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Introduction 

The tools of computer science can be a tremendous help to the working 

biologist. Two broad areas where this is particularly true are visualization and 

prediction. In visualization, the size of the data involved often makes meaningful 

exploration of the data and discovery of salient features difficult and time-consuming. 

Similarly, intelligent prediction algorithms can greatly reduce the lab time required to 

achieve significant results, or can reduce an intractable space of potential experiments 

to a tractable size. 

We describe two specific projects designed with these precepts in mind. The 

first, a software program called Sungear (Poultney et al., 2007; Poultney and Shasha, 

2009), is a visualization tool that shows the outcomes of N experiments on M entities. 

Sungear displays sets of entities – the intersections of these outcomes – within a 

generalization of the traditional Venn diagram, and provides an interactive, visual 

system to answer queries about the data. The second project addresses the issue of 

rational design of temperature-sensitive mutants. Temperature-sensitive mutations are 

a tremendously valuable research tool, but to date, most methods for generating such 

mutants involve large-scale random mutations followed by an intensive screening and 

characterization process. Surprisingly little work has been done in the area of 

predicting these mutations given the importance they play in many genetic and 

functional studies of gene function. Furthermore, the existing methods are based 
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entirely on secondary sequence, and do not use 3-dimensional structure. We describe a 

system that, given the structure of a protein of interest, uses a combination of protein 

structure prediction and machine learning to provide a ranked list of likely candidates 

for temperature-sensitive mutations. 
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Sungear 

Introduction 

Systems biology deals with integrating large-scale measurements of genes, 

proteins, ions and other molecular entities following perturbations and genetic 

dissection. A typical systems biology study involves the integrated analysis of these 

molecular entities from many experiments conducted under different conditions, 

where each condition represents the system-wide response to perturbations (genetic 

and environmental) relevant to the biology of the system. This common feature – 

many treatment conditions and entities numbering in the thousands or more – poses a 

challenge to finding the answers to many natural questions such as: Which subsets of 

conditions yield similar outcomes? Which entities respond similarly in many 

conditions? Which functional groupings of entities are most affected by which 

conditions? We describe a visualization tool to help answer these questions and 

complementary informatic tools to support alternate visualizations, and we explore the 

lessons learned in constructing that tool both from the software designer’s and 

biologist’s perspective. 
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Motivation 

Systems biology presents particular challenges for data integration and 

visualization. For starters, -omic data (genomic, proteomic) has no natural 

visualization because there is no natural physical layout for much of the data. On the 

other hand, an -ome tends to have lots of instances (tens of thousands of genes or 

proteins), and lists of responses are often unwieldy without visual support. 

Unfortunately, presenting a holistic picture, no matter how attractive, does not guide 

biologists to detailed study of individual molecules, which remains an important step 

in the biological process. In our visualization work developed in collaboration with the 

plant biology community, we have adopted the following goals in an attempt to unify 

the goals of the two disciplines: 

1) The software should be easy enough to use that even biology lab directors can 

use it (biology-inspired goal). 

2) The software should respond to a concrete present need as well as anticipated 

future needs (biology-inspired goal). 

3) The software should give not only a holistic view but also the means to locate 

individual targets – individual genes, functional categories, and experiments. 

4) The software should be "stupid", that is agnostic to its current application, so it 

can be extended to others (computer science-inspired goal). 

Goal 1 is not meant to be impudent. To us, a litmus test of good visualization 

software is that our busy biological colleagues should be able to use the software 
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easily even after having been away from it for some time or upon first being 

introduced to it. A second litmus test is that biologists, even those just starting to use 

the tool, should quickly come to discuss the data rather than the interface. Goal 2 

follows from our early observation that biologists, like any other scientists, have their 

own goals and inevitably think of people in other disciplines as purveyors of tools. We 

computer scientists have the same view of DNA chip makers. The utility of those tools 

is what counts. Goal 3 addresses a frustration we have felt with visualizations such as 

heat maps, in which a false color picture appears to give substantial information, but 

fails to provide any type of “cognitive zoom” to a more informative display of 

individual genes or proteins (we use the phrase “cognitive zoom” to denote a “zoom 

in” to a greater level of informational detail, which may or may not be accompanied 

by a visual “zoom in” that enlarges a part of the visualization). Goal 4 derives from the 

computer science aesthetic: the best software is software that can adapt to many 

situations. For biologists, this amortizes the cognitive cost of learning a new tool over 

its many uses. 

We  present a visualization tool called Sungear (Poultney et al., 2007; Poultney 

and Shasha, 2009) through increasingly functional examples and then derive lessons 

for future visualization efforts. 
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Design Principles 

The basic representation of much important system biological data is a list of 

molecules, commonly genes. Sometimes the genes have associated data, e.g. 

expression values, rankings, or connections to other genes. As useful as these lists are, 

it's difficult for people to gain insight from them, especially when the length of a list 

can grow into the thousands and beyond. But sifting through vast quantities of data to 

gain insight is central to the biological enterprise, even if what is "interesting" about 

the data can vary widely and depend on many things: organism, experimental design, 

data set, experimenter, etc. It is this relationship between M (thousands) of entities 

under N (several) conditions that we want to help visualize. The start of the 

visualization should be a picture that gives a holistic representation of what is going 

on, but the visualization should also support a cognitive and/or visual zoom to groups 

and then to individuals. 
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The Basics: Venn Diagrams 

For three or fewer conditions, 

conventional Venn diagrams provide a 

good start. For example, consider a 

fictitious microarray experiment in 

which three input nutrients A, B, and C 

are either at a level 0 or at a level 1. We 

want to determine which genes are 

differentially expressed in which 

situation. One might represent the 

outcome as a Venn diagram (Figure 1). 

Given this Venn diagram, one 

can label each of the eight possible combinations resulting from the binary levels of 

the three inputs. There are however some problems with this visualization: 

1) The Venn diagram gives no visual cue of which combinations of inputs gives 

the largest or smallest result – it is necessary to read the numbers. 

2) The Venn diagram cannot be extended to more than three inputs, without using 

far more complicated shapes that make the image hard to read.  

3) The Venn diagram does not by itself tell us which genes are in which 

intersection. 

Figure 1 Venn diagram 

Venn diagrams are a primary source of 
inspiration for our software. They give 
much information at a glance. For 
example, the region in which A and B 
overlap corresponds to genes that are 
differentially expressed when A and B are 
at level 1 but C is at level 0. A value 
drawn outside of all circles (not shown) 
represents the case where A, B, and C are 
at level 0. 
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The Sungear Plot: Higher-Dimensional Venn Diagrams 

Our software Sungear resolves 

the first objection in its basic window by 

representing A, B, and C as the vertices 

of a polygon (a triangle when there are 

only three inputs) and representing the 

intersections as circles of different sizes 

depending on the number of genes 

(Figure 2). 

In contrast to Venn diagrams, the 

Sungear visualization extends easily to 

more inputs. Imagine for example that 

we have seven inputs, and we are 

interested in all possible binary 

combinations of those inputs (Figure 3). 

The data used here (and in all Sungear plots except for Figure 2 and Figure 14) are 

from an analysis of hormone treatments of young Arabidopsis seedlings (Nemhauser 

et al., 2006) (see the Case Study below for more details). Figure 3 also shows the 

associated information that the full Sungear display provides: TAIR (Rhee et al., 

2003) and GO (Gene Ontology Consortium, 2001) annotations, and the control panel. 

 
Figure 2 An equivalent Sungear 
representation to the earlier Venn diagram 

Each circle is called a “vessel” and is 
pulled towards the “anchors” from which 
it comes. For example, the vessel between 
anchors A and B corresponds to genes that 
are differentially expressed when input A 
is at level 1, input B is at level 1, but input 
C is at level 0. The case where A, B, and 
C are all at level 0 is represented by the 
vessel located outside of the triangle. 
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Exploring Associated Information 

Figure 3 gives a holistic view of the data, but it is crowded enough to make it 

difficult to understand which vessel corresponds to which collection of anchors. For 

that reason, mousing over a vessel paints the associated anchors pink and specifies the 

number of genes corresponding to that vessel (Figure 4; arrows indicate highlighted 

anchors and vessels).  

 
Figure 3 Sungear plot with seven inputs 

The 105 vessels in the figure reflect the relative numbers of genes corresponding 
to each combination of conditions (128 combinations are possible; the 23 null 
combinations are not drawn). GA, BL, and IAA play the roles of A, B, and C, 
respectively, from Figure 2. 
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Figure 4 Mouse rollover highlighting 

Moving the mouse over a vessel will highlight that vessel and its anchors in pink, 
and display the number of genes in the vessel at the upper right of the window. 
For clarity, the highlighted vessel and anchors have also been marked with 
arrows. 

 
Figure 5 Single vessel selection 

In the full Sungear display, clicking on a vessel yields the genes that correspond 
to that vessel as well as the GO terms corresponding to those genes. 
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Knowing how many genes are associated with each vessel does not tell us 

which genes they are, nor does it suggest what is special about those genes. To support 

that functionality, Sungear allows a click on a vessel to yield the genes and GO 

annotations that correspond to the set of conditions associated with the genes in that 

vessel (Figure 5). 

Narrowing and Z-scores 

Finding the genes and functional terms associated with a vessel may require 

the perusal of a long list. As an alternative, Sungear presents those functional terms 

that are significantly overrepresented, and displays a z-score for each GO term at the 

 
Figure 6 Narrowing and z-score updates 

GO terms with recalculated z-scores after narrowing to the vessel selected in 
Figure 5. The three highest z-scores are for “cellular physiological process) (z-
score 7; 1056 genes), “response to abscisic acid stimulus (6; 18), and “response 
to water” (6; 16). 
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top of the lower right hand window. Changing the selection will affect the z-scores, 

which are recalculated when Sungear “narrows” its working set to a current selection. 

By narrowing to the vessel selected in Figure 5, the z-scores are recalculated, and 

several of the top entries among the overrepresented terms involve abscisic acid 

(Figure 6). This is unsurprising in this case, since the ABA condition involves 

treatment with abscisic acid, and the vessel contains genes that responded only to that 

condition. 

Besides clicking on a single vessel, one can also click on a single anchor 

(Figure 7). This corresponds to the query “Find all genes that are differentially 

expressed in this experiment, as well as the overrepresented functional terms.”  

 
Figure 7 Single anchor selection 

Clicking on anchor ABA leaves only those vessels that point to that anchor, 
indicating those vessels that require ABA to be at level 1 in order for any genes 
in those vessels to be differentially expressed. 
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Similarly one can choose a GO term and get a sense of the number of genes in each 

combination of conditions that correspond to that term (Figure 8). 

Z-scores were calculated as follows: 

1) Find the number of genes associated directly or indirectly with each GO 

term T. This is an “offline” process that only need to be carried out when 

the mapping of GO terms to genes is updated: 

ݐ_ ൌ
ܶ ݄ݐ݅ݓ ݀݁ݐܽ݅ܿݏݏܽ ݏ݁݊݁݃ ݂ ݎܾ݁݉ݑ݊
݁݉݊݁݃ ݊݅ ݏ݁݊݁݃ ݂ ݎܾ݁݉ݑ݊ ݈ܽݐݐ  

ሺܶሻ݀ݐݏ ൌ ඥݐ_ ൈ ሺ1 െ  ሻݐ_

2) In Sungear, a data set will involve a subset S of the total number of genes 

in the genome. Using N to represent the number of genes in S, we define: 

 
Figure 8 GO term selection 

Clicking on the GO term “transcription” makes some vessels hollow and leaves a 
hollow annulus in other vessels, corresponding to the genes that do not descend 
from the term “transcription” in the GO hierarchy. 
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ݐ_݂ ൌ
ܶ ݄ݐ݅ݓ ݀݁ݐܽ݅ܿݏݏܽ ܵ ݊݅ ݏ݁݊݁݃ ݂ ݎܾ݁݉ݑ݊

ܰ  

3) We can now calculate the z-score: 

ሺܶሻ݁ݎܿݏ_ݖ ൌ
ሺ݂_ݐ െ ሻݐ_ ൈ √ܰ

ሺܶሻ݀ݐݏ  

Multi-Window Operations 

Having seen how the choice of a single vessel, anchor, or GO term can 

influence the display, one can now ask how to combine such choices to answer more 

complex queries. For example, one may be curious about the transcription genes 

differentially expressed when both ABA and BL are at level 1. Clicking on the GO 

 
Figure 9 Set intersection 

The result of using the set intersection operation to find genes associated to the 
GO term “transcription” and differentially expressed when both ABA and BL are 
at level 1. 
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term “transcription” and the anchors ABA and BL, and then clicking the “set 

intersect” icon yields the 20 genes in this 3-way intersection (Figure 9). 

More complicated operations are possible. To find genes with a z-score above 

10 that are differentially expressed when both ABA and BL are at level 1, first do a  

union operation over the 6 GO terms with z-scores over 10, and then perform an 

intersection between ABA and BL over the remaining genes (Figure 10). As a 

colleague once told us after a similar demonstration, “In 20 seconds, you have done 

what might take us two days to do.” 

Extending Sungear 

So far, we have imagined that each gene is either differentially expressed or 

not. Differential expression need not be the criterion for set membership – a researcher 

 
Figure 10 A two-stage operation 

Shown is the result of taking the union of the top 6 GO terms, then the 
intersection with ABA and BL. 
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can choose any binary criterion – but membership is a binary quantity. However, 

expression levels can vary significantly (as can most other measures) and it is 

worthwhile to extend Sungear to analyze such continuous data. One of the design 

principles of Sungear is that all windows communicate with one another through their 

effect on a single master list of genes. This means that to add a new window W, all  

that is required is that 1) window W can adjust itself when an action in another 

window W’ changes the master list, and 2) window W can send changes to the master 

list when there is a change to W. 

The module GeneLights, 

implemented by Delin Yang and Eric 

Leung, follows the rules above to 

allow exploration of continuous data. 

The idea is simple: for every anchor, 

there exists a range of expression 

values. Each anchor corresponds to a 

line segment whose endpoints 

represent expression values. 

Superimposed on that line segment is a histogram composed of rectangles. The height 

of each rectangle corresponds to the number of genes in that range of expression 

values. Ranges of values can be chosen for one or more anchors and then linked with 

other windows in Sungear as illustrated below. 

 
Figure 11 GeneLights 

The basic GeneLights plot, showing log 
average fold change over the three time 
points that constitute each condition. 
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The basic GeneLights display 

(Figure 11) shows the line segments, 

histograms, and expression value 

ranges as described above. When a 

user selects two ranges on the ABA 

line, for example everything less than 

-0.5 and everything greater than 0.5, 

the result is a selection of all genes 

whose absolute log fold expression is 

greater than 0.5 for condition ABA (Figure 12). Since GeneLights is integrated into 

 
Figure 12 GeneLights selection 

The GeneLights display after selecting all 
genes on the ABA line less than -0.5 or 
greater than 0.5 (log average differential 
expression greater than 0.5). 

