An O(nlogn) Algorithm for the Maximum Agreement
Subtree Problem for Binary Trees*

Richard Colef Martin Farach? Ramesh Hariharan®
Teresa Przytycka¥ Mikkel Thorup |l

Abstract

The Maximum Agreement Subtree problem is the following: given two
trees whose leaves are drawn from the same set of items (e.g., species),
find the largest subset of these items so that the portions of the two trees
restricted to these items are isomorphic. We consider the case which
occurs frequently in practice, i.e., the case when the trees are binary, and
give an O(nlogn) time algorithm for this problem.

1 Introduction

Suppose we are given two rooted trees 77 and 75 with n leaves each. The internal
nodes of each tree have at least two children each. The leaves in each tree are
labelled with the same set of labels and further, no label occurs more than once
in a particular tree. An agreement subtree of T} and T5 is defined as follows. Let
L1 be a subset of the leaves of 77 and let Lo be the subset of those leaves of Ts
which have the same labels as leaves in Li. The subtree of T} induced by Li is
an agreement subtree of 77 and 75 if and only if it is isomorphic to the subtree
of T3 induced by Ly. The Maximum Agreement Subtree problem (henceforth
called MAST) asks for the largest agreement subtree of 77 and T5.

We need to define the terms induced subtree and isomorphism used above.
Intuitively, the subtree of 77 induced by L is the subtree of T restricted to leaves
in L1, with branching information relevant to L; preserved. More formally, it
is the tree obtained by the following procedure. Repeatedly remove from 77 all
leaves not in L1; remove also the edges incident upon these leaves. Next, replace

*Work supported by NSF grants CCR-9202900 and CCR-9503309.

tCourant Institute of Mathematical Sciences, NYU.

{DIMACS.

§Indian Institute of Science, Bangalore. Work done when the author was at Max Planck
Institut fur Informatik, Germany, and when visiting NYU.

TUniversity of Maryland, College Park.

”University of Copenhagen, Denmark.

all maximal paths of degree 2 nodes with single edges; each internal node in the
resulting tree will have at least 2 children. The resulting tree is the induced
subtree.

Intuitively, two trees are isomorphic if the children of each node in one of
the trees can be reordered so that the leaf labels in each tree occur in the same
order and the shapes of the two trees become identical. Formally, trees F' and
G are said to be isomorphic if the following conditions hold. If F' and G are
singleton trees, i.e., leaves, then they are isomorphic if they have the same labels.
Otherwise, F' and G are isomorphic if their roots have the same number of
children and, further, there exists a one-to-one mapping f() from the children of
the root of F' to those of the root of GG so that for each child z of the root of F,
the subtree of F rooted at # is isomorphic to the subtree of GG rooted at f(z).

Motivation. The MAST problem arises naturally in biology and linguistics
as a measure of consistency between two evolutionary trees over species and
languages, respectively. An evolutionary tree for a set of taza, either species or
languages, is a rooted tree whose leaves represent the taxa and whose internal
nodes represent ancestor information. It i1s often difficult to determine the true
phylogeny for a set of taxa, and one way to gain confidence in a particular tree
is to have different lines of evidence supporting that tree. In the biological taxa
case, one may construct trees from different parts of the DNA of the species.
These are known as gene trees. For many reasons, these trees need not entirely
agree, and so one is left with the task of finding a consensus of the various
gene trees. The maximum agreement subtree is one method of arriving at such a
consensus. Notice that all gene trees must be binary, since DNA always replicates
by a binary branching process. Therefore, the case of binary trees is of great
interest.

Another application arises in automated translation between two languages
[GY95]. The two trees are the parse trees for the same meaning sentences in
the two languages. A complication that arises in this application (due in part
to imperfect dictionaries) is that words need not be uniquely matched, i.e., a
word at the leaf of one tree could match a number (usually small) of words at
the leaves of the other tree. The aim is to find a maximum agreement subtree;
this 1s done with the goal of improving context-using dictionaries for automated
translation. So long as each word in one tree has only a constant number of
matches in the other tree (possibly with differing weights), the algorithm given
here can be used and its performance remains O(nlogn). More generally, if
there are m word matches in all, the performance becomes O((m + n)logn).
Note however, that if there are two collections of equal meaning words in the
two trees of sizes ki and ks respectively, they induce ki ks matches.

Previous Work. Finden and Gordon [FG85] gave a heuristic algorithm for
the MAST problem on binary trees which had an O(n®) running time and did
not guarantee an optimal solution. Kubicka, Kubicki and McMorris [KKM92]
gave an O(n('5+f) logn) algorithm for the same problem. The first polynomial

time algorithm for this problem was given by Steel and Warnow [SW93]; it had
a running time of O(n?). Steel and Warnow also considered the case of non-
binary and unrooted trees. Their algorithm takes O(n?) time for fixed degree
rooted and unrooted trees and O(n*®logn) for arbitrary degree rooted and
unrooted trees. They also give a linear reduction from the rooted to the unrooted

case. Farach and Thorup gave an O(ncV!°8") time algorithm for the MAST
problem on binary trees; here ¢ is a constant greater than 1. For arbitrary degree

trees, their algorithm takes O(n?cV1°8™) time for the unrooted case [FT95] and
O(n'®logn) time for the rooted case [FT94]. Farach, Przytycka, and Thorup
[FPT95a] obtained an O(nlog® n) algorithm for the MAST problem on binary
trees. Kao [Ka95] obtained an algorithm for the same problem which takes
O(nlog®n) time. This algorithm takes O(min{nd”logdlog” n, ndz log® n}) for
degree d trees. Finally, Cole and Hariharan [CR96] improved the algorithm from
[FPT95a] to an O(nlogn) algorithm.

The MAST problem for more than two trees has also been studied. Amir and
Keselman [AK94] showed that the problem is N P-hard for even 3 unbounded
degree trees. However, polynomial bounds are known [AK94, FPT95b] for three
or more bounded degree trees.

