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1 Introduction

In this paper, we introduce and analyze a special mortar finite element method.
We restrict ourselves to the case of two disjoint subdomains, and use Raviart-
Thomas finite elements in one subdomain and conforming finite elements in
the other. In particular, this might be interesting for the coupling of different
models and materials. Because of the different role of Dirichlet and Neumann
boundary conditions a variational formulation without a Lagrange multiplier
can be presented. It can be shown that no matching conditions for the discrete
finite element spaces are necessary at the interface. Using static condensation,
a coupling of conforming finite elements and enriched nonconforming Crouzeix-
Raviart elements satisfying Dirichlet boundary conditions at the interface is
obtained. The Dirichlet problem is then extended to a variational problem on
the whole nonconforming ansatz space. It can be shown that this is equivalent
to a standard mortar coupling between conforming and Crouzeix-Raviart finite
elements where the Lagrange multiplier lives on the side of the Crouzeix-Raviart
elements. We note that the Lagrange multiplier represents an approximation
of the Neumann boundary condition at the interface. Finally, we present some
numerical results and sketch the ideas of the algorithm. The arising saddle point
problems is be solved by multigrid techniques with transforming smoothers.

The mortar methods have been introduced recently and a lot of work in this
field has been done during the last few years; cf., e.g., [1, 4, 5, 14, 15]. For the
construction of efficient iterative solvers we refer to [2, 3, 19, 20]. The concepts
of a posteriori error estimators and adaptive refinement techniques have also
been generalized to mortar methods on nonmatching grids; see e.g. [13, 21, 23,
24]. Originally introduced for the coupling of spectral element methods and
finite elements, this method has thus now been extended to a variety of special
situations [6, 7, 11, 12, 25].

2 The continuous problem

We consider the following elliptic boundary value problem

Lu := —div(aVu) +bu = f in Q, (1)
u = 0 on F = 69
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where Q is a bounded, polygonal domain in R? and f € L?(Q). Furthermore,
we assume a = (a;;)7 j—; to be a symmetric, uniformly positive definite matrix-
valued function with a;; € L®(Q), 1 < 4,5 < 2, and 0 < b € L*(Q). The
domain ) is decomposed into two nonoverlapping polyhedral subdomains Q; U
5, and we assume that meas(9Q, N Q) # 0. On Q; we introduce a mixed
formulation of the elliptic boundary value problem (1) with a Dirichlet boundary
condition on T' := 9Q; N 0y, whereas on Qs we use the standard variational
formulation with a Neumann boundary condition on I'. We denote by n the
outer unit normal of ;. The Dirichlet boundary condition on I' will be given
by the weak solution uy in Q3 and the Neumann boundary condition by the
flux j; in Q4. Then, the ansatz space for the solution (ji,u1) in Q is given
by H(div; Q1) x L*(1) and by Hgr,(Q2) := {v € H'(Q2)]| vlr, = 0}, where
s := 002N 9N, for the solution us in Q2. We recall that no boundary condition
on I' has to be imposed on the ansatz spaces. In contrast to the standard case,
Neumann boundary conditions are essential for the mixed formulation, i.e. they
have to be enforced in the construction of the ansatz spaces. The coupling of the
mixed and standard formulations leads to the following saddle point problem:
Find (ji,u1,u2) € H(div; Q1) x L*(Q1) x Hyr,(Q) such that

as(uz,v2) + d(j1,v2) = (f,v2)0,0,> vy € Hyr, (Q2)
ai(ji,a1) —d(qi,u2) +blai,u1) = 0, a1 € H(div; Q1) (2)
b(§1,v1) —c(u,v1) = —(f,o)o0, v € L*(Q).

