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TABLE 6
PCR-method with two-level multigrid with a standard V-cycle deﬁm’ngfl and C = C on a 80 x 40
grid.

v 1 0.3]0.4/|0.49 | 0.499 | 0.4999 | 0.49999 | 0.499999 | 0.5
Iter | 26 | 29 | 33 33 33 33 33 33

TABLE 7
PCR-method with an ezact solver as A and a one-level symmetric multiplicative overlapping

Schwarz method with minimal overlap as C on a 80 x 40 grid.

v 10.3]0.4/|0.49 | 0.499 | 0.4999 | 0.49999 | 0.499999 | 0.5
Iter | 21 | 21 | 23 25 25 25 25 25

TABLE 8
PCR-method with two-level multigrid with a standard V-cycle as A and a one-level symmetric

multiplicative overlapping Schwarz method with minimal overlap as C' on a 80 x 40 grid.

v 10.3]0.4|0.49 | 0.499 | 0.4999 | 0.49999 | 0.499999 | 0.5
Iter | 26 | 29 | 33 33 33 33 33 33

sents an efficient and robust iterative solver for saddle point problems with a penalty
term. For a comparison of the convergence rates and the efficiency of multgrid and
Krylov subspace methods for saddle point problems; see Elman [20].
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TABLE 1

PCR-method with exact solvers as preconditioners for A and C', v = 0.3.

Grid | 20 x 10 | 40 x 20 | 60 x 30 | 80 x 40 | 100 x 50 | 120 x 60 | 140 x 70
Iter 17 19 19 21 21 21 21

TABLE 2

PCR-method with a two-level multigrid preconditioner with a standard V-cycle defining A, and

C=C, andv =0.3.

Grid | 20 x 10 | 40 x 20 | 60 x 30 | 80 x 40 | 100 x 50 | 120 x 60 | 140 x 70
Tter 20 23 24 26 26 26 26

TABLE 3
PCR-method with a two-level multigrid preconditioner with a standard V-cycle defining A and a
one-level symmetric multiplicative overlapping Schwarz method with minimal overlap defining C’, and

v = 0.3.

Grid | 20 x 10 | 40 x 20 | 60 x 30 | 80 x 40 | 100 x 50 | 120 x 60 | 140 x 70
Iter 20 23 24 26 26 26 26

TABLE 4
PCR-method with a two-level multigrid preconditioner with a standard V-cycle defining /Al, a
diagonal preconditioner C' = diag(C), and v = 0.3.

Grid | 20 x 10 | 40 x 20 | 60 x 30 | 80 x 40 | 100 x 50 | 120 x 60 | 140 x 70
Iter 46 53 56 58 58 58 60

TABLE 5

PCR-method with exact solvers as preconditioners for A and C on a 80 x 40 grid.

v 1 0.3]0.4/|0.49 | 0.499 | 0.4999 | 0.49999 | 0.499999 | 0.5
Iter | 21 | 21 | 23 25 25 25 25 25

has a condition number independent of h, a simple diagonal preconditioning is not the
best choice as far as the number of iterations is concerned; cf. Table 4. The cost can be
reduced at a little extra expense. Interpreting diagonal preconditioning as a one-level
additive non-overlapping Schwarz method with 1 X 1 nodes per subdomain; see e. g.
Hackbusch [26], p. 343, it is natural to try to improve the convergence by introducing
some overlap or by using a multiplicative scheme. Our experiments show that already
the minimal overlap of one node combined with a one-level symmetric multiplicative
Schwarz method yields results matching those obtained by the exact solver for C'; see
Tables 2 and 3 (resp. Tables 6 and 8). It would of course be more efficient to use more
than two levels in the multigrid preconditioner but in this paper we primarily wish to
analyze the parameter dependence of the preconditioned methods.