Our Contribution. This paper is the combined journal version of [FPT95b]
and [CR96] and presents an O(n logn) algorithm for the MAST problem for two
binary trees.

The O(n log® n) algorithm of [FPT95a] can be viewed as taking the following
approach (although the authors do not describe it this way). Tt identifies two
special cases and then solves the general case by interpolating between these
cases.

Special Case 1: The internal nodes in both trees form a path. The MAST
problem reduces to essentially a size n Longest Increasing Subsequence Problem
in this case. As is well known, this can be solved in O(nlogn) time.

Special Case 2. Both trees 77 and T, are complete binary trees. Consider
a node v in T5. Let L3 be the set of leaves which are descendants of v. Let
L1 be the set of leaves in 77 which have the same labels as the leaves in Ls.
Only certain nodes u in 77 can be usefully mapped to v, in the sense that the
subtree of 77 rooted at u and the subtree of 75 rooted at v have a non-empty
Agreement Subtree. These nodes u are the ancestors of the leaves in L;. There
are O(n log? n) such pairs (u,v). For each pair, computing the MAST takes
O(1) time, as it is simply a question of deciding the best way of pairing their
children.

The interpolation process takes a centroid decomposition of the two trees
and compares pairs of centroid paths, rather than individual nodes as in the
complete tree case. The comparison of a pair of centroid paths requires finding
matchings with special properties in appropriately defined bipartite graphs, a

non-trivial generalization of the Longest Increasing Subsequence problem. This
process creates O(n log® n) interesting (u, v) pairs, each of which takes O(logn)
time to process.

In [CR96] two improvements are given, each of which gains a logn factor.

Improvement 1. The complete tree special case is improved to O(nlogn)
time as follows. The same notation as above is used: wv, L1, Ls. In fact, the
only nodes that need be compared to v are those nodes u in the subtree of T}
induced by L;. This reduces the number of interesting pairs (u, v) to O(nlogn).
Again, processing a pair takes O(1) time (this is less obvious, for identifying
the descendants of u which root the subtrees with which the two subtrees of v
can be matched is non-trivial). Constructing the above induced subtree itself
can be done in O(|L1|) time, as will be detailed later. The basic tool here is to
preprocess trees 77 and T3 in O(n) time so that least common ancestor queries
can be answered in O(1) time.

Improvement 2: As in [FPT95a], when the trees are not complete binary
trees, we take centroid paths and match pairs of centroid paths. The O(logn)
cost that the algorithm in [FPT95a] incurs in processing each such interesting
pair of paths arises when there are large (polynomial in n size) instances of the
generalized Longest Increasing Subsequence Problem. At first sight, it is not
clear that large instances of these problems can be created for sufficiently many of
the interesting pairs; unfortunately, this turns out to be the case. However, these
problem instances still have some useful structure. By using (static) weighted
trees we process pairs of interesting vertices in O(1) time per pair, on the average,
as 1s shown by an appropriately parameterized analysis.

The paper is organized as follows. Section 2 gives some basic definitions and
primitives. Section 3 outlines the algorithm. Section 4 provides further details
of the algorithm and Section 5 gives the analysis. The remaining sections deal
with problems raised in Sections 3-5.

2 Definitions and Preliminaries

All trees henceforth refer to binary trees whose internal nodes have exactly two
children.

The tree T'(z) denotes the subtree of T rooted at vertex . The size of a tree
T, denoted by |T'|, is the number of leaves in it. In our problem, |T}| = |T3| = n.

Given a binary tree T, its centroid decomposition is a partition of its vertices
into disjoint paths obtained as follows. First, a path from the root of T" to a leaf
is traced in the following way: at each step the path is extended to that child
of the current node xz, whose subtree has at least half the nodes of the subtree
rooted at z (ties are broken arbitrarily). Second, all the nodes on the above
path are removed. This creates a forest of subtrees, each of which has at most

Vq

Figure 1: Paths 7 and 7(z).

% nodes; the above procedure is applied recursively to each of these subtrees.
Each path obtained as above is called a centroid path. Note that the centroid
decomposition of T' can easily be found in O(n) time.

A tree T can be preprocessed in O(|T|) time so that given any subset L of
its leaves in left to right order, the subtree induced by L can be computed in
O(]L|) time. The details of this procedure are described in Section 8.

The set of labels at the leaves of T3 is identical to that at the leaves of 7T5.
For a leaf [in one of these trees, the leaf with the same label in the other tree
is called its twin. Two subtrees, one from each tree, are said to intersect if
and only if some leaf in one subtree has a twin in the other. The subtree of T3
induced by some subset of the leaves of T} is the subtree of T5 induced by the

twins of these leaves of T7.

3 Algorithm Outline

Let Agree(T1,Tz) denote our algorithm for MAST, given trees T1,T5. For each
vertex w in Ty, Agree(T1,T2) computes the maximum agreement subtree of 7}

and Ty (w).
Algorithm Outline. Agree(T1,T5) has three steps.

Step 1. Compute the centroid decompositions of 71 and T. This takes O(n)
time.

We need some definitions to describe the remaining steps.

Definitions. Let 7 be the centroid path containing the root of Ty. Let p = |7|
and uy,us, ..., Up_1, up be the vertices on this path in order from the root. Let
My, Ms, ..., M,_1 comprise the forest of subtrees created by the removal of 7
from Ty. Let m; = |M;|, the number of leaves in M; (see Fig.1). Recall that
m; < n/2 as 7 is a centroid path. For technical reasons, we define m, = 1.
Therefore, >°F_, m; = n.

Step 2. Foreach i, 1 <i<p—1, Agree(M;,S;) is computed, where S; is the
subtree of T3 induced by the leaves of M;. S; is determined in O(m;) time after
the twins of the leaves of M; have been ordered. The latter is easily done for all
i together in O(}_" m;) time (see Section 8); for this, we charge O(m;) to tree
M;. The above along with the recursive call will take O(m; log m;) time for each
t. For each vertex w in S, Step 2 computes the maximum agreement subtree of
M; and the subtree rooted at w. Note that if the maximum agreement subtree
of T and T3 contains no vertex from 7 then it will be found in Step 2. Step 3
handles the other case.

