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Have patience with everything unresolved in your heart and

try to love the questions themselves as if they were locked rooms

or books written in a very foreign language. Don’t search for

the answers, which could not be given to you now, because

you would not be able to live them. And the point is, to live

everything. Live the questions now. Perhaps then, someday

far in the future, you will gradually, without even noticing it,

live your way into the answer.

—Rainer Maria Rilke, translated by Stephen Mitchell



For Grandma Dorothy
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A B S T R A C T

In many domains we face the problem of determining the underlying

causal structure from time-course observations of a system. Whether we

have neural spike trains in neuroscience, gene expression levels in systems

biology, or stock price movements in finance, we want to determine why

these systems behave the way they do. For this purpose we must assess

which of the myriad possible causes are significant while aiming to do

so with a feasible computational complexity. At the same time, there has

been much work in philosophy on what it means for something to be

a cause, but comparatively little attention has been paid to how we can

identify these causes. Algorithmic approaches from computer science

have provided the first steps in this direction, but fail to capture the

complex, probabilistic and temporal nature of the relationships we seek.

This dissertation presents a novel approach to the inference of general

(type-level) and singular (token-level) causes. The approach combines

philosophical notions of causality with algorithmic approaches built on

model checking and statistical techniques for false discovery rate control.

By using a probabilistic computation tree logic to describe both cause and

effect, we allow for complex relationships and explicit description of the

time between cause and effect as well as the probability of this relationship

being observed (e.g. “a and b until c, causing d in 10–20 time units”).

Using these causal formulas and their associated probabilities, we develop

a novel measure for the significance of a cause for its effect, thus allowing
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discovery of those that are statistically interesting, determined using the

concepts of multiple hypothesis testing and false discovery control. We

develop algorithms for testing these properties in time-series observations

and for relating the inferred general relationships to token-level events

(described as sequences of observations). Finally, we illustrate these

ideas with example data from both neuroscience and finance, comparing

the results to those found with other inference methods. The results

demonstrate that our approach achieves superior control of false discovery

rates, due to its ability to appropriately represent and infer temporal

information.
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1
I N T R O D U C T I O N

If a man will begin with certainties he shall end in doubts,

but if he will be content to begin with doubts he shall end in

certainties.

— Francis Bacon

The study of “why” is integral to every facet of science, research and

even daily life. When we search for factors that are related to lung

cancer or assess fault for a car accident, we seek to predict and explain

phenomena or find out who or what is responsible for something. At

its most basic, a cause is an answer to a “why” question. Causes tell

us not just that two phenomena are related, but how they are related:

if we ask “why x?” can we respond “because y”? what does knowing

y mean for knowing x? how does y explain x? While correlations can

potentially be useful for prediction, they do not have the explanatory

power we desire. Knowing, say, that secondhand smoke is correlated

with lung cancer doesn’t allow us to explain an instance of lung cancer

as being due to secondhand smoke nor does it allow us to say that we

can prevent lung cancer by avoiding secondhand smoke. If instead we

know that secondhand smoke causes lung cancer we may be able to make

both claims.

1



introduction

Despite the need for methods for understanding causality, the question

of what makes something a cause (let alone how to find one) has plagued

philosophers and scientists since at least the time of Aristotle. At the

same time, people manage to make causal inferences and judgments in

daily life: children learn that touching a hot pot leads to a painful burn

and juries weigh evidence and sequences of events to determine guilt or

innocence. One of the primary difficulties in the philosophical search for

a theory of causality has been the desire for a single theory that accounts

for all types and instances of causality. Thus there are arguments against

any theory that does not produce expected results in at least one case,

leading to a multitude of competing theories, none of which provides the

desired perfect approach. At the other end of the spectrum, computer

scientists have honed in on one main framework, with little consideration

of whether this approach is truly the correct one for all cases. I argue

that it is futile to insist on a single unified theory that can handle all

counterexamples and all applications. Instead I focus on one particular

type of problem and aim to develop the best tool for this job. I will not

attempt to capture all intuitions about causality or handle all conceivable

problems.

I argue that one of the most critical pieces of information about causality

– the time it takes for the cause to produce its effect – has been ignored. If

we do not know when the effect will occur, we have little hope of being

able to act on this information. We need to know the timing of biological

processes in order to disrupt them to prevent disease. We need to know

when to take a position in the market if we want to trade based on

causes affecting a stock’s price. We need to know a patient’s sequence of

symptoms and related events to determine her diagnosis. Further, policy
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introduction

and personal decisions may vary enormously with changes in the length

of time between cause and effect. The warning that “smoking causes lung

cancer” tells us nothing about how long it will take for lung cancer to

develop. But while a deterministic relationship that will take 80 years may

not change a person’s behavior, a relationship with a somewhat lower

probability at a time scale of only 10–20 years might be significantly more

alarming. In order to clarify such claims, we need to understand both

what causality is, and how to represent the finer details of the relationship

between cause and effect.

The primary goal of this work is the inference of causal relationships

from temporal data. I seek a description of causality that is philosophically

sound, a method of inference that is logically rigorous (and allows an

automated algorithmic approach), and a statistically thorough procedure

of determining which of the causes inferred are genuine. Further, we

desire to use these methods in a variety of domains – such as biology,

politics, and finance – so the definitions should be applicable in all of those

areas and the methods should work with the variety of data currently

available. As our primary aim is to infer causal relationships from data,

we need to capture the probabilistic nature of the data, and be able to

reason about potentially complex relationships as well as the time between

cause and effect. It will be argued that the previous methods for causal

inference (primarily resulting in the creation of networks or graphs) do

not achieve these goals. Instead I present an alternative approach based

on the idea of causal relationships as logical statements, which borrows

from philosophical notions of probabilistic causality, work in temporal

logic and statistical methods for false discovery rate (fdr) control.
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1.1 overview of thesis

In this approach, cause and effect and the conditions for causality are

described in terms of logical formulas. By doing this we can capture

relationships such as: “smoking causes lung cancer with probability 0.6 in

between 10 and 20 years.” I show that while we focus only on the case of

temporal data, the working definitions allow us to correctly handle many

of the difficult cases commonly posed to theories of causality. Further, the

use of temporal logic, with clearly defined syntax and semantics, allows

us to automatically test any relationship that can be described in the logic.

I will also relate this framework to singular, or token, causality. This

problem has great practical importance as a significant use of token

causality is in diagnosis of patients, where one wants to find the cause of

someone’s symptoms but many diseases may share similar symptoms.

As electronic health records become more prevalent, it is increasingly

desirable to be able to scan these records automatically upon check-in at

a doctor’s office or hospital. Then one can assess a patient’s history and

symptoms in order to identify possible causes that will require immediate

attention or hospitalization. We can use similar methods to predict events.

In the case of patient records, this allows for prognosis determination,

given the patient’s history and known causes of various illnesses.

1.1 overview of thesis

This thesis is intended to be accessible to computer scientists and philoso-

phers, as well as interested biologists and researchers in finance and other

areas. For that reason, the work is mostly self-contained, and assumes

no background in statistics, logic, or philosophy. Included as well is
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1.1 overview of thesis

a glossary containing most of the technical terms used throughout the

thesis.

In Chapter 2 I begin with a short introduction to philosophical theories

of causality, beginning with historical foundations and then critically

discussing probabilistic and counterfactual theories of causality. This

chapter introduces the problem of defining and recognizing causal rela-

tionships as well as the traditional approaches to this problem. While

these theories are not immediately applicable to experimental problems,

they provide a foundation on which later methods are based. Further,

before we can discuss how to find causes, we must understand what it

means for something to be a cause.

In Chapter 3 I review the state of the art in causal inference. I dis-

cuss graphical model approaches (which are based on the philosophical

literature) and their extensions, as well as commonly used approaches

with no philosophical basis, such as Granger causality, a method from

finance. I then discuss various approaches to causal reasoning in AI and

logic. Most of these do not attempt to relate to philosophical theories

about causality, but rather aim to find the effects of actions on a system

where a model and causal theories (defining what happens when various

actions are taken) are assumed as given. Finally, I discuss experimental

approaches in areas of interest (gene expression, neural spike trains, and

financial time series).

In the remaining chapters, we turn our attention to formulating a new

approach to causal inference and evaluating this approach on various

datasets. In Chapter 4 I begin by defining what will be meant by “causes”

and what types of causes we will attempt to identify. I introduce a new

measure for the significance of causes that is computationally feasible, but
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1.1 overview of thesis

grounded in the philosophical theories discussed in Chapter 2. I relate

these definitions to probabilistic temporal logic formulas and discuss how

the definitions deal with common counterexamples posed to theories

of causality. I show that by using a well-chosen logic we can address

the previously ignored problem of representing detailed causal relation-

ships that contain important timing information, while also allowing for

automated and computationally feasible testing of these causes in data.

Readers unfamiliar with temporal logics should refer to Appendix A,

which provides an introduction to logic and model checking.

In Chapter 5 I develop the algorithms needed for testing causal re-

lationships in data. I formalize the methods for testing temporal logic

formulas in traces, discussing what it means for a formula to be satisfied

relative to such a sequence of observations. I augment PCTL to suit

our needs, allowing specification of formulas true within a window of

time (See Appendix C.2 for related proofs). I then discuss the problems

associated with determining the significance of causes (See Appendix B

for an introduction to multiple hypothesis testing and false discovery

control). First I describe the computation of significance scores in depth,

then discuss how to determine an appropriate threshold for the level

at which something is statistically significant. I show that since we are

primarily interested in applications that involve a large number of rela-

tionships being tested simultaneously, the problem can be treated as one

of multiple hypothesis testing and false discovery control, where we infer

the null hypothesis from the data. I apply well-established methods from

statistics for this purpose. In this chapter I show the correctness of all

methods and analyze their computational complexity.
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1.1 overview of thesis

In Chapter 6 I discuss the problem of token causality in depth. Here we

aim to find not general relationships (such as that between smoking and

lung cancer) but want to determine the cause on a particular occasion

(did Jane’s smoking cause her lung cancer?). I begin by discussing why

we need a separate treatment of this type of causality, and then review

one philosophical theory that will be repurposed. I show how, building

on this theory, we can use prior type-level inferences (made using the

method developed in the previous chapters) to find the cause of an effect

on a particular occasion. We will then examine a number of difficult

cases found in the philosophical literature and find that the approach

developed can handle these in a manner consistent with intuition about

the problems.

Finally, in Chapter 7 I apply the methods developed to data from

biological and financial applications. I compare the approach advanced

in this work to others (including Granger causality and graphical model-

based methods), and demonstrate that I achieve an extremely low false

discovery rate, outperforming all other methods by at least one order of

magnitude and, in some cases, two. I also show that this performance

does not come at the expense of an increase in the false negative rate, as I

again have the lowest values of this measure.
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2
A B R I E F R E V I E W O F C A U S A L I T Y

2.1 philosophical foundations of causality

The basis for causal inference and the meaning behind causality begins

in the philosophical literature. Here, we review the development of

“probabilistic causality”, particularly in terms of distinguishing between

cause and effect. While our study focuses on inferring these relationships,

we must have a foundation on which to base these inferences and a

vocabulary with which to describe them.

The first modern attempt to frame the question of “why?” came from

David Hume in the 18
th century. Hume defined a causal relationship

between C and E to mean that C is a cause of E if and only if every event

of type C is followed by an event of type E. These relations are to be

inferred from observations and are subjective due to belief and perception.

That is, based on experience, we reason about what will happen, have

expectations based on our perceptions, and may establish whether our

beliefs are true or false through experimentation and observation. For

example, when we hear a noise outside in the morning, we may believe

that a garbage truck is outside. Since in the past we heard this noise and

saw a garbage truck outside the window, we expect to go to the window

and see the same thing this time. This belief may turn out to be false, as

perhaps today there is instead a street sweeper causing the noise. The
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2.1 philosophical foundations of causality

important point here is that without empirical evidence, we could not

have made any predictions about the cause of the noise.

Hume examined causality in terms of (1) what is meant when we use

the term and (2) what is needed to infer such a relation from empirical

evidence. First, addressing the concept of causality, Hume defined three

essential relations: contiguity, temporal priority, and necessary connec-

tion [57]. The contiguity condition asserts that a cause and its effect

must be nearby in time and space. While it may seem this condition

does not always hold true, Hume states that any relationships between

distant causes and effects can be found to be “linked by a chain of causes,

which are contiguous among themselves.”1 The second quality, temporal

priority, means that a cause must precede its effect. While Hume traces

the chain of events that would occur if we allow cause and effect to be

co-temporary, ending with the “utter annihilation of time”, it suffices to

say that if we do allow cause and effect to be co-temporary we could not

distinguish the cause from the effect and would in fact only be able to

determine a correlation between the pair. Finally, necessary connection is

the defining feature that allows us to make the distinction between causal

and non-causal relationships. Here it is stipulated that both the cause

and effect must occur. That is, the cause always produces the effect, and

the effect is not produced without the cause.

Hume then empirically defines a cause as2:

Definition 2.1.1. An object precedent and contiguous to another, and

where all the objects resembling the former are placed in a like relation

of priority and contiguity to those objects that resemble the latter.

1 [57], 75

2 [57], 172
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2.2 modern philosophical approaches to causality

Necessary connection is replaced here by constant conjunction, whereby

we may observe two events as being conjoined, but this does not mean

that they are necessarily so and nor do we have any basis for being able

to make such a statement. One common counterexample to this theory of

causality is that “day causes night” satisfies all three criteria, though we

would not call day a cause of night. Cases may be made against each of

the three criteria; however they represent the first step toward a theory of

causality that may be verified through empirical data. The main effect

of Hume’s work, as stated by Russell, was: “when I assert “Every event

of class A causes an event of class B,” do I mean merely, “Every event

of class A is followed by an event of class B,” or do I mean something

more? Before Hume, the latter view was always taken; since Hume, most

empiricists have taken the former.” 3

2.2 modern philosophical approaches to causality

2.2.1 Regularity

Refining Hume’s work, in 1974 John Leslie Mackie formalized the ideas

of necessity and sufficiency for causes. Here, an event C is a necessary

condition of an event E if whenever an event of type E occurs, an event of

type C also occurs, and C is a sufficient condition of E if whenever an event

of type C occurs an event of type E also occurs. Thus Mackie states that a

cause is an INUS condition: “an insufficient but non-redundant part of an

unnecessary but sufficient condition” [83]. That is, there are some sets of

3 [111], 454
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2.2 modern philosophical approaches to causality

conditions that result in the effect, E, and the cause, C, is a necessary part

of one of those sets.

Definition 2.2.1. A∧ B∧ C is a minimal sufficient condition for P if no

conjunct is redundant (i.e. no part, such as A∧B, is itself sufficient for

P), and A∧B∧C is sufficient for P.

Definition 2.2.2. C is an INUS condition of E iff for some X and for some

Y (C∧X)∨ Y is a necessary and sufficient condition of E, but C is not a

sufficient condition of E and X is not a sufficient condition of E [82, 63].

That is,

1. C∧X is sufficient for E,

2. C∧X is not necessary since Y could also cause E,

3. C alone is insufficient for E,

4. C is a non-redundant part of C∧X.

For example a lit match (C) may be the cause of a house fire. There are,

however, many other situations in which a match is lit and does not cause

a fire, as well as other situations (¬X) in which a fire occurs without a lit

match (Y). In the case of the match causing the fire, there is some set of

circumstances (X), each one necessary, which together are sufficient for

the fire to occur.

Mackie analyzes an event C as a cause of an event E on a particular

occasion (what is also referred to as token, or singular, causality) thusly:

1. C is at least an INUS condition of E,

2. C was present on the occasion in question,

11



2.2 modern philosophical approaches to causality

3. The components of X, if there are any, were present on the occasion

in question,

4. Every disjunct in Y not containing C as a conjunct was absent on

the occasion in question.

Definition 2.2.3. C is at least an INUS condition of E iff either C is an INUS

condition for E, or C is a minimum sufficient condition for E, or C is a

necessary and sufficient condition for E, or C is part of some necessary

and sufficient condition for E.

Using the house fire example, a lit match was the cause of a specific

fire if it was present, and there was oxygen, flammable material and the

other conditions needed for a lit match to create a fire, and there was no

unattended cooking, faulty electrical wiring, or other factors that cause

fires in the absence of lit matches. That is, the third and fourth conditions

above ensure that the other factors necessary for C to cause E are present,

while avoiding the problem of overdetermination. For example, if there

was a lit match and the house was struck by lightning, we would violate

the fourth condition and in fact neither would be deemed the cause of

the fire.