 
Figure 13 GeneLights and GO term intersection 

The intersection of all genes differentially expressed by a factor of two in any 
experiment (log base 2 ranges less that -1.0 or greater than 1.0) with and GO 
term containing the word “transcription”. The active set was “narrowed” after 
selection the differentially expressed genes. 
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the Sungear framework, we can use it to perform more complex selection operations, 

such as finding all genes that have a GO annotation containing the word 

“transcription” and that are 2-fold differentially expressed in one or more conditions 

(Figure 13).  

Sungear for Non-Genomic Data 

So far, we have focused on a genomic application. Sungear however is 

agnostic to the application, making almost no assumptions about the type of data upon 

which it operates. The assumptions are minimal: Sungear operates on several sets of 

items and these items can also be classified into categories which may, like GO terms, 

be hierarchical. No assumptions are built into the software that this data pertains to a 

particular organism, or even that the data are of a biological nature. We have 

established a Sungear for baseball to demonstrate this point. Let us take a brief look at 

this application, just to underscore the point that any time a scientist has many entities 

and several conditions, regardless of the application, Sungear may be an appropriate 

tool. 

Public repositories of baseball statistics such as The Baseball Archive 

(http://www.baseball1.com/statistics/) provide all the information necessary to adapt 

Sungear to display baseball information. In this baseball example, individual players 

are the Sungear entities, and the various teams are the categories, structured 

hierarchically by division and league. The first step is to prepare the Sungear files that 
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give player and team information, team hierarchy structure, and player/team 

correspondence (for Sungear’s default Arabidopsis setup, these files would describe, 

respectively, TAIR and GO annotations, GO term parent-child relationships, and 

TAIR-to-GO correspondence). Next, a simple “experiment” data file is created based 

on the statistics from the 2004 season. Players are evaluated according to their 

performance in the four areas that constitute the Sungear plot (Figure 14), with 

membership in a set determined by a threshold. The categories are: batting average of 

.250 or above, 20 or more home runs, 50 or more runs batted in, and 10 or more stolen 

bases. 

 

 Figure 14 Sungear plot showing baseball data 

The four anchors of the Sungear plot, clockwise from top, are: batting average of .250 
or better (avg >= .250), 20 or more home runs (HR >= 20), 50 or more runs batted in 
(RBI >= 50), and 10 or more stolen bases (SB >= 10). The vessel outside the polygon 
represents the players who did not meet any of the above criteria in 2004 – the 
majority of players, in fact. 
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A quick perusal of the Sungear plot shows that 1) most players (835/1247) met 

none of the criteria during the 2004 season, and are represented by the vessel outside 

of the polygon, 2) only 23 players met all four criteria, with the American League 

claiming twice as many of those players as the National League (in fact, the American 

League champion Red Sox went on to win the World Series that season), and 3) 44 

players played in both leagues during the course of the year, including one of the 23 

four-criteria players, Carlos Beltran. This demonstrates that, after straightforward data 

preparation, Sungear is able to provide meaningful exploration of non-biological data. 

A brief case study 

We briefly show how Sungear can be used to help analyze experimental 

results. Nemhauser et al analyze AtGenExpress data collected by Yoshida et al under 

seven different hormone treatments at three fixed time points (descriptions available at 

http://Arabidopsis.org/info/expression/ATGenExpress.jsp). They then classify genes 

as belonging to one of four categories: upregulated at one or more time points, 

downregulated at one or more time points, upregulated at some time points and 

downregulated at others, or none of the above. This is a perfect starting point for 

Sungear analysis. We coalesced the three types of changes (down-regulated/up-

regulated/complex) for each hormone; the genes we consider to be at level 1 for an 

anchor were upregulated or downregulated during at least one time point. This 

illustrates how our binary set membership criterion can vary depending on the 
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interests of the analyst. As mentioned earlier, all of the Sungear plots in this chapter 

(except for the Venn diagram example in Figure 2and the baseball example in Figure 

14) use this data set. 

Nemhauser et al investigate the hypothesis that there is a core growth-

regulatory module that collects inputs from multiple hormones. A quick glance at the 

Sungear plot (Figure 15) shows that there are few target genes common to the 

hormones studied, and supports Nemhauser et al’s conclusion that there is no core 

transcriptional growth-regulatory module. The largest vessels are around the 

periphery, where 1- and 2-anchor vessels are located, while the center, which 

corresponds to more multi-anchor vessels, contains only small vessels. The vessel 

statistics window shows that of the 4,617 genes in the experiment, 3,034 are 

 
Figure 15 Sungear plot showing the vessel statistics window 

Only vessels associated with exactly one anchor, and hence genes expressed in 
only one condition, are selected in the Sungear plot. 



 

 

22 

 

associated with only one vessel (Figure 15). In other words, the majority of genes in 

this experiment respond to only one hormone treatment. 

Next we examine the GO annotations of the genes. Using the GO term search 

feature, we find that of the 98 genes whose annotations contain the phrase “cell wall”, 

63 are expressed under only one condition, providing finer-grained support for the 

earlier statement (Nemhauser et al report 60 of 101 genes; we suspect that our 

annotation file version was slightly different). We can also use the z-scores associated 

with the GO terms to examine over- and under-representation of groups of genes. The 

GO term “metabolism” is strongly overrepresented, with a z-score of 9 (2,355 genes), 

while photosynthesis is slightly, if at all, overrepresented with a z-score of 1 (24 

genes). This is similar to the Nemhauser et al survey of GO categories, which shows 

that genes annotated with “metabolism” are overrepresented in five of the 

experimental conditions, whereas the number of genes involved in photosynthesis was 

consistent with counts generated by a random distribution. 

Sungear provides a shortcut to picking and examining GO terms that are 

expected to be interesting: the “Find Cool” feature. This feature searches for vessels 

that are highly enriched for any GO terms. Each vessel is scored relative to the entire 

genome (as if a “narrow” operation had been performed after selecting just that 

vessel), and any term associated with at least 2 genes in that vessel and with a z-score 

of 10 or more adds one to the “cool” score for that vessel. The “coolest” vessels are 

the ones with the highest scores. In this data set, the coolest vessel has a score of 11; 
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its 14 genes responded to GA, ABA, and MJ treatments. The highest-scoring GO 

terms contributing to the score are lactose catabolism and lactose metabolism (both 

with z-score 19). The biological significance of this vessel, if any, is as yet 

undetermined; but the system’s capability of finding a combination of treatments that 

correspond to an overrepresented functionality can have many applications.  

Combining Visualization Tools for Plant Systems Biology 

In this section, we describe complementary tools that are in wide use among 

our biological colleagues. The tools we discuss include features such as the in-depth 

analysis of individual genes, visualization of expression profiles in different networks, 

and exploration of general networks.  Table 1 lists the web sites for the visualization 

tools discussed in this chapter. 

Software Tool URL 

Sungear http://virtualplant.bio.nyu.edu/cgi-bin/sungear/index.cgi 

MapMan http://www.gabipd.org/projects/MapMan/ 

Genevestigator http://www.genevestigator.com/ 

Cytoscape http://www.cytoscape.org/ 

VirtualPlant http://www.virtualplant.org/ 

Table 1 Websites for visualization tools discussed 

As pointed out earlier, Systems Biology requires the integration of multiple 

experiments on multiple molecular entities. Sungear starts with a set of genes meeting 
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some measure of interest (e.g. expression greater than or equal to a certain level) for 

each experiment. It then compares the experiments by displaying vessels containing 

those genes and relating them to functional categories. As we have seen, a 

paradigmatic use of Sungear is to see which combinations of experiments affect genes 

having similar functional categories. 

Other visualization tools choose different conceptual groupings and 

contextualization of data. MapMan (Thimm et al., 2004) shows gene expression 

values in the context of different pathways. Genevestigator (Zimmermann et al., 2004) 

shows “meta-profiles” of gene expression for several genes against a background 

chosen from a large database of experiments, and provides tools for working with 

these meta-profiles. Cytoscape (Shannon et al., 2003) supports network visualization, 

with many options for adding, analyzing, and visualizing node/edge annotations 

(including expression values); a plug-in framework allows for a wide variety of third-

party extensions. VirtualPlant (Katari et al., 2009) acts as a central data repository and 

launching point for a collection of browsing and analysis tools. Each of these tools 

encourages a different type of data exploration. 

MapMan 

MapMan displays gene expression values in the context of a particular 

pathway (Thimm et al., 2004). That is, MapMan, at its core, associates expression 

values with a visual representation of a pathway or other process. 
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MapMan provides a list of pre-made pathways (currently around 45) for 

displaying expression data. Each pathway is arranged into a hierarchy of functional 

bins; there bins are assigned locations within the pathway image according to the 

pathway being represented. MapMan provides mappings from gene identifiers, such as 

Arabidopsis Genome Initiative (AGI) identifiers, to bins. When an expression data file 

is loaded, the value for each gene in the file is displayed in its assigned bin(s) 

according to the mapping file; a layout component then handles the organization of 

genes within a bin. Displaying the data is as simple as specifying a pathway file, an 

expression data file, and the appropriate mapping file. Only one expression data set 

can be shown on a pathway at a time, but multiple windows can mitigate this 

restriction. 

Each gene in the data file is mapped to one or more bins (typically only one), 

and within each bin in the pathway, each gene’s expression value is displayed using a 

continuous red-to-blue coloring (Figure 16). Bins can also be displayed as histograms 

of expression values of genes assigned to that bin. The MapMan display makes it easy 

to spot bins with a large number of highly over- or under-expressed genes; and the 

display as a whole gives a representation of where the genes in the data file are located 

in the overall pathway and how strongly each gene is expressed. Gene names, 

expression values, and other data are shown in a tooltip when the mouse is positioned 

over a gene, and displayed in the log window when the mouse is clicked. Further gene 

information is provided via links out to several web-based data sources (e.g. TAIR). A 
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separate window lists all the functional bins, with descriptions and associated 

information. The tool also computes the degree to which each bin's expression profile 

differs from that of the other bins; this provides the default sort order for all bins 

represented in the network, so that the bins most likely to be interesting are shown at 

the head of the list. 

 
Figure 16 A MapMan pathway visualization 

The main part of the screen shows gene expression data (log fold-change) for 
one experiment over the Metabolism_overview pathway. Under- and over-
expression are represented by the degree of red or blue shading, respectively. 
The lower right of this window shows roll-over information about one gene and 
its enclosing bin. The window below the visualization gives information on the 
hierarchical bins, and the window to the left allows a choice of experimental data 
and pathway visualizations. 
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By way of comparison, the MapMan display in Figure 16 uses the same data as 

the “ABA” line of the GeneLights display in Figure 11. Whereas Sungear uses a 

histogram to represent the general pattern of expression in an experiment, MapMan 

represents the expression for each gene in the context of some larger pathway. Like 

Sungear, MapMan has a data-neutral architecture: although it is distributed with 

pathways and mapping for Arabidopsis, its text file-based architecture makes it a 

much more general tool for associating any type of continuous values with 

hierarchical locations in an image. 

Here is a use scenario for MapMan: starting with a spreadsheet containing a 

list of genes and log-fold change in expression for one or more experiments, we export 

that list as a tab-delimited file. We then open MapMan, choose a pathway (e.g. 

Metabolism_overview) and the mapping appropriate for our data (e.g. AGI), and take 

a look at the display. We look, either in the pathway display or in the bin list, for one 

or more bins with an unusual pattern of under- or over-expressed genes. We can 

further examine these genes using one of the link-out data sources, or make a list of 

them for further analysis using tools such as Genevestigator. 

Genevestigator 

Genevestigator starts with a small number of genes specified by a user and 

gives information about those genes based on a set of microarray data also chosen by 

the user (Zimmermann et al., 2004). The available microarrays are annotated 
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according to four ontologies, which appear throughout Genevestigator: anatomy, 

development, stimulus, and mutation. The conceptual core of Genevestigator is the 

“meta-profile” of a gene, which is defined as its expression across the different 

categories within an ontology (the Genevestigator documentation refers to the 

categories within an ontology as “conditions”, but we will use the word “categories” 

to avoid confusion with experimental conditions). For example, the “anatomy” meta-

profile of a gene is its expression, grouped by anatomical structure, across the 

microarrays chosen by the user; the “stimulus” meta-profile of a gene is its expression 

across microarrays grouped by experimental stimulus. 

Once an organism (there are currently 8 species available) and a set of 

microarrays have been chosen, Genevestigator provides four interrelated analysis 

tools: Meta-Profile Analysis, Biomarker Search, Clustering Analysis, and Pathway 

Projector. Starting with a list of genes provided by the user, the Meta-Profile Analysis 

tool gives a number of different visualizations of the meta-profiles of the genes of 

interest. Two windows show expression values of selected genes over the entire set of 

chosen microarrays, or a subset thereof, in more detail. Four additional windows show 

meta-profiles of the selected genes across categories in each of the four ontologies, 

with different display options (e.g. heat map or scatter plot). The Biomarker Search 

tool is designed for the case where the starting point is not a known list of genes but a 

desired meta-profile, such as differential expression in one or more tissues or 

up/down-regulation by different stimuli. Differential expression is determined by 
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comparing a set of target categories to a set of base categories over all selected 

microarrays in the microarray set. For example, selecting the “Development” tab, then 

selecting all stages as the base and seedling as the target, will specify a desired meta-

profile of “differential expression in the seedling relative to its expression across all 

developmental stages.”  After specifying a meta-profile, the tool will search for 

matching genes, which can then be added as groups for the Meta-Profile Analysis tool. 

Meta-profiles derived using either the Meta-Profile Analysis or Biomarker 

Search tools can be further analyzed using the Clustering Analysis tool (with a meta-

profile on the screen, simply switch to the Clustering Analysis tool, select some 

options, and click 'Run'). This tool can perform biclustering or hierarchical clustering 

(Figure 17) of genes and categories, with several different options (e.g. up/down 

regulation for biclustering, and distance measure for hierarchical clustering). 

The fourth component, Pathway Projector, allows for visualization of 

expression data (“projection”) on different pathways. It is somewhat separate from the 

other three tools: it starts with a “comparison set” of expression according to base and 

target categories within an ontology (similar to the Biomarker Search tool) from one 

of the four ontologies. Genes differentially expressed in this comparison set are shown 

on a pre-determined pathway tree selected by the user; an interface is also provided for 

building a new network. While not as fully-featured as Cytoscape, the Pathway 

Projector provides quick network visualization within a familiar interface. 
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Figure 17 Genevestigator’s Clustering Analysis tool 

The main window shows 14 genes (from the “coolest” Sungear vessel in the 
Sungear case study), with hierarchical clustering. Expression values are shown 
from light to dark blue, with darker blue representing greater differential 
expression. Genes (across the top of the main window) are clustered according to 
their expression profile across anatomical structures, and categories from the 
stimuli ontology (along the left of the main window) are clustered by expression 
profile across genes. The microarray sets (all the AtGenExpress ATH1 22k 
arrays) are shown in the upper left window, and the query genes in the lower left 
window. 
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A use scenario for Genevestigator might be as follows: a small number of 

Arabidopsis genes are identified as interesting (e.g., membership in a “cool” vessel as 

determined by Sungear). In Genevestigator, we first specify all of the AtGenExpress 

microarrays as our microarray set, then enter the AGI IDs of the identified genes. We 

start with the “Meta-Profile Analysis” tool, and see a scatter plot of the expression 

values of the specified genes across all arrays. We can then examine the “meta-

profile” of these genes according to different ontologies – in this case, we pick 

“Stimulus” as the ontology, and examine the heat map of expression of these genes 

across different treatments. Switching to the “Clustering Analysis” tool, we perform a 

hierarchical clustering of our genes of interest across the different stimuli. Noticing 

that several of our genes are strongly up-regulated for some subset of treatments, we 

switch to the “Biomarker Search” tool, and search for other genes that are strongly up-

regulated under the same treatments. This provides a new list of genes, which can be 

added to the original list or used to form a new group, and we return to the “Meta-

Profile Analysis” tool to continue our analysis. 