Step 3: Matching 7. For each w € T3, the largest agreement subtree for the
trees 77 and Ta(w) is found. Informally, we call this the process of “match-
ing” 7 at each of the vertices w of T5. We will show how this is done in
O(>~F_ mjlog - +n) time.

Clearly, the total time over all three steps is O(n logn). The following sections
show how Step 3 is performed in O(3_F_; m;log 2~ + n) time. We need the
following definitions to proceed further. '

Definitions. Recall that the centroid decomposition of T3 partitions its vertices
into disjoint paths. The beginning of such a path is defined to be the vertex closest
to the root of 75 in that path. Let X denote the set of vertices in T3 at which
paths in the above decomposition begin.

We will define some bipartite graphs next. Each graph will correspond to a
particular centroid path in the centroid decomposition of 75 and will be used
to match 7 at all the vertices in this centroid path. These graphs will have the
property that a particular kind of matching, which can be computed efficiently,
will correspond to agreement subtrees.

4 The Matching Graphs G(z) and the = Matching
Algorithm

We define a number of bipartite graphs, one for each z € X. The graph G(z)
corresponding to vertex z is defined as follows.

Vertices of G(z). The left vertex set L(z) of G(z) is a subset of {u1,...,up}.
Vertex u;, 1 <17 < p—1, is in the set if and only if M; and Ta(z) intersect.
Vertex u, is in the set if and only if its twin is in T5(2).

The right vertex set R(z) of G(z) is exactly the set of vertices in the centroid
path beginning at vertex z.

Since both sets of vertices are drawn from centroid paths, we order the
vertices on each side in the order they occur on their respective centroid paths.
The topmost vertex is the closest and the bottommost is the furthest. Further,
two edges (a,b) and (a’,b’) in G(z) are said to cross if a is above a’ and b is
below ', or vice versa. In addition, edge (a,b) is said to dominate (a’,b’) in
G(z) if a is above a’ and b is above b'. The topmost edge in a set of edges, if
any, is the edge which dominates all other edges in that set.

Before defining the edges of G(z), we need the following definitions.

Definitions. Let m(z) be the centroid path containing the root of Tz(z). Let ¢
be the length of this path. Let vy, vs, ..., v, be the vertices on this path in order
from the root. Let Ny, Na,..., Ny_1 comprise the forest of subtrees of T5(z)
created by the removal of vy, ..., v, from T5(2z). Let n; = |N;|,fori=1...¢—1
(see Fig.1). For technical reasons, we define ny = 1. Then Y i_ n; = |T'(z)|.

Edges of G(z). G(z) is actually a multigraph, where each multiedge consists
of three edges, a white edge, a red edge and a green edge, each of which has a
distinct weight associated with it.

A multiedge between u; € L(z), L <i<p—landv; € R(z), 1 <j<g-—1,
exists if and only if M; and N; intersect. The white edge in this multiedge has
weight equal to the size of the maximum agreement subtree of M; and N;. The
red edge in this multiedge has weight equal to the size of the maximum agreement
subtree of 77 (u;) and N;. The green edge in this multiedge has weight equal to
the size of the maximum agreement subtree of M; and T5(v;). If u, € L(z) then
there is a multiedge between u, and v; such that either j # ¢ and u,’s twin is in
Nj or j = ¢ and u,’s twin is vg; all three edges in this multiedge have weight 1.
In addition, there is a multiedge between u; and v, such that either ¢ # p and
vg's twin is in M; or ¢ = p and v,’s twin is up; all three edges in this multiedge
have weight 1.

Definition. We define a proper crossing in G(z) to be a red-green edge pair in
G(z) such that the two edges cross and further, the endpoint of the green edge
in L(z) is above that of the red edge.

An Agreement Matching in G(z). A matching in G(z) is an agreement
matching if:

1. Tt has zero or more white edges and at most one proper crossing.

2. No white edge crosses any other edge; further, all white edges dominate
the edges in the proper crossing, if any.

See Fig.2. The weight of such a matching is just the sum of the weights of its
edges. The following property of agreement matchings in G is crucial.

The Key Property. Each agreement matching corresponds to a structurally
unique agreement subtree of 77} and T3, as made precise below. Consider
an agreement matching M comprising white edges (u;,,vj,),. .., (¢, vj,) fol-
lowed by green edge (u;/,v;/) crossing red edge (uj»,vjn) (see Fig.2, where
each subtree is the maximum agreement subtree of the indicated pair of sub-
trees). Also consider the tree 7 defined as follows. 7 has a path comprising
the vertices u;,,...,u;, in sequence. The roots of maximum agreement sub-
trees of the tree pairs (M;,,N;,), ..., (M;,, N;j,) are children of the vertices in
the above path in this sequence. Finally, there is an additional vertex with
edges to u;, and to the root of a maximum agreement subtree of the tree pairs
(M;r, T5(v;0)), (T (usn), Njn). Note that in general the maximum agreement sub-
trees need not be unique.

It is easily seen that the weight of M is the same as the size of 7. Also, it is
clear that we can go in the opposite direction, converting any agreement tree to
an agreement matching. Thus, in order to determine the maximum agreement
subtree of T7 and Tu(z), it suffices to determine the maximum weight agreement
matching in G(z).

To describe the algorithm for matching 7, we need the following definitions
followed by an important theorem. The theorem itself will be proved in Section

7.

Definitions. The degree of a vertex in G(z) is defined as the number of white
edges incident on it. Let d;(z) denote the degree of u;. A vertex in L(z) is called
a singleton vertex if 1t has degree one; the white edge incident on it is called a
singleton edge. Let nswe(z) denote the number of non-singleton white edges in
G(z). Let nsav(z) denote the number of vertices in R(z) which have at least
one incident non-singleton white edge. Let SV (z) denote the set of singleton
vertices in L(z).

