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Abstract

Two-level overlapping Schwarz preconditioners are extended for use for
a class of large, symmetric, indefinite systems of linear algebraic equations.
The focus is on an enriched coarse space with additional basis functions
built from free space solutions of the underlying partial differential equa-
tion. GMRES is used to accelerate the convergence of preconditioned
systems. Both additive and hybrid Schwarz methods are considered and
reports are given on extensive numerical experiments.

1 Introduction

Iterative solvers can provide a significant advantage in the computational and
storage requirements of solving sparse linear systems. They are distinct from
direct solvers in that iterative solvers repeatedly apply an operator until a con-
vergence criterion is met rather than fully factoring the matrix as would be done
for a direct solver. Such sparse systems commonly arise from finite element so-
lutions of partial differential equations (PDEs), see [1]. Krylov space methods
comprise a significant class of iterative solvers. These solvers function by calcu-
lating an optimal approximation in a Krylov space, with the dimension of the
Krylov space being enlarged at each iteration, see [12, §6.2]. Two prominent
examples are the conjugate gradient (CG) algorithm and the generalized mini-
mal residual (GMRES) algorithm. These methods are applicable to symmetric
positive definite and general systems respectively. A significant drawback, com-
pared to direct solvers, is a much greater sensitivity to the conditioning of the
problem. To overcome this difficulty, preconditioning techniques can be used
to construct a well conditioned system from an ill-conditioned system, without
altering the solution. Two goals of preconditioning are increasing the speed
and robustness of an iterative solver. Preconditioning aids in attaining uni-
form performance regardless of the conditioning of the non-transformed system,
making the preconditioned solver more robust [12, §10]. Domain decomposition
methods are a class of preconditioning techniques especially applicable to linear
systems arising from PDEs approximated by finite elements. They provide a
division of the problem into many subproblems, each significantly smaller than
the full problem. This makes domain decomposition a good option for use with
parallel computing [3, §1].

The domain decomposition methods that will be discussed involve two levels
of problems. First, a coarse level problem is used to capture global information
over the full domain. Then the domain is partitioned into subdomains and a
fine triangulation is used to associate a local problem to each subdomain. The
finite element tearing and interconnecting (FETI), see [6] [13], and balancing
domain decomposition by constraints (BDDC), see [8] [13], methods utilize a
partition of the domain into non-overlapping subdomains. Two-level Schwarz
methods involve decomposing the domain into overlapping subdomains [12][13].

Many well developed and effective domain decomposition methods require
that the linear system be symmetric, positive definite. Most of the theoreti-
cal results pertaining to classical two-level Schwarz methods require that the
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problem be positive definite. Some physical systems are modeled using PDEs
that give rise to indefinite systems. Additionally, inverse iteration is a common
method of approximating eigenvectors. Inverse iteration requires solving sys-
tems of the form (A− µI)x(k) = x(k−1) with µ near an eigenvalue of A, see [14,
§27]. Such a problem clearly becomes indefinite once the eigenvalue selected is
sufficiently deep into the spectrum. As some important problems involve solv-
ing indefinite systems, extending these iterative methods to indefinite problems
is a useful endeavor. A study of the dual primal variant of FETI (FETI-DP)
by Farhat and Li resulted in the FETI-DPH algorithm which is applicable to
some indefinite problems [5]. The work of Li and Tu has extended BDDC to
some classes of indefinite problems [8]. Both the FETI-DPH algorithm and the
extension of the BDDC algorithm rely on enlarging the coarse problem to over-
come the difficulties resulting from an indefinite problem [5][8][13]. Two-level
Schwarz methods have previously been extended to some indefinite problems
by Cai and Widlund, see [3][4]. Their approach focused on carefully control-
ling the diameter of the elements in the coarse triangulation, see [3] [4]. The
present discussion will focus on attempting to apply two-level Schwarz methods
to some indefinite problems by enlarging the coarse problem in the spirit of the
aforementioned work of Farhat, Li, and Tu, see [5] [8].

1.1 Overview

The present discussion will proceed in four stages. First, some properties of
two-level Schwarz methods are reviewed for the case of positive definite prob-
lems. This is accompanied by numerical experiments that serve to establish
familiarity with the behavior of Schwarz preconditioners and vet the implemen-
tations of the Schwarz preconditioners. Second, some Schwarz preconditioners
with expanded coarse spaces are proposed to handle indefinite problems. The
proposed preconditioners closely parallel the work by Farhat and Li in [5] on
FETI-DPH. FETI is replaced by two-level Schwarz, and the analogous steps
are taken to construct additional coarse basis functions based on plane waves.
The effectiveness of the resulting preconditioners is explored through the use of
some numerical experiments. Third, spectral techniques are used to compare
the proposed preconditioners. The various preconditioned systems are exam-
ined using spectral techniques in an attempt to verify that preconditioners with
faster convergence correspond to preconditioned systems that are expected to
be conducive to fast GMRES convergence. Lastly, inverse iteration is presented
as an application of the preconditioning techniques developed.

In the numerical experiments throughout, Ω is a square domain. The coarse
and fine triangulations are based on square grids. The stiffness matrices of the
problems are obtained by finite elements. In particular, each square is divided
into two triangles, and piecewise linear, nodal, conforming elements are used.
These basis functions are linear on each triangle. Note that this gives a stiffness
matrix identical to the classical five point finite difference scheme, see [1, §4].
The number of coarse mesh points along one edge of the domain is denoted
by N . Similarly, H is the coarse mesh size and h is the fine mesh size. The
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amount of overlap is denoted by δ which refers to the amount of overlap added
to each edge of a typical, non-overlapping subdomain. Thus, the overlapping
subdomains have side lengthH+2δ. Condition number estimates are denoted by
κ. Residuals are measured in the `2 norm. The iteration count is the number of
iterations of conjugate gradients that are necessary to reduce the `2 norm of the
initial residual by at least 108. Lastly, “relative residual” is the magnitude of the
residual once the iteration halts, relative to the initial residual. Halting of the
iteration occurs either by reaching the convergence conditions, or the maximal
number of iterations allowed. The magnitude of the residual is measured relative
to the initial residual.

2 Two-Level Overlapping Schwarz Methods

The domain decomposition used for two-level overlapping Schwarz methods dif-
fers from that used for the FETI-DP and BDDC algorithms in that the sub-
domains used for Schwarz methods overlap. That is, for adjacent, open subdo-
mains Ωi,Ωj ,

Ωi ∩ Ωj 6= ∅

for the case of a Schwarz method, while for FETI-DP and BDDC,

Ωi ∩ Ωj = ∅.

Such an overlapping partition for a two-level Schwarz method can be formed by
first taking a partition of Ω into non-overlapping, open subdomains Ωi. These
are then enlarged to give a set of overlapping subdomains Ω′

i. The construction
of the decomposition of Ω begins with two triangulations of Ω. One triangulation
is coarse, while the other is a refinement of the first. Associating a finite ele-
ment space with the coarse triangulation gives the coarse space V0. The coarse
triangulation also gives a natural partition into non-overlapping Ωi. The Ω′

i

are constructed by adding layers of the fine triangulation adjacent to ∂Ωi. For
i = 1, 2, . . . , N , a local finite element space Vi is associated to each Ω′

i using the
fine triangulation. Lastly, let V be a finite element space on Ω utilizing the fine
triangulation on the full domain. Proceeding with the domain decomposition,
restriction maps

Ri : V → Vi

are defined as well as interpolation maps

RT
i : Vi → V

which are extensions by zero. These lead to local problems Ãi for i = 1, 2, . . . , n,
given by (1)

Ãi = RiAR
T
i (1)

along with a coarse (global) problem, Ã0 given by (2)

Ã0 = R0AR
T
0 . (2)
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From these problems, Schwarz projectors Pi are constructed, as in (3)

Pi = RT
i Ãi

−1
RiA. (3)

It can be shown that the Pi are projections, see [13, Lemma 2.1]. A precondi-
tioned problem is obtained by solving the coarse problem (2) and local problems
(1), then assembling the solutions in some manner, see [13, §3]. The specific
procedure for solving and combining these problems can be formulated by com-
bining the projectors in different manners, see [13, §1.4, §2.2, §2.5.2].

Recall that, for the numerical experiments, Ω is a square. The Ωi are taken
to be a set of squares with side lengthH and vertices coinciding with coarse mesh
points. Furthermore, the Ω′

i are obtained by adding a number of additional fine
mesh layers. By maintaining a uniform size for the local problems, the matrix
corresponding to the local problems can be factored once and used to solve all of
the local problems. To maintain this uniformity, subdomains Ωi adjacent to ∂Ω
are enlarged to overlapping subdomains Ω′

i by adding a width of 2δ along the
edge opposite the edge contained in ∂Ω. Interior subdomains Ωi are enlarged
to overlapping subdomains Ωi by adding a fixed width of δ to each of the four
sides. This gives square overlapping subdomains Ω′

i of side length H + 2δ.

2.1 Additive Schwarz Preconditioner

The additive variant of the Schwarz preconditioner is constructed by simply
summing all of the Schwarz projectors [13, §2.2]. That is,

Pad =
N∑

i=0

Pi. (4)

This variant has the advantage of all local problems as well as the coarse problem
being independent of one another, allowing for parallel execution. However,
convergence rates tend to be slower than for multiplicative variants.

2.2 Hybrid Schwarz Preconditioner

A hybrid Schwarz Preconditioner can be constructed by

Phy = P0 + (I − P0)

(
N∑

i=1

Pi

)
(I − P0) (5)

see [13, §2.2]. This variant treats the coarse problem multiplicatively, and all of
the local problems additively.

The discussion for this paper will be limited to the additive and hybrid
variants.
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2.3 Positive Definite Problems

The theoretical results give the following bound on the condition number for
the additive Schwarz preconditioner, which is quoted without proof.

Theorem 1. If exact solvers are utilized on all subspaces, then

κ ≤ C1 + C2

(
H

δ

)
where κ is the condition number of the additive Schwarz operator and the con-
stants C1, C2 depend on N c but are independent of h, H, and δ [13, Theorem
3.13].

N c is the number of colors necessary to color the undirected graph formed
by assigning a node to each subdomain, and placing an edge between nodes
corresponding to overlapping subdomains [13, §2.5.1].

Thus, as Hδ−1 decreases, κ is expected to steadily decrease. However, when
Hδ−1 approaches 2, a sudden change in κ can be expected as this corresponds to
three-fold overlap, a setup in which each overlapping subdomain overlaps two
additional subdomains in each direction, increasing N c, resulting in different
values of C1, C2.