The experiments show that the preconditioned conjugate residual method repre-
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Here, we have used that M := 351/2./43;1/2 is normal. Analogously, we obtain by
using that A% (M) = p(M~1),

(47) Abs (B2 ABZV?Y > Aebs (B2 ABZY?) min{ad, ¢2).

min min

Since B;lA and B;l/2AB;1/2 have the same spectrum, Theorem 4 follows.

From Theorem 3 and 4 follows immediately
COROLLARY 1.

max{a?,¢?}  Omac/2+ \/m%ﬁ% + (@maz)?
- min{a%, 6(2)} _amin/2 + \/mgﬁg + (amin/2)2‘

(48) K(BI1A

e

Hence, we have now derived an estimate for the condition number which is inde-
pendent of the discretization and the penalty parameter and for which we can guaran-
tee that the convergence rate of the Krylov space method considered will not deterio-
rate when ¢ and h decrease. Corollary 1, shows that the condition number estimate of
B;lA is completely defined by the quality of the preconditioners A, ', the condition
number of BA~™! B! and the choice of the scaling parameter a.

5. Numerical examples. We apply our preconditioner to the problem of planar,
linear elasticity; see Section 2. For simplicity, we work with the formulation given in
Remark 2. All the results shown are for mixed boundary conditions and the region
[-1,1]x[—1,1]. In our experience, the number of iterations for homogeneous Dirichlet
boundary conditions are always 4-5 fewer than for the mixed case. As there is no
difference between the two cases with regard to the critical parameters, we present
just the worst case. We note that our model is mathematically equivalent to the full
elasticity problem only in the case of homogeneous Dirichlet conditions. The numerical
results confirm that the number of iterations is bounded independently of the critical
parameters h and .

All computations were carried out on a Sun workstation with 256 Mbyte memory
using the numerical software package PETSc developed by William Gropp and Barry
Smith at the Argonne National Laboratory; see Gropp and Smith [25] or Smith [40].
The initial guess is 0, and the stopping criterion is ||r||2/||ro]|l2 < 1077, where ry is
the k-th residual. The Krylov space method used is always the PCR-method. In all
runs we have chosen a = 1. We could not detect a difference in the convergence rate
for other choices of a, e.g. a = 1.

To see how the PCR-method behaves under the best of circumstances, we first
conducted some experiments using exact solvers, i.e. A= Aand € = C. The method
works as predicted for both limit cases, h — 0 and ¢t — 0, see Tables 1 and 5.

In another series of experiments, we applied different preconditioners for A and C.
We present results with a two-level multigrid preconditioner with a V-cycle including
one pre- and one post-smoothing symmetric GauB-Seidel step defining A, and a one-
level symmetric multiplicative overlapping Schwarz method with minimal overlap as
é; see Tables 2, 3, 6, 7, 8. We note, that although C' is uniformly well conditioned, i.e.

11



By construction, see (26), we have

p(BA™'B")p

39
(39) i

2
< By

Using (22) and C = C, we get

pt(BA—lBt)p B qté—l/QBA—lBté—l/Zq

40 P = < B*m2.
( ) ptcp qtq = ﬁl 1
Applying (21), results in

t(O-1/23 A-1/2\( A-1/2 Bt (-1/2
(41) i ) )¢ < pimiag.

q'q
The definition of B gives
¢ BBlq

(42) q'q

< 517"1“0 = 51 ml

Here, ag = 1, since we are using A = A. Analogously, using (21),(22), and (24), we
obtain

(43) > /30 moal ﬂomo

q'q
The theorem follows from Lemma 2.
O

REMARK 5. In many applications we have C' = M,. In this case the bound in
Theorem 3 simplifies lo

(44) amaa:/2 + \/ ﬁ% + (amaa:)2

We next give an upper bound of the condition number when a general precondi-
tioner B! is used.
THEOREM 4.

max{a?, i}

min{a?, ¢}

(45) K(B;TA) < K(BZLA).

Proof: We consider

Aabs (B PABRMPY = p(BPABIY?)

ta—1/2 4,5—1/2
(46) = SUPgy | o B x?iBa =
t
< sup,go (S ) supayo (552)
< Azbs (P ABL'Y?) max{a2, 3},

10



Solving for A, we obtain

(32) A:ﬂwh (M)?

