples (𝑥,𝑦) ∈ X × C with 𝑦 = 𝐹 (𝑥),

we seek to learn a function 𝐹𝑤 with parameter 𝑤 ∈ C𝑀 by minimizing some expected loss

𝐸𝑥∼𝜈 [𝐿(𝐹 (𝑥), 𝐹𝑤 (𝑥))]. Note that we consider complex-valued inputs and parameters because

they greatly simplify the symmetric setting (see Proposition 6.2), hence we will also assume X ⊆

C𝑁 . Both 𝐹 and 𝐹𝑤 will be permutation invariant functions, meaning that 𝐹 (𝑥𝜋 (1), . . . 𝑥𝜋 (𝑁)) =

𝐹 (𝑥1, . . . , 𝑥𝑁) for any permutation 𝜋 : {1, 𝑁 } → {1, 𝑁 }.

Typically the single index setting assumes that the trained architecture will exactly match

the true architecture (e.g. as in [Arous et al. 2021]), but below we will see why it’s necessary to

consider slightly separate architectures. For that reason, we’ll consider separately defining the

teacher 𝐹 and the student 𝐹𝑤 .

Let 𝑝 (𝑥) = [𝑝1(𝑥), 𝑝2(𝑥), . . .] be an infinite dimensional vector of powersums, and consider

a fixed vector ℎ∗ ∈ C∞ of unit norm. Then our teacher function 𝐹 will be of the form

𝐹 : X → C (6.1)

𝑥 ↦→ 𝐹 (𝑥) := 𝑓 (⟨ℎ∗, 𝑝 (𝑥)⟩) (6.2)

for some scalar link function 𝑓 : C→ C. 𝐹 may thus be understood as a single-index function in

the feature space of powersum polynomials. Note that this architecture can clearly be written in

the form of DeepSets, by rewriting ⟨ℎ∗, 𝑝 (𝑥)⟩ in the form
∑𝑁
𝑛=1𝜓 (𝑥𝑛) for appropriate choice of𝜓 .

In other words, the teacher is a DeepSets architecture with symmetric width 𝐿 = 1.

102

6.1.2 DeepSets Student Function

Let us remind the typical structure of a DeepSets network [Zaheer et al. 2017], where for some

maps Φ : X → C𝑀 and 𝜌 : C𝑀 → C, the standard DeepSets architecture is of the form:

𝑥 ↦→ 𝜌 (𝜙1(𝑥), . . . , 𝜙𝑀 (𝑥)) . (6.3)

where 𝜙𝑚 (𝑥) =
∑𝑁
𝑛=1𝜓𝑚 (𝑥𝑛) for some map𝜓𝑚 : C→ C.

In order to parameterize our student network as a DeepSets model, we will make the simplest

possible choices, while preserving its non-linear essence. To define our student network, we

consider the symmetric embedding Φ as a one-layer neural network with no bias terms:

𝜙𝑚 (𝑥) =
𝑁∑︁
𝑛=1

𝜎 (𝑎𝑚𝑥𝑛) , (6.4)

for i.i.d. complexweights sampled uniformly from the complex circle𝑎𝑚 ∼ 𝑆1 and some activation

𝜎 : C→ C. And given some link function 𝑔 : C→ C, we’ll consider the mapping 𝜌 as:

𝜌𝑤 (·) = 𝑔(⟨𝑤, ·⟩) , (6.5)

where𝑤 ∈ C𝑀 are our trainable weights. Putting all together, our student network thus becomes

𝐹𝑤 : X → C

𝑥 ↦→ 𝐹𝑤 (𝑥) := 𝑔(⟨𝑤,Φ(𝑥)⟩) . (6.6)

In other words, 𝐹𝑤 corresponds to a DeepSets network where the first and third layer weights are

frozen, and only the second layer weights (with no biases) are trained.

The first fact we need is that, through simple algebra, the student may be rewritten in the

103

form of a single-index model.

Proposition 6.1. There is matrix 𝐴 ∈ C∞×𝑀 depending only the frozen weights {𝑎𝑚}𝑀𝑚=1 and the

activation 𝜎 (𝑧) = ∑∞
𝑘=1 𝑐𝑘𝑧

𝑘 such that

𝑔(⟨𝑤,Φ(𝑥)⟩) = 𝑔(⟨𝐴𝑤, 𝑝 (𝑥)⟩) . (6.7)

where 𝐴𝑘𝑚 = 𝑐𝑘
√
𝑘𝑎𝑘𝑚

6.1.3 Hermite-like Identity

In the vanilla single index setting, the key to giving an explicit expression for the expected loss

(for Gaussian inputs) is a well-known identity of Hermite polynomials [O’Donnell 2021; Jacobsen

1996]. If ℎ𝑘 denotes the Hermite polynomial of degree 𝑘 , this identity takes the form

⟨ℎ𝑘 (⟨·, 𝑢⟩), ℎ𝑙 (⟨·, 𝑣⟩)⟩𝛾𝑛 = 𝛿𝑘𝑙𝑘!⟨𝑢, 𝑣⟩𝑘 , (6.8)

where 𝑢, 𝑣 ∈ R𝑛 and 𝛾𝑛 is the standard Gaussian distribution on 𝑛 dimensions.

In our setting, as it turns out, one can establish an analogous identity, by considering a differ-

ent input probability measure, and a bound on the degree of the link function. We will choose our

input domainX = (𝑆1)𝑁 , and the input distribution we will consider is the squared Vandermonde

density over 𝑁 copies of the complex unit circle [Macdonald 1998].

Proposition 6.2. Consider ℎ, ℎ̃ ∈ C∞ with bounded 𝐿2 norm. For exponents 𝑘, 𝑙 with 𝑘 ≤
√
𝑁 , if ℎ

is only supported on the first
√
𝑁 elements, then:

⟨⟨ℎ, 𝑝⟩𝑘 , ⟨ℎ̃, 𝑝⟩𝑙⟩𝑉 = 𝛿𝑘𝑙𝑘!⟨ℎ, ℎ̃⟩𝑘 . (6.9)

Proof. Based on the support assumptions and degree bounds, we can simply apply orthogonality

104

of the powersums:

⟨⟨ℎ, 𝑝⟩𝑖, ⟨ℎ̃, 𝑝⟩ 𝑗 ⟩𝑉 =

〈∑︁
|𝛼 |=𝑖

(
𝑖

𝛼

)
ℎ𝛼𝑝𝛼 ,

∑︁
|𝛼 |= 𝑗

(
𝑗

𝛼

)
ℎ̃𝛼𝑝𝛼 ,

〉
𝑉

(6.10)

= 𝛿𝑖 𝑗

∑︁
|𝛼 |=𝑖

(
𝑖

𝛼

)2
⟨𝑝𝛼 , 𝑝𝛼⟩𝑉ℎ𝛼ℎ̃𝛼 (6.11)

= 𝛿𝑖 𝑗

∑︁
|𝛼 |=𝑖

(
𝑖

𝛼

)2 ©­«
√
𝑁∏

𝑘=1
𝛼𝑘 !ª®¬ℎ𝛼ℎ̃𝛼 (6.12)

= 𝛿𝑖 𝑗𝑖!
∑︁
|𝛼 |=𝑖

(
𝑖

𝛼

)
ℎ𝛼ℎ̃𝛼 (6.13)

= 𝛿𝑖 𝑗𝑖!⟨ℎ, ℎ̃⟩𝑖 (6.14)

□

The crucial feature of this identity is that the assumptions on support and bounded degree

only apply to ⟨ℎ, 𝑝⟩𝑘 , with no restrictions on the other term. In our learning problem, we can use

this property to make these assumptions on the teacher function, while requiring no bounds on

the terms of the student DeepSets architecture.

In order to take advantage of the assumptions on the support of ℎ and the degree in the above

proposition, we need to make the following assumptions on our teacher link function 𝑓 and our

true direction ℎ∗:

Assumption 6.3. The link function 𝑓 is analytic and only supported on the first
√
𝑁 degree

monomials, i.e.

𝑓 (𝑧) =

√
𝑁∑︁
𝑗=1

𝛼 𝑗√
𝑗 !
𝑧 𝑗 (6.15)

Furthermore, the vector ℎ∗ is only supported on the first
√
𝑁 elements.

105

Although this assumption is required to apply the orthogonality property for our loss function

in the following sections, we note that in principle, including exponentially small terms of higher

degree in 𝑓 or higher index inℎ∗ should have negligible effect. Moreover, one should interpret this

assumption as silently disappearing in the high-dimensional regime 𝑁 → ∞. For simplicity, we

keep this assumption tomake cleaner calculations and leave the issue of these small perturbations

to future work.

6.1.4 Information Exponent

Because Proposition 6.2 takes inner products of monomials, it alludes to a very simple character-

ization of information exponent. Namely:

Definition 6.4. Consider an analytic function 𝑓 : C→ C that can be written in the form

𝑓 (𝑧) =
∞∑︁
𝑗=0

𝛼 𝑗√
𝑗 !
𝑧 𝑗 (6.16)

Then the information exponent is defined as 𝑠 = inf{ 𝑗 ≥ 1 : 𝛼 𝑗 ≠ 0}.

Similar to the Gaussian case [Arous et al. 2021; Bietti et al. 2022], the information exponent 𝑠

will control the efficiency of learning. Assuming |𝛼𝑠 | is some non-negligible constant, the value

of 𝑠 will be far more important in governing the convergence rate.