2.2.2 Counterfactuals

Counterfactuals provide another approach to causality by saying that

had the cause not taken place, the effect would not have happened either.

This theory is in fact the second part of Hume’s definition, where a cause

is “an object, followed by another, and where all the objects similar to the first

are followed by objects similar to the second. Or in other words where, if the
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2.2 modern philosophical approaches to causality

first object had not been, the second never had existed” [58]. Though they are

supposed restatements of the same theory, the first part, known as the

“regularity definition” of causality is quite different from the second part,

the “counterfactual definition.” If we were to use only the first part of

the definition, we would again have the problem of day being a cause

of night, as one regularly follows the other. However, the counterfactual

definition removes the causal relationship, as had day not been, night

would still exist (consider the case of Polar night at the article circle where

the sun does not rise at all).

David Lewis developed the primary counterfactual theory of causality,

discussing how we can use these conditional statements [24, 121] to

distinguish genuine causes from effects and other factors [74]. In this

work, Lewis limits causes and effects to events, and looks only at the

analysis of causes in terms of particular cases (what is termed token,

or singular, causality). He begins by introducing the notion of possible

worlds, and comparative similarity between possible worlds, which may

be thought of as maximally consistent sets of propositions true in those

worlds. Then, one world is closer to actuality than another is if it resembles

the actual world more than the other world does. Lewis introduces two

constraints on this relation, namely, (1) It involves a weak ordering of the

worlds, so any two worlds may be compared, but they may be equal in

similarity to the actual world; (2) The actual world is closest to actuality,

as it resembles itself more than any other world resembles it [74].

Then, we can take the counterfactual of two propositions, A and C. This

assertion is represented by A2 → C and means that if A were true, C

would be true. Then, the truth condition for this statement is: A2→ C is

true (in the actual world w) iff (1) there are no possible A-worlds or (2)

13



2.2 modern philosophical approaches to causality

some A-world where C holds is closer (to w) than any A-world where C

does not hold. That is, in the non-vacuous case (2), the counterfactual is

true iff “it takes less of a departure from actuality to make the consequent

true along with the antecedent than it does to make the antecedent true

without the consequent” [74].

We switch now to look at events, rather than propositions, and can

define causal dependence between them. The dependence defined here

means that whether e occurs depends on whether or not c occurs. This

is represented by two counterfactuals, c2 → e and ¬c2 → ¬e. After

describing causal dependencies, we would like to now describe causation

among events. First, take a series of events c1, c2. . .cn and one effect e. If

each ci, with i > 1, occurs only with ci−1 (each ci depends causally on the

previous ci−1), with e occurring only when cn occurs, then we say that

c1 is a cause of e, whether or not e might still have taken place without

c1. The causal relationship here is transitive, though the dependence

relationship need not be (e need not be dependent on c1). We define

that c is a cause of e if there is some causal chain (i.e. chain of causal

dependencies) connecting them.

The main problems facing this approach are transitivity and overdeter-

mination (redundant causation), or preemption. In the first case, we can

find situations such that some event a would prevent some event c but

in the actual events, a causes another event b, which in turn causes c to

occur. Thus the counterfactual account leads to events counterintuitively

being labeled causal. McDermott gives one such counterexample [87].

Suppose I give Jones a chest massage (C), without which he would have

died. Then, he recovers and flies to New York (F), where he eventually

has a violent death (D). Here, C was a cause of F, as without the massage
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2.2 modern philosophical approaches to causality

he would not have been well enough to travel, and F is a cause of D, but

C did not cause D. That is, whether or not C occurred, Jones still would

have died, but there is a causal chain between C and D.

The second problem for the counterfactual theory of causality is overde-

termination, or redundant causation. Consider now that there are two

potential causes for an effect (both present) and the effect would have

been the result of either, so that the effect depends on neither and the

system is overdetermined. This redundant causation may be either sym-

metrical (each potential cause could equally well be called the cause of

the effect, there is nothing to distinguish which was the actual cause)

or asymmetrical (there was one cause which preempted the other). In

the asymmetrical case, if we say c1 was the preempting cause, c2 the

preempted and e the effect, then had c1 not occurred, c2 would still have

caused e, and thus c1 is not the cause of e despite its causing e. This

is generally the equivalent of having two causal chains to e, one from

c1 and one from c2 where something cuts the causal chain from c2 to e,

preempting it before it reaches e.4

This inconsistency with the counterfactual approach was revisited by

Lewis in a more recent paper, where dependencies are not based solely on

whether events occur, but rather how, when and whether one event occurs

depends on how, when and whether the other event occurs [76]. Earlier,

Lewis defined that an event is fragile “if, or to the extent that, it could not

have occurred at a different time, or in a different manner” [75]. Now, we

define alterations of events (perturbations in time or manner):

4 Lewis later clarifies that there are other cases where both causes occur but one “trumps”
the other, preempting it as a cause. However, the case of cutting is more common [76].
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Definition 2.2.4. Let an alteration of event E be either a very fragile

version of E or else a very fragile alternative event that is similar to E, but

numerically different from E.

Then, with distinct actual events C and E, C influences E iff there exist

substantial ranges of not-too-distant alterations of C and E (C1, C2. . .Cn,

E1, E2. . .En), where at least some differ, and such that for each Ci, if

Ci had occurred, Ei would have occurred.5 Finally, C causes E if there

is a chain of influence from C to E (though there is no transitivity of

influence and we do not say C influences E, despite the fact that it causes

E). Going back to the case of preemption, we can see the advantage of

this theory in terms of finding the actual cause of an event. Here, if we

alter c1 while holding c2 fixed, and then alter c2 while holding c1 fixed,

we find that in the first case, e is altered while in the second case e is

the same. Since altering c2 did not influence e we find that c1 was the

cause of e as its alteration did influence e. Note that we may find cases

in which an alteration of c2 would influence e, but according to Lewis

these may be due to alterations that are too distant. There is also the

problem of spurious causation, which Lewis acknowledges is present in

both the new and old theories. Here, any event that has a small influence

on the time and manner of the effect can be said to be a cause. In this

theory, there is no discussion of the degree to which the cause influenced

the effect.

5 [75], 190
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2.3 probabilistic causality

In the prior methods described, causality was generally a deterministic

relation. That is, a cause produced its effect without fail. This determinis-

tic view of the world is limiting in a few ways. First, it is not possible to

infer such deterministic relationships with certainty. There is no amount

of events that we could observe that would allow us to pronounce with

certainty that one thing causes another with probability one. For example,

we may note that in all the years we have known each other, that every

time you call me, my phone has rung (let us assume I do not have call

waiting, no one else has called, and I do not make calls on my own). We

cannot be sure that my phone will always ring because you have called,

that is, that your call is the cause of my phone ringing. What we can infer

is that your calling makes it very likely that my phone will ring. In fact,

in this case, we can predict with a high probability that when you call,

my phone will ring.6 But, we cannot say this will always, without fail, be

the case. Here we must distinguish between the probability due to the

actual relationship and the probability due to our lack of knowledge. Just

as it is possible for some relationships to be at their core deterministic, it

is possible that others are probabilistic. That is, even if we had complete

knowledge of the world and all relevant information, we would still find a

probabilistic relationship between cause and effect. The other probability

is due to our normally incomplete information about the system – but this

has no bearing on what the underlying relationship actually is. When we

6 Note that there may be other cases where we observe a sequence, such as a fair roulette
wheel coming up red 20 times in a row or a fair coin flipped 20 times and coming up
heads on each, where these are not indicative of the underlying probabilities. However,
note that as the sequence of observations gets longer we will come closer to observing
the true probabilities of the system.
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observe a causal relationship, we are generally observing a combination

of these probabilities.

In order to infer causal relationships, we stipulate that (positive) causes

raise the probabilities of their effects and then set about finding which

of the causes inferred are the most explanatory. When we say “a cause

raises the probability of its effect,” we mean that given that the cause has

occurred, we have a better chance of seeing the effect. That is, with cause

C, effect E, and the conditional probability P(E|C) = P(E∧C)/P(C), we can

say that C is a cause of E if:

P(E|C) > P(E|¬C). (2.1)

2.3.1 Screening Off

One problem for probabilistic theories of causality is that there may be

cases where two events are the result of an earlier common cause. In one

commonly used example, we may frequently see yellow stained fingers

and lung cancer together. We cannot say that yellow stained fingers cause

lung cancer, or that lung cancer causes yellow stained fingers. Using

more information, we can find an earlier common cause of both: smoking.

Here, smoking “screens-off” lung cancer from yellow stained fingers.

That is, when we hold fixed that someone is a smoker, the relationship

between stained fingers and lung cancer disappears. The idea of earlier

“screening off” causes was introduced by Reichenbach [108].
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Reichenbach first describes the asymmetry of cause and effect. That

is, given that the cause produces the effect, we do not say that the effect

produces the cause. However, the probability relations characterizing the

causal relationship are symmetric. If C and E are causally related, then

the probability of C increases the probability of E and vice versa. Thus Re-

ichenbach attempts to characterize the direction of the temporal relation-

ship with the common cause principle. The common cause principle states

that, with simultaneous events A and B (where P(A∧B) > P(A)P(B)) if

there is an earlier common cause C of both, C is said to screen off A and

B from one another iff:

1. P(A∧B|C) = P(A|C)P(B|C),

2. P(A∧B|¬C) = P(A|¬C)P(B|¬C),

3. P(A|C) > P(A|¬C), and

4. P(B|C) > P(B|¬C).

This says that C raises the probability of A and of B and that if we know

that C or that ¬C, there is no longer a correlation between A and B. This

corresponds to the fork shown in figure 2.1b. The idea here is that if we

have such a fork, with some particular a, b, and c, and they satisfy the

probability relations given above, it means that c is the common cause of

a and b and thus it is also earlier than a and b. Note that the fork open

to the past, shown in figure 2.1c., would not account for this relationship.

For example, if two lamps burn out simultaneously and the room goes

dark, the dark room does not account for the lamps burning out. Rather,
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Figure 2.1.: Forks as described by Reichenbach [108].

some earlier common cause such as a burned fuse or problem with a

common power supply would account for this.7

Definition 2.3.1. Two events, A and B are causally connected if either A is

a cause of B, B is a cause of A, or there exists an event C such that C is a

common cause of both A and B.

Then, an event C is causally relevant to another event E iff:

1. C is earlier than E

2. P(E|C) > P(E), and

3. There does not exist a set of events S, earlier than or simultaneous

with C, such that S screens off C from E.

That is, there is no other cause screening off C from E and C raises the

probability of E.8

One difficulty for this as well as other probabilistic definitions of causal-

ity is posed by Simpson’s Paradox [117]. That is, if C is a cause of E

in the general population, we can reverse this relationship, by finding

7 [108], 157.
8 [108], 204.
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sub-populations such that in every such sub-population C is a negative

cause of E. This situation arises because C is correlated with another

factor that prevents E. One common example is based on the case of sex

bias in graduate admissions at Berkeley [6]. In that study they found that

while in general (looking at the school as a whole), men had a higher

rate of admission to the university, within each department there was no

correlation between sex and admission rate. Thus, being female did not

cause applicants to be rejected, but rather women likely apply to more

competitive departments that had lower admissions rates, leading to their

overall lower rate of acceptance.

Another common example is given by Brian Skyrms [118]. In general,

smoking is a positive cause of lung cancer. Consider now what happens

if due to air pollution (which we assume here can cause lung cancer),

city-dwellers tend to stop smoking in order to not further jeopardize their

lungs. Also suppose that due to cleaner air in the country, people there

feel freer to smoke given the lack of air pollution harming their lungs.

Then, smoking (C) is a positive cause of lung cancer (E), living in the

country (V) is a positive cause of smoking, and living in the country

is a negative cause of lung cancer. Then, because V is a positive cause

of C and a negative cause of E, depending on the ratio of smokers to

non-smokers and the city air quality, since C is correlated with an actual

negative cause of E (V), it can be negatively correlated with E despite the

fact that it is a positive cause of it (see figure 2.2.). As in the previous Resolutions for

and more in

depth discussion

of this issue can

be found

in [25, 97].

case, where being female was associated with a higher probability of

admission in each individual department, but a lower probability overall,

we find that smoking seems to lower the probability of lung cancer when

looking at smokers versus non-smokers, even though it is a positive cause
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Figure 2.2.: Illustration of Simpson’s paradox example.

of lung cancer in general. That is, smoking was correlated with living

in the country (and exposure to fresh air), which made it seem to be a

negative cause of lung cancer, while non-smoking was associated with

living in the city (and exposure to pollution). Similar examples can be

constructed where a drug seems to be ineffective when looking at just

men and just women, but is effective for people as a whole.

2.3.2 Suppes

The primary explanation and development of the theory of probabilistic

causation comes from Patrick Suppes [124]. In this work, Suppes defines

several types of causes. All of these, aside from negative causes, raise

the probability of their effects and the direction of the causal relationship

is characterized by temporal priority between cause and effect. Suppes

defines probabilities and events in terms of sets, using the notation At

and Bt ′ to denote event of kind A occurring at time t, and B at time t ′.

Thus if we are interested in whether smoking causes lung cancer and X

is the set of all events, then Ct ′ is the subset of X consisting of all events

involving smoking at any time t ′(where smoking is followed at any later

time t by cancer or no cancer), and Et is the subset of X consisting of
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all events where people have lung cancer at some time t (preceded by

smoking or not smoking at any earlier time t ′). The temporal subscripts

refer only to the “later” and “earlier” conditions. In the computation of

the conditional probability P(Et|Ct ′), Et ∧Ct ′ is the intersection of these

sets, consisting of the set of events where smoking is followed by lung

cancer.9 The probability of a set of events is the sum of the probabilities

of the individual events comprising the set, as each is considered to be a

mutually exclusive outcome.10 Thus we should think of this as the sum

over all ways C can precede E and interpret these temporal subscripts as

being used only to describe the relationship between times t and t ′ (e.g.

that one is strictly earlier than the other is), not as denoting actual times

of occurrence.11

The first type of causes, prima facie causes, are the simplest causes

described. These are potential genuine causes.

Definition 2.3.2. An event Bt ′ is a prima facie cause of event At iff:

1. t ′ < t,

2. P(Bt ′) > 0, and

9 Depending on how finely the events are specified (with this being up to the experimenter),
and denoting lung cancer by L and smoking by S, the sets may be as follows. All
events (X) could be {S1L2,S1L2,S1L2,S1L2}, where the event space is all combinations of
smoking/not-smoking preceding lung cancer/not lung cancer. Then, testing whether St′
causes Lt, the sets are: C = Ct′ = {S1L2,S1Lt},E = Et = {S1L2,S1L2}. Then, Ct′ ∧ Et =
{S1L2}. Another X could specify events more finely, such that some event might denote
whether lung cancer occurs after ten years but not after five years, and another lung
cancer five years but not ten years after smoking. Then E would be comprised of all of
these types of events such that lung cancer happens – regardless of when it happens. In
another case, outcomes could be of the form S1L1S2L2. Then, C will contain all events
that include S1 or S2 while E will contain all those with L1 or L2 but the intersection of
Et and Ct′ should only include those where S is prior to L, such as S1L1S2L2.

10 For further details, see the Appendix of [124].
11 Suppes gives an example immediately after the introduction of this notation, of inocula-

tion and incidence of cholera where At is the event of contracting cholera, while Bt′ is
the event of being vaccinated against the disease. It is clear that the times refer only to
the temporal order, and not to any particular times.([124],12)
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3. P(At|Bt ′) > P(At).