Here the bilinear forms a;(-,-), 1 <14 <2, b(-,-), ¢(+,-) and d(-,-) are given by

as(wa,v2) f92 aVuy Vwsy + bvy wa dx, vs, wo € Hé;m (Q2),

a1(p1,q1) Jo, a7 'P1 - au dz, p1, a1 € H(div; ),
b(qi,v1) := le divq; v; dz, vy € L*(), a1 € H(div; ),
c(wy,vr) = le bwy vy dz, v1, w1 € L2(Qy),
d(qi,v2) = (ain,v2), a1 € H(div; ), vs € Hyp,(22),

and (-, -), stands for the duality between of H~'/2(T") and H'/?(T). The kernel
of the operator B : H(div; ) x Hg.p,(Q2) — L*(Q1), which is associated
with the linear form b(,v1) is KerB := {(qi,v2) € H(div; ) x Hj.p,(Q2)]
divg = 0}. On H(div; ) x Hg,p, (Q2), we introduce the nonsymmetric bilinear
form a(o,7) := az(wa,v2) +d(p1,v2)+a1(pP1,d1)—d(qr, ws) where o := (qy,v2),
7 i= (p1,ws), and the norm || - | is given by o] == [oallZg, + B
Taking the continuity of the bilinear forms, the Babuska-Brezzi condition, and
the coercivity of a(-,-) on KerB, a(o,0) > al|o||?>, o € KerB, into account, we
obtain unique solvability of the saddle point problem (2); see e.g. [18].

3 Discretization and A Priori Estimates

We restrict ourselves to the case that simplicial triangulations T, and Tg,
are given on both subdomains ; and Q,. However, our results can be easily



extended to more general situations including polar grids. The sets of edges
of the meshes are denoted by £, and &n,. We use the Raviart-Thomas space
of order k1, RTy, (1;Tr,) C H(div;Q1), k1 > 0, for the approximation of the
flux j; in Q, the space of piecewise polynomials of order ki, Wi, (1;Tp,) :=
{v € L*()| v|lr € Py (T), T € Tp,} for the approximation of the primal
variable u; in €, and conforming P, finite elements S, (Q2; Th,) C Hy,r, (Q2)
in Q5. Associated with the decomposition of 2 and the discretization is the
following discrete saddle point problem: Find (jn,,un,, un,) € Rk, (215 Th,) X
Wi, (Q1; T, ) X Sky (Q2; Th,) such that

a2(Uny,vn) + d(Jn, > vn) = (f,vn)0,0.0  Vn € Sk, (Q25Ths,)

ai (jhl ) qh) - d(qha uhQ) + b(qha uhl) = 05 aqn € RTk1 (Qla 77»1)

b(jhlawh) - C(uh17wh) = _(fa wh)O;Q17 wp € Wk1 (Qlyﬁn)
3)

The discrete Babuska-Brezzi condition is satisfied with a constant independent
of the refinement level and the kernel of the discrete operator By, is a subspace
of KerB. Therefore, an upper bound for the discretization error is given by the
best approximation, and we obtain the well known a priori estimate, see e.g.
18],

15 = 3 By + Il = wns B, + llu = una 2,
2(k1+1 . 2k
< C (WS (ll, 410, + 8,100 + 171, 1 10) + B3 0l 41,0, )

if the problem has a regular enough solution. In fact, the constant C' is inde-
pendent of the ratio of h; and hy and there is no matching condition for the
triangulations 7y, and T, at the interface required.

(4)

4 An Equivalent Nonconforming Formulation

It is well known that mixed finite element techniques are equivalent to non-
conforming ones [8]. Introducing interelement Lagrange multipliers, the flux
variable as well as the primal variable can be evaluated locally and the resulting
Schur complement system is the same as for the positive definite variational
problem associated with a nonstandard nonconforming Crouzeix-Raviart dis-
cretization [18]. In addition, the mixed finite element solution can be obtained
by a local postprocessing from these Crouzeix-Raviart finite element solution.