6.2 Analytic Expression for Population Loss

In order to train the symmetric single index model, one must fix a loss. The 𝐿2 loss of the typi-

cal single index setting is mathematically inconvenient, because the term ∥ 𝑓 (⟨𝐴𝑤, 𝑝⟩)∥2
𝑉
lacks a

closed form due to the high-degree terms. So we are driven to consider correlational loss func-

tions, with regularization to control the landscape.

Let ℜ denote the real part, then a different choice of the loss might be:

106

�̂�(𝑤) = −ℜ𝐸𝑥∼𝑉
[
𝑓 (⟨ℎ∗, 𝑝 (𝑥)⟩𝑓 (⟨𝐴𝑤, 𝑝 (𝑥)⟩)

]
+

√
𝑁∑︁
𝑗=1

|𝛼 𝑗 |2

2
∥𝐴𝑤 ∥2 𝑗 (6.17)

=

√
𝑁∑︁
𝑗=1

|𝛼 𝑗 |2
(
−𝑟 𝑗 cos 𝑗𝜃 + 1

2
(𝑣 + 𝑟 2) 𝑗

)
(6.18)

where we apply Proposition 6.2 and introduce the variables 𝑚 = ⟨𝐴𝑤,ℎ∗⟩ = 𝑟𝑒𝑖𝜃 and 𝑣 =

∥𝐴𝑤 ∥2 − 𝑟 2. Although this loss possess a global minima when 𝐴𝑤 = ℎ∗, i.e. when the student

exactly recovers the hidden direction, this objective has a highly unfavorable landscape due to

optimization of terms cos 𝑗𝜃 , which corresponds to optimizing a non-trivial polynomial in cos𝜃 .

Therefore, we consider a different choice of student link function that will enable a simpler

analysis of the dynamics. For the choice of 𝑔(𝑧) = 𝛼𝑠

|𝛼𝑠 |
√
𝑠!
𝑧𝑠 , we instead consider the loss:

𝐿(𝑤) = −ℜE𝑥∼𝑉
[
𝑓 (⟨ℎ∗, 𝑝 (𝑥)⟩𝑔(⟨𝐴𝑤, 𝑝 (𝑥)⟩)

]
+ |𝛼𝑠 |

2
∥𝐴𝑤 ∥2𝑠 (6.19)

= −|𝛼𝑠 |ℜ⟨𝐴𝑤,ℎ∗⟩𝑠 + |𝛼𝑠 |
2

∥𝐴𝑤 ∥2𝑠 . (6.20)

where we simplify using Proposition 6.2. We note that Dudeja and Hsu [2018] used a similar trick

of a correlational loss containing a single orthogonal polynomial in order to simplify the learning

landscape. The global minima of this loss, and in fact the dynamics of gradient flow on it, will be

explored in the sequel.

6.3 Derivation of Gradient Flow ODE

The gradient methods considered in Arous et al. [2021]; Ben Arous et al. [2022] are analyzed by

reducing to a dimension-free dynamical system of the so-called summary statistics. For instance,

in the vanilla single-index model, the summary statistics reduce to the scalar correlation between

107

the learned weight and the true weight. In our case, we have three variables, owing to the fact

that the correlation is complex and represented by two scalars, and a third variable controlling the

norm of the weight since we aren’t using projection. This considerably complicates the loss land-

scape, as even in gradient flow on the population loss the magnitude of the correlation |⟨𝐴𝑤,ℎ∗⟩|

is not monotonically increasing towards one, but depends delicately on the state of the entire

system.

Note that although our weight vector 𝑤 is complex, we still apply regular gradient flow to

the pair of weight vectors 𝑤𝑅,𝑤𝐶 where 𝑤 = 𝑤𝑅 + 𝑖𝑤𝐶 . Furthermore, we use the notation ∇ :=

∇𝑤 = ∇𝑤𝑅
+ 𝑖∇𝑤𝐶

. With that in mind, we can summarize the dynamics of our gradient flow in the

following Theorem.

Theorem 6.5. Given a parameter 𝑤 , consider the summary statistics𝑚 = ⟨𝐴𝑤,ℎ∗⟩ ∈ C and 𝑣 =

∥𝑃⊥
ℎ∗𝐴𝑤 ∥2 where 𝑃⊥

ℎ∗ is projection onto the orthogonal complement of ℎ∗. Let the polar decomposition

of𝑚 be 𝑟𝑒𝑖𝜃 .

Then given the preconditioned gradient flow given by

¤𝑤 = − 1
𝑠 |𝛼𝑠 |

(𝐴†𝐴)−1∇𝐿(𝑤) , (6.21)

the summary statistics obey the following system of ordinary differential equations:

¤𝑟 = (1 − 𝛿)𝑟 𝑠−1 cos 𝑠𝜃 − (𝑣 + 𝑟 2)𝑠−1𝑟 , (6.22)
𝑑

𝑑𝑡
cos 𝑠𝜃 = (1 − 𝛿)𝑠𝑟 𝑠−2(1 − cos2 𝑠𝜃) , (6.23)

¤𝑣 = 2𝛿𝑟 𝑠 cos 𝑠𝜃 − 2(𝑣 + 𝑟 2)𝑠−1𝑣 , (6.24)

where 𝛿 := 1 − ∥𝑃𝐴ℎ∗∥2 and 𝑃𝐴 is the projection onto the range of 𝐴.

Proof. We start from the analytic expression for the loss:

108

𝐿(𝑤) = −|𝛼𝑠 |ℜ⟨𝐴𝑤,ℎ∗⟩𝑠 + |𝛼𝑠 |
2

∥𝐴𝑤 ∥2𝑠 (6.25)

To calculate the gradient with respect to the real and imaginary parts of 𝑤 , we use tools

from Wirtinger calculus [Fischer 2005]. Using the notation that ∇𝑤 = 1
2 (∇𝑤𝑅

+ 𝑖∇𝑤𝐶
) and the

appropriate generalization of the chain rule, we have:

2∇𝑤ℜ⟨𝐴𝑤,ℎ∗⟩𝑠 = ∇𝑤
(
⟨𝐴𝑤,ℎ∗⟩𝑠 + ⟨𝐴𝑤,ℎ∗⟩𝑠

)
(6.26)

= ∇𝑤 ⟨𝐴𝑤,ℎ∗⟩
𝑠

(6.27)

= 𝑠 ⟨𝐴𝑤,ℎ∗⟩𝑠−1
𝐴†ℎ∗ (6.28)

Likewise,

2∇𝑤 ∥𝐴𝑤 ∥2𝑠 = 2𝑠 ∥𝐴𝑤 ∥2(𝑠−1)∇𝑤 ∥𝐴𝑤 ∥2 (6.29)

= 2𝑠 ∥𝐴𝑤 ∥2(𝑠−1)∇𝑤
(
𝑤†𝐴†𝐴𝑤

)
(6.30)

= 2𝑠 ∥𝐴𝑤 ∥2(𝑠−1)𝐴†𝐴𝑤 (6.31)

Thus, we have:

∇𝐿 = ∇𝑤𝑅
𝐿 + 𝑖∇𝑤𝐶

𝐿 (6.32)

= 2∇𝑤𝐿 (6.33)

= −𝑠 |𝛼𝑠 |⟨𝐴𝑤,ℎ∗⟩
𝑠−1
𝐴†ℎ∗ + 𝑠 |𝛼𝑠 |∥𝐴𝑤 ∥2(𝑠−1)𝐴†𝐴𝑤 (6.34)

109

We introduce the parameters

𝑚 = ⟨𝐴𝑤,ℎ∗⟩ = ⟨𝑤,𝐴†ℎ∗⟩ (6.35)

𝑣 = ∥𝑃⊥
ℎ∗𝐴𝑤 ∥2 = ∥𝐴𝑤 ∥2 − |𝑚 |2 (6.36)

And we consider preconditioned gradient flow of the form (where for complex variables we

use similar notation that ¤𝑤 = ¤𝑤𝑅 + ¤𝑤𝐶𝑖):

¤𝑤 = − 1
𝑠 |𝛼𝑠 |

(𝐴†𝐴)−1∇𝐿 (6.37)

=𝑚𝑠−1(𝐴†𝐴)−1𝐴†ℎ∗ − ∥𝐴𝑤 ∥2(𝑠−1)𝑤 (6.38)

It follows that

¤𝑚 = ⟨ ¤𝑤,𝐴†ℎ∗⟩ (6.39)

= ∥𝑃𝐴ℎ∗∥2𝑚𝑠−1 − (𝑣 + |𝑚 |2)𝑠−1𝑚 (6.40)

where 𝑃𝐴 = 𝐴(𝐴†𝐴)−1𝐴† is the orthogonal projection onto the range of 𝐴.

