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Abstract

Humans excel at generating structured data in the form of images, text, speech, molecules,

computer code, and others. Researchers have spent several decades proposing various

solutions for the effective generation of these structured objects in a data-driven way,

known as structured prediction. With the revival of deep neural networks, autoregressive

models that process structured objects in fixed left-to-right monotonic ordering became

a de-facto solution for this problem. Notable successes of autoregressive models include

neural machine translation [Sutskever et al., 2014,Bahdanau et al., 2014,Vaswani et al.,

2017], open-ended text generation [Radford et al., 2019, Brown et al., 2020], text-to-

speech synthesis [van den Oord et al., 2016a], among many.

Despite the considerable success of autoregressive models on many applications, a

natural question arises whether alternative approaches are possible for structured predic-

tion. This thesis describes a novel method for structured prediction based on the prin-

ciple of iterative refinement with a particular focus on applications to text and molecule

generation. We first introduce the iterative refinement framework for text generation.

Starting from the blank sentence, the iterative refinement approach gradually refines

text over multiple steps. Using this approach, we show that we can flexibly generate

the text in various ways, such as generate all or some words in parallel and generate

text according to the ordering learned from the data. We show that iterative refinement

achieves competitive performance compared to autoregressive models while delivering a

speedup in decoding. We conclude this thesis by showing how we can adapt the iterative

refinement framework originally introduced for text generation for molecule generation.

In particular, we demonstrate two iterative refinement approaches for molecular graph

generation and molecular geometry prediction. We anticipate that models based on the

vi



iterative refinement will be broadly applicable to other domains of interest.
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Chapter 1

Introduction

Humans process and interact with a vast amount of structured data daily. These

objects take a particular structure and are in the form of images, text, audio, computer

code, etc. Humans excel at generating such data and communicating the findings to the

rest of the world. But how can we create machines that generate such structured data as

well or better than humans do?

Structured prediction is an area of machine learning focusing on generating struc-

tured objects in a data-driven way. One of the earliest examples of statistical struc-

tured prediction systems goes back to IBM’s speech transcription system [Jelinek, 1976]

developed in the 1970s. Another notable early success of structured prediction sys-

tems is the Graph Transformer network [Bottou et al., 1997]. It was the first end-to-

end structured prediction system trained with backpropagation [LeCun, 1985, Rumel-

hart et al., 1986] that read the bank checks. Other conventional applications of struc-

tured prediction systems include machine translation [Brown et al., 1993, Och and Ney,

2004, Tillmann and Ney, 2003], sequence labeling and segmentation [Lafferty et al.,

2001, Sarawagi and Cohen, 2004], discriminative dependency and constituency pars-
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ing [McDonald et al., 2005, Finkel et al., 2008], among others.

With the revival of deep neural networks starting from the 2000s-2010s [Krizhevsky

et al., 2012, Ciresan et al., 2012, Hinton et al., 2012], structured prediction models

became dominated by neural networks. In particular, neural autoregressive models

[Mikolov et al., 2010] that generate structured data in a fixed left-to-right monotonic

order became a de facto approach for neural structured prediction. Some major re-

cent successes of neural autoregressive models include neural machine translation [Bah-

danau et al., 2014, Sutskever et al., 2014, Vaswani et al., 2017], neural dialogue genera-

tion [Vinyals and Le, 2015, Serban et al., 2016, Bordes and Weston, 2017, Adiwardana

et al., 2020], neural language modeling [Mikolov et al., 2010,Zaremba et al., 2014,Melis

et al., 2018, Dai et al., 2019], open-ended text generation [Radford et al., 2019, Brown

et al., 2020], response suggestion for email [Kannan et al., 2016,Chen et al., 2019], text-

to-speech synthesis [van den Oord et al., 2016a, Wang et al., 2017b, Shen et al., 2018],

in-silico molecule generation [Brown et al., 2018, Gupta et al., 2018], protein property

prediction [Rives et al., 2019, Rao et al., 2019, Ingraham et al., 2019a] and etc.

Despite the considerable success of neural autoregressive models, a natural question

arises whether alternative approaches are possible for the generation of structured ob-

jects. This thesis introduces the novel approach for structured prediction based on the

principle of iterative refinement. First, we present the iterative refinement framework

for parallel decoding of sentences in neural machine translation (chapter 3). Then, we

present the generalized framework of sequence generation that unifies decoding from

directed and undirected sequence models. Using this framework, we show that we

can iteratively decode text using a BERT-like machine translation model [Devlin et al.,

2019,Lample and Conneau, 2019] (chapter 4). Finally, we demonstrate the generality of

iterative refinement framework beyond text, particularly to molecular graph generation
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(chapter 5) and molecular geometry prediction (chapter 6).

1.1 List of Contributions

• Jason Lee*, Elman Mansimov*, Kyunghyun Cho.

Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Re-

finement. EMNLP, 2018.

Source code, preprocessed datasets and pretrained models can be found at https:

//github.com/nyu-dl/dl4mt-nonauto.

Together with Jason Lee and Kyunghyun Cho, I started the project and conceived

the initial idea. Together with Jason Lee, I implemented the code, ran, and ana-

lyzed the experiments. Myself, Jason Lee and Kyunghyun Cho iteratively refined

the idea of the project and wrote the paper.

• Elman Mansimov, Alex Wang, Sean Welleck, Kyunghyun Cho.

A Generalized Framework of Sequence Generation with Application to Undi-

rected Sequence Models. arXiv preprint, 2019.

Source code, preprocessed datasets and pretrained models can be found at https:

//github.com/nyu-dl/dl4mt-seqgen.

Together with Alex Wang and Kyunghyun Cho, I started the project and conceived

the initial idea. With the help of Alex Wang, I implemented code, ran, and ana-

lyzed experiments. Myself, Alex Wang, and Kyunghyun Cho have written the

initial version of the draft. Sean Welleck joined in the later stages of the project.

He implemented code and ran experiments with reinforcement learning models in

the paper.

• Omar Mahmood, Elman Mansimov, Richard Bonneau, Kyunghyun Cho.
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Masked graph modeling for molecule generation. arXiv preprint, 2020.

Source code, preprocessed datasets and pretrained models can be found at https:

//github.com/nyu-dl/dl4chem-mgm.

Together with Omar Mahmood we conceived the initial idea and started the project.

Omar Mahmood ran all of the experiments, except for the baseline models. I par-

ticipated in the weekly meetings and advised on the next steps for the project. I

wrote the paper together with Omar Mahmood and Kyunghyun Cho.

• Elman Mansimov, Omar Mahmood, Seokho Kang, Kyunghyun Cho.

Molecular geometry prediction using a deep generative graph neural network, Na-

ture Scientific Reports, 2019

Source code, preprocessed datasets and pretrained models can be found at https:

//github.com/nyu-dl/dl4chem-geometry.

Seokho Kang and Kyunghyun Cho conceived the initial idea and started the project.

Myself, Omar Mahmood, and Seokho Kang ran the experiments and further re-

fined the project’s idea. Myself, Omar Mahmood, Seokho Kang, and Kyunghyun

Cho refined the idea and wrote the paper.
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Chapter 2

Background

We start this section by defining the sequences and what it means to build gener-

ative models of the sequences (chapter 2.1). We then describe denoising autoencoder

(chapter 2.2), an approach initially proposed for representation learning, that is behind

the iterative refinement framework. We describe two fundamental generative models

of sequences, including latent-variable models (chapter 2.3) and autoregressive models

(chapter 2.4). Finally, we outline several ways of parameterizing these models using

deep neural networks (chapter 2.5) and explain how they can be extended to other struc-

tured objects in particular graphs (chapter 2.6).

2.1 Sequences and generative models

Formally, lets define a variable Y = (y1, y2, ..., yT ) as a sequence of length T con-

taining symbols yi that belong to the vocabulary V . An example of the sequence is

the sentence ”I was running in the park” consisting of symbols (tokens): ”I”, ”was”,

”running”, ”in”, ”the”, ”park” that are part of the English vocabulary. The goal of the
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sequence generation is to define a process of generating such sequences Y .

Under the probabilistic formulation, we assume that exists a distribution p∗(Y ) of

valid sequences Y . The process of generating valid sequences becomes a sampling pro-

cedure from the distribution p∗(Y ). We can extend this distribution into p∗(Y |X) by

conditioning the variable Y on another variable X . When variable X is a non-empty

set such as a sequence the generative modeling task becomes conditional. Examples of

such conditional tasks include machine translation, text summarization, image caption-

ing. When variable X is an empty set X = ∅, the generative modeling task becomes

unconditional. A representative example of an unconditional sequence generation task

is language modeling.

Generative modeling under the probabilistic formulation becomes the task of finding

a distribution pθ(Y |X) that approximates underlying distribution p∗(Y |X) well. The

approximate distribution pθ(Y |X) is modeled using a function fθ containing parameters

θ. The parameters θ are learned by minimizing the distance between ground-truth and

approximate distributions. Typically, a KL-divergence metric KL(p∗||pθ) is used as a

distance function.

In practice we don’t have direct access to the ground-truth distribution p∗(Y |X).

Instead we estimate it using a distribution p(Y |X) over the dataset D =(
(X1, Y1), (X2, Y2)..., (Xn, Yn)

)
of valid sequencesX and Y . The learning objective be-

comes KL(p||pθ) which is equivalent to maximizing the likelihood pθ(D) of the dataset

D. Under this formulation, the challenge of building a successful generative model

of sequences ends up lying in finding a right parameterization function fθ and decom-

position of probability distribution p(Y |X). In the next sections, we describe several

foundational ways of parametrizing such a function and probability distribution to build

a generative model of sequences.
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2.2 Denoising autoencoder

The idea behind the classical autoencoder [Oja, 1991], such as the one used in [Ben-

gio, 2007], is to represent the input Y using the low-dimensional continuous represen-

tation h. To accomplish that, the input Y gets encoded into a low dimensional represen-

tation h = f(Y ), followed by decoding that hidden representation back into the original

space Ŷ = g(h) = g(f(Y )). The parameters of autoencoder are learned by minimiz-

ing the distance between the original input Y and reconstructed input Ŷ . Typically, the

cross-entropy error is used for discrete variables, while the mean-squared error is used

for continuous variables. Due to autoencoder’s deterministic nature, this model can not

be used to generate new objects and can only be used to downsample existing input

into low-dimensional representation. The idea of autoencoders for representation learn-

ing has been part of the historical landscape of neural networks for decades [LeCun,

1987, Bourlard and Kamp, 1988, Hinton and Zemel, 1993].

While the deep autoencoder outperforms shallow methods such as PCA for learning

low-dimensional representation of data [Bengio et al., 2006, Hinton and Salakhutdinov,

2006], it can easily overfit to data and learn an obvious solution by simply copying the

input. To avoid this issue, [Vincent et al., 2008] hypothesized that good representation

is one that can be obtained robustly from a corrupted input and that will be useful for

recovering the corresponding clean input. In particular, [Vincent et al., 2008] proposed

the version of an autoencoder that reconstructs a clean input from a corrupted version

of it. Specifically, we design a corruption function C(Ỹ |Y ) and pass the noisy input

sampled using this corruption function Ỹ ∼ C(Ỹ |Y ) to the autoencoder. The resulting

model is called the denoising autoencoder. Similar to the autoencoder, parameters of

denoising autoencoder are learned by minimizing the reconstruction error. The corrup-
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tion function is designed so that the corrupted input is not too far from the clean input.

Typically for continuous variables, salt-and-pepper noise is used [Vincent et al., 2008].

For discrete variables, random replacement/dropping/swapping of symbols is used [Hill

et al., 2016].

While denoising autoencoder was originally proposed as an improved way of learn-

ing representations of data, it was shown later that it is possible to sample data from de-

noising autoencoder. [Alain and Bengio, 2012] showed that the denoising autoencoder

trained on continuous data with small Gaussian corruption and mean-squared error loss

implicitly learns to find the direction ∇Y log p(Y ) in the output space that maximizes

the underlying true, data-generating distribution log p(Y ). Equivalently, the denoising

autoencoder captures the score (the derivative of log density with respect to input). Ad-

ditionally, [Alain and Bengio, 2012] showed that novel samples can be generated on ar-

tificial datasets by using the denoising autoencoder as a score estimator for Metropolis-

Hastings MCMC accept/reject decision. [Bengio et al., 2013] has generalized the obser-

vation made by [Alain and Bengio, 2012] for any data, by showing that we can recover

a consistent estimator of p(Y ) through a pseudo-Gibbs Markov chain that alternates

between sampling from p(Y |Ỹ ) (denoising autoencoder) and sampling from C(Ỹ |Y )

(corruption function) for several iterations. Using this pseudo-Gibbs Markov chain we

can generate novel sequence samples from a denoising autoencoder. While [Bengio

et al., 2013] have presented a general framework for using denoising autoencoders as

generative models of data, they empirically validated it on artificial datasets and MNIST

digits [LeCun et al., 1998].
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2.3 Latent-variable models of sequences

One popular approach for building a generative model of data is to introduce a latent

variable Z that aims to capture dependencies among the outputs inside the compact

representation. In case of sequences, this latent-variable model can be straightforwardly

extended by introducing the set of latent variablesZ = (z1, z2, ..., zT ) that aim to capture

dependencies among the outputs of the sequence Y at each timestep t. The likelihood

of the sequence becomes

p(Y |X) =
T∏
t=1

∫
Zt

p(Yt|Xt, Zt)p(Zt|Z<t)dZt (2.1)

Under the first-order Markov assumption, where latent variable at each timestep only

depends on the latent variable at the previous timestep the likelihood objective in Eq. 2.1

decomposes into

p(Y |X) =
T∏
t=1

∫
Zt

p(Yt|Xt, Zt)p(Zt|Zt−1)dZt (2.2)

Hidden Markov Model (HMM) [Rabiner and Juang, 1986] and linear-Gaussian state-

space models [Kalman, 1960,Schweppe, 1965] are the well-known latent variable mod-

els of sequence that assume the described first-order Markov property. The difference

between these two models lies in that the linear-Gaussian state-space model has contin-

uous latent variables, whereas HMMs have discrete latent variables.

Learning the parameters θ of the latent-variable model requires maximizing the like-

lihood in Eq. 2.2. However, directly maximizing this likelihood is difficult since it re-

quires marginalizing latent variables at each timestep. Instead we simplify this problem
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by first defining the lower bound F (Q) of the log-likelihood log p(Y |X) in Eq. 2.2.

log p(Y |X) = log
T∑
t=1

∫
Zt

p(Yt|Xt, Zt)p(Zt|Zt−1)dZt = log
T∑
t=1

∫
Zt

p(Xt, Yt, Zt)dZt =

log
T∑
t=1

∫
Zt

Q(Zt)
p(Xt, Yt, Zt)

Q(Zt)
dZt ≥

T∑
t=1

∫
Zt

Q(Zt) log
p(Xt, Yt, Zt)

Q(Zt)
=

T∑
t=1

∫
Zt

Q(Zt) logP (Xt, Yt, Zt)dZt − log
T∑
t=1

∫
Zt

Q(Zt) logQ(Zt)dZt = F (Q) (2.3)

The inequality is known as the Jensen’s inequality and follows from the fact that log

function is concave. Q(Zt) is defined as an approximate of the true posterior P (Zt|Xt).

The lower bound F (Q) is maximized by alternating between

• Updating the approximate posterior Q(Zt) while keeping parameters θ fixed;

• Updating the parameters θ while keeping approximate posterior fixed Q(Zt);

which is known as the EM (Expectation-Maximization) algorithm [Dempster et al.,

1977]. The EM algorithm has been proposed several times before it was given its

name by [Dempster et al., 1977]. One particular instance of it is the Baum-Welch

algorithm, which was originally proposed to train HMMs. Baum-Welch algorithm re-

cursively computes the probabilities αi(t) and βi(t) using forward-backward procedure.

αi(t) represents a joint probability p(X1, X2, ...Xt, Yt = i) of input X1, X2, ..., Xt and

latent Yt = i. βi(t) represents a joint probability p(Xt+1, Xt+2, ...XT , Yt = i) of input

Xt+1, Xt+2, ..., XT and latent Yt = i. Given those forward and backward probabilities

the Baum-Welch algorithm updates the approximate posterior. Generation in HMMs,

i.e. finding the most likely sequence Ŷ = arg maxY log p(Y |X), is done approximately

using a dynamic programming approach named Viterbi decoding [Viterbi, 1967].

Although latent-variable models of sequences, in particular Kalman filter [Kalman,
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1960] and HMMs, have been successfully applied to navigation, control of satellites,

numerous problems in NLP [Brown et al., 1993] and speech processing [Jelinek et al.,

1975], these models suffer from several limitations. The linear relationship between

latent variables and observations in linear-Gaussian state-space models makes it not well

suited for many real-world applications where the dynamics are nonlinear. HMMs, on

the other hand, require exponential growth in the number of discrete latent variables to

model the higher-order dynamics of the sequence. Finally, under the first-order Markov

assumption, the future predictions are only dependent on most recent observations that

make these models unsuitable to sequences with long-term dependencies.

Recent latent-variable models focus on maximizing the lower bound in Eq. 2.3

in an end-to-end manner. The approximate posterior Q(Zt) is predicted by an infer-

ence network and is shared (i.e., amortized) across the dataset [Kingma and Welling,

2014, Rezende et al., 2014]. We refer the readers to [Kingma, 2017], which covers the

recent foundational advances in amortized latent-variable models. [Kim et al., 2018]

gives an overview of applications of amortized latent-variable models to natural lan-

guage processing.

2.4 Autoregressive sequence models

Autoregressive sequence models directly decompose the distribution p(Y |X) as a

product of conditionally dependent per step distributions p(yt|y<t, x). Unlike latent

variable models, there are no additional variables introduced into the model. This de-

composition results in the likelihood in the form of:

p(y|x) =
T∏
t=1

p(yt|y<t, x) (2.4)
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Unlike latent-variable sequence models, the likelihood objective in Eq. 2.4 can be maxi-

mized directly without requiring expensive marginalization term. Similar to latent vari-

able models, generation is done via ancestral sampling, i.e. by generating each output

variable yt sequentially at each timestep t.

A classical example of the autoregressive model of sequences is an n-gram model

[Shannon, 1948, Brown et al., 1992, Kneser and Ney, 1993, Niesler et al., 1998]. The

n-gram model assumes the n-th order Markov property, where each output variable yt is

only conditioned on the previous n− 1 output variables (yt−n, yt−n+1, ..., yt−1). Using

the definition of conditional probability, the likelihood in Eq 2.4 becomes

p(y|x) =
T∏
t=1

p(yt|yt−n, yt−n+1, ..., yt−1, x) =
p(yt−n, yt−n+1, ..., yt−1, yt, x)

p(yt−n, yt−n+1, ..., yt−1, x)
(2.5)

The numerator in Eq 2.5 is computed by counting the number of occurrences of

(yt−n, yt−n+1, ..., yt−1, yt, x) in the training corpus. The denominator is computed by

summing the occurrences of (yt−n, yt−n+1, ..., yt−1, yt = v, x) in the training corpus for

each symbol v in the vocabulary V . Due to the counting procedure, if the n-gram in

the numerator is not found in the training set, the conditional probability p(y|x) be-

comes equal to 0. To avoid assigning zero probability to sequences never observed in

the training set, variety of smoothing [Chen and Goodman, 1996] and back-off [Katz,

1987, Kneser and Ney, 1995] techniques are used. When using add-α smoothing in an

n-gram model, a small constant α is added to the numerator and constant α|V | is added

to the denominator in Eq 2.5. In a back-off n-gram model, if the n-gram is not found in

the training set, it is approximated by backing off to the (n− 1)-gram model.

Although n-gram models have been successful in many applications such as machine

translation, the main limitation of the n-gram model lies in its inability to generalize to
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sentences with unseen n-grams [Bengio et al., 2003]. This limitation motivates neural

sequence models that use non-linear function approximators such as a neural network

to map the discrete symbols into the continuous space. After learning such a neural

network, the similar sequences will have similar representations in the continuous space.

The next section describes several ways of building a neural network-based non-linear

function approximator for sequence models.

2.5 Parameterization of neural sequence models

The first representative way of parametrizing neural sequence models is the neural

probabilistic language model by [Bengio et al., 2003]. The model is a two-layer feed-

forward neural network with a tanh nonlinearity. Similar to n-gram models, the neural

probabilistic language model assumes n-th order Markov property and takes a fixed

number of tokens as an input (number of tokens ≤ 10). The neural network outputs

a probability distribution for each word in the vocabulary using a softmax layer. [Ben-

gio et al., 2003] has shown that the neural probabilistic language model achieves lower

perplexity (or equivalent higher likelihood) on the test set compared to classical n-gram

models. [Schwenk and Gauvain, 2005] has further shown that the neural probabilistic

language model outperforms the n-gram language model when reranking the output can-

didates of the speech transcription system. Although the feedforward neural language

model doesn’t suffer from the generalization issue present in the classical n-gram model,

it is still limited by the n-th order Markov property.

The recurrent neural language model overcomes this limitation by conditioning the

variable at timestep t on all preceding variables in the sequence. In particular, the hid-

den layer ht of recurrent neural network at timestep t representation captures informa-
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tion from all preceding symbols (y1, y2, ..., yt−1) and the currently processed symbol yt

in the sequence. Although recurrent neural networks have been proposed in the early

1990s [Elman, 1990], training them remained challenging. [Bengio et al., 1994] has

identified vanishing and exploding gradient descent problems as challenges when train-

ing recurrent neural networks. [Mikolov et al., 2010] has successfully trained a recurrent

neural language model that outperformed the n-gram model and used a gradient clipping

technique to deal with the exploding gradient problem. Weighted temporal shortcut

connections (skip-connections through time) were shown to be effective in a recurrent

neural network to deal with the vanishing gradient problem. Famous examples of such

connections include Long short-term memory (LSTM) [Hochreiter and Schmidhuber,

1997a] with forget gates [Gers et al., 2000] and Gated recurrent unit (GRU) [Cho et al.,

2014].

Although LSTMs and GRUs have demonstrated promising results on machine trans-

lation [Sutskever et al., 2014] and speech transcription [Graves et al., 2013] tasks in the

early 2010s, the performance of these models quickly deteriorated as the target sequence

length increased (for example in Figure 2, [Bahdanau et al., 2014] showed that perfor-

mance of purely RNN based neural machine translation model deteriorates as sentence

length becomes ≥ 20). Instead of using a fixed low-dimensional vector ht that com-

presses the entire source sequence (x1, x2, ..., xT ′), [Bahdanau et al., 2014] proposed

neural attention module that attends to the hidden states of tokens in the source se-

quence. In particular, given query vector Q and key-value vector pairs (K and V ), the

neural attention module computes the output vector as a weighted sum of all value vec-

tors. The weights are computed by passing all combinations of (query, key) vector pairs

through the multi-layer perceptron and normalizing those outputs with softmax.

LSTM/GRU combination with neural attention achieved state-of-the-art results on
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variety of conditional sequence generation problems such as machine translation [Bah-

danau et al., 2014, Wu et al., 2016], parsing [Vinyals et al., 2015], text summariza-

tion [Rush et al., 2015] and others. Despite the enormous success of recurrent neural

network models with attention, the sequential nature of recurrence during forward and

backward pass prohibits the user from parallelizing computation across time. Specifi-

cally, to process the token at timestep t, the recurrent neural network needs first sequen-

tially process tokens at timesteps 1, ..., t − 1. This issue becomes more evident when

using recurrent neural networks to generate long sequences such as images pixel-by-

pixel.

To be able to parallelize computation through time, several architectures without re-

current connections have been proposed [van den Oord et al., 2016a,van den Oord et al.,

2016b, Gehring et al., 2017, Vaswani et al., 2017]. Among these, Transformer architec-

ture [Vaswani et al., 2017] that only consists of feedforward and neural attention layers

is the most impactful architecture [Devlin et al., 2019, Liu et al., 2019b, Yang et al.,

2019, Radford et al., 2019, Brown et al., 2020]. The Transformer architecture outper-

forms LSTM with neural attention across several machine translation benchmarks.

