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Abstract. [terative substructuring methods are introduced and analyzed for saddle point problems
with a penalty term. Two examples of saddle point problems are considered: the mixed formulation
of the linear elasticity system and the generalized Stokes system in three dimensions. These problems
are discretized with spectral element methods. The resulting stiffness matrices are symmetric and
indefinite. The unknowns interior to each element are first implicitly eliminated by using exact local
solvers. The resulting saddle point Schur complement is solved with a Krylov space method with block
preconditioners. The velocity block can be approximated by a domain decomposition method, e.g., of
wire basket type, which is constructed from local solvers for each face of the elements, and a coarse
solver related to the wire basket of the elements. The condition number of the preconditioned operator
is independent of the number of spectral elements and is bounded from above by the product of the
square of the logarithm of the spectral degree and the inverse of the discrete inf-sup constant of the
problem.
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1. Introduction. In this paper, we continue our study of iterative substructuring
methods for elliptic systems of partial differential equations in three dimensions dis-
cretized with spectral elements. In part I of this study, [33], we focused on the analysis
of symmetric positive definite systems, considering as a model the linear elasticity sys-
tem for compressible materials, in its pure displacement formulation. In this paper, we
instead focus on indefinite systems originating from mixed spectral element discretiza-
tions, such as the system of linear elasticity for almost incompressible materials and
the Stokes system. In computational elasticity, the mixed formulation provides a well-
understood remedy for the problem of locking due to the incompressibility constraint;
see, e.g., Babuska and Suri [1] and the references in part I, [33]. We refer to Brezzi
and Fortin [10] and Girault and Raviart [21] for a general introduction to mixed finite
elements.

I[terative substructuring methods form a main class of domain decomposition meth-
ods; see Smith, Bjgrstad, and Gropp [40], Chan and Mathew [15], and Dryja, Smith,
and Widlund [17]. For a brief review of iterative substructuring methods for linear
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elasticity in pure displacement form, see Section 2; we also refer to part I of this study,
[33] and the references therein.

The mixed spectral element discretization considered in this paper has been studied
by Maday, Patera, and Rgnquist [27] for the Stokes system; see also Canuto, Hussaini,
Quarteroni, and Zang [12], and Bernardi and Maday [4, 3] for an introduction to spectral
methods. Iterative substructuring methods for spectral and hp discretizations of Stokes
and Navier-Stokes problems can be found in Quarteroni [36], Fischer and Rgnquist [20],
Maday, Meiron, Patera, and Rgnquist [26], Renquist [37], Le Tallec and Patra [25], and
Casarin [14]. For h-version finite elements, iterative substructuring methods for Stokes
problems can be found in Bramble and Pasciak [6], while multigrid methods for mixed
linear elasticity have been studied by Brenner [7, 8, 9].

In this paper, we extend the iterative substructuring methods, previously studied for
scalar elliptic problems in [32, 35] and positive definite systems in [33], to saddle point
problems with, or without, a penalty term. We will consider two mixed spectral element
discretizations, known as the @), — @ ,,_2 and ,, — P,,_1; methods. The unknowns interior
to each element are first implicitly eliminated by a substructuring technique as in the
positive definite case. The resulting Schur complement corresponds to a saddle point
problem, involving the interface unknowns and piecewise constant Lagrange multipliers
(pressures in the Stokes case). This saddle point Schur complement system is solved
by a Krylov space method such as GMRES or PCR with block-diagonal or block-
triangular preconditioners. The velocity block can, e.g., be approximated by using a
domain decomposition method of wire basket type, constructed from local solvers for
each face of the elements and a coarse solver related to the wire basket of the elements.
The main result of this paper is the proof of quasi-optimal bounds on the condition
number of the resulting iterative methods. These bounds are independent of N, the
number of spectral elements, but depend on the square of the logarithm of the spectral
degree n and on the inverse of the discrete inf-sup constant of the mixed discretization.
Due to the better stability properties of (J,, — P, _1 spectral elements, we will see that
the convergence bounds for our algorithm improve when the problem is discretized with
@, — P,_1 instead of Q),, — @),,_o spectral elements. On the other hand, the practical
implementation of (),, — P,_1 spectral elements is more complicated.

This paper is organized as follows. In the next section, we introduce the mixed for-
mulation of the linear elasticity system and the analogous generalized Stokes problem.
In Section 3, we introduce the mixed spectral element discretization of saddle point
problems with a penalty term and we review the inf-sup condition for mixed spectral
elements. A relationship between the almost incompressible and the incompressible
limit is described in Section 4. In Section 5, we introduce some extension operators
from the interface to the interior of each element. In Section 6, we describe the basic
iterative substructuring process for saddle point problems resulting in a saddle point
Schur complement Sr. In Section 7, we show that such a saddle point Schur complement
satisfies a uniform inf-sup condition. In Section 8, we introduce some block precondi-
tioners for Sr with a wire basket based block. The mixed elasticity and the Stokes
case are treated separately. The use of other basic domain decomposition methods,
including the Neumann-Neumann algorithm, is also discussed. Section 9 concludes the
paper with a report on some of our numerical results.

We note that a summary of the results of this paper and those of [33] has been given
in a conference paper [34] prepared for the proceedings of a conference held in June
1997 at the IMA, Minneapolis. The first author has also submitted a conference paper
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[28] to the proceedings of the Tenth International Conference on Domain Decomposi-
tion Methods held in Boulder, Colorado in August 1997. That paper provides a brief
discussion of the results of this paper in addition to other methods of solving saddle
point problems.

2. The linear elasticity and Stokes systems. The pure displacement form of
the linear elasticity problem has been studied in part I, [33]; we briefly review this
model here. We refer generally to Ciarlet [16] for a detailed treatment of nonlinear and
linear elasticity. Let Q C R be a polyhedral domain and let 'y be a nonempty subset
of its boundary. Let V be the Sobolev space V = {v € H!(Q)?: v|p, = 0}.

The linear elasticity problem consists in finding the displacement u € V of the
domain €, fixed along I'g, subject to a surface force of density g, along I'y = 9 — I,
and a body force f:

(1) 2,u/ dac+/\/dlvudlvvdac—<Fv> Vvev.

Su])

Here A and y are the Lamé constants, ¢;;(u) = %(8“1 + the linearized strain tensor,

and the inner products are defined as

3
:ZE€ij(u)€ij(V)7 <F,v>= /Zfzvz dm+/ E!]ﬂ)z ds.

i=1 j=1 I35
When A approaches infinity, this pure displacement model describes materials that are
almost incompressible. In terms of the Poisson ratio v = m, such materials are
characterized by values of v close to 1/2. It is well known that when low order, h-
version finite elements are used in the discretization of (1), locking can cause a severe
deterioration of the convergence rate as h — 0; see, e.g., Babuska and Suri [1]. If
the p-version is used instead, locking in u is eliminated, but it could still be present
in quantities of interest such as Adivu. Moreover, the stiffness matrix obtained by
discretizing the pure displacement model (1) has a condition number that goes to infinity
when v — 1/2. Therefore, we must expect that the convergence rate of any iterative
method will deteriorate rapidly as the material becomes almost incompressible.