Experiments for the case of positive definite problems begins by consider-
ing the Poisson equation (6) defined on a square domain Ω with the Dirichlet
condition u = 0 on ∂Ω as a model problem,

−∆u = f. (6)

3 Numerical Results

Tables 2 through 4 focus on verifying that the implementation generates nu-
merical results consistent with this theoretical bound on κ. This is achieved in
three steps. First, Hδ−1 is fixed while the fine and coarse mesh sizes, h and H
respectively, are allowed to vary. As C1 and C2 are independent of h, H, and
δ, the condition number κ is expected to remain fixed as Hδ−1 is fixed. Then
this is carried out with a few different right hand sides, as indicated in Table 1,
to verify that this bound is also independent of the choice of right hand side.
In all four cases, zero Dirichlet conditions are used. The following domains are
used. For (7), Ω = [−3π/2, 3π/2] × [−3π/2, 3π/2]. In the case of (8) and (9),
Ω = [−1, 1] × [−1, 1]. Lastly, for (10), Ω = [−π, π] × [−π, π]. Finally, H and
h are fixed while increasing δ. The behavior of κ is expected to change near
Hδ−1 = 2 as three-fold overlap occurs everywhere when Hδ−1 = 2.

The estimate of the condition number is obtained by estimating the maximal
eigenvalue λmax and the minimal eigenvalue λmin and taking

κ =
λmax

λmin
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Table 1: Functions used for right hand sides

f(x, y) = 8 cos(2x) cos(2y) (7)

f(x, y) = (4x2 − 2)e1−x2
+ (4y2 − 2)e1−y2

+ (4− 4y2 − 4x2)e2−x2−y2
(8)

f(x, y) = 4− 2y2 − 2x2 (9)
f(x, y) = 32 sin(4x) sin(4y) (10)

Table 2: Condition number and convergence data for (9) f = 4− 2y2 − 2x2

Iteration Relative
Unknowns h H δ κ Count Residual
7921 2/91 2/5 2/15 5.7462813 19 8.73835e-09
22201 2/151 2/5 2/15 5.6421541 19 5.0427e-09
108241 2/331 2/5 2/15 5.4990406 18 5.396e-09
395641 2/631 2/5 2/15 5.2893106 17 9.63763e-09

as the condition number estimate. The relevant eigenvalues, λmax, λmin are
estimated by calculating the eigenvalues of the tridiagonal matrix generated in
the course of the conjugate gradients iteration, see [10, §4.4], [12, §6.7.3].

Numerical experiments are carried out using MATLAB. The conjugate gra-
dient algorithm is implemented based on the description in [12, Algorithm 9.1].
The Schwarz preconditioners are implemented following the relevant descrip-
tions in [13]. The associated coarse and local problems are solved using the
Cholesky factorization implementation provided in MATLAB. Residuals are
measured in the `2 norm.

3.1 Condition Number Results

The data contained in Table 2 is generated using (9) for the right hand side.
The condition number, κ, decreases a small amount as h is decreased. However,
this change is not significant relative to the size of κ, which is consistent with
the theoretical results.

To examine the effect of changing the right hand side, all four proposed right
hand sides are considered and the condition number (κ) is plotted against the
fine mesh size (h) in Figure 1. For each different right hand side, a fixed value
for H and δ was used. Again, κ remains stable in the presence of different right
hand sides, in line with the results expected by the theory.

Returning to the case of (9) as the right hand side, H and δ are allowed to
vary to arrive at the values in Table 3. Performing a least squares fit of the
condition number to a quadratic polynomial in Hδ−1, the following quadratic
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Figure 1: Condition number for fixed H/δ = 3 varying mesh size
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Table 3: Condition number with varying H/δ
H δ H/δ κ
1/4 5/64 16/5 5.7926800
1/4 1/16 4 6.0885131
1/4 3/64 16/3 6.4235317
1/4 1/32 8 7.7075691
1/4 1/64 16 12.970830

model is obtained.

κ = 0.021232431
(
H

δ

)2

+ 0.15331958
(
H

δ

)
+ 5.0852774

Additionally, the following linear model of the data is computed, again by a
least squares fit.

κ = 0.57083990
(
H

δ

)
+ 3.6256879

In Figure 2 both of these models are plotted along with the five calculated
data points indicated in Table 3. Note that the coefficient for the quadratic term
is roughly one tenth of the coefficient for the linear term. This indicates that
the implementation of the additive Schwarz method is behaving in nearly the
linear fashion with respect to Hδ−1, in agreement with the theoretical result.

Lastly, the effect of varying the amount of overlap (δ) is examined. For these
experiments, (9) is once again used to generate the right hand side. A fixed fine
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Figure 2: Linear and quadratic models of κ
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Table 4: Condition number with respect to varying δ

Layers H/δ κ λmin λmax

28 8/7 1.6093010e+01 1.0000401e+00 1.6093656e+01
26 16/13 1.6042061e+01 1.0000054e+00 1.6042147e+01
24 4/3 1.6011506e+01 9.9996022e-01 1.6010869e+01
22 16/11 1.6002531e+01 9.9984187e-01 1.6000000e+01
20 8/5 9.2426883e+00 9.9939168e-01 9.2370658e+00
18 16/9 9.1689795e+00 9.9445863e-01 9.1181708e+00
16 2 9.7939680e+00 9.2491105e-01 9.0585493e+00
14 16/7 1.0299989e+01 8.7574232e-01 9.0201362e+00
12 8/3 1.1141623e+01 8.0786779e-01 9.0009580e+00
10 16/5 5.7926800e+00 7.6431925e-01 4.4274568e+00
8 4 6.0885131e+00 7.0375532e-01 4.2848235e+00
6 16/3 6.4235317e+00 6.4787062e-01 4.1616174e+00
4 8 7.7075691e+00 5.2807739e-01 4.0701930e+00
2 16 1.2970830e+01 3.0988126e-01 4.0194171e+00

mesh size of h−1 = 128 is used. The coarse mesh size is fixed at H−1 = 4, and
δ is allowed to vary from δ = 1/64 to δ = 7/32. Selected values are shown in
Table 4.

3.2 General comments

Numerical results for the positive definite problem are consistent with the estab-
lished theoretical results. The condition number κ demonstrates independence
from the selection of right hand side and h. Additionally, nearly linear behavior
of κ with respect to Hδ−1 is observed. As expected, a steady decrease of κ is
observed as Hδ−1 is decreased. Additionally, an increase in κ near Hδ−1 = 2
is observed. This is expected as the subdomains intersecting the boundary ∂Ω
attain three-fold overlap just prior to Hδ−1 = 2 and all other subdomains at-
tain three-fold overlap when Hδ−1 = 2. Three-fold overlap increases NC which
Theorem 1 indicates will change C1, C2, and hence the bound on κ. In Figure
3, the lower bound on the spectrum steadily increases as Hδ−1 decreases. The
upper bound on the spectrum remains stable until Hδ−1 approaches 2, at which
point it rapidly increases, degrading the conditioning of the problem. Three-fold
overlap is achieved by the domains intersecting ∂Ω due to specific choices made
in the implementations of the Schwarz preconditioner related to maintaining a
uniform size for the local problems.
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Figure 3: Condition number versus varying overlap
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4 Transition to indefinite problems

The model indefinite problem to be investigated is a shifted variant (11) of the
Poisson equation (6) with zero Dirichlet conditions,

(−∆− γ2)u = f. (11)

Note that for sufficiently large γ2, the shifted problem (11) is no longer posi-
tive definite. Thus, two changes are made to the preconditioned solver. First,
the Cholesky factorization used to solve the coarse problem in the Schwarz
preconditioner is replaced by an LU factorization. Additionally, the Cholesky
factorization used to solve the local problems should be replaced by an LU fac-
torization if the local problems are allowed to be indefinite. Alternatively, by
restricting the size of H, the local problems can be made positive definite, in
which case, Cholesky factorizations are preferred for performance reasons. For
all of the numerical experiments presented, the latter approach is taken; a suffi-
ciently smallH is selected to ensure positive definite local problems. Second, the
preconditioned CG algorithm is replaced by the left preconditioned generalized
minimal residual method (GMRES).

4.1 GMRES

CG is a Krylov space method and the best known iterative solver for positive
definite systems, see [12, §6.7]. GMRES is an iterative, Krylov space method
suitable for nonsymmetric and indefinite problems, see [11] [12, §6.5]. Krylov
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methods seek an approximate solution of a system Ax = b in the associated
Krylov subspace. The Krylov subspace is defined by (12),

Km(A, v) = span{v,Av, . . . , A(m−1)v}. (12)

A difficulty in using GMRES is the lack of an explicit calculation of the
residual at each step, see [12, §6.5.3]. The solution selected for this implemen-
tation is to explicitly calculate the residual every 5 iterations. Additionally, if
a large number of iterations is necessary, storage and computational require-
ments can become quite high. To counteract this, the GMRES algorithm can
be restarted by running the algorithm for a fixed number of iterations, then
taking the initial guess x0 to be the current approximation and restarting the
iteration [12, §6.5.5]. GMRES also possesses several desirable qualities. The
algorithm will only break down if it is fully converged, that is, the solution is
exact. Otherwise, the iteration will continue until the convergence criteria are
met [11, §3.4]. Additionally, the restarted variant of GMRES tends to require
less storage space and less computation than other similar methods [11].

GMRES calculates an approximate solution by constructing an element
y of the Krylov subspace related to the initial guess x0. At the mth itera-
tion y is selected from the mth Krylov subspace Km to minimize the residual
‖A(x0 +y)−b‖2 [12, §6.5]. The mechanics of GMRES are related to the Arnoldi
iteration, see [14, §35] [12, §6]. The Arnoldi iteration constructs an orthonormal
basis of the Krylov space Km(A, v) [12, §6.3]. Additionally, it forms an upper
Hessenberg matrix. The eigenvalues of this upper Hessenberg matrix converge
to the eigenvalues of A. In particular, the eigenvalues of the Hessenberg matrix
will tend to converge to the extremal eigenvalues of A quickly, see [14, §34].
This suggests a rough means for evaluating the efficacy of various precondi-
tioning techniques. The eigenvalues of the Hessenberg matrix formed in the
GMRES iteration are calculated. This gives an approximation of the spectrum
of A, denoted by σ(A). Comparing different techniques, a preconditioner can
be expected to be more effective if the eigenvalues of the Hessenberg matrix are
conducive to rapid convergence of GMRES.