We now restrict ourselves to the lowest order Raviart-Thomas ansatz space
(k1 = 0). To obtain the equivalence, we consider the enriched Crouzeix-Raviart
space NC(Q1;Tr,) := CR(Q;Th,) + Bs(Q;Th,) where CR(Qq;Th,) is the
Crouzeix-Raviart space of piecewise linear functions which are continuous at
the midpoints of the triangulation 75, and equal to zero at the midpoints of any
boundary edge e € &, NON. B3(Q41;Tr,) is the space of piecewise cubic bubble
functions which vanish on the boundary of the elements. Then, we can obtain
equivalence between the saddle point problem

a1(r,>9r) + 0(Qn,up,) = d(dn,un,), dr € RTo(Q;Th,) (5)
b(n,,wn) —c(un,wn) = —(f,wn)o0,, wn € Wo(Qu;Th,)



and the positive definite problem: Find ¥, € NC%=2(Qy; Tr,) such that
ane(Pny,¥n) = (F,Motn)osar, ¥n € NCO(Q;Th,)- (6)

Here aNC(¢h, ¢h) ZTGTh fT =1 aV¢h)V¢h+bH0¢h IIp4p, dx and Il stands

for the L2-projection onto Wo(21;Th,). P,-1 is the weighted L2-projection,
with weight a~!, onto the three dimensional local Raviart-Thomas space of low-
est order, and NC9(Q;Tn,) := {¢n € NC(0;Tn,)| [, ¥, do = [ gdo, e €
En, N F}.

Using the equivalence of (5) and (6) in (3), we get: Find (¥p,,up,) €
NC"2(Qq;Th,) X Sk, (Q2;Tp,) such that

a2 (uhwvh) + d( a1 (av‘Il’h) ) = (f7 Uh)O;QZJ Vp € Sk2 (92; 7;l2)
anc(Yhy,¥n) (f;Mov¥n)o0i, ¥n € NCO(Ql;ﬁl)(- )
7

Note that the ansatz space on 2; depends on the solution in 5.

For the numerical solution, we transfer (7) into a saddle point problem where
no boundary condition have to be imposed on the ansatz spaces at the interface.
It can be shown that the Dirichlet problem (6) can be extended to a variational
problem on the whole space NC(Q1;Tp,)- In fact, we obtain

anc(Phys¥n) —d(Po-1(aV84h,), Y1) = (f, MoYr)oa,s  ¥n € NC(Qu;Th,). (8)

Let M(T;&p,) == {un € L*(T)| ple € Pole), e € E,, NT} be the space of
piecewise constant Lagrange multipliers associated with the 1D triangulation of
T inherited from Tj,. Then, the condition ¥y, € NC¥2(Qy;Tp,) is nothing
else than ¥y, € NC(Qy;T,) and

/ W(Uh, —uny)do =0, € M(T;E,). )
IN

Theorem 4.1 Let (Up,,up,) € NC¥2(Qq;Th,) X Sk, (Q2; Try,) be the solution
of (7). Then, upr := (¥p,y,up,) and Ay == Pu-1(aV¥y,)|r is the unique so-
lution of the following saddle point problem: Find (upr, Apr) € (NC(Q1;Tn,) X
Sk (Q2; Thy)) X M(T;EpR,) such that

q(UM,U) - J()‘M7U) = f(U), v € NC(9177711) X Skz (92;7712)5

d(p, unr) = 0, p € M(L; En,y)- (10

Here the bilinear and linear forms are given by:

a(w,v) = ax(w,v) + anc(w,v), v, w € NC(Q1;Th,) X Ska(Q2; Ths),
( M, ) Zf ( |Q1 —’U|92)d0' MEM(F;E]“),
f) == (f,v)o0, + (f; Mov)o;0, -

Taking (8) and (9) into account, the assertion is an easy consequence of (7).
Theorem 4.1 states the equivalence of (3) and (10) in the case k; = 0 with
Jne = Pi-1(aVupl|a,), up, = oup|e, and up, = umla,- In fact, (10) is



a mortar finite element coupling between the conforming and nonconforming
ansatz spaces. The Lagrange multiplier A\y; = jp,n|r is associated with the
side of the nonconforming discretization, and it gives an approximation of the
Neumann boundary condition on the interface T.