Although during training the computation can be parallelized in these architectures

through time, the decoding remains sequential. During decoding, tokens in the sequence

need to be generated one at a time before passing these generated tokens as input to

the model at the next timestep. The decoding procedure is approximate, i.e., there

is no known polynomial algorithm for solving arg maxY log p(Y |X) exactly. Among

practical approximate decoding algorithms, greedy [Germann et al., 2001] and beam-

search [Tillmann and Ney, 2003] decoding are most widely used. For sampling novel

sequences, top-k sampling [Fan et al., 2018], and nucleus sampling [Holtzman et al.,

2019] are typically used. Despite these limitations, autoregressive models with Trans-
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former architecture remain to be a first choice for building generative models of se-

quences. A recent line of work scaling these models to billions of parameters have

shown an impressive results on dialogue generation [Adiwardana et al., 2020], natural

language understanding tasks [Wang et al., 2018a,Wang et al., 2019a,Raffel et al., 2019],

machine translation [Lepikhin et al., 2020], open-ended text generation [Radford et al.,

2019, Shoeybi et al., 2019, Brown et al., 2020] and protein property prediction [Rives

et al., 2019]. It remains to been seen how far we can go performance-wise by continuing

to scale these massive autoregressive models.

2.6 Graphs as a generalized version of sequences

This section shows that the latent-variable models and autoregressive models de-

scribed in previous chapters can be adapted for the generation of graphs. Before we

describe some of the representative generative models of graphs, we will first define the

graph. The graph G is a pair of vertices V and edges E consisting of N vertices vi and

up to N×(N−1)
2

edges eij . Vertex is denoted by vi = (i, ti), where i is the unique index

assigned to it, and ti ∈ Cv is its type. Edge is denoted by eij = (vi, vj, rij), where i < j

are the indices to the incidental vertices of this edge and rij ∈ Ce is the type of this

edge. We note that graphs can be in the form of a single large graph or a collection of

small graphs. Examples of large graphs are social networks and community graphs. Ex-

amples of small graphs are molecules, computer programs, etc. In this thesis, we focus

on the latter case, where given a dataset of small graphs, we build a generative model of

graphs.

A simplest way to adapt a generative model of sequences to graphs is to apply

invertible transformation of graphs into sequences, a process known as linearization.
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Two canonical ways of linearizing the graphs are depth-first search (DFS) traversal and

breadth-first search (BFS) traversal. Some of the earlier approaches of adapting gen-

erative models of sequences to graphs include: an autoregressive LSTM with atten-

tion [Bahdanau et al., 2014] that is successful at generating the linearized version of

the parse trees obtained using depth-first search (DFS) traversal [Vinyals et al., 2015]

and the variational autoencoder (VAE)-based model [Kingma and Welling, 2014] for

generating molecules in their SMILES string representations [Gómez-Bombarelli et al.,

2016].

In addition to generating sequences, autoregressive models are a popular choice for

generating graphs. [Li et al., 2018a] proposed a deep generative model of graphs that

predicts a sequence of transformation operations to generate a graph. [You et al., 2018b]

proposed an RNN-based autoregressive generative model that generates components of

a graph in breadth-first search (BFS) ordering. Further work on applying autoregressive

modeling to graph generation has focused on speeding up autoregressive models during

decoding and scaling them to larger graphs. [Liao et al., 2019] extended autoregressive

models of graphs by adding blockwise parallel generation to speed up generation and

improve scalability. [Dai et al., 2020] proposed an autoregressive generative model of

graphs that utilizes sparsity to avoid generating the full adjacency matrix and generates

novel graphs in log-linear time complexity.

While graph generation remains an exciting research area, the field’s progress has

been limited by the available datasets. The datasets used by [You et al., 2018a, Liao

et al., 2019, Dai et al., 2019] are tiny compared to the size of the representative datasets

such as ImageNet [Deng et al., 2009a], WMT’14 English-German translation [Bojar

et al., 2014] used in computer vision and natural language processing. Datasets for

benchmarking generative models of graphs [You et al., 2018a, Liao et al., 2019, Dai
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et al., 2019] include 100 2D grid graphs, 918 protein graphs, 3D point cloud graphs

of 41 household objects, and 100 random lobster graphs. That’s why in this thesis, we

focus on molecular generation, which, unlike other graph datasets, have an order of

hundreds of thousands of molecules [Brown et al., 2018].
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Chapter 3

Deterministic Non-Autoregressive

Neural Sequence Modeling by Iterative

Refinement

We propose a conditional non-autoregressive neural sequence model based on itera-

tive refinement. The proposed model is designed based on the principles of latent vari-

able models and denoising autoencoders, and is generally applicable to any sequence

generation task. We extensively evaluate the proposed model on machine translation

(En↔De and En↔Ro) and image caption generation, and observe that it significantly

speeds up decoding while maintaining the generation quality comparable to the autore-

gressive counterpart.
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3.1 Introduction

Conditional neural sequence modeling has become a de facto standard in a variety

of tasks (see e.g. [Cho et al., 2015] and references therein). Much of this recent success

is built on top of autoregressive sequence models in which the probability of a target

sequence is factorized as a product of conditional probabilities of next symbols given all

the preceding ones. Despite its success, neural autoregressive modeling has its weakness

in decoding, i.e., finding the most likely sequence. Because of intractability, we must

resort to suboptimal approximate decoding, and due to its sequential nature, decoding

cannot be easily parallelized and results in a large latency (see e.g., [Cho, 2016]). This

has motivated the recent investigation into non-autoregressive neural sequence modeling

by [Gu et al., 2017] in the context of machine translation and [Oord et al., 2017] in the

context of speech synthesis.

In this chapter, we propose a non-autoregressive neural sequence model based on it-

erative refinement, which is generally applicable to any sequence generation task beyond

machine translation. The proposed model can be viewed as both a latent variable model

and a conditional denoising autoencoder. We thus propose a learning algorithm that is

hybrid of lowerbound maximization and reconstruction error minimization. We further

design an iterative inference strategy with an adaptive number of steps to minimize the

generation latency without sacrificing the generation quality.

We extensively evaluate the proposed conditional non-autoregressive sequence

model and compare it against the autoregressive counterpart, using the state-of-the-art

Transformer [Vaswani et al., 2017], on machine translation and image caption genera-

tion. In the case of machine translation, the proposed deterministic non-autoregressive

models are able to decode approximately 2−3× faster than beam search from the autore-
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gressive counterparts on both GPU and CPU, while maintaining 90-95% of translation

quality on IWSLT’16 En↔De, WMT’16 En↔Ro and WMT’14 En↔De. On image

caption generation, we observe approximately 3× and 5× faster decoding on GPU and

CPU, respectively, while maintaining 85% of caption quality.

3.2 Non-Autoregressive Sequence Models

Sequence modeling in deep learning has largely focused on autoregressive modeling.

That is, given a sequence Y = (y1, . . . , yT ), we use some form of a neural network to

parametrize the conditional distribution over each variable yt given all the preceding

variables, i.e.,

log p(yt|y<t) = fθ(y<t),

where fθ is for instance a recurrent neural network. This approach has become a de

facto standard in language modeling [Mikolov et al., 2010]. When this is conditioned

on an extra variable X , it becomes a conditional sequence model log p(Y |X) which

serves as a basis on which many recent advances in, e.g., machine translation [Bah-

danau et al., 2014, Sutskever et al., 2014, Kalchbrenner and Blunsom, 2013] and speech

recognition [Chorowski et al., 2015, Chiu et al., 2017] have been made.

Despite the recent success, autoregressive sequence modeling has a weakness due to

its nature of sequential processing. This weakness shows itself especially when we try

to decode the most likely sequence from a trained model, i.e.,

Ŷ = arg max
Y

log p(Y |X).

There is no known polynomial algorithm for solving it exactly, and practitioners have
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relied on approximate decoding algorithms (see e.g. [Cho, 2016, Hoang et al., 2017]).

Among these, beam search has become the method of choice, due to its superior perfor-

mance over greedy decoding, which however comes with a substantial computational

overhead [Cho, 2016].

As a solution to this issue of slow decoding, two recent works have attempted

non-autoregressive sequence modeling. [Gu et al., 2017] have modified the Trans-

former [Vaswani et al., 2017] for non-autoregressive machine translation, and [Oord

et al., 2017] a convolutional network [van den Oord et al., 2016a] for non-autoregressive

modeling of waveform. Non-autoregressive modeling factorizes the distribution over a

target sequence given a source into a product of conditionally independent per-step dis-

tributions:

p(Y |X) =
T∏
t=1

p(yt|X),

breaking the dependency among the target variables across time. This allows us to

trivially find the most likely target sequence by taking arg maxyt p(yt|X) for each t,

effectively bypassing the computational overhead and sub-optimality of decoding from

an autoregressive sequence model.

This desirable property of exact and parallel decoding however comes at the expense

of potential performance degradation [Kaiser and Bengio, 2016]. The potential model-

ing gap, which is the gap between the underlying, true model and the neural sequence

model, could be larger with the non-autogressive model compared to the autoregressive

one due to challenge of modeling the factorized conditional distribution above.
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3.3 Iterative Refinement for Deterministic Non-

Autoregressive Sequence Models

3.3.1 Latent variable model

Similarly to two recent works [Oord et al., 2017,Gu et al., 2017], we introduce latent

variables to implicitly capture the dependencies among target variables. We however

remove any stochastic behavior by interpreting this latent variable model, introduced

immediately below, as a process of iterative refinement.

Our goal is to capture the dependencies among target symbols y1, . . . , yT given a

source sentence X without auto-regression by introducing L intermediate random vari-

ables Y 0, . . . , Y L, where Y l = (yl1, . . . , y
l
T ), and marginalizing them out:

p(Y |X) =
∑

Y 0,...,Y L

(
T∏
t=1

p(yt|Y L, X)

)
(3.1)

(
T∏
t=1

p(yLt |Y L−1, X)

)
· · ·

(
T∏
t=1

p(y0t |X)

)
.

Each product term inside the summation is modelled by a deep neural network that

takes as input a source sentence and outputs the conditional distribution over the target

vocabulary V for each t.

Deterministic Approximation The marginalization in Eq. (3.1) is intractable. In or-

der to avoid this issue, we consider two approximation strategies; deterministic and

stochastic approximation. Without loss of generality, let us consider the case of single

intermediate latent variable, that is L = 1. In the deterministic case, we set ŷ0t to the

most likely value according to its distribution p(y0t |X), that is ŷ0t = arg maxy0t p(y
0
t |X).
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The entire lower bound can then be written as:

log p(Y |X) ≥

(
T∑
t=1

log p(yt|Ŷ L, X)

)
+ · · ·

+

(
T∑
t=1

log p(y1t |Ŷ 0, X)

)
+

(
T∑
t=1

log p(ŷ0t |X)

)
.

Stochastic Approximation In the case of stochastic approximation, we instead sam-

ple ŷ0t from the distribution p(y0t |X). This results in the unbiased estimate of the

marginal log-probability log p(Y |X). Other than the difference in whether most likely

values or samples are used, the remaining steps are identical.

Latent Variables Although the intermediate random variables could be anonymous,

we constrain them to be of the same type as the output Y is, in order to share an under-

lying neural network. This constraint allows us to view each conditional p(Y l|Ŷ l−1, X)

as a single-step of refinement of a rough target sequence Ŷ l−1. The entire chain of L

conditionals is then the L-step iterative refinement. Furthermore, sharing the parameters

across these refinement steps enables us to dynamically adapt the number of iterations

per input X . This is important as it substantially reduces the amount of time required

for decoding, as we see later in the experiments.

Training For each training pair (X, Y ∗), we first approximate the marginal log-

probability. We then minimize

JLVM(θ) = −
L+1∑
l=0

(
T∑
t=1

log pθ(y
∗
t |Ŷ l−1, X)

)
, (3.2)
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where Ŷ l−1 = (ŷl−11 , . . . , ŷl−1T ), and θ is a set of parameters. We initialize ŷ0t (t-th target

word in the first iteration) as xt′ , where t′ = (T ′/T ) · t. T ′ and T are the lengths of the

source X and target Y ∗, respectively.

3.3.2 Denoising Autoencoder

The proposed approach could instead be viewed as learning a conditional denois-

ing autoencoder which is known to capture the gradient of the log-density. That is, we

implicitly learn to find a direction ∆Y in the output space that maximizes the underly-

ing true, data-generating distribution logP (Y |X). Because the output space is discrete,

much of the theoretical analysis by [Alain and Bengio, 2012] are not strictly applica-

ble. We however find this view attractive as it serves as an alternative foundation for

designing a learning algorithm.

Training We start with a corruption process C(Y |Y ∗), which introduces noise to the

correct output Y ∗. Given the reference sequence Y ∗, we sample Ỹ ∼ C(Y |Y ∗) which

becomes as an input to each conditional in Eq. (3.1). Then, the goal of learning is to

maximize the log-probability of the original reference Y ∗ given the corrupted version.

That is, to minimize

JDAE(θ) = −
T∑
t=1

log pθ(y
∗
t |Ỹ , X). (3.3)

Once this cost JDAE is minimized, we can recursively perform the maximum-a-

posterior inference, i.e., Ŷ = arg maxY log pθ(Y |X), to find Ŷ that (approximately)

maximizes log p(Y |X).
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Corruption Process C There is little consensus on the best corruption process for

a sequence, especially of discrete tokens. In this work, we use a corruption pro-

cess proposed by [Hill et al., 2016], which has recently become more widely adopted

(see, e.g., [Artetxe et al., 2017, Lample et al., 2017]). Each y∗t in a reference target

Y ∗ = (y∗1, . . . , y
∗
T ) is corrupted with a probability β ∈ [0, 1]. If decided to corrupt, we

either (1) replace y∗t+1 with this token y∗t , (2) replace y∗t with a token uniformly selected

from a vocabulary of all unique tokens at random, or (3) swap y∗t and y∗t+1. This is done

sequentially from y∗1 until y∗T .

3.3.3 Learning

Cost function Although it is possible to train the proposed non-autoregressive se-

quence model using either of the cost functions above (JLVM or JDAE,) we propose to

stochastically mix these two cost functions. We do so by randomly replacing each term

Ŷ l−1 in Eq. (6.5) with Ỹ in Eq. (3.3):

J(θ) = −
L+1∑
l=0

(
αl

T∑
t=1

log pθ(y
∗
t |Ŷ l−1, X) (3.4)

+(1− αl)
T∑
t=1

log pθ(y
∗
t |Ỹ , X)

)
,

where Ỹ ∼ C(Y |Y ∗), and αl is a sample from a Bernoulli distribution with the proba-

bility pDAE. pDAE is a hyperparameter. As the first conditional p(Y 0|X) in Eq. (3.1) does

not take as input any target Y , we set α0 = 1 always.

Distillation [Gu et al., 2017], in the context of machine translation, and [Oord et al.,

2017], in the context of speech generation, have recently discovered that it is important

to use knowledge distillation [Hinton et al., 2015, Kim and Rush, 2016] to successfully
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train a non-autoregressive sequence model. Following [Gu et al., 2017], we also use

knowledge distillation by replacing the reference target Y ∗ of each training example

(X, Y ∗) with a target Y AR generated from a well-trained autoregressive counterpart.

Other than this replacement, the cost function in Eq (3.4) and the model architecture

remain unchanged.

Target Length Prediction One difference between the autoregressive and non-

autoregressive models is that the former naturally models the length of a target sequence

without any arbitrary upper-bound, while the latter does not. It is hence necessary to

separately model p(T |X), where T is the length of a target sequence, although during

training, we simply use the length of each reference target sequence.

3.3.4 Inference: Decoding

Inference in the proposed approach is entirely deterministic. We start

from the input X and first predict the length of the target sequence

T̂ = arg maxT log p(T |X). Then, given X and T̂ we generate the initial target

sequence by ŷ0t = arg maxyt log p(y0t |X), for t = 1, . . . , T We continue refining the

target sequence by ŷlt = arg maxyt log p(ylt|Ŷ l−1, X), for t = 1, . . . , T .

Because these conditionals, except for the initial one, are modeled by a sin-

gle, shared neural network, this refinement can be performed as many iterations as

necessary until a predefined stopping criterion is met. A criterion can be based

either on the amount of change in a target sequence after each iteration (i.e.,

D(Ŷ l−1, Ŷ l) ≤ ε), or on the amount of change in the conditional log-probabilities (i.e.,

| log p(Ŷ l−1|X)− log p(Ŷ l−1|X)| ≤ ε) or on the computational budget. In our experi-

ments, we use the first criterion and use Jaccard distance as our distance function D.
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3.4 Related Work

Non-Autoregressive Neural Machine Translation [Schwenk, 2012] proposed a

continuous-space translation model to estimate the conditional distribution over a target

phrase given a source phrase, while dropping the conditional dependencies among target

tokens. The evaluation was however limited to reranking and to short phrase pairs (up to

7 words on each side) only. [Kaiser and Bengio, 2016] investigated neural GPU [Kaiser

and Sutskever, 2015], for machine translation. They evaluated both non-autoregressive

and autoregressive approaches, and found that the non-autoregressive approach signifi-

cantly lags behind the autoregressive variants. It however differs from our approach that

each iteration does not output a refined version from the previous iteration. The recent

paper by [Gu et al., 2017] is most relevant to the proposed work. They similarly in-

troduced a sequence of discrete latent variables. They however use supervised learning

for inference, using the word alignment tool [Dyer et al., 2013]. To achieve the best

result, [Gu et al., 2017] stochastically sample the latent variables and rerank the corre-

sponding target sequences with an external, autoregressive model. This is in contrast to

the proposed approach which is fully deterministic during decoding and does not rely

on any extra reranking mechanism.

Parallel WaveNet Simultaneously with [Gu et al., 2017], [Oord et al., 2017] pre-

sented a non-autoregressive sequence model for speech generation. They use inverse

autoregressive flow IAF [Kingma et al., 2016] to map a sequence of independent ran-

dom variables to a target sequence. They apply the IAF multiple times, similarly to our

iterative refinement strategy. Their approach is however restricted to continuous target

variables, while the proposed approach in principle could be applied to both discrete and

continuous variables.
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(a) (b)

Figure 3.1: (a) BLEU scores on WMT’14 En-De w.r.t. the number of refinement steps (up to
102). The x-axis is in the logarithmic scale. (b) the decoding latencies (sec/sentence) of different
approaches on IWSLT’16 En→De. The y-axis is in the logarithmic scale.

Post-Editing for Machine Translation [Novak et al., 2016] proposed a convolutional

neural network that iteratively predicts and applies token substitutions given a trans-

lation from a phase-based translation system. Unlike their system, our approach can

edit an intermediate translation with a higher degree of freedom. QuickEdit [Grangier

and Auli, 2017] and deliberation network [Xia et al., 2017] incorporate the idea of re-

finement into neural machine translation. Both systems consist of two autoregressive

decoders. The second decoder takes into account the translation generated by the first

decoder. We extend these earlier efforts by incorporating more than one refinement steps

without necessitating extra annotations.

Infusion Training [Bordes et al., 2017] proposed an unconditional generative model

for images based on iterative refinement. At each step l of iterative refinement, the

model is trained to maximize the log-likelihood of target Y given the weighted mixture

of generated samples from the previous iteration Ŷ l−1 and a corrupted target Ỹ . That

is, the corrupted version of target is “infused” into generated samples during training.
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Figure 3.2: We compose three transformer blocks (“Encoder”, “Decoder 1” and “Decoder 2”)
to implement the proposed non-autoregressive sequence model.

In the domain of text, however, computing a weighted mixture of two sequences of

discrete tokens is not well defined, and we propose to stochastically mix denoising and

lowerbound maximization objectives.

3.5 Network Architecture

We use three transformer-based network blocks to implement our model. The first

block (“Encoder”) encodes the inputX , the second block (“Decoder 1”) models the first

conditional log p(Y 0|X), and the final block (“Decoder 2”) is shared across iterative re-

finement steps, modeling log p(Y l|Ŷ l−1, X). These blocks are depicted side-by-side

in Fig. 3.2. The encoder is identical to that from the original Transformer [Vaswani

et al., 2017]. We however use the decoders from [Gu et al., 2017] with additional posi-

tional attention and use the highway layer [Srivastava et al., 2015] instead of the residual
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IWSLT’16 En-De WMT’14 En-De
En→ De→ GPU CPU En→ De→ GPU CPU

A
R b = 1 28.64 34.11 70.3 32.2 23.77 28.15 54.0 15.8

b = 4 28.98 34.81 63.8 14.6 24.57 28.47 44.9 7.0
N

A
T FT 26.52 – – – 17.69 21.47 – –

FT+NPD 28.16 – – – 19.17 23.30 – –

O
ur

M
od

el

idec = 1 22.20 27.68 573.0 213.2 13.91 16.77 511.4 83.3
idec = 2 24.82 30.23 423.8 110.9 16.95 20.39 393.6 49.6
idec = 5 26.58 31.85 189.7 52.8 20.26 23.86 139.7 23.1
idec = 10 27.11 32.31 98.8 24.1 21.61 25.48 90.4 12.3

Adaptive 27.01 32.43 125.9 29.3 21.54 25.43 107.2 20.3

Table 3.1: Generation quality (BLEU↑) and decoding efficiency (tokens/sec↑) on IWSLT’16
En-De and WMT’14 En-De. Decoding efficiency is measured sentence-by-sentence. AR: au-
toregressive models. b: beam width. idec: the number of refinement steps taken during decoding.
Adaptive: the adaptive number of refinement steps. NAT: non-autoregressive transformer mod-
els [Gu et al., 2017]. FT: fertility. NPD reranking using 100 samples.

layer [He et al., 2016].

The original input X is padded or shortned to fit the length of the reference target

sequence before being fed to Decoder 1. At each refinement step l, Decoder 2 takes

as input the predicted target sequence Ŷ l−1 and the sequence of final activation vectors

from the previous step.

3.6 Experimental Setting

We evaluate the proposed approach on two sequence modeling tasks: machine trans-

lation and image caption generation. We compare the proposed non-autoregressive

model against the autoregressive counterpart both in terms of generation quality, mea-

sured in terms of BLEU [Papineni et al., 2002], and generation efficiency, measured in

terms of (source) tokens and images per second for translation and image captioning,

respectively.
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WMT’16 En-Ro MS COCO
En→ Ro→ GPU CPU BLEU GPU CPU

A
R b = 1 31.93 31.55 55.6 15.7 23.47 4.3 2.1

b = 4 32.40 32.06 43.3 7.3 24.78 3.6 1.0

N
A

T FT 27.29 29.06 – – – – –
FT+NPD 29.79 31.44 – – – – –

O
ur

M
od

el

idec = 1 24.45 25.73 694.2 98.6 20.12 17.1 8.9
idec = 2 27.10 28.15 332.7 62.8 20.88 12.0 5.7
idec = 5 28.86 29.72 194.4 29.0 21.12 6.2 2.8
idec = 10 29.32 30.19 93.1 14.8 21.24 2.0 1.2

Adaptive 29.66 30.30 118.3 16.5 21.12 10.8 4.8

Table 3.2: Generation quality (BLEU↑) and decoding efficiency (tokens/sec↑) for translation,
(images/sec↑) for image captioning on WMT’16 En-Ro and MSCOCO datasets. Decoding ef-
ficiency is measured sentence-by-sentence. AR: autoregressive models. b: beam width. idec:
the number of refinement steps taken during decoding. Adaptive: the adaptive number of refine-
ment steps. NAT: non-autoregressive transformer models [Gu et al., 2017]. FT: fertility. NPD
reranking using 100 samples.

Machine Translation We choose three tasks of different sizes: IWSLT’16 En↔De

(196k pairs), WMT’16 En↔Ro (610k pairs) and WMT’14 En↔De (4.5M pairs). We

tokenize each sentence using a script from Moses [Koehn et al., 2007] and segment

each word into subword units using BPE [Sennrich et al., 2016]. We use 40k tokens

from both source and target for all the tasks. For WMT’14 En-De, we use newstest-

2013 and newstest-2014 as development and test sets. For WMT’16 En-Ro, we use

newsdev-2016 and newstest-2016 as development and test sets. For IWSLT’16 En-De,

we use test2013 for validation.

We closely follow the setting by [Gu et al., 2017]. In the case of IWSLT’16 En-

De, we use the small model (dmodel = 278, dhidden = 507, pdropout = 0.1, nlayer = 5 and

nhead = 2).1 For WMT’14 En-De and WMT’16 En-Ro, we use the base transformer

by [Vaswani et al., 2017] (dmodel = 512, dhidden = 512, pdropout = 0.1, nlayer = 6 and

1Due to the space constraint, we refer readers to [Vaswani et al., 2017,Gu et al., 2017] for more details.
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nhead = 8). We use the warm-up learning rate scheduling [Vaswani et al., 2017] for

the WMT tasks, while using linear annealing (from 3 × 10−4 to 10−5) for the IWSLT

task. We do not use label smoothing nor average multiple check-pointed models. These

decisions were made based on the preliminary experiments. We train each model either

on a single P40 (WMT’14 En-De and WMT’16 En-Ro) or on a single P100 (IWSLT’16

En-De) with each minibatch consisting of approximately 2k tokens. We use four P100’s

to train non-autoregressive models on WMT’14 En-De.