The nth GMRES approximation can also be thought of in terms of a poly-
nomial approximation problem. The quantity

‖pn(A)b‖

is minimized by finding an optimal pn in Pn, the space of monic polynomials of
degree at most n with pn(0) = 1 [14, §35].

The convergence rate of the GMRES iteration can be estimated by the fol-
lowing result, quoted without proof.

Theorem 2. Let A be diagonalizable and V be a matrix of eigenvectors. Let
σ(A) be the spectrum of A. Then after n iterations, the residual of the GMRES
iteration satisfies

‖rn‖
‖b‖

≤ κ (V ) inf
pn∈Pn

sup
z∈σ(A)

|pn(z)|.

[14, Theorem 35.2].
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If V is assumed to be well conditioned, then this reduces to bounding pn(z)
on the spectrum of A. This leads to an analysis of the convergence of GMRES
based on the eigenvalues of A. The worst case is when the eigenvalues of A
surround the origin [14, §35]. As spectral information about A is typically not
known, one approach is to bound the spectrum by an elliptical region disjoint
from the origin, and minimize the polynomial over this region [9]. This approach
is developed by Manteuffel for analyzing the Tchebychev iteration by confining
the eigenvalues to a closed elliptical region contained in the right half plane,
see [9]. Specifically, the following result regarding the polynomial minimization
problem is quoted without proof.

Theorem 3. Assume A is M ×M and diagonalizable with eigenvalues denoted
λ1, . . . , λM and let

ε(m) = min
pn∈Pn

max
λ∈σ(A)

|pn(λ)|

where σ(A) denotes the spectrum of A. Also, assume the eigenvalues λ1, . . . , λν

are contained in the left half plane for some 0 < ν < M . Lastly, assume the
eigenvalues λν+1, . . . , λM are confined to a closed disk with center C > 0 and
radius R < C. Then

ε(m) ≤
(
D

d

)µ(
R

C

)m−ν

where
D = max

i=1,...ν
j=ν+1,...M

|λi − λj | and d = min
i=1,...,ν

|λi|

[11, Theorem 5].

This result outlines several conditions that will aid in rapid convergence of
GMRES. First, keeping all of the eigenvalues within a bounded region of small,
finite diameter. This will control D. Bounding the eigenvalues in the left half
plane away from the origin prevents d from becoming very small. Together,
these two conditions control the term Dd−1. If the eigenvalues in the right
half plane are not near the imaginary axis, have small imaginary part, and real
parts all of comparable size, then it will typically be possible to construct a
circle such that the term RC−1 is small. Controlling Dd−1 and RC−1 in this
manner promotes rapid convergence of GMRES.

4.2 Comparison of CG and GMRES

The aforementioned modifications allow for the näıve application of the additive
and hybrid Schwarz preconditioners to indefinite problems. Before proceeding
with such experiments, some previous experiments on the Poisson equation (6)
are rerun to verify that these modifications have not significantly impacted per-
formance. Returning to positive definite problems, Table 5 compares the number
of iteration counts for identical problems, when CG is replaced by GMRES. The
numerical experiments are conducted restarting the GMRES algorithm every 70
iterations. Additionally, this implementation is set to halt after a maximum of
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Table 5: Comparison of CG and GMRES performance on positive definite prob-
lems

CG GMRES CG GMRES
h H/δ Iterations Iterations Residual Residual
f(x, y) = 8 cos(2x) cos(2y)
π/30 3 20 20 3.59874e-09 2.18897e-09
π/70 3 19 20 6.63909e-09 2.06143e-09
f(x, y) = (4x2 − 2)e1−x2

+ (4y2 − 2)e1−y2
+ (4− 4y2 − 4x2)e2−x2−y2

1/45 3 20 20 4.19206e-09 9.35552e-09
1/105 3 19 20 6.41544e-09 1.59943e-09
f(x, y) = 4− 2y2 − 2x2

1/45 3 19 20 8.73835e-09 2.4265e-09
1/105 3 18 20 4.7383e-09 1.50827e-09
f(x, y) = 32 sin(4x) sin(4y)
π/45 3 20 20 3.07881e-09 2.35214e-09
π/105 3 19 20 3.64368e-09 1.84288e-09

490 iterations if the convergence criterion, a reduction of the `2 residual by a
factor of 108, is not met.

The results in Table 5 indicate that the convergence rate of the two algo-
rithms remain comparable. In some cases, the iteration counts are identical, in
others the GMRES iteration count is slightly higher, but this can be expected as
the GMRES iteration counts only have a resolution down to 5 iterations. That
is, if GMRES converges in any of the sixteenth through twentieth iterations, the
calculated iteration count will be 20.

4.3 Indefinite Problems

Solving (11) for sufficiently large values of γ2 gives rise to an indefinite linear
system. As shown in Tables 7 and 8 such problems significantly degrade the
performance of the additive and hybrid Schwarz preconditioners. Previous work
on applying Schwarz preconditioners to indefinite problems has focused on using
the coarse problem to approximate the eigenvalues in the left half plane and
confine the spectrum of the preconditioned system to a bounded set in the right
half plane see [3, §1] [4]. Theorem 3 indicates that such goals are in line with
achieving rapid convergence of GMRES. A major result finds that this can be
achieved, for some additive variants, by restricting the size ofH, see [3, Theorem
1]. This approach can also be applied to multiplicative and multilevel variants
of the Schwarz method, see [4]. Numerical results pertaining to this previous
work can be found in [2].

One general framework for the construction of preconditioners for indefinite
systems is based on combining a coarse problem, to control the global behavior,
with a preconditioner for symmetric positive definite systems, to handle the
local problems, which can typically be made positive definite [2]. This approach
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is developed by Xu and Cai in [15]. They found that obtaining a good solution
to the coarse problem is essential to making this approach work [15]. Such
an approach was taken by Farhat and Li in the construction of FETI-DPH.
The coarse problem construction consists of constructing additional coarse basis
functions based on elastic waves [5].

Presently, this approach is attempted with two-level Schwarz methods. The
coarse space of the classical Schwarz preconditioners, used in the previous ex-
periments, consists of conforming, linear, nodal basis functions, see [1, §4]. To
this, additional plane wave based basis functions are added. These additional
basis functions are constructed by picking a plane wave ψ(x, y) and considering
an edge Eij bordering two non-overlapping subdomains Ωi,Ωj . Zero Dirichlet
conditions are imposed along (∂Ωi ∪ ∂Ωj) \ Eij . Along Eij , Dirichlet conditions
are imposed corresponding to evaluating ψ at the nodes that lie on Eij . At the
nodes at the corners of Ωi,Ωj , zero Dirichlet conditions are used. By solving
the shifted problem (13) on Ωi and Ωj using the above boundary conditions, a
basis function supported on Ωi ∪ Ωj that is equal to ψ on Eij is obtained,

−(∆− γ2)u = 0. (13)

The harmonic extension is also considered. The approach is the same, but (13)
is replaced by (14),

−∆u = 0. (14)

Lastly, H is always selected to ensure that the local problems are positive defi-
nite. This places a restriction on the maximum size of H, but is a less restrictive
condition than is necessary to control the behavior of indefinite problems by only
restricting H.

5 Numerical Experiments

Numerical calculations are carried out in MATLAB. The preconditioned GM-
RES algorithm is implemented as described in [12, Algorithm 9.4]. The residual
is checked every 5 iterations, giving the iteration counts displayed a resolution of
5 iterations. The GMRES iteration is restarted every 70 iterations and is halted
at 490 iterations regardless of convergence conditions. Otherwise, the iteration
is halted when the magnitude of the residual, relative to the initial residual,
is less than 10−8. The Schwarz preconditioners are implemented following the
descriptions in [13]. The coarse and local subproblems are solved directly using
MATLAB primitives. When auxiliary basis functions are used, the extension is
calculated once on a pair of adjacent subdomains and the same extension is used
for all edges in that orientation, horizontal or vertical. This approach makes for
significant savings in computational cost. In spite of the fact that the values
of the plane wave are expected to be different on different edges, preliminary
numerical experiments showed no significant difference in using this approach
rather than calculating the extension separately for each edge.
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Table 6: Values of γ2

γ2 Number of negative eigenvalues min|γ2 − λ|
100 26 1.1361676
130.69743296 37 2.4897986e-09
182.49 50 4.0004826e-03
182.494 50 4.8264084e-07
182.49400048 50 2.6408316e-09
200 54 2.1237771
241.65664799 67 5.3987037e-10

The shifts (γ2) are selected to investigate the effect of having additional
negative eigenvalues. Additionally, some shifts are selected to be very close to
eigenvalues of (6) with an eye towards applicability to inverse iteration among
other applications that require solving nearly singular, indefinite problems. The
system resulting from such γ2 is expected to be nearly singular, and hence it is
worthwhile to check how this extension of a Schwarz method reacts to such an
ill-conditioned problem.

With the above goals in mind, values of γ2 are selected and both their index
and distance to the closest eigenvalue of the discrete Laplacian is listed in Table
6. Two values of the shift γ2 = 100, 200 are chosen as large round numbers.
The remaining five are chosen to be near eigenvalues of −∆. Three, γ2 =
130.69743296, 182.49400048, 241.65664799 are very close to eigenvalues of −∆.
As it will be seen that performance significantly suffers at γ2 = 182.49400048,
two additional shifts γ2 = 182.49 and γ2 = 182.494 are selected to further
investigate the sensitivity to ill conditioned problems.

All of the following experiments are conducted using the right hand side
corresponding to (9) and domain Ω = [−1, 1] × [−1, 1]. First, the performance
of the additive and hybrid Schwarz preconditioners, with no additional basis
functions, is investigated. For this a fixed fine mesh size of h−1 = 128 is used.
The coarse mesh size is either H−1 = 4 or H−1 = 8. The coarse mesh is refined
when δ is allowed to increase. This ensures positive definite local problems.
For H−1 = 4, 2 layers of the fine mesh are added to generate an overlapping
partition, giving δ = 1/64. For H−1 = 8, the overlap (δ) is allowed to vary,
investigating the impact of various values of Hδ−1.