Let𝑚 = 𝑎 + 𝑏𝑖 = 𝑟𝑒𝑖𝜃 , so we have ¤𝑚 = ¤𝑎 + ¤𝑏𝑖 . Thus

¤𝑎 = ∥𝑃𝐴ℎ∗∥2𝑟 𝑠−1 cos(𝑠 − 1)𝜃 − (𝑣 + 𝑟 2)𝑠−1𝑟 cos𝜃 (6.41)

¤𝑏 = −∥𝑃𝐴ℎ∗∥2𝑟 𝑠−1 sin(𝑠 − 1)𝜃 − (𝑣 + 𝑟 2)𝑠−1𝑟 sin𝜃 (6.42)

Now we do a change of variables, because 𝑎 = 𝑟 cos𝜃 and 𝑏 = 𝑟 sin𝜃 , so

110

¤𝑎 = ¤𝑟 cos𝜃 − 𝑟 ¤𝜃 sin𝜃 (6.43)

¤𝑏 = ¤𝑟 sin𝜃 + 𝑟 ¤𝜃 cos𝜃 (6.44)

(6.45)

Rearranging, we can get the flow on 𝑟 and 𝜃 :

¤𝑟 = ¤𝑎 cos𝜃 + ¤𝑏 sin𝜃 (6.46)

= ∥𝑃𝐴ℎ∗∥2𝑟 𝑠−1 cos 𝑠𝜃 − (𝑣 + 𝑟 2)𝑠−1𝑟 (6.47)

𝑟 ¤𝜃 = − ¤𝑎 sin𝜃 + ¤𝑏 cos𝜃 (6.48)

= −∥𝑃𝐴ℎ∗∥2𝑟 𝑠−1 sin 𝑠𝜃 (6.49)

(6.50)

We can instead control the flow on cos 𝑠𝜃 :

𝑑

𝑑𝑡
cos 𝑠𝜃 = − ¤𝜃𝑠 sin 𝑠𝜃 = ∥𝑃𝐴ℎ∗∥2𝑠𝑟 𝑠−2 sin2 𝑠𝜃 (6.51)

and calculate the flow on 𝑣 :

¤𝑣 = 2ℜ⟨𝐴 ¤𝑤,𝐴𝑤⟩ − 2𝑟 ¤𝑟 (6.52)

= 2
(
𝑟 𝑠 cos 𝑠𝜃 − (𝑣 + 𝑟 2)𝑠 − ∥𝑃𝐴ℎ∗∥2𝑟 𝑠 cos 𝑠𝜃 + (𝑣 + 𝑟 2)𝑠−1𝑟 2) (6.53)

= 2(1 − ∥𝑃𝐴ℎ∗∥2)𝑟 𝑠 cos 𝑠𝜃 − 2(𝑣 + 𝑟 2)𝑠−1𝑣 (6.54)

111

Finally, introducing the notation 𝛿 = 1 − ∥𝑃𝐴ℎ∗∥2, we have

¤𝑟 = (1 − 𝛿)𝑟 𝑠−1 cos 𝑠𝜃 − (𝑣 + 𝑟 2)𝑠−1𝑟 (6.55)
𝑑

𝑑𝑡
cos 𝑠𝜃 = (1 − 𝛿)𝑠𝑟 𝑠−2(1 − cos2 𝑠𝜃) (6.56)

¤𝑣 = 2𝛿𝑟 𝑠 cos 𝑠𝜃 − 2(𝑣 + 𝑟 2)𝑠−1𝑣 (6.57)

□

6.4 Bounding ODE Convergence

Given this form of the governing ODE, we can state conditions under which we approximately

recover the hidden direction in polynomial time. First, we have a condition on the underlying

activation function:

Assumption 6.6. We assume an analytic activation 𝜎 (𝑧) =
∑∞
𝑘=0 𝑐𝑘𝑧

𝑘 , with the notation 𝜎+ :=

max1≤𝑘≤𝑁 |𝑐𝑘 |
√
𝑘 and 𝜎− := min1≤𝑘≤

√
𝑁
|𝑐𝑘 |

√
𝑘 . We further assume:

(i) 𝑐𝑘 = 0 iff 𝑘 = 0,

(ii) 𝜎 analytic on the unit disk,

(iii) 1/𝜎− = 𝑂 (poly(𝑁)),

(iv)
∑∞
𝑘=𝑁+1 𝑘 |𝑐𝑘 |2 ≤ 𝑒−𝑂 (

√
𝑁) .

These conditions essentially require that our analytic activation has non-negligible decay

initially, that becomes more rapid later. As one example, it is quick to check that the function

𝜎 (𝑧) = arctan 𝜉𝑧 + 𝜉𝑧 arctan 𝜉𝑧 where 𝜉 = 1 − 1√
𝑁
satisfies this condition.

112

Theorem 6.7 (Non-asymptotic Rates for Gradient Flow). Suppose we initialize𝑤 from a standard

complex Gaussian in dimension 𝑀 with 𝑀 = 𝑂 (𝑁 3), and {𝑎𝑚}𝑀𝑚=1 ∼ 𝑆1 iid. Assume our activation

satisfies Assumption 6.6. Furthermore, treat 𝑠 and 𝜖 as constants relative to 𝑁 . Then with probability

1/3 − 2 exp(−𝑂 (𝑁)), we will recover 𝜖 accuracy in all three sufficient statistics with time

𝑇 ≤


𝑂

(
log 1

𝜖

)
𝑠 = 1

𝑂

(
2𝑠2
𝑁 7𝑠 + log 1

𝜖

)
𝑠 > 1 .

(6.58)

To prove this result, we’ll first show that the ODE reaches 𝜖 correctness with constant prob-

ability under certain initialization assumptions on the sufficient statistics, and then confirm that

these assumptions are met under the weight initializations.

6.4.1 ODE Proof

Theorem 6.8. Consider a fixed 𝜖 > 0. Suppose the initialization of𝑤0 and (𝑎𝑚)𝑀𝑚=1 are such that:

(i) Small correlation and anti-concentration at initialization: 0 < 𝑟0 ≤ 1,

(ii) Initial phase condition: cos 𝑠𝜃0 ≥ 1/2,

(iii) Initial magnitude condition for 𝐴𝑤 : 𝑣0 = 1 − 𝑟 2
0 ,

(iv) Small Approximation of optimal error: 𝛿 ≤ min(𝜖/2,𝑂 (𝑠−𝑠𝑟 4
0)).

Then if we run the gradient flow given in Theorem 6.5 we have 𝜖 accuracy in the sense that:

𝑟𝑇 ≥ 1 − 𝜖 , cos 𝑠𝜃𝑇 ≥ 1 − 𝜖 , 𝑣𝑇 ≤ 𝜖 (6.59)

113

after time 𝑇 , where depending on the information exponent 𝑠 :

𝑇 ≤


𝑂

(
log 1

𝜖

)
𝑠 = 1 ,

𝑂

(
2𝑠2
𝑟−4𝑠

0 + log 1
𝜖

)
𝑠 > 1 .

(6.60)

The following lemmas provide bounds on our dynamics that we can apply multiple times in

different phases of the proof. Both of these lemmas are essentially special cases of the Bihari-

LaSalle Inequality [Bihari 1956] stated for our setting.

Lemma 6.9. Consider 𝜃 with the differential inequality

𝑑

𝑑𝑡
cos 𝑠𝜃 ≥ 𝑘 (1 − cos2 𝑠𝜃) (6.61)

with cos 𝑠𝜃0 ≥ 1/2. Then we have

cos 𝑠𝜃𝑡 ≥ tanh(𝑘𝑡) (6.62)

and hence if 𝑇 = inf{𝑡 ≥ 0 : cos 𝑠𝜃𝑡 ≥ 𝑐}, then 𝑇 ≤ 1
2𝑘 log 2

1−𝑐 .

Lemma 6.10. Consider 𝑠 ≥ 2. Suppose we have constants 0 < 𝑎 < 𝑏 and a function 𝑟 of time 𝑡 with

differential identity:

¤𝑟 ≥ 𝑎𝑟 𝑠−1 − 𝑏𝑟 2𝑠−1 (6.63)

Furthermore, assume 0 < 𝑟0 and it always the case that 𝑟 ≤ 1.

Let 𝑘 = 𝑎
𝑏
, and 𝑇 = inf{𝑡 ≥ 0 : 𝑟 ≥ 𝑘2}, then:

114

𝑇 ≤ 1
𝑏𝑘2

(
2𝑘
𝑟 𝑠−1

0
+ log

1
1 − 𝑘

)
(6.64)

Proof of Theorem 6.8. We will use the following facts repeatedly in the below arguments.

First, because ¤𝑟 ≥ 0 when 𝑟 = 0, and ¤𝑟 ≤ 0 when 𝑟 = 1, it follows that 𝑟 can never leave the

range [0, 1]. Furthermore, note that cos 𝑠𝜃 is always non-decreasing.

6.4.2 Case 𝑠 = 1

In the setting with information complexity equal to 1, we immediately have the following iden-

tities:

¤𝑟 = (1 − 𝛿) cos𝜃 − 𝑟 (6.65)
𝑑

𝑑𝑡
cos𝜃 ≥ (1 − 𝛿) (1 − cos2 𝜃) (6.66)

¤𝑣 ≤ 2𝛿 − 2𝑣 (6.67)

Let us address 𝑣 first. From our assumptions, 𝛿 < 𝜖 , and so when 𝑣 ≥ 𝜖 , ¤𝑣 is negative. It

follows that a trajectory that begins below 𝜖 cannot ever exceed 𝜖 . In other words, if 𝑣0 ≤ 𝜖 , 𝑣

can never exceed 𝜖 and we’ve achieved optimality.