Remark: For the numerical solution, we will eliminate locally the cubic
bubble functions in (10). In particular, for the special case b = 0 and the
diffusion coefficient a is piecewise constant, we obtain the standard variational
problem for Crouzeiz-Raviart elements where the right hand side f is replaced
by Ilo f. Then, the nonconforming solution ¥y, is given by

3
5
Up, |7 = up, |7 + 2 ; h2. Mo flr(AiA2As), T € Th,

where A\;, 1 < ¢ < 3 are the barycentric coordinates, and h., is the length
of the edge e; C 0T, 1 < i < 3. Here, up, stands for the Crouzeiz-Raviart
part of the mortar finite element solution of (10) restricted on (CR(Q4;Tp,) X
Sk2(92;7712)) X M(Fag/n)

5 Numerical example

The numerical approximation of (2) is based on the equivalence between mixed
and nonconforming finite elements. Thus, we use the variational problem given
in Theorem 4.1, where additional Lagrange multipliers at the interface are re-
quired. We recall that the bubble part in the saddle point problem (10) can be
eliminated.

The construction of efficient iterative solvers for this type of saddle point

problems has often been based on domain decomposition ideas; see e.g. [2, 3, 20].
Here, we show that standard multigrid methods with transforming smoothers
also can be applied. The analysis of transforming smoothers for mortar elements
is similar to the analysis for the Stokes problem given in [16, 22]. The technical
details for the mortar case will be presented in a forthcoming paper.
In contrast to the Stokes problem, the Schur complement for mortar elements
is of smaller dimension, and it can be assembled exactly without loosing the
optimal complexity of the algorithm. In addition, our numerical results indicate
that optimal order convergence also can be obtained with an approximate Schur
complement.

We present two numerical examples implemented using the software toolbox
UG [9, 10] and its finite element library. Two different model problems are
considered. The first example shows the effect of nonmatching grids with differ-
ent stepsizes and a piecewise constant discontinous diffusion coefficient, whereas
the second is a simple model for a rotating geometry with two circles which can
occur for time depending problems; see Figure 1.

To apply multigrid algorithms to the mortar finite elements, we have to define
interpolation and smoothing operators. The interpolation operator is different



)y = inner circle
—Au = sin(z) + exp(y)
u=0onT

Qy, a=1 Q1, a=0.001

—div(aVu)=1, wu=0onT

Figure 1: Problem and triangulation for example 1 (left) and example 2 (right)

for the three ansatz space: On S1(Qs, Tr,) we choose piecewise linear interpo-
lation. In case of problem 2, we replace the piecewise linear elements on €,
by piecewise bilinear elements, and use the bilinear interpolation operator. On
CR(Qu, Tn,), we use the averaged interpolation introduced by Brenner [17], and
for M (T; &y, ) a piecewise constant interpolation. The transforming smoother is
of the form

Tpg1 = Tn + K7N(f — Kzy,),

- (A 0 1 A'BT
K_<B —S‘)(o 1 )

The matrix A corresponds to the bilinear form a of Theorem 4.1 and A=
(diag(A) — lower(A))diag(A)~!(diag(A) — upper(4)) is the symmetric Gauf-
Seidel decomposition of A. The matrix B describes the mortar element coupling
corresponding to the bilinear form d and S is the damped symmetric GauB-Seidel
decomposition of the approximate Schur complement

where

S = B diag(4)"'B”.

In our computations, we use a V-cycle with two pre- and two post-smoothing
steps. The results are given in the table below.

| Example 1 || Example 2 |
number of elements number of elements
0 Q5 conv. rate 0 Qo conv. rate
2048 32 0.24 1024 1024 0.22
8192 128 0.23 4096 4096 0.22
32768 512 0.19 16384 16384 0.21
131072 2048 0.21 65536 65536 0.19

Asymptotic convergence rates (average over a defect reduction of 10710)




The examples show that robust results with level-independent convergence

rates can be obtained with transforming smoothers and multigrid V-cycles up
to 7 levels and with more than 100000 unknowns.
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