Cytoscape 

Cytoscape helps to visualize networks where the nodes and edges can be 

defined and annotated by the user (Shannon et al., 2003). A paradigmatic use of 

Cytoscape is to visualize regulatory networks among some subset of the genes of a 

genome. When used in concert with Sungear, one can imagine identifying a set of 
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genes through Sungear and then visualizing the protein-protein interaction edges in 

that set through Cytoscape. Cytoscape is a comprehensive tool with many options and 

plug-ins; we provide here only an introduction to its full range of capabilities. 

Cytoscape is built around its visualization of networks. The networks can be, 

for example, protein-protein or protein-DNA interactions, with nodes representing 

either protein or DNA and an edge representing some type of interaction between two 

nodes. Networks can be created from scratch using Cytoscape's editing tools, but a 

more common route is to start with a network from a public source. Many such 

sources exist; for example, the Saccharomyces Genome Database (SGD project, 

http://www.yeastgenome.org/) and BIND (Bader et al., 2001) will both export 

interaction data in Cytoscape-compatible formats. A third option is to use a Cytoscape 

plug-in like cPath (Cerami et al., 2006) or Agilent Literature Search (Vailaya et al., 

2005) to create a network based on a literature search for user-specified terms (e.g. a 

protein of interest). 

Once a network has been loaded, it usually needs to be organized on the screen 

in a human-readable format. Cytoscape provides a wide range of layouts for this 

purpose: layouts based on spring forces, layouts that try to detect certain types of 

graph structure, annotation-based layouts, and many others. Which layout is best 

depends on the task and specific network topology. Once a layout is applied, networks 

are easily browsed: nodes and edges can be selected, and their attributes examined; 

and nodes can be searched for by ID. 
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As mentioned previously, nodes and edges may include additional information, 

referred to as attributes. As with the networks themselves, there are many available 

sources of node and edge attributes; one of the strengths of Cytoscape is its ability to 

incorporate external, publicly-available data sources. Examples of node attributes are a 

common name, which can then be used for clarity in the network display; an alternate 

identifier, such as the AGI identifier where the node ID is the probe set identifier, to 

allow cross-referencing with data indexed by AGI identifier; a set of Gene Ontology 

annotations; or expression values and p-values for a set of experiments. These 

attributes form the basis for Cytoscape's more powerful and interesting features. Once 

additional attributes have been loaded into the network, nodes and edges can be 

filtered based on their attributes. Filters can be used to select sets of nodes and edges 

comprising sub-networks, which can then be manipulated. For example, the sub-

network comprised of all the edges of a certain type, along with their corresponding 

nodes, can be used to create a new network; or all nodes with a p-value above a 

threshold can be removed from the network. 

Cytoscape can alter nearly every aspect of the network's appearance based on 

attribute values: node shape, node color, node size, edge color, and edge line type are 

just a few of the appearance aspects that can be mapped to discrete or continuous 

attribute values. A set of such mappings of attributes to appearance is called a visual 

style. A canonical use of visual styles is to display expression data on a network, 

where nodes are colored along a red-green continuum by expression value, and node 
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shape is determined by a p-value cutoff. These separate appearance attributes can be 

combined to convey multiple channels of distinct information in one network, greatly 

increasing the amount of information communicated to the viewer. 

The real power of Cytoscape lies in the combination of its annotation and 

visualization capabilities with sophisticated analysis, which is often provided by plug-

ins. As usual, there is a wide range of plug-ins, providing functionality such as finding 

clusters (MCODE (Bader and Hogue, 2003)) and active sub-networks 

(jActiveModules (Ideker et al., 2002)) or performing literature searches (cPath, 

Agilent). The BiNGO (Maere et al., 2005) plug-in provides an excellent example of 

combining annotation, analysis, and visualization to produce a meaningful display.  

Among the annotation types that Cytoscape can import are the Gene Ontology 

(GO) annotation terms. Once these annotations have been loaded, the BiNGO plug-in 

analyzes the annotations associated with network nodes for significantly enriched 

terms; the result is a new graph where the nodes are GO terms, with directed 

connections reflecting the hierarchy of the terms, node coloring based on the 

calculated degree of significance, and node size based on the number of nodes in the 

original graph annotated with that term. 
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There are many use scenarios for Cytoscape, but one might be as follows: a set 

of interesting genes is identified. VirtualPlant’s “gene networks” function produces a 

network that associates our genes with enzymatic reactions (a simple example of such 

a network is shown in Figure 18 (Gutiérrez et al., 2007)).  We add to this network the 

 
Figure 18 A Cytoscape network 

Enzymatic reactions from KEGG and Aracyc for five of the fourteen genes from 
Figure 17. Genes are drawn as circles, and proteins as diamonds. Different 
interaction types are represented with different line colors. This network was 
generated from VirtualPlant using the “Gene Networks” analysis tool. 
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expression data whose analysis yielded these genes in the first place, and modify the 

network display to show up- and down-regulation. We may then be lucky enough to 

find – either visually or by using a plug-in – that several of our genes are involved in a 

sub-network, which suggests further experiments to characterize the relationship 

among those genes. Network analysis of connectivity has been used to identify 

putative regulatory hubs that were experimentally validated in Arabidopsis (Gutiérrez 

et al., 2008). 

VirtualPlant 

VirtualPlant is a web-based tool (currently annotated for Arabidopsis thaliana 

and Oryza sativa) that functions as both a data warehouse and a base of operations for 

a wide range of analysis tools. Items in the VirtualPlant “warehouse” include many of 

the experimental and annotation data sets mentioned before: Affymetrix probes for 

Arabidopsis Affymetrix AG and ATH1 chips, TAIR and GO annotations, and BIND 

protein interactions among others. VirtualPlant uses an e-commerce metaphor: users 

can browse or search through these data sets, and place virtual “orders” for sets of 

genes. These genes are then placed in the “gene cart” for further investigation and 

analysis (see Figure 19 for an example of VirtualPlant in use). 
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Genes can be placed in the gene cart in one of three major ways. The first 

option is to upload one or more lists of genes of interest (e.g. favorite genes studied in 

your own lab or genes differentially expressed in a published microarray experiment). 

The second option is to browse through one of the VirtualPlant annotations (e.g. GO 

annotations) to find a category of interest (e.g. “abscisic acid biosynthesis”), or to 

perform a text search within one or all of these annotations. Once the category is 

found, its associated genes can be added as a set of genes to the gene cart. The third 

 
Figure 19 VirtualPlant 

The main window shows the query interface and the top-level categories for 
browsing. The upper left window shows the gene cart, including the group 
“Sungear: group0” which was exported from Sungear back to VirtualPlant. The 
lower left window shows the browse tree, expanded to show the folder containing 
the AtGenExpress hormone treatment experiments. The main window shows a 
list of some of the hormone treatment experiments. 
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option is to browse or search the available microarray experiments, each of which 

contains multiple slides. The experiment is first added to the gene cart as an 

experiment, but is converted to a gene set using one of several methods for comparing 

slides and thresholding (e.g. log base 2 ratio or Rankprod (Hong et al., 2006)). 

Once there are several sets of genes in the cart, VirtualPlant provides a wide 

range of analysis and visualization tools, including Sungear as well as on-the-fly 

network creation and display using Cytoscape. Most importantly, VirtualPlant not 

only brings together a wide range of tools, but is designed so that most of its tools can 

feed their output back to the gene cart, allowing for centralized, iterative analysis 

involving different tools, including new ones. The following extended use scenario 

illustrates the power of the centralized gene cart. 

We start by navigating the microarray experiment hierarchy to find the 

AtGenExpress hormone time course treatments. From this list, we choose the 

following experiments: Brassinolide time course in wildtype and det2-1 mutant 

seedlings, GA3 time course in wildtype and ga1-5 mutant seedlings, and IAA time 

course in wildtype seedlings. We will refer to these as BL, GA, and IAA from here on. 

For each of these three, we select the experiment, and choose the “Create Experiment” 

option to add it to the gene cart. We select each experiment in turn from the gene cart, 

then select the mock treatments as the baseline and the hormone treatments as the 

treatment, being careful to avoid the mutant treatments in the GA and BL experiments; 

we then perform a log base 2 ratio test with a cutoff of 1.0. This will find genes in 
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each experiment that are differentially expressed at one or more time points, albeit in a 

less sophisticated way than (Nemhauser et al., 2006). When these three analyses are 

complete, we choose “Analyze” from the top menu, select our three new groups, and 

send them to Sungear for analysis. 

Sungear now executes with our three groups as its anchors. Only one vessel 

corresponds to more than one condition (BL and IAA); we perform a union over it and 

several GO terms, then Narrow to create a new group. To send these genes back to 

VirtualPlant, we check the box next to the new group and click “Export”. This group 

will now be listed among the sets of genes in the gene cart. We could now select that 

group for exploration by other VirtualPlant tools (such as viewing networks 

constructed from that set of genes, or searching for overrepresented GO terms within 

that set); or save it as a file for analysis by a tool not directly callable from 

VirtualPlant. 

Conclusions 

Our experiences designing Sungear and observing other visualization tools 

have led us to the following core principles for designing tools for systems biologists: 

1. Make the interface as transparent as possible. Good visualization software 

makes it straightforward for a skilled investigator to apply his or her 

experience to exploring the data. The data setup should be straightforward and 
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the first image insightful. After that, the investigator drives the exploration 

process. 

2. Build a tool that does a small set of things well and with an intuitive interface. 

This reduces the length of the coding/feedback cycle, making it more likely 

that the tool will suit the investigators' needs. 

3. Support different levels of abstraction (“conceptual zoom”) to allow users to 

find additional data. It’s usually impossible to show all the relevant details for 

a data set on-screen at one time without creating a display that’s meaningless, 

overwhelming, or both. Allowing the users to pan and zoom in a conceptual 

landscape effectively reduces the complexity of a visualization, making 

pertinent details available only on demand. 

4. Make it easy for the tool to export and import data, so it can interact with 

complementary tools. 

5. Make the tool as data-generic as possible. Assumptions about the types of data 

that your first users care about may unnecessarily limit the usefulness of the 

software for later users, so ensure your assumptions are minimal. 

So much for the lessons for tool builders. What guidance can we give to users 

who must choose among tools? The obvious question to ask of any visualization is 

what it illustrates using its screen real estate. The less obvious question is the way in 

which the visualization reduces large numbers of items to a conceptually manageable 

small number. To appreciate this second point, consider a world without any 
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visualization. You have just done 10 experiments, each on 20,000 genes. Do you stare 

at a table of text? 

Using MapMan you might place gene expression on a particular pathway. 

Once you choose a pathway, each gene takes a very small amount of screen real estate, 

so MapMan can handle an experiment with thousands of genes. Using Cytoscape, you 

might want to find a small set of genes according to some criterion and then display 

some kind of interaction data, or find sub-networks with distinguishable biological 

meaning within a larger set. Unless the focus is on super-node analysis, you eventually 

need to reduce the set of genes to a small set to render the network comprehensible. 

Using Genevestigator, you again choose a small set of genes to do profile analysis. 

Using VirtualPlant, you can use multiple tools in a centralized iterative fashion to 

analyze lists of genes or microarray data to construct biological hypotheses. 

Any tool that displays a small number of items from a larger set requires 

another tool to select that small number. A relational query language can serve this 

purpose but it requires too much knowledge (e.g. I want those genes that show up in 

the intersection of these three experiments, but how do you know which three 

experiments?). Sungear is an alternative in that it enables selection by experiment, 

functional category, or commonality among experiments and/or functionalities. It does 

so in an interactive way and in which most of the visual field is filled with circular 

objects whose size connotes quantity and thus suggests the queries to ask. As the 
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amount of biological data explodes, the need for this type of conceptually rapid 

filtering only increases. 
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Temperature-Sensitive Mutant Prediction 

Mutations, Phenotypes, and Temperature-Sensitive Mutants 

A mutation in the DNA sequence of a cell’s genome – whether it is a point 

mutation of a single nucleotide, the insertion or deletion of several nucleotides, or a 

larger-scale mutation such as an amplification of a genomic region – can be described 

in a number of ways, such as its effect on the DNA sequence, its effect on the eventual 

transcript resulting from that gene, its effect on the abundance of protein or transcript, 

or its effect on function (e.g., gain of function or lethality). In this work, we have 

chosen to study and make predictions based on protein sequence and structure, so it is 

the effect on protein sequence that we are interested in. As a result, we are by default 

considering mutations that change only a single amino acid in the protein product: 

mutations to the DNA that change an amino acid and do not truncate the protein. In 

terms of the effects on protein sequence, this excludes frameshift mutations, nonsense 

mutations, and silent mutations, leaving only missense mutations and perhaps neutral 

mutations. 

Our work is at the protein level, so from this point on, we will use the term 

“mutation” to refer to a change in the amino acid sequence of a protein and “point 

mutation” or “substitution” to refer to a change to a single amino acid, unless the 

context clearly indicates otherwise. The effect of a mutation on an organism is often 
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deleterious and can be fatal. In other words, the phenotype – the observable effect – of 

the mutation is death, often in an early stage of development. This demonstrates that 

the protein in question has a role in early development, but the mutation that causes 

early death cannot be used to study the role of that protein in the organism at later 

stages in its development. 

Certain mutations exhibit wild-type (or near-wild-type) behavior under a 

“permissive” set of conditions but a mutant phenotype under a different “restrictive” 

or “nonpermissive” set of conditions. These conditional mutations provide a way to 

circumvent the “early death” issue. Temperature-sensitive (ts) mutations are a 

particularly useful type of conditional mutation where the restrictive environment is 

simply at a different temperature from the permissive environment (generally the 

restrictive temperature is higher, making the mutations heat-sensitive, though cold-

sensitive mutations also exist). Thus a researcher can grow an organism with a 

temperature-sensitive mutation to maturity, then “switch on” the mutation by raising 

the temperature to the restrictive temperature. Moreover, in general they can then 

“switch off” the mutation by returning to the permissive temperature. 