Otherwise, supposing 𝑣0 > 𝜖 , consider values of 𝑡 where 𝑣𝑡 > 𝛿 so that the RHS of the

inequality of ¤𝑣 is strictly negative and we may write:

¤𝑣
𝛿 − 𝑣 ≥ 2 (6.68)

115

Integrating from 0 to 𝑡 gives that

− log |𝛿 − 𝑣𝑡 | − (− log |𝛿 − 𝑣0 |) ≥ 2𝑡 (6.69)

which yields the bound

𝑣𝑡 ≤ 𝛿 + (𝑣0 − 𝛿)𝑒−2𝑡 ≤ 𝛿 + 𝑒−2𝑡 (6.70)

By Lemma 6.9,

cos𝜃𝑡 ≥ tanh((1 − 𝛿)𝑡) (6.71)

Finally, we consider 𝑟 .

Choose 𝑇1 = inf{𝑡 ≥ 0 : 𝑣𝑡 ≤ 𝜖, cos𝜃𝑡 ≥ 1−𝜖/2
1−𝛿 }, and 𝑇2 = inf{𝑡 ≥ 𝑇1 : 𝑟𝑡 ≥ 1 − 𝜖}. Note that

one can easily confirm that 𝑇1 ≤ 𝑂
(
log 1

𝜖

)
Then for all 𝑡 ∈ [𝑇1,𝑇2), we have

¤𝑟𝑡 = (1 − 𝛿) cos𝜃𝑡 − 𝑟𝑡 ≥ 1 − 𝜖/2 − 𝑟𝑡 (6.72)

and the RHS is always non-negative.

Dividing by the RHS and integrating from 𝑇1 to 𝑡 gives

116

− log(1 − 𝜖/2 − 𝑟𝑡) + log(1 − 𝜖/2 − 𝑟𝑇1) ≥ 𝑡 −𝑇1 (6.73)

Rearranging gives

𝑟𝑡 ≥ 1 − 𝜖/2 − (1 − 𝜖/2 − 𝑟𝑇1)𝑒𝑇1−𝑡 (6.74)

Note that by definition of 𝑇2, it follows that

1 − 𝑟𝑡 ≤ 𝜖/2 + 𝑒𝑇1−𝑡 (6.75)

So it follows that 𝑇2 ≤ 𝑇1 + log 2
𝜖
.

Altogether, the total time to achieve 𝜖 optimality for all three variables is 𝑂
(
log 1

𝜖

)
.

6.4.3 Case 𝑠 > 1

In this case, because we cannot straightforwardly solve or bound the system of ODEs, we need

to control rates in stages. We have a stopping time for one variable at a time, and use local

monotonicity to ensure bounds on the remaining variables.

First Phase In the first stage, we consider the duration of time𝑇1 = inf{𝑡 ≥ 0 : 𝑣𝑡 ≤ 𝑣∗} where

𝑣∗ := 2−𝑠6−2𝑠−2𝑟 4
0 , and bound the behavior of each variable. Below, we will consider 𝑡 ∈ [0,𝑇1].

117

To control the behavior or 𝑟 , we consider the following manipulations:

𝑑

𝑑𝑡
log 𝑟 2 = 2(1 − 𝛿)𝑟 𝑠−2 cos 𝑠𝜃 − 2(𝑣 + 𝑟 2)𝑠−1 (6.76)

𝑑

𝑑𝑡
log 𝑣 = 2𝛿

𝑟 𝑠 cos 𝑠𝜃
𝑣

− 2(𝑣 + 𝑟 2)𝑠−1 (6.77)

This implies

𝑑

𝑑𝑡
log

𝑟 2

𝑣
= 2𝑟 𝑠−2 cos 𝑠𝜃

(
1 − 𝛿 − 𝛿 𝑟

2

𝑣

)
(6.78)

By definition, in this range of 𝑡 we have 𝑣𝑡 > 𝛿
1−𝛿 , so it follows that the RHS of this equation

is always positive. Hence it follows that log 𝑟 2

𝑣
is increasing, and by monotonicity of log, we have

𝑟 2

𝑣
≥
𝑟 2

0
𝑣0

≥ 𝑟 2
0 (6.79)

This implies that

¤𝑟 = (1 − 𝛿)𝑟 𝑠−1 cos 𝑠𝜃 − (𝑣 + 𝑟 2)𝑠−1𝑟 (6.80)

≥ (1 − 𝛿)𝑟 𝑠−1 cos 𝑠𝜃 −
(
𝑟 2

𝑟 2
0
+ 𝑟 2

)𝑠−1

𝑟 (6.81)

≥ 𝑟 𝑠−1

(
(1 − 𝛿) cos 𝑠𝜃 −

(
1
𝑟 2

0
+ 1

)𝑠−1
𝑟 𝑠

)
(6.82)

Suppose it is true that 𝑟 ≤ 1
6𝑟

2
0 , then it follows that:

118

𝑟 ≤
𝑟 2

0 (1 − 𝛿) cos 𝑠𝜃0

2
(6.83)

≤
𝑟 2

0 (1 − 𝛿) cos 𝑠𝜃0

𝑟 2
0 + 1

(6.84)

=
(1 − 𝛿) cos 𝑠𝜃0

1
𝑟 2

0
+ 1

(6.85)

≤ ((1 − 𝛿) cos 𝑠𝜃)1/𝑠(
1
𝑟 2

0
+ 1

) 𝑠−1
𝑠

(6.86)

So it follows that ¤𝑟 will be positive whenever 𝑟 ≤ 1
6𝑟

2
0 . We have 𝑟0 ≥ 1

6𝑟
2
0 , it follows that

𝑟𝑡 ≥ 1
6𝑟

2
0 for 𝑡 ≤ 𝑇1.

Finally we can control 𝑣 by observing that, for 𝑡 ∈ [0,𝑇1], 𝑣 ≥ 𝑣∗ ≥ (2𝛿)1/𝑠 . Hence,

¤𝑣 ≤ 2𝛿 − 2𝑣𝑠 ≤ −𝑣𝑠 (6.87)

which implies

− ¤𝑣
𝑣𝑠

≥ 1 (6.88)

And integrating from 0 to 𝑡 ≤ 𝑇1 gives

𝑣
−(𝑠−1)
𝑡 ≥ 1

𝑠 − 1
𝑣
−(𝑠−1)
𝑡 − 1

𝑠 − 1
𝑣
−(𝑠−1)
0 ≥ 𝑡 (6.89)

Rearranging gives

119

𝑣𝑡 ≤ 𝑡−
1

𝑠−1 (6.90)

This gives a bound on 𝑇1 ≤ (𝑣∗)−(𝑠−1) = 𝑂 (2𝑠2
𝑟−4𝑠

0)

Lastly by monotonicity we have cos 𝑠𝜃𝑇1 ≥ cos 𝑠𝜃0.

So to summarize:

𝑟𝑇1 ≥
1
6
𝑟 2

0 (6.91)

cos 𝑠𝜃𝑇1 ≥ cos 𝑠𝜃0 (6.92)

𝑣𝑇1 ≤ 𝑣∗ (6.93)

Furthermore, we’ve actually proven that 𝑣𝑡 ≤ 𝑣∗ for all 𝑡 ≥ 𝑇1, whichwewill use in subsequent

phases.

Second Phase We define𝑇2 = inf{𝑡 ≥ 𝑇1 : 𝑟𝑡 ≥ 1/5}. As before, if 𝑟𝑇1 ≥ 1/5 then𝑇2 = 0 and we

can skip to the next phase, so we assume otherwise.

Using the identity (1 + 𝑥)𝑘 ≤ 1 + 2𝑘𝑥 which holds for any 𝑥 ∈ [0, 1] and 𝑘 ≥ 1, observe that

the ODE governing 𝑟 can now be bounded as:

¤𝑟 = (1 − 𝛿) cos 𝑠𝜃𝑟 𝑠−1 − (𝑣 + 𝑟 2)𝑠−1𝑟 (6.94)

≥ (1 − 𝛿) cos 𝑠𝜃0𝑟
𝑠−1 −

(𝑣
𝑟 2 + 1

)𝑠−1
𝑟 2𝑠−1 (6.95)

≥ (1 − 𝛿) cos 𝑠𝜃0𝑟
𝑠−1 −

(
1 + 2𝑠−1 𝑣

𝑟 2

)
𝑟 2𝑠−1 (6.96)

≥ 1 − 𝛿
2

𝑟 𝑠−1 −
(
1 +

𝑟 4
0

2𝑠2(6𝑟)2

)
𝑟 2𝑠−1 (6.97)

120

where in the last step we use that 𝑣 ≤ 𝑣∗ and plug in the definition of 𝑣∗ and the bound

cos 𝑠𝜃0 ≥ 1/2.

Consider any 𝑡 when 𝑟 = 1
6𝑟

2
0 , and observe that the above inequality implies ¤𝑟 > 0. Because

𝑟𝑇1 ≥ 1
6𝑟

2
0 , this implies we will always have 𝑟 ≥ 1

6𝑟
2
0 for larger values of 𝑡 , and we may bound:

¤𝑟 ≥ 1 − 𝛿
2

𝑟 𝑠−1 −
(
1 + 1

2𝑠2

)
𝑟 2𝑠−1 (6.98)

Hence, we can apply Lemma 6.10 with 𝑎 = (1−𝛿)/2, 𝑏 = 1+ 1
2𝑠2 , where 𝑘2 = (𝑎/𝑏)2 ≥ 1/5, and

using the initialization of 𝑟𝑇1 . This grants the bound that 𝑇2 ≤ 𝑇1 +𝑂 (𝑠4𝑟−𝑠+1
𝑇1

) = 𝑇1 +𝑂 (6𝑠𝑟−2𝑠+2
0).