2 a? 2

Since t? < a?, we get, by comparing the distances of the two values of A to the origin,

abs _ 1-t%/a? max 1412 /o 2
W = S e (252

_$2/42 ) 2702\ 2
(33) Niz, = ‘ Gl _ ey (1422 )‘,

2702 . o 2
= t/2 l_l_\/ﬂénin_l_(l‘l't;/ 2) i

O
The next lemma provides a condition number estimate for the case of the exact
preconditioner.
LEMMA 2.
) s )2+ /fimaz T (Comas)?
(34) H(B 1_/4) < max ,umaz‘ max
o <

_Oémin/2 + \/N'rmn + (amzn/2)2 ‘

1

Proof: Since the common factor FO) of A2 ~and A% cancels, it is sufficient to

provide an upper bound for

(35) a-ta, \/um; + (M)Q

2 2

and a lower bound for

& B e (1)

From the assumptions that 0 < ¢ < a and that a(¢) > 0 is continuous on [0, 1], we

immediately find the upper bound

Umazx 9
(37) 9 + \/,umaac + (amaa:) .

Knowing that a(¢) > 0 and the fact that a(¢) has a minimum on [0, 1] gives the lower
bound.
O
We are now able to prove
THEOREM 3.

amaz/2 + \/m%ﬁ% + (Oémaw)2

(38) K(B;rA) <

Proof: Obviously, we only have to provide an upper bound for ., and a lower
bound for piiy, i.e. upper and lower bounds for the Rayleigh quotient ptBBtp/ptp.
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Although the (pressure) mass matrix is uniformly well conditioned, i.e. has a condition
number independent of h, we can decrease the number of iterations at a small expense
by replacing a diagonal preconditioner by a one-level overlapping Schwarz method
with minimal overlap on small subdomains; see Section 5.

We will next establish some bounds for BA~! Bt. These bounds depend directly on
that of the inf-sup condition and on the boundedness of B. We then consider the case
of the special preconditioner B, and use these results to obtain a condition number
estimate for the general case Ba.

From the inf-sup condition, we obtain

(24) B p'Myp < p'BAT'B'p Vpe M;

see Babugka [4], Brezzi [14], Brezzi and Fortin [15], and Sylvester and Wathen [43].
Since B is continuous, we have

(25) 3By > 0, such that u'B'p < 37 (ptj\/I]:,p)I/Q(QﬁAu)l/2 Yue X,Vpe M.
Substituting « = A~!B!p and cancelling a common factor, we get

(26) p'BAT1Blp < ﬁ12ptjwpp Vpe M,

and the following inequality holds with positive constants fFg, 51

(27) Bep'Myp < p'BA™'B'p < 57 p*M,p Vp € M.

These constants are independent of the penalty parameter t.

We next consider the case of the special preconditioner B,.

LEMMA 1.
2
N (BA) = L (el g um+(“+§2/“))
(28) :
2 /a—a a+t2 /o
e (BlA) = L[ famey umm+(+’;/))

Proof: We consider the preconditioned system B;”QAB;”? and the related eigen-
value problem

o0 (5 2) () =»()

From this equation, it follows that
(30) BB'p= (A= 1)(12+ a®\)p.
Denoting the eigenvalues of BB? by u, we get

(31) (A= D)2+ o) = p.



4. The preconditioner. To construct the preconditioner, we work with the ma-
trix representation of the saddle point problem,

A B!
18 =
(19) A ( W pe ) ,
and assume that the preconditioner has the form
; A 0
19 B, = ~ .
(19) ( 0O o*C )

Here A is X-elliptic, ¢’ M-elliptic and a > 0 a parameter at our disposal. Thus, B,
is positive definite.