As expected, Tables 7 and 8 demonstrate a significant loss of performance
when the Schwarz methods are applied to indefinite problems without modifi-
cation. Both the additive and hybrid variants show similar performance. Only
the shifts of γ2 = 100 and γ2 = 130.69743296 converge with any consistency.
The shift of γ2 = 200 converges for Hδ−1 = 8 and Hδ−1 = 4, when considering
the additive variant, and for Hδ−1 = 4 when considering the hybrid variants.
In both cases, after a large number of iterations. The problems corresponding
to γ2 = 182.49400048 and γ2 = 241.65664799 do not converge in any of the
attempted experiments. In the case of γ2 = 100, performance, of both the
additive and hybrid Schwarz methods, can be improved by decreasing Hδ−1.
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Table 7: Näıve application of the additive Schwarz preconditioner to indefinite
problems

Iteration Relative
Shift (γ2) H/δ δ Count Residual
100 16 1/64 160 9.2022082e-09
100 8 1/64 175 3.7035524e-09
100 4 1/32 110 3.1862903e-09
100 8/3 3/64 105 5.1990863e-09
100 2 1/16 115 6.9153993e-09
130.69743296 16 1/64 280 9.7193482e-09
130.69743296 8 1/64 90 3.4528576e-09
130.69743296 4 1/32 105 4.2315848e-09
130.69743296 8/3 3/64 85 9.2248977e-09
130.69743296 2 1/16 490 3.2667106e-07
182.49400048 16 1/64 490 7.0102286e-07
182.49400048 8 1/64 490 6.3981694e-06
182.49400048 4 1/32 490 1.1882915e-05
182.49400048 8/3 3/64 490 1.8578846e-05
182.49400048 2 1/16 490 7.1418732e-05
200 16 1/64 490 3.9363058e-04
200 8 1/64 460 9.7757165e-09
200 4 1/32 345 5.6168722e-09
200 8/3 3/64 490 1.0678323e-05
200 2 1/16 490 3.8780113e-05
241.65664799 16 1/64 490 2.4490145e-03
241.65664799 8 1/64 490 3.5289017e-06
241.65664799 4 1/32 490 5.0083013e-06
241.65664799 8/3 3/64 490 3.6150524e-05
241.65664799 2 1/16 490 1.3841250e-04
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Table 8: Näıve application of a hybrid Schwarz preconditioner to indefinite
problems

Iteration Relative
Shift (γ2) H/δ δ Count Residual
100 16 1/64 160 8.5188128e-09
100 8 1/64 115 1.6310423e-09
100 4 1/32 110 3.3416916e-09
100 8/3 3/64 110 1.8559358e-09
100 2 1/16 115 4.9628975e-09
130.69743296 16 1/64 280 9.7193482e-09
130.69743296 8 1/64 90 3.4528576e-09
130.69743296 4 1/32 105 4.2315848e-09
130.69743296 8/3 3/64 85 9.2248977e-09
130.69743296 2 1/16 490 3.2667106e-07
182.49400048 16 1/64 490 7.0102286e-07
182.49400048 8 1/64 490 6.3981694e-06
182.49400048 4 1/32 490 1.1882915e-05
182.49400048 8/3 3/64 490 1.8578846e-05
182.49400048 2 1/16 490 7.1418732e-05
200 16 1/64 490 3.8425803e-04
200 8 1/64 490 1.3190229e-08
200 4 1/32 345 7.5851212e-09
200 8/3 3/64 490 1.3166859e-05
200 2 1/16 490 4.9391982e-05
241.65664799 16 1/64 490 2.4490145e-03
241.65664799 8 1/64 490 3.5289017e-06
241.65664799 4 1/32 490 5.0083013e-06
241.65664799 8/3 3/64 490 3.6150524e-05
241.65664799 2 1/16 490 1.3841250e-04
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Table 9: Angles used to generate waves
2 Waves 0, π/2
3 Waves 0, π/2, 5π/3
4 Waves 0, π/2, 4π/7, 5π/3
5 Waves 0, π/2, 4π/9, 4π/7, 5π/3
6 Waves 0, π/2, 4π/9, 4π/7, 5π/3, 16π/9

The other values of γ2 exhibit at best erratic behavior. There is a general
lack of robustness when the unmodified Schwarz preconditioners are applied
to indefinite problems. The solver remains sensitive to the conditioning of the
non-transformed system. The smallest shifts (γ2 = 100, 130.69743296) can be
handled without modification to the method, but all of the other selected values
for γ2 result in problems for which convergence is obtained in, at best, a few
isolated cases and with a high iteration count.

5.1 Extended Coarse Spaces

In Tables 10, 11, 12, and 13 the coarse space is extended by adding additional
basis functions based on waves to the nodal basis functions. For Tables 10 and
11, the basis functions are constructed by solving the shifted problem (13) on
a pair of adjacent subdomains. In Tables 12 and 13 the harmonic extension is
taken, in which the basis functions are obtained by solving (14) on a pair of
adjacent subdomains. The waves are defined by selecting a collection of angels
θi and then defining

γ1
i = γ cos(θi)

γ2
i = γ sin(θi)

and letting
ψi = cos(γ1

i ) cos(γ2
i )− sin(γ1

i ) sin(γ2
i ). (15)

Note that (15) is equal to the real part of (16),

ei(γ1x+γ2y). (16)

The collection of angles used for each number of waves is indicated in Table 9.
The results of constructing additional basis functions by using the shifted

problem (13) to extend boundary conditions imposed by a plane wave are shown
in Tables 10 and 11, for the additive and hybrid Schwarz preconditioners respec-
tively. In the case of both the additive and hybrid preconditioner, significant
gains are made for both γ2 = 100 and γ2 = 200. Results are much more mixed
for the values of γ2 near eigenvalues of the discrete operator. In the case of
γ2 = 130.69743296, convergence is consistently achieved, and very good per-
formance is observed for both the additive and hybrid Schwarz preconditioners
using two and six plane waves. In the case of three, four, and five plane waves,
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Table 10: Plane waves extended by shifted problem with additive Schwarz
Shift H/δ dim(V0) Iteration Count Relative Residual
2 Waves
100 16 273 220 9.0020667e-09
130.69743296 16 273 115 5.7344353e-09
182.49 16 273 490 9.5943094e-06
182.494 16 273 490 1.0496348e-05
182.49400048 16 273 490 1.0861869e-05
200 16 273 165 9.0781428e-09
241.65664799 16 273 490 4.4347124e-04
3 Waves
100 16 385 445 3.2862458e-09
130.69743296 16 385 150 8.6464041e-09
182.49 16 385 190 7.9089172e-09
182.494 16 385 490 9.9117405e-06
182.49400048 16 385 490 1.0269273e-05
200 16 385 140 5.6488709e-09
241.65664799 16 385 490 2.7035221e-04
4 Waves
100 16 497 100 8.8998653e-09
130.69743296 16 497 170 2.2681643e-09
182.49 16 497 125 8.1372466e-09
182.494 16 497 430 4.4020150e-09
182.49400048 16 497 490 1.2790079e-05
200 16 497 140 3.9716990e-09
241.65664799 16 497 490 6.6143717e-06
5 Waves
100 16 609 105 7.1042291e-09
130.69743296 16 609 150 3.5704010e-09
182.49 16 609 125 8.7572122e-09
182.494 16 609 490 1.2046810e-06
182.49400048 16 609 490 1.3130895e-05
200 16 609 120 7.9501368e-09
241.65664799 16 609 490 3.7911369e-06
6 Waves
100 16 721 115 6.6731707e-09
130.69743296 16 721 105 8.8475400e-09
182.49 16 721 130 2.4251270e-09
182.494 16 721 435 8.7781901e-09
182.49400048 16 721 490 1.3644642e-05
200 16 721 115 8.6174278e-09
241.65664799 16 721 490 3.2385933e-06
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Table 11: Plane waves extended by shifted problem with hybrid Schwarz
Shift H/δ dim(V0) Iteration Count Relative Residual
2 Waves
100 16 273 195 5.7538532e-09
130.69743296 16 273 115 5.7344353e-09
182.49 16 273 490 9.5943094e-06
182.494 16 273 490 1.0496348e-05
182.49400048 16 273 490 1.0861869e-05
200 16 273 180 6.3094789e-09
241.65664799 16 273 490 4.4347124e-04
3 Waves
100 16 385 250 7.4647556e-09
130.69743296 16 385 150 8.6464041e-09
182.49 16 385 190 7.9089172e-09
182.494 16 385 490 9.9117405e-06
182.49400048 16 385 490 1.0269273e-05
200 16 385 140 5.2669508e-09
241.65664799 16 385 490 2.7035221e-04
4 Waves
100 16 497 160 9.2948254e-09
130.69743296 16 497 170 2.2681643e-09
182.49 16 497 125 8.1372466e-09
182.494 16 497 430 4.4020150e-09
182.49400048 16 497 490 1.2790079e-05
200 16 497 130 5.7535688e-09
241.65664799 16 497 490 6.6143717e-06
5 Waves
100 16 609 105 4.7627806e-09
130.69743296 16 609 150 3.5704010e-09
182.49 16 609 125 8.7572122e-09
182.494 16 609 490 1.2046810e-06
182.49400048 16 609 490 1.3130895e-05
200 16 609 95 9.6563359e-09
241.65664799 16 609 490 3.7911369e-06
6 Waves
100 16 721 115 4.9701544e-09
130.69743296 16 721 105 8.8475400e-09
182.49 16 721 130 2.4251270e-09
182.494 16 721 435 8.7781901e-09
182.49400048 16 721 490 1.3644642e-05
200 16 721 100 7.8886135e-09
241.65664799 16 721 490 3.2385933e-06
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performance remains acceptable, but is worse than the cases of two and six plane
waves. The problems resulting from γ2 = 182.49400048 and γ2 = 241.65663799
do not converge, within the allotted iterations, for any of the proposed pre-
conditioners. Selecting γ2 = 182.49, the distance to the nearest eigenvalue is
increased to roughly 10−3. In this case, convergence is attained when using
three or more waves with either the additive or hybrid Schwarz preconditioner.
Furthermore, as the number of waves used is increased, performance is further
improved. Using γ2 = 182.494 reduces the distance to the nearest eigenvalue to
roughly 10−7. In this case, convergence is only attained when using six waves,
and at a high iteration count.

For choices of γ2 not near eigenvalues, the addition of plane wave based
basis functions reduces the iteration count. Additionally, when using six plane
waves, the iteration counts for the three smallest shifts as well as for γ2 =
200 are comparable to one another, ranging from 100 to 130 iterations. This
indicates that the sensitivity of the preconditioners to nearly singular problems
increases as the number of negative eigenvalues, for the non-transformed system,
increases. Furthermore, no extended coarse space tested is able to bring about
convergence of the preconditioned GMRES algorithm for γ2 = 182.49400048
or γ2 = 241.65664799, in the allotted number of iterations. In the case of
γ2 = 182.49400048, the relative residual remains on the order of 10−5 for the
various number of plane waves used. The proposed preconditioners are unable
to improve the performance for this nearly singular problem, relative to the case
of no additional basis functions. For γ2 = 241.65664799, the relative residual
at the time of termination is reduced by a factor of 102 in the case of both the
additive and hybrid Schwarz preconditioner, as the number of plane waves used
is increased. In spite of the fact that convergence is not achieved, performance
is improved in the case of γ2 = 241.65664799. In cases where the problem
both possess many negative eigenvalues, and is nearly singular, success proves
limited.