Image Caption Generation: MS COCO We use MS COCO [Lin et al., 2014]. We

use the publicly available splits [Karpathy and Li, 2015], consisting of 113,287 train-

ing images, 5k validation images and 5k test images. We extract 49 512-dimensional

feature vectors for each image, using a ResNet-18 [He et al., 2016] pretrained on Im-

ageNet [Deng et al., 2009b]. The average of these vectors is copied as many times to

match the length of the target sentence (reference during training and predicted during

evaluation) to form the initial input to Decoder 1. We use the base transformer [Vaswani

et al., 2017] except that nlayer is set to 4. We train each model on a single 1080ti with

each minibatch consisting of approximately 1,024 tokens.

Target Length Prediction We formulate the target length prediction as classification,

predicting the difference between the target and source lengths for translation and the

target length for image captioning. All the hidden vectors from the nlayer layers of the

encoder are summed and fed to a softmax classifier after affine transformation. We

however do not tune the encoder’s parameters for target length prediction. We use this

length predictor only during test time. We find it important to accurately predict the

target length for good overall performance.
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Training and Inference We use Adam [Kingma and Ba, 2014] and use L = 3 in

Eq. (3.1) during training (itrain = 4 from hereon.) We use pDAE = 0.5. We use the

deterministic strategy for IWSLT’16 En-De, WMT’16 En-Ro and MS COCO, while the

stochastic strategy is used for WMT’14 En-De. These decisions were made based on

the validation set performance. After both the non-autogressive sequence model and

target length predictor are trained, we decode by first predicting the target length and

then running iterative refinement steps until the outputs of consecutive iterations are

the same (or Jaccard distance between consecutive decoded sequences is 1). To assess

the effectiveness of this adaptive scheme, we also test a fixed number of steps (idec).

In machine translation, we remove any repetition by collapsing multiple consecutive

occurrences of a token.

3.7 Results and Analysis

We make some important observations in Table 3.1 and Table 3.2. First, the gen-

eration quality improves across all the tasks as we run more refinement steps idec even

beyond that used in training (itrain = 4), which supports our interpretation as a condi-

tional denoising autoencoder in Sec. 3.3.2. To further verify this, we run decoding on

WMT’14 (both directions) up to 100 iterations. As shown in Fig. 3.1 (a), the quality

improves well beyond the number of refinement steps used during training.

Second, the generation efficiency decreases as more refinements are made. We

plot the average seconds per sentence in Fig. 3.1 (b), measured on GPU while sequen-

tially decoding one sentence at a time. As expected, decoding from the autoregressive

model linearly slows down as the sentence length grows, while decoding from the non-

autoregressive model with a fixed number of iterations has the constant complexity.
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However, the generation efficiency of non-autoregressive model decreases as more re-

finements are made. To make a smooth trade-off between the quality and speed, the

adaptive decoding scheme allows us to achieve near-best generation quality with a sig-

nificantly lower computational overhead. Moreover, the adaptive decoding scheme au-

tomatically increases the number of refinement steps as the sentence length increases,

suggesting that this scheme captures the amount of information in the input well. The

increase in latency is however less severe than that of the autoregressive model.

We also observe that the speedup in decoding is much clearer on GPU than on CPU.

This is a consequence of highly parallel computation of the proposed non-autoregressive

model, which is better suited to GPUs, showcasing the potential of using the non-

autoregressive model with a specialized hardware for parallel computation, such as

Google’s TPUs [Jouppi et al., 2017]. The results of our model decoded with adaptive

decoding scheme are comparable to the results from [Gu et al., 2017], without relying

on any external tool. On WMT’14 En-De, the proposed model outperforms the best

model from [Gu et al., 2017] by two points.

Lastly, it is encouraging to observe that the proposed non-autoregressive model

works well on image caption generation. This result confirms the generality of our

approach beyond machine translation, unlike that by [Gu et al., 2017] which was for

machine translation or by [Oord et al., 2017] which was for speech synthesis.

Ablation Study We use IWSLT’16 En-De to investigate the impact of different num-

ber of refinement steps during training (denoted as itrain) as well as probability of using

denoising autoencoder objective during training (denoted as pDAE). The results are pre-

sented in Table 3.3.

First, we observe that it is beneficial to use multiple iterations of refinement dur-
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En→De De→En
itrain pDAE distill rep no rep rep no rep

A
R b = 1 28.64 34.11

b = 4 28.98 34.81

O
ur

M
od

el
s

1 0 14.62 18.03 16.70 21.18
2 0 17.42 21.08 19.84 24.25
4 0 19.22 22.65 22.15 25.24
4 1 19.83 22.29 24.00 26.57
4 0.5 20.91 23.65 24.05 28.18
4 0.5

√
26.17 27.11 31.92 32.59

Table 3.3: Ablation study on the dev set of IWSLT’16.

ing training. By using four iterations (one step of decoder 1, followed by three steps

of decoder 2), the BLEU score improved by approximately 1.5 points in both direc-

tions. We also notice that it is necessary to use the proposed hybrid learning strat-

egy to maximize the improvement from more iterations during training (itrain = 4 vs.

itrain = 4, pDAE = 1.0 vs. itrain = 4, pDAE = 0.5.) Knowledge distillation was cru-

cial to close the gap between the proposed deterministic non-autoregressive sequence

model and its autoregressive counterpart, echoing the observations by [Gu et al., 2017]

and [Oord et al., 2017]. Finally, we see that removing repeating consecutive symbols

improves the quality of the best trained models (itrain = 4, pDAE = 0.5) by approximately

+1 BLEU. This suggests that the proposed iterative refinement is not enough to remove

repetitions on its own. Further investigation is necessary to properly tackle this issue,

which we leave as a future work.

We then compare the deterministic and stochastic approximation strategies on

IWSLT’16 En→De and WMT’14 En→De. According to the results in Table 3.4, the

stochastic strategy is crucial with a large corpus (WMT’14), while the deterministic

strategy works as well or better with a small corpus (IWSLT’16). Both of the strategies
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stochastic distill IWSLT’16 (En→) WMT’14 (En→)

23.65 7.56√
22.80 16.56

√
27.11 18.91√ √
25.39 21.22

Table 3.4: Deterministic and stochastic approximation

benefit from knowledge distillation, but the gap between the two strategies when the

dataset is large is much more apparent without knowledge distillation.

Impact of Length Prediction The quality of length prediction has an impact on the

overall translation/captioning performance. When using the reference target length (dur-

ing inference), we consistently observed approximately 1 BLEU score improvement

over reported results in the tables and figures across different datasets in the chapter (see

Table 3.5 for more detailed comparison).

We additionally compared our length prediction model with a simple baseline that

uses length statistics of the corresponding training dataset (a non-parametric approach).

To predict the target length for a source sentence with length Ls, we take the average

length of all the target sentences coupled with the sources sentences of length Ls in the

training set. Compared to this approach, our length prediction model predicts target

length correctly twice as often (16% vs. 8%), and gives higher prediction accuracy

within five tokens (83% vs. 69%).

3.7.1 Qualitative Analysis

Machine Translation In Table 3.6, we present three sample translations and their iter-

ative refinement steps from the development set of IWSLT’16 (De→En). As expected,
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IWSLT’16 WMT’16 WMT’14
En→ →En En→ →En En→ →En

pred 27.01 32.43 29.66 30.30 21.54 25.43
ref 28.15 33.11 30.42 31.26 22.10 26.40

Table 3.5: BLEU scores on each dataset when using reference length (ref) and predicted target
length (pred).

the sequence generated from the first iteration is a rough version of translation and is

iteratively refined over multiple steps. By inspecting the underlined sub-sequences, we

see that each iteration does not monotonically improve the translation, but overall mod-

ifies the translation towards the reference sentence. Missing words are added, while

unnecessary words are dropped. For instance, see the second example. The second

iteration removes the unnecessary “were”, and the fourth iteration inserts a new word

“mostly”. The phrase “at the time” is gradually added one word at a time.

Image Caption Generation Table 3.7 and Table 3.8 shows two examples of image

caption generation. We observe that each iteration captures more and more details of

the input image. In the first example (left), the bus was described only as a “yellow bus”

in the first iteration, but the subsequent iterations refine it into “yellow and black bus”.

Similarly, “road” is refined into “lot”. We notice this behavior in the second example

(right) as well. The first iteration does not specify the place in which “a woman” is

“standing on”, which is fixed immediately in the second iteration: “standing on a tennis

court”. In the final and fourth iteration, the proposed model captures the fact that the

“woman” is “holding” a racquet.

38



3.8 Conclusion

Following on the exciting, recent success of non-autoregressive neural sequence

modeling by [Gu et al., 2017] and [Oord et al., 2017], we proposed a deterministic

non-autoregressive neural sequence model based on the idea of iterative refinement. We

designed a learning algorithm specialized to the proposed approach by interpreting the

entire model as a latent variable model and each refinement step as denoising.

We implemented our approach using the Transformer and evaluated it on two tasks:

machine translation and image caption generation. On both tasks, we were able to show

that the proposed non-autoregressive model performs closely to the autoregressive coun-

terpart with significant speedup in decoding. Qualitative analysis revealed that the iter-

ative refinement indeed refines a target sequence gradually over multiple steps.

3.9 Since the chapter release

Since the release of the chapter in 2018, many different non-autoregressive sequence

generation approaches have been released. Among these, the sequence generation by

iterative refinement using the conditional masked language model [Devlin et al., 2019]

has superseded our work. [Ghazvininejad et al., 2019] proposed conditional masked lan-

guage models for non-autoregressive machine translation, reaching 95% of autoregres-

sive performance with as low as 10 iterations. The performance gap between autoregres-

sive and non-autoregressive models by iterative refinement was bridged in the follow-up

paper [Ghazvininejad et al., 2020]. [Ghazvininejad et al., 2020] passed the intermediate

model’s predictions as an input to the next refinement step, which was also used in our

work. Apart from machine translation, [Wang and Cho, 2019] and [Lawrence et al.,

2019] proposed iterative generation using masked language models for open-ended text
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generation and conversational modeling respectively. We further discuss various ways

of generating sequences using masked language models by formulating the generalized

sequence generation framework discussed in Chapter 4 of this thesis.

Other notable non-autoregressive sequence generation approaches include continu-

ous latent-variable models [Shu et al., 2019, Ma et al., 2019, Lee et al., 2020b], latent-

alignment model [Saharia et al., 2020] based on CTC [Graves et al., 2006] and energy-

based models [Tu et al., 2020, Lee et al., 2020a]. We believe that non-autoregressive

sequence generation will remain an exciting avenue of research with many more ap-

proaches proposed after this thesis.
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Src seitdem habe ich sieben Häuser in der Nachbarschaft mit den Lichtern versorgt
und sie funktionierenen wirklich gut .

Iter 1 and I ’ve been seven homes since in neighborhood with the lights and they ’re really functional .
Iter 2 and I ’ve been seven homes in the neighborhood with the lights , and they ’re a really functional .
Iter 4 and I ’ve been seven homes in neighborhood with the lights , and they ’re a really functional .
Iter 8 and I ’ve been providing seven homes in the neighborhood with the lights

and they ’re a really functional .
Iter 20 and I ’ve been providing seven homes in the neighborhood with the lights ,

and they ’re a very good functional .
Ref since now , I ’ve set up seven homes around my community , and they ’re really working .

Src er sah sehr glücklich aus , was damals ziemlich ungewöhnlich war ,
da ihn die Nachrichten meistens deprimierten .

Iter 1 he looked very happy , which was pretty unusual the ,
because the news was were usually depressing .

Iter 2 he looked very happy , which was pretty unusual at the ,
because the news was s depressing .

Iter 4 he looked very happy , which was pretty unusual at the ,
because news was mostly depressing .

Iter 8 he looked very happy , which was pretty unusual at the time
because the news was mostly depressing .

Iter 20 he looked very happy , which was pretty unusual at the time ,
because the news was mostly depressing .

Ref there was a big smile on his face which was unusual then ,
because the news mostly depressed him .

Src furchtlos zu sein heißt für mich , heute ehrlich zu sein .
Iter 1 to be , for me , to be honest today .
Iter 2 to be fearless , me , is to be honest today .
Iter 4 to be fearless for me , is to be honest today .
Iter 8 to be fearless for me , me to be honest today .
Iter 20 to be fearless for me , is to be honest today .
Ref so today , for me , being fearless means being honest .

Table 3.6: Three sample De→En translations from the non-autoregressive sequence model.
Source sentences are from the dev set of IWSLT’16. The first iteration corresponds to Decoder
1, and from thereon, Decoder 2 is repeatedly applied. Sub-sequences with changes across the
refinement steps are underlined.
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Generated Caption

Iter 1 a yellow bus parked on parked in of parking road .
Iter 2 a yellow and black on parked in a parking lot .
Iter 3 a yellow and black bus parked in a parking lot .
Iter 4 a yellow and black bus parked in a parking lot .

Reference Captions

a tour bus is parked on the curb waiting
city bus parked on side of hotel in the rain .
bus parked under an awning next to brick sidewalk
a bus is parked on the curb in front of a building .
a double decked bus sits parked under an awning

Table 3.7: Sample image caption from the proposed non-autoregressive sequence model. The
image is from the development set of MS COCO. The first iteration is from decoder 1, while the
subsequent ones are from decoder 2. Subsequences with changes across the refinement steps are
underlined.
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Generated Caption

Iter 1 a woman standing on playing tennis on a tennis racquet .
Iter 2 a woman standing on a tennis court a tennis racquet .
Iter 3 a woman standing on a tennis court a a racquet .
Iter 4 a woman standing on a tennis court holding a racquet .

Reference Captions

a female tennis player in a black top playing tennis
a woman standing on a tennis court holding a racquet .
a female tennis player preparing to serve the ball .
a woman is holding a tennis racket on a court
a woman getting ready to reach for a tennis ball on the ground

Table 3.8: Sample image caption from the proposed non-autoregressive sequence model. The
image is from the development set of MS COCO. The first iteration is from decoder 1, while the
subsequent ones are from decoder 2. Subsequences with changes across the refinement steps are
underlined.
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Chapter 4

A Generalized Framework of Sequence

Generation with Application to

Undirected Sequence Models

Undirected neural sequence models such as BERT [Devlin et al., 2019] have re-

ceived renewed interest due to their success on discriminative natural language under-

standing tasks such as question-answering and natural language inference. The prob-

lem of generating sequences directly from these models has received relatively little

attention, in part because generating from undirected models departs significantly from

conventional monotonic generation in directed sequence models. We investigate this

problem by proposing a generalized model of sequence generation that unifies decoding

in directed and undirected models. The proposed framework models the process of gen-

eration rather than the resulting sequence, and under this framework, we derive various

neural sequence models as special cases, such as autoregressive, semi-autoregressive,

and refinement-based non-autoregressive models. This unification enables us to adapt
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decoding algorithms originally developed for directed sequence models to undirected

sequence models. We demonstrate this by evaluating various handcrafted and learned

decoding strategies on a BERT-like machine translation model [Lample and Conneau,

2019]. The proposed approach achieves constant-time translation results on par with

linear-time translation results from the same undirected sequence model, while both are

competitive with the state-of-the-art on WMT’14 English-German translation.

4.1 Introduction

Undirected neural sequence models such as BERT [Devlin et al., 2019] have recently

brought significant improvements to a variety of discriminative language modeling tasks

such as question-answering and natural language inference. Generating sequences from

these models has received relatively little attention. Unlike directed sequence models,

each word typically depends on the full left and right context around it in undirected se-

quence models. Thus, a decoding algorithm for an undirected sequence model must

specify both how to select positions and what symbols to place in the selected po-

sitions. We formalize this process of selecting positions and replacing symbols as a

general framework of sequence generation, and unify decoding from both directed and

undirected sequence models under this framework. This framing enables us to study

generation on its own, independent from the specific parameterization of the sequence

models.

Our proposed framework casts sequence generation as a process of determining the

length of the sequence, and then repeatedly alternating between selecting sequence po-

sitions followed by generation of symbols for those positions. A variety of sequence

models can be derived under this framework by appropriately designing the length dis-

45



tribution, position selection distribution, and symbol replacement distribution. Specif-

ically, we derive popular decoding algorithms such as monotonic autoregressive, non-

autoregressive by iterative refinement, and monotonic semi-autoregressive decoding as

special cases of the proposed model.

This separation of coordinate selection and symbol replacement allows us to build a

diverse set of decoding algorithms agnostic to the parameterization or training procedure

of the underlying model. We thus fix the symbol replacement distribution as a variant of

BERT and focus on deriving novel generation procedures for undirected neural sequence

models under the proposed framework. We design a coordinate selection distribution

using a log-linear model and a learned model with a reinforcement learning objective to

demonstrate that our model generalizes various fixed-order generation strategies, while

also being capable of adapting generation order based on the content of intermediate

sequences.

We empirically validate our proposal on machine translation using a translation-

variant of BERT called a masked translation model [Lample and Conneau, 2019]. We

design several generation strategies based on features of intermediate sequence distribu-

tions and compare them against the state-of-the-art monotonic autoregressive sequence

model [Vaswani et al., 2017] on WMT’14 English-German. Our experiments show that

generation from undirected sequence models, under our framework, is competitive with

the state of the art, and that adaptive-order generation strategies generate sequences in

different ways, including left-to-right, right-to-left and mixtures of these.

Due to the flexibility in specifying a coordinate selection mechanism, we design

constant-time variants of the proposed generation strategies, closely following the ex-

perimental setup of [Ghazvininejad et al., 2019]. Our experiments reveal that we can do

constant-time translation with the budget as low as 20 iterations (equivalently, generat-
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ing a sentence of length 20 in the conventional approach) while achieving similar perfor-

mance to the state-of-the-art-monotonic autoregressive sequence model and linear-time

translation from the same masked translation model. This again confirms the potential

of the proposed framework and generation strategies.

4.2 A Generalized Framework of Sequence Generation

We propose a generalized framework of probabilistic sequence generation to unify

generation from directed and undirected neural sequence models. In this generalized

framework, we have a generation sequenceG of pairs of an intermediate sequence Y t =

(yt1, . . . , y
t
L) and the corresponding coordinate sequence Zt = (zt1, . . . , z

t
L), where V is

a vocabulary, L is a length of a sequence, T is a number of generation steps, yti ∈ V ,

and zti ∈ {0, 1}. The coordinate sequence indicates which of the current intermediate

sequence are to be replaced. That is, consecutive pairs are related to each other by

yt+1
i = (1 − zt+1

i )yti + zt+1
i ỹt+1

i , where ỹt+1
i ∈ V is a new symbol for the position

i. This sequence of pairs G describes a procedure that starts from an empty sequence

Y 1 = (〈mask〉 , . . . , 〈mask〉) and empty coordinate sequence Z1 = (0, ..., 0), iteratively

fills in tokens, and terminates after T steps with final sequence Y T . We model this

procedure probabilistically as p(G|X):

p(L|X)︸ ︷︷ ︸
(c) length predict

T∏
t=1

L∏
i=1

p(zt+1
i |Y ≤t, Zt, X)︸ ︷︷ ︸

(a) coordinate selection

p(yt+1
i |Y ≤t, X)︸ ︷︷ ︸

(b) symbol replacement

zt+1
i (4.1)

We condition the whole process on an input variable X to indicate that the proposed

model is applicable to both conditional and unconditional sequence generation. In the
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latter case, X = ∅.

We first predict the length L of a target sequence Y according to p(L|X) distri-

bution to which we refer as (c) length prediction. At each generation step t, we first

select the next coordinates Zt+1 for which the corresponding symbols will be replaced

according to p(zt+1
i |Y ≤t, Zt, X), to which we refer as (a) coordinate selection. Once

the coordinate sequence is determined, we replace the corresponding symbols accord-

ing to the distribution p(yt+1
i |Y ≤t, Zt+1, X), leading to the next intermediate sequence

Y t+1. From this sequence generation framework, we recover the sequence distribution

p(Y |X) by marginalizing out all the intermediate and coordinate sequences except for

the final sequence Y T . In the remainder of this section, we describe several special cases

of the proposed framework, which are monotonic autoregressive, non-autoregressive,

semi-autoregressive neural sequence models.

4.2.1 Special Cases

Monotonic autoregressive neural sequence models We first consider one extreme

case of the generalized sequence generation model, where we replace one symbol at

a time, monotonically moving from the left-most position to the right-most. In this

case, we define the coordinate selection distribution of the generalized sequence gen-

eration model in Eq. (4.1) (a) as p(zt+1
i+1 = 1|Y ≤t, Zt, X) = 1(zti = 1), where

1(·) is an indicator function and z11 = 1. This coordinate selection distribution is

equivalent to saying that we replace one symbol at a time, shifting from the left-

most symbol to the right-most symbol, regardless of the content of intermediate se-

quences. We then choose the symbol replacement distribution in Eq. (4.1) (b) to be

p(yt+1
i+1 |Y ≤t, X) = p(yt+1

i+1 |yt1, yt2, . . . , yti , X), for zt+1
i+1 = 1. Intuitively, we limit the de-

pendency of yt+1
i+1 only to the symbols to its left in the previous intermediate sequence
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yt<(i+1) and the input variableX . The length distribution (4.1) (c) is implicitly defined by

considering how often the special token 〈eos〉, which indicates the end of a sequence, ap-

pears after L generation steps: p(L|X) ∝
∑

y1:L−1

∏L−1
l=1 p(y

l+1
l+1 = 〈eos〉 |y≤l≤l , X). With

these choices, the proposed generalized model reduces to p(G|X) =
∏L

i=1 p(yi|y<i, X)

which is a widely-used monotonic autoregressive neural sequence model.

Non-autoregressive neural sequence modeling by iterative refinement We next

consider the other extreme in which we replace the symbols in all positions at every

single generation step, as shown in Chapter 3. We design the coordinate selection distri-

bution to be implying that we replace the symbols in all the positions. We then choose

the symbol replacement distribution to be as it was in Eq. (4.1) (b). That is, the distribu-

tion over the symbols in the position i in a new intermediate sequence yt+1
i is conditioned

on the entire current sequence Y t and the input variable X . We do not need to assume

any relationship between the number of generation steps T and the length of a sequence

L in this case. The length prediction distribution p(L|X) is estimated from training data.

Semi-autoregressive neural sequence models [Wang et al., 2018b] recently pro-

posed a compromise between autoregressive and non-autoregressive sequence models

by predicting a chunk of symbols in parallel at a time. This approach can also be put un-

der the proposed generalized model. We first extend the coordinate selection distribution

of the autoregressive sequence model into

p(zt+1
k(i+1)+j = 1|Y ≤t, Zt, X) =

=


1, if ztki+j = 1,∀j ∈ {0, 1, . . . , k}

0, otherwise,
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where k is a group size. Similarly we modify the symbol replacement distribution:

p(yt+1
k(i+1)+j|Y

≤t, X) =p(yt+1
k(i+1)+j|y

t
<k(i+1), X),

∀j ∈ {0, 1, . . . , k} ,

for zti = 1. This naturally implies that T = dL/ke.

Non-monotonic neural sequence models The proposed generalized framework sub-

sumes recently proposed variants of non-monotonic generation [Welleck et al., 2019,

Stern et al., 2019, Gu et al., 2019a]. Unlike the other special cases described above,

these non-monotonic generation approaches learn not only the symbol replacement dis-

tribution but also the coordinate selection distribution, and implicitly the length distri-

bution, from data. Because the length of a sequence is often not decided in advance, the

intermediate coordinate sequence Zt and the coordinate selection distribution are repa-

rameterized to work with relative coordinates rather than absolute coordinates. We do

not go into details of these recent algorithms, but we emphasize that all these approaches

are special cases of the proposed framework, which further suggests other variants of

non-monotonic generation.

4.3 Decoding from Masked Language Models

In this section, we give an overview of masked language models like BERT, cast

Gibbs sampling under the proposed framework, and then use this connection to design a

set of approximate, deterministic decoding algorithms for undirected sequence models.
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4.3.1 BERT as an undirected sequence model

BERT [Devlin et al., 2019] is a masked language model: It is trained to predict a

word given the word’s left and right context. Because the model gets the full context,

there are no directed dependencies among words, so the model is undirected. The word

to be predicted is masked with a special 〈mask〉 symbol and the model is trained to

predict p(yi|y<i, 〈mask〉 , y>i, X). We refer to this as the conditional BERT distribution.