Theorem 1 Consider a particular @ € X. For each u; € L(z), the
largest weight agreement matching in G(x) containing only edges incident on

or below u; in L(z) can be found in time O(Zi|d,(z)>1di(m) log nfi‘:(vx()x) +

Z(u,,vj)w,(z):l log %]ﬁﬂ) time. Further, for each v; € R(z), the largest weight
agreement matching in G(z) containing only edges incident on or below v; in
R(z) can also be found in the same time.

Theorem 1 is achieved by storing the vertices of R(z) in an appropriately
weighted search tree, described in Section 7.

Algorithm Outline for Matching 7. The matching graphs G(z) for all z € X
will be constructed in time proportional to the sum of the sizes of these graphs.

. w .
Uj ¢//'v'
e : 1 (Miy, Njp)
. w °, . Us
Uig ‘/:/.:Um ? /
: : : / (Mingjz)
ulk .\W. !
: Yk Uiy,
(M,k,Nj)

Ut g :’Uj//
><:”j'

U @ : (Mz’vT2(Uj’))
: ° i

; (Tl(ul//),Nj//)

Figure 2: An Agreement Matching with the Associated Agreement Tree.

This construction is described in Section 6. Then each matching graph G(z) is
processed as follows (see Theorem 1). For each u; € L(z), the largest weight
agreement matching in G(z) containing only edges incident on or below wu; in
L(z) is found. Further, for each v; € R(x), the largest weight agreement match-
ing in Gi(z) containing only edges incident on or below v; in R(z) is also com-
puted. This computation of agreement matchings is described in Section 7. For
each w € Ty, the largest agreement subtree of 77 and Ty (w) can be determined
easily from the above information as it is given by the largest weight agreement
matching in G(z) comprising only edges incident upon or below vertex w in
R(z). Section 5 shows that the total time taken above is O(}_%_, m; log o), as
required.

Inferring Maximum Agreement Subtrees. Consider a vertex w € Tb;
let be the beginning of the centroid path in 7% containing w. Then w €
R(z). The maximum agreement subtree of 77 and Ty(w) is given by the largest
weight agreement matching in G(z) comprising only edges incident upon or
below vertex w in R(z).

5 The Analysis

We need the following preliminary lemmas before beginning the analysis.

Lemma 2 Consider graph G(z). Then

E di (”S““(‘”) < di(z) log —.
ildi(z)> '

Proof: Multiplying each side by In 2, we get the following equivalent inequality:

E d nsav Z d ln no_

di z|d z)>

i|d;i(x

Let Zi|dl(:c)>1di('r) = nswe(z). Let a;(z) > 0 be such that d;(z) =
a;(z) (z). Then), i (o laz(:n)mi = n. Also note that nsav(z) <
nswe(z). Therefore, A < B — Z i (o)1 i (z) " nswe(x) Ina;(x). Tt suffices to
show that C' =), di(o)>1 a;(z)m; In ozl() > 0.

We split C' into two terms, Ci =), 1da(0)>1,a4(2)>1 a;(z)m; Ina;(z) and Cy =
2 i|di(2)>1,0<a; (x)<1ai(33)mi nai(z). C1 > 3, i|di(2)>1,a,(e)21(0‘1'(1’) — m.
Further. 3ot ot o1(e5(e) = 1 = T, 1 = o) =
Z|d s1(() 1)m; Z|d 51 @i(z)mi — Zz|dl() 1mi 2n—mn20.

Therefore C>Z|d)>1,0< (e)<1(1 a; (z) + ai(z) Ine;(z))m; > 0. [

Definition. Let S; denote the subtree of Ty induced by the leaves of M;.
Lemma 3 ZxEdel(x)>1 di(z) = O(my).

Proof: Consider G(z) such that d;(z) > 1. Then all but one of the vertices of
R(z) adjacent to u; are also in .S;; this is because M; intersects both the right
and the left subtrees of all but the bottommost of the vertices adjacent to u; in
R(x). Since each vertex in S; is in at most one matching graph G(z) and since
|Si| = m;, the lemma follows.]

Consider a vertex u; € m. From Theorem 1 and Lemma 2, the following work
is assigned to u; when considering matching graph G(z), z € X.

1. If M; and Ta(z) do not intersect then no work is assigned to u; as u; is

not in G(z).
2. If d;(z) = 1 then the work assigned to u; is O(log |T2(z)|)

3. If di(x) > 1 then the work assigned to u; is O(d;(x)log ;).

The following is a corollary of Lemma 3 and the above bounds.

10

Figure 3: Portion of Ty showing vertices in H(e) and last(e).

Corollary 4 The work assigned to verter u; over all matching graphs G(z) with
di(x) > 1 is O(m; log 7).

It now suffices to account for the work assigned to vertex u; over all matching
graphs G(z) with d;(z) = 1. Next, we show that this work is also O(m; log ->-).
We use the tree S; for this analysis.

Analyzing over S;. Note that for each z € X such that d;(z) = 1, z is not in
Si, 1.e., it lies on the path in 75 between the endpoints of some edge in S;; z is
said to lie on this edge of S;.

Consider the maximal subset H(e) of vertices z in X which lie on edge e
of S; and for which d;(z) = 1. Let H(e) = {x1,22,...,2,}; here the vertices
appear in increasing order of distance from the root of Ty. Let e = (y, z), with
y the parent of z in S;. Let first(e) = x1. Let last(e) be the first vertex z in X
such that d;(z) > 1 and z is on the path from 2z to z in Tb, if any; otherwise
let last(e) be z (and then z is a leaf). See Fig.3.

Lemma 5 The sum of |Ta(first(e))| over any subset of edges of S;, no two of
which lie on the same root-to-leaf path in S;, is O(n).