We will require that o = a(?) is a continuous function on [0, 1] and that 0 < ¢ < a.
We denote the case of A = A and €' = C by Bs. In view of Theorem 2, it is our goal
to give an estimate of the condition number x(B;1.A). A simple computation shows
that

g agoye _  ATRAATVE S RARRpC
C_I/QBA_1/2 _%6—1/200_1/2

A 1p
= (45 ).

o

(20)

Finally let p denote an eigenvalue of BB! and Qpee aDd Qg the maximum and
minimum value of a(t) on [0, 1].

We make the following assumptions on A and By:
The matrix A is a good preconditioner for A, i. e.

(21) dag,a; >0 a%utflu < uwlAu < a%utflu Yu € X.

The constants ag, a; should preferably be independent of the discretization parameters
but there are also interesting cases with a polylogarithmic dependence on H/h; see
[17,34,35]. (The parameter H represents the diameter of a subdomain in a domain
decomposition method.) Multigrid and domain decomposition methods are examples
of preconditioners that meet these requirements. They have also been successfully im-
plemented on parallel machines; see e.g. for details [16,17,18,19,24,23,30,36,39,44,45],
and the references therein.

We also require that €' is a good preconditioner for the pressure mass matrix M,
i.e.

(22) dmg, my > 0 m%ptép <p'M,p < m%ptép Vpe M
and we finally assume that C is spectrally equivalent to C, i.e.
(23) Aeg,e1 >0 EpCp < ptCp < Ep!Cp Vpe M.

A good choice for C is a one-level overlapping Schwarz method. This family of methods
also includes the popular algorithms that use diagonal and block preconditioning.
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The PCR-method is an algorithm to solve Az = b with a symmetric indefinite
matrix A and a positive definite preconditioner B. We will give a stable version that
is based on a three term recurrence; see Hackbusch [26], p. 270.

ALGORITHM 1.

Initialization :
ro = b— Axg,
P-1 = 0,
Po = A_1T07
Iteration :
L rt A=l Ap,
A - Im2t AAPm
(15) Pl AB=1 Apm
Tm41 = T + Apmv
T4l = Tm — AADm,
. pt ABTYAB~1 Ap,,
@0 = pL AB= Apy
. pt ABTYABY Apm_
(03] =

Apzn_l-ABA_l-Apm—l
Pm+1 = B_I-Apm — OgPm — A1 Pm—1-

REMARK 3. This algorithm needs two matriz/vector products with the original
matriz and one with the preconditioner, but it is easy lto derive a version with just
one matriz/vector product with each of A and B~ by introducing an additional re-
cursion for a™ := Ap™. We have used this less expensive version in our numerical
experiments.

REMARK 4. Attention should be paid to scaling: If we assume that A is an
optimal positive definite precondilioner but choose B = c/i, c € RY, then \ will grow
in proportion to cm% This can easily be seen by induction. This phenomenon seems to
be well known but not discussed in the literature. The easiest way of fixing this problem
15 to normalize p,, 41 in every ileralion; we have done so in our implementation.

We introduce the following notation

At max{|A|: A € o(BTLA)}

16 B1A) = Jmaz . A ,
(16) & ) Asbs T min{|A|: X € o(B-1A)}

where o(B~1A) denotes the spectrum of B~1A. The next theorem can be found in
Hackbusch [26], p. 270. It gives an upper bound for the convergence rate of the
PCR-method.

THEOREM 2. Lel the regular matriz A be symmelric and B be positive definile.
Then the m-th iterate x,, of Algorithm 1 satisfies

2¢c#

1B A (A~ b)),

(17) IB~2A(™ — 2|2 <

where ¢ := 573, K = K(BTA) and 2 -1 < pu <2 Yuc€Z.

The convergence rate of the PCR-method is thus determined by the condition
number of the preconditioned system.
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Fig. 1. The Taylor-Hood Flement: O denotes the points of the displacement discretization, o the

ones of the Lagrangian parameter.