At the restrictive temperature, a temperature-sensitive gene exhibits a drop in 

the level or activity of the gene product (Chakshusmathi et al., 2004), typically as a 

result of unfolding, destabilization of a feature critical to function, or partial unfolding 

that results in clearance by the proteolytic machinery. A more thorough description 

from (Sandberg et al., 1995) states that a ts phenotype may result from “decreases in 
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stability, solubility, or resistance to proteolysis, as well as reduced function... The ts 

phenotype may also result from failure to accumulate sufficient quantities of active 

protein at the nonpermissive temperature, either because of poor expression, failure of 

the polypeptide to fold, or aggregation.” Our method is most likely to detect ts 

proteins that cause a change in the Rosetta (Rohl et al., 2004) energy function, e.g., 

those with decreased stability or difficulty folding. 

Motivations 

Finding temperature-sensitive mutants is traditionally a highly random process, 

though more targeted methods have emerged. Methods for finding ts mutations break 

out into three broad categories: random mutagenesis of the entire genome or part of 

the genome, rational methods that target a particular gene of interest, and predictive 

methods that suggest specific mutations for a given gene. The random methods require 

the most time and work, while the predictive methods require the least. Most 

discovery of ts mutations has been through the random methods; the rational methods 

are improving, but surprisingly little work has been applied to predictive methods. 

This gap becomes increasingly important as knowledge of the roles of individual 

proteins, and hence the need to study specific proteins, increases. Our goal, therefore, 

is to construct a method that makes highly accurate predictions to reduce work and lab 

time. 
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Prior Work 

Techniques for generating temperature-sensitive mutations involve some 

combination of the following steps: 

1. Make random or designed mutations to the genome of the target organism 

2. Screen the mutants from step 1 for the desired temperature-sensitive phenotype 

3. Sequence the mutants that exhibit the desired phenotype to determine the 

mutation(s) responsible for the phenotype 

The different types of method – random, rational, and predictive – vary in the 

actual steps required and in the amount of time required for each step. Each method 

has some type of setup cost (e.g., preparing vectors and introducing mutations), and 

sequencing is often performed even with the non-random methods as a verification 

step. However, the main difference among the methods, in terms of time and effort, is 

in screening the mutants. The time required for screening depends mainly on the 

number of mutants to be screened: random methods typically generate many 

thousands of mutants (random methods in the papers reviewed below generate from 

15,000 to 250,000 mutants), while predictive methods generate fewer than 100. 

Screening time also depends on the type of screen: screening yeast cultures for 

impaired growth is much easier than visual examination of individual fly wings. 

Methods also vary in the frequency (success rate) with which they generate 

viable temperature-sensitive mutations and in the specificity of the mutation being 
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made (i.e., whole-genome or single-gene). We discuss a range of existing techniques 

and compare them according to the criteria above. 

Random Mutagenesis 

The earliest method for producing ts mutations is mutagenesis of the entire 

genome of an organism, using any of a number of agents or techniques: chemical 

mutagens such as ethyl methanesulfonate (EMS); X-rays or γ-rays; and a host of 

others. This is followed by a screening process to identify the temperature-sensitive 

mutants. Because of the large number of mutants generated, screening is generally 

very time-consuming for organisms on the order of complexity of D. melanogaster, 

and impossible for more complex organisms. Unless the goal was simply to create a 

mutant with a temperature-sensitive phenotype, the mutated genome must then be 

sequenced to find the mutation responsible for the ts phenotype. 

A good example of the above process is provided by (Suzuki et al., 1971), 

where the desired outcome was a ts mutant that exhibited reversible immobilization at 

the restrictive temperature and was capable of producing offspring. Approximately 

250,000 mutant flies were grown and screened for reversible immobilization at the 

restrictive temperature. Of these, only 293 exhibited immobilization at the restrictive 

temperature, 200 of which had died; of the remaining 93 that recovered mobility at the 

permissive temperature, only one was fertile and carried the temperature-sensitive 

paralytic mutation to which the rest of the paper is devoted. 
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This process is obviously hit-or-miss, and is essentially useless if one is 

interested in mutations of one particular gene. A more targeted method is a variant of 

polymerase chain reaction called PCR mutagenesis, which introduces mutations into a 

DNA sequence during copying. The advantage of PCR mutagenesis is the ability to 

restrict  mutations to a particular gene. Though the genetic material to mutate must be 

first isolated and the mutated DNA reintroduced into the organism being studied, the 

overall reduction in work is clearly advantageous. Mutated genes must still be 

sequenced afterwards if the actual mutation is to be known. Some of the rational 

methods discussed below incorporate PCR mutagenesis as an intermediate step. 

Rational Methods 

A number of methods exist to single out a gene of interest and make a mutation 

to that gene that exhibits conditional behavior: heat-inducible degron fusion (Dohmen 

et al., 1994), conditionally splicing inteins (Zeidler et al., 2004), plasmid shuffling 

(Sikorski and Boeke, 1991), the “diploid shuffle” (Ben-Aroya et al., 2008), 

replacement of a gene's promoter with a different rapidly-repressible promoter 

(Mnaimneh et al., 2004), or techniques for destabilizing the target mRNA (Schuldiner 

et al., 2005). These methods are essentially lab procedures for generating conditional 

mutations that either a) do not use any prior knowledge about which specific 

mutations are likely to exhibit conditional behavior, or b) exploit mechanisms other 

than straightforward point mutations. We discuss several of these methods below. 
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N-degron fusion 

Heat-inducible degron fusion (N-degron fusion) (Dohmen et al., 1994) can be 

used to make a protein temperature-sensitive by expressing the protein as a fusion with 

a temperature-sensitive N-degron. An N-degron is an intracellular degradation signal 

whose activity is determined by the N-end pathway, which regulates proteolysis via 

ubiquitination. The technique is based on the creation of a ts N-degron, Arg-DHFRts, 

that is stable at the permissive temperature but becomes unstable at the restrictive 

temperature, activating the N-degron and triggering rapid proteolysis. This ts N-

degron can be expressed as a fusion with a protein of interest, allowing any protein 

that can tolerate N-terminal extension to be made temperature-sensitive. Assuming the 

N-terminal extension is tolerated, this alleviates the issue of “leaky” ts mutants that, 

while showing a ts phenotype, also have a weak phenotype at the permissive 

temperature. In this initial paper, the method was limited to intracellular areas where 

the N-rule pathway operates, namely cytosol and the nucleus. 

N-degron fusion has some interesting features. It relies on a clever trick: the 

plasmid used includes a ubiquitin moiety immediately before the N-terminal Arg. The 

ubiquitin allows almost any amino acid (Arg, in this case) to be placed at the N-

terminus, but is cleaved almost concurrently with translation. N-degron fusion mutants 

can be used in ways other than the usual testing at permissive and restrictive 

temperatures. One alternative is to test the mutated protein at the restrictive 

temperature in cells of two different strains of the target organism, one of which 
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carries a mutation that disables the N-end pathway. Another is to test the mutated 

protein at the restrictive temperature, but also use varying concentrations of an Arg-

DHFRts inhibitor (methotrexate), essentially creating a mutant that is conditional but 

not temperature-sensitive. 

Ts Intein Splicing 

Another process for creating temperature-sensitive mutations relies on a 

mechanism similar to the splicing of intron regions of DNA: the post-translational 

splicing of a part of a protein called an “intein”. A temperature-sensitive intein will be 

spliced at the permissive temperature, but not at the restrictive temperature. If the 

unspliced intein results in an inactive protein, temperature-sensitive splicing results in 

a temperature-sensitive protein. 

Ts intein splicing (Zeidler et al., 2004) starts with a well-know yeast intein, 

Sce VMA, that is inserted into Gal4 to create Gal4INTWT. To check its viability, they 

introduced Gal4INTWT into a yeast strain (FY760) that is dependent on rescue by 

Gal4-expressing plasmid. They also verified that a mutant non-splicing VMA (inserted 

into Gal4 to produce Gal4INTDead) does not rescue the organism. They then performed 

low-fidelity PCR on Gal4INTWT and screened for a ts phenotype, yielding several ts 

variations that can collectively be referred to as Gal4INTTS. When the ts variants were 

transformed into the rescue yeast strain, the result was a ts-lethal mutant, verifying that 

a ts intein had been created. In subsequent experiments, the ts inteins isolated above 
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were transferred into yeast Gal80 and two Dmel genes, demonstrating that the intein 

can work in different genes and species. 

There are several caveats to this method. Some leakiness is possible; wise 

choice of the intein insertion site may mitigate this. In addition, splicing is context-

dependent. In their first paper, the source intein was immediately upstream of a Cys 

and only worked when inserted upstream of a Cys in the target protein; and not all 

tested Cys-upstream insertion sites in the target protein worked well. 

The “Diploid Shuffle” 

A third and final example of rational ts creation is the “diploid shuffle” 

technique (Ben-Aroya et al., 2008). This technique was motivated by the desire to find 

a systematic way to study yeast essential genes, which cannot be studied using the 

gene deletion projects yeast knockouts (YKO) as cells will not survive without 

essential genes. Conditional mutants provide an excellent way to study these essential 

genes. The method involves the following steps: 

1) Start with DNA containing the gene of interest (loosely referred to as YFEG, 

“Your Favorite Essential Gene”) 

2) Perform PCR mutagenesis on YFEG (in this paper, ~15,000 mutations were 

generated for each gene) 

3) Clone mutants into the plasmid SB221+Topo-TA (which contains URA3 

flanked by KanMX 3' and 5' regions) to create a library of mutagenized YFEG 
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4) Transform this library into E. coli, then digest to yield isolated mutant strands 

5) Transform the mutant strands into a “haploid-convertible heterozygous” 

diploid strain, which has a bar-code-flanked knockout of YFEG 

6) Sporulate and select for haploids at 25° (a standard technique that selects for 

cells expressing Ura+ and hence the mutation as well) 

7) Select temperature-sensitive candidates, then replica plate and incubate at 25° 

and 37° and screen for ts phenotype 

The result of the above process was a MATa strain from the YKO background 

with the gene at its endogenous location, flanked by bar codes. This method 

generalizes to any yeast gene, and is made significantly easier by the existence of 

YKO and the ease of transformation with SB221+Topo-TA. Its main drawbacks are 

the time required to screen for ts mutations after PCR mutagenesis and the fact that the 

method is only applicable to yeast. On the other hand, the method yielded real ts 

mutants (as opposed to, e.g., tet-regulatable promoters, which are binary on/off), 

allowing the study of ts alleles at intermediate expression levels. 

Predictive Methods 

As discussed in Prior Work, each of the methods listed above has a cost and 

success rate associated with it. Any method that depends on random mutagenesis, 

either of the whole genome or of a gene, will require the screening of many mutants 

for the desired phenotype. These methods also tend to have a low success rate, 
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generating many mutations in order to isolate a handful of ts mutations, though PCR 

mutagenesis at least allows the targeting of a specific gene. The diploid shuffle 

method has a very high success rate, but it still depends on PCR mutagenesis – 

perhaps even multiple rounds of mutagenesis – and therefore has a high screening 

cost. The other rational methods discussed do not carry the high screening cost – for 

example, the intein splicing method used PCR mutagenesis for the initial step of 

finding the ts inteins, but does not require mutagenesis to use the inteins – but these 

methods are inherently limited in other ways. N-degron fusion and ts intein splicing 

generate at most several mutations, and a few as one mutation, for any gene; if none of 

this small number of mutations shows a ts phenotype, then the technique fails for that 

gene. For example, the N-degron method achieved a success rate of 60% on a sample 

of yeast essential genes (Kanemaki et al., 2003); on another gene set, the tet-

regulatable promoter method resulted in a ts phenotype in about 50% of the genes 

(Mnaimneh et al., 2004); and on yeast essential genes, DAmP achieved a ts phenotype 

rate of just over 30% (Ben-Aroya et al., 2008). 

The ideal technique for generating temperature-sensitive mutations would 

yield the maximum number of ts mutations, ideally to a specific gene of interest, with 

the minimum amount of screening. Predictive methods aim to do just this: they focus 

on a gene of interest and generate a small list of high-likelihood predictions for that 

gene, thereby eliminating the large-scale screening processes associated with the 

random methods. The success rate is high, and depends on the accuracy of the 
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predictions: the success rate is the fraction of genes for which at least one viable ts 

mutation is found among the set of predicted mutations. An important bonus for the 

predictive methods is that the end result is still a traditional temperature-sensitive 

point mutation, which can be studied in vivo without otherwise perturbing the protein, 

its regulatory pathways, or its environment. 

Burial, Mutations, and Stability 

(Sandberg et al., 1995) describe relatively early work that lays an encouraging 

foundation for the prediction of ts mutations. Their goal was familiar – to eliminate the 

time-consuming purification and screening of candidate proteins – but they posed the 

question differently: can in vivo activity act as a reporter for attributes that can be 

measured in vitro? In other words, can in vivo activity predict in vitro measurements 

of stability and DNA binding affinity? Mutants of bacteriophage f1 Gene V protein 

(an 87-residue homodimer that binds to DNA and RNA and is essential for phage 

growth) were assayed for phage growth at permissive and restrictive temperatures in 

vivo. Those results were compared to in vitro measurements of stability and DNA 

binding affinity. The results for surface (>10% side chain solvent accessibility) and 

buried substitutions were analyzed separately, with the following results: while no 

correlation could be found between in vivo activity and in vitro measurements for 

surface substitutions, there was a strong correlation between in vivo activity and 

decreased stability (ΔΔG°) for buried substitutions. 
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Furthermore, in this study, 85% of studied mutations at buried hydrophobic 

positions were temperature-sensitive (though this figure does not seem to be supported 

by later papers). A detailed study was made of all possible combinations of apolar 

substitutions at two sites known to be tolerant to substitutions (i.e., mutations are not 

inactive, but may be ts); 29/64 mutations were inactive, while 28 were ts. In all cases 

but one, the double mutant activity was the same as or less than that of either single 

mutation. 

Across the 3 proteins discussed – Gene V, T4 lysozyme and λ-repressor – 

proteins with buried substitutions were more unstable as a group. Buried substitutions 

may so frequently be ts because they alter interior hydrophobicity and/or packing; 

also, apolar buried substitutions can cause subtle rearrangements that propagate to the 

surface and perhaps even affect binding. As a general rule (from λ-repressor N-

terminal domain studies), interior substitution(s) were tolerated if 1) side chains were 

generally non-polar and 2) total hydrophobic core volume did not change significantly 

from WT. Surface substitutions did not destabilize strongly, except for hydrophobic 

substitution at an exposed site. In fact, active site mutations often increased stability; 

however, this is only an issue for the (generally small) fraction of active site positions 

– roughly 13/87 in the case of Gene V. 
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Prediction of Burial and Temperature Sensitivity from Sequence 

The correlation between mutations at buried sites and a temperature-sensitive 

phenotype provides an excellent starting point for ts mutant prediction. In the first of 

several papers to address ts mutant prediction, (Varadarajan et al., 1996) propose a 

method for predicting ts mutants that hinges on accurate prediction of burial from 

sequence, based on the average hydrophobicity and “hydrophobic moment” of the 

candidate highly buried sites. For each predicted buried site, five mutations are 

suggested based on the native residue to give a range of ΔG values at that position 

such that at least one mutation should result in a ts mutant. 