Proof: The above subtrees of T3 are all disjoint. [

Lemma 6 The work assigned to u; on edge e, i.e., in processing graphs G(z),

zC H(e)’ 15 O(]og Mﬂ)‘

[T2(last(e))|

11

Proof: The work assigned to u; in processing G(z;) is O(log %) for

1< j < kand O(log M) for j = k. Thus the sum of the work assigned

2(last(e))]
. Ty (first
to u; at the graphs G(z;) is O(log %%%) u
Lemma 7 Consider edges e,e’ € S; such that e connects verter z to its par-

ent and e’ connects verter z to one of its children. Then |Ta(last(e))| >

|To(first(e'))].

Proof: first(e') is a descendant of last(e) in Ts.]

We claim that sum of the work assigned to u; over all the edges of S; is
O(m;log 2-). We show this next by applying tree contraction on S;.

Removal step. First, remove all edges in S; incident upon leaves in S;.
The work done on these edges is bounded by the sum over all such edges e
of O(log |Ta(first(e))]); further, the number of such edges is at most m;. By
Lemma 5, this sum is at most O(m; log ;).

Contract step. Next, contract all paths consisting only of degree two vertices
in S; into a single edge. The H set for such an edge e is defined to be the union
of the H sets for the edges comprising the path which was contracted to give
e. The work done on e is also defined to be the sum of the work done on the
relevant edges. first(e) and last(e) are again defined as before. As is easily
seen, Lemma 5, Lemma 6, and Lemma 7 hold for the new contracted tree as
well. Further, this new tree has at most m; /2 leaves.

Wrapping Up. O(logm;) phases of the removal and contract steps are
performed. In the jth phase, the work done on the edges removed is

O(55%t log %) Summing up over all phases, we get

Lemma 8 The work assigned to vertezx u; over all matching graphs G(z) with
di(x) =1 is O(m; log 7).

The following lemma is needed in the next section.

Lemma 9 The total number of edges incident to u; over all matching graphs is

O(m; log).

Proof: Recall that the work attributed to a singleton edge is of the form
log lTiLﬂ > 1. Thus, Lemma 8 implies that there are O(m;log -) singleton
edges incident to u;, and by Lemma 3, there are O(m;) non-singleton edges

incident to u;. []
As discussed in Section 3, Corollary 4 and Lemma 8 imply:

Theorem 10 There is an algorithm for the Marimum Agreement Subtree Prob-
lem for two binary trees with an O(nlogn) running time.

12

6 Constructing the Matching Graphs

We show how all the matching graphs can be set up in time proportional to the
sum of their sizes, which by Lemma 9 is O(Zf;ll m; log ml,) First, we show
how to set up the vertices and edges in each graph. Then we show how the
weights on the edges are computed.

Preprocessing. T is preprocessed in linear time to compute a pointer from
each vertex to the beginning of the centroid path containing it. It is also pre-
processed to enable induced subtree computations in the same time bounds.

6.1 Setting up Vertices and Edges.

The matching graphs in which vertex u; appears along with the multiedges in-
cident upon it in these graphs are determined in time proportional to the sum
of the number of such multiedges over all such graphs as follows.

Processing u,. First, consider the leaf u, of 7. The only matching graphs
containing u, are those which correspond to centroid paths beginning at vertices
z of T, such that # is an ancestor of the twin of u, in 7. Further, if u, € L(z)
then there is a multiedge between u, and vertex y € R(z) if and only if y is
the nearest ancestor of u,’s twin in the centroid path beginning at z. Thus
the matching graphs to which u, belongs and the multiedges incident on u,
in these graphs can be determined in time proportional to the number of such
graphs, given pointers from each vertex in 75 to the beginning of the centroid
path containing it.
Lemmas 11 and 12 are needed for the next step.

Lemma 11 If verter v; in the centroid path beginning at vertex x of Ty is in
Si then u; is adjacent to v; in G(z).

Proof: Clearly, if j # ¢ then M; and N; intersect and if j = ¢ then v;’s twin
1s in M;. []

Lemma 12 If vertex v; wn the centroid path beginning at verter x of Ty is not
in S; then u; is adjacent to v; in G(z) if and only if v; # vy and there exists
some vertex y € S; which is in Nj.

Proof: We assume that j # ¢. For if j = ¢ then v; = v, is a leaf of 7% and
since 1t does not appear in S;, its twin is not in M;, and therefore, there i1s no
edge between u; and v;.

First, suppose some vertex y € S; is in N;. Then, clearly, IV; intersects M;.
Therefore, there must be an edge between u; and v; in G(z). Next, suppose
that there is such an edge. Then N; intersects M;. Therefore, there exists some
y € S; which is in Nj;. [

13

Processing u;,1 < i < p — 1. The subtrees of T induced by leaves of each
M; are computed in 0(2:11)_1 m;) time as described in Section 8. Let S; denote
this induced subtree. For each vertex z in S;, perform the following in 75 until a
vertex in the centroid path containing the parent of z in S; is reached: repeatedly
jump to the parent of the beginning of the centroid path in 75 containing the
current vertex. By Lemmas 11 and 12, there is a multiedge from u; to each
vertex y of Ty (in the corresponding matching graph containing y) encountered
in this following procedure. Thus this procedure takes time proportional to the
sum of the number of multiedges incident on u; over all matching graphs it lies
in, given pointers from each vertex in 75 to the beginning of the centroid path
containing it.

Remark. For an edge between u; and v, ¢ # p, j # ¢, v; € Si, the vertex
y € S; such that v; is on the path from y to z in 73 can be easily computed in
the course of the above procedure, where z is the parent of y in S;. We define
map(i, j) to be the vertex y as above if v; € S; and the vertex v; itself, otherwise.

6.2 Determining Edge Weights in G(z).

Recall that for a multiedge between u; and v; in G(z), we need to determine
the sizes of the maximum agreement subtrees of the following pairs of trees.

1. M;, N;: white edge weight.
2. Th(w;), N;: red edge weight.
3. M;, T5(v;): green edge weight.

Also recall that the multiedge itself indicates that M; and N; intersect.