In addition to the overall positive results, there are also some instances
of sudden and significant jumps in the iteration counts. In particular, when
moving from 2 to 3 plane waves to generate auxiliary basis functions, there
is a significant increase in iteration count for γ2 = 100, for both the additive
and hybrid variant. For the additive variant, the increase is from 220 to 445
iterations; the hybrid case increases from 195 to 250 iterations. This suggests
that the problem is not sufficiently controlled by the preconditioner using 2
plane waves. Furthermore, this suggests that some instances of low iteration
counts may be the result of serendipitous circumstances of the problem rather
than the preconditioner. An attempt will be made to investigate this behavior
further, using spectral techniques, in Section 6.

Using the shifted problem (13) to construct auxiliary basis functions from
plane waves increases the set of tractable, indefinite problems. Comparing the
results in Tables 7 and 8 to those in Tables 10 and 11, more problems converge
when using an extended coarse space, than without. Problems that are both
indefinite and nearly singular present the most difficulty. Considering γ2 =
182.49, 182.494, 182, 49400048, the distance to the nearest eigenvalue is roughly
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10−3, 10−7 and 10−9 respectively. The first is tractable for some of the proposed
preconditioners. The second is only tractable when using six plane waves, and
converges at a high iteration count. The third, which is closest to an eigenvalue,
is not tractable for any of the extended coarse spaces considered. When γ2 is
not near an eigenvalue, a larger value of γ2 = 200 results in a tractable problem,
in spite of the fact that it results in more negative eigenvalues.

In contrast with the results in Tables 10 and 11, Tables 12 and 13 show
that constructing additional basis functions by taking the harmonic extension
of plane waves gives little to no enhancement of the performance when H−1 = 4.
Only the problems corresponding to γ2 = 100 and γ2 = 130.69743296 consis-
tently converge within the allotted number of iterations. However, these cases
are also tractable without using an extended coarse space. Additionally, no
significant gains in performance are seen in moving from two plane waves to
six plane waves. With few exceptions, those cases that do not converge in the
allotted iterations also show little change in the relative residual when the max-
imum iteration count is reached. This changes somewhat in Section 5.2, when
H is reduced from H−1 = 4 to H−1 = 8. This is consistent with existing the-
ory as controls on the size of H are often necessary to control the behavior of
indefinite problems. For H−1 = 8, the problem corresponding to γ2 = 200 be-
comes tractable. However, success using the extended coarse space constructed
by harmonic extension remains limited compared to constructing the auxiliary
basis function by the shifted problem (13). Additionally, a smaller value of H
results in a larger coarse space. Constructing the auxiliary basis functions by
harmonic extension is less effective than using the shifted problem (13).

5.2 Variable Overlap

The results in Tables 10 through 13 use a domain decomposition with fixed
H−1 = 4 and δ = 1/64, while the number of plane wave based auxiliary basis
functions is allowed to vary. In Tables 14 through 17 the focus turns to varying
the overlap parameter δ. To this end, the number of plane waves used to generate
additional basis functions is fixed at four, with the relevant angles indicated in
Table 9. The fine mesh remains fixed at h−1 = 128. The coarse mesh H is
reduced to a fixed value of H−1 = 8, while δ is allowed to vary. A smaller choice
of H is used to ensure that the local problems remain positive definite as δ is
increased. For the construction of auxiliary basis functions, extension by the
shifted problem (13) is used for Tables 14 and 15; harmonic extension is used
in Tables 16 and 17 for the additive and hybrid variants respectively. The right
hand side is generated by (9), and Ω = [−1, 1]× [−1, 1].

Table 14 and Table 15 show similar results for the problems based on values of
γ2 far from eigenvalues. The cases of γ2 = 182.49400048 and γ2 = 241.65664799
remain intractable. With regard to γ2 = 100, 200, both the additive and hybrid
Schwarz methods are tolerant of an increase of overlap up to Hδ−1 = 4, but
for more generous overlap (smaller Hδ−1) performance is significantly degraded.
Additionally, for the smallest shift of γ2 = 100, overlap has no significant impact
on performance for either the additive or hybrid variants of the Schwarz method.
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Table 12: Plane waves using harmonic extension with additive Schwarz
Shift H/δ dim(V0) Iteration Count Relative Residual
2 Waves
100 16 273 155 9.5599874e-09
130.69743296 16 273 210 5.5983885e-09
182.49 16 273 490 1.3694516e-05
182.494 16 273 490 1.3425646e-05
182.49400048 16 273 490 1.3362950e-05
200 16 273 490 7.5903591e-04
241.65664799 16 273 490 3.2330384e-03
3 Waves
100 16 385 190 3.1540690e-09
130.69743296 16 385 195 8.3096089e-09
182.49 16 385 490 2.0739665e-05
182.494 16 385 490 2.1880907e-05
182.49400048 16 385 490 2.1881024e-05
200 16 385 490 1.5680353e-03
241.65664799 16 385 490 6.4959085e-03
4 Waves
100 16 497 185 5.3416358e-09
130.69743296 16 497 160 9.9489685e-09
182.49 16 497 490 1.9858520e-05
182.494 16 497 490 2.0834160e-05
182.49400048 16 497 490 2.0834273e-05
200 16 497 490 1.5134567e-03
241.65664799 16 497 490 5.0067063e-03
5 Waves
100 16 609 135 9.6812984e-09
130.69743296 16 609 180 4.8219924e-09
182.49 16 609 490 2.3016904e-05
182.494 16 609 490 2.4123890e-05
182.49400048 16 609 490 2.4124024e-05
200 16 609 490 1.1325171e-03
241.65664799 16 609 490 4.5240462e-03
6 Waves
100 16 721 140 7.5493674e-09
130.69743296 16 721 170 9.8077059e-09
182.49 16 721 490 2.3134788e-05
182.494 16 721 490 2.4143136e-05
182.49400048 16 721 490 2.4143252e-05
200 16 721 490 1.5565399e-03
241.65664799 16 721 490 4.3871924e-03
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Table 13: Plane waves using harmonic extension with hybrid Schwarz
Shift H/δ dim(V0) Iteration Count Relative Residual
2 Waves
100 16 273 155 5.4350322e-09
130.69743296 16 273 210 5.5983885e-09
182.49 16 273 490 1.3694516e-05
182.494 16 273 490 1.3425646e-05
182.49400048 16 273 490 1.3362950e-05
200 16 273 490 1.1798718e-03
241.65664799 16 273 490 3.2330384e-03
3 Waves
100 16 385 190 3.3046439e-09
130.69743296 16 385 195 8.3096089e-09
182.49 16 385 490 2.0739665e-05
182.494 16 385 490 2.1880907e-05
182.49400048 16 385 490 2.1881024e-05
200 16 385 490 1.6457573e-03
241.65664799 16 385 490 6.4959085e-03
4 Waves
100 16 497 185 5.7190104e-09
130.69743296 16 497 160 9.9489685e-09
182.49 16 497 490 1.9858520e-05
182.494 16 497 490 2.0834160e-05
182.49400048 16 497 490 2.0834273e-05
200 16 497 490 1.5639719e-03
241.65664799 16 497 490 5.0067063e-03
5 Waves
100 16 609 140 8.2622400e-09
130.69743296 16 609 180 4.8219924e-09
182.49 16 609 490 2.3016904e-05
182.494 16 609 490 2.4123890e-05
182.49400048 16 609 490 2.4124024e-05
200 16 609 490 1.4449118e-03
241.65664799 16 609 490 4.5240462e-03
6 Waves
100 16 721 140 8.9535096e-09
130.69743296 16 721 170 9.8077059e-09
182.49 16 721 490 2.3134788e-05
182.494 16 721 490 2.4143136e-05
182.49400048 16 721 490 2.4143252e-05
200 16 721 490 1.4677963e-03
241.65664799 16 721 490 4.3871924e-03

24



Table 14: Varying Overlap Additive Schwarz
Iteration

Shift H/δ δ dim(V0) Count Relative Residual
100 8 1/64 2145 100 3.0436788e-09
100 4 1/32 2145 105 1.6813723e-09
100 8/3 3/64 2145 100 2.3063731e-09
100 2 1/16 2145 105 6.3473931e-09
130.69743296 8 1/64 2145 100 2.0669144e-09
130.69743296 4 1/32 2145 100 2.4692700e-09
130.69743296 8/3 3/64 2145 70 6.1354683e-09
130.69743296 2 1/16 2145 490 2.1269374e-06
182.49 8 1/64 2145 450 7.0643878e-09
182.49 4 1/32 2145 490 8.2930068e-08
182.49 8/3 3/64 2145 490 3.4256439e-05
182.49 2 1/16 2145 490 2.7476827e-05
182.494 8 1/64 2145 490 1.0614526e-05
182.494 4 1/32 2145 490 3.4189226e-05
182.494 8/3 3/64 2145 490 3.5193717e-05
182.494 2 1/16 2145 490 2.7412401e-05
182.49400048 8 1/64 2145 490 1.4089799e-05
182.49400048 4 1/32 2145 490 3.7245845e-05
182.49400048 8/3 3/64 2145 490 3.5014129e-05
182.49400048 2 1/16 2145 490 2.7416902e-05
200 8 1/64 2145 200 4.9055077e-09
200 4 1/32 2145 185 4.0763359e-09
200 8/3 3/64 2145 490 9.4330359e-07
200 2 1/16 2145 490 8.6148982e-06
241.65664799 8 1/64 2145 490 5.6337035e-06
241.65664799 4 1/32 2145 490 1.9988713e-05
241.65664799 8/3 3/64 2145 490 1.2148124e-05
241.65664799 2 1/16 2145 490 9.4844144e-05
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Table 15: Varying Overlap Hybrid Schwarz
Iteration