REMARK 2. If we have homogeneous Dirichlet conditions on the whole boundary it
is possible to use an equivalent simpler formulation; see Brezzi and Fortin [15], p.201,

p(Vu,Vo)g + (dive,p)g = < fiv>  Yoe X := HNQ),
(diva,qlo  — s (p@do = 0 Vg € M := Ly(9).

We know from Korn’s inequality that the bilinear form (e(u),e(v))ois X- elliptic.

(13)

Thus (12) is very similar to the Stokes problem and we can use finite elements devel-
oped for that problem. In this paper, we discretize by the Taylor-Hood element; see
Fig. 1. For the displacements u, we use piecewise linear polynomials on quadrilaterals
on a grid with the meshsize h and for the Lagrange parameter p piecewise linear poly-
nomials on quadrilaterals with mesh size 2h. The corresponding finite element spaces

are

X {on € (C(M) N HNQ) vy € Pr, T € 14},

14
( ) Mk = {qh € C(Q) N LQ(Q) SqnT € P, T € T2h}-

For a proof that the inf-sup condition holds in this case; see Verfiirth [42], Girault and
Raviart [22], or Brezzi and Fortin [15]. All the conditions for Theorem 1 are satisfied
and the finite element method converges independently of the Lamé constants (resp.
the Poisson ratio). It is of course no restriction, to assure that % =:1? is in [0, 1] since
we are mainly interested in the nearly incompressible case.

3. Iterative methods for indefinite problems. The preconditioned conju-
gate gradient method (PCG) has gained great popularity for positive definite prob-
lems. A natural generalization for symmetric indefinite problems is the preconditioned
conjugate residual method (PCR); see Ashby et al. [2], Hackbusch[26], Luenberger
[29], and Paige and Saunders [31]. There are also other methods that could be used for
indefinite problems, e.g. Bi-CGSTAB, CGS, BiCGstab(l); see Sleijpen, Van der Vorst,
and Fokkema [37]. We only describe the PCR-method and give a convergence estimate
that is determined by the condition number of the preconditioned linear system.
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REMARK 1. The conditions (i) and (ii) are known as the Babuska-Brezzi condition
for the saddle point problem (3).

This result is also valid for finite element spaces. We then require, additionally,
that the constants v, Oy are independent of h. The continuity assumptions turn into

uniform boundedness with respect to h; see Brezzi and Fortin [15], Braess [7].

2.2. The equations of linear elasticity. An example of a saddle point problem
with a penalty term arises from the displacement formulation of the equations of linear
elasticity. In the rest of this paper u,v (resp. p,¢) will always denote vector valued
(resp. scalar) functions. We define

_ (op Y Sy
Vp = (81"i)ie{1,...,d} , dive := 3774 ot
(1) Voi= (Volien, g, £(0) =3 (Vo+(Vo)),
(e(v),e(u))o:= [ge(v) : e(u)de, (v,u)g := [ vude,
< [yv>i= fo fode + b grvde, Iy := &\ T,

with the inner product for matrices defined by
d d
(8) o:T = ZZO‘Z']'TZ']'
=1 j7=1

and 'y denoting the part of the boundary where a homogeneous Dirichlet condition
is imposed. The following Sobolev spaces are used

d
(9) HEQ) = (HE(Q)) ,d=2,3.
The variational formulation for the equations of elasticity is then
(10) 21 (e(u),e(v))o+ A (diva, dive)g =< f,o > Vo € X 1= HN(Q).

Instead of using the Lamé constants A and p, we can also work with Young’s elasticity
modulus ¥ and the Poisson ratio v. These constants are related to each other by the
following equations

) — FEv T A
(11) (1+v)(1-2v) > 2(A4u)’
_ E - B(3A42u)
K 2(14v) ’ A

Some materials, e.g. rubber, are nearly incompressible, i.e. small changes in the
density of the material lead to a rapid growth of the energy. Almost incompressible
materials are characterized by a Poisson ratio near % In terms of the Lamé constants,
this means that A tends to infinity. This leads to the phenomenon of locking if a low
order finite element model is used in a pure displacement setting; see Section 1. To
obtain a finite element model that converges independently of locking as h — 0, we
reformulate the pure displacement model as a saddle point problem with a penalty
term; see Brezzi and Fortin [15], and Braess [7]. We introduce a new variable p :=
Adive and obtain from (10)

2u(e(u),e(v))o + (dive,plo = < fiv> VYveX:= HN(Q),

(12) (divu, q)o - %(paq)o 0 Vg e M := Ly(Q).