Locking can be eliminated by introducing the new variable p = —Adivu € L?(Q) =

U and by replacing the pure displacement problem with a mixed formulation:
Find (u,p) € V x U such that

2u/e(u):e(v)dm - /divvpdw = <F,v> WeV
Q Q
(2)
—/divuqda@ - %/pqdm = 0 Vg e U;
Q Q

see Brezzi and Fortin [10]. Using the notations,

e(u,v) = 2,u/Q e(u) 1 e(v) dz, b(v,q) / divv ¢ dz, ¢(p,q) = /qu dz,

the problem takes the following form:
Find (u,p) € V x U such that

e(u,v) + b(v,p) = <F,v> WweV
(3) 1
b(u,q) — sclpq) = 0 Vg € U.



When A — oo (or, equivalently, v — 1/2), we obtain the limiting problem for incom-
pressible linear elasticity; we simply drop the appropriate term in (3).

In case of homogeneous Dirichlet boundary conditions on the whole boundary 0%,
problem (2) is equivalent to the following generalized Stokes problem (see Brezzi and
Fortin [10]):

Find (u,p) € V x U such that

s(u,v) +  b(v,p) = <F,v> VeV
(4)

b(u,q) — smelpg) = 0 Vgel.

Here,
s(u,v) = u/ Vu: Vv dz,
Q

and U = L2(f2), since it can be shown that the pressure will have zero mean value due to
the homogeneous Dirichlet boundary conditions on u. The penalty term in (4) can also
originate from stabilization techniques or penalty formulations for Stokes problems. The
classical Stokes system, describing the velocity u and pressure p of a fluid of viscosity
i, can be obtained from (4) by letting A — oo; again we simply drop one of the terms
in formula (4). We refer to Girault and Raviart [21] for an introduction to the Stokes
and Navier-Stokes equations and their finite element discretization. See also Yang [42]
for an alternative formulation of saddle point problems.

3. Mixed spectral element methods. Let Q¢ be the reference cube (—1,1)?,
let @, (S2ef) be the set of polynomials on Qe of degree n in each variable, and let
P,(Qet) be the set of polynomials on Q¢ of total degree n. We assume that the
domain € can be decomposed into N nonoverlapping finite elements €2;, each of which
is an affine image of the reference cube. Thus, Q; = ¢;(Qer), where ¢; is an affine
mapping.

a) @ — Qn—2. This method was proposed by Maday, Patera, and Rgnquist [27] for
the Stokes system. V is discretized, component by component, by conforming spectral
elements, i.e. by continuous, piecewise polynomials of degree n:

V' = {V eEV: vk|Qi O¢i € Qn(Qref)7 1= 17"'747\77 k= 1,273}
The pressure space is discretized by piecewise polynomials of degree n — 2:
U" = {(] € L(QJ(Q) : q|Qi o¢; € Qn—Q(Qref)v 1=1,-- 'HN}'

We note that the elements of U™ are discontinuous across the boundaries of the €2;’s.
These mixed spectral elements are implemented using Gauss-Lobatto-Legendre (GLL)
quadrature, which also allows the construction of very convenient tensor-product bases
for V* and U", described below. Another basis for U™ associated with the Gauss-
Legendre (GL) nodes has been studied in [20] and [26]. The @, — Q,,—2 method does
not satisfy a uniform inf-sup condition; see Section 3.2.

b) @, — P,—1. This method uses the same discrete space V" as before, together
with a different pressure space consisting of piecewise polynomials of total degree n— 1:

{¢€U:qlg,00; € Posi(Qpeg), i=1,---,N}.
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This choice has been analyzed in Stenberg and Suri [41] and more recently in Bernardi
and Maday [5], who proved a uniform inf-sup condition for this and a number of other
spaces; see Section 3.2. For F,_1 it is not possible to have a tensorial basis, but other
standard bases, common in the p-version finite element literature, can be used.

Other interesting choices for U™ have been studied in Canuto [11] and Canuto and
Van Kemenade [13] in connection with stabilization techniques for spectral elements
using bubble functions.

3.1. GLL quadrature and the discrete problem. Denote by {fi,ijfk}?,j,kzo
the set of GLL points of the reference cube [—1,1]?, and by o; the quadrature weight
associated with & . Let [;(z) be the Lagrange interpolating polynomial of degree n
which vanishes at all the GLL nodes except &;, where it equals one. The basis functions
on the reference cube are then defined by a tensor product as

Li(2)(y)lk(2), 0<14,j,k<n.

This is a nodal basis, since every element of @, () can be written as

u(z,y,2) = Zn: zn: Zn: w(&, &5, Eu)li(2) 1 (y) k().

=0 j=0 k=0

If we use the Q),, — (),—2 method, every element of U™ can be written, on the reference
cube, using only the internal GLL nodes:

n—1ln—1n-1

ple,y,2) =30 D0 Y p(&n & &) (y) k().

i=1 j=1 k=1

Here, INZ(:U) is the Lagrange interpolating polynomial of degree n — 2 vanishing at all the
internal GLL nodes except &;, where it equals one. If we use the ¢J,, — P,,_1 method, a
basis for U™ can be constructed by using integrated Legendre polynomials:

pley2)= > aieLi(e)Li(y) Li(2),
0<itj+hk<n—1
where Lo(z) = 1, Liyi(z) = [*, Li(t)dt and L; is the Legendre polynomial of degree
i, i>0.
We now replace each integral of the continuous models (3)-(4) by GLL quadrature.
On Qref7

u v nQref ZZZ 5275]7516 5275]75]6)0-20-]0-167
=0 j=0 k=0

and in general on €,

N n
:Z Z uo¢s 5275]7516)(”0¢s)(5275]75k)|]|UzU]Uk7

s=11,7,k=0

where |J;| is the determinant of the Jacobian of ¢s. This inner product is uniformly
equivalent to the standard Ly—inner product on @, (Qef). Thus it is shown in Bernardi
and Maday [3, 4] that

(5) 1ullZ (@) < (s W < 27/l 70, Vi € Qn(Qref)-
5



The discrete bilinear forms obtained are

en(u,v) =2pu(e(u) : €(v))n,q, sp(u,v) = p(Vu: Vv), q,

bn(u7p) - _(divuap)n,ﬂ7 Cn(p7 q) - (p7 q)n,ﬂ

We note that, since GLL quadrature is exact for all integrands in (3,_1 and we are
using affine images of the reference cube, the last two bilinear forms are exact, i.e.
b,(u,p) = b(u,p) and ¢, (p, q) = ¢(p,q), Y(u,p) € V*xU™. An analysis of Q,, — Q2
method for the Stokes case can be found in Bernardi and Maday [3, 4] and Maday,
Patera, and Rgnquist [27].