The basic premise, as explained earlier, is that substitutions at buried residues 

will destabilize the protein; therefore prediction of buried sites is the first step in the 

method. Only the residues designated as the most highly buried – Cys, Phe, Ile, Val, 

Tyr, Met, and Leu – were considered as candidate sites. Each residue has a 0-100 

hydrophobicity H(n) associated with it, which was used to calculate two quantities: the 

average hydrophobicity Hav and the hydrophobic moment Hmom. Hav is the average of 

H(n) over a 7-residue window, and Hmom is the second moment of H(n) over a 9-

residue window with a secondary-structure dependent phase term optimized to find 

amphiphilic regions. Rules for burial prediction were derived using a training set of 

known PDB structures. Using Hav, Hmom, and H(n) at a given site, and Hav or 

hydrophobicity of neighboring sites, sites that are less than 15% accessible were 

predicted with 80% accuracy on a separate test set. 
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For each putative highly-buried site, a range of substitutions was suggested 

based on the native residue at that site. These substitutions were based on expected ΔG 

values; actual ΔG values of the mutants will vary and are dependent on ΔH, ΔCp, and 

native structure ΔG,. The goal is to destabilize the protein to some intermediate 

degree, based on the fact that the free energy of unfolding at room temperature is 5-15 

kcal/mol. Substitutions were split into “conservative” (e.g. methylene group 

addition/deletion) and “non-conservative” (e.g. buried hydrophobic => 

charged/polar/glycine). Substitution counts were minimized by keeping charged and 

polar substitutions roughly the same size as the native and having them add a single 

negative charge and hydroxyl group, respectively. 

For the 3 proteins tested, 16 buried sites were predicted; 14 of the sites were 

actually buried in the structure. Five of the six known ts mutations at those sites were 

among their (presumably 80) suggested substitutions. Many of the other predictions at 

these sites appear not to have been studied as of the writing of this paper. 

More recent work by the same group (Chakshusmathi et al., 2004) used the 

same prediction method, with a few small changes, to make and test mutations to E. 

coli and yeast. When the method was applied to the E. coli cytotoxin CcdB, mutations 

at four predicted buried sites yielded 6 ts mutations. In yeast, predictions made at 3 

sites in a shortened version of Gal4 called miniGal4 yielded 8 ts mutations, 4 of which 

were active in the full Gal4.  The mutations were the first reported ts mutations for 
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CcdB and Gal4. The method is as follows, with measures becoming increasingly 

difficult in steps 2-4: 

1. Identify putative buried sites 

2. Introduce Asp independently at 2 predicted burial sites; if this makes the 

protein inactive, try the other 18 substitutions at those sites 

3. Introduce positively charged, polar, small & large hydrophobic residues at 4 

sites (Lys, Ser, Ala, Trp) 

4. Express WT or mutant in an inducible system, and check for intermediate 

ranges in cases where extremes yield active and inactive phenotypes 

In E. coli CcdB, ten buried sites were predicted, and tested by substitution with 

Asp.  Eight sites showed inactivation; they corresponded exactly with the sites that 

were found to be correctly predicted as >90% buried in the CcdB crystal structure, 

which was solved independently during the research (Loris et al., 1999). Of these 8 

sites, four were chosen for further experimentation. Since they all showed inactivation 

by Asp, the other 18 amino acids were substituted as per step (2) in the procedure 

above, yielding 6 ts mutations (along with 28 active/neutral mutations and 42 

inactive/lof mutations). CcdB was also expressed in an inducible system under the 

control of arabinose; while useful, the manipulation of expression level outside of the 

usual regulation pathway made this data less useful. In all cases, the permissive and 

restrictive temperatures were 37° and 42°. This is quite high, which raises the 
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possibility – which is discussed by the authors – that increased proteolysis due to heat 

shock response played a role in ts behavior. 

In yeast, Gal4 was chosen as the protein of interest.  To simplify testing, a 

shorter version (~200 residues) of Gal4 called miniGal4 was made that included the 

DNA-binding domain, a 7-residue linker, and the activation region.  Only five buried 

sites were predicted; of these, three were chosen and mutated to Ala, Ser, Trp, and 

Lys, as per step (3) in the method. Ts screening was performed at 21°, 30°, and 37°.  

Only one ts mutant resulted from the limited substitution, though a total of 8 were 

found by substituting all possible amino acids.  Of these eight mutations, four were 

found to be ts in full-length Gal4. 

As with (Sandberg et al., 1995), a few general rules emerged: Asp and Glu 

mutations were always inactive; Lys and Arg were better tolerated, perhaps because 

their long, flexible side chains can reach the surface; substitution of a buried 

hydrophobic by a smaller hydrophobic was generally tolerated; and bulky aromatics, 

especially Trp, were more likely to inactivate.  But no clearer correlation between 

substitutions and phenotypes emerged. 

One key yeast experiment showed the advantage of predictive methods over 

random methods. Random mutagenesis of miniGal4 was carried out using error-prone 

PCR; of the more than 20,000 transformants generated, none were found to be more 

than very mildly ts (several active and inactive transformants were identified as well). 

It is highly significant that 20,000 mutations to a ~200 residue protein produced 
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essentially no ts mutations, while a predictive process that made 57 substitutions at 3 

sites in that same protein produced 8 ts mutants. 

Methods 

Goals 

As stated above, our goal is to take the structure of a protein of interest and 

generate a ranked list of candidate amino acid substitutions that may yield a mutated 

protein with a temperature-sensitive phenotype. In practice, this would give, for 

example, a “Top 5” list of mutations taken from the 5 highest-ranking predictions. 

Following the approach of Varadarajan, rather than trying to predict exhaustively all 

possible ts mutations to a protein, we instead focused on making a small number of 

highly accurate predictions. 

Procedure 

The outline of our prediction procedure is as follows: 

1) Start with the known structure, or a high-quality homology model, of a protein 

of interest. 

2) Find the buried sites in the protein, and model mutations to all possible amino 

acids at those sites. 

3) For each model generated in step 2 (i.e., for each mutation at each buried site), 

apply an algorithm that allows the protein to relax to a lower-energy state to 
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accommodate the mutation. Since there is randomness inherent to the 

algorithm, run it multiple times for each model, producing an ensemble of 

relaxed structures for each mutation. Generate an ensemble for the starting 

“wild-type” (wt) structure as well. 

4) Generate a score file with one line per mutation ensemble by comparing the 

relaxation algorithm's score terms for the mutation ensemble to those for the 

wild-type structure ensemble. Add several other relevant features, such as 

ACC and conservation of the native amino acid. 

5) Using the score file from step 4, either: 

a. Train one or more machine learning algorithms to discern ts mutations 

from non-ts mutations. 

b. Using the machine learning algorithm(s) trained in step 5a, predict 

likely mutations to a new protein. These predictions have a confidence 

or estimated probability associated with them, from which we compile 

our “Top 5” list. 

Training Set 

Per step 5 above, our method clearly relies on training machine learning 

algorithms using a reliable set of known ts and non-ts samples. We could easily have 

added “Step 0: gather training samples” at the beginning of the above outline. Our 

training samples were taken from a several sources, as enumerated below, comprising 
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ts and non-ts alleles from worm (C. elegans, Cele), yeast (S. cerevisiae, Scer), and fly 

(D. melanogaster, Dmel). The database scraping and literature searching were 

performed by Kris Gunsalus and Michelle Gutwein. 

• Worm mutants were culled from WormBase (Harris et al., 2001) 

(http://www.wormbase.org/) v200 and WorTS. We filtered the lists of putative 

ts and non-ts samples to achieve the highest possible confidence by removing 

the following: putative nonsense mutations, unsequenced or uncurated 

mutations, frameshifts, deletions and insertions, and mutations affecting splice 

sites. In addition, we applied the following specific rules: 

o WormBase ts samples: Only a handful of alleles are directly annotated 

as ts; most are annotated as ts for a particular phenotype. In cases 

where an allele had multiple ts phenotypes, only the first phenotype 

was used. After applying all filters, 107 alleles remained. 

o WormBase non-ts samples: “Not ts” is not an explicit feature tracked in 

WormBase; therefore, we had to derive heuristic rules for conservative 

designation of non-ts alleles. We started with a list of alleles that are 

not annotated as ts, but are mentioned in papers that describe other ts 

alleles, assuming that these were more likely to have been screened for 

a temperature-sensitive phenotype. This process yielded a final list of 

249 alleles. 
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o WorTS ts samples: though there were about 4000 ts alleles in the 

database, only 140 had molecular data. After applying all filters, 61 

alleles remained, 55 of which were already included in the WormBase 

data. 

• Yeast mutants were derived from the Saccharomyces Genome Database, 

Textpresso (Muller et al., 2004) searches, and the Histone Systematic Mutation 

Database (HistoneHits) (Dai et al., 2008; Huang et al., 2009). 

o With the help of SGD curators, a list of 86 temperature-sensitive 

mutations was derived, of which 53 met the screening criteria. 

o Textpresso search (keywords “temperature sensitive” (with quotes), 

category “allele”) was used to find papers describing temperature-

sensitive mutations. Mutations described in the papers as ts were 

included as ts samples, and mutations from those same papers that were 

not described as ts were included as non-ts samples. This yielded 177 ts 

mutations and 229 non-ts mutations. 

o We gathered data for proteins H3 and H4 from the HistoneHits web 

site, using the growth rate TS-39 assay (temperature-sensitive 

phenotype at 39°). We then eliminated all mutations to the flexible tail 

regions and all deletions. We considered all mutations scored 0 (same 

as wild type) as non-ts and all mutations scored -2 (severe loss of 
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function) as ts. We ignored mutations scored -1 (mild loss of function). 

This yielded 25 ts and 225 non-ts samples. 

• Fly mutants were extracted from FlyBase (Tweedie et al., 2009). 

o Temperature-sensitive alleles were identified using a multi-step 

process. First, we downloaded from FlyBase a list of alleles that: 1) 

were annotated heat-sensitive using their controlled vocabulary; 2) had 

molecular data; and 3) had molecular data on the nature of the lesion in 

the allele. We then trimmed this list to exclude insertions, deletions, 

mutations explicitly induced using a heat shock promoter, and 

mutations with unclear annotations of the resulting amino acid 

substitution. This left a list of 204 ts samples. 

o There are no non-ts alleles for fly in the data set at this point. We 

attempted a procedure conceptually similar to the one we used for 

worm and yeast, starting with alleles that are mentioned in the same 

publications as ts-annotated alleles but that are not annotated as ts, and 

taking the further step of restricting these to genes for which we already 

had models. However, this caused a drastic decline in discrimination 

between ts and non-ts samples in fly. Our hypothesis is that this method 

is too coarse-grained; since a lack of ts annotation does not mean that 

an allele is not ts, the only way to ensure that putative non-ts alleles are 



 

 

65 

 

actually not ts is to read the papers in which they appear. We have not 

taken the time to implement this step yet. 

Overall, this gave the sample counts shown in Table 2. However, these 

numbers were considerably reduced by the availability of homology models, as will be 

seen in the next section. 

Species Ts samples Non-ts samples 

Worm 113 249 

Yeast 255 454 

Fly 204 0 

Table 2 Total number of samples provided by database and literature searches. 

Starting structures 

Our method requires a protein structure as a starting point for the prediction 

process. The user must provide this structure; the source (known structure from the 

PDB (Bernstein et al., 1977), homology model) does not matter to us. Our training set, 

however, consisted almost entirely of proteins of unknown structure; these proteins 

needed to be modeled to be incorporated into the training set. 

A high-quality homology model is often based on a template generated from a 

multiple alignment of known structure that is then fed to a program like MODELLER 

(Eswar et al., 2006). While this process produces the best models, it requires 

significant user input. Given the number of models needed to build our training set, 
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and the time available for modeling, we decided to use a less rigorous but far less 

time-consuming protocol: 

• Run each sequence through ModWeb (Eswar et al., 2003), a web front-end to 

MODELLER, using the “Slow” setting for search speed (sequence-sequence, 

profile-sequence, and sequence-profile methods) to give high-quality models. 

• Keep any homology model with an identity of 70% or greater to some domain 

of the target protein (this sometimes resulted in multiple models for different 

domains of a single protein). 

In this way, we were able to generate sufficient number and quality of models 

to provide training samples for our learning algorithm without shifting the focus of the 

project entirely to the generation of homology models. However, many alleles did not 

have models of sufficient quality, or had mutations that fell outside of the protein 

regions with high-identity models. After homology modeling, the set of training 

samples was as shown in Table 3. 

Species ts samples Non-ts samples 

Worm 8 57 

Yeast 156 299 

Fly 43 0 

Table 3 Number of samples with viable homology models. 
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Mutant Generation 

Our method takes advantage of the same fact exploited in the Varadarajan et al 

papers, namely that mutations at buried positions are more likely to destabilize a 

protein. In addition, limiting our method to buried positions reduces the complexity of 

our model, as we do not have to account for the many surface effects that can affect 

temperature-sensitive behavior (e.g. participation in protein-protein interactions, 

which requires identification of interface residues which will vary per interaction). 

Therefore, the first step in generating mutations was to identify the buried positions in 

the protein. Since we had actual structures (albeit often via homology modeling), we 

could accurately calculate burial using standard methods. We chose to use Probe 

(Word et al., 1999) to calculate the percent solvent accessibility (ACC) for each 

residue, including backbone and side chain atoms. We considered residues with ACC 

of 10% or less to be buried, and made mutations only at those sites. The ACC cutoff 

further reduced the training set to its final size, shown in Table 4. Figure 20 shows a 

comparison of sample counts through the set building process, and Figure 21 gives 

more detail on the final training set. 
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Species Ts samples Non-ts samples 

Worm 5 38 

Yeast 48  92 

Fly 22 0 

Table 4 Number of samples meeting all criteria for training set. 

Figure 20 Comparison of training sample counts 

Training sample counts for each stage of the sample collection process: initial counts 
from literature sample, samples with viable homology models, and samples meeting 
the burial cutoff (final training set). 
 

Once the buried sites were determined, we used PyMOL (DeLano, 2002) to 

generate mutations at those sites: starting with the “wild-type” structure, a Python 

script generated a PDB for each of the 19 possible substitutions at each buried site for 

a given protein. 
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Model Relaxation 

For each mutation 

made, we needed to see if the 

protein could accommodate 

the change – it may tolerate 

the change, “blow up”, or be 

destabilized to some 

intermediate degree. Prediction 

of protein structure after 

mutation, even in the case of 

making a single mutation to a 

starting structure, is a 

complicated process: each amino acid has at least two effective rotational degrees of 

freedom, and the angles at many of these may change as a result of a mutation. This 

quickly adds up to hundreds or thousands of degrees of freedom even for simple 

proteins. The protein modeling software Rosetta allowed us to simulate this complex 

process via its “relax” protocol. 