We interpret this as being for all t and t ′ where t ′ < t. That is,

the probability of A occurring at any time after B is greater than the

probability of A occurring at any time. These do not refer to specific t’s

and t ′’s, but rather just describe the relationship between t and t ′. In

some cases, these causes may later turn out to be false. This discussion

brings us next to the topic of spurious causes. We may believe that,

even though something meets the criterion of being a prima facie cause,

there is a better explanation for the effect. Then, we need a method to

examine whether it is truly a cause. Suppes introduces two ways in which

something may be a false, or spurious, cause. In each, the idea is that

there is some event earlier than the possible cause that accounts equally

well for the effect. That is, the spurious cause does not have any influence

(positive or negative) on the effect.12

Definition 2.3.3. Bt ′ , a prima facie cause of At is a spurious cause in sense

one iff ∃t ′′ < t ′ and Ct ′′ such that:

1. P(Bt ′ ∧Ct ′′) > 0,

2. P(At|Bt ′ ∧Ct ′′) = P(At|Ct ′′), and

3. P(At|Bt ′ ∧Ct ′′) > P(At|Bt ′).

The idea here is that Bt ′ is a possible cause of At, but there may

be another, earlier, event that has more explanatory relevance to At.

However, condition 2 of the definition above is very strong and perhaps

counterintuitive. It means that there exists an event that completely [124], 25. Note

also that an

event that is

spurious in sense

two is spurious

in sense one, but

the reverse is not

true.

eliminates the effectiveness of the cause for predicting the effect. One

12 [124], 24.
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way of relaxing this condition is to look for kinds of events, where given

the observation of one of these kinds of events or properties, knowing

that the spurious cause occurs is uninformative with regards to whether

the effect will occur. Here, a partition, πt, may be of either the sample

space or universe and consists of “pairwise disjoint, nonempty sets whose

union is the whole space.”

Definition 2.3.4. Bt ′ , a prima facie cause of At is a spurious cause in sense

two iff there is a partition, πt ′′ where t ′′ < t ′ and for every Ct ′′ in πt ′′

1. P(Bt ′ ∧Ct ′′) > 0, and

2. P(At|Bt ′ ∧Ct ′′) = P(At|Ct ′′).

One example of this, given by Otte [96], is the case of rain (A), a falling

barometer (B) and a decrease in air pressure (C). B is a prima facie cause

of A, as when it occurs the probability that A will follow is increased.

However, P(A|C∧ B) = P(A|C), that is, given that the air pressure has

decreased, the falling barometer does not provide any extra information

about the rain. Also, P(A|B∧C) > P(A|B), since the probability of rain

given both a decrease in air pressure and a falling barometer is at least

as great as the probability given just the falling barometer. So, B is a

spurious cause of A in sense one.

We can also show that B is a spurious cause of A in sense two. Taking

the partition π being {decreasing air pressure, non-decreasing air pressure}

we then find that the probability of A given (B∧C) is still equal to the

probability of A given C and that the probability of A given (B∧¬C) is

equal to the probability of A given ¬C. That is, if there is not decreasing

air pressure, a falling barometer provides no information about whether

it will rain. All causes that are spurious in sense two are also spurious
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in sense one, but the reverse is not true in general. Note however that in

the limit, where our barometer reports the air pressure perfectly, it will

not be spurious in sense two, as P(B∧¬C) = 0 (and we require that the

probability must be greater than zero) – though it will still be spurious in

sense one.

Then, Suppes defines genuine causes as non-spurious prima facie causes.

These definitions allow us to begin to talk about what it means for

something to probabilistically cause another thing. However, they can

be rather limiting. Looking at the definition for spurious causes, the

stipulation that P(At|Bt ′ ∧Ct ′′) = P(At|Ct ′′) means that some causes may

not be deemed spurious, despite meeting all the conditions, if there is

a small difference in the probabilities on either side of this equality. To

address this issue, Suppes introduced the notion of an ε-spurious cause.

Definition 2.3.5. An event Bt ′ is an ε-spurious cause of event At iff

∃t ′′ < t ′ and a partition πt ′′ such that for every Ct ′′ of πt ′′ :

1. t ′ < t,

2. P(Bt ′) > 0,

3. P(At|Bt ′) > P(At),

4. P(Bt ∧Ct ′′) > 0, and

5. |P(At|Bt ′ ∧Ct ′′) − P(At|Ct ′′)| < ε.

This definition implies that a genuine cause that has a small effect on

the probability of the event being caused will be ruled spurious. The

partition, πt ′′ , separates off the past just prior to the possibly spurious

cause, Bt ′ .
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One issue that arises when using these definitions to determine the true

cause of an effect is that we may find earlier and earlier causes that make

the later ones spurious. That is, the cause may be quite removed from the

effect in time (not to mention space). Suppes does not modify the theory

to account for this, rather he introduces the idea of a direct cause. This is

a concept very similar to screening off and spurious causes, except here

we must consider whether there is some event coming between the cause

and effect.13

Definition 2.3.6. An event Bt ′ is a direct cause of At iff Bt ′ is a prima facie

cause of At and there is no t ′′ and no partition πt ′′ such that for every

Ct ′′ in πt ′′ :

1. t ′ < t ′′ < t,

2. P(Bt ′ ∧Ct ′′) > 0, and

3. P(At|Ct ′′ ∧Bt ′) = P(At|Ct ′′).

It is still possible that we will have a direct cause that is remote in

space (and perhaps less possibly, in time), but we may nevertheless use

this to rule out indirect remote causes. For example, we could have the

case where someone’s birth is the cause of them dying (it is an earlier

cause screening off any later spurious causes, and it certainly holds with

probability 1, though this would require constraining the time of death,

since the probability someone will die eventually is 1). However, we

can find later causes that are between birth and death that are the direct

causes of death. Following the same rationale as for ε-spurious causes,

we may define ε-direct causes.

13 Note, however, that there is no link between spurious and indirect causes.
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Now we consider the possibility that two prima facie causes may aid

one another in producing an effect. Suppes refers to such causes as

supplementary causes, which are defined as follows:

Definition 2.3.7. Events Bt ′ and Ct ′′ are supplementary causes of At iff:

1. Bt ′ is a prima facie cause of At,

2. Ct ′′ is a prima facie cause of At,

3. P(Bt ′ ∧Ct ′′) > 0, and

4. P(At|Bt ′ ∧Ct ′′) > max(P(At|Bt ′),P(At|Ct ′′)).

In this case, t ′′ may be equal to t ′. Analogously to the previous cases,

we may also define ε-supplementary causes. With this definition, we can

identify combinations of causes that predict effects much better than each

cause alone. Causes that result in their effects with probability one, i.e.

the limit of prima facie causes where P(At|Bt ′) = 1 are referred to as

sufficient (or determinate) causes, using the same terminology as Mackie.

Looking at these definitions, we may identify some potential problems.

First, because of the way “spurious” is defined, we run into difficulties

with causal chains. For example, if we have a chain of causes that all

produce their effects with probability one, every member will be spurious

aside from the first member of the chain. Now, if we add another event

between the last member of the chain and the final effect, which produces

the effect with some probability, 0 < p < 1, the last member will still be

spurious, but it will now be the only direct cause of the effect. In many

cases we may find earlier and earlier events to account for the effects, but

it is perhaps unsatisfying to say that the only direct cause is spurious

and the genuine cause is indirect. Similarly, in the case of the first chain
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described, it is unclear whether the first or last link should be the genuine

cause.

Secondly, in the case of overdetermination, or redundant causation,

where there are two possible causes for an effect and both are present, all

causes will turn out to be spurious aside from the earliest. For example,

we have Bob and Susie (armed with rocks to throw at the bottle) and a

glass bottle. Let us say that Bob is standing a little closer to the bottle

than Susie is. So, Susie aims and throws her rock a little earlier than

Bob does, but their rocks hit the glass simultaneously, breaking it shortly

after impact. In this case, since Susie aimed her rock first, there is an

earlier event than Bob aiming his rock and the rocks hitting the glass that

accounts for the glass breaking. 14 Here we can see that this does not

quite make sense, as Susie’s throw did not set off a chain of events leading

to the glass breaking any more than Bob’s throw did (her throw had no

effect on his). Why should one be the genuine cause of the glass breaking,

simply because it was earlier? Now, we may also alter this example to

look at the case of preemption (this is analogous to the “cutting” of causal

chains described by Lewis). If Susie still throws first, but Bob’s rock

arrives first and thus breaks the glass before Susie’s rock hits it, we would

think that Bob’s throw caused the glass to break. But, since Susie threw

her rock first and would have caused the glass to break with probability

1, her throw still caused the glass to break despite the fact that it was

already broken when her rock hit it.

To summarize Suppes’ theory, a prima facie cause raises the probability

of its effect and may be a genuine cause if it is not spurious. There are

14 Here we assume that if Susie aims and throws her rock it hits the glass with probability
one and the glass breaks with probability one. The same assumption is made for Bob.
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two ways in which something may be spurious, which correspond to

looking for particular earlier events that explain the effect better than the

spurious cause versus making a partition and looking at kinds of events. It

remains to be determined whether the earliest cause should be termed

the genuine cause.

2.3.3 Eells

Another advancement in probabilistic theories of causality came from

Ellery Eells, who described theories of both type and token level causa-

tion [27]. Type causation refers to relationships between kinds (or types)

of events, factors, or properties, while, in contrast, token causation refers

to relationships between particular events that actually occur.

Type level causation

First, Eells states:

Definition 2.3.8. C is a positive causal factor for E iff for each i:

P(E|Ki ∧C) > P(E|Ki ∧¬C), (2.2)

where the Ki’s are causal background contexts. By causal background

contexts, we mean that if there are n factors other than C that are relevant

to E there are 2
n ways of holding these fixed and we are interested in

the subset of these that occur with nonzero probability in conjunction

with C as well as ¬C [i.e. P(C∧Ki) > 0 and P(¬C∧Ki) > 0] constitute

a background context.15 For example, if we have three factors – x1, x2,

15 [27], 86.
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and x3 – one among the eight possible background contexts would be

Ki = ¬x1 ∧ x2 ∧¬x3.

We may also define negative as well as neutral causal factors by chang-

ing the > in equation 2.2 to < and = respectively. This idea of requiring

the causal relationship to hold in all background contents is referred to

as context unanimity. There is ongoing debate on this requirement, but

for Eells’s theory we will assume it as a given.16 Lastly, C may also

have mixed relevance for E, it may not be negative, positive or neutral.

This corresponds to C’s role varying depending on the context. Eells

defines that C is causally relevant to E if it has mixed, positive, or negative

relevance for E – i.e. it is not causally neutral.

In addition to determining whether C is causally relevant to E, we may

want to describe how relevant C is to E. As in Suppes’ theory, it is possible

to have causally relevant factors with small roles. One method Eells gives

for measuring the significance of a factor X for a factor Y is:

∑
i

Pr(Ki)[Pr(Y|Ki ∧X) − Pr(Y|Ki ∧¬X)], (2.3)

where this is called the average degree of causal significance (ADCS).

Unlike Suppes, Eells notes that with Xt ′ and Yt, where t ′ < t and these

are particular times, the factors being held fixed may be at any time t ′′,

earlier than t, including between t ′ and t as well as earlier than t ′. Note

also that since we are describing particular times, we can account for the

fact that causal relevance may change over time. For example,

smoking in a

forest may cause

a forest fire.

However, it is

highly unlikely

that a lit match

at time t ′ caused

a fire at time t if

t ′ � t.

16 For further discussion, see [22, 26, 23].

31



2.3 probabilistic causality

Token level causation

Token claims depend on their context. For example, in one scenario we

asked whether a lit match was the cause of a house fire on a particular

occasion. Regardless of the general, type-level, relationship between

lit-matches and house fires we need to know more about the particular

situation to determine whether it was the cause of the fire on that particu-

lar occasion. Token causation is used to analyze the causes of a particular

event, and allows for the possibility that a type-level positive cause of an

event may be a negative token-level cause. This type of analysis is Eells’s

major contribution in [27].

The general form of the question looked at here is: what is the sig-

nificance of x’s being of type X for y’s being of type Y, where events

x and y are specified by their locations in time and space (which may

include intervals of time) as well as the properties of these locations

(i.e. they may be thought of as a set of coordinates plus the factors of

those coordinates). These questions may be answered by “because of,”

“despite,” or “independently of,” corresponding to positive, negative, and

neutral causal factorhoood as we saw earlier.

Eells begins by looking at probability trajectories, the main idea being

that we can study the probability of y being of type Y over time. Then,

we define that y is of type Y because of x if the following four conditions

apply:

1. The probability of Y changes at the time of x;

2. Just after x the probability of y is high;

3. The probability is higher than it was before x; and
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4. The probability remains high until the time of y.

In general, we may summarize the four possible relations as:

Despite: y is Y despite x if the probability of Y is lowered after xt,

Because: y is Y because of x if the probability of Y is increased after xt

and remains increased until yt,

Autonomously: y is Y autonomously of x if the probability of Y changes at

xt, this probability is high, but then decreases before yt, and finally,

Independently: y is Y independently of x if the probability if Y is the same

just after xt as it is just before xt,

where xt and yt are the respective times of those events. Then, x is

causally relevant to y if Y happened either because of or despite x. As Eells

states, this is only the basic idea of token-level causation, and we need to

look more at x (previously we considered only its time) as well as hold

fixed the background contexts as we did with type-level causes.

Eells describes two sets of factors that must be held fixed. The first

category consists of:

Factors such that they are actually exemplified in the case

in questions, their exemplifications are token uncaused by x

being X and they are type-level causally relevant to y’s being

Y during the context determined by how things are before

they occur;

and the second,

Factors such that they are actually exemplified in the case in

question, their exemplifications are token uncaused by x being
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X and they interact with X with respect to Y in the context

determined by how things are before xt.

These factors may occur at any time before yt. The causal background

context is obtained by holding positively fixed all factors of these two

kinds. However, these cases do not improve the classification of all

relationships. Take one example described by Eells. We have a patient

who is very ill at time t1. She is likely to survive until t2 but not until a

later t3. Now, assume that at t1 a treatment is administered that is equally

likely to kill the patient as the disease is. Now, at t2 a completely effective

cure is discovered and administered and the only remaining chance of

death is due to the first ineffective treatment – not the disease. However,

the probability of death did not change after the first treatment, so death

was token causally independent of it. But, the relation should actually

be despite, as the treatment put the patient at unnecessary risk due to

its severe side effects (which remain unchanged by the second treatment

that cured the underlying disease).

In the example above, the second drug is causally relevant to Y (sur-

vival) and is not caused by the administration of the first drug. When

we hold fixed the second drug being given, using the first kind of factor

described, again the first drug has no effect on the probability of Y. Using

the second kind of factor has no effect in this case, as the two drugs do

not interact, so the probability of survival after the first drug does not

change dependent on the presence or absence of the second drug.

To summarize, Eells describes two main sorts of causation: type-level

and token-level and then presents methods of characterizing their rela-

tionships based on probabilities. For the first type of causation, causes
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either positively or negatively produce their effects in all background

contexts, where these contexts include all events earlier than the final

effect. For the second, token level causation, Eells presents a method

to probabilistically analyze what role a cause played in an effect in a

particular instance.
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3
C U R R E N T W O R K I N C A U S A L I N F E R E N C E

Recent efforts in causality are found primarily in the following areas: the

development of statistical techniques for description and inference, logics

for description and analysis of causal relationships, and experimental

work that applies these methods to data in a variety of domains.

3.1 causal inference algorithms

Despite the many causal assumptions made in the sciences, comparatively

little work has been done to examine the meaning of these assumptions

and how we may go about making inferences from experimental data.

The two main areas of work have been in: (1) characterizing what can be

learned from statistical data and how we may learn it, and (2) the devel-

opment of a statistical theory of counterfactuals that supports queries on

known models and determination of the “actual cause” in such cases. In

both cases, the theories are technically probabilistic, but causal relation-

ships are generally deemed deterministic, where the probabilities are due

to the limits of what we may observe.
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3.1.1 Bayesian networks: Spirtes, Glymour and Scheines

The primary method for causal inference has been through the use of

graphical models [72, 102, 36]. The main work in this area has been by

Spirtes, Glymour and Scheines (hereafter SGS) as described in [114, 120].

Their method is an explanation of the types of causal structures that can

be inferred based on the assumptions made and data that is available.

The technique takes a set of statistical data and outputs sets of directed

graphs depicting the underlying causal structures. Temporal asymmetry

is not assumed by their inference algorithm.