Therefore the new summary is:

𝑟𝑇2 ≥ 1/5 (6.99)

cos 𝑠𝜃𝑇2 ≥ cos 𝑠𝜃0 (6.100)

𝑣𝑇2 ≤ 𝑣∗ (6.101)

Third Phase We define 𝑇3 = inf{𝑡 ≥ 𝑇2 : cos 𝑠𝜃𝑡 ≥
1− 1

4𝑠4
1−𝛿 }

First of all, note that the bound on 𝑟 derived in the last phase required lower bounding cos 𝑠𝜃

by cos 𝑠𝜃0. Since cos 𝑠𝜃 is non-decreasing, that bound is still true by an identical argument.

So we can bound the ODE for 𝜃 :

𝑑

𝑑𝑡
cos 𝑠𝜃 = (1 − 𝛿)𝑠𝑟 𝑠−2(1 − cos2 𝑠𝜃) (6.102)

≥ (1 − 𝛿)𝑠 (1/5)𝑠−2(1 − cos2 𝑠𝜃) (6.103)

121

Note that by lemma 6.9 with 𝑘 = (1 − 𝛿)𝑠 (1/5)𝑠−2, we have

𝑇3 ≤ 𝑇2 +𝑂 (5𝑠 log 𝑠) (6.104)

The bound 𝑣 ≤ 𝑣∗ continues to hold. In summary, we now have:

𝑟𝑇3 ≥ 1/5 (6.105)

cos 𝑠𝜃𝑇3 ≥
1 − 1

4𝑠4

1 − 𝛿 (6.106)

𝑣𝑇3 ≤ 𝑣∗ (6.107)

Fourth Phase We define 𝑇4 = inf{𝑡 ≥ 𝑇3 : 𝑟𝑡 ≥ 𝑟 ∗} where 𝑟 ∗ := 1 − 1
𝑠2 . Again, consider the

non-trivial case where 𝑇4 ≠ 0.

Because the bound on 𝑣 is the same, and the bound on cos 𝑠𝜃 is better than before, we can

now bound the ODE of 𝑟 similarly to the second phase:

¤𝑟 ≥
(
1 − 1

4𝑠4

)
𝑟 𝑠−1 −

(
1 + 1

2𝑠2

)
𝑟 2𝑠−1 (6.108)

Applying Lemma 6.10 with 𝑘 =
1− 1

4𝑠4

1+ 1
2𝑠2

= 1 − 1
2𝑠2 , we have:

𝑇 = inf{𝑡 ≥ 𝑇3 : 𝑟 ≥ 𝑘2} ≤ 𝑇3 +𝑂 (5𝑠 log 𝑠) (6.109)

Finally, note that 𝑘2 =
(
1 − 1

2𝑠2

)2
≥ 1 − 1

𝑠2 , which implies that 𝑇4 ≤ 𝑇 .

Thus we have:

122

𝑟𝑇4 ≥ 𝑟 ∗ (6.110)

cos 𝑠𝜃𝑇4 ≥
1 − 1

4𝑠4

1 − 𝛿 (6.111)

𝑣𝑇4 ≤ 𝑣∗ (6.112)

Fifth Phase We define 𝑇5 = inf{𝑡 ≥ 𝑇4 : cos 𝑠𝜃𝑡 ≥ 1−𝜖/2
1−𝛿 , 𝑣𝑡 ≤ 𝑣

†} where 𝑣† = 2−𝑠 (𝜖/2) (𝑟 ∗)2.

Again, since cos 𝑠𝜃 is increasing and 𝑣 is always less than 𝑣∗, the bound on 𝑟 ≥ 𝑟 ∗ established

in the last step will stay true.

Thus, by the identity 𝑟𝑘 ≥ (𝑟 ∗)𝑘 =
(
1 − 1

𝑠2

)𝑘
≥ 1 − 𝑘

𝑠2 we have the ODE inequalities:

𝑑

𝑑𝑡
cos 𝑠𝜃 = (1 − 𝛿)𝑠𝑟 𝑠−2(1 − cos2 𝑠𝜃) (6.113)

≥ (1 − 𝛿)𝑠
(
1 − 1

𝑠

)
(1 − cos2 𝑠𝜃) (6.114)

¤𝑣 = 2𝛿𝑟 𝑠 cos 𝑠𝜃 − 2(𝑣 + 𝑟 2)𝑠−1𝑣 (6.115)

≤ 2𝛿 − 2
(
1 − 2(𝑠 − 1)

𝑠2

)
𝑣 (6.116)

It is easy to see that we’ll have the bound

𝑇5 ≤ 𝑇4 +𝑂
(
log

1
𝜖

)
(6.117)

and in summary

123

𝑟𝑇5 ≥ 𝑟 ∗ (6.118)

cos 𝑠𝜃𝑇5 ≥
1 − 𝜖/2
1 − 𝛿 (6.119)

𝑣𝑇5 ≤ 𝑣† (6.120)

Sixth Phase We define 𝑇6 = inf{𝑡 ≥ 𝑇5 : 𝑟𝑡 ≥ 1 − 𝜖}, and assume the non-trivial setting where

𝑇6 ≠ 0.

Note that ¤𝑣 is negative when 𝑣 = 𝑣†, so the bound 𝑣 ≤ 𝑣† remains true for 𝑡 ≥ 𝑇5. Thus, we

can control the ODE of 𝑟 one more time:

¤𝑟 = (1 − 𝛿)𝑟 𝑠−1 cos 𝑠𝜃 − (𝑣 + 𝑟 2)𝑠−1𝑟 (6.121)

≥ (1 − 𝛿)𝑟 𝑠−1(1 − 𝜖/2) −
(
1 + 𝑣

𝑟 2

)𝑠−1
𝑟 (6.122)

≥ (1 − 𝜖/2)𝑟 𝑠−1 −
(
1 + 2𝑠

𝑣†

𝑟 2

)
𝑟 2𝑠−1 (6.123)

≥ (1 − 𝜖/2)𝑟 𝑠−1 −
(
1 + 𝜖/2

(𝑟 ∗)2

𝑟 2

)
𝑟 2𝑠−1 (6.124)

One can confirm that when 𝑟 = 𝑟 ∗, the RHS of the above inequality is positive, so ¤𝑟 ≥ 0. Thus,

since 𝑟𝑇5 ≥ 𝑟 ∗, it will always be the case that 𝑟 ≥ 𝑟 ∗ for 𝑡 ≥ 𝑇5, so as before we bound:

¤𝑟 ≥ (1 − 𝜖/2)𝑟 𝑠−1 − (1 + 𝜖/2)𝑟 2𝑠−1 (6.125)

By Lemma 6.10, we have that

124

𝑇6 ≤ 𝑇5 +𝑂
(
log

1
𝜖

)
(6.126)

and thus we’ve achieved 𝜖 optimality for all three of our variables. □

6.4.4 Concentration Lemmas

We need two standard concentration inequality results. Both these results are special cases of

more general results stated in [Vershynin 2018] for real-valued subgaussian variables, but it’s

standard to extend them to complex-valued random variables with appropriate tail bounds:

Lemma 6.11 (Theorem 3.1.1 in Vershynin [2018]). If𝑤 is drawn from the standard complex Gaus-

sian on𝑀 dimensions, then

𝑃 (|∥𝑤 ∥ −
√
𝑀 | ≥ 𝑡) ≤ 2 exp(−𝑐𝑡2) (6.127)

for some universal constant 𝑐 .

Lemma 6.12 (Theorem 4.6.1 from Vershynin [2018]). Let 𝑎𝑚 ∼ 𝑆1 be sampled iid, for 𝑚 =

1, . . . , 𝑀 , and define 𝑋 ∈ C𝑁×𝑀 as 𝑋𝑛𝑚 = 𝑎𝑛𝑚 . Then if we choose 𝑀 = 𝑂 (𝑁 3), with probability

1 − 2 exp(−𝑂 (𝑁)):

𝜎1(𝑋) = Θ(
√
𝑀), 𝜎𝑁 (𝑋) = Θ(

√
𝑀) (6.128)

125

6.4.5 Projection Proof

The first two conditions of Theorem 6.8 are simply required for the application of Proposition 6.2,

as the powersum vector 𝑝 is built out of polynomials induced by the activation and does not

include a constant term. The second two conditions concern the decay of the coefficients of 𝜎 , in

the sense that the decay must start slow but eventually become very rapid. These conditions are

necessary mainly for ensuring the Small Approximation of optimal error condition:

Lemma 6.13. Let 𝜎 satisfy Assumption 6.6, and assume 𝑀 = 𝑂 (𝑁 3). Then for any unit norm

ℎ∗ ∈ C∞ that is only supported on the first
√
𝑁 elements, with probability 1 − 2 exp(−𝑂 (𝑁)):

1 − ∥𝑃𝐴ℎ∗∥2 ≤ 𝑒−𝑂 (
√
𝑁) .

