A Note on Scheduling Algorithms
for Processors with Lookahead

Cristian Ungureanu
New York University

June 1996

1 Introduction

Many superscalar processors designed today are able to dynamically schedule
instructions. Dynamic scheduling means that a processor is able to analyze a
portion of the instruction stream “on the fly”, and has the capability of issuing
an instruction other than the next one available in the input, in order to avoid
stalling. Such an instruction is said to be executed out of order.

Scheduling algorithms for machines with in-order execution are used in most
compilers today. However, schedules which are optimal for machines with in-
order execution may be sub-optimal for a machine with out-of-order execution.
Optimization algorithms to take advantage of dynamic scheduling are still a
subject of research. After we make our model precise, we will describe an
algorithm which produces a local schedule for a trace of basic blocks such that
the completion time is minimized for a processor with a depth of the pipeline
k = 2 and dynamic scheduling ability. The algorithm runs in polynomial time
for any fixed value of the scope size, s. However, the larger s is, the higher the
complexity of the algorithm. Our intuition tells us that the algorithm is NP-hard
if s 1s part of the input, but we have no proof yet.

2 Program representation

The input to our algorithm is an instruction trace. Traces are loop-free linear
sections of code, which can span several basic blocks. A trace i1s formally rep-
resented as a weighted Directed Acyclic Graph (or DAG) G = (V, E, BB, w),
where each instruction ¢ on the trace is represented as a node in V. We use
BB(i) to denote the basic block in which ¢ occurs in the program. Since no
ambiguity can arise, we’ll also denote by BB(7) the position of the basic block
in the trace; 1.e. BB is also a function which maps basic blocks into the set
{1,...,L} (where L is the number of basic blocks), such that BB(z) < BB(y) if
control flows from basic block z to basic block y.

The edges E in the trace represent data dependences. There is a directed
edge from node ¢ to node j whenever instruction ¢ has to be executed before
instruction j.

The instruction stream is executed on a pipelined machine and hence, might
involve additional delays during execution due to latencies. Specifically, given an
instruction ¢ issued at time 7(¢), it may not always be possible to issue another
instruction j at a later time 7(i) 4+ ¢,¢# > 0, because the result(s) of ¢ are not
yet available and j uses them. This delay is referred to as the inter-instruction
latency (or latency for short) of i relative to j, and is modeled by the integer
weight w(i, j) given to edge (7,). In this paper, the only possible values for the
latency are 0 or 1 (corresponding to a functional unit with a pipeline of depth
two).

The output of the algorithm is a schedule, which for our purpose is just a
linear sequence of instructions! which contains an idle slot between any two
consecutive instructions which are linked by an edge with latency equal to 1.
The position of the instructions in the list imposes on them a total order, which
must be consistent with the partial order given by the data dependency. If it
is also consistent with the order of the basic blocks, the schedule is called local;
otherwise, it is called global.

3 The Processor

In our model, the processor is able at any given cycle to inspect a portion of the
instruction stream, called scope which may consist of one or more instructions.
The number of instructions in scope s, is a fixed parameter of the architecture.
By analyzing? the dependences that instructions in scope have on previously
issued instructions (and also among themselves), the processor can decide which
of them are ready (i.e. can be issued). According to some policy, the processor
then chooses one of the ready instructions to be issued in the current cycle. In
this paper we make the assumption that the policy followed by the processor is to
issue the “oldest” ready instructions available in scope (i.e. it uses a first-in first-
out order). If no ready instruction is available in scope, the processor stalls one
time step. After the processor issues an instruction 7, the instruction is removed
from the scope, and the next instruction from the stream is enqueued to the
scope. The number of time steps it takes the processor to issue all instructions
from the stream is called completion time.

It is important to note that this model is just one of the many possible for
a processor with out-of-order execution. Although our processor uses a FIFO
order, it is also possible to dynamically rank the instructions inside the scope
according to some heuristics, and issue them according to their ranks. Also,
the processors may differ in regards to what happens to instructions issued out-
of-order. Our model requires them to be excluded from the scope. However,

IWe are scheduling traces for a machine with only one functional unit.
2The processors have special hardware support to analyze the current program dependences
“on-the-fly”.

it 1s also possible that such instruction remain in scope until all instructions
which precede it have been issued. These differences in processors may lead
to a different execution order of instructions. Consequently, the algorithm we
describe will not necessarily produce an optimum schedule for such a machine.
For a more detailed discussion of the possible hardware models for out-of-order
execution, and scheduling algorithms to take advantage of it, see [LPU95].