Assume that the agreement matchings in graphs G(z') have already been
determined, where z’ is a descendant of z in T5. Using this information and the
information computed in Step 2, we show how the above required information
can be computed for multiedge (u;, v;) in graph G(z) in constant time. Recall
that in Step 2, the maximum agreement subtrees of M; and the subtrees rooted
at each vertex w of S; were determined.

White Edge Weight. Let y = map(i,j). If y # v; then the maximum
agreement subtree of M; and the subtree of S; rooted at y gives the desired
information. Suppose y = v;, i.e, y € S;. Let z be the child of y € S; such that
z € N;. The maximum agreement subtree of M; and the subtree of S; rooted at
z gives the desired information in this case. This takes constant time.

Green Edge Weight. The maximum agreement subtree of M; and the subtree
of S; rooted at y = map(i, j) gives the desired information in constant time.

Red Edge Weight. Let y be the root of N;. Recall that the agreement
matchings in graphs G(z') have already been determined, where 2’ € X is a

14

descendant of z in 7. Since y € X, agreement matchings in graph G(y) would
already have been computed. Recall from Theorem 1 that for each vertex in
L(y), the maximum weight agreement matching containing only edges incident
on or below that vertex in L(y) has been computed.

Note that since M; intersects with T5(y) (since a multiedge exists between u;
and v;) u; € L(y). The largest weight agreement matching in G(y) containing
only edges incident on or below vertex u; in L(y) gives the desired information.
This information is computed as graph G(y) was processed, so it can be accessed
in constant time now.

7 Computing Agreement Matchings

Consider graph G(z). Recall that for each vertex in L(z), we need to compute
the largest weight agreement matching containing only edges incident on or
below it in L(z), and likewise for each vertex in R(z). We outline the algorithm
before giving details. The algorithm is similar to that in [FPT95a], but the data
structure we use and the associated operations are different.

Algorithm Outline. First, a weight balanced binary search tree 7 whose
leaves are the vertices in R(z) is set up; here, the vertices in R(z) are given
appropriate weights yet to be described. Next, the vertices in L(z) are considered
in turn in bottom-to-top order. For each vertex u; € L(z), the vertices adjacent
to it in R(z) are searched for in T; the largest weight agreement matching with
each white edge incident on u; as topmost edge 1s found in the course of this
search, as is the largest weight proper crossing for each green edge incident on u;.
From the above information, the largest weight agreement matching containing
only edges incident on or below u; in L(z) is easily found. Following the above
search, the information stored in 7 is updated. The time taken for processing
ui will be O(d;(x) log “2252) if di(z) > 1 and O(log L&) if di(w) = 1 and
u; is adjacent to v; in G(z). After all vertices in L(x) have been processed,
the vertices in R(z) are processed. For all such vertices v;, the largest weight
agreement matching containing only edges incident on or below v; in R(z) are
found in O(|R(z)|) time by a single scan of 7. The bounds in Theorem 1 follow.

Weighted Search Tree 7. Vertex v; € R(z) is given weight n; + %Uﬁ()xl—) if
some non-singleton edge in G(x) is incident upon it, and weight n;, otherwise.
The sum of the weights of vertices in R(z) is at most 2|T'(z)|. The construction
of T using these weights is in Section 9.

Tree 7 has the following three crucial characteristics.
1. 7T can be constructed in O(|R(z)|) time.

2. Searching for v; in 7 takes O(log %?M) time.

15

3. Searching for an ordered subset {v;,, ..., v;, } of R(z), each vertex in which
has an incident non-singleton edge, takes O(k log %U(x)) time. The pro-
cedure used here is to first search for v;, starting at the root, then search

for v;, starting at v;, in the obvious way, and so on.

Auxiliary Information in 7. We maintain the following auxiliary information
at each internal vertex in 7. Recall that we process the vertices of L(z) in
order; an edge of G(z) is said to be in T if its endpoint in L(z) has already
been processed. Further, we say that an edge of G(z) is in 7 (z) if its endpoint
in L(z) has been processed and is located in 7 (z). Let anc(z) denote the set
of ancestors of z in 7, z inclusive. For a leaf v; € T, [fringe(v;) is the set
of vertices in 7 which are left children of vertices in anc(v;). rfringe(v;) is
defined analogously.
The following information is maintained at each vertex z of T.

1. g(z): For each z, max,icanc(z) g(2') Will be the heaviest green edge in 7
which forms a proper crossing with each red edge in 7 ().

2. z(z): This is largest weight proper crossing among the edges in 7 (z).

3. m(z): This is largest weight agreement matching containing a white edge
such that the topmost white edge is in 7 ().

4. y(z): This the largest weight proper crossing such that the green edge in
this crossing is in 7 but not in 7 (z), the red edge in this crossing is in
T (z), and the green edge does not form a proper crossing with all the red
edges in 7 (z).

. 7(2z): This is simply the heaviest red edge in 7 (z).

Ut

Next, we show how vertex wu; is processed, given that vertices below it in
L(z) have been processed. For the moment assume that d;(z) = 1. The case
when d;(z) > 1 will be addressed later.

Case 1. d;(x) = 1. Let v; be the only vertex to which u; is adjacent. First,
v; is found in 7 this takes O(log %ﬂ) time. Next, the white, red, and green

i
edges incident on u; are processed as described below in the same time bound.
An important fact to note 1s that in each case, the information in 7 will be read
and updated only at vertices in the set anc(v;) and vertices which are children

of vertices in this set; the time taken in this process will be proportional to the

depth of v;, i.e., O(log IT(x)I).

n;
Processing White Edge ¢ = (u;,v;). First, the largest weight agreement
matching with e as the topmost edge is determined. Then the m() values at
vertices in anc(v;) are updated according to the weight of this matching. All
other information remains unchanged.

16

The above desired matching is computed as follows. There are two cases.