Proof. Remind from Proposition 6.1 that 𝐴 ∈ C∞×𝑀 is of the form

𝐴𝑘𝑚 = 𝑐𝑘
√
𝑘𝑎𝑘𝑚 (6.129)

where we assume 𝑐𝑘 > 0, and 𝑎𝑚 ∼ 𝑆1. Note that

1 − ∥𝑃𝐴ℎ∗∥2 = ∥𝑃⊥𝐴ℎ∗∥2 (6.130)

= min
𝑤

∥𝐴𝑤 − ℎ∗∥2 (6.131)

(6.132)

so we need to choose a candidate value of𝑤 .

Consider the block decomposition

126

𝐴 =


𝐵

𝐶

 (6.133)

where 𝐵 ∈ C𝑁×𝑀 and 𝐶 ∈ C∞×𝑀 . Suppose we decompose ℎ∗ =


𝑢

0

 where 𝑢 ∈ C𝑁 . Then if

we apply the pseudoinverse and define𝑤 = 𝐵+𝑢, observe:

𝐴𝑤 =


𝐵

𝐶

 𝐵
+𝑢 (6.134)

=


𝐵𝐵+𝑢

𝐶𝐵+𝑢

 (6.135)

Observe that we can decompose 𝐵 = 𝐷𝑋 where 𝐷 is a diagonal matrix such that 𝐷𝑘𝑘 = 𝑐𝑘
√
𝑘

and 𝑋𝑘𝑚 = 𝑎𝑘𝑚 . Since 𝑁 < 𝑀 , one can see 𝑋 is a rectangular Vandermonde matrix evaluated on

{𝑎𝑚}𝑀𝑚=1. Almost surely, these values are all pairwise distinct, which implies that 𝑋 has linearly

independent rows. Since 𝐷 is diagonal with no zeros along the diagonal, 𝐵 also has linearly

independent rows. This condition implies 𝐵𝐵+ = 𝐼 . So we have

𝐴𝑤 =


𝑢

𝐶𝐵+𝑢

 (6.136)

Remember ∥𝑢∥ = ∥ℎ∗∥ = 1, as 𝑢 is the first 𝑁 elements of ℎ∗ and hence still only supported

on the first
√
𝑁 elements. Because 𝐵+ = 𝑋 +𝐷−1, we have:

127

∥𝐶𝐵+𝑢∥ ≤ ∥𝐶 ∥∥𝑋 +∥∥𝐷−1𝑢∥ (6.137)

(6.138)

We can now go about bounding these norms.

Since 𝑢 is only supported on the first
√
𝑁 elements and ∥𝑢∥ = 1, it follows ∥𝐷−1𝑢∥ ≤

max1≤𝑘≤
√
𝑁

��� 1
𝑐𝑘
√
𝑘

��� = 1
𝜎−
.

By Lemma 6.12, we have the bound

∥𝑋 +∥ ≤ 𝑂
(

1
√
𝑀

)
(6.139)

Finally for any �̂� ∈ C𝑀 with ∥�̂� ∥ = 1, we have by Cauchy-Schwarz:

∥𝐶𝑤 ∥2 =

∞∑︁
𝑘=𝑁+1

����� 𝑀∑︁
𝑚=1

�̂�𝑚𝑐𝑘
√
𝑘𝑎𝑘𝑚

�����2 (6.140)

≤
∞∑︁

𝑘=𝑁+1
∥�̂� ∥2

𝑀∑︁
𝑚=1

���𝑐𝑘√𝑘 ���2 (6.141)

= 𝑀

∞∑︁
𝑘=𝑁+1

𝑘 |𝑐𝑘 |2 (6.142)

≤ 𝑀𝑒−𝑂 (
√
𝑁) (6.143)

where we use in the last step Assumption 6.6.

With these bounds, we clearly have

128

1 − ∥𝑃𝐴ℎ∗∥ ≤ ∥𝐴𝑤 − ℎ∗∥2 (6.144)

=



𝑢

𝐶𝐵+𝑢

 −

𝑢

0



2

(6.145)

≤ ∥𝐶𝐵+𝑢∥2 (6.146)

≤ 𝑀
√
𝑀𝜎−

𝑒−𝑂 (
√
𝑁) (6.147)

Because𝑀 = 𝑂 (𝑁 3), and we’ve assumed 1/𝜎− is polynomial in 𝑁 , this bound can be written

as 𝑒−𝑂 (
√
𝑁) for possibly different constants in the big 𝑂 notation.

□

6.4.6 Initialization Proof

Lastly, we can choose an initialization scheme for 𝑤 which handily ensures the remaining as-

sumptions we need to apply Theorem 6.8. The crucial features of 𝜎 are similar to the previous

result. Namely, we want the initial correlation 𝑟0 to be non-negligible because this directly con-

trols the runtime of gradient flow. Slow initial decay with fast late decay of the 𝜎 coefficients

directly implies that 𝐴𝑤0 has a lot of mass in the first
√
𝑁 indices and very little mass past the

first 𝑁 indices. These requirements rule out, say, exp as an analytic activation because the coef-

ficients decay too rapidly.

Lemma 6.14. Suppose 𝑤 is sampled from a standard complex Gaussian on 𝑀 variables. It follows

that if we set 𝑤0 = 𝑤
∥𝐴𝑤 ∥ , and use the summary statistics from Theorem 6.5, then with probability

1/3 − 2 exp(−𝑂 (𝑁)) and any ℎ∗ as in Lemma 6.13

(i) 1 ≥ 𝑟0 ≥ 𝑐 𝜎−
𝜎+

√
𝑀
for some universal constant 𝑐 > 0,

(ii) cos 𝑠𝜃0 ≥ 1/2,

129

(iii) 𝑣0 = 1 − 𝑟 2
0 .

Proof. Remind that𝑚0 = ⟨𝐴𝑤0, ℎ
∗⟩ = 1

∥𝐴𝑤 ∥ ⟨𝐴𝑤,ℎ
∗⟩. Because the complex Gaussian is invariant

to multiplication by an unit modulus complex number, it follows that 𝜃0 is independent of 𝑟0 and

uniformly distributed on 𝑆1. Because 𝑠 is a positive integer, 𝑠𝜃0 is also uniformly distributed on 𝑆1,

and hence 𝑃 (cos 𝑠𝜃0 ≥ 1/2) = 1/3. And by our choice of normalization, 𝑣0 = 1− 𝑟 2
0 automatically.

So it only remains to prove the first statement is true with high probability.

We remind that 𝑟0 =
|⟨𝐴𝑤,ℎ∗⟩|
∥𝐴𝑤 ∥ . By Cauchy-Schwartz, it’s clear that 𝑟0 ≤ 1, so only the lower

bound is non-trivial. If we use the same notation to decompose the matrix 𝐴 as in the proof of

Lemma 6.13, it’s clear that

|⟨𝐴𝑤,ℎ∗⟩| = |⟨𝐵𝑤,𝑢⟩| (6.148)

= |⟨𝑤, 𝐵†𝑢⟩| (6.149)

If we condition on 𝐵, then by rotation invariance of the Gaussian, note that |⟨𝑤, 𝐵†𝑢⟩| is

distributed identically to |𝑔 |∥𝐵†𝑢∥ where 𝑔 is sampled from a one dimensional complex Gaussian.

By the argument in Lemma 6.14, since𝑢 is only supported on the first
√
𝑁 elements, note that:

∥𝐵†𝑢∥ = ∥𝑋 †𝐷†𝑢∥ (6.150)

≥ 𝜎𝑁 (𝑋)∥𝐷†𝑢∥ (6.151)

≥ 𝜎𝑁 (𝑋)𝜎− (6.152)

≥ 𝜎−𝑂 (
√
𝑀) (6.153)

with probability 1 − 2 exp(−𝑂 (𝑁)) by Lemma 6.12

Lastly, we need to control

130

∥𝐴𝑤 ∥ ≤ ∥𝐵𝑤 ∥ + ∥𝐶𝑤 ∥ ≤ (∥𝐵∥ + ∥𝐶 ∥)∥𝑤 ∥ (6.154)

And we can write again by Lemma 6.12, with similarly high probability:

∥𝐵∥ = ∥𝐷𝑋 ∥ (6.155)

≤ ∥𝐷 ∥∥𝑋 ∥ (6.156)

≤ 𝜎+𝜎1(𝑋) (6.157)

≤ 𝜎+𝑂 (
√
𝑀) (6.158)

Combining this with the bound on ∥𝐶 ∥ we derived in Lemma 6.14, and the concentration on

∥𝑤 ∥ from Lemma 6.11 we have with probability 1 − 2 exp(−𝑂 (𝑁)):

∥𝐴𝑤 ∥ ≤
(
𝜎+𝑂 (

√
𝑀) + 𝑒−𝑂 (

√
𝑁)

)
𝑂 (

√
𝑀) (6.159)

Finally we can say that with probability 1 − 2 exp(−𝑂 (𝑁))

𝑟0 ≥ 𝑐 𝜎−

𝜎+
√
𝑀

(6.160)

for some universal constant 𝑐 .

□

131

6.5 Experiments

To study an experimental setup for our setting, we consider the student-teacher setup outlined

above with gradient descent. We consider 𝑁 = 25, 𝑀 = 100, and approximate the matrix 𝐴 by

capping the infinite number of rows at 150, which was sufficient for 1 − ∥𝑃𝐴ℎ∗∥2 ≤ 0.001 in nu-

merical experiments. For the link function 𝑓 , we choose its only non-zero monomial coefficients

to be 𝛼3 = 𝛼4 = 𝛼5 = 1√
3
. And correspondingly, 𝑔 simply has 𝛼3 = 1 and all other coefficients at

zero.