The first part of this theory utilizes directed graphs to describe indepen-

dence assumptions. The directed acyclic graphs (DAGs), called Bayesian

networks (BNs), are used to represent probability distributions and causal

structures. The probability distributions are introduced into the graph

by the Markov condition, or the notion of d-separation.1 D-separation

describes the set of independencies in a DAG in terms of whether, for

two vertices X and Y, there is some set of vertices Z blocking connections

between them in some DAG G. If so then X and Y are d-separated by

Z in G. That is, if there is a DAG: X → Z → Y, then the only directed

path between X and Y is blocked by Z, and thus X and Y are d-separated

by Z in this graph. This independence is written as: X � Y|Z (X and Y

are independent conditional on Z). These conditions are given a causal

interpretation with the causal Markov condition, which implies the same

independencies as d-separation.

1 In the DAG, these methods are equivalent.
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Definition 3.1.1. The causal Markov condition is that: A variable is inde-

pendent of all of its non-descendants conditional on all of its direct causes

(those that are connected to the node by one edge)

The direct causes, however, need not be direct in space or time. As in a

Markov process, where the future state depends only on the current state

and not any prior past states, the causal Markov condition (CMC) states

that information about a variable is found only in its direct causes – not

its effects or any indirect causes. This relates to Reichenbach’s common

cause principle, described in Section 2.3.1, where two events are causally

connected if one causes the other or if there is another event that is a

common cause of both. With CMC, if two events are dependent and

neither one is a cause of the other, then there must be some common

causes in the set of variables such that the two events are independent

conditional on these common causes.

In a causal graph with a set of variables V , two vertices are connected

with an arrow if one is a direct cause of the other, relative to V . We note

that the statement “relative to V” means that the causal graphs are not

necessarily complete, there may be causes of some of the variables or

variables intermediate between cause and effect that are left out. However,

the graphs are assumed to be complete in that all common causes of vari-

ables are included, and that all causal relationships among the variables

are included in the graph. The intention of the causal graph is that it

show for possible ideal manipulations (where an alteration directly affects

only one variable, with all other changes being a result of the change

in the single altered variable), what other variables may or may not be
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Figure 3.1.: Faithfulness example.

affected. That is, if one variable is an effect of some cause, changing the

effect will have no bearing on what happens to the cause.

The inference of causal structures relies on two more assumptions:

faithfulness and causal sufficiency. Faithfulness assumes that exactly the

independence relations found by d-separation in the causal graph, hold

in the probability distribution over the set of variables. This requirement

implies that the independence relations obtained from the causal graph

are due to the causal structure generating it. If there are independence

relations that are not a result of CMC, then the population is unfaithful.

The idea of faithfulness is ensuring that independencies are not from

coincidence or latent variables, but from some structure.

In an example given by Scheines [114], suppose we have the graph

in figure 3.1. Then, smoking is negatively correlated with health, but

positively correlated with exercise, which is in turn positively correlated

with health. Then, it is possible to have a distribution generated by that

structure such that the positive effect of exercise (via smoking) on health

exactly balances the negative effect of smoking on health leading to no

association between smoking and health. In that case, the population

would be unfaithful to the causal graph generating it.2 Causal sufficiency

assumes that the set of measured variables includes all of the common

2 Note that this is precisely the same graph as in figure 2.2, illustrating Simpson’s paradox.

39



3.1 causal inference algorithms

causes of pairs on that set. This notion differs from that of completeness

in that we are assuming that there is a causal graph that includes these

common causes and that these common causes are part of the set of

variables measured.

The primary objections to (and problems with) this theory hinge on

the argument that the preceding assumptions do not normally hold and

are thus unrealistic. Usually, the objection is to CMC. This is perhaps the

most debated portion of the theory, criticized heavily by Cartwright and

defended by Hausman and Woodward [53, 13, 12]. Cartwright’s main

argument against CMC is that common causes do not always screen off

their effects. One example given [120] is that of a television with a switch

that does not always turn the TV on (See figure 3.2). But, when the TV

does turn on, both sound and picture are on. Given that the sound has

turned on, even after knowing that the switch is turned on, we know

more about whether there will be a picture than we would if we did

not know that the sound was on. It would seem that the picture is not

independent of the sound, violating CMC as there is no arrow between

picture and sound, and their earlier common cause fails to screen them

off from one another. The second objection to the SGS method is with

the faithfulness condition. One problem with this and the conditional

independence stipulations in general are that they only hold when the

relationship is exact but it is not possible to verify the exact independence

from finite sample data [59]. Thus, the argument goes, we must be

finding approximate independence, but that has no meaning in the SGS

algorithm.

The result of the SGS method is a set of graphs that all represent the

independencies in the data, where the set may contain only one graph
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Figure 3.2.: Screening off example.

in some cases when all assumptions are fulfilled. However, when using

these graphical models there is no natural way of representing or inferring

the time between the cause and the effect or a more complex relationship

than just one node causing another at some future time. Following the

use of Bayesian networks, dynamic Bayesian networks (DBNs) [39] were

introduced to address the temporal component of these relationships.

DBNs extend BNs to show how the system evolves over time. For this

purpose, they generally begin with a prior distribution (described by

a DAG structure) as well as two more DAGs: one representing the

system at time t and another at t+ 1, where these hold for any values

of t. The connections between these two time slices then describe the

change over time. As before, there is usually one node per variable,

with edges representing conditional independence. While DBNs are a

compact representation in the case of sparse structures, it can be difficult

to extend them to the case of highly dependent data sets with thousands

of variables, none of which can be eliminated [93].
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Recent work by Langmead et al. [71] has described the use of temporal

logic for querying pre-existing DBNs, by translating them into structures

that allow for model checking. This approach allows the use of known

DBNs for inference of relationships described by temporal logic formulas.

However, only a subset of DBNs may be translated in this way [70], and

thus the benefit of this approach (as opposed to one where the model

inferred already allows for model checking or where we test formulas

directly in data) is limited.

3.1.2 Structural Equations: Judea Pearl

Pearl’s work on causality addresses three main areas: how causality may

be inferred both with and without the aid of temporal information [102],

how to define a formal theory of counterfactuals using structural mod-

els [102], and finally, how to determine the actual cause of an effect [47, 46].

The basic idea in Pearl’s work is that there are functional relationships be-

tween variables and that causation is a method of encoding the behavior

of the system under interventions, where interventions are manipulations

of the functional relationships, or mechanisms [101]. Then, the goal of

the causal inference is to be able to predict the effect of interventions on

the system. Pearl’s work on causal inference bears many similarities to

that by SGS, so here we summarize only the structural equation model

and method of determining actual causes.
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Structural Equation Model

Pearl presents a structural-model semantics of counterfactuals [101, 102],

where causal models are defined as deterministic and the probabilities

come from background conditions. In this work, Pearl says that the role

of a causal model is to encode the truth value of sentences relating to

causal relationships. These sentences have three types: action sentences

(B will be true if we do A), counterfactuals (B would be different if it

were not for A), and explanations (B occurred because of A).

Then, a causal model in the structural model semantics is defined as a

triple, M = 〈U,V , F〉 where:

1. U is a set of background variables (determined by factors outside

the model);

2. V is a set of endogenous variables (determined by variables in the

model - i.e. in U∪ V); and

3. F is a set of functions where each fi ∈ F is a mapping from U∪ (V \

Vi) to Vi s.t. the set F is a mapping from U to V .

Each fi gives the value of Vi given the values of all other variables in

U∪ V , and the set F has a unique solution V(u), as the system is acyclic.

The causal model M can be associated with a directed graph G(M)

such that each node corresponds to a variable in V and the directed edges

point from members of PAi (parents of i) and Ui toward Vi. In this model,

these graphs are called causal diagrams. Essentially, the graph identifies

the background and endogenous variables directly influencing each Vi.

Note that the parent variables are only those in V , as the background

variables are not always observable, though the set may be extended to
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Figure 3.3.: Firing squad example.

include those that are observed. The variables in V are those that we can

potentially influence, while those in U are outside the system. In figure

3.3, the background variable would be U (Court Order), with all other

variables being endogenous. The corresponding causal model is:

• C = U,

• A = C,

• B = C, and

• D = A∨B.

The counterfactuals are interpreted in response to alterations to these

equations. For example, the counterfactual “the value that Y would have

had, had X been x,” where Y is a variable in V and X ⊂ V is interpreted

as denoting the potential response Yx(u). It is then possible to assess,

as Lewis did, whether the effect would still happen in a model where

the cause did not. This can also be generalized in terms of probabilistic

systems.

Finding the Actual Cause

Much as Eells gives a theory of token causation, Pearl formalizes the

notion of what he calls the “actual cause.” That is, the cause of an effect

44



3.1 causal inference algorithms

x

��????

**TTTTTTTTTTTTTT p

������

D

��@@@@ C

������

y

Figure 3.4.: Desert traveler example.

on a particular occasion. For example, “Socrates drinking hemlock was

the actual cause of Socrates death” versus “drinking hemlock causes

death” [102]. Pearl refers to token-level causes as “actual causes” and

type-level causes as “general causes.” In contrast to the philosophical

approaches that treat each type as a separate species of causal claim [27],

Pearl’s structural account treats them in the same manner, where the only

difference is in the supporting information needed.

In the firing squad example of the previous section (figure 3.3), what

was the actual cause of death? In the standard counterfactual account

we would find that had A not shot the prisoner, B would have and

thus A’s shot is not the cause of death and neither is B’s (since had B

not shot the prisoner, A would have). As described in prior sections

describing Lewis’ counterfactual account of causation, this is an example

of overdetermination [74]. Similarly, we can remember the problem of

preemption, where if rifleman A had moved a bit closer to the prisoner,

then A’s shot may hit him before B’s does (assuming they were both

acting on a court order). In that case, A should be the actual cause of

death, as B is preempted by A. Lewis deals with this by stating that c

causes e if there is a causal chain from c to e (defined as before, where

each member is counterfactually dependent on the prior link).

According to Pearl, the real difference is structural. This is illustrated

by the example in figure 3.4 [102]. There, a traveler has two enemies. One
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poisons his canteen (p) and the other one, not knowing about this, shoots

the canteen, emptying it (x). The traveler later dies, but who actually

caused his death? The intermediate variables C and D represent cyanide

intake and dehydration respectively, and y denotes death. Then, the

values of each variable are given by:

c = p∧¬x,

d = x, and

y = c∨ d.

Simplifying, we find that:

y = x∨ (p∧¬x) ≡ x∨ p (3.1)

However, Pearl argues here that the equations on either side of the ≡ are

structurally different. That is, x∨ p is symmetric, whereas x∨ p∧¬x

means that if x is true, p has no effect on y or any intermediate variable.

Thus, Pearl says, this asymmetry is what allows us to conclude that x is

the actual cause of death.

The basic ideas of the account Pearl proposes come from Lewis’ coun-

terfactual account [74] and Mackie’s INUS conditions [83]. Here, Pearl

addresses the problems found with counterfactual analysis, mainly that

it ignores sufficiency, and fails in cases of pre-emption and overdetermi-

nation. The main component of this account is the idea of sustenance,

which combines necessity and sufficiency of causation while also taking

into account structural information.
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First, dependence is intended to capture the idea of necessity. That is,

y is dependent on x in u means that when X’s value is altered from x

to x ′, Y’s value changes from y to some other y ′. This addresses the

necessity of x for maintaining the value of Y at y. Second, production

refers to the ability of a cause to create an effect in a case where neither

are present (this relates to the notion of sufficiency). That is, if X’s value

(in u) is modified to x from x ′, where Y’s value is y ′, Y will then take on

value y. Finally, sustenance combines ideas from both dependence and

production.

Definition 3.1.2. x sustains y in u relative to W, where W is a set of

variables in V and w,w ′ are specific realizations of these variables, iff:

X(u) = x, Y(u) = y, Yxw(u) = y for all w and Yx ′w ′(u) = y ′ 6= y for some

x ′ 6= x and some w ′.

This is a weaker version of necessity in that Y need only differ in the

absence of x under one condition, however it is also a stronger version

of sufficiency, in that Y must maintain its value y under any w. Note

that this argument implies that there is some w = w ′ such that x is both

necessary and sufficient for y.

The concept of sustenance is central to Pearl’s method for finding the

actual cause, called causal beams. A causal beam is a new model created

by removing all parents except for those sustaining their children. That

is, the parents that remain are those that are sufficient for maintaining

the value of their children – regardless of how the other parents are set.

Then, the other parents are set to some other value. The causal beam

allows explanations for actual events under a hypothetical “freezing”

of variables. This freezing may be at the actual values of the variables
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(natural beam) or at some nearby values (causal beam). Then, an event

X = x is an actual cause of an event Y if it changes when X is not x at the

actual values of the variables. If the change only happens when values

are removed from their actual values, then x is a contributory cause of y.

A few counterexamples to Pearl’s theory of actual (or token) causation

are given by Menzies [89]. The types of examples given are those that are

generally given against theories of token causation that allow transitivity.

While some examples – such as a switch that causes a train to go on one

of two tracks (where it arrives at its destination regardless of the track) –

will find erroneous causes using three variables (i.e. the switch will be

the cause of arrival, even though arrival does not depend counterfactually

on the switch’s position), this can be remedied by using more detailed

variables (i.e. one for each train track). Conversely, counterexamples can

be found where adding an extra variable creates anomalous results. The

argument against these examples is that they use unnatural models that

do not reflect how we would normally reason about the cases.

3.2 granger causality

Another statistical method, applied primarily in economics, was devel-

oped by Granger to take two time series and determine whether one is

useful for forecasting the other [44]. While this approach does not at-

tempt to relate to standard notions of causality (rather it proposes a new

definition that is most similar to correlation), it is widely used in many of

the same applications as the causal inference approaches. Further, it is

one of the few methods that explicitly include temporal information, so it

48



3.2 granger causality

will later be included in our experimental comparisons. Here, pairwise

causality is defined by [45]:

Definition 3.2.1. With Ωt being all available (non-redundant) knowledge

at time t, Yt Granger causes Xt+1 if P(Xt+1 ∈ A|Ωt) 6= P(Xt+1 ∈ A|Ωt −

Yt) where A is some set of observations.

That is, the information contained in Yt provides information on Xt+1

that is not contained in the rest of the set. Here there is an assumption of

temporal priority between cause and effect, but no mention as to whether

the probability is higher or lower in the absence of the cause – only

that it is different (note that this is similar to Eells’s definition of causal

relevance). Similarly to the other methods described, there is no notion

here of how much of a difference Yt makes to Xt+1 and whether there

are better predictors or other pieces of information that may be added to

Yt to improve its use as a predictor of Xt+1. Further, there is no intrinsic

method of representing complex factors such that their causal roles may

be inferred automatically from the data. For example, we may want to

test not just whether there is a relationship between unemployment and

a bull market, but perhaps:

(a∧ b)Uc;>t1,6t2

>p d,

which could be interpreted to mean that after a bear market (a) and

increasing unemployment (b) persist until unemployment reaches 20%

(c), then within 1 (t1) to 2 (t2) months, there will be a bull market (d) with

probability p.

In practice Granger causality is frequently tested using linear regression

and testing whether use of the information in the possible cause leads
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to a smaller variance in the error term than when this information is

omitted. An extension, proposed by Chen et al. [17], allows analysis of an

arbitrary number of time series as well as nonlinear models. There they

introduced the Conditional Extended Granger Causality Index (CEGCI),

where multiple time series are analyzed. That is, with three time series,

A,B, and C, to determine whether A is causally relevant to C we look at

the prediction error of C given only B versus that given A∧B.

Building on this, recent work by Eichler and Didelez [32] focuses on

time series and explicitly capturing the time elapsed between cause and

effect. They define that one time series causes another if an intervention

on the first alters the second at some later time. That is, there may be lags

of arbitrary length between the series, and they find these lags as part of

the inference process. While it is possible to also define the variables in

this framework such that they represent a complex causal relationship as

well as the timing of the relationship, the resulting framework still does

not easily lead to a general method for testing these relationships.

3.3 causality in logic

One motivation for the use of causal reasoning in logic has been due to

its role in diagnosing causes of system malfunctions based on symptoms

(visible errors), referred to as fault diagnosis [2, 7, 16, 81, 104]. In this and

other cases, what is desired is a framework in which it is possible to reason

about changes in state due to actions and causal dependencies among

actions. In particular, there has been a focus on reasoning about the

indirect effects (ramifications) of actions. That is, how to take into account
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the effect of an action and propagate its changes on the world [41]. The

difference between standard notions of implication and the terminology

proposed here is that one action causing another means that the first is

responsible for the second, rather than the second simply happening

some time after the first in a reliable manner [100]. This difference is why

it is desirable to be able to describe causal relationships, so it is possible

to reason about the results of actions upon the system. The meaning of

causality in the majority of the logics described below relates primarily to

dependency and the ordering of events – not the philosophical meaning

it was given in the other described approaches.