The discrete elasticity problem obtained by spectral element discretization is:
Find (u,p) € V" x U" such that

en(u,v) + by(v,p) = <F,v>,q VWveV?
(6)

by(u,q) — %cn(p,q) = 0 Yge U™,

In the incompressible case, we remove the ¢, (-, -) term, since 1/A = 0. The discretization
of the generalized Stokes problem (4) leads to similar saddle point problems, with s, (-, )
in place of e, (-, -) and the penalty parameter equal to 1/(X + u).

These are all saddle point problems, with a penalty term in the elasticity and
generalized Stokes case. Using, for simplicity, the same notation for functions and their
coefficient vectors, we can write the matrix form of (6) as

@ AN FESINEH

where A, B, and C' are the matrices associated with s, (-, -) or e, (-, ), and with b, (-, -),
and ¢, (-, ), respectively. The penalty parameter is 2 = % for elasticity problems and
t? = )\_}_ﬂ for generalized Stokes problems. The stiffness matrix K is symmetric and
indefinite. It is less sparse than the stiffness matrices obtained by low-order finite

elements, but still well-structured in particular in the ¢, — @),_2 case, and the cor-

responding matrix-vector multiplication is then relatively inexpensive if advantage is
taken of the tensor product structure; see, e.g., Bernadi and Maday [3].

In the following, we will also use ¢ > 0 and C' < +00 to denote generic constants in
our inequalities; it will be clear from the context if we are referring to generic constants
or to the bilinear form ¢(+,-) and the associated matrix C'.

Block-diagonal and block-triangular preconditioners for saddle point problems with
a penalty parameter have been studied in Klawonn [24, 22, 23] for low-order finite ele-
ments and by Pavarino [30, 31] for spectral element methods. The resulting precondi-
tioned operators have a convergence rate which is independent of the penalty parameter
t, the number of spectral elements N, and which depends only mildly on the spectral
degree n. Domain decomposition techniques can be applied to each diagonal block of
these preconditioners. In contrast to this approach, we will in this paper apply itera-
tive substructuring techniques directly to the saddle point problem (7). The resulting
Schur complement problem is itself of saddle point form and of reduced dimension,
and can be solved in an iteration using a block preconditioner, based again on domain
decomposition techniques.



3.2. The inf-sup condition for spectral elements. The convergence of mixed
methods depends not only on the approximation properties of the discrete spaces V™ and
U™, but also on a stability condition known as the inf-sup (or LBB) condition; see, e.g.,
Brezzi and Fortin [10]. For numerical studies of the inf-sup constant of various h-version
finite elements, see Bathe and Chapelle [2]. While many important h-version finite
elements for Stokes problems satisfy the inf-sup condition with a constant independent
of h, several important spectral elements proposed for Stokes problems, such as the
@, — @—2 method, satisfy the following inf-sup condition:

di _
WiV, 9) 5 =gl Vg € U™,

® X
where d = 2,3 and the constant C' is independent of n and ¢. This result has been
proven for the @, — Q),,—_2 method by Maday, Patera, and Rgnquist [27] and by Stenberg
and Suri [41] for more general discrete mixed spaces. For the @, — Q,—2 method, an
example is also given in [27] showing that the estimate is sharp, i.e. the inf-sup constant
approaches zero as n~(4=1)/2 (d = 2,3). However, numerical experiments by Maday,
Meiron, Patera, and Renquist [26] and [27], have also shown that for practical values of
n (e.g. n < 16), the inf-sup constant 3, of the @Q,, — ,,—2 method decays much slower
than could be expected from the theoretical bound.

Very recently, Bernardi and Maday [5] improved the bound in (8) by proving a
uniform inf-sup condition for ),, — P,_1. Indeed, our numerical experiments reported
in [30, 31] and in Section 9 indicated that in fact the @, — P,_; method might be
uniformly stable. On the other hand, the loss of a tensorial basis for the pressures
makes the implementation and use of ), — F,,_; more complicated.

We can rewrite the inf-sup condition in matrix form as

(9) ¢'BAT1Blq > ﬁithq Vg e U",

where f3,, is the inf-sup constant of the method; see Brezzi and Fortin [10]. Therefore 32
scales as A, (C71BA~LB?) . Similarly, if 3 is the continuity constant of the bilinear
form b(-, -), we have

(10) viBlg < B(q'Co) 2 (vIAV)Y2 Yy e V' Wg e U™,
From (9) and (10), it follows that

tBA—lBt N
2§%§ﬁ2 Vge U™

We remark that the dependence on n of the inf-sup constant implies only a loss (of
order n_(d_l)ﬂ) in the order of convergence for the pressure p, but not for the velocity
u; see the classical error estimates as given in Bernardi and Maday [3, Theorems 2.5
and 7.7] and Stenberg and Suri [41, Theorem 5.2 and Remark 5.3]. For problems
with regular solutions (for which spectral methods are most appropriate), we still have
spectral convergence for both components of the discrete solution.

4. The incompressible limit. The almost incompressible case (Problem P;
with ¢ small) can be seen as a regularized version (by penalty) of the incompressible
case (Problem Py). In fact, the following result concerning an abstract saddle point
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problem with penalty parameter ¢ and right hand-side F, can be found in Girault and
Raviart [21, Theorem I1.1.3. p.121].

THEOREM 4.1. Assume that
i) b(-,-) satisfies an inf-sup condition, i.e. there exists a constant 3 > 0 such that

b(v,q "
(11) sup 20D 5 guoen Vg e U
P Vv

ii) c(-,-) is U™-elliptic, i.e. there exists a constant v > 0 such that

(12) c(g:q) > YMallem Vg€ U™

iii) there exists a constant o > 0 such that

(13) s(v,v)+ < C'Bv,Bv >> a||v|} VYveEV"

where the operators B € L(V", (U™)) and C € L(U™, (U™)") are defined by

<Bv,gq> = b(v,q) VYqelU", VveV?
<Cp,q> = c(p,q) Vp,qelU".

Then the Problem Py, for t* < 1, and Problem Py, have unique solutions (uy, p;) and
(u,p) in V™ x U™, respectively. Moreover, if t* < t3 and to is small enough, we have
the error bound:

(14) [us = ullv + [[p: = pllv < CE||Flv,

where the constant C' depends only on «, 3, ||a||, ||b]] and ||c]|.
This result shows that Problem P; can be used as a preconditioner for Problem Py
and vice versa. In fact

[ue = ullv + [Ipe = pllo < CE[F[lvr < C([[uellv + [lpell)-

Therefore

[ullv + [Ipllr < (1+ CE2) (luellv + [Ipello),
le.