We choose for convenience an activation function such that 𝐴𝑘𝑚 =
(
𝑁−1
𝑁

)𝑘
𝑎𝑘𝑚 . We make

this choice because, while obeying all the assumptions required in Assumption 6.6, this choice

implies that the action of 𝐴 on the elementary basis vectors 𝑒 𝑗 for 1 ≤ 𝑗 ≤
√
𝑁 is approximately

distributed the same. This choice means that ∥𝑃𝐴ℎ∗∥ is less dependent on the choice of ℎ∗, and

therefore reduces the variance in our experiments when we choose ℎ∗ uniformly among unit

norm vectors with support on the first
√
𝑁 elements, i.e. uniformly from the complex sphere in

degree
√
𝑁 .

Under this setup, we train full gradient descent on 50000 samples from the Vandermonde 𝑉

distribution under 20000 iterations. The only parameter to be tuned is the learning rate, and we

observe over the small grid of [0.001, 0.0025, 0.005] that a learning rate of 0.0025 performs best

for the both models in terms of probability of 𝑟 reaching approximately 1, i.e. strong recovery.

As described in Theorem 6.5, we use preconditioned gradient descent using (𝐴†𝐴)−1 as the

preconditioner, which can be calculated once at the beginning of the algorithm and is an easy

alteration to vanilla gradient descent to implement. We use the pseudoinverse for improved sta-

bility in calculating this matrix, although we note that this preconditioner doesn’t introduce sta-

bility issues into the updates of our summary statistics, even in the case of gradient descent.

Indeed, even if one considers the loss 𝐿(𝑤) under an empirical expectation rather than full ex-

pectation, the gradient ∇𝐿(𝑤) can still be seen to be written in the form 𝐴†𝑣 for some vector 𝑣 .

132

If one preconditions this gradient by (𝐴†𝐴)−1, and observes that the summary statistics𝑚 and 𝑣

both depend on 𝐴𝑤 rather than 𝑤 directly, it follows that the gradient update on these statistics

is always of the form𝐴(𝐴†𝐴)−1𝐴† = 𝑃𝐴, so even in the empirical case this preconditioner doesn’t

introduce exploding gradients.

Figure 6.1: The learning trajectory, over ten independent runs, of the three summary statistics in the
case of our chosen loss function 𝐿

We note that our analysis is somewhat pessimistic, as the experimental gradient descent on

𝐿(𝑤) will often achieve near perfect accuracy even if cos 𝑠𝜃0 < 0. This is mainly an issue of proof

technique: although cos 𝑠𝜃 is always increasing under the dynamics, 𝑟 is necessarily decreasing

for as long as cos 𝑠𝜃 is negative. It is quite subtle to control whether cos 𝑠𝜃 will become positive

before 𝑟 becomes extremely small, and the initialization of 𝑟 is the main feature that controls the

runtime of the model. However the empirical results suggest that a chance of success > 1/2 is

possible under a more delicate analysis.

133

However, the analysis given in the proof of Theorem 6.8 does accurately capture the brief dip

in the value of 𝑟 in the initial part of training, when the regularization contributes more to the

gradient than the correlation until cos 𝑠𝜃 becomes positive.

Because we can only run experiments on gradient descent rather than gradient flow, we ob-

serve the phenomenon of search vs descent studied in Arous et al. [2021], where the increase in

the correlation term 𝑟 is very slow and then abruptly increases.

134

Bibliography

Arous, G. B., Gheissari, R., and Jagannath, A. (2021). Online stochastic gradient descent on non-
convex losses from high-dimensional inference. The Journal of Machine Learning Research,
22(1):4788–4838.

Bach, F. (2017). Breaking the curse of dimensionality with convex neural networks. The Journal
of Machine Learning Research, 18(1):629–681.

Ben Arous, G., Gheissari, R., and Jagannath, A. (2022). High-dimensional limit theorems for sgd:
Effective dynamics and critical scaling. arXiv preprint arXiv:2206.04030.

Bengio, Y., Roux, N. L., Vincent, P., Delalleau, O., andMarcotte, P. (2006). Convex neural networks.
In Advances in neural information processing systems, pages 123–130.

Bietti, A., Bruna, J., Sanford, C., and Song, M. J. (2022). Learning single-index models with shallow
neural networks. In Advances in Neural Information Processing Systems.

Bietti, A., Venturi, L., and Bruna, J. (2021). On the sample complexity of learning under geometric
stability. Advances in neural information processing systems, 34:18673–18684.

Bihari, I. (1956). A generalization of a lemma of bellman and its application to uniqueness prob-
lems of differential equations. Acta Mathematica Hungarica, 7(1):81–94.

Bruna, J., Pillaud-Vivien, L., and Zweig, A. (2023). On single index models beyond gaussian data.
arXiv preprint arXiv:2307.15804.

Carleo, G. and Troyer, M. (2017). Solving the quantum many-body problem with artificial neural
networks. Science, 355(6325):602–606.

Chen, Z., Cao, Y., Zou, D., and Gu, Q. (2019). How much over-parameterization is sufficient to
learn deep relu networks? arXiv preprint arXiv:1911.12360.

Chen, Z., Chen, L., Villar, S., and Bruna, J. (2020). Can graph neural networks count substructures?
Advances in neural information processing systems, 33:10383–10395.

Chen, Z., Vanden-Eijnden, E., and Bruna, J. (2022). A functional-space mean-field theory of
partially-trained three-layer neural networks. arXiv preprint arXiv:2210.16286.

135

Chizat, L. and Bach, F. (2018). A note on lazy training in supervised differentiable programming.
arXiv preprint arXiv:1812.07956.

Cohen, T. S., Geiger, M., Köhler, J., and Welling, M. (2018). Spherical cnns. arXiv preprint
arXiv:1801.10130.

Damian, A., Nichani, E., Ge, R., and Lee, J. D. (2023). Smoothing the landscape boosts the
signal for sgd: Optimal sample complexity for learning single index models. arXiv preprint
arXiv:2305.10633.

Daniely, A. (2017). Depth separation for neural networks. In Conference on Learning Theory,
pages 690–696. PMLR.

De Bie, G., Peyré, G., and Cuturi, M. (2019). Stochastic deep networks. In International Conference
on Machine Learning, pages 1556–1565.

Diaconis, P. and Shahshahani, M. (1994). On the eigenvalues of random matrices. Journal of
Applied Probability, 31(A):49–62.

Dudeja, R. and Hsu, D. (2018). Learning single-index models in gaussian space. In Bubeck, S.,
Perchet, V., and Rigollet, P., editors, Proceedings of the 31st Conference On Learning Theory,
volume 75 of Proceedings of Machine Learning Research, pages 1887–1930. PMLR.

Dym, N. and Gortler, S. J. (2022). Low dimensional invariant embeddings for universal geometric
learning. arXiv preprint arXiv:2205.02956.

Efthimiou, C. and Frye, C. (2014). Spherical harmonics in p dimensions. World Scientific.

Eldan, R. and Shamir, O. (2016). The power of depth for feedforward neural networks. In Confer-
ence on learning theory, pages 907–940. PMLR.

Feynman, R. and Cohen, M. (1956). Energy spectrum of the excitations in liquid helium. Physical
Review, 102(5):1189.

Fischer, R. F. (2005). Precoding and signal shaping for digital transmission. John Wiley & Sons.

Frei, S., Cao, Y., and Gu, Q. (2020). Agnostic learning of a single neuron with gradient descent.
Advances in Neural Information Processing Systems, 33:5417–5428.

Garnett, J. (2007). Bounded analytic functions, volume 236. Springer Science & Business Media.

Han, J., Li, Y., Lin, L., Lu, J., Zhang, J., and Zhang, L. (2019a). Universal approximation of sym-
metric and anti-symmetric functions. arXiv preprint arXiv:1912.01765.

Han, J., Zhang, L., and Weinan, E. (2019b). Solving many-electron schrödinger equation using
deep neural networks. Journal of Computational Physics, 399:108929.

136

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034.

Hermann, J., Schätzle, Z., and Noé, F. (2020). Deep-neural-network solution of the electronic
schrödinger equation. Nature Chemistry, 12(10):891–897.

Huang, H., Landsberg, J., and Lu, J. (2021). Geometry of backflow transformation ansatz for
quantum many-body fermionic wavefunctions. arXiv preprint arXiv:2111.10314.

Hutter, M. (2020). On representing (anti) symmetric functions. arXiv preprint arXiv:2007.15298.

Ishikawa, M., Okada, S., Tagawa, H., and Zeng, J. (2006). Generalizations of cauchy’s determinant
and schur’s pfaffian. Advances in Applied Mathematics, 36(3):251–287.

Jacobsen, M. (1996). Laplace and the origin of the ornstein-uhlenbeck process. Bernoulli, 2(3):271–
286.

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural tangent kernel: Convergence and generaliza-
tion in neural networks. InAdvances in neural information processing systems, pages 8571–8580.

Jastrow, R. (1955). Many-body problem with strong forces. Physical Review, 98(5):1479.