4 Scheduling Algorithm

The goal of instruction scheduling is to produce a schedule which has minimum
completion time when run on the processor. Note that the completion time for
an instruction stream run on a processor with out-of-order execution may be
shorter that the length of the schedule. This is caused by the fact that, in the
presence of instructions executed out of order, idle slots may be “filled” with
instructions from other basic blocks. Consequently, globally optimal schedules
are not necessarily composed of locally optimal ones.

Our algorithm has as input a DAG (as explained above). The output from
the algorithm is a local schedule for each basic block which is globally optimal for
the trace. However, for clarity of presentation, we will only give the algorithm
to compute the cost of such a schedule. It is straightforward to add code to keep
track of the schedule itself.

The algorithm is based on “guessing” (enumerating rather) the nodes at the
beginning and at the end of a basic block. Some “guesses” will permit speculative
execution at a particular basic block boundary, while others will not.

The data structures used for the algorithm are:

e a list of records with information about the first two nodes of a schedule:
first — the first node in the schedule
succ — the second node in the schedule
latency — the latency between them

Head2, of this type, is used for the head of the current basic block

e a list of records with information about the last two nodes of a schedule:
last — the last node in the schedule
pred — the predecessor of last in the schedule
latency — the latency between them
cost — the cost of the schedule which ends in these two nodes

Tail2, of this type, is used for the endings of the current basic block, while
Seq_Tail2 is used for the sequence of basic blocks up to the current basic

block.

The pseudocode for the main procedure is given in figure 1. We start with
Seq_Tail2 consisting of a single record (corresponding to a single ending of the
“previous” block). This is only a device for initializing the loop. The solution
is iteratively extended for each basic block in the trace. At the end, it may be

procedure schedule_trace
(1) Seq_Tail2 := {pred=0,last=0 latency=0,cost=0}
(2) for each BB in the trace do

(3) ertend_sequence(Seq-Tail2, BB)

4) cost := Seq-Tail2[1].cost

(5) foriin 2 .. #Seq_Tail2 do

(6) cost := min(cost, Seq_Tail2[i].cost)

(7) return cost

e

Figure 1: Optimal Trace Scheduling

procedure extend_sequence(Seq-Tail2, BB)

(8) (Head2, #Head2) := make_heads(BB)

9) (Tail2, #Tail2) := make_tails(BB)

(10) for hin 1 .. #Head?2 do

(11) min_head_cost := oo

(12) for t in 1 .. #Seq_Tail2 do

(13) min_head_cost := min(min_head_cost,
Seq_Tail2[t].cost + plug(Seq_Tail2[t],Head2[h]) - Seq_Tail2[t].latency - 2)

(14) for t in 1 .. #Tail2 do

(15) if consistent(BB, Head2[h], Tail2[t]) then

(16) cost := min_makespan(BB, Head2[h], Tail2[t]) +

min_head_cost - Head2[h].latency - 2

(17) Tail2[t].cost := min(Tail2[t].cost, cost)

(18) Seq_Tail2 := Tail2

end

Figure 2: procedure extend_sequence

that the list Seq_Tail2 has more than one record, so we have to choose the one
corresponding to minimum cost.

Procedure ezxtend_sequence is presented in figure 2. It computes the cost of
an optimum schedule of the trace including the current basic block, given the
cost of all possible endings of the sequence up to the current basic block.

In line 10, the first two instruction are chosen. In lines 11-13 is computed
the minimum cost of combining this particular beginning of the basic block with
all possible endings of the previous sequence. In lines 14-17, we compute the
cost of all possible endings of the current basic block compatible with the choice
we have made for the beginning of it. The procedure min_makespan takes care
of the modifications which need to be made to the graph BB in order for the
schedule produced to have the head and tail as fixed (this can be achieved by

procedure make_heads(BB)

(19) First := set of all nodes with no predecessors in BB

(20) index := 1

(21) for all h1 € First do

(22) for each successor h2 of h1 in BB do

(23) Head2[index] := {first=h1,succ=h2 latency=latency(G,h1,h2)}
(24) index := index + 1

(25) for each h2 € First - {h1} do

(26) Head2[index] := {first=h1,succ=h2 latency=0}

(27) index := index + 1

(28) return {Head2, index-1}

end

procedure make_tails(BB)

(29) Last := set of all nodes with no successors in BB

(30) index := 1

(31) for all t1 € Last do

(32) for each predecessor t2 of t1 in BB do

(33) Tail2[index] := {last = t1, pred=t2,latency=latency(G,t2,t1),cost=c0}
(34) index := index+1

(35) for each t2 € Last - {t1} do

(36) Tail2[index] := {last=t1,pred=t2 latency=0,cost=c0}
(37) index := index+1

(38) return {Head2, index-1}

end

Figure 3: Generating Heads and Tails

introducing extra edges). The information accumulated in Tail2 is that required
for a call to this procedure with the next basic block in the trace.