Either this matching contains another white edge. The largest weight matching
among all such matchings is given by 1 + max.eifringe(v,) m(z). The other case
occurs when this matching contains only edge e plus a proper crossing. Thus, it
suffices to compute the largest proper crossing containing edges dominated by
e. This is given by max{max.e;tringe(v,) ¥(2), MaX;cifringe(v;)
(Maxicanc(z) 9(2")) + r(2), MaxX.cifringe(v;) ¥(2)}. The first term here is the
largest weight proper crossing in which both edges are in 7(z) for some z €
lfringe(vj). The second term is the largest weight proper crossing in which
the red edge is in 7 (z), for some z € {fringe(v;), the green edge is not in this
subtree but it forms a proper crossing with each red edge in this subtree. The
third term is the largest weight proper crossing in which the red edge is in 7 (z),
for some z € [fringe(v;), the green edge is not in this subtree and it does not
form a proper crossing with some red edge in this subtree.

Processing Red Edge e = (u;, v;). The m() and () values remain unchanged
in 7. Next, note that no green edge already in 7 can form a proper crossing
with e. This implies that the y() and g() values for z € anc(v;) need to be
modified.

Consider y(z) first, z € anc(vj). A green edge in 7 which formed a proper
crossing with all red edges in 7(z) does not do so any more. So y(z) is set to
max{y(z), (maXZ’EanC(Z) 9(z")) + r(2)}.

Consider g(z) next, z € anc(v;). g(z) is set to ¢. Before this is done, g(y)
is updated to maxyeanc(y) 9(y') for each y € lfringe(v;) and y € rfringe(v;).
The invariant on g() is easily seen to be maintained.

Finally r(z) is set to max{r(z), wt(e)}, for each z, z € anc(v;).

Processing Green Edge e = (u;, v;). Note that e can form a proper crossing
with only those red edges in 7 which are in 7 (z), z € rfringe(v;); further,
e forms a proper crossing with each such red edge. Therefore, g(z) is set to
max{max;,¢anc(z) §(2'), wt(e)} for each z € rfringe(v;).

For each z € anc(v;), x(z) is then set to the larger of the current value and
max(wt(e) + r(z’)), the maximum being taken over all vertices 2’ € rfringe(v;)
which are descendants of z. Also note that max, ¢, fringe(w,)(wt(e) + r(2)) gives
the largest weight proper crossing containing e.

Case 2: d;(x) = k > 1. Suppose u; is adjacent to vj,,vj,,...,v;,, in bottom
to top order. Then these vertices are searched for in sequence in 7. This takes
O(klog %ﬂ) time by the procedure mentioned earlier, i.e., first search for v;,
starting at the root, then search for v;, starting at v;, in the obvious way, and
so on. In the above process, all vertices in the set {z|z € {anc(v;,) U anc(v;,) U
...Uanc(v;,)}} are traversed. Again, as in Case 1, only information at vertices
in the above set and at children of vertices in the above set needs to be read
and updated. This takes time proportional to the size of the above set, which,

in turn, is O(k log %ﬂ)

17

Processing R(z). It remains to show how, for each v; € R(z), the largest
weight agreement matching containing only edges incident on or below v; in
R(z), is computed.

For each v; € R(z), we find the largest weight agreement matching with
some white edge incident upon v; as the dominant edge and the largest weight
proper crossing containing some red edge incident on v;. This information clearly
suffices. The first of the above two is given simply by m(v;). The second is given
by max{y(z), max. canc(v;) 9(2') + r(v;)}. Over all v; € R(x), the computation
of the above two values can be accomplished in a single pass of 7 in O(|R(z)|)
time.

8 Computing Induced Subtrees

We show how to preprocess a tree in O(|T|) time so that given any subset L of
its leaves in order, the subtree induced by L can be computed in O(|L]) time.
The construction is a generalization of the proof of Lemma 5.2 in [FT95].

T is preprocessed for Least Common Ancestor (LCA) queries in O(|T) time.
This enables the computation of the LCA of any two leaves of T" in constant time
[HT84]. The distance of each vertex from the root of 7' is also computed; call
this quantity the depth of a vertex.

Given the ordered set of leaves L = Iy,l2,...,11|, the following steps are
executed. First, the LCA [} of each pair of consecutive leaves l;,l;41, 1 < i <
|L] — 1, is found; the I/s will be the internal vertices in the subtree induced by
L. Next, the edges between vertices are set up as follows. For each vertex
v in the sequence ly,1{, 15,15, . ..,l|L|_1,l|’L|_1,l|L|7 two vertices vip and vrignt
are computed. vis; is the nearest vertex to the left of v, if any, which has
depth strictly less than v. wvrigns is defined analogously. This computation is
easily accomplished in O(|L|) time. Finally, edges are put between v and one of
Vieft, Vright, Whichever has greater depth. The root of the induced tree will be
the unique vertex for which both vi.f; and vy;g5: are undefined.

Step 2 of the Main Algorithm. Step 2 (see Section 3) requires finding the
induced trees S; for each M;, 1 <i<p-—1,in O(Z?_l m;) time. This is done
in two steps (essentially this procedure is described in [FT95]). First, the leaves
of each M; are sorted by the order in which their twins occur in 7. This is done
by bucket sorting all the leaves of T} by the order in which their twins occur in
Ts, and then bucket sorting them (in a stable way) by the order in which the
trees M; to which they belong occur in Tj. This takes O(Z?_l m;) time.

Next, for each M;, 1 < i < p — 1, the subtree of T5 induced by the leaves of
M; is found using the algorithm described above in O(m;) time. The total time
taken is O(Ef_l m;).

18

9 The Weighted Search Tree

Recall that we are given vertices vy, va, .. ., V|g(z)|, such that vertex v; has weight
w(v;) = n;+ %ﬁi—) if it has an incident non-singleton edge, and weight w(v;) =
n;, otherwise.