-1
A BT A BT
I l B —t:C ] l B 0 ] ||£(VxU,VxU) < (1+Ct2).

We can therefore concentrate our analysis on the incompressible case and build a pre-
conditioner for Problem Py in the Schwarz framework by splitting the discrete spaces
V™ and U™ into subspaces. By Theorem 4.1 such a preconditioner will also be a good
preconditioner for Problem P; when ¢? is small.



5. Extensions from the interface. In the construction and analysis of our algo-
rithms, we will need to consider a number of subspaces of the space V*. Many of them
involve extensions into the interior of the elements of the interface values of elements of
the spectral finite element space V. The interface ' of the decomposition {€2;} of Q is
defined by

= (UNX,00) \ 09.
The space of restrictions to the interface is defined by
V*([) ={vlr: veV"}L

I' is composed of Np faces Fj (open sets) of the elements and the wire basket W,
defined as the union of the edges and vertices of the elements, i.e.

[=Ups F UW.

We first define local subspaces consisting of elements of V" with support in the
interior of individual elements,

(15) VI =V"n Hy(2)°, i=1,---,N.

We will often also use related local subspaces of pressures, with support and zero mean
value in individual elements, defined by

(16) Ul =U" N L), i=1,---,N.

We will now examine several useful ways of extending elements of V™ (I'). These
extensions are all constructed locally, i.e. element by element.

5.1. The discrete harmonic extension. The discrete harmonic extension H™ :
V(') — V", is defined as the operator that maps a piecewise polynomial u € V*(I)
into the unique solution H"u € V" of

Sp(H"u,v) =0 Vv e VI, H'u=u on 99; i=1,---,N.

This is just an application, component by component, of the well-known scalar discrete
harmonic extension. As in the scalar case, the discrete harmonic extension satisfies the
minimization property
sp(H"a, H"u) =  min  s,(v,V)
veEV™ vip=u

5.2. The discrete Stokes extension. We can extend a piecewise polynomial
from ' to the interior of each element by solving a Stokes problem in each element.
The discrete Stokes extension (8", Sy) : V*(I') — V" x U™, is the operator that maps
a piecewise polynomial u € V*(I') into the solution of the following Stokes problem on
each element:

Find $"u € V* and Sju=p € SN U? such that on each

5,(8"u,v) 4+ bp(v,Spu) = 0 VveV?!
(17) b,(S"u,q) = 0 VgeUp

S"u=u on 02,
9



In our applications to Stokes problems, we will choose the range of this extension
operator

(18) Vg =s8"(V*(I))

as the subspace of interface velocities. As with the discrete harmonic extension, the
velocities in this subspace are completely determined by their values on I.
The discrete Stokes extension satisfies the minimization property

N
5,(8"u,8™u) = min s,(v,v) Vwve{veV" : b,(v,q)=0 Vqe ZUZ»”}.

vir=u i=1

The following comparison of the energy of the discrete Stokes and harmonic extensions
can be found in [21], [6], [25], and [14].
LEMMA 5.1.

cfns,(S"u,8"u) < 5, (H"u, H"u) < 5,(S"u, S"u) Yu e V' (D).

5.3. The discrete mixed elastic extension. We can also extend a piecewise
polynomial from I to the interior of each element by solving an incompressible linear
elasticity problem (in mixed form) in each element. The discrete elastic extension
(M, MZ) : VHT') — V" x U", is the operator that maps a piecewise polynomial
u € V*(I') into the solution of the following incompressible elasticity problem:

Find M"™a € V" and Mju=p ¢ SN, U such that on each Q;

en(M™u,v) + by(v,Mju) = 0 VveV]
(19) bn(M™u, g) = 0 VYgeur

M*u=u on 08,

In our applications to elasticity problems, we will choose the range of this extension
operator

(20) Vi = M (VH(D).

as the subspace of interface displacements. As with the other extensions, the displace-
ments in this subspace are completely determined by their values on I'.
The discrete elastic extension satisfies the minimization property

N
en(M"u, M™u) = min e,(v,v) Vve{veV" :b,(v,q)=0 Vge ZUZTL}.

vr=u i=1

6. Tterative substructuring for saddle point problems. In this section, we
describe how to eliminate the interior unknowns in our saddle point problems. The
remaining interface unknowns and constant pressures in each spectral element satisfy
a reduced saddle point problem, analogous to the Schur complement in the positive
definite case. This process is the starting point of several substructuring methods for
Stokes problems; see Bramble and Pasciak [6] for h-version finite elements, Le Tallec
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and Patra [25] for hp-version finite elements, and Casarin [14] for spectral elements. The
following description applies to both Stokes and elasticity problems, but for simplicity
we adopt the Stokes terminology (velocity and pressure).

The velocity space V" is decomposed as

V' =V 4+ V4. + Vi 4V,

where the local spaces V? have been defined in (15) and Vi = V2 in the Stokes case
or VI = V%, in the elasticity case. The pressure space U" is decomposed as

U =Ul+ U3 + -+ Ug + Up,
where the local spaces U have been defined in (16) and
Upy={qeU™: Q|Qi = constant, i=1,---, N}

consists of piecewise constant pressures in each element. The vector of unknowns is
now reordered placing first the interior unknowns, element by element, and then the
interface velocities and the piecewise constant pressures in each element:

(U7P)T = (u1 p1,uz p2, -++, UN PN, ur po)T-
T _
With this reordering, our saddle point problem P : [ g BO ] [ 1; ] = ]3 ] has
the following matrix structure: )
i All Bﬂ e 0 0 AIF 0 7T uq T i b1 T
B11 0 e 0 0 BIF 0 P1 0
(21) 0 0 - AnN B]j\}N Ayt O uy | = | by
0 0 --- Bwyn 0 Byt 0 PN 0
Ary Bl -+ Ary Bl Arr BT ur br
L 0 0 0 0 Bo 0 4 L Po L 0 i

The leading block of this matrix is the direct sum of N local saddle point problems for
the interior velocities and pressures (u;, p;). In addition there is a saddle point problem
for the interface velocities and piecewise constant pressures (ur, pg). These subsystems
are given by

Aiv; + BIp, = b;— Ajur .
(22) { Biu; = —Brur '’ 1=12- N,
(23) { Arrur + Arjug + -+ Aryuy + Bhpy 4+ -+ Blopy + BIpe = br
BOUF = 0

The local saddle point problems (22) are uniquely solvable because the local pressures
are constrained to have zero mean value. The reduced saddle point problem (23) can
be written more clearly by introducing linear operators R?, R; and Pf’, PZ»F representing
the solutions of the —th local saddle point problem,

u; = R!b; + R ur, pi = P'b; + P ur, i=1,2,---,N.
11



Then (23) can be rewritten as

(24) Srur + Bipy = br
Bour = 0,
where
N N ) N N
Sr=Arr+Y_ AriR; +>_ BLP!, br =br — > Ar;Rb; — > BLP'b;.
=1 =1 =1 =1

Of course, the matrices R?, Rl and P?, PI' need not be assembled explicitly; their
action on a given vector is computed by solving the corresponding local saddle point
problem. Analogously, Sr need not be assembled, since its action on a given vector
can be computed by solving the N local saddle point problems (22) with b; = 0. The
right-hand side br is formed from an additional set of solutions of the N local saddle
point problems (22) with ur = 0.