2. Saddlepoint problems with a penalty term. In this section, we give dif-
ferent formulations of the saddle point problem. We first define it by bilinear forms
in a Hilbert space setting and then give an equivalent matrix/operator representa-
tion. Finally we describe a mixed formulation of the displacement method of linear

elasticity. The abstract theory shows that this model does not suffer from locking.

2.1. Abstract theory. Let X and M be two Hilbert spaces and let
(2) a(,): X xX =R, b(,-): X XM—=R, ¢(,-): M x M - R,

be three continuous bilinear forms. We assume that a(-,-) is X- elliptic and that ¢(-,-)
is M-positive definite. Furthermore let f € X', g € M', where X', M’ are the dual
spaces of X, M, and let < -,- > denote the dual pairing for X, X’ (resp. M, M’).
Consider the following problem:

Find (u,p) € X x M with

a(u,v) + blv,p) = < fiv> VveX
b(u,q) — t*c(p,q) = <g,q> YgeM te0,1].

(3)

It is often useful to reformulate the problem in operator form. For a specific
discretization, the operators will be represented by matrices. It is well known that
there exist linear operators

A: X — X' <Au,v>=a(u,v) VvelX,
(4) B: X — M < Bu,q>=blu,q) Vge M,
B': M — X' <B'puv>=bv,p) VvelX,
C: M — M < Mpg>=c(p,q) Vgqe M.

Thus (3) is equivalent to

Au + B'p = f
Bu — t*Cp = g.

(5)

To obtain a well-posed problem, the bilinear form b(-,-) must satisfy the inf-sup con-
dition; see Babuska [4], Brezzi [14], and Brezzi and Fortin [15]. The following theorem
can be found in Braess [7], p.129.

THEOREM 1. The saddle point problem (3) defines an isomorphism L : X x M —
X' x M’ if the following conditions are fulfilled:

(¢) The continuous bilinear form a(-,-) is X -elliptic, i.e.
39 > 0, such that a(v,v) > J||v||% Vo € X.
(i7) The continuous bilinear form b(-,-) fulfills the inf-sup condition, i.e.

3B > 0, such thal inf,epssup,ex ﬁ > B

g
[xla
(i17) The continuous bilinear form ¢(-,-) is M- positive semi-definite, i.e.

c(q,q9)>0Vq e M.

(6)

Under these assumptions, the operator L™ is uniformly bounded for t € [0,1].
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is better suited for multigrid methods than reduced/selected integration; the conver-
gence rate of the iterative method for the linear system arising from the latter model
still deteriorates.

In this paper we focus on the construction of an iterative method for certain saddle

point problems with a penalty term. We describe a preconditioned iterative solver for

(1) (ﬁ —f;c) (p) - (ﬁ)

that converges independently of the penalty and discretization parameters.