Ji, Z., Li, J., and Telgarsky, M. (2021). Early-stopped neural networks are consistent. Advances in
Neural Information Processing Systems, 34:1805–1817.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and Bengio, S. (2019). Fantastic generalization
measures and where to find them. arXiv preprint arXiv:1912.02178.

Kakade, S. M., Kanade, V., Shamir, O., and Kalai, A. (2011). Efficient learning of generalized linear
and single index models with isotonic regression. Advances in Neural Information Processing
Systems, 24.

Kalai, A. T. and Sastry, R. (2009). The isotron algorithm: High-dimensional isotonic regression.
In COLT.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh, Y. W. (2019). Set transformer: A frame-
work for attention-based permutation-invariant neural networks. In International Conference
on Machine Learning, pages 3744–3753. PMLR.

137

Luo, D. and Clark, B. K. (2019). Backflow transformations via neural networks for quantummany-
body wave functions. Physical review letters, 122(22):226401.

Ma, C., Wu, L., and E, W. (2019). Barron spaces and the compositional function spaces for neural
network models. arXiv preprint arXiv:1906.08039.

Ma, C.-Y., Kadav, A., Melvin, I., Kira, Z., AlRegib, G., and Graf, H. P. (2018). Attend and interact:
Higher-order object interactions for video understanding. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 6790–6800.

Macdonald, I. G. (1998). Symmetric functions and Hall polynomials. Oxford university press.

Maiorov, V. and Meir, R. S. (1998). Approximation bounds for smooth functions in c (r/sup d/) by
neural and mixture networks. IEEE Transactions on Neural Networks, 9(5):969–978.

Maróti, A. (2003). On elementary lower bounds for the partition function. Integers: Electronic J.
Comb. Number Theory, 3:A10.

Mei, S., Misiakiewicz, T., and Montanari, A. (2021). Learning with invariances in random features
and kernel models. In Conference on Learning Theory, pages 3351–3418. PMLR.

Mhaskar, H. N. and Hahm, N. (1997). Neural networks for functional approximation and system
identification. Neural Computation, 9(1):143–159.

Moreno, J. R., Carleo, G., Georges, A., and Stokes, J. (2021). Fermionic wave functions from
neural-network constrained hidden states. arXiv preprint arXiv:2111.10420.

Murphy, R. L., Srinivasan, B., Rao, V., and Ribeiro, B. (2018). Janossy pooling: Learning deep
permutation-invariant functions for variable-size inputs. arXiv preprint arXiv:1811.01900.

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro, N. (2017). Exploring generalization in
deep learning. Advances in neural information processing systems, 30.

Neyshabur, B., Tomioka, R., and Srebro, N. (2014). In search of the real inductive bias: On the role
of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614.

Neyshabur, B., Tomioka, R., and Srebro, N. (2015). Norm-Based Capacity Control in Neural Net-
works. arXiv:1503.00036 [cs, stat]. arXiv: 1503.00036.

Nitanda, A., Chinot, G., and Suzuki, T. (2019). Gradient descent can learn less over-parameterized
two-layer neural networks on classification problems. arXiv preprint arXiv:1905.09870.

O’Donnell, R. (2021). Analysis of boolean functions. arXiv preprint arXiv:2105.10386.

Pevny, T. and Kovarik, V. (2019). Approximation capability of neural networks on spaces of
probability measures and tree-structured domains. arXiv preprint arXiv:1906.00764.

138

Pfau, D., Spencer, J. S., Matthews, A. G., and Foulkes, W. M. C. (2020). Ab initio solution of the
many-electron schrödinger equation with deep neural networks. Physical Review Research,
2(3):033429.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 652–660.

Rosset, S., Swirszcz, G., Srebro, N., and Zhu, J. (2007). ℓ1 regularization in infinite dimensional
feature spaces. In International Conference on Computational Learning Theory, pages 544–558.
Springer.

Rossi, F. and Conan-Guez, B. (2005). Functional multi-layer perceptron: a non-linear tool for
functional data analysis. Neural networks, 18(1):45–60.

Rydh, D. (2007). A minimal set of generators for the ring of multisymmetric functions. In Annales
de l’institut Fourier, volume 57, pages 1741–1769.

Safran, I. and Shamir, O. (2017). Depth-width tradeoffs in approximating natural functions with
neural networks. In International conference on machine learning, pages 2979–2987. PMLR.

Sandberg, I. W. and Xu, L. (1996). Network approximation of input-output maps and functionals.
Circuits, Systems and Signal Processing, 15(6):711–725.

Sanford, C., Hsu, D., and Telgarsky, M. (2023). Representational strengths and limitations of
transformers. arXiv preprint arXiv:2306.02896.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pascanu, R., Battaglia, P., and Lillicrap, T.
(2017). A simple neural network module for relational reasoning. Advances in neural informa-
tion processing systems, 30.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2008). The graph neural
network model. IEEE transactions on neural networks, 20(1):61–80.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to
algorithms. Cambridge university press.

Shalev-Shwartz, S., Shamir, O., and Sridharan, K. (2010). Learning kernel-based halfspaces with
the zero-one loss. arXiv preprint arXiv:1005.3681.

Sirignano, J. and Spiliopoulos, K. (2022). Mean field analysis of deep neural networks.Mathematics
of Operations Research, 47(1):120–152.

Soltanolkotabi, M. (2017). Learning relus via gradient descent. Advances in neural information
processing systems, 30.

Stinchcombe, M. B. (1999). Neural network approximation of continuous functionals and contin-
uous functions on compactifications. Neural Networks, 12(3):467–477.

139

Sundquist, T. (1996). Two variable pfaffian identities and symmetric functions. Journal of Alge-
braic Combinatorics, 5(2):135–148.

Szabo, A. and Ostlund, N. S. (2012).Modern quantum chemistry: introduction to advanced electronic
structure theory. Courier Corporation.

Telgarsky, M. (2016). Benefits of depth in neural networks. In Conference on learning theory, pages
1517–1539. PMLR.

Vardi, G. and Shamir, O. (2020). Neural networks with small weights and depth-separation barri-
ers. Advances in neural information processing systems, 33:19433–19442.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polo-
sukhin, I. (2017). Attention is all you need. Advances in neural information processing systems,
30.

Venturi, L., Jelassi, S., Ozuch, T., and Bruna, J. (2021). Depth separation beyond radial functions.
arXiv preprint arXiv:2102.01621.

Vershynin, R. (2018). High-dimensional probability: An introduction with applications in data sci-
ence, volume 47. Cambridge university press.

Villani, C. (2008). Optimal transport: old and new, volume 338. Springer Science & Business Media.

Wagstaff, E., Fuchs, F., Engelcke, M., Posner, I., and Osborne, M. A. (2019). On the limitations of
representing functions on sets. In International Conference on Machine Learning, pages 6487–
6494. PMLR.

Wagstaff, E., Fuchs, F. B., Engelcke, M., Osborne, M. A., and Posner, I. (2022). Universal approxi-
mation of functions on sets. Journal of Machine Learning Research, 23(151):1–56.

Wang, P., Yang, S., Li, S., Wang, Z., and Li, P. (2023). Polynomial width is sufficient for set
representation with high-dimensional features. arXiv preprint arXiv:2307.04001.

Wu, L. (2022). Learning a single neuron for non-monotonic activation functions. In International
Conference on Artificial Intelligence and Statistics, pages 4178–4197. PMLR.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826.

Yehudai, G. and Shamir, O. (2020). Learning a single neuron with gradient methods. In Conference
on Learning Theory, pages 3756–3786. PMLR.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J. (2017).
Deep sets. Advances in neural information processing systems, 30:3391–3401.

Zhao, T., Stokes, J., and Veerapaneni, S. (2023). Scalable neural quantum states architecture for
quantum chemistry. Machine Learning: Science and Technology.

140

Zweig, A. and Bruna, J. (2021). A functional perspective on learning symmetric functions with
neural networks. In International Conference on Machine Learning, pages 13023–13032. PMLR.

Zweig, A. and Bruna, J. (2022a). Exponential separations in symmetric neural networks. Advances
in Neural Information Processing Systems, 35:33134–33145.

Zweig, A. and Bruna, J. (2022b). Towards antisymmetric neural ansatz separation. arXiv preprint
arXiv:2208.03264.

Zweig, A. and Bruna, J. (2023). Symmetric single index learning. arXiv preprint arXiv:2310.02117.

141

	Acknowledgements
	Abstract
	List of Figures
	Introduction
	Challenges of Symmetric Networks
	Summary of Contributions

	Preliminaries
	Permutation Invariance
	DeepSets Architecture
	Empirical Risk Minimization
	Inner Products
	Symmetric Polynomials

	The Limit of Sets to Measures
	Preliminaries
	From Set to Measure Functions
	Neural Functional Spaces for Learning over Measures
	Separation of S1 from S2
	Separation of S2 from S3
	Experiments

	Approximating symmetric functions with high interaction
	Preliminaries
	One-dimensional Separation Result
	Interaction Separation Statement
	Proof of Lower Bound
	Proof of Upper Bound

	Approximating antisymmetric functions with high interaction
	Preliminaries
	Separation Statement
	Proof of Lower Bound
	Proof of Upper Bound

	Learning a Single Symmetric Neuron
	Preliminaries
	Analytic Expression for Population Loss
	Derivation of Gradient Flow ODE
	Bounding ODE Convergence
	Experiments

	Bibliography