We solve the saddle point Schur complement system (24) by a preconditioned Krylov
space method such as PCR if we use a symmetric positive definite preconditioner or

GMRES if we use a more general preconditioner.
7. Stability of the saddle point Schur complement.

7.1. The Stokes problem. In this section, we will prove that problem (24) is
uniformly stable, i.e. that it satisfies an inf-sup condition with a constant Sr bounded
away from zero independently of n and N. We remark that Bramble and Pasciak [6]
have proven a stability result for (24) for h-version finite elements. However, their
proof bounds fr in terms of the inf-sup constant of the original system (in our case f3,,),
which leads to a nonuniform bound in the spectral element case, since 3, can approach
zero when n increases. In order to establish a uniform bound on fr, we first give a
variational formulation of the saddle point Schur complement (24).

LEMMA 7.1. The variational form of the saddle point Schur complement (24) is:
Find §™ua € ™ (V") and py € Uy such that

5,(S™0, 8™V) + b, (S"v,po) = <F,v>,q VS"veSH(V")
(25)
bn(Snu7 QO) = 0 Vf]o € UO-

Proof. Let u € V" and p € U™ be the solution of the discrete Stokes problem and
let u; € V2 and p; € U be the solutions of the local Stokes problems

sp(u,v) 4+ bu(vyp) = <F,v>,q VveV!
(26)
b, (s, q) = 0 Vqe U

Then ur =u — Zf\il u; and pr = p — Zf\; p; satisfy the saddle point problem

sp(ur,v) + by(v,pr) = <F,v >0 Vv e V"
(27)
bn(uFa Q) = - Zfil bn(ui7 Q) vq € Una



where < F,v >po=<F,v>,q0 — Zf\; sp(u;, v) — by (v, p;). The right-hand sides of
both equations in (27) are zero when v € V? and ¢ € U. This implies that

ur = S"u and pr = S,u+ po,

where pg is the piecewise constant polynomial that equals the mean value of p on each
element. In fact, ur = u on I' and (ur, pr — po) satisfy the saddle point problem (17)
defining the discrete Stokes extension. Considering now the remaining test functions
(v,q) € V& x Uy, we see that (ur, pr) satisfy the saddle point problem

sp(ur,v) + by(v,pr) = < F,v >p0 Vv EVE
(28)
bn(ur7 Q) = 0 Vq € UO-

This is so for ¢ € Uy and we can apply the divergence theorem on each element and
obtain b, (u;, ¢) = 0. In order for the operator of problem (28) to be equal to the saddle
point Schur complement (25), it only remains to prove that b, (v, pr) = b, (v, po) Vv €
V5, i.e. that b,(v,S)u) = 0 Vv € VZ. This follows immediately from the definition
(17) of the discrete Stokes extension, since v = 8§"v and §Ju = ¢ € SN, Ur O

We can now prove a uniform bound on the inf-sup constant of the saddle point
Schur complement (25) for Stokes systems.

LEMMA 7.2.

(divS™v, ¢0)*
sup ———

> Billgoll7. Vo € U°
S"veve Sn(SnV,Snv) fl ﬁFHQOHL2 qo 7

where Pr is independent of qo,n, and N.
Proof. Since VZ(I') € V™(I'), we have §"(V?) C 8"(V") = VZ. Therefore,

(divS™v, ¢0)* (div8™v, ¢0)*
sup ————=—— >  sup = —f—
snvevy 8n(8™V,8™V) T gnyesn(v2) Su(S"V, S™V)

(div8™v, ¢0)*
>c  sup —_—
5"VE$"(V2) S(SnV,SnV)

In the last estimate, we have used the equivalence of s,(-,-) and s(-,-) = p] - |12111(Q)3
on V" x V", Hence, there remains to prove an inf-sup condition for the mixed spaces
8™(V?) x Up. According to Brezzi and Fortin [10, pp. 219-221], such an inf-sup bound
is equivalent to the existence of a linear operator 1% : H}(Q)?> — S"(V?), with the
properties

i) 3l < Clulgiq)ys,  with C independent of n and H,
i1) / div(u — IM{u)gedz =0, VYo € Up .
Q
It is well known that V2 x Uy is a stable pair of mixed finite element spaces, since it
corresponds to the standard ()2 — Fy element. This implies the existence of a linear

operator Iy : H3(2)?> — V2, such that

13



gl ) < Clulgiq)s  with C independent of n and H,
Jodiv(u - lgu)gdz =0, V¢ € Up.

If we define 11 = 8™ o [l, we obtain an operator 1% that satisfies ¢) and ¢7). In fact,
by Casarin [14, Lemma 5.5.1], we can bound the energy of the discrete Stokes extension
of a quadratic polynomial by

|Sn( )|H1 )2 <C|u|H1 (Q)? VUEVQ,
with C independent of n and N. This bound and the stability of 1z yield i):
|HnHu|H1(Q)3 =8 (HHu)|H1 )3 < C|HHU|H1 )3 < C|u|H1

Moreover, since any qo € Up is constant in each element, we obtain i7) by the divergence
theorem and the properties of Ilg:

/le u — [1%u) (]odl“—ZQOz/ div(u — 8" (I1gu) dm_ZqOZ/ (u—Tlgu) - nds

=1 =1 98

N
:E /dlvu—HHudx_/dlvu—HHu)odx_O

7.2. Incompressible elasticity. The following lemma is the analog of Lemma
7.1 for incompressible elasticity problems. It can be proved in the same way substituting
€n(+,-) for s, (-, -) and using the definition (19) of the discrete mixed elastic extension.

LEMMA 7.3. The variational form of the saddle point Schur complement (24) is:
Find M™a € M™(V") and py € Uy such that

en(MMu, M™) + b (M"v,py) = <F,v>,q0 YM'veEMH(V")
(29)
bn(Mnu7 (JO) = 0 qu e Up.

We can now prove a uniform bound on the inf-sup constant of this saddle point
Schur complement for incompressible elasticity, using the bound just proved for the
Stokes case in Lemma 7.2.

LEMMA 7.4.

(divm™v, qo)?
sup
anevn en(./\/lnv Mn

) > ftllaollz Voo € U°,

where fBr is independent of qo,n, and N.
Proof. From the minimization property of the discrete elastic extension and the
Cauchy-Schwarz inequality, we have

en(M"u, M™u) < €,(S"u, S"u) < Cs, (§"u, S™u).