Rosetta is a comprehensive tool for protein modeling: its major functions are 

de novo prediction of protein folding, prediction of protein structure, protein design, 

and protein-protein docking. These and other functions are implemented as different 

protocols, such as structure prediction, loop modeling, clustering, scoring, and 

 
Figure 21 Statistics of the final training set 

Counts are given for the total number of proteins 
(#prot), positions (#pos), and non-ts and ts samples. 
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relaxation. Rosetta comes in two versions: the original codebase, Rosetta 2.x, and the 

newer version, Rosetta 3.x, often referred to as “mini”. We used Rosetta mini, which 

has been completely redesigned to allow for modular creation of new protocols and 

easy modification of existing ones. 

At the core of Rosetta is its scoring function, which is used during program 

execution to guide the Monte Carlo process used in relaxation and is critical to us for 

evaluation of results. The scoring function has low-resolution and high-resolution 

modes, roughly corresponding to residue- and atom-level scoring, which allows a 

trade-off between speed and accuracy. For example, the low-resolution function is 

generally used in the first stage of docking, during traversal of the energy landscape of 

possible positions and orientations of the mobile protein; once a favorable position has 

been found, the high-resolution function is used to make more accurate local moves. 

Each function is broken down into its own component terms. For example, the low-

resolution function includes a component called “env” that approximates residue 

solvation based on the residue type and number of neighboring residues. The high-

resolution function uses the component “solv”, which calculates solvation at atomic 

resolution (Lazaridis and Karplus, 1999). 

Simple substitution of one residue for another in the protein model may 

introduce steric clashes, where several atoms are too close and repel each other 

strongly, or other effects that are unfavorable to the protein’s overall energy. The relax 

protocol allows “accommodation” of a mutation by searching the space of rotational 
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degrees of freedom to find a lower-energy configuration – for example, allowing the 

atoms in the vicinity of a steric clash to move sufficiently to alleviate the clash. Some 

mutations are accommodated with little or no change to the structure; others cause 

significant structural changes or a sizable increase in energy. In this way, the relax 

process gives us a means of quantifying the effect on structure of a given mutation. 

For each mutation generated in the “generation” step (i.e., for each of the 19 

possible mutations at each buried position), we performed a set of relaxation runs. We 

also performed a set of runs on the wild-type structure to generate a “wt” ensemble. 

The result was an ensemble of runs for each mutation and for the wild-type; each 

individual run produced a final structure and, more importantly for us, a score which is 

broken into its component parts. Final score terms were generated by running the 

scoring protocol on the final model, then merging in two terms that were generated by 

the relax protocol but not by the scoring protocol. After some manipulation described 

in the next section, these component score terms became the basis of the feature vector 

for training our machine learning algorithm. 

We perform relax runs on the wild-type structure mostly because of the natural 

variability of protein structure, stability, and energy. Different proteins will have 

different starting energies when evaluated by Rosetta, as proteins vary tremendously 

in structure and function. Furthermore, inherent properties of the proteins, such as the 

change in energy (ΔG) at which unfolding occurs, vary across proteins. In order to 

make valid comparisons between wt and mutant ensembles, we need to know how 



 

 

72 

 

much of the change introduced by the relax runs is due to these varying inherent 

properties of the protein and how much is due to the mutation itself. The relax run 

ensemble derived from the wild-type structure helps us differentiate between these. 

In a typical prediction run, we performed the relaxation process 50 times for 

each input structure, wt or mutant). This is a time-consuming process, and most of the 

CPU cycles consumed in the prediction process were spent running relaxation 

simulations. It also generated a large amount of information in the form of PDB files 

for each structure: for a protein with 100 buried sites, there would be 100 sites × 19 

mutations × 50 runs = 95000 files, which take up several GB even when compressed. 

However, the files themselves were not actually needed after re-scoring of the 

structures and were only kept in case they were needed later to verify earlier work. 

Score File Generation 

Structure-Based Terms 

Once the relaxation runs were completed, we analyzed each ensemble, 

comparing it to the ensemble generated by the wt runs. For a given mutation 

ensemble, we used the quartile method described below to compare the distribution of 

each score term across that ensemble to the distribution of the same score term for the 

wt ensemble. The result was one set of Rosetta-derived features for each mutation 

ensemble. To this we added the ACC of the native amino acid at the current position. 

We also added secondary structure membership terms, derived from PyMOL, 
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depending on whether the native amino acid at a position participated in an α-helix, a 

β-sheet, or a loop region. We refer to these terms, which depend on having the protein 

structure, as structure-based terms, to differentiate them from the sequence-based 

terms described later that require only the protein sequence. 

Quartile-Based Analysis of Scores 

Each run ensemble generated a distribution over each score term, and each 

mutant distribution must be compared to the wt distribution for that protein. The main 

difficulty in analyzing our run ensembles was that the analysis required the 

comparison of distributions of Rosetta score terms between the two ensembles. This 

was challenging because of the varying inherent properties of the different proteins, as 

discussed in Model Relaxation, and how those variations were reflected in the 

unnormalized Rosetta scores. 

We tried several methods to analyze the ensemble scores – including a Z-score 

based approach that normalized across all mutations at a given position and a 

median/variance method that directly compared the median and variance of the 

mutation and wt ensembles – before settling on a quartile-based approach (Figure 22). 

The key attribute of the quartile-based approach was that it allowed comparisons 

without making assumptions about the underlying distribution of the data. 
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For a given ensemble E and set of values S for a single score component of E, 

we found the first, second, and third quartiles (Q1, Q2, and Q3) of S. We then found 

the percentiles of those Q1, Q2, and Q3 values within the set of values S' of the same 

score term in the wt ensemble. The percentiles were represented as fractions between 

0 and 1; values in S lying outside of the range of S' were clamped at 0 or 1, as 

appropriate. Therefore each score component of the mutant ensemble generated three 

values in the score file, ranged [0,1], which represented the locations of Q1-Q3 of the 

mutant score term distribution within that term's distribution in the wt ensemble. 

Figure 22 Calculation of score terms using the quartile method 

Mutant ensemble quartiles 1-3 were calculated for the mutant ensemble distribution 
(top). Q1-Q3 are indicated by red lines, with the corresponding values above and 
percentiles below. The mutant Q1-Q3 values were then mapped to locations in the 
wild type (wt) ensemble distribution (bottom). Q1-Q3 of the mutant distribution are 
again indicated by red lines, with their percentiles relative to the wt distribution shown 
below. Wild type ensemble Q1-Q3 are shown in blue for reference. 
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As an example, the analysis of omega score terms shown in Figure 22 proceeds 

as follows. The omega score values from the mutant ensemble are analyzed, and found 

to have (Q1,Q2,Q3) = (31.35,34.48,36.55). These three values are then located within 

the wt ensemble, and each is given a number corresponding to its percentile with 

respect to the omega term distribution in the wt ensemble. The result is 

(0.150,0.499,0.672). The collection of omega scores from the individual runs in the 

ensemble is now represented by these three percentile values. 

Sequence-Based Terms 

In addition to the structure-based terms produced by the quartile method, we 

derived a number of purely sequence-based terms. First, we categorized both the 

native and the mutant amino acids according to their attributes. One group had four 

categories: small hydrophobic, large hydrophobic, polar, and charged; the other group 

was slightly more fine-grained, with seven categories. We then added fields to the 

output, one for the 4-category group and one for the 7-category group, as follows: 

0=same amino acid, 1=same category, 2=different category. 

In order to leverage the large proportion of potential training samples 

(1070/1275) that had sequence data but no structure data, we constructed a log odds 

table for changes from one class to another (e.g., large hydrophobic to polar). Using 

all 898 single-mutation samples, we tallied the number of times each class change 

resulted in a ts mutant and the number of times that change resulted in a non-ts mutant, 
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starting with a pseudo-count of two. We then calculated ݈݃ଶ
# ௧௦ ௦

# ି௧௦ ௦
 for each 

class change. The log odds table for the 4-group classification is shown in Table 5. 

 Mutant 
Small 

Hydrophobic

Large 

Hydrophobic
Polar Charged 

W
ild

 T
yp

e 

Small 

Hydrophobic -2 -2 -1 0 

Large 

Hydrophobic -2 0 0 0 

Polar -2 -1 0 -2 

Charged -2 0 -1 -1 

Table 5 Log odds ts/non-ts by category 
 

A third set of sequence-based terms was derived using BLAST (Altschul et al., 

1990) and PSI-BLAST (Altschul et al., 1997). For each protein in the training set, one 

iteration of BLAST (Basic Local Alignment Search Tool) was run on the NCBI non-

redundant protein sequences (nr) database (Pruitt et al., 2007) using the native protein 

sequence. Next, one iteration of PSI-BLAST (Position-Specific Iterative BLAST) was 

performed starting with the previous BLAST results to generate the position-specific 

scoring matrix (PSSM) for that protein. Runs were performed with e-value=1, 

inclusion_ethresh=.001, comp_based_stats=1, num_descriptions=3000, 

num_alignments=300, and pseudocount=2. The high e-value is offset by 
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inclusion_ethresh, which actually determines inclusion in the alignment used for the 

PSSM. 

The PSSM gives the log odds of an amino acid (including the native amino 

acid) occurring at a specific position in the input sequence considering the distribution 

at that position. This PSSM score indicates both the degree of conservation of the 

native amino acid at that position and the likelihood of a given mutation at that 

position. The PSI-BLAST run also gives a number of other statistics including 

frequency of occurrence of each amino acid at each position and overall information 

content per position. For a given mutation, we derived seven terms from the PSI-

BLAST run: the log odds of the native and mutant residues, the frequencies of the 

native and mutant residues, the difference in log odds and frequency between the 

native and mutant residues, and the information content at that position. 

Final Score File Assembly 

The final score file includes all structure- and sequence-based terms, along 

with several text fields describing the source protein, position, and mutation for later 

reference. Score files are generated by a pair of programs, one in AWK and one in 

Java, that read the score and PSSM files for each ensemble, perform the processing 

described above, and create two similar output files: one in file CSV format for quick 

examination in spreadsheet programs or other processing and one file in the ARFF 

input file format used for machine learning. The full score file contained 113 columns: 
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93 from the quartile analysis of the 31 components of the score function, 7 from the 

PSSM, 2 amino acid category change columns, 2 amino acid change log odds 

columns, one ACC column, 3 secondary structure columns, 4 text description 

columns, and one column giving the class label. Some of these columns were found to 

be redundant and eliminated; see Choosing and Refining Classifiers in the Results 

section for details. 

Machine Learning: Training 

After analyzing the score files according to the above steps, we had an input 

file with one line for each mutation ensemble. Each line consisted of multiple fields, 

as given by the column descriptions in the previous section. This constituted the 

feature vector for training the machine learning algorithms. 

We used the Weka (Hall et al., 2009) suite of machine learning tools for all of 

our machine learning. We initially used four different classifiers, as implemented in 

the Weka package: two decision tree variants and two SVM variants. After the first 

few rounds of testing and evaluation, we eliminated the decision tree algorithms (see 

Results). 

The decision tree algorithms, which we refer to as “C45” and “C45R”, are both 

based on the C4.5 algorithm (Quinlan, 1993). A trained decision tree operates by 

sending samples down the tree. At each interior node starting from the root, a data 

attribute is queried, and depending on the value, one of the branches of the tree is 
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followed. This process continues until a leaf node is reached, from which the sample 

label is determined. Classification probability is estimated from the training sample 

distribution at that node. The C4.5 algorithm is a particular type of decision tree that 

uses a gain ratio impurity measure to decide on the attribute and (for continuous 

variables) threshold to choose for each node in the decision tree. C4.5 builds a 

decision tree that accommodates both discrete and continuous attributes and supports 

multi-way splits (decision nodes with more than two children) – hence the gain ratio 

impurity measure, which normalizes to counter the bias towards larger splits. As with 

many decision tree algorithms, it builds a large (over-fitted) tree, then prunes the tree 

by removing decision nodes whose elimination causes only a tolerably small increase 

in impurity. 

The algorithm which we refer to as “C45” is exactly as described above. It 

does pruning based on the statistical significance of the split at each node compared to 

a random split at that node – nodes whose splits are above a confidence threshold 

(default 0.25) are eliminated, i.e., the decision node and its children are collapsed into 

a leaf node. The pruning process can also replace a decision node with one of its 

children (a technique called “subtree raising”). The “C45R” method differs in that the 

default pruning method (including subtree raising) is replaced by a simpler, more 

aggressive “reduced error pruning” method. Reduced error pruning sets aside part of 

the training data as a validation set, and then evaluates the effect of pruning tree nodes 
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using that validation set. In practice it gives smaller trees that, in theory, generalize 

better. 

We also used two variants of the ubiquitous support vector machine, which we 

refer to as “SMO” and “SVM”. SMO refers to Platt's sequential minimal optimization 

method (Platt, 1999), which solves the large quadratic programming (QP) problems 

central to support vector machine training by breaking them into the smallest possible 

QP sub-problems and solving them analytically. SMO is considerably faster than 

traditional support vector machine training techniques, particularly for linear kernels. 

Our “SMO” algorithm used sequential minimal optimization to train an SVM with 

normalized input and a linear kernel (technically a first degree polynomial kernel). 

Our “SVM” algorithm used the libSVM library (Chang and Lin, 2001) via Weka, 

which provides a broad range of support vector machine types and options (it also uses 

a form of the SMO algorithm under the hood, but we maintain the “SMO” and “SVM” 

designations for our two classifiers as a convenience). We used the C-SVC SVM for 

2-class classification with normalized input and radial basis function (RBF) kernel 

)( 2vue −−γ . Both SMO and SVM algorithms have a tunable complexity parameter C that 

represents the penalty in the loss function for non-separable samples. A higher 

complexity parameter value assigns a higher penalty for non-separable samples, 

thereby increasing the number of support vectors used. High complexity values can 

lead to overly complex machines and over-fitting, while low values can cause under-

fitting. The SVM also has a γ parameter that affects area of influence of each radial 
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basis functions. Larger gamma values cause a faster fall-off of RBF influence, and are 

therefore more flexible and prone to over-fitting, while smaller values give each RBF 

a “wider” base. We explore tuning these parameters in Choosing and Refining 

Classifiers. 

We trained each of the four algorithms – C45, C45R, SMO, and SVM – using 

the ARFF format file from the “score file generation” process above. Cross-validation 

accuracy and other results are described in Results below. 

Machine Learning: Prediction 

Given a new protein of interest, the testing process for that protein (i.e., 

predicting temperature-sensitive mutations) is very similar to the training process. 

Generation of mutants at buried positions, relaxation runs, and score file generation all 

proceed the same way, creating an ARFF format file for prediction. The difference 

between this ARFF file and the training ARFF file is, of course, that the labels for the 

generated mutations in the prediction ARFF file are unknown. Once the learning 

algorithms have been trained as described above, testing is simply a matter of running 

the trained algorithm on the new data. 
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Results 

Training Set Cross-Validation 

Our primary means of gauging the validity of our method was examining ts 

predictions from cross-validation runs of the different classifiers on the training set. To 

generate the results used in this section, we performed training runs on the training set 

“run19”, which contained 95 input features, as not all of the terms described in Final 

Score File Assembly were available during the earlier stage of investigation (see Table 

6 for a list of training files and features). 