The code for computing all the possible beginnings of a basic block is given in
figure 3. In line 19, we compute the set First of all nodes with no predecessors.
Choose the first node Al to be one of them. Then, the second node h2 can be
any of the other nodes in First (in which case the latency between them will be
0), or a proper successor of hl (in which case it retains the existing latency).

Similarly, for tails we compute the set Last, of all nodes with no successors
in BB; t1 can be any of these nodes. Then, 5 is either a proper predecessor of ¢1
or any of the remaining nodes in Last (the latency between ¢2 and ¢1 will be 0).
The procedure min_makespan (figure 4) computes the minimum makespan of
the basic block BB given the first and last two nodes. The underlying algorithm
used for scheduling a basic block is that presented in [PS93], henceforth called
PS. However, our algorithm remains correct with any other algorithm computing
an optimum (local) schedule. Since the PS algorithm does not deal directly with
fixed positions of some nodes in the schedule, we resort to modifying the graph,

procedure min_makespan(BB, H, T)

(39) remove H.h1 from BB

(40) remove T.t1 from BB

(41) add edges with latency 0 from H.succ to all other nodes with no predecessor
(42) add edges with latency 0 to T.pred from all other nodes with no successor
(43) return makespan(BB) + H.latency + T.latency + 2

Figure 4: Procedure min_makespan

procedure plug(T, H)
(44) G := restrict program graph to nodes {T.pred, T.last, H.first, H.succ}

(45) add an edge with latency 0 from T.pred to H.first
(46) add an edge with latency 0 from T.last to H.succ
(47) return makespan(G)

end

procedure consistent(BB, H, T)
(48) return ({H.h1, H.h2} N {T last, T.pred} = §) or
(number_of_nodes(BB) = 3 and H.first # T .last)

end

Figure 5: Auxiliary procedures

by adding edges, in order to obtain such a schedule.

The auxiliary procedures plug and consistent are presented in figure 5. Pro-
cedure plug computes the execution time for a schedule with the first two in-
structions being those of T and the last two instructions being those from H.
This 1s the place where speculative execution may occur.

Procedure consistent returns true in case that the choice of the last two
nodes is consistent with that of the first two nodes in a basic block.

4.1 Analysis

Tt can be seen that the resulting algorithm is (time-wise) linear in the length of
the trace. If the largest basic blocks has size n, the algorithm has a worst case
complexity of O(L x n* x PS), where PS is the time taken by the Palem-Simons
algorithm to schedule one basic block?®. The n* factor comes from a very loose
bound on the number of pairs heads-tails a graph can have: there can be at most
(%) heads (or tails), giving rise to n* head-tail pairing possibilities. Also, each

3Excluding the time to compute the transitive closure of the graph.

head has to be tried with the tails of the preceding sequence of basic blocks, of
which there can be at most (%).

Although a number of improvings can be made to the above algorithm to
have a better expected time, we will not attempt to describe them here.

5 Conclusion

We were able to find a polynomial algorithm for s = 2. It can be seen that the
algorithm is easily generalizable to greater values of s. However, that brings a
corresponding increase in the time complexity of the algorithm. Based on our
experience with this problem, we conjecture that an algorithm to compute the
optimum schedule for arbitrary values of s (s part of the input) is NP-hard. We
are currently working on proving this.

6 Acknowledgments

I would like to thank Krishna Palem and Allen Leung for the helpful discussions
we had about scheduling algorithms for processors with lookahead. It is our
work together in assessing the benefit of fast heuristic algorithms that got me
interested in searching for an algorithm to produce an optimal schedule.

References

[LPU95] Allen Leung, Krishna Palem, and Cristian Ungureanu. Run-time ver-
sus compile-time instruction scheduling in superscalar (risc) proces-
sors: Performance and tradeoffs. Technical Report TR-699, New York
University, July 1995.

[PS93] Krishna Palem and Barbara Simons. Scheduling time-critical instruc-

tions on RISC machines. ACM TOPLAS, 5(3), 1993.