Several techniques have been developed to solve such problems iteratively. As far
as we know, the parameter dependence of the convergence rate never seems to have
been considered systematically in these studies. The oldest algorithm is known as the
Uzawa algorithm; see Arrow, Hurwicz, and Uzawa [1]. It is mainly a gradient algorithm
applied to the Schur complement t2C' + BA™! B! of the indefinite linear system. When
this algorithm is used, we have to solve a linear system of the form Aé = d. This can
be quite expensive since A normally is not well conditioned. Therefore many authors
have introduced an inner iteration for A=!, see Bank, Welfert, and Yserentant [5],
Bramble, Pasciak, and Vassilev [10], Elman and Golub [21], and Regnquist [32]. To
avoid inner and outer iterations and to provide a much simpler approach, some authors
have in recent years tried to precondition the whole indefinite system and to use a
conjugate residual algorithm as an accelerator; see e.g. Rusten and Winther [33], and
Sylvester and Wathen [43,41]. In the first of these papers, a preconditioner for a saddle
point problem without a penalty term is analyzed; in the others a problem arising
from stabilized and unstabilized Stokes flow is considered. Only the stabilized case
results in a saddle point problem with a penalty term. In contrast to problems arising
in elasticity, where the penalty parameter arises from the material or the geometry,
the penalty term in the stabilized Stokes case can and should be chosen to stabilize
an otherwise unstable discretization and to ensure fast convergence of the iterative
method. The main goal in Sylvester and Wathen [43,41] is to provide a good criterion
for choosing this parameter in the context of preconditioning. A third possibility is
to transform the indefinite problem into a positive definite one by introducing a new
inner product. Then the conjugate gradient method can be applied; see Bramble and
Pasciak [9].

In this paper, we show that the condition number of the preconditioned system is
bounded independently of the finite element discretization and the penalty parameter.
Therefore the Krylov space method used to solve the preconditioned system converges
at a rate which is independent of the critical parameters; see Section 3.

The outline of the remainder of the paper is as follows. In Section 2, we describe
the abstract saddle point problem with a penalty term and the finite element theory
thereof. An example for the equations of linear elasticity is given. In Section 3,
we consider the preconditioned conjugate residual method (PCR) as an example of
a Krylov space method for indefinite linear systems. In Section 4, we analyze the
proposed preconditioner and give our condition number estimate. In Section 5, we
discuss numerical results for the problem of linear elasticity.

2



AN OPTIMAL PRECONDITIONER FOR
A CLASS OF SADDLE POINT PROBLEMS
WITH A PENALTY TERM

AXEL KLAWONN *

Abstract. Iterative methods are considered for a class of saddle point problems with a penalty
term arising from finite element discretizations of certain elliptic problems. An optimal preconditioner
which is independent of the discretization and the penalty parameter is constructed. This approach is
then used to design an iterative method with a convergence rate independent of the Lamé parameters
occuring in the equations of linear elasticity.

Key words. mixed finite elements, saddle point problems, penalty term, nearly incompressible

materials, elasticity, preconditioned conjugate residual method, domain decomposition, multigrid
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1. Introduction. In recent years, modern iterative methods, e.g. domain de-
composition and multigrid methods, have been applied to parameter dependent prob-
lems arising in solid mechanics; see Braess [6], Braess and Blomer [8], Jung [28], and
Smith [38]. If the direct approach of (low order) conforming finite elements is used in
a pure displacement setting, the phenomenon of locking leads to problems. Locking
occurs when a parameter, e.g. the Poisson ratio of a material, approaches a limit. The
convergence rate of the iterative method and that of the finite element model deterio-
rates severely when the limit is approached, e.g. when the Poisson ratio tends to 1/2
in the problem of linear elasticity; see Braess [6] and Jung [28]; note that one has to
make a distinction between the convergence rate of the finite element model and the
convergence rate of the iterative method. This deterioration of the convergence rates
can be explained by interpreting locking as a problem of ill conditioning; see Braess
[7], pp. 253-254. For a detailed discussion of the locking phenomenon in the finite
element model; see Babuska and Suri [3].

There are different approaches to overcome the problem of locking in the finite
element model; nonconforming finite element methods, reduced/selected integration
and a reformulation in terms of a saddle point problem with a penalty term. Most of
them can be analyzed as saddle point problems with a penalty term; see Braess [7],
Brenner [11,12], Brenner and Scott [13], Brezzi and Fortin [15], and Hughes [27]. For
all of these approaches it can be proven, that the finite element solution converges
uniformly with regard to the penalty parameter but there is still a difference between
these methods as far as the iterative solution of the resulting linear systems is con-

cerned. Thus it was observed in Braess and Blomer [8] that the mixed formulation
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