14



As in Lemma 7.2, we can rewrite the nominator using the divergence theorem on each
element:

/ div(M"™u)qdz = qOZ'/ M"™u -nds = qoz'/ S"u-nds = / div(§™u)quidz.
Q; 8 e, Q;

Therefore,

: n 2 : n 2
sup (leM v, QO) Z (leS v, QO) vqo c UO,
Mrvevn, en(MnV7 an) Snvevi €n (Snv7 Snv)

and we conclude by applying Lemma 7.2. O

8. Block preconditioners for the saddle point Schur complement. Block
preconditioners for saddle point problems have been studied by Rusten and Winther
[38], Silvester and Wathen [39], Elman and Silvester [19], and Klawonn [24, 22, 23].
Here, we follow Klawonn’s approach.

Let S be the coefficient matrix of the reduced saddle point problem (24)

Sr BY
(30) S:[BE 0].

We will consider the following block-diagonal and lower block-triangular preconditioners
(an upper block-triangular preconditioner could be considered as well):

- Sr 0 N Sr 0
D: ~ T: ~
Ky Fat

where §F and 60 are good preconditioners for St and the coarse pressure mass matrix
Co, respectively:
Assumption 1 : 3 constants ag, a; > 0 such that

a%vtgpv < viSrv < a%vtgpv Vv e V7 (I');
Assumption 2 : d constants mg, mq > 0 such that
2t A ¢ 2 tA
miq Coq < ¢'Coq < miq'Coq Vg € Up.

Even if the coarse pressure mass matrix Cy is diagonal, we allow for a possible precon-
ditioner Cy because it has been shown by Klawonn [24] that the use of more expensive
preconditioners can significantly reduce the iteration counts. We will denote by D and
T the operators with exact blocks Sr = Sp and C' = C. With the block-diagonal pre-
conditioner lA), we can use the preconditioned conjugate residual method (PCR). In the
block-triangular case, T is no longer symmetric and we need to use a Krylov space
method for nonsymmetric systems, such as GMRES or QMR.

Under Assumptions 1 and 2, we obtain the following convergence bounds, by ap-
plying Klawonn’s results, see [24, 22, 23].

THEOREM 8.1. The block-diagonal preconditioner D satisfies the bound
maz{a?, m?}

cond(D™'8) <

cond(D™'S)

min{a?, m3}

15



and

D-18) < 1/2+ /B +1/4 |
—1/2+ /Bt +1/4

where Or is the inf-sup constant of the reduced saddle point problem (24) and py is
the continuity constant of By. Here cond(D~1S) is the ratio of the mazimum and the
minimum absolute value of the eigenvalues of D™'S.

THEOREM 8.2. The block-triangular preconditioner T with exact blocks satisfies
the inclusion

cond(

spectrum(T™'S) C [BE, BT + 1] U {1}.

The case of a block-triangular preconditioner with inexact blocks is studied in
Klawonn [22, 23], under the previous Assumptions 1 and 2 and the additional scaling
assumption 1 < ag < a;. The estimate provided is analogous to the case with exact
blocks, but it is more complicated and we therefore refer to [22] for details. In this case,
we can define an additional energy norm based on the inexact blocks and a GMRES
convergence bound can be proven in this energy norm.

In order to obtain convergence bounds using Theorems 8.1 and 8.2, we need only
verify Assumptions 1 and 2 for a choice of preconditioner blocks S and Co. We will
do so in the next section, illustrating our results mainly in the block-diagonal case.
The construction of an iterative substructuring algorithm is therefore a very modular
process in this framework.

8.1. A wire basket preconditioner for Stokes problems. We consider first
a Laplacian-based wire basket preconditioner Sp given, for each component u(?) of u,
by the scalar wire basket preconditioner Sw introduced in Pavarino and Widlund [32]
and extended to GLL quadrature based approximations in [35],

R Sw 0 0
(31) Sr = 0 Sw 0
0 0 Sw

In those earlier papers, we considered the scalar Laplace equation with piecewise con-
stant coefficients and constructed a preconditioner Sw for the Schur complement Sy of
the discrete harmonic interface variables, obtained by eliminating the interior degrees
of freedom. Here, we briefly recall the construction of Sw and refer to [32] for many
more details and a full analysis.

The Schur complement system S is obtained by subassembly from its local con-
tributions 57(_?) on the element €2;, j =1,---, N. The interface I' is decomposed into the
N faces Fj of the elements and the wire basket W (the union of edges and vertices),

[=Ups FL UW.

If the local vector of interface unknowns is reordered accordingly into face and wire
basket components (up, uw), the local Schur complement for the element €; can be

s=( S ).
Spw Sww
16
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We then modify the subspace spanned by the wire basket functions in order to ensure
that a function which is constant on the wire basket is also equal to the same constant
on all of I' when expanded in the wire basket basis functions. This is represented by

the transformation matrix
I 0
RG) 1 |
Then Sg) is transformed into
I 0 Sl(yjl); Sl(ngv I RODT Y\ Sg}); nonzero
RW T SJ(«JI)/IT S%)W 0 I nonzero §£{/)W ‘

The local preconditioner §é{,) is constructed by:

a) eliminating the coupling between faces and wire basket;

b) eliminating the coupling between faces, i.e. replacing 51(7]1)? by its block-diagonal
part §1(;]1);,

c) replacing the wire basket block §€,9W by a simpler matrix §%)W' Let M) be the
mass matrix associated with the local wire basket W;, defined by ul' M@y = (u, u)p,w,

and let z be the vector of wire basket coefficients of the constant function 1. We replace
S%)W by a scaled rank-one perturbation of M (). On the reference element,

(32) SW = (1+logn) (M) —

We then return to the original basis:

. al) AT
a6 I 0 Sgp 0 I —RW
o= )T )6

Finally, the wire basket preconditioner is obtained by subassembly:
G I 0 Srr 0 I —RT
Sw = ~ .
-R I 0 Sww 0o I

S = RoSyiw RS + > Rp, S5y RE,,
k

We find that,

where Ry = (R, 1) and RlTpk are restriction matrices returning the degrees of freedom
associated with each face Fj. This is an additive preconditioner with independent parts
associated with each face and the wire basket.

The main result of [32] and [35] is the proof of a polylogarithmic bound for the
condition number of the scalar wire basket preconditioner (see in [32, Theorem 3.1] and
its GLL extensions, [35, Theorems 1 and 2]):

(34) ¢(1+log n)_Qu{j)Tgwu{j) < u{j)TSyu{j) < Cu{j)Tgwu{j) Vu{j) e v ().
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Applying this bound to each component, we obtain the analogous bound

Sy 0 0
(35) ¢(1+ log n)_nggpur < ug 0 Sy 0 |ur< Cu%grur Yur € V*(I).
0 0 Sy

This result allows us to prove a convergence bound for the reduced saddle point problem
(24) with block-diagonal preconditioner.