This objective was interpreted as a stochastic approximation to the pseudo log-likelihood

objective [Besag, 1977] by [Wang and Cho, 2019]. This approach of full-context gen-

eration with pseudo log-likelihood maximization for recurrent networks was introduced

earlier by [Berglund et al., 2015]. More recently, [Sun et al., 2017] use it for image

caption generation.

Recent work [Wang and Cho, 2019, Ghazvininejad et al., 2019] has demonstrated

that undirected neural sequence models like BERT can learn complex sequence distri-

butions and generate well-formed sequences. In such models, it is relatively straightfor-

ward to collect unbiased samples using, for instance, Gibbs sampling. But due to high

variance of Gibbs sampling, the generated sequence is not guaranteed to be high-quality

relative to a ground-truth sequence. Finding a good sequence in a deterministic manner

is also nontrivial.

A number of papers have explored using pretrained language models like BERT

to initialize sequence generation models. [Ramachandran et al., 2017], [Song et al.,

2019], and [Lample and Conneau, 2019] use a pretrained undirected language model

to initialize a conventional monotonic autoregressive sequence model, while [Edunov

et al., 2019] use a BERT-like model to initialize the lower layers of a generator, without

finetuning. Our work differs from these in that we attempt to directly generate from the

pretrained model, rather than using it as a starting point to learn another model.
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4.3.2 Gibbs sampling in the generalized sequence generation model

Gibbs sampling: uniform coordinate selection To cast Gibbs sampling into our

framework, we first assume that the length prediction distribution P (L|X) is estimated

from training data, as is the case in the non-autoregressive neural sequence model. In

Gibbs sampling, we often uniformly select a new coordinate at random, which cor-

responds to p(zt+1
i = 1|Y ≤t, Zt, X) = 1/L with the constraint that

∑L
i=1 z

t
i = 1. By

using the conditional BERT distribution as a symbol replacement distribution, we end

up with Gibbs sampling.

Adaptive Gibbs sampling: non-uniform coordinate selection Instead of selecting

coordinates uniformly at random, we can base selections on the intermediate sequences.

We propose a log-linear model with features φi based on the intermediate and coordinate

sequences:

p(zt+1
i = 1|Y ≤t, Zt, X) ∝ exp

{
1

τ

L∑
i=1

αiφi(Y
t, Zt, X, i)

}
(4.2)

again with the constraint that
∑L

i=1 z
t
i = 1. τ > 0 is a temperature parameter

controlling the sharpness of the coordinate selection distribution. A moderately high

τ smooths the coordinate selection distribution and ensures that all the coordinates are

replaced in the infinite limit of T , making it a valid Gibbs sampler [Levine and Casella,

2006].

We investigate three features φi: (1) We compute how peaked the conditional distri-

bution of each position is given the symbols in all the other positions by measuring its

negative entropy: φnegent(Y
t, Zt, X, i) = −H(yt+1

i |yt<i, 〈mask〉 , yt>i, X). In other words,

we prefer a position i if we know the change in i has a high potential to alter the joint
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probability p(Y |X) = p(y1, y2, ..., yL|X). (2) For each position i we measure how

unlikely the current symbol (yti , not yt+1
i ) is under the new conditional distribution:

φlogp(Y
t, Zt, X, i) = − log p(yi = yti |yt<i, 〈mask〉 , yt>i, X). Intuitively, we prefer to

replace a symbol if it is highly incompatible with the input variable and all the other

symbols in the current sequence. (3) We encode a positional preference that does not

consider the content of intermediate sequences: φpos(i) = − log(|t − i| + ε), where

ε > 0 is a small constant scalar to prevent log 0. This feature encodes our preference to

generate from left to right if there is no information about the input variable nor of any

intermediate sequences.

Unlike the special cases of the proposed generalized model in §4.2, the coordinate

at each generation step is selected based on the intermediate sequences, previous coor-

dinate sequences, and the input variable. We mix the features using scalar coefficients

αnegent, αlogp and αpos, which are selected or estimated to maximize a target quality mea-

sure on the validation set.

Adaptive Gibbs sampling: learned coordinate selection We learn a coordinate se-

lection distribution that selects coordinates in order to maximize a reward function that

we specify. In this case, we refer to the coordinate selection distribution as a policy,

πθ(at|st), where a state st is (Y ≤t, Zt, X), an action at ∈ {1, . . . , L} is a coordinate,

so that Zt+1 is 1 at position at and 0 elsewhere, and πθ is parameterized using a neural

network. Beginning at a state s1 ∼ p(s1) corresponding to an input X along with an

empty coordinate and output sequence, we obtain a generation by repeatedly sampling

a coordinate at ∼ πθ(·|st) and transitioning to a new state for T steps. Each transition,

st+1 ∼ p(·|st, at), consists of generating a symbol at position at. Given a scalar reward

function r(st, at, st+1), the objective is to find a policy that maximizes expected reward,
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with the expectation taken over the distribution of generations obtained using the policy

for coordinate selection,

J(θ) = Eτ∼πθ(τ)

[
T∑
t=1

γt−1r(st, at, st+1)

]
, (4.3)

πθ(τ) = p(s1)
T∏
t=1

πθ(at|st)p(st+1|at, st), (4.4)

where τ = (s1, a1, s2, . . . , aT , sT+1), and γ ∈ [0, 1] is a discount factor (with 00 = 1).

We maximize this objective by estimating its gradient using policy gradient methods

[Williams, 1992]. We discuss our choice of reward function, policy parameterization,

and hyperparameters later in Section 4.4.

4.3.3 Optimistic decoding and beam search from a masked lan-

guage model

Based on the adaptive Gibbs sampler with the non-uniform and learned coordi-

nate selection distributions we can now design an inference procedure to approximately

find the most likely sequence arg maxY p(Y |X) from the sequence distribution by ex-

ploiting the corresponding model of sequence generation. In doing so, a naive ap-

proach is to marginalize out the generation procedure G using a Monte Carlo method:

arg maxY T
1
M

∑
Gm p(Y

T |Y m,<T , Zm,≤T , X) where Gm is the m-th sample from the

sequence generation model. This approach suffers from a high variance and non-

deterministic behavior, and is less appropriate for practical use. We instead propose

an optimistic decoding approach following equation (4.1):
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arg max
L,Y 1,...,Y T

Z1,...,ZT

log p(L|X) +
T∑
t=1

L∑
i=1

(
log p(zt+1

i |Y ≤t, Zt, X) + zt+1
i log p(yt+1

i |Y ≤t, X)
)

(4.5)

The proposed procedure is optimistic in that we consider a sequence generated by

following the most likely generation path to be highly likely under the sequence distri-

bution obtained by marginalizing out the generation path. This optimism in the criterion

more readily admits a deterministic approximation scheme such as greedy and beam

search, although it is as intractable to solve this problem as the original problem which

required marginalization of the generation path.

Length-conditioned beam search To solve this intractable optimization problem,

we design a heuristic algorithm, called length-conditioned beam search. Intu-

itively, given a length L, this algorithm performs beam search over the coordi-

nate and intermediate token sequences. At each step t of this iterative algo-

rithm, we start from the hypothesis set Ht−1 that contains K generation hypotheses:

Ht−1 =
{
ht−1k = ((Ŷ 1

k , . . . , Ŷ
t−1
k ), (Ẑ1

k , . . . , Ẑ
t−1
k ))

}K
k=1

. Each generation hypothesis

has a score:

s(ht−1k ) = log p(L|X)+
t−1∑
t′=1

L∑
i=1

(
log p(ẑt

′

i |Ŷ <t′

k , Ẑt′−1, X) + ẑt
′

i log p(ŷt
′

i |Ŷ ≤t, X)

)
.

For notational simplicity, we drop the time superscript t. Each

of the K generation hypotheses is first expanded with K ′ can-

didate positions according to the coordinate selection distribution:
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arg top-K ′u∈{1,...,L} s(hk) + log p(zk,u = 1|Ŷ <t, Ẑt−1, X)︸ ︷︷ ︸
=s(hk‖one-hot(u))

so that we have K × K ′ candidates
{
ĥk,k′

}
, where each candidate consists of a

hypothesis hk with the position sequence extended by the selected position uk,k′ and

has a score s(hk‖one-hot(uk,k′)).1 We then expand each candidate with the symbol

replacement distribution:

arg top-K ′′v∈V s(hk‖one-hot(uk,k′)) + log p(yzk,k′ = v|Ŷ ≤t, X)︸ ︷︷ ︸
=s(hk,k′‖(Ŷ

t−1
<zk,k′

,v,Ŷ t−1
>zk,k′

))

.

This results in K×K ′×K ′′ candidates
{

ˆ̂
hk,k′,k′′

}
, each consisting of hypothesis hk

with intermediate and coordinate sequence respectively extended by vk,k′,k′′ and uk,k′ .

Each hypothesis has a score s(hk,k′‖(Ŷ t−1
<zk,k′

, vk,k′,k′′ , Ŷ
t−1
>zk,k′

)),2 which we use to select

K candidates to form a new hypothesis setHt = arg top-K
h∈

{
ˆ̂
hk,k′,k′′

}
k,k′,k′′

s(h).

After iterating for a predefined number T of steps, the algorithm terminates with

the final set of K generation hypotheses. We then choose one of them according to a

prespecified criterion, such as Eq. (4.5), and return the final symbol sequence Ŷ T .

4.4 Experimental Settings

Data and preprocessing We evaluate our framework on WMT’14 English-German

translation. The dataset consists of 4.5M parallel sentence pairs. We preprocess this

1hk‖one-hot(uk,k′) appends one-hot(uk,k′) at the end of the sequence of the coordinate sequences in
hk

2hk,k′‖(Ŷ t−1
<zk,k′ , vk,k′,k′′ , Ŷ t−1

>zk,k′ ) denotes creating a new sequence from Ŷ t−1 by replacing the
zk,k′ -th symbol with vk,k′,k′′ , and appending this sequence to the intermediate sequences in hk,k′ .
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dataset by tokenizing each sentence using a script from Moses [Koehn et al., 2007] and

then segmenting each word into subword units using byte pair encoding [Sennrich et al.,

2016] with a joint vocabulary of 60k tokens. We use newstest-2013 and newstest-2014

as validation and test sets respectively.

Sequence models We base our models off those of [Lample and Conneau, 2019].

Specifically, we use a Transformer [Vaswani et al., 2017] with 1024 hidden units, 6

layers, 8 heads, and Gaussian error linear units [Hendrycks and Gimpel, 2016]. We use

a pretrained model3 trained using a masked language modeling objective [Lample and

Conneau, 2019] on 5M monolingual sentences from WMT NewsCrawl 2007-2008. To

distinguish between English and German sentences, a special language embedding is

added as an additional input to the model.

We adapt the pretrained model to translation by finetuning it with a masked trans-

lation objective [Lample and Conneau, 2019]. We concatenate parallel English and

German sentences, mask out a subset of the tokens in either the English or German sen-

tence, and predict the masked out tokens. We uniformly mask out 0 − 100% tokens as

in [Ghazvininejad et al., 2019]. Training this way more closely matches the generation

setting, where the model starts with an input sequence of all masks.

Baseline model We compare against a standard Transformer encoder-decoder autore-

gressive neural sequence model [Vaswani et al., 2017] trained for left-to-right generation

and initialized with the same model pretrained using a masked language modeling objec-

tive [Lample and Conneau, 2019, Song et al., 2019]. We train a separate autoregressive

model to translate an English sentence to a German sentence and vice versa, with the

same hyperparameters as our model.

3https://dl.fbaipublicfiles.com/XLM/mlm_ende_1024.pth
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# of length candidates
Gold 1 2 3 4

En→De 22.50 22.22 22.76 23.01 23.22
De→En 28.05 26.77 27.32 27.79 28.15

Table 4.1: Effect of the number of length candidates considered during decoding on BLEU,
measured on the validation set (newstest-2013) using the easy-first strategy.

Training details We train the models using Adam [Kingma and Ba, 2014] with an

inverse square root learning rate schedule, learning rate of 10−4, β1 = 0.9, β2 = 0.98,

and dropout rate of 0.1 [Srivastava et al., 2014]. Our models are trained on 8 GPUs with

a batch size of 256 sentences.

Handcrafted decoding strategies We design four generation strategies for the

masked translation model based on the log-linear coordinate selection distribution in

§4.2:

1. Uniform: τ → ∞, i.e., sample a position uniformly at random without replace-

ment

2. Left2Right: αnegent = 0, αlogp = 0, αpos = 1

3. Least2Most [Ghazvininejad et al., 2019]: αnegent = 0, αlogp = 1, αpos = 0

4. Easy-First: αnegent = 1, αlogp = 1,4 αpos = 0

We use beam search described in §4.3.3 with K ′ fixed to 1, i.e., we consider only

one possible position for replacing a symbol per hypothesis each time of generation.

We vary K = K ′′ between 1 (greedy) and 4. For each source sentence, we consider

four length candidates according to the length distribution estimated from the training

pairs, based on early experiments showing that using only four length candidates per-

forms as well as using the ground-truth length (see Table 4.1). Given the four candidate
4We set αlogp = 0.9 for De→En based on the validation set performance.
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translations, we choose the best one according to the pseudo log-probability of the final

sequence [Wang and Cho, 2019]. Additionally, we experimented with choosing best

translation according to log-probability of the final sequence calculated by an autore-

gressive neural sequence model.

Learned decoding strategies We train a parameterized coordinate selection policy to

maximize expected reward (Eq. 4.3). As the reward function, we use the change in edit

distance from the reference,

r(st, at, st+1) = (dedit(Y
≤t, Y )− dedit(Y

≤t+1, Y )),

where st is (Y ≤t, Zt, X). The policy is parameterized as,

πθ(at|st) = softmax
(
fθ(h1, h̄), . . . , fθ(hL, h̄)

)
,

where hi ∈ R1024 is the masked language model’s output vector for position i, and

h̄ ∈ R1024 is a history of the previous k selected positions, h̄ = 1
k

∑k
j=1(embθ(j) +hjaj).

We use a 2-layer MLP for fθ which concatenates its inputs and has hidden dimension of

size 1024.

Policies are trained with linear time decoding (T = L), with positions sampled from

the current policy, and symbols selected greedily. At each training iteration we sample

a batch of generations, add the samples to a FIFO buffer, then perform gradient updates

on batches sampled from the buffer. We use proximal policy optimization (PPO), specif-

ically the clipped surrogate objective from [Schulman et al., 2017] with a learned value

function Vθ(st) to compute advantages. This objective resulted in stable training com-

pared to initial experiments with REINFORCE [Williams, 1992]. The value function is

59



a 1-layer MLP, Vθ( 1
L

∑L
i=1(hi, h̄)).

Training hyperparameters were selected based on validation BLEU in an initial grid

search of generation batch size ∈ {4, 16} (sequences), FIFO buffer size ∈ {1k, 10k}

(timesteps), and update batch size ∈ {32, 128} (timesteps). Our final model was then

selected based on validation BLEU with a grid search on discount γ ∈ {0.1, 0.9, 0.99}

and history k ∈ {0, 20, 50} for each language pair, resulting in a discount γ of 0.9 for

both pairs, and history sizes of 0 for De→En and 50 for En→De.

Decoding scenarios We consider two decoding scenarios: linear-time and constant-

time decoding. In the linear-time scenario, the number of decoding iterations T grows

linearly w.r.t. the length of a target sequence L. We test setting T to L and 2L. In

the constant-time scenario, the number of iterations is constant w.r.t. the length of a

translation, i.e., T = O(1). At the t-th iteration of generation, we replace ot-many

symbols, where ot is either a constant dL/T e or linearly anneals from L to 1 (L → 1)

as done by [Ghazvininejad et al., 2019].

4.5 Linear-Time Decoding: Result and Analysis

Main findings We present translation quality measured by BLEU [Papineni et al.,

2002] in Table 4.2. We identify a number of important trends. (1) The deterministic

coordinate selection strategies (left2right, least2most, easy-first and learned) signifi-

cantly outperform selecting coordinates uniformly at random, by up to 3 BLEU in both

directions. Deterministic coordinate selection strategies produce generations that not

only have higher BLEU compared to uniform coordinate selection, but are also more

likely according to the model. We do so by computing the energy (negative logit) of

the sequence of intermediate sentences generated while using an algorithm, and com-
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Baseline Decoding from an undirected sequence model
b T Autoregressive Uniform Left2Right Least2Most Easy-First Learned

E
n→

D
e 1 L 25.33 21.01 24.27 23.08 23.73 24.10

4 L 26.84 22.16 25.15 23.81 24.13 24.87
4 L* – 22.74 25.66 24.42 24.69 25.28
1 2L – 21.16 24.45 23.32 23.87 24.15
4 2L – 21.99 25.14 23.81 24.14 24.86

D
e→

E
n 1 L 29.83 26.01 28.34 28.85 29.00 28.47

4 L 30.92 27.07 29.52 29.03 29.41 29.73
4 L* – 28.07 30.46 29.84 30.32 30.58
1 2L – 26.24 28.64 28.60 29.12 28.45
4 2L – 26.98 29.50 29.02 29.41 29.71

Table 4.2: Results (BLEU↑) on WMT’14 En↔De translation using various decoding algorithms
and different settings of beam search width (b) and number of iterations (T ) as a function of sen-
tence length (L). For each sentence we use 4 most likely sentence lengths. * denotes rescoring
generated hypotheses using autoregressive model instead of proposed model.

paring to the average energy of intermediate sentences generated by picking positions

uniformly at random. We plot this energy difference over decoding in Figure 4.2. We

additionally plot the evolution of energy of the sequence by different position selec-

tion algorithms throughout generation process in Figure 4.3. Overall, we find that left-

to-right, least-to-most, and easy-first do find sentences that are lower energy than the

uniform baseline over the entire decoding process. Easy-first produces sentences with

the lowest energy, followed by least-to-most, and then left-to-right. The success of

these relatively simple handcrafted and learned coordinate selection strategies suggest

avenues for further improvement for generation from undirected sequence models. (2)

The proposed beam search algorithm for undirected sequence models provides an im-

provement of about 1 BLEU over greedy search, confirming the utility of the proposed

framework as a way to move decoding techniques across different paradigms of se-

quence modeling. (3) Rescoring generated translations with an autoregressive model

adds about 1 BLEU across all coordinate selection strategies. Rescoring adds minimal
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Figure 4.1: Generation orders given by easy-first, least2most, and learned coordinate selec-
tion. We use greedy search with L iterations on the development set. We group the orders into
five clusters using and visualize cluster centers with normalized positions (x-axis) over normal-
ized generation steps (y-axis). The thickness of a line is proportional to the number of examples
in the corresponding cluster.

overhead as it is run in parallel since the left-to-right constraint is enforced by masking

out future tokens. (4) Different generation strategies result in translations of varying

qualities depending on the setting. Learned and left2right were consistently the best

performing among all generation strategies. On English-German translation, left2right

is the best performing strategy slightly outperforming the learned strategy, achieving

25.66 BLEU. On German-English translation, learned is the best performing strategy,

slightly outperforming the left2right strategy while achieving 30.58 BLEU. (5) We see

little improvement in refining a sequence beyond the first pass. (6) Lastly, the masked

translation model is competitive with the state of the art neural autoregressive model,

with a difference of less than 1 BLEU score in performance. We hypothesize that a

difference between train and test settings causes a slight performance difference of the

masked translation model compared to the conventional autoregressive model. In the

standard autoregressive case, the model is explicitly trained to generate in left-to-right

order, which matches the test time usage. By randomly selecting tokens to mask dur-
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ing training, our undirected sequence model is trained to follow all possible generation

orders and to use context from both directions, which is not available when generating

left-to-right at test time.

Adaptive generation order The least2most, easy-first, and learned generation

strategies automatically adapt the generation order based on the intermediate sequences

generated. We investigate the resulting generation orders on the development set by pre-

senting each as a 10-dim vector (downsampling as necessary), where each element cor-

responds to the selected position in the target sequence normalized by sequence length.

We cluster these sequences with k-means clustering and visualize the clusters centers as

curves with thickness proportional to the number of sequences in the cluster in Fig. 4.1.

The visualization reveals that many sequences are generated monotonically, either

left-to-right or right-to-left (see, e.g., green, purple and orange clusters in easy-first,

De→En, and orange, blue, and red clusters in learned, En→De). For the easy-first and

least2most strategies, we additionally identify clusters of sequences that are generated

from outside in (e.g., blue and red clusters in easy-first, De→En, and red and purple

clusters in least2most, En→De).

On De→En, in roughly 75% of the generations, the learned policy either gener-

ated from left-to-right (orange) or generated the final token, typically punctuation, fol-

lowed by left-to-right generation (green). In the remaining 25% of generations, the

learned policy generates with variations of an outside-in strategy (red, blue, purple). On

En→De, the learned policy has a higher rate of left-to-right generation, with roughly

85% of generations using a left-to-right variation (blue, orange). These variations are

however typically not strictly monotonic; the learned policy usually starts with the fi-

nal token, and often skips tokens in the left-to-right order before generating them at a
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later time. We hypothesize that the learned policy tends towards variations of left-to-

right since (a) left-to-right may be an easy strategy to learn, yet (b) left-to-right achieves

reasonable performance.

We present sample decoding processes on De→En with b = 1, T = L using the

easy-first decoding algorithm in Figures 4.4, 4.5, 4.6, and 4.7, and the learned decoding

algorithm in Figures 4.8, 4.9, and 4.10.

For easy-first decoding, we highlight examples decoding in right-to-left-to-right-to-

left order, outside-in, left-to-right, and right-to-left orders, which respectively corre-

spond to the orange, purple, red, and blue clusters from Figure 4.1.

For learned decoding, we highlight examples with right-to-left-to-right, outside-in,

and left-to-right orders, corresponding to the blue, red, and green clusters. The exam-

ples demonstrate the ability of the coordinate selection strategies to adapt the generation

order based on the intermediate sequences generated. Even in the cases of largely mono-

tonic generation order (left-to-right and right-to-left), each algorithm has the capacity to

make small changes to the generation order as needed.

In general, we explain the tendency towards either monotonic or outside-in gener-

ation by the availability of contextual evidence, or lack thereof. At the beginning of

generation, the only two non-mask symbols are the beginning and end of sentence sym-

bols, making it easier to predict a symbol at the beginning or end of the sentence. As

more symbols are filled near the boundaries, more evidence is accumulated for the de-

coding strategy to accurately predict symbols near the center. This process manifests

either as monotonic or outside-in generation.
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T ot Uniform Left2Right Least2Most Easy-First Hard-First Learned

10 L→ 1 22.38 22.38 27.14 22.21 26.66 12.70
10 L→ 1* 23.64 23.64 28.63 23.79 28.46 13.18
10 dL/T e 22.43 21.92 24.69 25.16 23.46 26.47

20 L→ 1 26.01 26.01 28.54 22.24 28.32 12.85
20 L→ 1* 27.28 27.28 30.13 24.55 29.82 13.19
20 dL/T e 24.69 25.94 27.01 27.49 25.56 27.82

Table 4.3: Constant-time machine translation on WMT’14 De→En with different settings of
the budget (T ) and number of tokens predicted each iteration (ot). * denotes rescoring generated
hypotheses using autoregressive model instead of proposed model.

4.6 Constant-Time Decoding: Result and Analysis

The trends in constant-time decoding noticeably differ from those in linear-time de-

coding. First, the left2right strategy performs comparably worse compared to the best

performing strategies in constant-time decoding. The performance gap is wider (up to

4.8 BLEU) with a tighter budget (T = 10). Second, the learned coordinate selection

strategy performs best when generating dL/T e symbols every iteration, despite only be-

ing trained with linear-time decoding, but performs significantly worse when annealing

the number of generated symbols from L to 1. This could be explained by the fact that

the learned policy was never trained to refine predicted symbols, which is the case in

L → 1 constant-time decoding. Third, easy-first is the second-best performing strat-

egy in the dL/T e setting, but similarly to the learned strategy it performs worse in the

L → 1 setting. This may be because in the L → 1 setting it is preferable to first gen-

erate hard-to-predict symbols and have multiple attempts at refining them, rather than

predicting hard tokens at the end of generation process and not getting an opportunity to

refine them, as is done in easy-first scenario. To verify this hypothesis, we test a hard-

first strategy where we flip the signs of the coefficients of easy-first in the log-linear

model. This new hard-first strategy works on par with least2most, again confirming

that decoding strategies must be selected based on the target tasks and decoding setting.
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With a fixed budget of T = 20, linearly annealing ot from L to 1, and least2most

decoding, constant-time translation can achieve translation quality comparable to linear-

time translation with the same model (30.13 vs. 30.58), and to beam-search translations

using the strong neural autoregressive model (30.13 vs 30.92). Even with a tighter bud-

get of 10 iterations (less than half the average sentence length), constant-time translation

loses only 1.8 BLEU points (28.63 vs. 30.58). The average length of the target sentence

in the test set is 25.