3.3.1 Situation Calculus

One of the most influential works on the problem of determining the

effects of actions is by McCarthy and Hayes [85]. In that work they in-

troduce the situation calculus as a method of reasoning about causality,

ability and knowledge. They attempt to bridge philosophical represen-

tations of the world with a logical representation using automata. The

situation calculus is a logic that allows specification of actions, situations

(sequences of actions), and fluents (things that may have changing truth

value dependent on the particular state). The concern of that paper was

to enable a computer program to decide that a particular strategy will

achieve a given goal. Despite this advance many open problems remained.

One that was introduced in the original paper [85] and subsequently stud-

ied by many others is the frame problem: how to succinctly specify which

fluents will change as a result of a particular action. Another problem,
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known as the ramification problem, was later introduced in [35]. Here, the

goal is to find not just the direct consequences of an action but also those

that are indirect (i.e. secondary and other effects).

In order to solve these problems, a number of modifications to the

situation calculus have been proposed. One method by Lin [79, 80]

introduces the predicate Caused(p, v, s), which is true if fluent p is caused

to have truth value v in situation s. One of the central ideas in this work

is that a fluent’s value persists unless it is caused to be otherwise. That

is, if something is caused to be true, it will remain true unless there is

another action to make it false. Note that this differs from [77] in that it

can represent ramifications.

Most recently, Hopkins and Pearl [56] have proposed a framework

drawing on earlier work on structural models [46] as well as the work

described above. In this work, it is shown that counterfactuals may be

modeled using the situation calculus, however one must still specify all

dependencies, including those of counterfactuals. Here, a causal model is

a situation calculus specification of the system (including preconditions

of actions, etc.) and a potential situation and, as in the other theories

described, one may test whether a formula (here, it may be given a

counterfactual interpretation) holds given the constraints on execution of

the system (i.e. action preconditions, etc.).

3.3.2 Modal Logic

Another approach to the ramification problem uses modal logic. Work

by McCain and Turner [84] focuses on determining a set of possible next
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states after an action is performed. That is, they propose a formalization

of the effect of performing a specific action, where background knowledge

(constraints) is given in terms of “causal laws”. This set of states is given

using a fixpoint formulation, with the causal laws represented using an

extension of S5 modal logic.3 Note that the laws here are known, though

both cause and effect may be arbitrary logical formulas.

Giordano et al. [41] use a subset of PDL (propositional dynamic logic)

and introduce the © modality to express causality. Here, truth values

of formulas change depending on the actions that are performed. In

this logic, it is possible to make statements such as “after all terminating

executions of a, p will hold” (written [a]p). With this, they allow the

expression of ramifications of an action – effects that were not directly

caused, but that follow from a causal rule and action. Similar to the

successor state axiom, they assume persistency: that is, from one state

to the next a fluent is assumed to persist as long as it does not lead to

an inconsistency. Similarly to the situation calculus and the “caused”

predicate introduced by Lin [79], actions are methods of changing the

truth value of states, which are sequences of actions. The main difference

is that the approach by Giordano et al. does not allow the use of the

contrapositive of causal rules for making inferences. In comparison to the

approach of McCain and Turner, it is possible to reason about sequences

of actions, rather than single actions, though the causes and effects in this

case are simple conjunctions of events.

3 This method was later adapted to the situation calculus by Lifschitz in [78]. A logic of
universal causation (UCL) was developed by Turner [125] extending the work of McCain
and Turner.
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3.3.3 Interval Logic

The main method of representing causal relationships using temporal

logic has been through the use of interval logic. With this, events are

viewed not as time points but rather as having durations. The first

logic explicitly taking time into account in order to analyze causality

and address the frame problem came from McDermott [86], where he

introduced a first-order temporal logic. In that work, causality was

defined as being between events and other events or between events

and facts, where one causes another if the first is always followed by

the second. To describe this, the following predicate was introduced:

(ecause p e1 e2 rf i), meaning e1 is always followed by e2 after a delay

interval i unless p becomes false before i ends. The point rf denotes

when interval i begins (at the beginning of e1 (denoted rf = 0), at the

end, or at any time in between). Similarly to the notion of persistency

described by Giordano et al. [41], McDermott introduces the notion that

a fact may persist from one timepoint with a certain lifetime. Here, the

primary goal of causal reasoning is for the purpose of planning, that is,

reasoning about what is currently true and what will be true in order to

determine what actions should be taken to achieve a particular goal.

Later work by Halpern and Shoham [48, 116] introduced a logic of

continuous time, where rather than a state (or point in time) satisfying

a formula, we write that a pair of states (forming a closed interval)

satisfy the formula. In that work two relations corresponding to type

and token causation were introduced – “x causes y” and “x (actually)

caused y” – where x and y are propositions (events, properties, facts, etc.).
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The truth value of a “causes” statement is determined by whether the

statement is contained in the background causal theory (a set of logical

formulas comprising knowledge of causal relationships). The case of

actual causation is similar, but here the background contains rules with

actual times (being the actual times of the events) while type level causal

rules contain relations between generic times (i.e. 5 and 6 versus t and

t+ 1). To be an actual causal rule, the model of the actual scenario must

also contain the causal part of the rule and there must not exist another

rule in the theory that leads to the same effect. That is, it must be the

only possible cause of the effect.

3.4 experimental inference

In this section we review the current state of causal inference in terms of

three main types of data: high-throughput biological experiments (such

as gene expression microarrays), neural spike trains, and financial data

(such as stock returns). The methods use some of the theoretical ideas

described above, but as many of those do not allow inference of causal

relationships without knowing at least some of the structure a priori, a

number of other methods have been employed.

3.4.1 Biological experiments

In biology, the most recent work has been done in applying notions of

causality to the problem of determining relationships among genes (usu-

ally from microarray data). To our knowledge, all current methods seek to
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infer “causal networks” – graphs where an edge A→ B means “A causes

(or regulates) B” – or associations between individual causes and effects.

A primary use of these networks is in linking genetic factors to diseases.

Recent techniques used for inferring and modeling causality amongst

genes include: Granger causality [92], Bayesian networks [38, 128], mu-

tual information [3] and likelihood-based approaches [113]. Each method

begins with pairwise correlations across the entire time series, connecting

them to form graphs of networks. However, it can be difficult to see

how the network describing one set of experiments differs from that of

another (say, two cancer patients). One recent method [95] begins with a

correlation network and transforms it into one that includes causation.

The partially directed network allows the visualization of multiple rela-

tionship types simultaneously, as well as the identification of hub nodes.

The general approach provided in that work is meant to be applicable in

biological, financial and medical settings; however it does not easily lead

to the probabilistic rules that are useful when extending the method to

financial data.

3.4.2 Neural spike trains

Recent advances, such as the development of micro-electrode arrays

(MEA) have resulted in much data on the activities of neurons over

time [9]. This has led researchers to attempt to take this time series data

(detailing the firings of neurons) and determine the underlying structure:

which neurons are causing which others to fire. A primary method choice

has been one based on Granger causality [21, 54, 61]. With this, work
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has focused on pairwise relations between neurons. Using this type of

causality, as described earlier, there is no notion of spuriousness or levels

of spuriousness. In highly connected graphs, such as those representing

neurons, it can be difficult to determine the genuine causes.

3.4.3 Finance

Financial applications, primarily applied to stock market data, have

generally focused on finding correlation, not causation. Methods used

for this purpose focus on clustering the data to find stocks behaving

similarly, using tools such as correlation matrices [62, 94]. In recent years,

there has been an effort to correlate the movement of stock prices with

news events using keywords or classifications of news stories and press

releases [40, 88, 90, 115]. Some of these focus on the task of characterizing

news stories, using for instance their content and tone. To our knowledge,

the only use of causality in finance has been in the application of Granger

causality [45]. None of the previous methods attempt to find causal

relationships, or result in a way of characterizing interactions between

financial and news events. Similarly, the only use of temporal logic has

been in maintaining and querying financial databases [15], not inferring

relationships.
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4
D E F I N I N G T H E O B J E C T O F E N Q U I RY

4.1 preliminaries

Our focus is on proposing a new method for causal inference, but before

we can do so we must first discuss what we mean, in this work, by

“causal”, and thus what we will be inferring. Now that we have discussed

a number of theories of causality and methods used for inference, we can

describe the target of our investigation: what causes we will infer, and

how they relate to the types of relationships we have described so far.

When we consider inference or the definition of causality, it is important

that the meaning we ascribe to the term “causal” has a basis in prior

work in this area, particularly that of philosophy. In our everyday lives

we often say that things have been caused to happen, but what does this

actually mean? Looking at biomedical research, there are frequent reports

of genes or environmental factors causing (or being responsible for) cancer,

but the term “causes” is taken for granted without any discussion of this

terminology and when we can and cannot infer such a relationship. For

instance, in biology it is common to perform just a single experiment

where a gene is suppressed (knocked-out), and then it is tested whether

a given observable trait (phenotype) is present in the absence of the

knocked-out gene. If it is not, then the usual explanation given is that the

gene causes the trait. However, a number of possible explanations are
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consistent with this result. Beyond this, if the phenotype is not absent it

does not necessarily mean that it is not caused by the gene. There may be

other causes of the trait or the relationship may be more complex than

the pairwise one studied. More thought must be given to such causal

claims, especially when they are to be used for diagnosis and treatment

of life threatening diseases. Thus, before we can suggest any methods

for finding causes, we must be clear about exactly what we are finding

and what can be done with this information. In this chapter, we will

describe the target of our causal investigation. We will give sufficient

but not necessary conditions for a causal relation, and thus not all actual

causes will fit our definitions.

4.1.1 What is a cause?

We must first distinguish between the metaphysical concern of what a

cause is and the epistemological concern of what can be known about

causes. When we use “causality” in this work our aim is to predict

and explain phenomena and we will focus on practical definitions that

help achieve this by identifying what is and is not causal. We do not

attempt to define what it means for something to be a cause or suggest

that our definitions are for what is causal. That is, there may be genuine

causes that do not fit our criteria, as these are not necessary conditions

for causality.

Many theories refer to “event A” causing “event B”, but we do not nec-

essarily want to imply that A is an event in the usual sense of something

that happens or that occurs at a particular time and place. For example,
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we want to allow that a cause could be a property (“the scarf being red

caused the bull to charge”) – and not necessarily the event of a change in

property (i.e. the scarf did not become red, it had the property of being

red before and after the charging bull). Thus we are not restricting what

types of things may be causal. We are agnostic as to what sorts of things

have the capability to cause others (e.g. we make no claims about mental

causation, causation by omission, and so on), we are restricting only what

sorts of things we will look for and consider as potential causes. In this

work we will only describe and infer those that may be represented by

some proposition or logical formulas. We will refer to these alternately

as formulas and factors, noting now that they may be properties, facts,

mental states, and so on.

Let us look at a few examples of what we mean by these logical

representations. One relationship we will be able to represent is: “a

student not doing homework and not going to class until he fails multiple

classes causes the student to be expelled from school.” (See equation 4.3

for the formal representation of this relationship) In this case, there is no

single event causing expulsion, nor is it caused by a conjunction of events.

Here we have properties and actions of a student that must continue for

some period of time – long enough for a third property to become true.

While it is perhaps also true that failing multiple classes causes expulsion,

representing the relationship in this way gives more insight into exactly

how one must fail in order to be expelled. Also note that this is not

equivalent to representation by a causal chain, as we would generally not

suggest that not doing homework and not attending class (where this

could be satisfied by missing one class and one homework, maybe due

to illness), causes failure of multiple classes as in many cases students
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skip both with no ill effects. It is also possible that the probabilities of

expulsion differ between the potential causes. Further, we note that “not

doing homework” is neither an event nor an action, though it is a property

of the student that can be easily represented (¬homework). This is also

an illustration of why we allow causation by omission (it is possible) and

how simple it is to represent logically.1 Something we will not be able

to represent in the logic we will use is a case involving durations. For

example, “holding a lit match to curtains for 30 seconds causes house

fires.” We note that if a cause cannot be represented in this manner, we

do not say it is not causal but rather that it is outside the scope of this

method and may be inferred by other means.

4.1.2 How can we identify causes?

Given a number of possible explanations, or causes, of a phenomenon,

how can we determine which are actually causal? For example, we may

have data on patients (including their age, whether or not they smoke,

and so on) and their current state of health. We make judgements about

which variables we should include in a study based on whether we think

they can have an impact on health. It is unlikely that we would consider

whether the patient was born on an even day or an odd day, but why?

Our common sense tells us that this has no bearing on health, but what

about cases where one can have no such intuition? For this reason we

have two main criteria that help us weed out non-causes from causes.

This is not to say that these are features essential to actually being a cause,

1 We will not specifically discuss omissions any further than we have in Chapter 2, as in
logical formula, they only amount to negations of properties.
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but rather that they are exhibited in enough cases (and cases of interest

to us) that they are useful as indicators for causality.

First, we will stipulate that a cause must precede its effect in time.2 This

is in keeping with the philosophical foundations described in Chapter 2,

particularly that of Hume and Suppes.3 While it may be possible for a

cause and effect to be simultaneous, in that case we will not be able to

identify which is the cause and which is the effect from only observing

them.4 In general, the cases in which we want to make inferences are

those consisting of observations of a system over time, so we already have

information on the temporal order of events and should make use of this

information. While other methods for inference (such as that of Pearl

and SGS) do not require timecourse data and infer the direction of the

causal relationship as well as its existence, this comes at the expense of

much stronger claims about the way the data have been generated and

the conditional independence of cause and effect is estimated. We are

generally interested in cases involving distributions where few, if any, of

their assumptions hold: not all common causes have been measured, the

data is quite noisy, relationships are not necessarily linear, and common

causes may not fully screen off their effects.

We know that it is possible to make useful inferences in such messy

cases with relationships more complex than “event c causes event e.” This

is something untrained juries do every day. Similarly, doctors manage

to diagnose patients when given inaccurate, incomplete and conflicting

2 We do not consider the possibility that a cause could be later than its effect.
3 For more discussion of the direction of the causal relationship and the direction of time,

see [108, 98, 51].
4 While there is no inherent reason that a cause and effect could not be at the same time,

this has not proven important in our applications. Further, we assume that such a case is
a result of the timescale of the measurements being taken and were the measurements to
be made on a finer timescale, we would find the cause earlier than the effect.
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information. While the success of both of these types of inference relies

on extensive prior beliefs and background knowledge (as well as common

sense), one might also imagine that much of this may be amenable to

automation given enough data (and data of the right type). One bottleneck

is the preponderance of counterexamples and arguments against causal

inference and theories of causality that do not act as expected in all cases

– including those of far fetched examples. The question here should

be: why would we expect our method to perform better than a human

would?5 If we can make inferences in even most of the cases that can be

handled by a human examining all information manually, then we will

consider the method a success. We propose that our standards for causal

inference not be held restrictively higher, but rather focus on what can be

learned “beyond a reasonable doubt.”

Second, a cause can be identified by its ability to make its effect more

probable. This is a standard feature of probabilistic theories of causality,

such as that of Suppes [124]. Leaving aside the question of negative

causation (a cause inhibiting its effect),6 there may be cases where a cause

is so weak that the difference it makes to the probability of its effect is

not perceptible, though it is still a cause (perhaps there are other factors

required for it to cause the effect or it is stronger in some small set of cases

while being weak in general). In that case, we can defend our assumption

by noting that if the cause has so little influence on the effect, it will not

be helpful for either of our stated purposes (prediction and explanation),

so there must be other causes that account better for the effect and it

would be more fruitful to first explore those.

5 We assume no human is infallible.
6 Negative causes can be defined in terms of making the negation of the effect more likely.
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What we mean by “causal”, then, is implicit in the way we identify

causality. We have said that, at least some of the time, causes are things

that precede their effects and that increase the probability of their effects.

Thus, causes are also helpful for prediction and explanation of their

effects. This is what will be meant by the terms “causal” and “causes”

throughout the rest of this work, albeit with some qualifications.

4.1.3 Requirements for a definition of causality

We have described two features that aid in identification of causal rela-

tionships and are ready to look in more detail at what is needed in terms

of both these features and their representation.