THEOREM 8.3. Let the blocks of the block-diagonal preconditioner Dw be the wire
basket preconditioner St defined in (31) and the coarse mass matriz Cy. Then the
Stokes saddle point Schur complement S preconditioned by Dw satisfies

- 141 2
cond(Dy}S) < Cﬂ%gn),
where C' is independent of n and N.
Proof. We estimate the constants ag, a1, mg, m; in Assumptions 1 and 2, the inf-sup
constant Sr and apply Theorem 8.1.

Assumption 1: In the Stokes case (Lemma 7.1),
u%Spur = 5, (S8"u, 8"u).

By Lemma 5.1, we can compare the energy of the discrete Stokes and (componentwise)
discrete harmonic extension

Sy 0 0
(36) Coﬁnu%SruF < ulz 0 Sy O ur < ulerur Yur € V" (F)
0 0 Sy

Combining (35) and (36), we obtain

c(1+ log n)_Qu%gpur < uIISpur < . ulrgpur Vur € V*(I),
0Mn
i.e. a3 = c(1+1logn)~? and a} = CO%H.

Assumption 2: Since we use the exact coarse mass matrix as our pressure block, this
assumption holds with mg = my = 1.
Estimate of fr: By Lemma 7.2, Or is uniformly bounded away from zero, independently
of n and N. O

An analogous bound for the block-triangular preconditioner follows from the esti-
mates of the constants in the Assumptions 1 and 2 given in the previous proof.

8.2. Neumann-Neumann and other preconditioners for Stokes problems.
In the Stokes case, we can use any other scalar substructuring preconditioner for each
component of u in (31), instead of using the wire basket preconditioner. For example,
we could use a Neumann-Neumann preconditioner; see Dryja and Widlund [18] for a
detailed analysis of this family of preconditioners for h—version finite elements and
Pavarino [29] for an extension to spectral elements. We then obtain a Laplacian-based
Neumann-Neumann preconditioner §p with a scalar Neumann-Neumann preconditioner
§NN in each diagonal block

Svw 00

~

(37) S,r=| 0 Syy O

~

0 0 Ssxn
18



We recall that

N
Syn = REKy' Ry + ) Rlg, D]'_ISJTD]‘_IRSQJ
=1

is an additive preconditioner with an independent coarse solver K;Il and local solvers

§;-[, respectively associated with the coarse triangulation determined by the elements and
with the boundary 0€2; of each element. Here Ragq, are restriction matrices returning
the degrees of freedom associated with the boundary of €2;, D; are diagonal matrices and
i denotes an appropriate pseudo-inverse for the singular Schur complements associated
with the interior elements; see [18, 29] for more details.

The polylogarithmic bound proven in the scalar case, carries over to the case now
under consideration:

Sy 0 0
c(1+ log n)_Qu%Srur < ulz 0 Sy 0 [ur< CuIrSpur Yur € V*(I).
0 0 Sy

It is then possible to prove a result analogous to Theorem 8.3.

THEOREM 8.4. Let the blocks of the block-diagonal preconditioner Dy be the
Neumann-Neumann preconditioner Sp defined in (37) and the coarse mass matriz Cy.
Then the Stokes saddle point Schur complement S preconditioned by Dy satisfies

(1+ logn)?

cond(DJ\S) < C 3 ,

where C' is independent of n and N.
Other scalar iterative substructuring preconditioners could also be applied in this
fashion to the Stokes system; see Dryja, Smith, and Widlund [17] for many alternatives.

8.3. A wire basket preconditioner for incompressible elasticity problems.
The block-diagonal preconditioners of the form (31) introduced in the previous sections
do not take any coupling between the three components of u into account. This works
for Stokes problems, but for elasticity problems such an approach would lead to non-
scalable algorithms. In fact, the saddle point Schur complement for linear elasticity
for an interior element €2; has a six dimensional nullspace, spanned by the rigid body
motions (three translations and three rotations). In order to obtain a scalable algorithm,
the local contribution from €2; to the wire basket preconditioner must have the same
six dimensional nullspace. This condition is of course violated by the componentwise
preconditioner of the previous section, that has only a three dimensional nullspace
of componentwise translations. In this section, we introduce a scalable wire basket
preconditioner for mixed elasticity problems, using the techniques and the analysis of
[33]. The basic changes consist in:

a) using the bilinear form

en(u,v) =2u(e(u) 1 €(v))ng
instead of

2p(e(u) : €(v))n,0 + A(diva, divv), o
19



used in [33] for compressible elasticity;
b) using the mixed elastic extension M™ instead of the elastic extension £”. This
implies that the extension from the wire basket is now defined by

a= MY, 12 W, 0)),

where the single scalar components are given in [33, (9)], and the subspace of interface
displacements is now V%, = M"(V"). We note that the nullspaces of e,(-,-) and
the bilinear form of compressible elasticity, on an interior element, are the same set
N spanned by the rigid body motions. Moreover, I still reproduces the rigid body
motions. Therefore, the same construction as in [33, Section 6] can be used to obtain a
wire basket preconditioner

a-1 G-1 pT G-1_ pT
(38) St' = RoSy/w Ro + ) Rr S5, R
k
Here we use a different scaling of the wire basket inexact solver §V_V1W5 on an interior

element €2;, which we, for simplicity assume to be the reference element, we set

S = U 0

S (M) (MOe)T
T )-

r’ MUy,

=1

We can then prove a bound analogous to the main result of [33].
THEOREM 8.5. The wire basket preconditioner Sr_l satisfies the bounds

cfn(1+ log n)_zulzgpur < ulepur < Cu%gpur Yur € V*(I).