We present the comparison of the results of our approach with other constant-time

machine translation approaches in Table 4.4. Our model is the most similar to the con-

ditional model by [Ghazvininejad et al., 2019]. However, there are differences in both

model and training hyperparameters between our work and work by [Ghazvininejad

et al., 2019]. We use a smaller Transformer model with 1024 hidden units vs 2048 units

in [Ghazvininejad et al., 2019]. We also train the model with more than twice smaller

batch size since we use 8 GPUs on DGX-1 machine and [Ghazvininejad et al., 2019] use

16 GPUs on two DGX-1 machine with float16 precision. Finally, we don’t average best

5 checkpoints and don’t use label smoothing for our model. Compared to other constant-

time machine translation approaches, our model outperforms approaches by [Gu et al.,

2017, Lee et al., 2018, Wang et al., 2019b, Ma et al., 2019], while being comparable

to [Ghazvininejad et al., 2019, Chan et al., 2019, Shu et al., 2019] and slightly worse

than [Saharia et al., 2020, Ghazvininejad et al., 2020].

4.7 Conclusion

We present a generalized framework of neural sequence generation that unifies de-

coding in directed and undirected neural sequence models. Under this framework, we
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separate position selection and symbol replacement, allowing us to apply a diverse set of

generation algorithms, inspired by those for directed neural sequence models, to undi-

rected models such as BERT and its translation variant.

We evaluate these generation strategies on WMT’14 En-De machine translation us-

ing a recently proposed masked translation model. Our experiments reveal that undi-

rected neural sequence models achieve performance comparable to conventional, state-

of-the-art autoregressive models, given an appropriate choice of decoding strategy. We

further show that constant-time translation in these models performs similar to linear-

time translation by using one of the proposed generation strategies. Analysis of the

generation order automatically determined by these adaptive decoding strategies reveals

that most sequences are generated either monotonically or outside-in.

4.8 Since the chapter release

In addition to non-autoregressive machine translation papers mentioned at the end

of chapter 3, several papers investigating generation of text using the masked language

models (MLMs) have been released after our chapter. Some of these papers investigat-

ing MLMs for text generation include [Kasai et al., 2020, Liao et al., 2020, Kreutzer

et al., 2020, Shen et al., 2020]. Overall, we hope that our generalized framework opens

new avenues in developing and understanding generation algorithms beyond masked

language models for a variety of settings.

67



Figure 4.2: Average difference in energy ↑ between sequences generated by selecting positions
uniformly at random versus by different algorithms, over the course of decoding.

Figure 4.3: Evolution of the energy of the sequence ↓ over the course of decoding by different
position selection algorithms.
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WMT2014
Models EN-DE DE-EN

AR Transformer-base [Vaswani et al., 2017] 27.30 –

AR [Gu et al., 2017] 23.4 –
NAR (+Distill +FT +NPD S=100) 21.61 –

AR [Lee et al., 2018] 24.57 28.47
Adaptive NAR Model 16.56 –
Adaptive NAR Model (+Distill) 21.54 25.43

AR [Wang et al., 2019b] 27.3 31.29
NAT-REG (+Distill) 20.65 24.77
NAT-REG (+Distill +AR rescoring) 24.61 28.90

AR [Ghazvininejad et al., 2019] 27.74 31.09
CMLM with 4 iterations 22.25 –
CMLM with 4 iterations (+Distill) 25.94 29.90
CMLM with 10 iterations 24.61 –
CMLM with 10 iterations (+Distill) 27.03 30.53

AR [Chan et al., 2019] 27.80 31.20
KERMIT (+Distill) 27.80 30.70

AR [Shu et al., 2019] 26.1 –
Latent-Variable NAR 11.8 –
Latent-Variable NAR (+Distill) 22.2 –
Latent-Variable NAR (+Distill +AR Rescoring) 25.1 –

AR [Ma et al., 2019] 27.16 31.44
FlowSeq-base (+NPD n = 30) 21.15 26.04
FlowSeq-base (+Distill +NPD n = 30) 23.48 28.40

AR [Ghazvininejad et al., 2020] 27.61 31.38
SMART with 4 iterations (+Distill) 27.03 30.87
SMART with 8 iterations (+Distill) 27.65 31.27

AR [Saharia et al., 2020] 27.80 31.20
Imputer with 8 iterations (+Distill) 28.00 31.00
Imputer with 8 iterations (+Distill) 28.20 31.30

AR (ours) 26.84 30.92
Contant-time 10 iterations 21.98 27.14
Contant-time 10 iterations (+AR Rescoring) 24.53 28.63
Contant-time 20 iterations 23.92 28.54
Contant-time 20 iterations (+AR Rescoring) 25.69 30.13

Table 4.4: BLEU scores on WMT’14 En→De and De→En datasets showing performance of
various constant-time machine translation approaches. Each block shows the performance of
autoregressive model baseline with their proposed approach. AR denotes autoregressive model.
Distill denotes distillation. AR rescoring denotes rescoring of samples with autoregressive
model. FT denotes fertility. NPD denotes noisy parallel decoding followed by rescoring with
autoregressive model.
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Iteration Right-to-Left-to-Right-to-Left

(source) Würde es mir je gelingen , an der Universität Oxford ein normales Leben zu führen ?
1 ?
2 Oxford ?
3 ever Oxford ?
4 I ever Oxford ?
5 I ever of Oxford ?
6 Would I ever of Oxford ?
7 Would I ever normal of Oxford ?
8 Would I ever normal at of Oxford ?
9 Would I ever normal at the of Oxford ?

10 Would I ever normal at the University of Oxford ?
11 Would I ever normal life at the University of Oxford ?
12 Would I ever live normal life at the University of Oxford ?
13 Would I ever live a normal life at the University of Oxford ?
14 Would I ever able live a normal life at the University of Oxford ?
15 Would I ever be able live a normal life at the University of Oxford ?
16 Would I ever be able to live a normal life at the University of Oxford ?

(target) Would I ever be able to lead a normal life at Oxford ?

Figure 4.4: Example sentences generated following an right-to-left-to-right-to-left generation
order, using the easy-first decoding algorithm on De→En.

Iteration Outside-In

(source) Doch ohne zivilgesellschaftliche Organisationen könne eine Demokratie nicht funktionieren .
1 .
2 cannot .
3 democracy cannot .
4 without democracy cannot .
5 without democracy cannot work .
6 But without democracy cannot work .
7 But without a democracy cannot work .
8 But without society a democracy cannot work .
9 But without society , a democracy cannot work .

10 But without civil society , a democracy cannot work .
11 But without civil society organisations , a democracy cannot work .

(target) Yet without civil society organisations , a democracy cannot function .

Figure 4.5: Example sentences generated following an outside-in generation order, using the
easy-first decoding algorithm on De→En.
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Iteration Left-to-Right

(source) Denken Sie , dass die Medien zu viel vom PSG erwarten ?
1 ?
2 Do ?
3 Do you ?
4 Do you think ?
5 Do you think PS ?
6 Do you think PS @G ?
7 Do you think media PS @G ?
8 Do you think the media PS @G ?
9 Do you think the media expect PS @G ?
10 Do you think the media expect much PS @G ?
11 Do you think the media expect too much PS @G ?
12 Do you think the media expect too much of PS @G ?

(target) Do you think the media expect too much of PS @G ?

Figure 4.6: Example sentences generated following an left-to-right generation order, using the
easy-first decoding algorithm on De→En.

Iteration Right-to-Left

(source) Ein weiterer Streitpunkt : die Befugnisse der Armee .
1 .
2 army .
3 of army .
4 of the army .
5 powers of the army .
6 the powers of the army .
7 : the powers of the army .
8 point : the powers of the army .
9 contentious point : the powers of the army .

10 Another contentious point : the powers of the army .
(target) Another issue : the powers conferred on the army .

Figure 4.7: Example sentences generated following an right-to-left generation order, using the
easy-first decoding algorithm on De→En.
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Iteration Right-to-Left-to-Right

(source) Die Aktien von Flight Centre stiegen gestern um 3 Cent auf 38,20 Dollar .
1 .
2 20 .
3 38. 20 .
4 $ 38. 20 .
5 to $ 38. 20 .
6 Flight to $ 38. 20 .
7 Flight Centre to $ 38. 20 .
8 Flight Centre ’s to $ 38. 20 .
9 Flight Centre ’s shares to $ 38. 20 .

10 Flight Centre ’s shares rose to $ 38. 20 .
11 Flight Centre ’s shares rose by to $ 38. 20 .
12 Flight Centre ’s shares rose by yesterday to $ 38. 20 .
13 Flight Centre ’s shares rose by 3 yesterday to $ 38. 20 .
14 Flight Centre ’s shares rose by 3 cents yesterday to $ 38. 20 .

(target) Flight Centre shares were up 3c at $ 38.20 yesterday .

Figure 4.8: Example sentences generated following an Right-to-Left-to-Right generation order,
using the learned decoding algorithm on De→En.

Iteration Outside-In

(source) Terminal 3 wird vor allem von kleineren US-Fluggesellschaften bedient .
1 .
2 Terminal .
3 Terminal 3 .
4 Terminal 3 airlines .
5 Terminal 3 US airlines .
6 Terminal 3 smaller US airlines .
7 Terminal 3 by smaller US airlines .
8 Terminal 3 is by smaller US airlines .
9 Terminal 3 is mainly by smaller US airlines .

10 Terminal 3 is mainly served by smaller US airlines .
(target) Terminal 3 serves mainly small US airlines .

Figure 4.9: Example sentences generated following an Outside-In generation order, using the
learned decoding algorithm on De→En.
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Iteration Left-to-Right

(source) Die Gewinner des Team- und Einzelwettkampfs erhalten Preise .
1 .
2 The .
3 The winners .
4 The winners of .
5 The winners of the .
6 The winners of the team .
7 The winners of the team and .
8 The winners of the team and individual .
9 The winners of the team and individual competitions .

10 The winners of the team and individual competitions will .
11 The winners of the team and individual competitions will prizes .
12 The winners of the team and individual competitions will receive prizes .

(target) The winners of the team and individual contests receive prizes .

Figure 4.10: Example sentences generated following an left-to-right generation order, using the
learned decoding algorithm on De→En.
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Chapter 5

Masked Graph Modeling for Molecule

Generation

De novo, in-silico design of molecules is a challenging problem with applications in

drug discovery and material design. Here, we introduce a masked graph model which

learns a distribution over graphs by capturing all possible conditional distributions over

unobserved nodes and edges given observed ones. We train our masked graph model on

existing molecular graphs and then sample novel molecular graphs from it by iteratively

masking and replacing different parts of initialized graphs. We evaluate our approach

on the QM9 and ChEMBL datasets using the distribution-learning benchmark from the

GuacaMol framework. The benchmark contains five metrics: the validity, uniqueness,

novelty, KL-divergence and Fréchet ChemNet Distance scores, the last two of which

are measures of the similarity of the generated samples to the training, validation and

test distributions. We find that KL-divergence and Fréchet ChemNet Distance scores are

anti-correlated with novelty scores. By varying generation initialization and the fraction

of the graph masked and replaced at each generation step, we can increase the Fréchet
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score at the cost of novelty. In this way, we show that our model offers transparent

and tunable control of the trade-off between these metrics, a key point of control in

design applications currently lacking in other approaches to molecular graph generation.

Our model outperforms previously proposed graph-based approaches and is competitive

with SMILES-based approaches. Finally, we observe that minimizing validation loss on

the training task is a suitable proxy for improving generation quality, which shows the

suitability of optimizing the training objective for improving generation.

5.1 Introduction

The design of de novo molecules in-silico with desired properties is an essential

part of drug discovery and material design but remains a challenging problem due to

the very large combinatorial space of all possible synthesizable molecules [Bohacek

et al., 1996]. Recently, various deep generative models for the task of molecular graph

generation have been proposed, including: neural autoregressive models [Hochreiter

and Schmidhuber, 1997b, Vaswani et al., 2017], variational autoencoders [Kingma and

Welling, 2014, Rezende et al., 2014], adversarial autoencoders [Makhzani et al., 2015],

and generative adversarial networks [Goodfellow et al., 2014, Elton et al., 2019]. A

unifying theme behind these approaches is that they model the underlying distribution

of molecular graphs. Once the underlying distribution is captured, new molecular graphs

are sampled accordingly.

Each of these approaches makes unique assumptions about the underlying prob-

abilistic structure of a molecular graph. Autoregressive models specify an ordering

of atoms and bonds in advance to model the graph. Latent variable models such as

variational autoencoders and adversarial autoencoders assume the existence of unob-
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served (latent) variables that capture complicated dependencies among the atoms and

bonds. Unlike variational autoencoders, generative adversarial networks (GAN) do not

use KL-divergence to measure the discrepancy between the model distribution and data

distribution and instead estimate the divergence as a part of learning.

In this chapter, we propose a masked graph model, a generative model of graphs

that learns the conditional distribution of masked graph components given the rest of

the graph, induced by the underlying joint distribution. This allows us to use a proce-

dure similar to Gibbs sampling to generate new molecular graphs, as Gibbs sampling

requires access only to conditional distributions. By using conditional distributions,

we circumvent the assumptions made by previous approaches to model the uncondi-

tional distribution. Our approach is inspired by masked language models [Devlin et al.,

2019] that model the conditional distribution of masked words given the rest of a sen-

tence, which have shown to be successful in natural language understanding tasks [Wang

et al., 2018a, Wang et al., 2019a, Nogueira and Cho, 2019, Liu et al., 2019b, Lan et al.,

2020, Lample and Conneau, 2019] and text generation [Mansimov et al., 2019]. We

build a model for graphs rather than use a language model because the ability of a lan-

guage model to model molecules is limited by the string representation used [Krenn

et al., 2019]. By directly modeling molecular graphs, we bypass the need to find better

ways of serializing molecules as strings.

We evaluate our approach on two popular molecular graph datasets, QM9 [Rud-

digkeit et al., 2012, Ramakrishnan et al., 2014] and ChEMBL [Mendez et al., 2018],

using a set of five distribution-learning metrics introduced in the GuacaMol bench-

mark [Brown et al., 2018]: the validity, uniqueness, novelty, KL-divergence [Kullback

and Leibler, 1951] and Fréchet ChemNet Distance [Preuer et al., 2018] scores. After

careful analysis, we find that the validity, Fréchet ChemNet Distance and KL-divergence
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scores are highly correlated with each other and inversely correlated with the novelty

score. We show that our masked graph model offers higher flexibility than other models

by more effectively trading off the novelty for the validity, Fréchet ChemNet Distance,

and KL-divergence scores. Overall, the proposed masked graph model, trained on the

graph representations of molecules, outperforms previously proposed graph-based gen-

erative models of molecules and performs comparably to several SMILES-based mod-

els. Additionally, our model achieves comparable performance on validity, uniqueness,

and KL-divergence scores compared to state-of-the-art autoregressive SMILES-based

models, but with lower Fréchet ChemNet Distance scores.

In order to verify the effectiveness of our training strategy for generation, we calcu-

late the evaluation metrics for molecules generated from different training checkpoints,

which correspond to different validation losses. We find that in general the values of

the metrics increase as the validation loss decreases, demonstrating the suitability of the

proposed training task for generation.

5.2 Background

We frame the problem of graph generation as sampling a graph G from a distribu-

tion p?(G) defined over all possible graphs. As we do not have access to this underlying

distribution, it is typical to explicitly model p?(G) by a distribution pθ(G). This is done

using a function fθ so that pθ(G) = fθ(G). The parameters θ are learned by minimizing

the KL-divergence KL(p?‖pθ) between the true distribution and the parameterized dis-

tribution. Since we do not have access to p?(G), we approximate KL(p?‖pθ) by using

a training set D = (G1, G2, ..., GM) which consists of samples from p?. Once we have

trained our model on this distribution, we carry out generation by sampling from the
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trained model.

One powerful approach for parameterizing and sampling from such an unconditional

distribution is autoregressive modeling [Hochreiter and Schmidhuber, 1997b, Mikolov

et al., 2011, Vaswani et al., 2017, Bengio and Bengio, 1999, Larochelle and Murray,

2011]. An autoregressive model decomposes the distribution p(G) as a product of tem-

poral conditional distributions p(gt|G<t), where gt is the vertex or edge to be added to

G at time t and G<t are the vertices and edges that have been added in previous steps.

Generation from an autoregressive model is often done sequentially by ancestral sam-

pling. Defining such a distribution requires fixing an ordering of the nodes and vertices

of a graph in advance. Although directed acyclic graphs have canonical orderings based

on breadth-first search (BFS) and depth-first search (DFS), graphs can take a variety of

valid orderings. The choice of ordering is largely arbitrary, and it is hard to predict how

a particular choice of ordering will impact the learning process [Vinyals et al., 2016].

Another approach for building a generative model of graphs is to introduce a set

of latent variables Z = {z1, z2, ..., zk} that aim to capture dependencies among the

vertices V and edges E of a graph G. Unlike an autoregressive model, a latent vari-

able model does not necessarily require a predefined ordering of the graph [Shu et al.,

2019]. The generation process consists of first sampling latent variables according to

their prior distributions, followed by sampling vertices and edges conditioned on these

latent variable samples. However, learning the parameters θ of a latent variable model

is more challenging than learning the parameters of an autoregressive model. It re-

quires marginalizing latent variables to compute the marginal probability of a graph, i.e.,

p(G) =
∫
Z
p(G|Z)p(Z)dZ, which is often intractable. Recent approaches have focused

on deriving a tractable lower-bound to the marginal probability by introducing an ap-

proximate posterior distribution q(Z) and maximizing this lowerbound instead [Kingma
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and Welling, 2014, Rezende et al., 2014, Makhzani et al., 2015].

5.3 Model

In this chapter, we explore another approach to probabilistic graph generation based

on the insight that we do not need to model the joint distribution p(G) directly to be able

to sample from it. Our approach, to which we refer as masked graph modeling, instead

parameterizes and learns conditional distributions p(η|G\η) where η is a subset of the

components (nodes and edges) of G and G\η is a graph without those components (or

equivalently with those components masked out). With these conditional distributions

estimated from data, we sample a graph by iteratively updating its components. At each

generation iteration, this involves choosing a subset of components, masking them, and

sampling new values for them according to the corresponding conditional distribution.

There are two advantages to the proposed approach. First, we do not need to specify

an arbitrary order of graph components, unlike in autoregressive models. Second, learn-

ing is exact, unlike in latent variable models where it is often necessary to maximize a

tractable lowerbound instead of the exact likelihood. In the remainder of this section,

we describe in detail parameterization, learning and generation.

5.3.1 Parameterization

A masked graph model (MGM) operates on a graph G, which consists of a set of

N vertices V = {vi}Ni=1 and a set of edges E = {ei,j}Ni,j=1. A vertex is denoted by

vi = (i, ti), where i is the unique index assigned to it, and ti ∈ Cv = {1, ..., T} is its

type, with T the number of node types. An edge is denoted by ei,j = (i, j, ri,j), where

i, j are the indices to the incidental vertices of this edge and ri,j ∈ Ce = {1, ..., R} is
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the type of this edge, with R the number of edge types.

We use a single graph neural network to parameterize any conditional distribution

induced by a given graph. We assume that the missing components η of the conditional

distribution p(η|G\η) are conditionally independent of each other given G\η:

p(η|G\η) =
∏
v∈V

p(v|G\η)
∏
e∈E

p(e|G\η), (5.1)

where V and E are the sets of all vertices and all edges in η respectively.

We start by embedding the vertices and edges in the graph G\η to get continuous

representations hvi ∈ Rd0 and hei,j ∈ Rd0 respectively, where d0 is the dimensionality

of the continuous representation space [Bengio et al., 2003]. We then pass these rep-

resentations to a message passing neural network (MPNN) [Gilmer et al., 2017]. We

use an MPNN as the fundamental component of our model because of its invariance to

graph isomorphism. An MPNN layer consists of an aggregation step that aggregates

messages from each node’s neighboring nodes, followed by an update step that uses the

aggregated messages to update each node’s representation. We stack L layers on top of

each other to build an MPNN; parameters are tied across all L layers. For all except

the last layer, the updated node and edge representations output from layer l are fed into

layer l+ 1. Unlike the original version of the MPNN, we also maintain and update each

edge’s representation at each layer.

At each layer l of the MPNN, we first update the hidden state of each node vi by

computing its accumulated message u(l)vi using an aggregation function Jv and a spatial
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residual connection R between neighboring nodes:

u(l)vi = Jv(h
(l−1)
vi

, {h(l−1)vj
}j∈N(i), {h(l−1)ei,j

}j∈N(i)) +R({h(l−1)vj
}j∈N(i)),

Jv(h
(l−1)
vi

, {h(l−1)vj
}j∈N(i), {h(l−1)ei,j

}j∈N(i)) =
∑
j∈N(i)

h(l−1)ei,j
· h(l−1)vj

,

R({h(l−1)vj
}j∈N(i)) =

∑
j∈N(i)

h(l−1)vj
,

h(l)vi = LayerNorm(GRU(h(l−1)vi
, u(l)vi )),

where N(i) is the set of indices corresponding to nodes that are in the one-hop neigh-

bourhood of node vi. GRU [Cho et al., 2014] refers to a gated recurrent unit which

updates the representation of each node using its previous representation and accumu-

lated message. LayerNorm [Ba et al., 2016] refers to layer normalization.

Similarly, the hidden states of each edge hei,j are updated using the following rule

for all j ∈ N(i):

h(l)ei,j = Je(h
(l−1)
vi

+ h(l−1)vj
).

The sum of the two hidden representations of the nodes incidental to the edge is passed

through Je, a two-layer fully connected network with ReLU activation between the two

layers [Nair and Hinton, 2010, Glorot et al., 2011], to yield a new hidden edge repre-

sentation. The node and edge representations from the final layer are then processed by

a node projection layer Av : Rd0 → ΛT and an edge projection layer Ae : Rd0 → ΛR,

where ΛT and ΛR are probability simplices over node and edge types respectively. The

result are the distributions p(v|G\η) and p(e|G\η) for all v ∈ V and all e ∈ E .
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5.3.2 Learning

We use fully observed graphs from a training dataset D. We corrupt each graph G

with a corruption process C(G\η|G), i.e. G\η ∼ C(G\η|G). In this work, following

the work of [Devlin et al., 2019] for language models, we randomly replace some of

the node and edge features with the special symbol MASK. After passing G\η through

our model we obtain the conditional distribution p(η|G\η). We then maximize the log

probability log p(η|G\η) of the masked components η given the rest of the graph G\η.

This is analogous to a masked language model [Devlin et al., 2019], which predicts the

masked words given the corrupted version of a sentence. This results in the following

optimization problem:

arg max
θ

EG∼DEG\η∼C(G\η |G) log pθ(η|G\η).

5.3.3 Generation

To begin generation, we initialize a molecule in one of two ways, corresponding to

different levels of entropy. The first way, which we call training initialization, uses a

random graph from the training data as an initial graph. The second way, which we

call marginal initialization, initializes each graph component according to a categorical

distribution over the values that component takes in our training set. For example, the

probability of an edge having type r ∈ Ce is equal to the fraction of edges in the training

set of type r.

We then use an approach motivated by Gibbs sampling to update graph components

iteratively from the learned conditional distributions. At each generation step, we sam-

ple uniformly at random a fraction α of components η in the graph and replace the
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values of these components with the MASK symbol. We compute the conditional distri-

bution p(η|G\η) by passing the partially masked graph through the model, sampling new

values of the masked components according to the predicted distribution, and placing

these values in the graph. We repeat this procedure for a total of T steps, where T is a

hyperparameter.

5.4 Methods

We evaluate the proposed masked graph modeling approach for molecular graph

generation. Atoms and bonds in a molecule correspond to nodes and edges in a graph,

respectively. In this section, we outline the experimental setup used to carry out this

evaluation, including datasets, evaluation framework, model details and training and

generation procedures.