Probability & Time

While we described the temporal priority condition and its motivation,

simply stating that the cause is earlier than the effect is not enough;

we must be able to represent the amount of time between cause and

effect. Consider what happens if our inference focuses solely on the

production of networks representing conditional independencies. Here, if

we have two data sets with the same conditional independencies between

variables (represented by edges connecting appropriate vertices), but

where the relationships occur over varying time scales, we will not see

any difference between them. If the information gleaned from a system

ends at the presentation of the system as a network – the inference of

relationships where we know only that the cause is earlier than the effect

– we lose vital temporal information.
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For example, cigarettes in the UK have warnings such as “smoking

kills” and “smoking causes fatal lung cancer” in large type. Without

any other details, we must base our actions on implicit assumptions:

that smoking will cause death before something else would, that it will

always cause death, and that it will cause our death in particular. In

and of itself “smoking kills” is no more informative than “birth kills”

as with probability one, everyone who is born dies. Now imagine one

pack of cigarettes says “smoking kills: within 2 years” and another says

“smoking kills: 80 years from now.” In this case one would likely choose

the second package. We need to be able to represent, explicitly, how long

after the cause the effect will happen. This will be useful as well when

attempting to apply our inferred relationships to specific, or token, cases.

For example, if a person begins smoking and then dies the day after, we

would likely say that there must be some other cause of death. Without

any further temporal information in our causal relationship, however, we

cannot capture that intuition.

Note that we have still made no reference to the probability of death

nor to the duration that one must smoke for death or cancer to occur.7

The first case described above could be a 0.01% chance with the latter

being 50%. This additional information and the way that it will affect our

decision making process shows the need for a more detailed description

of causality. That is, when we describe a causal relationship we need to

be able to describe its probability, the time over which it takes place, and

whether there are other events and properties required for the effect to be

caused.

7 While durations are not considered in this work, they are an important aspect that should
be explored in future studies.
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Expressing Causality

We have described what we mean by causality and aspects of the relation-

ship that are important, but how should we represent this relationship?

Rather than a verbose English sentence, can we compactly describe a

relationship such as in the examples above? For instance, we want to be

able to make statements such as “not doing home work and not attending

class until multiple classes are failed will lead to expulsion within two

semesters with probability greater than .6”. Further, we also want to be

able to test whether such an assertion is true.

A natural method for reasoning about such information is by using

a probabilistic temporal logic. While inference methods such as those

based on graphical models, as well as nearly all theories of causality,

allow causes and effects to be defined arbitrarily by their users, this does

not easily lead to methods for specifying and testing these arbitrarily

complex relationships. If, for example, we are testing “smoking causes

lung cancer in a minimum of 15 years with probability 0.5”, there would

be no convenient way of expressing this using an arrow between two

nodes (as is done with graphical models), and in the absence of some

standardization, methods for testing this would need to be written for

each individual case. By formulating our relationship using a well defined

logic, we can avail ourselves of pre-existing methods for testing these

properties and develop general methods to extend these as needed. Here

we will briefly discuss how the problem of causal inference relates to

that of model checking in order to provide context for the following

definitions. Inference will be discussed in depth in Chapter 5.
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We may generalize our problem as follows: given a set of time series

data representing a system in which we hypothesize there may exist

a causal structure, we seek to infer the underlying relationships char-

acterizing this structure. When we observe a system over time, what

we see is one possible path through the system. For example, we can

take barometer measurements over time and record the weather condi-

tions, the day of the week and the season. Thus at one time point we

might observe that on a Tuesday in the winter, the barometer is falling

rapidly and there is a storm and at another time point we might see that

on a Thursday in the summer the barometer is steady and there is no

rain. These collections of propositions specify two possible states the

system can be in: {(barometer-falling-rapidly, storm, Tuesday, winter),

(barometer-steady, ¬rain, Thursday, summer)}. Our set of observations

gives the frequency with which the system occupies these states. Note

that we may not observe all states, only some subset of those that are

possible. As our observations have a time order, we have also observed

the transitions between states of the system, as well as the frequency of

each transition. A state is simply a collection of properties that are true

and a transition between two states, s1 and s2, means that it is possible

for the system to be in an s1 state at some time t1 and to then be in

an s2 state at time t2, where |t2 − t1| = 1 time unit, and where this unit

size is defined by the scale of our measurements. The probability of

this transition can be inferred (increasingly accurately as our number of

observations tend toward infinity) based on the frequency with which it

is observed in the data. Thus, we can potentially reconstruct or redescribe

this structure consisting of states and transitions between them from the

data. However, in practice this problem is not so trivial. It is possible,
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though, to query the data directly. Then we can ask questions about what

properties a structure or a set of observations satisfies. In our case, we

can find out whether it satisfies various causal relationships. Solving

problems like these is precisely the goal of model checking: verifying

whether a system satisfies some specified properties. Thus if we specify

our causal relationships and define causality in this way, our problem

becomes one of model checking.

4.2 a little bit of logic

Before describing causal relationships in terms of logical formulas, we

will give a brief introduction to temporal logic and the particular logic

used. For a more in depth introduction, see Appendix A. Modal logic

was introduced in order to describe “modes of truth.” That is, a formula

might be “necessary” or there might simply be some possible world in

which it holds, in which case it is “possibly” true. This means that the

formula might very well be false in the current world, while still being

possibly true. Temporal logic, introduced by Prior [105, 106], modified

modal logic to include when formulas must hold, or be true. For example,

we can specify whether some property must be true at the next point in

time or simply at some point in the future. In branching time logics, such

as computation tree logic (CTL) [18], the future may be along any number

of possible paths, thus we can also express whether the property should

hold for all possible paths through the system, or whether it is enough for

there to exist a path where it is true. We will use a probabilistic extension

of this logic, probabilistic computation tree logic (PCTL), as introduced

68



4.2 a little bit of logic

by Hansson and Jonsson [49], as we also want to capture the probabilistic

nature of our system.8

First, we begin with a probabilistic version of a Kripke structure [69, 19],

also called a discrete time Markov chain (DTMC). This is a directed graph

with a set of states, S, that are labeled with the properties true within

them via a labeling function. This function maps states to a set of

atomic propositions of the system. In the example of section 4.1.3, this

set would be: {rain, storm, barometer-falling-rapidly, barometer-steady,

Thursday, Tuesday, summer, winter}, and a state could be labeled with

any combination of these. Note that if a state is not labeled with a

proposition, such as rain, it is considered to be labeled with its negation

(i.e. ¬rain). It is possible to make the labeling probabilistic, so that

“barometer falling” may be false due to the barometer being broken with

some small probability. There, the two separate probabilities (one due

to the actual probability of the system, and the other due to our lack of

knowledge about the system), would be explicitly captured. In our case,

we do capture both probabilities, but they are combined into one measure:

the transition probability. We also have an initial state from which we can

begin a path through the system. Finally, we have a transition function

that defines, for each state, the set of states that may immediately follow

it as well as the probability of each of these transitions. This is a total

transition function, which means that each state has at least one transition

to itself or another state in S with a non-zero probability. The sum of

the transition probabilities from any state is 1, meaning that at each

time point a transition must be made – the system cannot remain in the

8 Another possibility would be to use a logic such as UTSL [129], which incorporates
statistical hypothesis testing, and extend this for multiple hypothesis testing.

69



4.2 a little bit of logic

state without making a transition. More formally, we have a structure

K = 〈S, si,L,T〉 and a set of atomic propositions AP, where:

S is a finite set of states;

si is an initial state;

L : S→ 2
AP is a state labeling function; and

T : S× S→ [0, 1] is a transition function such that:

∀s ∈ S
∑
s ′∈S

T(s, s ′) = 1.

We also use labels(s) to denote the labels of a particular state, s.

Then, the types of formulas that can be expressed in PCTL are path

formulas and state formulas. State formulas express properties that

must hold within a state, such as it being labeled with certain atomic

propositions (e.g. is a state s labeled with rain?), while path formulas

refer to sequences of states along which a formula must hold (e.g for

some sequence of states, will it eventually rain?). Valid formulas are

defined as follows.

1. All atomic propositions are state formulas.

2. If f and g are state formulas, so are ¬f, f∧ g, f∨ g, and f→ g.

3. If f and g are state formulas, and t is a nonnegative integer or ∞,

fU6tg and fU6tg are path formulas.

4. If f is a path formula and 0 6 p 6 1, [f]>p and [f]>p are state

formulas.

The second item above says that we can combine and negate state for-

mulas to make new formulas, with ¬,∧,∨, and→ defined in the usual
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manner as: negation, conjunction, disjunction and implication. In the

third item, we have the until (U) and unless (U) operators. In this context,

“until” means that one formula must hold at every state along the path

until a state where the second formula becomes true. The formula above,

fU6tg, means that f must hold until g holds at some state, which must

happen in less than or equal to t time units. Unless is defined the same

way, but with no guarantee that g will hold. If g does not become true

within time t, then f must hold for a minimum of t time units. Finally,

we can add probabilities to these until and unless path formulas to make

state formulas. For example, [fU6tg]>p (which may be abbreviated as

fU
6t
>pg), means that with probability at least p, g will become true within

t time units and f will hold along the path until that happens. This

until formula with its associated probability defines a state formula. The

probability of the formula is calculated by summing the probabilities of

the paths from the state, where a path’s probability is the product of the

transition probabilities along it.

For example, let us take the following structure.

a

b
0.6

c
0.2

d
0.2

e
1

0.5

0.5

1

1

Recall that each state has at least one transition. This means that paths are

infinite sequences of states, written σ ≡ s0 → s1 → · · · sn · · · . However,
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we can look at the prefix, say of length n, of path σ. This is denoted by

σ ↑ n and defined by:

σ ↑ n = σ = s0 → s1 → · · · sn.

Then the probability measure for a path (denoted by µm) is the product

of the transition probabilities. For the prefix above, this is: T(s0, s1)×

· · · × T(sn−1, sn). Now, looking at the structure above, let σ = a →

b → e → · · · e · · · , and let us take σ ↑ 2. The probability of this path

is then 0.6× 1. Then, we can take the set of paths of length two, from

a to e. There are two such paths: one through b and one through c.

The probability of this set of paths is the sum of the individual path

probabilities: 0.6× 1 + 0.2× 0.5 = 0.7. Then, for a particular state, a

probabilistic formula such as [f]>p is satisfied if the sum of the path

probabilities of the set of paths satisfying the formula is at least p. A

structure K satisfies a state formula if si satisfies it.

We will also make use of the standard modal operators as shorthand

for their PCTL equivalents. That is, we can define PCTL operators

analogous to the path operators A (“for all paths”) and E (“for some

future path”) and temporal operators G (“holds for entire future path”)

and F (“eventually holds”).

• Af ≡ [f]>1,

• Ef ≡ [f]>0,

• Gf ≡ fU6∞false, and

• Ff ≡ true U6∞f.
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4.2 a little bit of logic

One final operator we will need is “leads to,” as described by Hansson

and Jonsson [49]:

f;
6t
>p g ≡ AG[(f→ F

6t
>pg)]. (4.1)

This means that for every path from the current state, if we are in a

state where f holds then through some series of transitions taking time

6 t, with probability p, we will finally reach a state where g holds. One

difference here is that as defined in equation (4.1), leads-to considers

the case where f and g are true at the same state as one that satisfies

this formula. We will stipulate that there must be at least one transition

between f and g. In addition to being important for our temporal priority

condition for causality, this is also in keeping with how one naturally

reasons about the term “leads to.” The expectation if someone says “one

thing led to another” is that there was some sequence of events connecting

“one thing” and “another” and that they are not co-temporary. We may

also wish to write:

f;
>t1,6t2

>p g, (4.2)

which is interpreted to mean that g must hold in between t1 and t2 time

units with probability p. If t1 = t2, this means it takes exactly t1 time

units for g to hold. We show in Appendix C.2 that this minimum time

can be added to the leads-to operator.

Let us return to our prior example, where “a student not doing home-

work and not going to class until he fails multiple classes causes the

student to be expelled from school”, and see how this may be represented
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as a PCTL formula. The propositions are doing homework (h), class

attendance (c), failure of two or more classes (f), and expulsion (e). Then,

the relationship is:

[(¬h∧¬c)U6∞
>p1

f] ;>1,6t
>p2

e, (4.3)

where t is the maximum amount of time it will take for expulsion to

occur.

4.3 types of causes and their representation

We will now define four main types of causes in terms of logical formulas

and discuss how they relate to the probabilistic theories of causality,

described in Chapter 2.3.

4.3.1 Prima facie causes

According to how we have formulated how to identify causes, we will

give the basic conditions for causality. For some c and e, for us to identify

c as a possible cause of e, c must be temporally prior to e and must raise

the probability of e. Prima facie causes are those that satisfy these basic

requirements. Recall that when we describe some cause c and effect e,

that both c and e may be arbitrarily complex logical formulas. Below and

in the following examples we will refer just to c and e and note now that

there are no conditions on them other than that they must be valid PCTL

state formulas.
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First, we specify the temporal priority condition of the causal relation-

ship in terms of the time that elapses between cause and effect, rather

than the occurrence times of the cause and effect. If c occurs at some time

t and e occurs at a later time t ′, we characterize the relationship by the

time that elapses between them, which is |t ′ − t|. If we want to state that

after c becomes true, e will be true with probability at least p in |t ′ − t| or

fewer time units – but with at least one time unit between c and e – we

write:

c;
>1,6|t ′−t|
>p e.

That is, there is a window of time in which e may occur. Note that

satisfying this formula requires there is at least one and potentially any

number of transitions between c and e, as long as the sum of probabilities

of the paths between c and e taking at least one time unit is at least p.

The transitions are assumed to each take one time unit, but there is no

restriction on the definition of a time unit. If we only want to say that c

is earlier than e, the lower bound will be 1 and the upper bound ∞. In

some cases, we will have domain specific knowledge and will want the

amount of time between cause and effect to be in terms of a known period

of time. In that case, the bounds on the second condition (1 and ∞) can

be replaced with any arbitrary t1 and t2 where 1 6 t1 6 t2 6 ∞, with

t1 6= ∞.

Then, the probabilistic nature of the relationship between cause and

effect can be described in terms of the probability of reaching c and e

states and of the paths between c and e states. We need to specify that c

must occur at some point and that the conditional probability of e given
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c is greater than the marginal probability of e. We now define prime facie,

or potential, causes, as shown below.

Definition 4.3.1. c is a prima facie cause of e if there is a p such that the

following conditions all hold:

1. F6∞
>0
c,

2. c;>1,6∞
>p e, and

3. F6∞
<p e.

These conditions state that we will reach a state where c is true (beginning

from the initial state of the system) with non-zero probability and that the

probability of reaching a state where e is true (within the time bounds) is

greater after being in a state where c (probability > p) is true than it is by

simply starting from the initial state of the system (probability < p).

For example, take the structure in figure 4.1. We will use the term

“causal structure” in this work to denote just such a structure, where

this is the underlying one governing the behavior of the system. In

general our goal is to infer its properties from the data (observations of

the system moving through these possible states over time), but for the

moment let us assume that it is given. Note that unlike the causal models

previously described, such as Bayes nets, the arrows between states in

these structures have no causal interpretation. They only imply that it is

possible to transition from the state at the tail to the state at the head with

some non-zero probability (which is used to label this edge). Note also

that there may be multiple states with the same labels. For example, there

may be two states labeled with identical sets of propositions, but that

are reached by different paths and which have different paths possible

76



4.3 types of causes and their representation

1
 S, ¬ J

0.69

2
 J, ¬ N

0.3

3
 J, N

0.01

4
 D

0.9

5
 ¬ D

0.1 0.1 0.9

1 1

Figure 4.1.: Example structure containing states with their labels and transitions
with their associated probabilities. s1 is the initial state.

from them. It follows then that we can look at properties that are true for

every state with a certain label, as well as those that hold only when other

sets of conditions leading up to (or occurring after) those states are true.

Thus, this type of model fundamentally differs from Bayesian networks,

where each variable generally has one node with incoming and outgoing

edges (and lack thereof) representing (in)dependencies. In this chapter,

we will use the convention that diagrams with circular nodes represent

such structures, while those with no borders around the nodes illustrate

only temporal ordering (with the node at the tail being earlier than that

at the head and the length of the arrow being proportional to the amount

of time between the nodes) and some probabilistic dependence.