For each of the four initial learning algorithms, we started with Weka 10-fold 

cross-validation: using 10 data splits of 90% training, 10% testing, we obtained a 

prediction for each sample in the set. We then performed 10 iterations of the cross-

validation procedure for each classifier using different random seeds to create the 

90%/10% splits, allowing us to calculate a mean and a rough variance for each method 

across the cross-validation runs. We evaluated these sets of cross-validation runs using 

three criteria: precision, significance, and correlation. In all plots with error bars to 

follow, the value plotted is the mean, with error bars extending from Q1 to Q3 of the 

quantity being measured across the 10 iterations of cross-validation. 
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Precision 

Accuracy was measured 

by the mean precision of cross-

validation of the classifiers on 

the training set. Precision on the 

entire data set (all species) for 

each classifier is shown in 

Figure 23. Each method is 

significantly better than 

random, with the tuned SVM 

performing best. 

We then separated these 

predictions by species and 

calculated the error rate 

separately for each species and 

training method as shown in 

Figure 24. Precision was lower 

for C. elegans, where the 

number of ts samples is very 

small (5), and perfect for D. 

melanogaster, where there were no non-ts samples. Each method outperformed 

Figure 23 Overall precision per method by 
classifier type 

The SVM classifier was tuned for the run19 data 
set. The other classifiers are as described earlier. 

Figure 24 Precision by classifier and species 



 

 

84 

 

random guessing on a per-species basis (except on species Dmel, which has no non-ts 

samples). 

  
Figure 25 Single- versus multi-species training 

Comparison of cross-validation precision on single-species vs. multi-species training 
sets. In both plots, the red areas show the precision gain from multi-species training. 

Cross-species training also made a difference. Figure 25 compares single-

species (i.e., limited to samples from a single species) cross-validation results with the 

multi-species results just shown. For both yeast and worm, each method shows a 

decline in precision for single-species cross-validation compared to multi-species; in 

C. elegans, the precision dropped to nearly zero using single-species cross-validation. 

While there were clearly species-dependent effects shown in Figure 24, we believe 

that the increase in accuracy from cross-species training indicates that our technique is 

extracting some species-independent rules. Even if the improvement is simply a 

function of training set size, these results do not seem to reflect species-dependent 

effects – otherwise, using multiple species would not have rescued C. elegans 

prediction rates. 
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Significance 

To quantify the 

improvement over random 

provided by each prediction 

method, we used a heuristic 

method to estimate p-values for 

each method and species 

(Figure 26). Again, C. elegans 

has the weakest results; most 

other methods/species are 

significantly better than 

random, with C45 generally performing the worst and SVM performing best. 

The algorithm we used for p-value estimation is as follows: 

• Find the number P of predicted ts mutations made on set S (e.g., S. cerevisiae), 

and the number C of those guesses that were correct 

• Perform the following steps N (usually 107) times: 

o Randomly draw, without replacement, P samples from S 

o If the number of ts samples in P is greater than or equal to C, increment 

a counter R 

• R/N is the p-value, i.e., the fraction of times the random process performed at 

least as well as the prediction algorithm 

Figure 26 Precision p-values 

Significance of precision compared to random, 
shown as -log10(p), clamped at p=10-6. 
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Point-Biserial Correlation 

Each classifier assigns a confidence, or estimated probability, to each of its 

predictions that we use to rank its predictions. We wanted to know, for each classifier, 

how well this confidence correlated with actual correctness of prediction. To do so, we 

calculated the point-biserial correlation between the correctness of the predictions 

(represented as 0=incorrect, 1=correct) and the assigned confidence of the predictions. 

We define X as a vector of 0s and 1s representing prediction correctness, Y as an 

equal-length vector of confidences for the corresponding predictions, and MS as the 

mean confidence (Y) of predictions in the S=0 and S=1 categories. The slope B of the 

regression line between the means can be calculated as: 

1
01 MM

B
−

=  

The point-biserial correlation rXY can then be calculated as: 

X
Y

X
Y

XY
MMBr σ

σ
σ

σ
01 −==  

The point-biserial correlation for each method (across all species) is shown in 

Figure 27. C45 and SMO confidence measures are reasonably well-correlated with 

correctness: 0.318 and 0.353, respectively. SVM, despite having the highest precision, 

is less well correlated at 0.136, while C45R is only at .079. The dip in correlation for 

SVM may be due to over-training resulting from parameter optimization; this is also 

reflected in the higher variance, which may be brittleness caused by over-training. The 
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low correlation of C45R, 

despite the method's 

reasonable precision and 

significance, is disturbing 

(some individual cross-

validation runs were actually 

anti-correlated with 

correctness); we suspect this is 

a result of the reduced error 

pruning algorithm, which is less sophisticated than the pruning used by C45 and also 

reduces the amount of data made available for actual training (since part of the data is 

held out as a validation set for pruning). 

 

Choosing and Refining Classifiers 

Our initial results (evaluated in terms of precision, significance, and 

correlation) were encouraging: most classifiers scored well in at least two of these 

categories, and each consistently performed at least somewhat better than random. 

From the initial set of classifiers, we chose to further pursue the support vector 

machines and eliminate the tree-based classifiers. Both C45 and C45R had 

significance results that were too low – they were insufficiently better than random. In 

Figure 27 Point-biserial correlation 

Correlation between prediction confidence and 
actual correctness for all learning algorithms. 
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addition, C45R confidence was not well-correlated with correctness of prediction. 

SMO performed solidly across all three metrics, and while SVM had lower correlation 

and generally higher variance, we pursued it as well because of its outstanding 

precision. 

Ultimately, our goal was to find the one or two methods that provide the best 

performance on the training set while still promising the best possible generalization 

to new data. To find the optimal classifier, we explored both the parameter spaces of 

the SMO and SVM algorithms as well as the choice of features in the training set. 

Choosing Features 

There are 113 possible features for each entry in the training set, as described 

in Final Score File Assembly. Given the nature of the Rosetta scoring function, some 

of these features are likely to be highly correlated and perhaps even completely 

redundant. Other features were found to universally degrade performance and were 

removed from the training vector. Determination of features to remove was done in a 

very straightforward manner. After selecting a feature of interest, we performed 

multiple cross-validation runs on sets with and without that feature and compared 

performance using 5 different classifiers: SMO with default parameters, SMO 

optimized for run19, SVM with default parameters, SVM optimized for run19, and a 

bagged version of the SVM optimized for run19. 
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Set name # features Description 

all 113 All possible features (reference only) 

run19 95 Used for initial training; did not include sequence-based 

features, secondary structure features, or 6 features derived 

from 2 relax run terms 

run25 102 Starting set for final correlation-based feature elimination. 

run26 86 Final set after elimination of highly-correlated features. 

Table 6 Training set sizes and descriptions 
 

We first tested several of the non-Rosetta structure-based features, such as 

ACCP, that were not derived from Rosetta runs but still relied on the protein structure. 

This group included the log odds amino acid group change features (acodds, acgodds) 

and the secondary structure membership features (ss_S, ss_H, ss_L). These terms were 

tested together simply because the programmatic means of including or excluding 

them from the training file were similar. We found that all five of these features 

consistently reduced precision across all classifiers and removed them from the 

training set. 

Next we generated a table of correlation coefficients between all features 

across all the entries in the training set (a visualization of this table for a subset of 

features is shown in Figure 28). From the table of coefficients, it was immediately 

apparent that the irms Rosetta score term provided no information and that the maxsub 

term was reporting exactly the same information as the gdtmm7_4 term. We removed 
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the six features derived from the two terms, yielding an increase in accuracy in 4 of 

the 5 classifiers and a very small decrease in the other. The removal of the five 

structure-based features described earlier and the six features above resulted in the 

“run25” training set, which was the basis for all further investigation of potentially 

redundant features. 

We then used the same “remove and test” method to remove a further 16 

features, consisting of 4 sequence-based features and 12 features derived from four 

Figure 28 Correlation of selected input features 

Correlation of a selected set of features, some pairs of which are redundant. 
Correlation coefficients are shown from blue (-1.0) to red (1.0). 
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Rosetta score terms. The strongly (anti-)correlated pairs involved are shown in Figure 

28. As an example, aminochange and acglenn, both terms describing amino acid class 

change, were found to be strongly correlated, and “aminochange” was removed. 

Similarly, the rms and gdtmm2_2 feature sets were strongly anti-correlated – which 

makes intuitive sense, as rms describes the deviation of the relaxed model from the 

native structure, while the gdtmm2_2 term describe the fraction of atoms in the 

relaxed structure that remained within  2.2Å of the native – so the “rms” features were 

removed. 

Optimizing Parameters 

As described in Machine Learning: Training, the SMO and SVM classifiers 

have tunable parameter(s) that affect classifier performance. After generating the 

run25 and run26 training sets, we sought to optimize the parameter values for on each 

training set by exploring the 1- or 2-dimensional space of parameter values. As before, 

our criteria for evaluation was the average precision over 10 cross-validation runs 

using different random seeds for data splitting. 

The SMO method has one tunable parameter, namely the C (complexity) 

parameter. We performed two series of runs on the run25 and run26 data sets with 

varying values for the C parameter. The coarse run was used to probe a wide range of 

C values to find the highest-precision area for further investigation, and the fine run 
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One feature of note in 

the plots in Figure 30, 

particularly the fine-grained 

plot, is that there appears to be 

a line of higher accuracy 

extending roughly from the 

lower left to the upper right of 

the plots. This line describes 

an area of inverse correlation 

between C and γ. This makes 

sense, given the roles of C and 

γ in determining machine 

complexity and over- or under-

fitting as discussed in Machine 

Learning: Training. The effect 

is rather subtle, but might bear 

further investigation: perhaps 

the parameter space is 

essentially one-dimensional, with a simple function relating the two parameter values. 

Though this is interesting, we have not further investigated this hypothesis. 

 

 
Figure 30 SVM C and γ parameter tuning 

Average precision of SVM runs, shown as a heat 
map. Precision ranges are given in the plot titles. 
Two sets of final parameters were chosen: “best”, 
marked by the green circle, and “safe”, denoted by 
the blue circle. 
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Figure 31 shows the results of 

parameter tuning for the best two 

methods, both based on the smaller 

“run26” training set: the tuned SMO 

(C=2-3), and the tuned SVM using the 

“safe” parameter set (C=22.5, γ=2-4.25). 

Compared to the results on the initial, 

exploratory set “run19”, both SMO and 

SVM method have improved in both 

precision and correlation, while 

significance remains pinned at p<10-6. 

These two classifiers, the tuned 

SMO and the tuned SVM, are the base 

classifiers that will be used from here 

on. 

Figure 31 Tuned classifier results 

Precision, significance, and correlation for 
the tuned classifiers (SMO and SVM). 
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Using Sequence Terms Alone 

Previous methods 

(Varadarajan et al., 1996; 

Chakshusmathi et al., 2004) have 

predicted temperature-sensitive 

mutations from sequence alone. Since 

our training sets include both 

sequence and structure terms, it is 

important to quantify the advantage of 

adding the structure-based terms, 

which are more computationally 

intensive to compute. 

We carried out our analysis of 

sequence-only training in the same 

fashion as for the entire (sequence and 

structure) set: starting with a training 

set consisting of all sequence-based 

features, we chose the optimal set of 

input features, tuned the SMO and 

SVM methods, and looked at the final 

Figure 32 Sequence-only results 

SMO and SVM are the tuned classifiers 
previously described. “SVMseq” is the best 
sequence-only classifier. 
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precision, significance, and correlation. The results are compared with the results on 

the optimal sequence & structure set (run26) in Figure 32. The best sequence-only 

method, referred to as “SVMseq”, is the tuned SVM with parameters C=2, γ=2-5, as 

found by the grid search procedure. 

The graphs reveal several important differences. While sequence-only 

precision compares favorably with SMO precision on the run26 set, and sequence-

only correlation is slightly better than SVM correlation on run26, significance is at 

least 3 orders of magnitude worse. Furthermore, the margin of error of both precision 

and correlation figures is higher for the sequence-only set. This corresponds with the  

brittleness that we noticed during the construction of the sequence-only training set: 

small changes, particularly the introduction of an unfavorable term such as log odds 

amino group change, had a large and often detrimental effect on results. The smaller, 

sequence-based set seems at this point to be inherently unstable. 

In essence, the addition of structure vastly improves significance, and increases 

precision and correlation as well. If high precision is desired, the tuned SVM with 

run26 (the best sequence & structure set) is preferable to the sequence-only approach; 

if high correlation is more important, tuned SMO on run26 is better. While the 

sequence-only results are encouraging for possible future work on purely sequence-

based prediction, we believe that the structure terms are integral for achieving the best 

results. 
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Meta-Learning Algorithms 

A number of so-called “meta-learning” algorithms exist that aim to improve 

classifier results independent of the actual classifier being used. In an attempt to 

improve the performance of our tuned classifiers, we tested AdaBoost (Freund and 

Schapire, 1996), bagging (Breiman, 1996), and two types of cost-sensitive 

classification. 

AdaBoost and bagging use multiple instance of a base classifier to improve 

performance. AdaBoost uses multiple instances of a base classifier in series, using the 

current series of classifiers to weight the training samples so that incorrectly-classified 

samples are more likely to be chosen by the next classifier in the series. Essentially, as 

classifiers are added, each new classifier is trained to distinguish among the samples 

that are “harder” to classify. The final choice of label for a sample is generally by 

voting among the series of classifiers. By contrast, bagging uses multiple parallel 

instances of a base classifier, each trained on a subset of the data. Final classification 

is again by voting by the ensemble of classifiers. The data “subset” may be 100% of 

the data; for cross-validation, this is the same principle as performing multiple CV 

runs with different seeds for data splits. 

Cost-sensitive methods make the base classifier sensitive to the “cost” 

associated with making different classifications (usually misclassifications). They do 

so by either reweighting the training samples or classifying by minimum expected cost 

instead of likelihood. By default, the penalty for a correct classification is zero, and the 
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penalty for any incorrect classification is one. In our case, we assigned a higher cost to 

incorrectly labeling non-ts samples as ts, and classified by minimum expected cost. 

Cost-sensitive methods are often improved by using a bagged version of the base 

classifier which, because of the resampling involved, often improves the probability 

estimates of the base classifier. The MetaCost (Domingos, 1999)  algorithm does this 

explicitly; we also ran a basic cost-sensitive algorithm with and without bagging the 

base classifier. 

Specifically, we tried the following meta-methods: AdaBoost with 10 

iterations; bagging, with 10 or 30 iterations and 60, 70, 80, 90, or 100% bag size for 

resampling; cost-sensitive classification with a penalty of 2, 3, 4, or 6 for 

misclassification of non-ts samples as ts; bagged versions of the above cost-sensitive 

classifier with the same penalties; and the MetaCost algorithm with the same set of 

misclassification penalties. We tried each of these meta-learning methods with both 

the tuned SMO and the tuned SVM discussed in Optimizing Parameters. 