5.4.1 Datasets and Evaluation

We evaluate our approach using two widely used [Gómez-Bombarelli et al., 2016,Si-

monovsky and Komodakis, 2018, Li et al., 2018b] datasets of small molecules:

QM9 [Ruddigkeit et al., 2012,Ramakrishnan et al., 2014] and ChEMBL [Mendez et al.,

2018]. The QM9 dataset consists of approximately 132,000 molecules with a median

and maximum of 9 heavy atoms each. Each atom is of one of the following T = 5 types:

B, C, N, O, and F. Each bond is either a no-bond, single, double, triple or aromatic bond

(R = 5). The ChEMBL dataset contains approximately 1,591,000 molecules with a

median of 27 and a maximum of 88 heavy atoms each. It contains 12 types of atoms

(T = 12): B, C, N, O, F, Si, P, S, Cl, Se, Br, and I. Each bond is either a no-bond, single,

double, triple or aromatic bond (R = 5).
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The QM9 dataset is split into training and validation sets, while the ChEMBL dataset

is split into training, validation and test sets. In the remainder of this chapter, we use the

term dataset distribution to refer to the distribution of the combined training and vali-

dation sets for QM9, and the combined training, validation and test sets for ChEMBL.

Similarly, we use the term dataset molecule to refer to a molecule from the combined

QM9 or ChEMBL dataset.

To numerically evaluate our approach, we use the GuacaMol benchmark [Brown

et al., 2018], a suite of benchmarks for evaluating molecular graph generation ap-

proaches. Specifically, we evaluate our model using distribution-learning metrics from

GuacaMol: the validity, uniqueness, novelty, KL-divergence [Kullback and Leibler,

1951] and Fréchet ChemNet Distance [Preuer et al., 2018] scores. GuacaMol uses

10,000 randomly sampled molecules to calculate each of these scores. Validity mea-

sures the ratio of valid molecules, uniqueness estimates the proportion of generated

molecules that remain after removing duplicates and novelty measures the proportion of

generated molecules that are not dataset molecules. The KL-divergence score compares

the distributions of a variety of physiochemical descriptors estimated from the dataset

and a set of generated molecules. The Fréchet ChemNet Distance score [Preuer et al.,

2018] measures the proximity of the distribution of generated molecules to the distri-

bution of the dataset molecules. This proximity is measured according to the Fréchet

Distance in the hidden representation space of ChemNet, which is trained to predict the

chemical properties of small molecules [Goh et al., 2017].
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5.4.2 Property Embeddings

5.4.2.1 Node Property Embeddings

We represent each node using six node properties indexed as {κ ∈ Z : 1 ≤ κ ≤ 6},

each with its own one-hot embedding. During the forward pass, each of these embed-

dings is multiplied by a separate weight matrix Wκ ∈ RTκ×d0 , where Tκ is the number

of categories for property κ. The resulting continuous embeddings are summed together

to form an overall embedding of the node. The entries of the one-hot embeddings for

each of the properties are:

• Atom type: chemical symbol (e.g. C, N, O) of the atom;

• Number of hydrogens: number of hydrogen atoms bonded to the atom;

• Charge: net charge on the atom;

• Chirality type: unspecified, tetrahedral clockwise, tetrahedral counter-clockwise,

other;

• Is-in-ring: atom is or is not part of a ring structure;

• Is-aromatic: atom is or is not part of an aromatic ring.

Each one-hot embedding also has an additional entry corresponding to the MASK

symbol.

After processing the graph with the MPNN, we pass the representation of each node

through six separate fully-connected two-layer networks with ReLU activation between

the layers. For each node, the output of each network is a distribution over the categories

of the initial one-hot vector for one of the properties. During training, we calculate
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the cross-entropy loss between the predicted distribution and the ground-truth for all

properties that were masked out by the corruption process.

The choice of nodes for which a particular property is masked out is independent

of the choice made for all other properties. The motivation for this is to allow the

model to more easily learn relationships between different property types. The atom-

level property information that we use in our model is the same as that provided in the

SMILES string representation of a molecule.

Since the ChEMBL dataset does not contain chirality information, the chirality type

embedding is superfluous for ChEMBL.

5.4.2.2 Edge Property Embeddings

We use the same framework as described for node property embeddings. We only

use one edge property with the weight matrixW ∈ RR×d0 , whose one-hot embedding

is defined as follows:

• Bond type: no, single, double, triple or aromatic bond.

5.4.3 Model Architecture, Training and Generation

For the QM9 dataset, we use one 4-layer MPNN, with parameter sharing between

layers. For the ChEMBL dataset, we use one 6-layer MPNN with parameter sharing. We

use more layers for ChEMBL because more message passing iterations are needed to

cover a larger graph. For both datasets, we use an embedding dimensionality d0 = 2048.

We use the Adam optimizer [Kingma and Ba, 2014] with learning rate set to 0.0001,

β1 = 0.9 and β2 = 0.98. We use a batch size of 800 molecules for QM9 and 512
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molecules for ChEMBL.2 We clip the gradient for its norm to be at most 10.

During training, we uniformly at random mask each node feature (including atom

type) and edge feature (including bond type) with probability α, while randomly varying

α uniformly between 0 and 0.2. Nodes are considered as neighbors in the MPNN if they

are connected by an edge that is either masked out, or does not have bond type no-

bond. During validation, we follow the same procedure but with α fixed at 0.1, so that

we can clearly compare model checkpoints and choose the checkpoint with the lowest

validation loss for generation.

For QM9, we carry out generation experiments while using a masking rate of either

10% or 20%, corresponding to the mean and maximum masking rates during training

respectively. For ChEMBL, we use a masking rate of either 1% or 5%, as we found

that the higher masking rates led to low validity scores in our preliminary experiments.

The number of edges masked and replaced for a median ChEMBL molecule with a

1% masking rate and for a median QM9 molecule with a 10% masking rate are both

approximately 4. This indicates that the absolute number rather than portion of compo-

nents masked out directly impacts generation quality. We use the same independence

constraint during generation as we use during training when choosing which properties

to mask out for each node or edge. We vary the initialization strategy between training

and marginal initialization.

For QM9, we run 400 sampling iterations sequentially to generate a sequence of

sampled graphs. For ChEMBL, we run 300 iterations. We calculate the GuacaMol

evaluation metrics for our samples after every generation step for the first 10 steps, and

then every 10-20 steps, in order to observe how generation quality changes with the

number of generation steps.

2We perform 16 forward-backward steps with minibatches of 32 each to compute the gradient of the
minibatch of 512 molecules, in order to cope with the limited memory size on a GPU.
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5.4.4 Details of Baseline Models

We train two variants of the Transformer [Vaswani et al., 2017] architecture: Small

and Regular. Both variants of Transformer architecture are trained on the SMILES

string representation of the molecular graphs. The Transformer Regular architecture

consists of 6 layers, 8 attention heads, embedding size of 1024, hidden dimension of

1024, and dropout of 0.1. The Transformer Small architecture consists of 4 layers,

8 attention heads, embedding size of 512, hidden dimension of 512, and dropout of

0.1. Both Transformer Small and Regular are trained with a batch size of 128 until the

validation cross-entropy loss stops improving. We set the learning rate of the Adam

optimizer to 0.0001, β1 = 0.9 and β2 = 0.98. The learning rate is decayed based on the

inverse square root of the number of updates. We use the same hyperparameters for the

Transformer Small and Regular models on both QM9 and ChEMBL.

We follow the open-source implementation of the GuacaMol benchmark baselines3

for training an LSTM model on QM9. We use SMILES string representation of

molecules to train LSTM model. Specifically, we train the LSTM with 3 layers of hidden

size 1024, dropout of 0.2 and batch size of 64, using the Adam optimizer with learning

rate 0.001, β1 = 0.9 and β2 = 0.999. We do not train the rest of the baseline mod-

els ourselves. For QM9: CharacterVAE [Gómez-Bombarelli et al., 2016], Grammar-

VAE [Kusner et al., 2017], GraphVAE [Simonovsky and Komodakis, 2018], and Mol-

GAN [Cao and Kipf, 2018] results are taken from [Cao and Kipf, 2018]. For ChEMBL:

AAE [Makhzani et al., 2015], ORGAN [Guimaraes et al., 2017], Graph MCTS [Jensen,

2018], VAE, and LSTM results are taken from [Brown et al., 2018]. NAT GraphVAE

results are taken from [Kwon et al., 2019] for both QM9 and ChEMBL.
3https://github.com/BenevolentAI/guacamol_baselines
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Validity Uniqueness Novelty KL Div Fréchet Dist

Validity 1.00 -0.56 -0.83 0.73 0.75
Uniqueness -0.56 1.00 0.50 -0.32 -0.37
Novelty -0.83 0.50 1.00 -0.94 -0.95
KL Div 0.73 -0.32 -0.94 1.00 0.99
Fréchet Dist 0.75 -0.37 -0.95 0.99 1.00

Table 5.1: Spearman’s correlation coefficient between benchmark metrics for results using the
masked graph model on the QM9 dataset.

Validity Uniqueness Novelty KL Div Fréchet Dist

Validity 1.00 0.03 -0.99 0.98 0.98
Uniqueness 0.03 1.00 0.00 0.03 0.03
Novelty -0.99 0.00 1.00 -0.99 -0.99
KL Div 0.98 0.03 -0.99 1.00 1.00
Fréchet Dist 0.98 0.03 -0.99 1.00 1.00

Table 5.2: Spearman’s correlation coefficient between benchmark metrics for results using
LSTM, Transformer Small and Transformer Regular on the QM9 dataset.

5.5 Results and Discussion

5.5.1 Mutual Dependence of Metrics from GuacaMol

We first attempt to determine whether dependence exists between metrics from the

Guacamol framework. We do this because we notice that some of these metrics may

measure similar properties. For example, the Fréchet and KL scores are both measures

of similarity between generated samples and a dataset distribution. If the metrics are not

mutually independent, comparing models using a straightforward measure such as the

sum of the metrics may not be a reasonable strategy.

To determine how the five metrics are related to each other, we calculate pairwise the

Spearman (rank) correlation between all metrics on QM9, presented in Table 5.1, while

varying the masking rate, initialization strategy and number of sampling iterations. We
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carry out a similar run for the Transformer Small, Transformer Regular, and LSTM

baselines as follows. Each of these autoregressive models has a distribution output by a

softmax layer over the SMILES vocabulary at each time step. We implement a sampling

temperature parameter in this distribution to control its sharpness. By increasing the

temperature, we decrease the sharpness, which increases the novelty. The Spearman

correlation results for these baselines are shown in Table 5.2.

From Tables 5.1–5.2, we make three observations. First, the validity, KL-divergence

and Fréchet Distance scores correlate highly with each other. Second, these three met-

rics correlate negatively with the novelty score. Finally, uniqueness does not correlate

strongly with any other metric.

These observations suggest that we can look at a subset of the metrics, namely the

uniqueness, Fréchet and novelty scores, to gauge generation quality. In the next section,

we carry out experiments to determine how well MGM and baseline models perform on

the anti-correlated Fréchet and novelty scores, which are representative of four of the

five evaluation metrics. We observe how effectively each model trades these metrics off

against each other.

5.5.2 Analysis of Representative Metrics

To examine how the masked graph model and baseline autoregressive models trade

off the Fréchet ChemNet Distance and novelty scores, we plot these two metrics against

each other in Figure 5.3. To obtain the points for the masked graph models, we evaluate

the scores after various numbers of generation steps. For the QM9 MGM points, we use

both training and marginal initializations, which start from the top left and bottom right

of the graph respectively, and converge in between. For the ChEMBL MGM points, we

use only training initialization.
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Figure 5.1: QM9
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Figure 5.2: ChEMBL

Figure 5.3: Plots of the Fréchet ChemNet Distance score against novelty. The plots are gen-
erated by varying generation hyperparameters (number of generation iterations for the masked
graph models and sampling temperature for autoregressive models).

On both QM9 and ChEMBL, we see that as novelty increases, the Fréchet ChemNet

Distance score decreases for the masked graph models as well as for the LSTM and

Transformer models. We also see that the line’s slope, which represents the marginal

change in Fréchet ChemNet Distance score per unit change in novelty score, has a lower

magnitude for the masked graph model than for the autoregressive models. This shows

that our model trades off novelty for similarity to the dataset distributions (as measured

by the Fréchet score) more effectively relative to the baseline models. This gives us a

higher degree of controllability in generating samples that are optimized towards either

metric to the extent desired.

On QM9, we see that our masked graph models with a 10% or 20% masking rate

maintain a larger Fréchet ChemNet Distance score as the novelty increases, compared

to the LSTM and Transformer models. Several of the MGM points on the plot are

beyond the Pareto frontier formed by each baseline model. On ChEMBL, the LSTM

and Transformer models generally achieve a higher combination of novelty and Fréchet

ChemNet Distance score than does the masked graph model with either masking rate.
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However, to the bottom right of Figure 5.2, we can see a few points corresponding to

the 5% masking rate that are beyond the Pareto frontier of the points formed by the

Transformer Regular model.

We also observe that for ChEMBL, which contains larger molecules, using a 1%

masking rate yields points that are beyond the Pareto frontier of those obtained using

a 5% masking rate. This further indicates that masking a large number of components

hurts generation quality, even if this number represents a small percentage of the graph.

In the next section, we further explore the relationship between masking rate, initializa-

tion strategy and generation quality.

5.5.3 Effect of Generation Hyperparameters on Generation Quality

We analyze the effect of changing the masking rate and graph initialization on gen-

eration quality. In order to do so, we must choose results corresponding to a certain

number of generation steps for each combination of masking rate and initialization. We

therefore evaluate samples at intermediate steps of the generation process, as shown in

Figure 5.8, to determine how the values of the evaluation metrics change as the number

of generation steps increases.

For training initialization (Figures 5.4 and 5.6), the initialized molecules have perfect

validity, uniqueness, KL and Fréchet scores, and zero novelty score. As generation

proceeds, changes are made to the training molecules, yielding some invalid molecules,

so the validity decreases. Some of the changes yield new, valid molecules, so the novelty

increases. These molecules are less similar to the dataset distributions than the training

molecules are themselves, so the KL and Fréchet scores decrease. On the other hand,

for marginal initializations (Figures 5.5 and 5.7), the initialized molecules are less likely

to be valid or similar to the dataset molecules. The probability of obtaining duplicate
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Figure 5.4: Training initialization,
10% masking rate
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Figure 5.5: Marginal initialization,
10% masking rate
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Figure 5.6: Training initialization,
20% masking rate
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Figure 5.7: Marginal initialization,
20% masking rate

Figure 5.8: Plots of generation scores as a function of number of generation steps for each
initialization and masking rate on QM9.

molecules is low as well. Over time, the molecules converge to valid structures similar to

the dataset molecules, so the validity, KL and Fréchet scores increase. For both training

and marginal initializations, different initialized molecules may converge to the same

molecule over time, lowering uniqueness.

For all configurations and all metrics, the slope of the score with respect to the

number of generation steps tends to flatten over time. When presenting the results of

our model for different masking rates and initializations, we use the benchmark scores

at the final generation step.
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Dataset Mask Rate Graph Init Valid Uniq Novel KL Div Fréchet Dist

QM9

10% train 0.886 0.978 0.518 0.966 0.842
10% marginal 0.922 0.972 0.568 0.930 0.645
20% train 0.678 0.988 0.789 0.901 0.544
20% marginal 0.719 0.982 0.792 0.893 0.529

ChEMBL
1% train 0.849 1.000 0.722 0.987 0.845
5% train 0.558 1.000 0.952 0.869 0.396

Table 5.3: Effect of varying masking rate and graph initialization on the benchmark results for
our masked graph model on QM9 and ChEMBL.

We now use these results to analyze the effect of changing the masking rate and

graph initialization for generation in Table 5.3. On QM9, we find that using marginal

initialization leads to slightly higher validity and novelty scores however with lower

KL-divergence and Fréchet ChemNet Distance scores compared with using training

initialization. When using marginal initialization, the masked graph model generates

marginally more novel molecules at the expense of not capturing the properties of

dataset molecules as well. On ChEMBL, the marginal initialization strategy results in

validity scores close to 0, which is why we only consider the training initialization strat-

egy in Table 5.3. On both QM9 and ChEMBL, novelty increases significantly when in-

creasing the masking rate while the validity, KL-divergence and Fréchet Distance scores

drop.

Close observation of the results in Table 5.3 suggests that the choice of masking

rate and initialization strategy impacts the balance among the five metrics. Most sig-

nificantly, increasing the masking rate results in a higher novelty score, and lower KL-

divergence and Fréchet Distance scores. We can trade off between different metrics as

desired by adjusting the initialization and masking rate.
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Model Valid Uniq Novel KL Div Fréchet Dist

SM
IL

E
S

CharacterVAE 0.103 0.675 0.900 N/A N/A
GrammarVAE 0.602 0.093 0.809 N/A N/A
LSTM (ours) 0.980 0.962 0.138 0.998 0.984

Transformer Sml (ours) 0.947 0.963 0.203 0.987 0.927
Transformer Reg (ours) 0.965 0.957 0.183 0.994 0.958

G
ra

ph

GraphVAE 0.557 0.760 0.616 N/A N/A
MolGAN 0.981 0.104 0.942 N/A N/A

NAT GraphVAE 0.945 0.343 0.806 N/A N/A
MGM (ours proposed) 0.886 0.978 0.518 0.966 0.842

Table 5.4: Distributional Results on QM9. CharacterVAE [Gómez-Bombarelli et al., 2016],
GrammarVAE [Kusner et al., 2017], GraphVAE [Simonovsky and Komodakis, 2018] and Mol-
GAN [Cao and Kipf, 2018] results are taken from [Cao and Kipf, 2018]. NAT GraphVAE [Kwon
et al., 2019] stands for non-autoregressive graph VAE. Our masked graph model results corre-
spond to a 10% masking rate and training graph initialization, which has the highest geometric
mean for all five benchmarks. Values of validity(↑), uniqueness(↑), novelty(↑), KL Div(↑) and
Fréchet Dist(↑) metrics are between 0 and 1.

Model Valid Uniq Novel KL Div Fréchet Dist

SM
IL

E
S

AAE 0.822 1.000 0.998 0.886 0.529
ORGAN 0.379 0.841 0.687 0.267 0.000

VAE 0.870 0.999 0.974 0.982 0.863
LSTM 0.959 1.000 0.912 0.991 0.913

Transformer Sml (ours) 0.920 0.999 0.939 0.968 0.859
Transformer Reg (ours) 0.961 1.000 0.846 0.977 0.883

G
ra

ph

Graph MCTS 1.000 1.000 0.994 0.522 0.015
NAT GraphVAE 0.830 0.944 1.000 0.554 0.016

MGM (ours proposed) 0.849 1.000 0.722 0.987 0.845

Table 5.5: Distributional Results on ChEMBL. LSTM, Graph MCTS [Jensen, 2018],
AAE [Polykovskiy et al., 2018], ORGAN [Guimaraes et al., 2017] and VAE [Simonovsky and
Komodakis, 2018] (with a bidirectional GRU [Cho et al., 2014] as encoder and autoregressive
GRU [Cho et al., 2014] as decoder) results are taken from [Brown et al., 2018]. NAT Graph-
VAE [Kwon et al., 2019] stands for non-autoregressive graph VAE. Our masked graph model
results correspond to a 1% masking rate and training graph initialization, which has the highest
geometric mean for all five benchmarks. Values of validity(↑), uniqueness(↑), novelty(↑), KL
Div(↑) and Fréchet Dist(↑) metrics are between 0 and 1.
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5.5.4 Comparison with Baseline Models

We now compare our results on each dataset using our ‘best’ initialization strategy

to baseline models. In previous sections, we have shown that the GuacaMol benchmark

metrics are correlated and that our model can efficiently trade these metrics off against

each other. Thus we cannot say that one generation strategy definitively outperforms an-

other unless it achieves a higher score on each of the five metrics. However, for the sake

of comparison with baseline models, we pick one generation strategy as follows: we se-

lect results from Table 5.3 for each dataset corresponding to the highest geometric mean

among all five metrics. The distributional benchmark results on QM9 and ChEMBL are

shown in Table 5.4 and Table 5.5 respectively.

On QM9, our model performs comparably to existing methods. Our approach shows

higher validity and uniqueness scores compared to CharacterVAE [Gómez-Bombarelli

et al., 2016], GrammarVAE [Kusner et al., 2017], GraphVAE [Simonovsky and Ko-

modakis, 2018] and MolGAN [Cao and Kipf, 2018], while having a lower novelty

score. Our model has a lower validity and novelty score than non-autoregressive graph

VAE [Kwon et al., 2019] while having a significantly higher uniqueness score. Com-

pared to the autoregressive LSTM and Transformer models, our model has lower va-

lidity, KL-divergence and Fréchet Distance scores; however it exhibits slightly higher

uniqueness and significantly higher novelty scores. Since KL-divergence and Fréchet

scores are not available for the graph-based baselines as well as for CharacterVAE and

GrammarVAE, we compare graph-based baselines to our model using these metrics on

ChEMBL.

On ChEMBL, our approach outperforms existing graph-based methods. Com-

pared to graph MCTS [Jensen, 2018] and non-autoregressive graph VAE [Kwon et al.,

2019], our approach shows lower novelty scores while having significantly higher KL-
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divergence and Fréchet Distance scores. The baseline graph-based models do not cap-

ture the properties of the dataset distributions, as shown by their low KL-divergence

scores and almost-zero Fréchet scores. This demonstrates that our proposed approach

outperforms graph-based methods in generating novel molecules that are similar to the

dataset distributions.

The proposed masked graph model is competitive with models that rely on the

SMILES representations of molecules. It outperforms the GAN-based model (ORGAN)

across all five metrics and outperforms the adversarial autoencoder model (AAE) on all

but the uniqueness score (both have the maximum possible score) and the novelty score.

It performs comparably to the VAE model with an autoregressive GRU [Cho et al., 2014]

decoder on all metrics except novelty.

Our approach lags behind the LSTM, Transformer Small and Transformer Regular

SMILES-based models on the ChEMBL dataset. It outperforms both Transformer mod-

els on KL-divergence score but underperforms them on validity, novelty and Fréchet

score. Our approach also results in lower scores across most of the metrics when com-

pared to the LSTM model.

There are several differences between the QM9 and ChEMBL datasets that could

account for this, including number of molecules, median molecule size and presence

of chirality information. There has also been extensive work in developing language

models compared to graph neural networks, which may account for the greater success

of the LSTM and Transformers. We leave further investigation into the reasons behind

the difference in performance to future work.
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Figure 5.9: Training Initialization
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Figure 5.10: Marginal Initialization

Figure 5.11: Benchmark metric results on QM9 corresponding to our model’s checkpoints cor-
responding to different validation loss values. A masking rate of 10% was used.

5.5.5 Effect of Validation Loss on Generation Quality

To determine whether validation loss is a suitable proxy for generation quality, we

carry out generation from different training checkpoints of our ‘best’ QM9 model. Dur-

ing training, we carried out a hyperparameter search to find the configurations with the

lowest validation loss, which we used as the criterion to select the best model for gener-

ation. The experiments in this subsection explore whether this choice is justified.

Figure 5.11 shows the values of all five benchmark metrics corresponding to differ-

ent loss values (i.e., different checkpoints) of our model. In general, as the validation

loss increases, the metrics’ values decrease. We attribute the decrease in validity to the

fact that a less well-trained model is less likely to have learned enough about the rela-

tionship between different parts of a graph to predict masked components that respect

the chemical constraints inherent in this type of data. The increase in novelty and de-

crease in KL and Fréchet scores are explained by better-trained models being more likely

to predict masked components from the most similar context in the training/validation

data. Occasionally this causes our model to generate an exact copy of a molecule from

the training dataset, lowering the novelty; in general, it produces molecules whose local
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neighborhoods are similar to those of molecules in the training/validation data, thereby

increasing the KL and Fréchet scores. The sharp decrease in novelty and uniqueness as

the loss increases from 1.17 to 1.65 can be attributed to the low validity, as GuacaMol

implicitly penalizes all metrics when the validity drops below 0.5.

We conclude that selecting the model with the lowest validation loss for generation

is a reasonable strategy. This implies that using more powerful graph neural networks

within our masked graph modeling framework could improve generation quality. Find-

ing model architectures that lower the validation loss is a good direction for future work.

5.5.6 Generation Trajectories

We present a few sampling trajectories of molecules from the proposed masked

graph model in Figures 5.14–5.17. Each image represents the molecule after a cer-

tain number of sampling iterations; the first image in a figure is the molecular graph

initialization before any sampling steps are taken. Figure 5.14 shows a trajectory each

for training and marginal initializations with a 10% masking rate. Figure 5.17 shows a

trajectory each for 1% and 5% masking rates with training initialization. All molecules

displayed in the figures are valid, but molecules corresponding to some of the interme-

diate steps not shown may not be.