This example will be discussed in full when we look at token causality

in Chapter 6, but for the moment let us say that we aim to find the
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cause and probability of death (D) for a suicidal person (S) who jumps

from a building (J) that may (N) or may not (¬N) have a net and who

may also survive this jump (¬D). The states are numbered so we can

refer to them, and labeled with non-negated or negated literals, e.g.

S, J,N,¬N,D, and ¬D. The transitions in the graph are also labeled with

their probabilities. Now let us say c = J∧¬N and e = D and find out

whether c is a prima facie cause of e. We know that this meets the first

condition of definition 4.3.1, since s2 satisfies c, and the probability of

reaching s2 from s1 is greater than zero.9 Then, the probability of e for the

system is calculated using the approach outlined in Appendix C.2 (See

theorem C.2.2 and the related algorithms C.1 and C.2). We find P = {s4},

Q = {s5} and R = {s4}. The probability of e for the structure, represented

9 T(s1, s2) = 0.3, but the probability of reaching s2 from s1 is greater than this due to
the cycle at s1. Remember that we are looking at the probability of reaching s2 at any
time. That means we can visit the cycle once, then transition to s2, or visit twice before
transitioning, and so on.
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by the probability of F6∞e, is given by P(1,∞, s1), as s1 is the initial state

of the system.

P(1,∞, s1) =T(s1, s1)P(0,∞, s1) + T(s1, s2)P(0,∞, s2)

+ T(s1, s3)P(0,∞, s3);

P(0,∞, s2) =P(∞, s2) = T(s2, s4)P(∞, s4) + T(s2, s5)P(∞, s5);

P(0,∞, s1) =P(∞, s1) = T(s1, s1)P(∞, s1) + T(s1, s2)P(∞, s2);

P(0,∞, s3) =P(∞, s3) = T(s3, s4)P(∞, s4) + T(s3, s5)P(∞, s5)

+ T(s1, s3)P(∞, s3);

P(∞, s4) =1, since s4 ∈ R ′;

P(∞, s5) =0, since s5 ∈ Q ′;

P(∞, s2) =0.9× 1 + 0.1× 0 = 0.9;

P(∞, s3) =0.1× 1 + 0.9× 0 = 0.1;

0.31× P(∞, s1) =0.3× 0.9 + 0.01× 0.1;

P(1,∞, s1) =0.69× 0.271

0.31

+ 0.3× 0.9 + 0.01× 0.1 ≈ 0.87.

Thus, the probability of e is < 0.88 and ≈ 0.87. Finally, the probability

of c;>1,6∞ e is exactly 0.9 (there is only one path from a state where c

holds to a state where e holds and it is the transition between states s2

and s4). Thus, since 0.9 > 0.88, c being prior to e raises the probability of

e and it is a prima facie cause of e.

Equivalence to probabilistic theory of causality

Our conditions, stated in definition 4.3.1, are based on Suppes’ conditions

for probabilistic causality (definition 2.3.2) and we can show that these

conditions are in fact equivalent. First, let us recall the two sets of
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conditions. Recall that Suppes’ notation At and Bt ′ , where t ′ < t only

implies that B occurs earlier than A, not that t and t ′ refer to specific

times. We are implicitly summing over all t, considering any scenario

where B is before A.

Suppes’ conditions for prima facie causality (denoted SC):

1. P(Et|Ct ′) > P(Et),

2. t ′ < t, and

3. P(Ct ′) > 0.

Our conditions for prima facie causality (denoted LC):

1. c
>1,6∞
;
>p

e,

2. F6∞
>0
c, and

3. F6∞
<p e.

Theorem 4.3.1. The conditions of Suppes (SC) – temporal priority and proba-

bility raising (where the cause occurs with non-zero probability) – are satisfied

if and only if the formulas of our conditions for prima facie causality (LC) are

satisfied. That is, SC ⇐⇒ LC.

We begin by showing LC→ SC and then show SC→ LC.

Proposition 4.3.1. LC→ SC

Proof. We assume that c = C, e = E and that we have a structure, K =

〈S, si,L,T〉, representing the underlying system governing the occurrences

of these events. We also assume that states in K that satisfy c and e are

labeled as such. If t ′ < t in SC, we assume that in K there will be at least

one transition between an event at t ′ and one at t. That is, the timescale
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of K is as fine as that of Suppes and vice versa. Further, we assume that

the probabilities of Suppes’ formulation and those in K come from the

same source and thus if represented correctly, P(E) in SC is equal to P(e)

in LC.

Condition 1 P(Et|Ct ′) > P(Et)

By definition of F6∞
<p e, P(Et) – the probability of E occurring at any

time, denoted t – is less than p. Recall that the probability of a path

is the product of the transition probabilities along the path, and

the probability of a set of paths is the sum of their individual path

probabilities. For a structure to satisfy this formula, the set of paths

from the start state that reach a state where e holds must be less

than p, and thus the probability of reaching a state where e holds

in this system is less than p. Thus,

P(Et) < p.

Now we must show P(Et|Ct ′) > p. That is, the probability of Et is

greater given that C has occurred at some time t ′ prior to E. We

will now show that this conditional probability is greater than or

equal to p if:

c
>1,6∞
;
>p

e (4.4)

is satisfied.
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The probability p1 of a transition from state s1 to state s2 that labels

the edge between them,

s1

p1→ s2,

is the conditional probability:

P(s2,t+1|s1,t), (4.5)

the probability of reaching s2 one time unit after s1. Then, for a

path:

s1

p1→ s2

p2→ s3,

we can calculate the probability, given s1, of reaching s3 (via s2)

within two time units:

P(s3,t+2, s2,t+1|s1,t) = P(s3,t+2|s2,t+1, s1,t)× P(s2,t+1|s1,t), (4.6)

and since s3 and s1 are independent conditioned on s2 this becomes:

P(s3,t+2, s2,t+1|s1,t) = P(s3,t+2|s2,t+1)× P(s2,t+1|s1,t). (4.7)

Note that the probabilities on the righthand side are simply the

transition probabilities from s1 to s2, and s2 to s3 (since there is one

time unit between the states, they can only be reached via a single
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transition). Thus, the conditional probability is precisely the path

probability:

P(s3,t+2, s2,t+1|s1,t) = p2 × p1. (4.8)

Then, if we have a set of paths from s1 to s3, the conditional proba-

bility P(s3|s1) is the sum of these path probabilities. For example,

we may have the following paths:

s1

p1→ s2

p2→ s3, and

s1

p3→ s4

p4→ s3,

in which case:

P(s3,t+2|s1,t) = P(s3,t+2, s2,t+1|s1,t) + P(s3,t+2, s4,t+1|s1,t), (4.9)

and from equation (4.8) this becomes:

P(s3,t+2|s1,t) = p2 × p1 + p4 × p3, (4.10)

the sum of the individual path probabilities. Let us now say that s1

is labeled with c and s3 is labeled with e, these are the only c and e

states in the system, and there are no other paths between the states

taking less than or equal to 2 time units. Then, this probability we

have computed is in fact the probability of:

c
>1,62

; e, (4.11)
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since the probability of reaching s3 during a window of time simply

means looking at the set of paths reaching s3 during that window.

Similarly, to find the probability of:

c
>1,6∞
; e, (4.12)

we must consider the set of paths from states labeled with c to

those labeled with e taking at least 1 time unit. Since there can

be cycles in our graph, calculating the probability associated with

a leads-to formula with an infinite upper time-bound requires a

slightly different method. This is described in detail (and proven

correct) in Appendix C.2.

When this is calculated to be at least p, then:

P(Et|Ct ′) > p, (4.13)

and since

P(Et) < p, (4.14)

we have:

P(Et|Ct ′) > P(Et). (4.15)

Thus Condition 1 is satistfied.
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Condition 2 t ′ < t

In LC condition (1), we state:

c
>1,6∞
;
>p

e. (4.16)

That means that there is at least one transition (with a transition

taking a nonzero amount of time), between c and e. This means

that c must be earlier than e and we satisfy the second condition of

SC (temporal priority).

Condition 3 P(Ct ′) > 0

By definition of F6∞
>0
c, we satisfy condition (3) of SC. If a structure

K satisfies this formula it means that, from its starting state, c will

be reached with non-zero probability and thus P(C) > 0.

Thus, if the three logical formulas (LC) are satisfied, so are Suppes’

conditions (SC) for prima facie causality and thus LC→ SC.

Proposition 4.3.2. SC→ LC

Proof. We begin with the same assumptions as for the LC→ SC case. We

also assume that the system of SC is first-order Markovian.

Conditions 1 and 3 c
>1,6∞
;
>p

e and F6∞
<p e

Let us denote the probabilities of Suppes’ conditions by:

P(Et|Ct ′) = p
′, and (4.17)

P(Et) = p
′′, (4.18)

where we recall that p ′ > p ′′. From condition (2) of SC, we also

know that Ct ′ is earlier than Et, i.e. t ′ < t. Then, the conditional
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probability in equation 4.17 represents the probability of E at any

time after C has occurred. Again, we have assumed the same

granularity of time in both sets of conditions, and thus if C is earlier

than E in SC, there is at least one transition between a state where c

holds and one where e holds. That is, applying the same reasoning

as we did earlier, C can cause E any number of time units after

C occurs. Thus we can show that the probability P(Et ′ |Ct) is the

probability of the set of paths from states where C holds to states

where E holds. That is, it is the µm measure. In the previous

section we showed that the path probabilities yield the conditional

probabilities, now we must show that the conditional probability

yields the path probability and thus the µm-measure for our leads-

to formula. We have two cases to consider. First, if there is one time

unit between t and t ′, i.e. t = t ′ + 1, then

P(Et|Ct ′) = p
′, (4.19)

where for all states, s where C holds, there is a transition to some

state s ′ where E holds such that T(s, s ′) > p ′.

In the second case, if t ′ > t+ 1, then in the path from C to E there

will be at least one other state s ′′ between the C and E states (called

s and s ′ as before). Let us say there are two time units between C

and E. We can then rewrite our probability:

P(Et|Ct ′) =
∑
s ′′∈S

P(Et, s ′′|Ct ′) (4.20)

=
∑
s ′′∈S

P(Et|Ct ′ , s ′′)× P(s ′′|Ct ′), (4.21)
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where S is the set of all scenarios at t ′′. Since we have assumed the

system to be first-order Markovian, we know that time t and t ′ are

independent given t ′′. Thus,

P(Et|Ct ′) =
∑
s ′′∈S

P(Et|s
′′)× P(s ′′|Ct ′). (4.22)

We have now reduced the problem to the first case, and each of the

conditional probabilities represent transitions from one time unit to

the next, and may be replaced as such:

P(Et|Ct ′) =
∑
s ′′∈S

T(s, s ′′)× T(s ′′, s ′). (4.23)

Thus this is the sum of the probabilities of the set of paths from s

for which E is true in two time units. This is easily extended to any

arbitrary t.

This corresponds to the probability of:

c
>1,6∞
; e. (4.24)

Then, since there are p ′ and p ′′ such that

c
>1,6∞
; e (4.25)

holds with probability p ′ and F6∞e with probability p ′′, we can set

p = p ′ and satisfy both conditions (1) and (3) of LC.

Condition 2 F
6∞
>0
c

If P(Ct ′) > 0 it means that if we represent the system as a proba-
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bilistic Kripke structure, it will be possible to reach a state where C

is true with non-zero probability and thus K satisfies F6∞
>0
c.

Thus if all conditions in SC are satisfied, so are those in LC and SC →

LC.

We have proven LC→ SC and SC→ LC and thus we conclude SC⇔

LC.

4.3.2 Insignificant causes

As we saw in section 2.3, many of these prima facie causes will not be the

true causes of their effects, but will only appear to be so. For example, let

us say that the relationships are as follows:

ct
1/4

!!CCCC
3/8 // et2

dt1

3/4 <<zzzz

Here c can cause e at t2 either directly, or through d: 1/4 of the time

c will cause d at t1, 3/8 of the time it will cause e at t2 and 3/8 of the

time it does nothing. We will assume that the probability of other things

causing e is much lower than 1/4. How can we determine what causes e?

We could use Suppes’ method, calling the earliest cause that can account

for an effect genuine and all others spurious [124]. In this case, that would

mean d is a spurious cause of e, as c comes earlier and accounts for e

exactly as well as d does. We can also adjust this condition, as Suppes

does, to account for the fact that in many cases P(e|c∧ d) will not exactly

equal P(e|c). Thus we have the notion of ε-spuriousness, stipulating
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that the difference d makes to this probability is less than some small ε.

However, we still have the problem that as long as we find one such c for

which the relevant conditional probabilities are not exactly equal, d will

be labeled an ε-spurious cause (not to mention the question of what value

of ε is appropriate). What if there is a set C containing a thousand other

such c for which d’s contribution is greater than ε? Should we still call d

spurious? If we recall our stated purposes (prediction and explanation), it

would seem that we should not, as d will still be useful, at the very least,

for predicting e. Secondly, in this case, d is actually a cause of e. In fact,

it brings about e more quickly than c does (one time unit as opposed to

two) and its direct influence is larger than c’s (when c causes e directly,

the probability of this is 3/8, while the probability of d causing e without

any intermediaries is 3/4). Further, there may be other c ∈ C that occur

at some time between the times of d and e. Using Suppes’ conditions, we

only consider factors earlier than d that account better for the effect, and

none of these would be considered. There is no scenario in which c could

be considered spurious, as there are no earlier events that could remove

its effectiveness in predicting e.10

Another approach, that of Eells, is to compute the average significance

of a cause for its effect. That is, not to look for any single more powerful

cause, but rather to measure overall how well the cause predicts the effect.

As we saw in Section 2.3.3, Eells’s average degree of causal significance

(ADCS) (Equation (2.3.3)) addresses some of the issues raised with Suppes’

definitions. First, Eells considers events that occur at any time prior to the

effect (versus only those prior to the potential cause). Second, instead of

looking for single causes that account better for the effect, Eells considers

10 This is remedied in part by Suppes’ introduction of directness (Definition 2.3.2).
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contexts (comprised of sets of all relevant factors, held fixed in all possible

configurations). The result is not a partition into sets of genuine and

spurious causes, but rather a quantity denoting how significant each

cause is for its effect. This is desirable as in the case above with thousands

of other factors, both c and d would have high significance in these

contexts. Further, unlike Suppes, the value for this ADCS can be positive

or negative, allowing for the possibility of negative causal significance

(without defining negative causation separately). We face the problem

that since there are a large number of such contexts 1) it is rare to have

enough data to see them occur with enough frequency to be meaningful,

and 2) testing all such contexts is a non-trivial computational task. If each

background context occurs with nonzero probability, we will have 2
n

such contexts, where n is the number of relevant factors. In our examples,

where we may have data for thousands of genes, it is not possible to

construct such a set of contexts (let alone to do so for each possible cause

whose significance we aim to compute). We also have the same problem

as with ε-spuriousness – determining which values of the ADCS should

be considered significant.

Taking inspiration from both of these methods, we proceed as follows.

First, we note that spuriousness implies falsity,11 and will refrain from

using this terminology. We do not intend to imply that the prima facie

causes we abandon are necessarily false, only that they are of low import.

Adopting the language of Eells, we will now discuss how to determine

which of the prima facie causes are insignificant. When testing for insignifi-

cance of some particular c for some particular e in the context of our set of

11 The Merriam-Webster dictionary gives three definitions of spurious, one of which is: “out-
wardly similar or corresponding to something without having its genuine qualities” [1].
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logical formulas and structure, we examine all the other states from which

we may transition to e states. The primary idea is to determine whether

these other states (with their associated labels) may tell us more about

e than c does. Recall that states are labeled with formulas true within

them. Initially this begins with all states being labeled with propositions,

but states can be labeled with arbitrarily complex formulas, such as the

leads-to ones described earlier. These other factors may occur at any time

prior to e, but must themselves be prima facie causes of the effect.12

That is, we compute the average difference in probabilities for each

prima facie cause of an effect in relation to all other prima facie causes of

the effect. To test if a particular c is insignificant as a cause of a particular

e, we begin with X being the set of prima facie causes of e. Then, for each

x ∈ X \ c, we compute the predictive value of c in relation to x. We look at

the probability of e after c∧x versus after ¬c∧x. If these probabilities are

very similar, then c might be an insignificant cause of e. As noted earlier,

there may only be one such x, while there may be a number of other

x’s for which there is a large difference in the computed probabilities.