Surprisingly, none of these meta-methods provided sufficient improvement 

across all three measures of performance to supplant either of the original tuned 

classifiers. AdaBoost had lower precision, and as well as either lower correlation or 

significance, depending on the base classifier. Bagging results were roughly 

equivalent across all three measures when based on SMO; when based on SVM, the 

result was higher correlation at the expense of lower precision. Cost-sensitive training 

without bagging resulted in lower precision, as well as lower correlation and higher 
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variance in correlation that both increased with larger penalties. Cost-sensitive training 

with bagging sometimes yielded higher precision, but with much lower correlation. In 

addition, the bagged cost-

sensitive methods tended to 

predict fewer ts samples 

overall; not only did this 

reduce significance, but the 

resulting ratio of ts:non-ts 

predictions was vastly lower 

than we believed should be 

expected. MetaCost methods 

sometime yielded higher 

precision, but had the reduced 

significance issues of the 

bagged cost-sensitive 

classifiers as well as the low 

correlation and high variance 

in correlation of the cost-

sensitive classifiers. 

In order to clarify our 

Figure 33 Comparison of base and meta-learning 
methods 

Precision and correlation are shown for the tuned 
SMO, SMO with MetaCost using a penalty of 3 
(SMO_mc3), tuned SVM, and bagged SVM 
(SVM_bag). 
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decision to stay with the base classifiers instead of any of the meta-learning methods, 

we show results from the best two meta-learner candidates along with results for the 

plain base classifiers in Figure 33. The two selected meta-methods were MetaCost 

with a penalty of 3 and the tuned SMO as base classifier, and bagging with 100% bag 

size and the tuned SVM as base classifier. Of all the methods, these were the only two 

that offered potential gains over the base classifiers. However, while the MetaCost 

method gives the highest precision, its lower correlation and wide variance in 

correlation, coupled with reduced significance (not shown) disqualify it. The bagged 

SVM offers significantly increased correlation over the base SVM, but its precision is 

reduced to roughly that of the tuned SMO while its correlation is still lower than that 

of the tuned SMO. In other words, the tuned SMO is superior to the bagged SVM. 

Final Evaluation 

We are left with two classifiers: the tuned SMO, which has precision of .750, 

p-value < 10-6, and correlation of .367; and the tuned SVM, with a precision of .818, 

p-value < 10-6, and correlation of .219. Rather than choose one of the two methods as 

appropriate for all situations, we suggest the following: use the SVM for data similar 

to data in the training set (e.g., globular yeast proteins), where an increase in precision 

is worth the risk of decreased correlation, and use the SMO for data less similar to the 

training set, where correlation is likely to be more important for getting a correct 

prediction in the top few predictions. 
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Protein-Based Statistical Analysis 

All analysis so far – precision, significance, and correlation for the different 

classifiers and training sets – has been across all 66 proteins in the training set. 

However, since our goal is to produce a concentration of ts mutations at the top of a 

ranked list for a single protein of interest as opposed to a set of samples from different 

proteins, we needed to verify that our method was behaving correctly on a per-protein 

level – in other words, consistently placing temperature-sensitive mutations among the 

highest-ranking predictions for each of a number of different proteins. Within the 

limitations imposed by our training set, we tested our ranking as follows. 

Analysis of Top-Ranked Predictions 

We wanted to verify that our method’s top-ranked predictions for a given 

protein were fact the most likely to be temperature-sensitive. We started by identifying 

the three proteins in our data set with both ts and non-ts mutations: yeast histone H3-

H4 complex, yeast actin (YFL039C), and yeast YLR442C. For each of these proteins, 

we trained our SMO and SVM classifiers on a version of the training set without that 

protein’s samples (a “leave-out” set), and tested on just that protein’s samples (e.g., 

trained on the run26 set without actin samples, then tested on just the actin samples). 

We then looked at the precision within the top 5 ts predictions. The results are shown 

in Figure 34. 



 

 

102 

 

The results reflect 

somewhat the difficulties posed 

by the prediction task. For the 

histone complex, the SMO 

method fails to predict any 

correct ts sample in the top 5, and 

the 1 sample found by the SVM is 

essentially equivalent to random. 

However, this is probably due to 

the fact that histone is somewhat 

of an outlier in our training set: it 

is the only protein that was 

constructed from multiple chains of a larger complex (chains A and B of 1ID3, a 

complex of H2A.1, H2B.2, H3, H4, and DNA). The histone samples were nearly 

excluded from the training set because of their constructed nature and the fact that 

their inclusion slightly worsened performed on yeast; however, they improved overall 

accuracy and were thus kept. In addition, histone samples account for nearly one-third 

of the training set, and reduction on this scale of an already small training set is very 

likely to affect precision. YLR442C is also difficult: it has one ts sample and four non-

ts samples, so precision will plunge if that one ts sample is incorrectly predicted or if 

(as happened in this case) a few non-ts samples are classified as ts. Actin is probably 

Figure 34 Precision of top 5 predictions 

Prediction accuracy in the top 5 predictions for 
three different proteins, for both classifiers as 
well as random choice. 
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the best example, with 5 ts samples and 13 non-ts samples. In this case we do fairly 

well, with both methods finding three correct ts samples in the top five predictions – 

double what would be expected by chance. 

We also looked at 

precision over all known samples 

for each of these three proteins, 

performing “leave-out-one” runs 

for these proteins using the same 

leave-out sets as above. The 

results are shown in Figure 35. 

The results are similar to the top5 

results. Histone continues to 

perform poorly, likely because of 

its outlier status and the fact that 

it makes up such a large part of 

the training set. YLR442C accuracy is poor because of the small number of samples, 

while actin performance is fairly good. 

While none of these individual protein tests is as accurate as the classifier on 

the overall test set, the top 5 results, particularly for actin, do show that we can expect 

to accurately predict temperature-sensitive mutations in the top 5 in most cases. 

Figure 35 Leave-one-out run results 

Precision for leave-one-out runs on the three 
proteins with non-ts and ts samples. Full-set CV 
results are shown for reference. 
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Analysis of Expected Prediction Frequency 

We wanted to know the distribution of high-confidence predictions across 

different proteins. Confidence should vary somewhat depending on protein size, 

fraction of buried residues, and other factors, but we needed to quantify the variation, 

and be sure we were not in a situation where some proteins had many high-confidence 

predictions while others had none. 

Figure 36 Distribution of ts prediction confidence scores 

Distribution of the confidence scores of mutations predicted to be ts. Distributions are 
shown for three proteins using both classifiers. 

Since most of our training data consisted of proteins with only a few known 

mutations, we needed to perform additional steps to determine what the variation 

might be on real runs, each of which will consist of large number of mutations at many 

sites on a single protein. In our training set, yeast histone was the only protein with 



 

 

105 

 

sufficient samples to give a credible distribution, and we eventually discarded it as 

having insufficient samples. Ideally, we would use data from a comprehensive set of 

mutations over several proteins (see Incorporating Systematic Data). Since this type of 

data is not yet available, we instead augmented our set for distribution analysis as 

follows: we chose three proteins, one from each species, based on homology model 

quality (mago-PA for fly, T04C12.5 for worm, and YGL253W for yeast). For each of 

these proteins we chose 10 buried sites at random that were not already part of the 

training set, generated models for all possible mutations at those sites, performed relax 

runs, generated score files, and made predictions using both SMO and SVM. The 

absence of labels for these mutations was not an issue, since all we needed was the 

confidence value assigned to the predictions made. This gave us a set of 190 

confidence scores for each of the proteins chosen. The results are shown in Figure 36. 

The gross shapes of the distributions are similar, with some similarities to be seen 

across classifiers or proteins. More importantly, though the actual numbers change 

from protein to protein, there are sufficient samples of confidence .90 or better for 

each protein for our top 5 method to work. 

Testing Predictions 

We are in the process of testing our system by making predictions on the yeast 

actin protein (ACT1/YFL039C). Actin is an essential yeast gene that has been 

extensively studied and characterized. We chose to make predictions on actin because 
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1) some of our predictions may be verifiable via literature/database search instead of 

in-lab screening, and 2) if our hypotheses about prediction of ts mutants are correct, 

we may be able to find heretofore undiscovered ts alleles of this gene. 

We performed prediction runs on the actin monomer, which is 375 residues in 

length and has 184 residues with 10% ACC or less. Our model was based on chain A 

of 1YAG, a complex of yeast actin and human gelsolin segment 1, with 99.2% 

sequence identity. 

We generated two lists of ranked predictions, one from the SMO method and 

one from the SVM method (the actual classifier parameters and training set differed 

somewhat from the ones described above as these predictions were made before the 

final parameter tuning and training set selection). We combined the top 5 SMO 

predictions and the top 6 SVM predictions into an overall top 10 list (1 prediction was 

common to both lists), then chose 7 for actual testing based on our evaluation of the 

plausibility of the predictions. None of the mutations in the top 10 list had been 

previously characterized. 

The ranked list has been given to David Gresham, who is performing lethality 

assays on our 7 chosen mutations to screen for ts phenotypes. At the time of this 

writing, these results are not yet available. 
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Future Work 

Frequency of Temperature-Sensitive Mutations 

Further analysis is required to evaluate the predictive power of our algorithm. 

The different learning algorithms tested varied somewhat in the fraction of mutations 

they predicted to be ts. If the expected fraction of ts mutations were known, we could 

account for this during training to give a better balance in the output predictions. But 

what is the proper fraction of actual ts mutations we can expect? According to 

(Sandberg et al., 1995), 85% of substitutions of one hydrophobic residue for another at 

buried positions were temperature-sensitive for the proteins they studied. But this 

assertion, in fairly early work, has not been borne out by other studies that we know 

of. We would also expect the fraction of ts mutations to be lower when not restricted 

to hydrophobic residues only. At the other extreme, one of the strongest arguments in 

favor of predictive methods – the PCR mutagenesis study of the ~200-residue 

miniGal4 from (Chakshusmathi et al., 2004) – showed no ts mutations among the 

20,000 generated, suggesting that ts mutations may be very rare.  

We suspect the answer is somewhere in the middle, but there is not sufficient 

data to perform a large-scale analysis. As discussed in the Training Set section, 

explicit “temperature-sensitive” annotation of alleles in the major yeast, worm, and fly 

databases is still inconsistent, and we have not found any method for explicit “non-ts” 

annotation. The larger issue is that many mutations are not screened for temperature 
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sensitivity, so that without reading the original reference for an allele that is not 

annotated as ts, the strongest statement we can make about that allele is that we don't 

know whether or not it is displays a ts phenotype. For example, in a survey of alleles 

of roughly 15 fly genes, at least one allele turned up as both ts and putative non-ts (i.e., 

not annotated as ts). A further complication is that determination of ts behavior 

depends upon the particular assay being done; an allele might show a ts phenotype in 

an assay for methylation, but not in an assay for growth. 

The best solution to this issue lies in more data; specifically, in systematic data 

collected across all mutations at all positions for a handful of proteins (see below). 

(Bajaj et al., 2008) came close to providing this data for CcdB, but their use of an 

inducible system made the data unreliable for our purposes. At present, we will have 

to rely on one or more rounds of prediction and in-lab testing to gain a clearer idea of 

what fraction of mutations we can expect a priori to be ts. In the meantime, we hope 

that our work, in addition to simplifying the process of generating ts mutations, will 

also advance the state of ts annotation in databases – through the data curation we 

have performed so far, and by making explicit ts studies more approachable and 

therefore increasing the quantity data correctly annotated for ts or non-ts behavior. 
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Improving Results 

Increasing Training Set Size 

Additional data, presuming that they provide reliable signal (unlike the first 

attempt at fly non-ts samples) have consistently improved prediction results. In 

particular, fly non-ts samples and a well-balanced collection of ts and non-ts samples 

from other organisms should improve our prediction considerably and give specific 

feedback about the precision of our fly predictions. 

Another option for generating more samples would be to use the log odds 

scores from the PSSM to find positions in training set proteins that do not have a 

strong preference for any amino acid. The mutations at these positions could be 

assumed to be tolerated and added to our training set as putative non-ts samples. 

Incorporating Systematic Data 

Additional data improve accuracy, and as mentioned earlier in Frequency of 

Temperature-Sensitive Mutations, the best type of data for prediction would come 

from systematically making every possible amino acid substitution at every buried 

position for several proteins. In collaboration with the Gresham lab, we hope to have 

access to just such a wealth of training data, which will most probably be generated 

using a life-or-death assay on a collection of yeast essential genes. 
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Improving Speed 

As discussed in Model Relaxation, most of the time required for our method is 

spent executing the Rosetta relax runs. The time required for each run on a protein is a 

function of the length, in residues, of the protein: the longer the protein, the more time 

the run requires. Proteins with over 300 residues can take days of cluster time to 

complete. It is not clear, however, that the relaxation algorithm needs to be run on the 

entire protein for each mutation. On the one hand, as discussed in Sandberg et al, a 

single amino acid substitution may cause a change in structure that propagates through 

the protein, e.g., from a buried residue to a surface residue. On the other hand, 

inconsequential variation in a loosely-constrained loop region well away from the 

mutation site may cause noise in the score terms that obscures the signal arising from 

the mutation. In the former case, a global algorithm that considers all residues would 

be more accurate; in the latter, a local algorithm that considers only residues within a 

constrained neighborhood of the mutation would be preferred. 

We have made a version of the Rosetta relax protocol that performs local 

relaxation by constraining the relaxation algorithm to only those residues listed in an 

additional input file. This constraint file is generated by a PyMOL script that finds all 

residues within a given “neighborhood” of the mutation in question. We have verified 

that the “local relaxation” protocol runs at 5-10 times the speed of the global protocol, 

depending on neighborhood size and overall protein size; however, we have not done 

a rigorous comparison between global and local relaxation results. Initial results with a 
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neighborhood of 8Å from the mutant position Cα atom indicate that the size of the 

neighborhood around the mutated residue is key: if it is too small, accuracy will be 

unacceptable; if it is too large, speed will suffer.  

One caveat is that the time savings is offset by the need to perform two runs 

for each mutation: one for the mutation itself, and one to generate a “local wt” 

ensemble for that mutation’s neighborhood. Comparisons between wt and mutant run 

ensembles only make sense if relaxation was performed on the same set of residues. 

For the global algorithm, one wt ensemble was sufficient, since all runs considered all 

residues, but for the local algorithm, each set of residues generated by a mutation 

requires its own “local wt” ensemble for comparison on just those residues. In the 

general case, this means two sets of runs as opposed to one for each mutation. 

Web Server 

Ultimately we want to make our prediction process publicly available on the 

internet. We intend to provide a simple web front end to our method, which will: 

1) Allow users to specify several parameters, such as the ACC cutoff to use or 

how many Rosetta relax iterations to run. ACC cutoff specification may be 

interactive and include visualization of the model with coloring to show the 

residues that will be included. 

2) Distribute jobs to a cluster, perform job management, and collect output into 

score files. 
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3) Notify the user on completion and make a ranked list of predicted ts 

substitutions, perhaps accompanied by consensus models of those mutations, 

available for viewing and/or download. 
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