Figure 5.12 shows the trajectory of a molecule initialized as a molecule from the

QM9 training set. As generation progresses, minor changes are made to the molecule,

yielding novel molecules. After 100 generation steps, the molecule has converged

to another non-novel molecule. Further generation steps yield novel molecules once

again, with the molecule’s structure gradually moving further away from the initialized

molecule.

Figure 5.13 shows the trajectory of a molecule initialized from the marginal dis-
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Figure 5.12: Training initialization

Figure 5.13: Marginal initialization

Figure 5.14: Generation trajectory of a molecule each for training initialization and marginal
initialization, for QM9 with a 10 % masking rate.
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Figure 5.15: 1% masking rate

Figure 5.16: 5% masking rate

Figure 5.17: Generation trajectory of a molecule each for a 1% and 5% masking rate, for
ChEMBL with training initialization.
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tribution of the QM9 training set. The initialized graph consists of multiple disjoint

molecular fragments. Over the first three generation steps, the various nodes are con-

nected to form a connected graph. These changes are more drastic than those in the first

few steps of generation with training initialization. The molecule undergoes significant

changes over the next few steps until it forms a ring and a chiral center by the 10-th

step. The molecule then evolves slowly until it converges to a non-novel molecule by

200 steps. Further generation steps yield a series of novel molecules once again.

Figure 5.15 shows the trajectory of a ChEMBL molecule with a 1% masking rate.

In the first step, the molecule changes from one training molecule to another non-novel

molecule, following which it undergoes minor changes over the next few steps to yield

a novel molecule. Figure 5.16 shows the trajectory of a ChEMBL molecule with a 5%

masking rate. In the first step, this molecule also changes from one training molecule

to another non-novel molecule. Following this, further changes yield a novel molecule.

The molecule evolves again in further iterations, albeit forming unexpected ring struc-

tures after 300 steps.

From these observations, we see that molecules converge towards the space of

dataset molecules regardless of whether training or marginal initialization is used. This

implies that the sampler produces molecules from the distribution that it was trained on.

We also see that using a higher masking rate results in greater changes between sam-

pling iterations and molecules that are less similar to the dataset used. We hypothesize

that this is the case for two reasons. First, a greater proportion of the graph is updated

at each step. Second, the predictive distributions are formed from a graph with a greater

proportion of masked components, resulting in higher entropy.
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5.6 Related Work

In-Silico Molecular Generation Many of the previously proposed generative mod-

els of molecules focused on extending the variational autoencoder (VAE) for molecu-

lar generation. [Gómez-Bombarelli et al., 2016] proposed the first variational autoen-

coder (VAE; [Kingma and Welling, 2014]) based model for generating molecules in

their SMILES representations. To address the issue of VAEs generating syntactically

invalid SMILES strings, [Kusner et al., 2017] explicitly added the grammar of SMILES

strings to VAEs for molecule generation. [Simonovsky and Komodakis, 2018] proposed

a graph VAE to generate graph representations of molecules. [Jin et al., 2018] proposed

using a VAE to generate a junction tree followed by the generation of the molecule it-

self. [Kang and Cho, 2019] proposed a semi-supervised VAE trained on SMILES strings

that performs joint molecular property prediction and molecule generation. [Mahmood

and Hernández-Lobato, 2019] proposed a constrained optimization method in the la-

tent space of a VAE for goal-directed generation. [Kwon et al., 2019] proposed a non-

autoregressive graph variational autoencoder trained with additional learning objectives

for molecular graph generation. In addition to the previous work on extending VAEs for

molecule generation, [Wang et al., 2017a], [Guimaraes et al., 2017] and [Cao and Kipf,

2018] used a generative adversarial network (GAN; [Goodfellow et al., 2014]) to build a

generative model of small molecular graphs. Unlike most recent work that has focused

on neural network-based approaches, [Jensen, 2018] showed that genetic algorithms

based on Monte Carlo Tree Search (MCTS) could be competitive on the task of molec-

ular generation. There has been some work applying reinforcement learning objectives

to the task of molecular graph generation [You et al., 2018a, Zhou et al., 2019, Simm

et al., 2020], which is orthogonal to our model.
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Generative Models of Graphs [Li et al., 2018a] proposed a deep generative model of

graphs that predicts a sequence of transformation operations to generate a graph. [You

et al., 2018b] proposed an RNN-based autoregressive generative model that generates

components of a graph in breadth-first search (BFS) ordering. To speed up the autore-

gressive graph generation and improve scalability, [Liao et al., 2019] extended autore-

gressive models of graphs by adding blockwise parallel generation. [Dai et al., 2020]

proposed an autoregressive generative model of graphs that utilizes sparsity to avoid

generating the full adjacency matrix and generates novel graphs in log-linear time com-

plexity. [Grover et al., 2019] proposed a VAE-based iterative generative model for small

graphs. They restrict themselves to modeling only the graph structure, whereas we

consider generating a full graph including node and edge features for molecule genera-

tion. [Liu et al., 2019a] proposed a graph neural network model based on normalizing

flows for memory-efficient prediction and generation.

Masked Language Models Masked language models, such as BERT [Devlin et al.,

2019], have been shown to bring significant improvements to a variety of discriminative

language understanding tasks such as question answering [Rajpurkar et al., 2016, Ra-

jpurkar et al., 2018] and natural language inference [Bowman et al., 2015,Williams et al.,

2018]. [Wang and Cho, 2019], [Ghazvininejad et al., 2019] and [Mansimov et al., 2019]

proposed ways to generate text directly from trained masked language models. [Wang

and Cho, 2019] proposed the use of Gibbs sampling, and [Mansimov et al., 2019] pro-

posed the use of adaptive Gibbs sampling approaches for effective text generation using

masked language models. [Ghazvininejad et al., 2019] used conditional masked lan-

guage models for parallel decoding in machine translation. They first predict all target

words in parallel, and then repeatedly mask out and regenerate the subset of words that
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the model is least confident about for a fixed number of iterations. In parallel to the work

investigating masked language models for text generation, [Welleck et al., 2019], [Stern

et al., 2019] and [Gu et al., 2019a] proposed methods for non-monotonic sequential text

generation. Although these methods could be applied for generating molecular graphs

in flexible ordering, there has not been work empirically validating this. Due to the pop-

ularity of masked language models in natural language processing tasks, there has been

recent work investigating a similar approach for learning graph representations. [Hu

et al., 2019] investigated the transfer to downstream tasks of graph neural networks that

were trained to predict the masked node and edge attributes of graphs. [Maziarka et al.,

2020] proposed the molecule attention transformer architecture that was pretrained to

predict masked input nodes and investigated its transfer to downstream property pre-

diction tasks. Unlike our work, neither [Hu et al., 2019] nor [Maziarka et al., 2020]

investigated ways of generating novel molecular graphs with their trained models.

5.7 Conclusion

In this work, we propose a masked graph model for molecular graphs. We show that

we can sample novel molecular graphs from this model by iteratively sampling subsets

of graph components. Our proposed approach models the conditional distribution of

subsets of graph components given the rest of the graph, avoiding many of the previously

proposed models’ drawbacks such as expensive marginalization and fixing an ordering

of variables.

We evaluate our approach on the GuacaMol distribution-learning benchmark on the

QM9 and ChEMBL datasets. We find that the benchmark metrics are correlated with

each other, so models and generation configurations with higher validity, KL-divergence
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and Fréchet ChemNet Distance scores usually have lower novelty scores. We observe

that by varying generation hyperparameters, we can trade off these metrics more ef-

ficiently than with state-of-the-art baseline models. We show that overall our model

outperforms baseline graph-based methods. We also observe that our model is com-

parable to SMILES-based approaches on both datasets, but underperforms the LSTM,

Transformer Small and Transformer Regular SMILES-based autoregressive models on

ChEMBL. We also establish the minimization of validation loss as a reasonable objec-

tive for improving generation quality. Finally, we examine molecule trajectories and

observe convergence to molecules that are similar to those in the original datasets, indi-

cating that our sampler converges to its target distribution.

Future avenues of work include adapting our model for goal-directed molecular gen-

eration and investigating the usefulness of representations learned by our model for

downstream molecular property prediction tasks. As our approach is broadly applicable

to generic graph structures, we also leave its application to non-molecular datasets to

future work.

5.8 Since the chapter release

The chapter was released very close to the time this thesis was written. We hope that

our analysis of evaluation metrics for molecular generation and our proposed masked

graph model will help the practitioners in the future.
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Chapter 6

Molecular Geometry Prediction using a

Deep Generative Graph Neural

Network

A molecule’s geometry, also known as conformation, is one of a molecule’s most

important properties, determining the reactions it participates in, the bonds it forms,

and the interactions it has with other molecules. Conventional conformation generation

methods minimize hand-designed molecular force field energy functions that are often

not well correlated with the true energy function of a molecule observed in nature. They

generate geometrically diverse sets of conformations, some of which are very similar to

the lowest-energy conformations and others of which are very different. In this chapter,

we propose a conditional deep generative graph neural network that learns an energy

function by directly learning to generate molecular conformations that are energetically

favorable and more likely to be observed experimentally in data-driven manner. On three

large-scale datasets containing small molecules, we show that our method generates a
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set of conformations that on average is far more likely to be close to the corresponding

reference conformations than are those obtained from conventional force field methods.

Our method maintains geometrical diversity by generating conformations that are not

too similar to each other, and is also computationally faster. We also show that our

method can be used to provide initial coordinates for conventional force field methods.

On one of the evaluated datasets we show that this combination allows us to combine

the best of both methods, yielding generated conformations that are on average close to

reference conformations with some very similar to reference conformations.

6.1 Introduction

The three-dimensional (3-D) coordinates of atoms in a molecule are commonly re-

ferred to as the molecule’s geometry or conformation. The task, known as conforma-

tion generation, of predicting possible valid coordinates of a molecule, is important for

determining a molecule’s chemical and physical properties [Hawkins, 2017]. Confor-

mation generation is also a vital part of applications such as generating 3-D quantitative

structure-activity relationships (QSAR), structure-based virtual screening and pharma-

cophore modeling [Schwab, 2010]. Conformations can be determined in a physical

setting using instrumental techniques such as X-ray crystallography as well as using

experimental techniques. However, these methods are typically time-consuming and

costly.

A number of computational methods have been developed for conformation genera-

tion over the past few decades [Schwab, 2010]. Typically this problem is approached by

using a force field energy function to calculate a molecule’s energy, and then minimiz-

ing this energy with respect to the molecule’s coordinates. This hand-designed energy
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function yields an approximation of the molecule’s true potential energy observed in

nature based on the molecule’s atoms, bonds and coordinates. The minimum of this

energy function corresponds to the molecule’s most stable configuration. Although this

approach has been commonly used to generate a geometrically diverse set of conforma-

tions with certain conformations being similar to the lowest-energy conformations, it has

been shown that molecule force field energy functions are often a crude approximation

of actual molecular energy [Kanal et al., 2017].

In this chapter, we propose a deep generative graph neural network that learns the en-

ergy function from data in an end-to-end fashion by generating molecular conformations

that are energetically favorable and more likely to be observed experimentally. This is

done by maximizing the likelihood of the reference conformations of the molecules

in the dataset. We evaluate and compare our method with conventional molecular force

field methods on three databases of small molecules by calculating the root-mean-square

deviation (RMSD) between generated and reference conformations. We show that con-

formations generated by our model are on average far more likely to be close to the

reference conformation compared to those generated by conventional force field meth-

ods i.e. the variance of the RMSD between generated and reference conformations is

lower for our method. Despite having lower variance, we show that our method does

not generate geometrically similar conformations. We also show that our approach is

computationally faster than force field methods.

A disadvantage of our model is that in general for a given molecule, the best con-

formation generated by our model lies further away from the reference conformation

compared to the best conformation generated by force field methods. We show that for

the QM9 small molecule dataset, the best of both methods can be combined by using the

conformations generated by the deep generative graph neural network as an initialization
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to the force field method.

6.2 Conformation Generation

We consider a molecule as an undirected, complete graph G = (V,E), where V

is a set of vertices corresponding to atoms, and E is a set of edges representing the

interactions between pairs of atoms from V . Each atom is represented as a vector vi ∈

Rdv of node features, and the edge between the i-th and j-th atoms is represented as a

vector eij ∈ Rde of edge features. There are M vertices and M(M − 1)/2 edges. We

define a plausible conformation as one that may correspond to a stable configuration of

a molecule. Given the graph of a molecule, the task of molecular geometry prediction is

the generation of a set of plausible conformations Xa = (xa1, . . . , x
a
M), where xai ∈ R3

is a vector of the 3-D coordinates of the i-th atom in the a-th conformation.

Molecules can transition between conformations and end up in different local min-

ima based on the stability of the respective conformations and environmental condi-

tions. As a result, there is more than one plausible conformation associated with each

molecule; it is hence natural to formulate conformation generation as finding (local)

minima of an energy function F(X,G) defined on a pair of molecule graph and confor-

mation:

{X1, . . . , XS} = arg min
X
F(X,G). (6.1)

Alternatively, we could sample from a Gibbs distribution:

{X1, . . . , XS} ∼ pF(X|G), (6.2)
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where

pF(X|G) =
1

ζ(G)
exp {−F(X,G)} , (6.3)

where ζ is a normalizing constant. We use S to indicate the number of conformations

we generate for each molecule.

Under this view, the problem of conformation generation is decomposed into two

stages. In the first stage, a computationally-efficient energy function F(X,G) is con-

structed. The second stage involves either performing optimization as in Eq. (6.1) or

sampling as in Eq. (6.2) to generate a set of conformations from this energy function.

6.2.1 Energy Function Construction

A conventional approach is to define an energy function semi-automatically. The

functional form of an energy function is designed carefully to incorporate various chem-

ical properties, whereas detailed parameters of the energy function are either computa-

tionally or experimentally estimated. Two examples of widely used energy functions are

the Universal Force Field (UFF) [Rappé et al., 1992] and the Merck Molecular Force

Field (MMFF) [Halgren, 1996]. In contrast to these methods, here we will describe how

to estimate the energy function or probability distribution directly from data using the

latest techniques from deep learning.

6.2.2 Energy Minimization/Sampling

Once the energy function is defined, a conventional approach is to run the minimiza-

tion many times starting from different initial conformations. Due to the non-convexity

of the energy function, each run is likely to end up in a unique local minimum, allowing
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us to collect a set of many conformations.

A typical approach is to use distance geometry (DG) [Blaney and Dixon, 1994]

or its variants, such as experimental-torsion basic knowledge distance geometry

(ETKDG), [Riniker and Landrum, 2015] to randomly generate an initial conformation

that satisfies various geometric constraints such as lower and upper bounds on the dis-

tances between atoms. Starting from the initial conformation, an iterative optimization

algorithm, such as L-BFGS, [Liu and Nocedal, 1989] gradually updates the conforma-

tion until it finds a minimum of the energy function. In this chapter, we instead propose

an approach based on deep generative models that allow us to sample directly from a

distribution over all possible conformations given a molecule graph.

6.3 Deep Generative Model for Molecular Geometry

We propose to “learn” an energy function F(G,X) from a database containing

many pairs of a molecule and its experimentally obtained conformation. Let D =

{(G1, X
∗
1 ), . . . , (GN , X

∗
N)} be a set of examples from such a database, where X∗n is

“a” reference conformation, often obtained and verified empirically in a certain envi-

ronment. These reference conformations may not necessarily correspond to the lowest

energy configurations of the molecules, but are energetically favorable and more likely

to be observed experimentally. Learning an energy function can then be expressed as

the following optimization problem:

F̂(G,X) = arg max
F

1

N

N∑
n=1

log pF(X∗n|Gn)︸ ︷︷ ︸
(a)

, (6.4)
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where pF is a Gibbs distribution defined using F as in Eq. (6.3). In other words, we

can learn the energy function F by maximizing the log-likelihood of the data D. In

principle, the term “energy” has a very specific meaning in each context (e.g., potential

energy, statistical free energy and etc). In our case, “energy” refers to an objective

function that reflects the likelihood of a conformation given a molecular graph.

6.3.1 Conditional Variational Graph Autoencoders

We use a conditional version of a variational autoencoder [Kingma and Welling,

2014] to model the distribution pF in Eq. (6.4) (a). This choice enables an underlying

model to capture the complicated, multi-modal nature of this distribution, while allow-

ing us to efficiently sample from this distribution. This is done by introducing a set

of latent variables Z = {z1, . . . , zM}, where zm ∈ Rdz and rewriting the conditional

log-probability log pF(X|G) as

log p(X|G) = log

∫
p(X|Z,G)p(Z|G)dZ, (6.5)

where we omit the subscript F for brevity.

The marginal log-probability in Eq. (6.5) is generally intractable to compute, and

we instead maximize the stochastic approximation to its lower bound, as is standard

practice in problems involving variational inference:

log p(X|G) ≥EZ∼Q(Z|G,X)[log p(X|Z,G)︸ ︷︷ ︸
(b) likelihood

]− KL(Q(Z|G,X)︸ ︷︷ ︸
(c) posterior

‖P (Z|G)︸ ︷︷ ︸
(a) prior

) (6.6)

≈ 1

K

K∑
k=1

log p(X|Zk, G)− KL(Q(Z|G,X)‖P (Z|G)), (6.7)
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where Zk is the k-th sample from the (approximate) posterior distribution Q above. We

assume that we can compute the KL divergence analytically, for instance by constructing

Q and P to be normal distributions.

6.3.1.1 Modeling the Graph using a Message Passing Neural Network

We use a message passing neural network (MPNN) [Gilmer et al., 2017], a variant

of a graph neural network, [Scarselli et al., 2009, Bruna et al., 2014] which operates

on a graph G directly and is invariant to graph isomorphism. The MPNN consists of

L layers. At each layer l, we update the hidden vector h(vi) ∈ Rdh of each node and

hidden matrix h(eij) ∈ Rdh×dh of each edge using the equation

hl(vi) = GRU(hl−1(vi), J(hl−1(vi), h
l−1(vj 6=i), h(ei,j 6=i)), (6.8)

where J is a linear one layer neural network that aggregates the information from neigh-

boring nodes according to its hidden vectors of respective nodes and edges. GRU is a

gated recurrent network that combines the new aggregate information and its corre-

sponding hidden vector from previous layer [Cho et al., 2014]. The weights of the

message passing function J and GRU are shared across the L layers of the MPNN.

6.3.1.2 Prior Parameterization

We use the MPNN described above to model the prior distribution P (Z|G) in

Eq. (6.6) (a). We initialize h0(vi) and h(eij) in Eq. (6.8) as linear transformations of

the feature vectors vi and eij of the nodes and edges respectively:

h0(vi) = U prior
node vi; h(eij) = U prior

edge eij, (6.9)
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where U prior
node and U prior

edge are matrices representing the linear transformations for the nodes

and edges respectively. The final hidden vector hL(vi) of each node is passed through

a two layer neural network with hidden size df , whose output h̃L(vi) is transformed

into the mean and variance vectors of a Normal distribution with a diagonal covariance

matrix:

µi = W prior
µ h̃L(vi) + bprior

µ ; (6.10)

σ2
i = exp

{
W prior
σ h̃L(vi) + bprior

σ

}
, (6.11)

where W prior
µ and W prior

σ are the weight matrices and bprior
µ and bprior

σ are the bias terms of

the transformations. These are used to form the prior distribution:

logP (Z|G) =
N∑
i=1

3∑
j=1

−(µi,j − zi,j)2

2σ2
i,j

− log
√

2πσ2
i,j, (6.12)

where µi,j and σ2
i,j are the j-th components of the mean and variance vectors respec-

tively. In other words, we parameterize the prior distribution as a factorized Normal

distribution factored over the vertices and the dimensions in the 3-D coordinate.

6.3.1.3 Likelihood Parameterization

We use a similar MPNN to model the likelihood distribution, P (X|Z,G) in

Eq. (6.6) (b). The only difference is that this distribution is conditioned not only on

the molecular graph G = (V,E) but also on the latent set Z = {z1, . . . , zM}. We incor-

porate the latent set Z by adding the linear transformation of the node feature vector vi
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to its corresponding latent variable zi. This result is used to initialize the hidden vector:

h0(vi) = U likelihood
node vi + zi; h(eij) = U likelihood

edge eij, (6.13)

where U likelihood
node and U likelihood

edge are matrices representing the linear transformations for

the nodes and edges respectively. From there on, we run neural message passing as in

Eqs. (6.8–6.11), with a new set of parameters, θlikelihood, W likelihood
µ , blikelihood

µ , W likelihood
σ

and blikelihood
σ . The final mean and variance vectors are now three dimensional, represent-

ing the 3-D coordinates of each atom, and we can compute the log-probability of the

coordinates using Eq. (6.12).

6.3.1.4 Posterior Parameterization

As computing the exact posterior P (Z|G,X) is intractable, we resort to amortized

inference using a parameterized, approximate posterior Q(Z|G,X) in Eq. (6.6) (c). We

use a similar approach to our parameterization of the prior distribution above. However,

we replace the input to the MPNN with the concatenation of an edge feature vector eij

and the corresponding distance (proximity) matrix D(X∗) of the reference 3-D confor-

mation X∗:

h(eij) = U posterior
edge

 eij

D(x∗i )

 . (6.14)

With a new set of parameters, θposterior, W posterior
µ , bposterior

µ , W posterior
σ and bposterior

σ , the

MPNN outputs a Normal distribution for each latent variable zi. Linear weight em-

beddings of nodes Unode are shared between prior, likelihood and posterior.
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6.3.2 Training the Conditional Variational Graph Autoencoder

With the choice of the Gaussian latent variables zi, we can use the reparameteriza-

tion trick [Kingma and Welling, 2014] to compute the gradient of the stochastic approx-

imation to the lower bound in Eq. (6.7) with respect to all the parameters of the three

distributions. [Kingma and Welling, 2014] This property allows us to train this model

on a large dataset using stochastic gradient descent (SGD). However, there are two ma-

jor considerations that must be made before training this model on a large molecule

database.

6.3.2.1 Post-Alignment Likelihood

An important property of conformation generation over a usual problem of regres-

sion is that we must take into account rotation and translation. Let R be an alignment

function that takes as input a target conformation and a predicted conformation. The

function aligns the reference conformation to the predicted conformation and returns

the aligned reference conformation. X̂ = R(X,X∗) is the conformation obtained by

rotating and translating the reference conformation X∗ to have the smallest distance to

the predicted conformation X according to a predefined metric such as RMSD:

RMSD(X̂,X∗) =

√√√√ 1

M

M∑
i=1

‖x̂i − x∗i ‖2. (6.15)

This alignment function R is selected according to the problem at hand, and we present

below its use in a general form without exact specification.

We implement this invariance to rotation and translation by parameterizing the out-
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put of the likelihood distribution above to be aligned to the target molecule. That is,

log p(X|G,Z) =
M∑
i=1

3∑
j=1

−
(µi,j − x̂∗i,j)2

2σ2
i,j

− log
√

2πσ2
i,j, (6.16)

where x̂∗i is the coordinate of the i-th atom aligned to the mean conformation

{µ1, . . . , µN}. That is,

{x̂∗1, . . . , x̂∗M} = R({µ1, . . . , µM} , X∗). (6.17)

In other words, we rotate and translate the reference conformation X∗ to be

best aligned to the predicted conformation (or its mean) before computing the log-

probability. This encourages the model to assign high probability to a conformation

that is easily aligned to the reference conformation X∗, which is precisely the goal of

maximum log-likelihood.

6.3.2.2 Unconditional Prior Regularization

The second term in the lower bound in Eq. (6.6), which is the KL divergence between

the approximate posterior and prior, does not have a point minimum but an infinitely

long valley consisting of minimum values. Consider the KL divergence between two

univariate Normal distributions:

KL(N (µ1, σ
2
1)‖N (µ2, σ

2
2)) = log

σ2
σ1

+
σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
. (6.18)

When both distributions are shifted by the same amount, the KL divergence remains

unchanged. This could lead to a difficulty in optimization, as the means of the posterior

and prior distributions could both diverge.

118



In order to prevent this pathological behavior, we introduce an unconditional prior

distribution P (Z) which is a factorized Normal distribution:

P (Z) =
M∏
i=1

N (zi|0, I), (6.19)

where N computes a Normal probability density, and I is a dz × dz identity matrix.

We minimize the KL divergence between the original prior distribution P (Z|G) and

this unconditional prior distribution P (Z) in addition to maximizing the lowerbound,

leading to the following final objective function for each molecule:

L = log p(X|Z1, G)− KL(Q(Z|G,X)‖P (Z|G))− α · KL(P (Z|G)‖P (Z)), (6.20)

where we assume K = 1 and introduce a coefficient α ≥ 0.