Shift H/δ δ dim(V0) Count Relative Residual
100 8 1/64 2145 100 9.9830696e-09
100 4 1/32 2145 80 8.2644625e-09
100 8/3 3/64 2145 100 7.9927872e-09
100 2 1/16 2145 110 9.4885554e-09
130.69743296 8 1/64 2145 95 8.3296453e-09
130.69743296 4 1/32 2145 95 4.1112115e-09
130.69743296 8/3 3/64 2145 70 4.8243226e-09
130.69743296 2 1/16 2145 345 8.1940962e-09
182.49 8 1/64 2145 450 7.0643878e-09
182.49 4 1/32 2145 490 8.2930068e-08
182.49 8/3 3/64 2145 490 3.4256439e-05
182.49 2 1/16 2145 490 2.7476827e-05
182.494 8 1/64 2145 490 1.0614526e-05
182.494 4 1/32 2145 490 3.4189226e-05
182.494 8/3 3/64 2145 490 3.5193717e-05
182.494 2 1/16 2145 490 2.7412401e-05
182.49400048 8 1/64 2145 490 2.5168852e-05
182.49400048 4 1/32 2145 490 4.9951271e-05
182.49400048 8/3 3/64 2145 490 3.5081303e-05
182.49400048 2 1/16 2145 490 2.7871986e-05
200 8 1/64 2145 240 6.8829858e-09
200 4 1/32 2145 255 7.8889987e-09
200 8/3 3/64 2145 490 3.0408008e-06
200 2 1/16 2145 490 9.8470379e-06
241.65664799 8 1/64 2145 490 5.7060866e-06
241.65664799 4 1/32 2145 490 1.0440383e-05
241.65664799 8/3 3/64 2145 490 2.5973163e-05
241.65664799 2 1/16 2145 490 1.2204557e-04
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Table 16: Varying Overlap Additive Schwarz with Harmonic Extension
Iteration

Shift H/δ δ dim(V0) Count Relative Residual
100 8 1/64 2145 125 7.3654342e-09
100 4 1/32 2145 105 7.8852340e-09
100 8/3 3/64 2145 110 8.3193554e-09
100 2 1/16 2145 115 7.5720233e-09
130.69743296 8 1/64 2145 120 3.5076260e-09
130.69743296 4 1/32 2145 115 5.1788017e-09
130.69743296 8/3 3/64 2145 105 9.6312223e-09
130.69743296 2 1/16 2145 490 6.1314029e-06
182.49 8 1/64 2145 490 1.0038766e-05
182.49 4 1/32 2145 490 1.6420108e-05
182.49 8/3 3/64 2145 490 8.0804478e-06
182.49 2 1/16 2145 490 1.1027626e-05
182.494 8 1/64 2145 490 8.5703894e-06
182.494 4 1/32 2145 490 1.5053449e-05
182.494 8/3 3/64 2145 490 7.9481144e-06
182.494 2 1/16 2145 490 1.0905083e-05
182.49400048 8 1/64 2145 490 1.6047363e-05
182.49400048 4 1/32 2145 490 8.6262014e-06
182.49400048 8/3 3/64 2145 490 8.4163102e-06
182.49400048 2 1/16 2145 490 1.1413697e-05
200 8 1/64 2145 260 5.9892001e-09
200 4 1/32 2145 230 9.7942780e-09
200 8/3 3/64 2145 490 1.1043534e-05
200 2 1/16 2145 490 3.5100252e-05
241.65664799 8 1/64 2145 490 1.2608351e-04
241.65664799 4 1/32 2145 490 5.4577373e-04
241.65664799 8/3 3/64 2145 490 3.5170903e-05
241.65664799 2 1/16 2145 490 4.8865863e-04

For the shift γ2 = 130.69743296, overlap can be increased to Hδ−1 = 8/3.
Indeed, a performance improvement is seen in this case for both the additive
and hybrid variants. In the cases of γ2 = 182.49 and γ2 = 182.494, a decrease
of Hδ−1 from Hδ−1 = 16 to Hδ−1 = 8 proves catastrophic to the performance
of the preconditioner. The cases in which greater overlap improves performance
are very limited. In general, performance is either unchanged or significantly
degraded with increased overlap. This suggests that for an extended coarse
space, with auxiliary basis functions constructed from plane waves by the shifted
problem (13), small overlap is to be preferred.

In the case of harmonic extension, the reduction of H from H−1 = 4 to
H−1 = 8 makes the case of γ2 = 200 tractable. This is likely due more to the
reduction of H than the increase in δ as other results, not shown, indicate that
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Table 17: Varying Overlap Hybrid Schwarz with Harmonic Extension
Iteration

Shift H/δ δ dim(V0) Count Relative Residual
100 8 1/64 2145 125 4.5624092e-09
100 4 1/32 2145 105 4.4728500e-09
100 8/3 3/64 2145 105 8.8771967e-09
100 2 1/16 2145 105 6.2445180e-09
130.69743296 8 1/64 2145 95 8.3296453e-09
130.69743296 4 1/32 2145 95 4.1112115e-09
130.69743296 8/3 3/64 2145 70 4.8243226e-09
130.69743296 2 1/16 2145 345 8.1940962e-09
182.49 8 1/64 2145 490 1.0038766e-05
182.49 4 1/32 2145 490 1.6420108e-05
182.49 8/3 3/64 2145 490 8.0804478e-06
182.49 2 1/16 2145 490 1.1027626e-05
182.494 8 1/64 2145 490 8.5703894e-06
182.494 4 1/32 2145 490 1.5053449e-05
182.494 8/3 3/64 2145 490 7.9481144e-06
182.494 2 1/16 2145 490 1.0905083e-05
182.49400048 8 1/64 2145 490 2.5168852e-05
182.49400048 4 1/32 2145 490 4.9951271e-05
182.49400048 8/3 3/64 2145 490 3.5081303e-05
182.49400048 2 1/16 2145 490 2.7871986e-05
200 8 1/64 2145 260 7.0694182e-09
200 4 1/32 2145 325 6.0351320e-09
200 8/3 3/64 2145 490 1.7271959e-05
200 2 1/16 2145 490 4.3629406e-05
241.65664799 8 1/64 2145 490 5.7060866e-06
241.65664799 4 1/32 2145 490 1.0440383e-05
241.65664799 8/3 3/64 2145 490 2.5973163e-05
241.65664799 2 1/16 2145 490 1.2204557e-04
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for H−1 = 4 and Hδ−1 = 8, convergence does not occur within the allotted
iterations. This is reasonable as the prior work on using Schwarz methods to
solve indefinite problems has shown using a sufficiently small value of H is
essential [3][4]. Otherwise, convergence behavior is similar to that observed in
the previous results displayed in Tables 12 and 13. The problem corresponding
to γ2 = 100 is insensitive to decreasing Hδ−1. Performance gains are achieved in
the case of γ2 = 130.69743296 as Hδ−1 is reduced, but reduction to Hδ−1 = 8/3
or less results in significant degradation of performance. In the case of γ2 = 200,
increasing overlap beyond Hδ−1 = 4 results in degraded performance. Overall,
small overlap proves to be preferable to generous overlap.

6 Spectral Analysis

In Section 4.1, it was noted that the efficacy of a preconditioner is related to min-
imizing polynomials over the spectrum of the transformed system. Additionally,
in Section 4.1 some conditions conducive to rapid convergence of GMRES are
outlined. Configurations of eigenvalues where the absolute values of all eigenval-
ues are similar, and the eigenvalues in the right half plane can be confined to a
bounded circular, or elliptical, region with small radius are desirable. The worst
case is for the eigenvalues to surround the origin. Furthermore, the relevant
eigenvalues can be approximated in a rough fashion by the eigenvalues of the
upper Hessenberg matrix formed in the GMRES iteration. The proposed pre-
conditioners, with extended coarse spaces, are now analyzed by spectral means
in an attempt to verify that those displaying better performance are indicated
by spectra conducive to fast GMRES convergence. The relevant eigenvalues are
displayed in Figures 4 through 8 for the additive and hybrid preconditioners,
with auxiliary basis functions generated by the shifted problem (13). Figures
9 through 12 display the spectral information for some selected cases of the
additive and hybrid preconditioners without an extended coarse space. Lastly,
Figures 13 through 18 display spectral information for some cases of the ad-
ditive and hybrid preconditioners with auxiliary basis functions generated by
harmonic extension.

The preconditioners being considered in Figures 4 through 8 use a coarse
space enlarged by constructing plane wave based basis functions using the shifted
problem (13). The cases of γ2 = 100 and γ2 = 130.69743296 correspond to prob-
lems in which good acceleration is observed for some of the proposed precondi-
tioners. The case of γ2 = 241.65664799 illustrates the failure of the proposed
preconditioners to provide significant acceleration. In all cases, there are real
eigenvalues in the left half plane. This is expected as the original systems are
indefinite and no specific steps are taken to ensure the transformed system is
positive definite. Beyond this, there are significant differences in the location of
the complex eigenvalues, as well as the magnitudes of the eigenvalues.

The two successful cases (Figures 4 through 7) show encouraging results for
the application of GMRES. In the case of γ2 = 100, both the additive and hy-
brid Schwarz methods, at 4 and 6 plane waves, result in the negative eigenvalues
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Figure 4: Additive Schwarz γ2 = 100 – waves extended by shifted problem
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Figure 5: Hybrid Schwarz γ2 = 100 – waves extended by shifted problem
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Figure 6: Additive Schwarz γ2 = 130.69743296 – waves extended by shifted
problem
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Figure 7: Hybrid Schwarz γ2 = 130.69743296 – waves extended by shifted
problem
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Figure 8: Additive Schwarz γ2 = 241.65664799 – waves extended by shifted
problem
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becoming small in absolute value. The positive real eigenvalues also decrease
in absolute value, making the real eigenvalues, both positive and negative, all
of more comparable size. Furthermore, the complex eigenvalues pull away from
the imaginary axis and can be contained within a bounded circular subset of
the right half plane. This configuration of the spectrum suggests that the pre-
conditioned system will be more amenable to the convergence of GMRES at an
accelerated rate. In terms of the previous comments regarding Theorem 3, the
movement of the eigenvalues towards the origin aids in controlling the Dd−1