Proof. We recall that in the mixed elasticity case
u%Spur = e, (M"u, M"u);

see Lemma 7.3. We also recall that using the standard Schwarz theory, it is enough to
prove the upper and lower bounds of the theorem locally on an interior element, which
we for simplicity assume to be the reference element; see Smith, Bjgrstad, and Gropp
[40]. We decompose ur € V*(T') as

6
ur =ugp + Zqu7
k=1

where ug = I'"'u and up, =u-— I"u on F;, and vanishes on the other faces and on the
wire basket. We also define a simplified bilinear form defined on the wire basket space
by the approximate solver Sy given by

~ (1+logn) N 4 2
oy w) = =3 inf Ju— 3 cijrlln -
n i=1 j=1

Then the lower bound of the theorem can be formulated variationally as

6 2
. 1+ logn
eo,ref(u07 Ll()) + Z En,ref (Mnqu 3 Mnqu) < Cwe%ref(u? Ll) Vu € V_ﬁ/h

k=1 ﬁn
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and the upper bound as

6
€n,ref (u7 u) S C(éO,ref(u07 Llo) + E €n,ref (Mnqu 3 Mnqu)) Yu € V?\/{ .
k=1

a) Lower bound: We note that from the minimization property of the mixed elastic
extension and the energy comparison given in Lemma 5.1, we obtain

€n,ref (Mnqu 3 Mnqu) < en,ref(snqu 3 Snqu) <

C
Can,ref(snqu ) Snqu) < — Oy ref (Hnqu y Hnqu)

B

We can then repeat, step by step, the proof of the lower bound in [33, Theorem 7.1,
Section 7.2] .
b) Upper bound: Similarly, we have

enet ("0, 1" 1) < €, e (S™ (1M 0), S (1)) <

C
Cap et (S (I ), 8™ (I"0)) < ﬁ—amref(?-l”(lwu), H (1)),

Therefore, we can also repeat the proof of the upper bound in [33, Theorem 7.1, Section
7.2]. We note that the simplified wire basket bilinear form €g,er is now scaled by
(1+logn) 0

TUsing Theorem 8.5 to bound the constants of Assumption 1, we can then prove the
following result.

THEOREM 8.6. Let the blocks of the block-diagonal preconditioner Dw be the
wire basket preconditioner St defined in (38) and the coarse mass matriz Cy. Then

the incompressible mized elasticity saddle point Schur complement S preconditioned by
Dy satisfies

(1+ logn)?

cond(Dy!S) < C 3 ,

where C' is independent of n and N.

9. Numerical results. In this last section, we report the results of numerical
experiments for both Stokes and mixed elasticity problems in three dimensions. All
computations were carried out in Matlab 5.0 on Sun workstations.

We first computed the discrete inf-sup constant 3, of the whole Stokes problem
on the reference cube with zero Dirichlet boundary conditions. (3, is computed as the
square root of the minimum nonzero eigenvalue of C~'BT A= B, where A, B, and C
are the blocks in (7). The results reported in Table 1 and plotted in Figure 1 indicate
that the inf-sup parameter of the @J,, — F,,_1 method is much better than that of the
@ — Qn—2 method, in agreement with the theoretical results of [5] and the experiments
in [30, 31].

We then compute the discrete inf-sup constant gr of the saddle point Schur com-
plement (30) for both the mixed elasticity and Stokes system on the reference cube
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F1G. 1. Inf-sup constant By, for the discrete Stokes problem (Qn — Qn_2 and Qn — Pn_1 speciral
elements)
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F1G. 2. Inf-sup constant Br for the Stokes and incompressible mized elasticity saddle point Schur
complement (Qn — Qn_2 spectral elements)
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TABLE 1
1/2 (C_lBTA_lB) and other spectral information for the Stokes system

min

Inf-sup constant B, = A

Qn - Qn—Q Qn — fn-1

n ﬁn Amzn Amaz i:—?ﬂ ﬁn Amzn Amaz %

3 10.3291 0.1083 0.2284  2.1084 | 0.4095 0.1677 0.3611 2.1527
4 |0.2944 0.0867 0.6334 7.3040 | 0.4132 0.1707 0.4570 2.6771
5 10.2636 0.0695 0.6447  9.2670 | 0.4175 0.1743 0.5973 3.4258
6 | 0.2400 0.0576 0.6500 11.2829 | 0.4044 0.1635 0.6097 3.7291
7 10.2198 0.0483 0.6500 13.4537 | 0.4073 0.1659 0.6499 3.9161
8 |1 0.2027 0.0411 0.6500 15.8016 | 0.3995 0.1596 0.6499 4.0713
9 | 0.1881 0.0354 0.6500 18.3445 | 0.4009 0.1607 0.6500 4.0446
10 - - - - 0.3950 0.1560 0.6500 4.1653

with zero Dirichlet boundary conditions. Here we only considered @), — (J,,_o spectral
elements. fr is computed as the square root of the minimum nonzero eigenvalue of
C’O_IBOTSI?IBO, where Sr and By are the blocks in (30) and Cj is the coarse pressure
mass matrix. The upper plot in Figure 2 shows fr as a function of the spectral degree n
while keeping fixed a small number of elements, N = 2x 2 x 1. The lower plot in Figure
2 shows fr as a function of the number of spectral elements IV for a small fixed spectral
degree n = 2. Both figures indicate that St is bounded by a constant independent of
N and n, in agreement with Lemma 7.2 and 7.4.

We next report on the local condition numbers and extreme nonzero eigenvalues of
§1?15p for one interior element. Here St is the velocity block in the saddle point Schur
complement (30) and §1?1 is the wire basket preconditioner described in Section 8.1 for
Stokes problems and in Section 8.3 for mixed elasticity problems. We report only the
results obtained with the original wire basket block of the preconditioner.

We consider first 0, — @J,—2 spectral elements. The results are plotted in Fig-
ure 3. In both the Stokes and elasticity cases, the incompressible limit is clearly the
hardest, yielding condition numbers approximately three times as large as those of the
corresponding compressible case. For a given value of v, the condition number seems
to grow linearly with n, which is consistent with our theoretical results in Theorems 8.3
and 8.6, since the theoretical bound for the inf-sup constant for Q),, — ¢J,,_2 approaches
zero as 1/n. This is reflected in the decay of the minimum eigenvalue A,,;,, while the
maximum eigenvalue A,,,, seems to be bounded by a constant independent of n. Even
if the asymptotic behavior is the same, the condition numbers for the elasticity problem
are always larger than those for the Stokes problem.

We then consider @), — F,,_1 spectral elements. Figure 4 presents the results for
the generalized Stokes problem and the mixed elasticity problem, respectively. Figure
5 compares the (), — @,_2 and @), — P,_1 results for local condition numbers in the
incompressible case. The condition numbers for (),, — P,_1 spectral elements are smaller
than the corresponding ones for (),, — (J,,_2 spectral elements. Again the incompressible
limit is the hardest, yielding condition numbers approximately three times as large as
those of the corresponding compressible case. From our theoretical results, the growth
of the condition numbers, for a fixed value of v, should now be only polylogarithmic
in n, since the inf-sup constant for ¢J,, — P,_1 spectral elements is uniformly bounded
away from zero. More results for higher values of n are needed in order to confirm this
theoretical result numerically.
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F1a. 3. Local condition number &, inverse of the minimum nonzero eigenvalue, and mazimum
eigenvalue of Sy St for an interior element (original wire basket block); Stokes problem (left), mived

elasticity (right); Qn — Qn_2 method
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F1a. 4. Local condition number &, inverse of the minimum nonzero eigenvalue, and mazimum
eigenvalue of Sy St for an interior element (original wire basket block); Stokes problem (left), mived
elasticity (right); Qn — Pn—1 method
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