6.3.3 Inference: Predicting Molecular Geometry

Learning a conditional variational autoencoder above corresponds to the first stage

of conformation generation, that is, the stage of energy function construction. Once

the energy function is constructed, we need to sample multiple conformations from the

Gibbs distribution defined using the energy function, which is logP (X|G) in Eq. (6.5).

Our parameterization of the Gibbs distribution using a directed graphical model [Pearl,

1986] allows us to efficiently sample from this distribution. We first sample from the

prior distribution, Z̃ ∼ P (Z|G), and then sample from the likelihood distribution, X̃ ∼

P (X|Z̃, G). In practice, we fix the output variance σi,j of the likelihood distribution to

be 1 and take the mean set {µ1, . . . , µM} as a sample from the model.
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6.4 Experimental Setup

6.4.1 Data

We experimentally verify the effectiveness of the proposed approach using three

databases of molecules: QM9 [Ruddigkeit et al., 2012, Ramakrishnan et al., 2014],

COD [Gražulis et al., 2012] and CSD [Groom et al., 2016]. These datasets are se-

lected as they possess distinct properties from each other, which allows us to carefully

study various aspects of the proposed approach. There is an overlap between COD and

CSD databases, since both of these databases were based on published crystallography

data. We only keep molecules from each database that can be processed by RDKit1.

We further remove disconnected compounds i.e. those whose Simplified Molecular-

Input Line-Entry System [Weininger, 1988] (SMILES) representation contains ‘.’. See

Fig. 6.1 for some other properties of these three datasets.

6.4.1.1 QM9

The filtered QM9 dataset contains 133,015 molecules, each of which contains up to

9 heavy atoms of types C, N, O and F. Each molecule is paired with a reference confor-

mation obtained by optimizing the molecular geometry with density functional theory

(DFT) at the B3LYP/6-31G(2df,p) level of theory, which implies that the reference con-

formations are obtained from the same environment. We hold out separate 5,000 and

5,000 randomly selected molecules as validation and test sets, respectively.

1Version 2018.09.1
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6.4.1.2 COD

We use the organic part of the COD dataset. We further filter out any molecule that

contains more than 50 heavy atoms of types B, C, N, O, F, Si, P, S, Cl, Ge, As, Se, Br,

Te and I. This results in 66,663 molecules, out of which we hold out separate 3,000

and 3,000 randomly selected ones respectively for validation and test purposes. Refer-

ence conformations are voluntarily contributed to the dataset and are often determined

either experimentally or by DFT calculations. [Hautier et al., 2012] Thus, the reference

conformations are obtained from different environments.

6.4.1.3 CSD

Similarly to COD, we remove any molecule that contains more than 50 heavy atoms,

resulting in a total of 236,985 molecules. We hold out separate 3,000 and 3,000 ran-

domly selected molecules for validation and test purposes respectively. This dataset

contains organic and metal-organic crystallographic structures which have been ob-

served experimentally [Groom et al., 2016]. The atom types in this dataset are S, N,

P, Be, Tc, Xe, Br, Rh, Os, Zr, In, As, Mo, Dy, Nb, La, Te, Th, Ga, Tl, Y, Cr, F, Fe,

Sb, Yb, Tb, Pu, Am, Re, Eu, Hg, Mn, Lu, Nd, Ce, Ge, Sc, Gd, Ca, Ti, Sn, Ir, Al,

K, Tm, Ni, Er, Co, Bi, Pr, Rb, Sm, O, Pt, Hf, Se, Np, Cd, Pd, Pb, Ho, Ag, Mg, Zn,

Ta, V, B, Ru, W, Cl, Au, U, Si, Li, C and I. The reference conformations are obtained

from crystal structures.
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Figure 6.1: Dataset Characteristics: information regarding the atoms, bonds, molecular mass
and symmetry of molecules in each dataset.

6.4.2 Models

6.4.2.1 Baselines

As a point of reference, we minimize a force field starting from a conformation cre-

ated using ETKDG. [Riniker and Landrum, 2015] We test both UFF and MMFF, and re-

spectively call the resulting approaches ETKDG+UFF and ETKDG+MMFF. The en-

vironment from which each conformation is obtained affects the force field calculations.

To keep comparisons fair and to abstract away the effects of the environment, we use the

implementations in RDKit [Landrum, ] with the default hyperparameters. The default
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implementations have often been used in literature when comparing different conforma-

tion generation methods. [Sadowski and Baldi, 2013,Ebejer et al., 2012,Friedrich et al.,

2017]

6.4.2.2 Conditional Variational Graph Autoencoder

We build one conditional variational graph autoencoder for each dataset. We use

dh = 50 hidden units at each layer of neural message passing (Eq. 6.8) in each of the

three MPNNs corresponding to the prior, likelihood and posterior distributions. We use

df = 100 in the two layer neural network that comes after the MPNN. As described

earlier, we fix the variance of the output in the likelihood distribution to 1. We use

L = 3 layers per network for QM9 and L = 5 layers per network for COD and CSD. We

chose these hyperparameter values by carrying out a grid-search and choosing the values

that had the best performance on the validation set. The grid-search procedure and the

performance of models with different hyperparameters are shown in the supplementary

information.

6.4.2.3 Learning

For all models, we use dropout [Srivastava et al., 2014] at each layer of the neural

network that comes after the MPNN with a dropout rate of 0.2 to regularize learning. We

set the coefficient α in Eq. (6.20) to 10−5. We train each model using Adam [Kingma

and Ba, 2014] with a fixed learning rate of 3 × 10−4. All models were trained with a

batch size of 20 molecules on 1 Nvidia GPU with 12 GB of RAM.
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6.4.2.4 Inference

There are two modes of inference with the proposed approach. The first approach

is to sample from a trained conditional variational graph autoencoder by first sampling

from the prior distribution and taking the mean vectors from the likelihood distribution;

we refer to this as CVGAE. We can then use these samples further as initializations

of MMFF minimization; we refer to this as CVGAE+MMFF. The latter approach can

be thought of as a trainable approach to initializing a conformation in place of DG or

ETKDG.

6.4.3 Evaluation

In principle, the quality of the sampled conformations should be evaluated based on

their molecular energies, for instance by DFT, which is often more accurate than force

field methods [Kanal et al., 2017]. However, the computational complexity of the DFT

calculation is superlinear with respect to the number of electrons in a molecule, and so is

often impractical [Ratcliff et al., 2017]. Instead, we follow prior work on conformation

generation [Hawkins, 2017] and evaluate the baselines and proposed method using the

RMSD (Eq. 6.15) of the heavy atoms between a reference conformation and a predicted

conformation which is fast and simple to calculate.

6.5 Results

When evaluating each method, we first sample 100 conformations per molecule for

each method in the test set. We can make several observations from Table 6.1. First,

compared to other methods, our proposed CVGAE always succeeds at generating the

specified number of conformations for any of the molecules in the test set. UFF and
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Table 6.1: Number of successfully processed molecules in the test set (success per test set ↑),
number of successfully generated conformations out of 100 (success per molecule ↑), median of
mean RMSD (mean ↓), median of standard deviation of RMSD (std. dev. ↓) and median of best
RMSD (best ↓) per molecule on QM9, COD and CSD datasets. ETKDG stands for Distance
Geometry with experimental torsion-angle preferences. UFF and MMFF are force field methods
and stand for Universal Force Field and Molecular Mechanics Force Field respectively. CV-
GAE stands for Conditional Variational Graph Autoencoder. CVGAE + Force Field represents
running the MMFF force field optimization initialized by CVGAE predictions.

ETKDG + Force Field CVGAE CVGAE + Force Field
Dataset UFF MMFF MMFF

QM9 success per test set 96.440% 96.440% 100% 99.760%
success per molecule 98.725% 98.725% 100% 98.684%

mean 0.425 0.415 0.390 0.367
std. dev. 0.176 0.189 0.017 0.074

best 0.126 0.092 0.325 0.115

COD success per test set 99.133% 99.133% 100% 95.367%
success per molecule 99.627% 99.627% 100% 99.071%

mean 1.389 1.358 1.331 1.656
std. dev. 0.407 0.415 0.099 0.425

best 0.429 0.393 1.206 0.635

CSD success per test set 97.400% 97.400% 100% 99.467%
success per molecule 99.130% 99.130% 100% 97.967%

mean 1.537 1.488 1.506 1.833
std. dev. 0.421 0.418 0.115 0.434

best 0.508 0.478 1.343 0.784

MMFF fail to generate conformations for some molecules, as they do not support han-

dling every element but the pre-defined sets of elements. Since all other evaluated ap-

proaches were unsuccessful at generating at least one conformation for a very small

number of test molecules, we report results for the molecules for which all evaluated

methods generated at least one conformation. We report the median of the mean of the

RMSD, the median of the standard deviation of the RMSD and the median of the best

(lowest) RMSD among all generated conformations for each test molecule. Across all

three datasets, every evaluated method achieves roughly the same median of the mean
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Table 6.2: Conformation Diversity. Mean and std. dev. represents the corresponding mean
and standard deviation of pairwise RMSD between at most 100 generated conformations per
molecule.

Dataset ETKDG + MMFF CVGAE CVGAE + MMFF

QM9 mean 0.400 0.106 0.238
std. dev. 0.254 0.061 0.209

COD mean 1.148 0.239 1.619
std. dev. 0.699 0.181 0.537

CSD mean 1.244 0.567 1.665
std. dev. 0.733 0.339 0.177

RMSD. More importantly, the standard deviation of the RMSD achieved by CVGAE

is significantly lower than that achieved by ETKDG + Force Field. After the initial

generation stage, conformations are usually further evaluated and optimized by running

the computationally expensive DFT optimization. Reducing the standard deviation can

lower the number of conformations on which DFT optimization has to be run in order to

achieve a valid conformation. On the other hand, the best RMSD achieved by ETKDG

+ UFF/MMFF methods is lower than that achieved by CVGAE. Using MMFF initial-

ized by CVGAE (CVGAE + MMFF) instead of ETKDG (ETKDG + MMFF) improves

the mean results on the QM9 dataset for CVGAE, and yields a lower standard devia-

tion and similar best RMSD compared to ETKDG + MMFF. Unfortunately, CVGAE +

MMFF worsens the results achieved by CVGAE alone on the COD and CSD datasets.

We additionally evaluate single point DFT energy for the subset of 1000 molecules in

the QM9 test set for all 100 generated conformations. We find that all three methods

ETKDG + MMFF, CVGAE and CVGAE + MMFF achieve similar median energy val-

ues of −411.52, −410.87 and −411.50 respectively. The energy was calculated using

GAMESS software [Schmidt et al., 1993] with default parameters.

We also report the diversity of conformations generated by all evaluated methods
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Figure 6.2: Computational efficiency of various approaches on QM9 and COD datasets

in Table 6.2. Diversity is measured by calculating the mean and standard deviation of

the pairwise RMSD between each pair of generated conformations per molecule. Over-

all, we can see that despite having a smaller median of standard deviation of RMSD

between generated conformations and reference conformations, CVGAE does not col-

lapse to generating extremely similar conformations. Although, CVGAE generates rel-

atively less diverse samples compared to ETKDG + MMFF baseline on all datasets.

The conformations of molecules generated by CVGAE + MMFF are less diverse on the

QM9 dataset and more diverse on COD/CSD datasets compared to ETKDG + MMFF

baseline.

The computational efficiency of each of the evaluated approaches on the QM9 and

COD datasets is shown in Figure 6.2. For consistency, we generated one conformation

for one molecule at a time using each of the evaluated methods on an Intel(R) Xeon(R)

E5-2650 v4 CPU. On the QM9 dataset, CVGAE is 2× more efficient than ETKDG +

UFF/MMFF, while CVGAE + MMFF is slightly slower than ETKDG + UFF/MMFF.

On the COD dataset, which contains a larger number of atoms per molecule, CVGAE

is almost 10× as fast as ETKDG + UFF/MMFF, while CVGAE + MMFF is about 2×

as fast as ETKDG + UFF/MMFF. This shows that CVGAE scales much better than the
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baseline ETKDG + UFF/MMFF methods as the size of the molecule grows.

Figures 6.3 and 6.4 visualize the median, standard deviation and best RMSD results

as a function of the number of heavy atoms in a molecule on the QM9 and COD/CSD

datasets respectively. For all approaches, we can see that the best and median RMSD

both increase with the number of heavy atoms. The standard deviation of the median

RMSD for CVGAE and CVGAE + MMFF is lower than that for ETKDG + MMFF

across molecules of almost all sizes. The standard deviation of the best RMSD is slightly

higher for CVGAE and CVGAE + MMFF than for ETKDG + MMFF on molecules with

at most 12 atoms, but is lower for larger molecules, particularly for CVGAE. Overall,

CVGAE yields a lower or similar median RMSD compared to ETKDG + MMFF across

molecules of all sizes and a lower standard deviation, whereas ETKDG + MMFF pro-

vides a lower best RMSD particularly for larger molecules observed in the COD/CSD

datasets.

Figures 6.5 and 6.6 qualitatively compare the results of CVGAE against MMFF and

CVGAE + MMFF against CVGAE respectively. For each dataset, each figure shows the

three molecules for which the first method in each figure outperforms the second method

by the greatest amount, and the three molecules for which the second method outper-

forms the first by the greatest amount. The reference molecules are shown alongside the

conformations resulting from each of the methods for comparison.

We can see some general trends from both these figures. The conformations pro-

duced by the neural network are qualitatively much more similar to the reference in the

case of the QM9 dataset than in the cases of the COD and CSD datasets. In the case

of the COD and CSD datasets, the CVGAE predictions appear to be squashed or com-

pressed in comparison to the reference molecules. For example, in almost every case

we can see the absence of visible rings and the absence of bonds protruding from the
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lengthwise dimension of the molecule. At the same time we can see that on COD and

CSD, CVGAE does better than ETKDG + MMFF in cases where ETKDG + MMFF

creates loops and protrusions in the wrong places.

6.6 Analysis and Future Work

Overall we observe that CVGAE performs better than ETKDG + MMFF on QM9

than on COD and CSD. One possible reason that could explain this phenomenon is that

COD and CSD contain much larger number of heavy atoms per molecule than QM9. In

the absence of adequate number of neural message passing steps and adequate number

of hidden units, the network may converge to outputting a conformation that contains

atoms largely along a single non-linear dimension in order to minimize outliers, which

would be heavily penalized by the sum of squared distances term in the loss function.

A neural network architecture with a larger number of neural message passing steps

and larger number of hidden units may be needed to generate less conservative con-

formations and achieve comparable results to those for QM9. This is a recommended

direction of future work that will require more computational resources, including dis-

tributed training on multiple GPUs with sufficient memory.

Another concern for COD and CSD is the inconsistency in the environments from

which the reference conformations are obtained. The inconsistency would not be a se-

rious concern for small molecules, but it can result in performance degradation with

larger molecules. Further investigation should be performed with the dataset of larger

molecules and their reference conformations whose corresponding environments are

identical. Additionally, conditioning deep generative graph neural networks on the en-

vironment could be explored in the future.
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Figure 6.3: This figure shows the means and standard deviations of the best and median RMSDs
on the union of COD and CSD datasets as a function of number of heavy atoms. The molecules
were grouped by number of heavy atoms, and the mean and standard deviation of the median
and best RMSDs were calculated for each group to obtain these plots. Groups at the left hand
side of the graph with less than 1% of the mean number of molecules per group were omitted.

130



7 8 9
Number of heavy atoms

0.10

0.15

0.20

0.25

0.30

0.35
Be

st
 R

M
SD

CVGAE
ETKDG + MMFF
CVGAE + MMFF

Mean of best RMSD

7 8 9
Number of heavy atoms

0.16

0.18

0.20

0.22

0.24

St
d 

of
 b

es
t R

M
SD

CVGAE
ETKDG + MMFF
CVGAE + MMFF

St. dev. of best RMSD

7 8 9
Number of heavy atoms

0.35

0.40

0.45

M
ed

ia
n 

RM
SD

CVGAE
ETKDG + MMFF
CVGAE + MMFF

Mean of median RMSD

7 8 9
Number of heavy atoms

0.30

0.35

0.40

St
d 

of
 m

ed
ia

n 
RM

SD
CVGAE
ETKDG + MMFF
CVGAE + MMFF

St. dev. of median RMSD

7 8 9
Number of heavy atoms

0.0

0.2

0.4

0.6

Be
st

 R
M

SD

CVGAE
ETKDG + MMFF

Best RMSD with uncertainty bounds

7 8 9
Number of heavy atoms

0.0

0.2

0.4

0.6

0.8

M
ed

ia
n 

RM
SD

CVGAE
ETKDG + MMFF

Median RMSD with uncertainty bounds

Figure 6.4: This figure shows the means and standard deviations of the best and median RMSDs
on the QM9 dataset as a function of number of heavy atoms. The molecules were grouped by
number of heavy atoms, and the mean and standard deviation of the median and best RMSDs
were calculated for each group to obtain these plots. Groups at the left hand side of the graph
with less than 1% of the mean number of molecules per group were omitted.
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QM9 greatest difference in favour of neural
network predictions

QM9 greatest difference in favour of
ETKDG + MMFF predictions

COD greatest difference in favour of neural
network predictions

COD greatest difference in favour of
ETKDG + MMFF predictions

CSD greatest difference in favour of neural
network predictions

CSD greatest difference in favour of
ETKDG + MMFF predictions

Figure 6.5: This figure shows the three molecules in each dataset for which the differences
between the RMSDs of the neural network predictions and the baseline ETKDG + MMFF pre-
dictions were greatest in favour of the neural network predictions (max (RMSDCV GAE −
RMSDETKDG+MMFF )), and the three for which this difference was greatest in favour of the
ETKDG + MMFF predictions (max (RMSDETKDG+MMFF−RMSDCV GAE)). The top row
of each subfigure contains the reference molecules, the middle row contains the neural network
predictions and the bottom row contains the conformations generated by applying MMFF to the
reference conformations.
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QM9 greatest improvement QM9 greatest deterioration

COD greatest improvement COD greatest deterioration

CSD greatest improvement CSD greatest deterioration

Figure 6.6: This figure shows the three molecules in each dataset whose RMSD decreased the
most and the three whose RMSD increased the most on applying MMFF to the conformations
predicted by the neural network. The top row of each subfigure contains the reference molecules,
the middle row contains the neural network predictions and the bottom row contains the confor-
mations generated by applying MMFF to the neural network predictions.

133



We also observe that our CVGAE method has a lower variance than the baseline

methods, so a relatively small number of samples needs to be taken before getting a

conformation with a good RMSD. In addition, CVGAE is faster than force field methods

and uses less computational resources once trained. Using conformations generated by

CVGAE as an initialization to force field method showed promising results on the QM9

dataset that allowed to combine the best of two distinct methods. However, applying

a force field method on the conformations generated by CVGAE leads to an increase

in RMSD on the COD and CSD datasets - future work could explore why this is the

case. Another avenue of future inquiry could be the joint training of CVGAE and a

force field method, which would involve implementing force field minimization using a

deep learning framework, connecting this to CVGAE and backpropagating through this

aggregate model. This joint training could further yield better results than either method

alone.

6.7 Since the chapter release

Since the release of our chapter, [Simm and Hernández-Lobato, 2019] proposed

improvements to our model. They used the conditional variational graph autoencoder

proposed in our chapter, with the main difference in predicting the distances between

atoms instead of 3D coordinates. By predicting distances, aligning the ground-truth

conformations to the predicted conformations becomes unnecessary.

Overall, the generation of 3D structures of small molecules using deep generative

models is becoming more popular. Some of the papers on this topic released since

our work include [Hoffmann et al., 2019, Gebauer et al., 2019, Axelrod and Gómez-

Bombarelli, 2020]. Beyond small molecules investigated in our work, there has been
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a growing body of work examining the use of deep generative models to generate 3D

structures of proteins [AlQuraishi, 2018, Ingraham et al., 2019b, Xu, 2019, Senior et al.,

2020, Du et al., 2020], a process known as protein folding.
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Chapter 7

Conclusion

This thesis has explored the structured prediction based on the principle of iterative

refinement. In chapter 3, we introduced the concept of iterative refinement based on the

principle denoising autoencoder and latent variable modeling. In chapter 4, we proposed

the generalized framework of sequence generation. Using the proposed framework, we

derived novel generation procedures for undirected neural sequence model BERT [De-

vlin et al., 2019] and showed how we can iteratively generate novel translations using

this model. In chapter 5 we introduced the masked graph modeling approach for iterative

generation of molecular graph based on the framework introduced in chapter 4. Finally,

in chapter 6 we proposed the conditional variational graph autoencoder for molecule

conformation generation that is further refined by classical force-field methods. Over-

all, we showed that iterative refinement is a successful approach for applications such

as machine translation, image captioning, molecular graph generation and molecular

conformation generation.

While the iterative refinement approach is successful at structured prediction, neu-

ral autoregressive left-to-right monotonic sequence modeling remains a state-of-the-art
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approach for sequence generation. It is important to discuss why we would want to use

the iterative refinement for structured prediction in the first place, especially given that

from a pure performance standpoint, autoregressive left-to-right monotonic models are

incredibly effective.

From the application standpoint, non-autoregressive models based on iterative re-

finement can provide a speed-up over autoregressive models at decoding time. The re-

cent models based on the iterative refinement [Ghazvininejad et al., 2020,Saharia et al.,

2020] match the performance of autoregressive models on machine translation using as

little as 4 generation steps. Specifically, the conditional mask-predict non-autoregressive

model using iterative refinement [Ghazvininejad et al., 2019] achieves 4x wall-clock

time speed up over state-of-the-art autoregressive model when translating one sentence

at a time [Kasai et al., 2020]. The decoding speed of both autoregressive and non-

autoregressive models depends on several factors, such as software implementation,

hardware, and details of neural network architecture. Upon closer inspection, [Kasai

et al., 2020] found that the non-autoregressive model’s speed-up over the autoregressive

model only holds when translating one sentence at a time. In particular, [Kasai et al.,

2020] found that non-autoregressive models translate slower than autoregressive mod-

els when using mini-batches as large as GPU hardware allows. Using large minibatch,

autoregressive models better utilize GPU than non-autoregressive models, which offset

non-autoregressive models’ benefit. Furthermore, increasing the encoder’s depth and

decreasing the decoder’s depth in an autoregressive model improves the decoding speed

while maintaining the vanilla autoregressive model’s performance. The paper by [Kasai

et al., 2020] highlights that despite the speed-up of non-autoregressive machine transla-

tion models using iterative refinement over autoregressive models in a single-sentence

setting, there is still room to strengthen the argument that non-autoregressive models
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are faster at decoding. In particular, further work on improving software implemen-

tation and architectural details of non-autoregressive models using iterative refinement

can help achieve substantial speed-up over autoregressive models across various appli-

cations and settings.

From the logical standpoint, the iterative refinement approach searches the solution

space differently compared to beam-search in autoregressive models. Indeed, beam-

search’s solution space gets more restricted at every timestep because it is impossible

to change the choices made in the earlier timesteps. Iterative refinement, in principle,

allows us to modify the entire solution and correct for the previous mistakes. This

could be especially effective for generating structured objects with a longer length and

non-trivial dependencies among the symbols in the output. Future work should explore

applications of iterative refinement for such structured objects.

Alternative approaches for structured object generation is a very young and ex-

citing area of research. Aside from the iterative refinement approach discussed in

this thesis, there have been several other approaches introduced concurrently to this

thesis. Notable approaches include non-monotonic insertion-based sequence genera-

tion [Stern et al., 2019, Gu et al., 2019a, Chan et al., 2019, Gu et al., 2019b], non-

monotonic sequence generation based on imitation learning framework [Welleck et al.,

2019], semi-autoregressive sequence generation [Stern et al., 2018,Wang et al., 2018b],

non-autoregressive machine translation approaches based on discrete [Kaiser et al.,

2018, Roy et al., 2018] and continuous [Ma et al., 2019, Shu et al., 2019, Lee et al.,

2020a] latent-variable models, image and speech generation approaches based on the

iterative denoising diffusion principle [Sohl-Dickstein et al., 2015,Ho et al., 2020,Chen

et al., 2020]. We believe that iterative refinement and other alternative approaches for

structured prediction are an exciting avenue for future work.
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pur, S. (2010). Recurrent neural network based language model. In INTERSPEECH,

pages 1045–1048.

[Mikolov et al., 2011] Mikolov, T., Kombrink, S., Deoras, A., Burget, L., and ernocký,
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