term. The fact that the negative eigenvalues lie near the origin is not a sig-
nificant step backwards as the non-transformed system also possessed negative
eigenvalues near the origin. The movement of the negative eigenvalues towards
the eigenvalues near the origin reduces D. The movement of the complex eigen-
values, in the right half plane, away from the imaginary axis combined with
the general reduction of the real part of these eigenvalues allows them to be
enclosed in a circular region that gives a smaller value to the RC−1 term. This
is supported by the iteration counts in Tables 10 and 11, as the cases of four,
five, and six waves outperform the preconditioners using zero, two, or three
waves. In the case of γ2 = 100 (Figures 4 and 5), there are two discouraging
developments when the transition is made from two plane waves to three. First,
there are more complex eigenvalues with large imaginary part, lying near the
imaginary axis. Secondly, there is an additional negative real eigenvalue, with
large magnitude. These conditions provide a partial explanation for the jump
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in the iteration count seen in Tables 10 and 11. Moving to a higher number
of waves, the complex eigenvalues pull back from the imaginary axis, and the
real eigenvalues become very close to one another in absolute value. In the
case of γ2 = 130.69743296, the complex eigenvalues are in good positions for all
preconditioners shown. With regard to the real eigenvalues, additional outliers
appear in the cases of three, four, and six waves. This is consistent with the
mildly degraded performance versus two plane waves as seen in Tables 10 and
11. Curiously, performance is improved moving from four to six plane waves in
spite of the larger outliers. This indicates that more sophisticated techniques are
necessary for a full analysis of the preconditioner. The spectral data pertaining
to the cases of γ2 = 100 and γ2 = 130.69743296 (Figures 4 through 7), correlate
with the results presented in Tables 10 and 11. Configurations of eigenvalues
that are expected to promoted accelerated GMRES convergence correspond to
cases in which good performance is observed. Figure 8 illustrates the spectral
analysis of a case that does not converge (γ2 = 241.65664799). In the cases of
two and three plane waves the location of the complex eigenvalues is less en-
couraging. In the case of two plane waves, a few complex eigenvalues are in the
left half plane. When using three plane waves, some of the complex eigenvalues
have small real part. Complex eigenvalues in both the left and right half planes
results in the origin being surrounded. Having complex eigenvalues in the right
half plane, with small real part, makes it more difficult to bound the eigenvalues
in the right half plane in a favorable, closed, circular region. These issues with
the complex eigenvalues are resolved in the cases of using four and six plane
waves. This also coincides with the reduction in relative residual observed in
Tables 10 and 11. In all of the results displayed related to γ2 = 241.65664799,
the real eigenvalues remain distributed across a significant subset of the real
axis. Controlling the size of the real eigenvalues would likely provide significant
performance gains for the case of γ2 = 241.65664799.

The focus now turns to analysis of the approaches with more limited success.
The results listed in Tables 7 and 8 indicate γ2 = 100 as a case in which
an unmodified Schwarz preconditioner has significant success while the case of
γ2 = 182.49400048 did not see significant acceleration. These two cases are
selected for the spectral analysis, to illustrate conditions when the problem can
be sufficiently controlled by controlling H and δ, as well as a configuration of
the spectrum when this approach fails. Figures 9 and 11 contain results for the
additive variant, while Figures 10 and 12 address the hybrid variant.

The eigenvalues shown in Figures 9 and 10 show similar behavior to the
previous successful cases shown in Figures 4 through 7. The complex eigenvalues
move away from the imaginary axis asHδ−1 decreases. The negative eigenvalues
also move towards the origin, bringing them closer to one another in absolute
value. This behavior is similar to what is observed in Figure 4 through 7, which
represent successful preconditioning attempts. This is consistent with the results
in Tables 7 and 8, which show good performance, in terms of iteration count, for
moderate values of Hδ−1. Tables 7 and 8 also indicate that attempts to solve
the systems for the case of γ2 = 182.49400048 are unsuccessful. Examining the
spectrum for the case of γ2 = 182.49400048 in Figures 11 and 12, conditions
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Figure 9: Additive Schwarz γ2 = 100 – no waves
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Figure 10: Hybrid Schwarz γ2 = 100 – no waves
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Figure 11: Additive Schwarz γ2 = 182.49400048 – no waves
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Figure 12: Hybrid Schwarz γ2 = 182.49400048 – no waves
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are found to be less favorable for GMRES. For the case of Hδ−1 = 16, there
are complex eigenvalues near the origin that lie close to the imaginary axis.
Decreasing Hδ−1 to Hδ−1 = 8/3 is successful in pulling the complex eigenvalues
further into the right half plane, but complex eigenvalues with large imaginary
part remain. Additionally, outliers along the real axis are reduced, but remain
large relative to the other real eigenvalues. The configuration of the spectrum
for γ2 = 182.49400048 is not the worst case scenario for GMRES, with the
origin surrounded, but neither is it sufficiently conducive to rapid convergence
of GMRES to allow convergence in the allotted iterations. In terms of Theorem
3, the outlier eigenvalues result in a large value for Dd−1. Eigenvalues located
near the imaginary axis, and to a lesser extent other complex eigenvalues with
large imaginary part, require that a circle centered about a point on the positive,
real axis have large radius to enclose them. Thus, the RC−1 term will be less
favorable. This is borne out in the results in Tables 7 and 8, where reducing
Hδ−1 is unable to bring about convergence in the allotted iterations.

Turning to the proposed preconditioner using an extended coarse space in
which the plane wave conditions are extended by harmonic extension, two values
of γ2 are selected to analyze the results, for H−1 = 4 and δ = 1/64, with a
variable number of plane waves. Following the results in Tables 12 and 13, γ2 =
100 is selected as a convergent case, and γ2 = 182.49400048 as an example of a
case where convergence is not achieved. In Figures 17 and 18, H is reduced to
H−1 = 8, and Hδ−1 is fixed at 4. The spectra for four values of γ2 are examined
for the additive and hybrid variants respectively. This data is drawn from the
experiments with variable overlap in Tables 16 and 17 as these experiments
utilized a coarse mesh of H−1 = 8, which demonstrated a greater degree of
success when using harmonic extension.

The spectra resulting from applying the additive and hybrid variants, with
harmonic extension, to the case of γ2 = 100 are displayed in Figure 13 and
Figure 14 respectively. Good results, very similar to Figures 4 and 5, are ob-
served. The imaginary parts of the complex eigenvalues are reduced. Also, the
absolute values of the real eigenvalues are reduced. These results are consis-
tent with the results in Tables 12 and 13 which show iteration counts similar
to those in the case of constructing auxiliary basis functions by extending the
plane wave conditions with the shifted problem (13). The situation illustrated
for γ2 = 182.49400048 in Figures 15 and 16 corresponds to a much less success-
ful problem. Complex eigenvalues, albeit with small imaginary part, are found
close to the origin. In the case of γ2 = 182.48400048, the complex eigenvalues
are confined to the right half plane, but lie much closer to the origin than in
the case of either extension by the shifted problem (13), or no auxiliary basis
functions. When attempting to contain the eigenvalues in a closed circular re-
gion, these eigenvalues in the right half plane near the imaginary axis require
that the circular region have a radius (R) that is large relative to the positive
real number (C) about which it is centered. This results in a larger value of
RC−1 as in Theorem 3, which suggests GMRES will converge at a slower rate.
This configuration of eigenvalues shown in Figures 15 and 16 is expected to be
worse for GMRES convergence than those seen in Figures 11 and 12 or Figures
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Figure 13: Additive Schwarz γ2 = 100 – harmonic extension
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Figure 14: Hybrid Schwarz γ2 = 100 – harmonic extension
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Figure 15: Additive Schwarz γ2 = 182.49400048 – harmonic extension

−6 −4 −2 0 2 4 6 8
−20

0

20
2 Waves

−6 −4 −2 0 2 4 6 8
−20

0

20
3 Waves

−6 −4 −2 0 2 4 6 8
−20

0

20
4 Waves

−6 −4 −2 0 2 4 6 8
−20

0

20
6 Waves

Figure 16: Hybrid Schwarz γ2 = 182.49400048 – harmonic extension
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Figure 17: Additive Schwarz H−1 = 8, H/δ = 4 – harmonic extension
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Figure 18: Hybrid Schwarz H−1 = 8, H/δ = 4 – harmonic extension
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6 and 7. Indeed, this is borne out in the iteration counts in Tables 12 and 13.
In the case of using harmonic extension with H−1 = 8 and Hδ−1 = 4, Figures
17 and 18 indicate favorable configurations of the spectrum for the same three
values of γ2 that converge in the case of constructing the extended coarse space
by the shifted problem (13) with H−1 = 4. In the case of γ2 = 241.65664799,
the origin is surrounded in a severe manner, which is consistent with the lack of
convergence seen in Tables 16 and 17. The spectral analysis pertaining to har-
monic extension indicates that a tighter control on H is necessary for harmonic
extension, than extension by the shifted problem (13). Convergence is slower in
the case of γ2 = 200, but attainable, provided H is small enough. Additionally,
the spectral results pertaining to γ2 = 241.65664799 indicate that the situation
in the failure of harmonic extension is worse than that for extension by the
shifted problem (13).

7 Inverse Iteration

Lastly, inverse iteration is presented as an application of the preconditioner
using an extended coarse space constructed by the shifted problem (13). The
domain Ω = [0, 1] × [0, 1] is selected to reduce the size of H without requiring
a larger number of unknowns. A fixed set of four plane waves, as described in
Table 9, is used with a fine mesh of h−1 = 256, a coarse mesh of H−1 = 16,
and an overlap of δ = 1/128. The eigenvalues of the discrete operator −∆ are
known, see [7]. The eigenvalue

λ = (2562)
(

4
(

sin2

(
3π
512

)
+ sin2

(
3π
512

)))
(17)

is selected as it is a simple eigenvalue, giving the iteration only one eigenvector
to converge to. The eigenvector is known and corresponds to a discretization of
the continuous function (18),

u(x, y) = sin (3πx) sin (3πy) . (18)

Inverse iteration proceeds by solving the equation

(A− µI)x(k) = x(k−1) (19)

for µ near an eigenvalue and x(0) is an initial guess. Ideally, x(k) converges to an
eigenvector rapidly. In this experiment, A is taken to be the discrete Laplacian,
and µ = 177.63281 is selected to be near λ. This gives

|λ− µ| = 4.4717084e-06.

Additionally, (19) becomes (11) with γ2 = µ and f = x(k−1), u = x(k). The
initial guess is taken to be 1 on all points interior to Ω and 0 on ∂Ω. Initial
results pertaining to the convergence of inverse iteration are displayed in Table

40



Table 18: Inverse Iteration Convergence µ = 177.63281
GMRES

cos(θ) θ Iterations
x(1) 9.9999999999993028e-01 3.7342202920144023e-07 150
x(2) 9.9999999999999600e-01 8.9406967163085964e-08 320
x(3) 1.0000000000000078e+00 (1.2467205919833109e-07)ı 245

18. To measure how close the iterate is to being an eigenvector, the angle
between the iterate and the exact eigenvector is measured by

cos(θ) =
〈x(k), u〉
‖x(k)‖ ‖u‖

where u is the exact eigenvector.
Inverse iteration proves successful. After one iteration, the angle between the

iterate and the exact solution is on the order of 10−7. Further iterations are able
to reduce this to 10−8, although it stagnates at that point. Additionally, due to
roundoff error, cos(θ) exceeds 1, precluding such an analysis. Since no significant
progress, in terms of θ, is made after the first iteration, the convergence behavior
of the GMRES iteration for the first iteration is examined more closely in Table
19. The usual convergence tests are overridden and results for the first 450
GMRES iterations are displayed. Every five iterations, the angle θ is checked,
as well as the relative residual.