We construct a weight balanced tree 7 in O(|R(z)|) time. The weight w(z)
of an internal node z is the sum of the weights of the leaves in its subtree. In this
construction, the weight of the grandparent of an internal node v, if it has one,
is at least twice the weight of v, as is shown in Lemma 13. The construction
follows.

If there is just one vertex it forms the tree. Otherwise, the vertices are
partitioned into two groups, so that the total weight is as evenly partitioned
as possible. To explain the precise rule, the following notation is helpful.
diff; =|>7_, wv;) — Zli(f_}_)ll w(v;)|. The vertices are partitioned into groups
vi, -, v and vigq, -, U|Rix)|, such that diff; < diffjy1,diffj_1 (tles are
broken arbitrarily). Clearly, a binary search can locate j. A binary search that
grows from each of the two endpoints of the ordered collection of vertices can
find j in time O(logmin{j, |R(z) — j}. Then the two collections are recusively
formed into binary trees, and provide the left and right subtrees, respectively,
for the complete tree. It is not hard to show that the construction of this tree
takes time O(|R(z)]| overall.

Lemma 13 Let z be an internal node of the tree, and suppose it has a grand-
parent z". Then w(z") > 2w(z).

Proof: Let 2’ be the parent of z. WLOG let z’ be the left child of z”’. Let v be
the rightmost vertex in the subtree rooted at z’. Then w(z') — %w(v) < %w(z”),
for otherwise v would be placed in the right subtree of z”. As v must be in the
right subtree of z’, the left subtree of z’ has weight less than fw(z"). Thus we
need only consider the case that z is the right child of z/. As z is not a leaf,
its subtree contains at least two vertices. Let u be the leftmost such vertex.
Then w(z) — %w(u) < %w(z’). Thus 2w(z) — w(u) — %w(v) < %w(z”). As
w(z) > w(u) + w(v), it follows that w(z) < Fw(z"). []

It follows from Lemma 13 that the time to search for v; in 7 is O(1 +
log LX) = O(1 + log 22,

Next consider the case when an ordered subset {v;,,...,v;, } of vertices is
given, each having an incident non-singleton edge. The algorithm to search for
these vertices is to first start from the root and search for v;,, then start from
vj, and search for v;,, then start from v;, and search for v;,, and so on. Each
search 1s performed in the obvious way. For, technical reasons, we return to the
root at the end.

Each edge in T is traversed at most twice during the above search, once in
each direction.

19

Consider the topological subtree formed by the traversed edges. It has k
leaves and k — 1 internal nodes with two children. These nodes form a tree, with
each edge in the tree corresponding to a path in the search tree. We associate
with a node in the topological subtree the path in the search tree corresponding
to the edge from the node to its parent in the topological subtree. The associated
path for the root node of the topological subtree is the path from this node to
the root of the search tree. We will give an upper bound on the total number
of vertices on these paths excluding their endpoints. To do this, we give a
lower bound on the total weight of the “off-path” subtrees for each path. (An
“off-path” subtree for a node is simply the subtree which does not contain the
continuation of the path.)

Let [be the number of internal vertices on one such path associated with node
v. By Lemma 13, the sum of the weights of every second root of the off-path
subtrees is at least (2w(v) —w(v)) + (4w(v) — 2w(v)) + - - - + 21/ w(v) = 1/21-1
w(v)) = 2% — Dw(v). But w(v) > nlsTa(f()m[) and the total weight is at most
2T(z). Simple calculus shows that the sum of these lower bounds on the path
lengths is maximized when the terms w(v) are all at their minimum value and
the path weights are all equal at 27'(z)/(2k — 1). This gives path lengths of

O(log %U_(f)) and hence a total path length of O(k log %(I))

10 Concluding remarks

We can generalize our technique to higher degree bounds d > 2, by combining
it with techniques from [FT95, Section 2] for unbounded degrees. This appears
to yield an algorithm with running time O(min{nv/dlog® n, ndlognlogd}). We
conjecture, however, that there is an algorithm with running time O(n\/glog n).

References

[AK94] A. AMIR, D. KESELMAN. Mazimum agreement subtrees in multiple
evolutionary trees. STAM J. Computing, to appear.

[CR96] R.. CoLE, R. HARIHARAN. An O(nlogn) algorithm for the maz-
tmum agrement subtree problem for binary trees. Proc. of the Tth

ACM-SIAM SODA, pp. 323-332, 1996.

[FT94] M. FaracH, M. THORUP. Optimal evolutionary tree comparison
by sparse dynamic programming. Proc. of the 35th IEEE FOCS,
pp. 770-779, 1994.

[FT95] M. FaracH, M. THORUP. Fast comparison of evolutionary trees.
Information and Computation, 123(1), pp. 29-37, 1995.

20

[FPT95a]

[FPT95b)]

[FG85]

[GY95]

[HT84]

[Ka95]

[KKM92]

[SW93]

M. FaracH, T. PRzZYTYCKA, M. THORUP. The marimum agreec-
ment subtree problem for binary trees. Proc. of 2nd ESA, 1995.

M. FaracH, T. PrRzyTYCKA, M. THORUP. Agreement of many
bounded degree evolutionary trees. Information Processing Letters,

55(6), pp. 297-301, 1995.

C. R. FINDEN, A. D. GORDON. Obtaining common pruned trees.
Journal of Classification, Vol. 2, pp. 255-276, 1985.

R. GRrISHMAN, R. YANGARBER. Private Communication, NYU,
1995.

D. Harel and R.E. Tarjan. Fast algorithms for finding nearest com-
mon ancestor. Computer and System Science, 13, p. 338-355, 1984.

M-Y. Kao. Tree contractions and evolutionary trees. To appear in

SIAM Jornal of Computing, 1995.

E. KuBicka, G. KuBicki, F. R. McMoRRIis. An algorithm to
find agreement subtrees. Journal of Classification, 1992.

M. STEEL, T. WARNOW. Ratkoura tree theorems: computing the
mazimum agreement subtree. Information Processing Letters, 48,

pp. T7-82, 1993.

21