In Table 19, rapid reduction of both θ and the relative residual is seen
through the first 25 iterations. The solution after the first 25 iterations is
shown in Figure 19. For comparison, the exact eigenvector is displayed in Figure
20. Additional iterations further reduce both θ and the relative residual, but
at a much slower rate. After 105 GMRES iterations, θ attains its terminal
value of roughly 10−7. The residual reaches the convergence criterion of a size
less than 10−8 at 150 iterations. Continuing further, the relative residual is
further reduced to roughly 10−13, after 450 GMRES iterations, but θ remains
on the order of 10−7. Inverse iteration attains a solution near an eigenvector,
and stagnates. Convergence to an approximate eigenvector occurs prior to the
convergence of GMRES, measured by residuals.

The proposed Schwarz preconditioner proves suitable for inverse iteration.
The results indicate that a shift µ that results in rapid convergence of inverse
iteration results in a problem that is tractable for the proposed preconditioner.
The GMRES iteration count, for the first iteration, is good. The results in Table
18 indicate that there is little reason to proceed beyond the first iteration. The
results in Table 19 show that the point at which θ stagnates is reached prior to
the convergence of GMRES, with respect to the size of the residual.
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Table 19: Inverse Iteration Convergence µ = 177.63281, first iteration detail
GMRES Relative
Iterations θ Residual
5 1.1718342e+00 6.4557306e-03
10 2.5117419e-01 5.2623644e-04
15 3.4354446e-03 1.8665505e-05
20 4.7137513e-04 1.3510048e-06
25 2.8809031e-04 5.7036202e-07
30 2.5456238e-04 5.4100448e-07
35 2.9087708e-04 7.3798994e-07
40 3.0472594e-04 8.3836569e-07
45 3.1226001e-04 8.9177995e-07
50 3.1696442e-04 9.2460320e-07
60 3.2249828e-04 9.6273025e-07
70 3.2564147e-04 9.8416711e-07
80 2.3348607e-04 6.3013000e-07
90 2.1708927e-04 5.6388845e-07
100 2.2535759e-06 4.5326443e-07
105 4.3774935e-07 5.3411952e-08
110 4.1803003e-07 4.4842162e-08
120 4.1268416e-07 4.4164077e-08
130 4.0998508e-07 4.4017933e-08
140 4.3084718e-07 4.3954080e-08
150 3.7342203e-07 4.5940920e-09
200 3.5855798e-07 1.3669559e-09
250 3.7073658e-07 1.5497012e-10
300 3.7163388e-07 1.5223128e-11
350 3.6833307e-07 2.1273620e-11
400 3.9028528e-07 3.5113924e-13
450 4.1052631e-07 2.6650111e-13
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Figure 19: Solution after 25 GMRES iterations

Figure 20: Exact eigenvector
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8 Concluding Remarks

The preconditioners considered enjoy varying degrees of success. The most
successful approach considered uses an extended coarse space in which auxiliary
basis functions are constructed via the shifted problem (13). The approach of
controlling the size of H, with no auxiliary basis functions, is effective, but
requires increasingly smaller H as the parameter γ2 increases as seen in the
previous work by Cai and Widlund, see [3] [4]. Results displayed in Tables 7
and 8 show very limited success for attempting to control the behavior of the
system using only H and δ as γ2 increases. Above γ2 = 130.69743296, only
one attempt at γ2 = 200 converges, but does so at over 300 GMRES iterations.
The results in Tables 10 and 11 indicate that, in the case of basis functions
constructed by the shifted problem, (13) allows a very large value of H−1 = 4
to be used while still attaining convergence in under 200 GMRES iterations.
However, for larger values of γ2, the proposed preconditioners become sensitive
to the conditioning of the non-transformed system. This shift is also found to
be suitable for rapid convergence of inverse iteration. Tables 12 and 13 indicate
that this is not the case for basis functions constructed by harmonic extension.
Only the two smallest shifts result in tractable problems. It is only in Tables
16 and 17, when the coarse mesh is reduced to H−1 = 8, that a few more of
the test cases converge. In these additional cases, convergence typically requires
more than 200 GMRES iterations. A combination of controlling the size of H
and auxiliary basis functions constructed from the shifted problem (13) enjoys
the greatest success in terms of accelerating convergence.

The results of adding additional plane wave based basis functions point to a
progression of larger classes of indefinite problems that become tractable. The
classical Schwarz preconditioners exhibit poor performance, as the number of
negative eigenvalues is increased, as well as situations where the problem is close
to singular. When the coarse space is extended by adding basis functions based
on a small number of plane waves, problems with more negative eigenvalues,
such as in the case of γ2 = 200, become tractable, but problems that are nearly
singular continue to present difficulties. As the number of plane waves used
is further increased, some of the problems with γ2 near an eigenvalue of the
operator become tractable, but problems with both γ2 near an eigenvalue and
a large number of negative eigenvalues remain intractable.

In some cases, sudden jumps in the iteration count are observed as additional
plane waves are used to extend the coarse space. Justification of these jumps can
be found in the relevant spectral analysis. The spectral analysis of the proposed
preconditioners reveals that the preconditioning techniques are indeed successful
in constructing systems conducive to accelerated convergence of GMRES. The
successful cases share similar spectra indicating that preconditioning, rather
than fortuitous circumstances, is responsible for improved performance. Addi-
tionally, in the cases where a jump in the iteration count is observed, a behavior
is observed in the spectral analysis that provides an explanation. New eigen-
values with either large real part or large complex part appear, but come back
under control with the addition of more plane wave based basis functions. In all
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successful cases considered, the eigenvalues in the left half plane are restricted
to the negative real axis. Furthermore, the more effective preconditioners gather
the negative eigenvalues closer to the origin, reducing the absolute value of the
negative eigenvalues relative to the negative eigenvalue with smallest absolute
value. In the right half plane, the real eigenvalues gather towards the smallest
positive eigenvalue. Also, the complex eigenvalues pull away from the imagi-
nary axis. This allows the eigenvalues in the right half plane to be confined
to a bounded subset of the right half plane. The situation in the right half
plane combined with the negative eigenvalues gathering into a small subset of
the negative real axis give a situation conducive to rapid GMRES convergence.

In addition to indicating the successful cases, the spectral techniques also in-
dicate the unsuccessful attempts. In the cases where convergence is not achieved,
the spectrum of the upper Hessenberg matrix varies, but consistently assumes
configurations less supportive of rapid GMRES convergence. In most cases,
complex eigenvalues remain near the imaginary axis, at times even appearing
on both sides of the imaginary axis. Additionally, the real eigenvalues tend to
remain distributed across a much larger subset of the real axis. In the case of
Figures 15 and 16, the locations of the real eigenvalues are good, but the loca-
tions of the complex eigenvalues present problems. While the necessary spectral
analysis indicated by the theory is too involved for a careful comparison of the
successful cases, it is an effective tool for distinguishing preconditioners that
achieve reasonable acceleration from those that provide little or no benefit.

Among the Schwarz preconditioners considered, extending the coarse space
with basis functions constructed from plane waves, using the shifted problem
(13) along with small overlap, proves to be the best choice. In the case of
γ2 = 182.49, an increase in overlap from Hδ−1 = 16 to Hδ−1 = 8 proves catas-
trophic for performance. This indicates that small overlap should be preferred
for performance reasons. The approach of extending the coarse space is able to
handle the various choices of γ2 that are intractable for the Schwarz precondi-
tioners without an extended coarse space. This makes a larger class of problems
tractable without requiring a very small value of H. Consistently reducing the
size of H results in an increased number of local problems. Constructing the
auxiliary basis functions by harmonic extension enjoys some success with smaller
H. The need to control the size of H is a common theme in applying domain
decomposition methods to indefinite systems, but a small H also significantly
increases the size of the global problem, both by increasing the size of the un-
extended coarse space, and increasing the number of auxiliary basis functions
added. In the experiments considered, extension by the shifted problem (13)
achieves very good performance with five or six wave equations and H−1 = 4,
which corresponds to a coarse space of dimension 609 or 721 respectively. The
smaller value of H−1 = 8 necessary to use harmonic extension leads to a coarse
space of dimension 2145 when using four plane waves. Moreover, the use of a
harmonic extension results in slower convergence. Tables 14 and 15 indicate
that for the case of extension by (13), increased overlap does little to improve
performance. Additionally, small overlap helps limit the size of the local prob-
lems. Given the lack of significant performance gains from allowing generous
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overlap, this further indicates that small overlap should be preferred. Addition-
ally, reduction of Hδ−1, at times, requires a reduction of H as increasing δ can
lead to indefinite local problems if H is large.

The experiments in Section 7 indicate a successful application of the pro-
posed preconditioner to inverse iteration. The use of auxiliary basis functions
constructed by the shifted problem (13) and a smaller value of H allow for the
calculation of an eigenvector corresponding to the eigenvalue λ given by (17).
Using H−1 = 16, the case of γ2 = 177.63281 is tractable. Inverse iteration yields
a solution that is close to the exact eigenvector after a single iteration, with an
acceptable GMRES iteration count. The results also indicate that there is little
point in continuing beyond this first iteration.

The most effective Schwarz preconditioner considered is a Schwarz method
with a coarse space expanded by plane wave based basis functions constructed
by using the shifted problem (13), and local problems with small overlap. The
use of an extended coarse space gives the best performance increases seen in the
results presented. Additionally, this approach enjoys sufficient robustness to
make a combination of GMRES with such a preconditioner suitable for eigen-
vector calculation via inverse iteration. This approach also allows for larger
values of γ2 without requiring as significant a reduction of H as is necessary
for approaches without an extended coarse space. Additionally, reductions of
H further enhance the robustness of the preconditioner. Increasing the overlap
proves to not be of significant use in accelerating the convergence. Keeping
the overlap small also helps to maintain positive definite local problems with
large H. Using large values of H maintains a smaller coarse space dimension,
and limits the number of local problems. Augmenting the coarse space with
basis functions, constructed using the shifted problem (13) in conjunction with
small overlap, yields a robust preconditioner that provides for good accelera-
tion of convergence while also keeping down the size of the global problem and
maintaining a small number of local problems.
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