Note further that the relationships between c and e and x and e have

12 We do not include factors that are independent of or negatively correlated with e (or
which have probability zero). If e and a factor x are independent, then if we compute
the difference P(e|c∧ x) − P(e|¬c∧ x), we will find this is equal to P(e|c) − P(e|¬c), and
x does not change the significance of c for e. Then, we have the case when x is negatively
correlated with e. Recall that when computing εavg we are testing whether there is
another factor that better explains the effect. Intuitively, such x’s should not be able to
make c spurious. Thinking of what kinds of factors may account better for an effect, this
could be due to a common cause of x, c and e (with perhaps c being less frequent than
x), x causing both c and e, or the case of a causal chain, where c causes x and then x
causes e. In all of those cases, though, x will be at least a prima facie cause of e, and will
already be in the set tested pairwise with c. None of these can be the case, though, if e
is negatively correlated with x. However, it is possible that a factor x that is negatively
associated with an effect may cause it in conjunction with some other set of factors. Note
though that if x causes e in conjunction with c, then the righthand side of the difference
will still be quite small, as x cannot cause e in the absence of c, while c∧ x can together
cause e. If x causes e in conjunction with some other factors (not including c) then it
alone still cannot better account for e than c does.
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associated windows of time in which either c or x may cause e. We omit

the subscripts for ease below, but when calculating these probabilities

these will be constraints on the instances of each formula that will be

considered. For further details on these timings, see Chapter 5.2.1. With

εx(c, e) = P(e|c∧ x) − P(e|¬c∧ x), (4.26)

we compute:

εavg(c, e) =

∑
x∈X\c

εx(c, e)

|X \ c|
. (4.27)

For each prima facie cause, we have now assessed its average potency

as a predictor of its effect. Finally, we use this εavg to determine c’s

significance.

Definition 4.3.2. A prima facie cause, c, of an effect, e, is an ε-insignificant

cause of e if |εavg(c, e)| < ε.

The set X being comprised of all prima facie causes of e (aside from

the c being tested) means that its components may occur at any time

prior to e (they can be before, after, or at the same time as c), and may be

causes of or caused by c. Some will turn out to be causally intermediate,

that is, effects of c and causes of e. Such intermediate factors are not

customarily held fixed, as it is assumed that doing so will lead to the

erroneous conclusion that c does not cause e.13 First, without background

knowledge, we do not know what c’s causes or effects might be (aside

13 One exception is that Cartwright suggests holding fixed effects of c that were not actually
caused by c on that particular occasion ([11], p 95–96. Also see [28]). It is unclear how
one might glean such information.
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from, at this stage, the prima facie ones). It would not make sense to not

condition on a factor that later turns out to be an insignificant effect of

c, because we at first thought it might be a genuine effect. Secondly,

identifying this set of actual causes and effects of c means that at one

point we had to have some base level of background knowledge, or

the argument becomes circular. We want to be parsimonious in our

assumptions and choose to not suppose any knowledge of these actually

relevant factors and thus take the set of prima facie causes, meaning the

set of “possibly relevant” factors.14

What does εavg(c, e) mean? If it is positive, this is saying that c being

true has positive influence (proportional to the magnitude of εavg) on e.

When εavg is negative, this means c not being true tells us more about e’s

occurrence than c being true does. Small values of εavg may mean that c

is simply a statistical artifact. In other cases, c may indeed be a real cause,

but one that only makes a small difference to e. In both cases, c will be

discarded as a cause of e: in the first case because it is not a real cause and

in the second because despite being a real cause, it makes little difference

(and will not be particularly useful for prediction or explanation). Note

that if εavg is exactly equal to zero, one cannot conclude that c neither

increases nor decreases the probability of e, given any other prima facie

cause of e. It is possible that c’s positive and negative influences exactly

canceled out.

Similarly, we do not require context unanimity (i.e. that c must raise

or lower the probability of e in every context). Context unanimity is a

14 We will see examples later of such structures where a cause may be mistaken for being
genuine based on it causing the effect by causing a cause of the effect. We are able to rule
out this mistaken cause by conditioning on all prima facie causes of the effect (including
the incorrect cause’s direct effects).
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common feature of probabilistic theories of causality, with Eells going so

far as to say that “average effect is a sorry excuse for a causal concept”.15

However, we are not assembling the full set of contexts,16 and will argue

that it does not make sense to require that c raise e’s probability with

respect to each of the other prima facie causes of e. This condition would

mean that if we have two causes of an effect where each is active just in

the case that the other is not (e.g. an exclusive or), we would find neither

to be a cause, as neither would raise the probability with respect to the

other. Now, even if we could construct all of the background contexts,

we would still argue against context unanimity. It does indeed seem

sensible that if c’s role changes, then there must be other factors that

determine whether it will be positive or negative. However, similarly to

our reasoning for averaging over other factors rather than looking for only

one that made a cause insignificant, there may be only one such factor for

which c does not raise the probability of e, but a multitude of others for

which it does. In that case we can still be secure in the fact that c raises

the probability of e, based on our averaging. For each case in which it

has negative significance, there must be another positive case that offsets

the amount of negative influence. Thus if c has an εavg that exceeds ε,

then it means that it has an overall significantly positive role and if we do

not know the other factors that make a difference, our best estimate is to

say that c causes e. On the other hand, if |εavg(c, e)| < ε, then knowing c

alone does not help us predict e. This is not to say that c does not cause e

(we may find other conditions that in conjunction with c are significantly

15 [28], p 54.
16 This is an ideal that may someday be possible, but is currently unachievable. It is not clear

that if all causally relevant factors were included and we had all the data in the world,
we would find each context occurring more than once. As each context is specified by
more features, they become narrowed down to the point of fully specifying individuals.

94



4.3 types of causes and their representation

positive causes), but rather that c alone is not significant for e and does

not give us enough evidence to say that e will occur if we know c. This is

another reason why we eschew the language of spuriousness as, among

other possible explanations, an ε-insignificant cause may be part of a

significant cause, and it is nonsensical to say that a significant cause may

be comprised of spurious causes. However, it is possible that causes that

are insignificant on their own, are, together, significant.

As a simple example of testing for insignificance, let us say we have

data on smoking (S), yellow stained fingers (YF) and the incidence of

lung cancer (LC) in people who smoke and have stained fingers. Let

us now assume that smoking and staining of fingers both occur prior

to the development of lung cancer. Then, we are likely to find both

S and YF as prima facie causes of LC. However, if we now look at

P(LC|S∧ YF) − P(LC|S∧¬YF), testing YF’s contribution to LC, we will

likely find this difference to be nearly zero (accounting for the possibility

that there may be some other reason for stained fingers that is also a cause

of lung cancer). This scenario is shown in figure 4.2. In that structure

(where transition probabilities from a state sometimes add to less than

one, indicating states not shown, but none of these hidden states are

labeled with S, YF or LC), we find:

εS(YF,LC) = P(LC|S∧ YF) − P(LC|S∧¬YF) = 0.85 − 0.75 = 0.10, and

εYF(S,LC) = P(LC|S∧ YF) − P(LC|¬S∧ YF) = 0.85 − 0.01 = 0.84.

We should thus call YF an ε-insignificant cause of LC as we only have

two possible causes and εS(YF,LC) is very small. We see that εYF(S,LC)
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is much higher and it is not insignificant. This example leads us to the

question: “What should we call non-insignificant prima facie causes?”

S

YF, ¬S

S, YF

0.1

LC

0.75

0.85

1

0.01

Figure 4.2.: Smoking (S), Yellow Fingers (YF) and Lung Cancer (LC).

4.3.3 Just so causes

It is possible that some of our insignificant causes will actually be genuine

and that some of the non-insignificant causes will actually be spurious.

This is due to a number of factors, such as the choice of ε (we could be

too strict or too lax) as well as the sample from which we calculate the

probabilities not being representative of the actual distribution of the data.

What, then, are we claiming? If a prima facie cause is not ε-insignificant,

what is it? We have good reason to believe that these are genuine and that

the ε-insignificant ones are spurious, but at the moment, without further

investigation, the degree of this belief is proportional to our confidence
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in the completeness of our structure and the statistical methods (to be

described later) for determining the best value for ε. For that reason, we

refer to the prima facie causes that are not ε-insignificant as “just so” (or

ε-significant) causes. These are useful for prediction and could potentially

also be used for influencing and controlling the system. However, in order

to say whether any of these are genuine causes – more than just “beyond

a reasonable doubt” – we would need to conduct such experiments where

we attempt to alter the system’s behavior by altering the cause. In some

areas this can be carried out, but there are other situations where it is not

possible to conduct just any controlled experiment we come up with (due

to ethical, financial or other restrictions). In these cases we have still made

valuable inferences if we have identified these just so causes, and may

still continue collecting observational data to see if they may be refuted.

4.3.4 Genuine Causes

Thus far we have provided primarily negative definitions, focusing on

what cannot be inferred or determining what is not truly causal. We now

turn our attention to positive claims: what are genuine causes and under

what conditions are just so causes genuine? In one sense, if we have the

correct underlying structure, it does not matter what is and is not causal.

We can see exactly how the system works, what the probabilities of any

possible transitions are and thus decide how we can change as well as

predict the system’s behavior in the future. After all, is it not our goal

to understand precisely these inner workings from observations? This

position is perhaps unsatisfying philosophically, as we are then claiming
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that there is no need for the notion of causality in a system that is correctly

specified. Note however that in most cases we will have only data from

which to determine whether various logical formulas are true – we will

not be given or attempt to infer this underlying structure.

Assumptions

While we do want to understand how the system works, we also recall

that the transitions do not need to be causal, since a transition that leads

to the occurrence of an effect can in fact decrease its probability. All is not

lost, as we are also seeking a compact representation of the system using

logical formulas. If we want to explain the occurrence of an effect, we do

not necessarily want to fully specify our system, including information

that is only marginally relevant.17 We want only the parts of it that tell

us the most about the effect. For example, if we have a structure such as

in figure 4.2, what is the best way to predict whether someone will get

lung cancer or explain the occurrence of lung cancer? Then, when is that

explanation the genuine cause? That is, what needs to be true about the

structure in order for the best explanation to be the genuine one?

First, we note there can be a number of genuine causes of an effect.

Genuine does not mean that something is “the” cause or that “is x a

genuine cause of y” is a true or false question. Rather, particularly in the

case of probabilistic causality, we think of this as being along a continuum,

with genuine causes as those which are most descriptive of the system.

There may be weak genuine causes as well as strong ones, and our

statistical tests will rarely divide the possible causes evenly into sets of

17 As will become clear when we discuss inference, it is easier to find the formulas best
characterizing the system than it is to infer the entire structure.
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spurious and genuine causes. It is much more likely that our statistical

values will be continuous, and we will have to choose a threshold at

which we will call something significant. Second, the primary idea is that

a genuine cause is one that can be manipulated in order to bring about

the effect. That is, in other cases we may be observing an anomaly but if

the cause is genuine, then forcing the cause to be true should make the

effect true (with the associated probability). What assumptions do we

need to make about the system in order to make such a statement?

From our prior definitions we know that just so causes are candidates

for genuine causality (though again it is possible that there are others if

we have chosen too high a value for ε). Remember that we are currently

concerned with describing causal relationships relative to some structure,

K, using logical formulas (conditions for successful inference as well

as discussion of how to infer the relationships from data will be dealt

with in the next chapter). As before, we assume that this structure is

the correct one underlying the system. This assumption implies that

any states reached with non-zero transition probabilities in K are indeed

possible states of the system, and that the transition probabilities are the

actual ones of the system. When we say “system” we do not necessarily

mean that K contains every part of the whole. If we were looking at

the human body, K could be a model of the workings of the elbow or

digestive tract, and not the entire body. However, we cannot simply

amputate the elbow from the body and understand how it works, we

must keep some information from the larger whole in order to create a

self contained system for study. What does it mean for a system to be

“self contained” and why is this desirable?
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This means that all common causes are included. If they are not, then

the just so causes we find may simply be indicators for genuine causes.

For example, take the case of smoking, yellowed fingers and lung cancer.

We can likely agree that smoking (in some way) causes both yellowed

fingers and lung cancer, and that the two effects play no causal role in

either smoking or with each other. Then, suppose we have only measured

yellowed fingers and lung cancer, and have done so over time. It is

possible then that someone who has smoked enough to yellow their

fingers will be more likely to develop lung cancer than if this was not

the case. It is also possible that the yellowing will show up before the

cancer. In that case, assuming there were some other factors also tested,

we would find that yellow fingers just so cause lung cancer. While this is

not the actual causal relationship, yellowed fingers could still be a useful

predictor of lung cancer and we may be able to use this information as

an indicator of the stage of the disease.

The primary question that we are led to is the following: How can we

know that we have enumerated all common causes? This question is at

the crux of the issue, as knowing that common causes are included means

being able to take pairs of formulas and say whether they have a common

cause. Problematically, this approach implies for the theory to have

background knowledge – otherwise the algorithms would have no starting

point. Indeed, Nancy Cartwright summarizes this situation “no causes

in, no causes out” [11]. This view is shared by Pearl 18 and SGS among

others [127, 109]. But how can we acquire this “old” causal knowledge

in the first place? One strategy Cartwright gives is to conduct perfectly

18 Pearl suggested “Occam’s razor in, some causes out.”([102], p 60) Cartwright is in fact
against this simplicity assumption.([11], p 72)
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randomized experiments, thus controlling for all unknown factors. The

fact that we only need to include common causes, and not every other

cause of the effect is also touted as greatly simplifying matters [99],

but it still does not address how we can build this background causal

knowledge. There must be a level of causes that are not subject to these

inference rules, on which all other inferences can be based. This is

dissatisfying, as there is no well defined base case for this recursion. Must

everything come from physical laws? If not, it seems that there must

be some matter of opinion or belief in the causal relationships. That

is, if we cannot build these relationships from some lower level laws, it

must be that asserting there is no common cause of two factors is really

saying that I believe that there is no common cause of them or that I

have confidence that the experiment was conducted such that all common

causes were included. We suggest that we be more explicit about the

amount of intuition and judgement required. In many cases we have

observational data, whose collection we did not control. It is obvious that

if we do not measure smoking, we will not discover that smoking causes

lung cancer, but whether yellow fingers are genuine causes of lung cancer

(as that data set would suggest), depends on whether we already know

enough about lung cancer to know that it and yellowed fingers have a

common cause. If we already have that information, it seems unlikely

that we would conduct such a study, but perhaps only maintain a strong

belief that such is the case while continuing to examine alternatives.

Thus, a just so cause is genuine in the case where all of the outlined

assumptions hold (namely that all common causes are included, the

structure is representative of the system and, if data is used, a formula

satisfied by the data will be satisfied by the structure). Our belief in
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whether a cause is genuine, in the case where it is not certain that the

assumptions hold, should be proportional to how much we believe that

the assumptions are true.

4.4 difficult cases

In this section we will discuss common counterexamples for theories of

causality. Most of these are handled correctly by our definitions but a few

are not.

4.4.1 Determinism

Let us revisit our example of Chapter 2.3.2. Here we have Bob and

Susie, holding rocks that they intend to throw at a glass bottle. In the

original problem, Bob is standing a little closer to the bottle, so Susie

aims and throws earlier and their rocks hit the bottle simultaneously.

We do not currently consider spatial information or include this in the

logical formulas, but we can represent the system as shown in figure 4.3a.

Once they decide to play the game, Bob throws first, then Susie throws

at the next time unit, both of their rocks hit the glass and then the glass

breaks and stays broken forever. In this deterministic case, where all state

transitions have probability one, we would find that neither Susie nor Bob

causes the rock to break, as the probability of the glass breaking in this

system is one. Thus, we would need more information on the probability

of the glass breaking on its own (perhaps due to a gust of wind) in order
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to say whether either of them or their game causes the breaking of the

glass.

This is perhaps a disappointing result, in that one would think that if

one throws a rock and breaks a glass with probability one, then throwing

a rock (or, at the very least, the rock hitting the glass) should cause the

glass to break. However, we can also look at this scenario in another way.

If we had no background knowledge or understanding of the relationship

between rocks and glasses, how would we understand this structure? We

would see that if we enter this system, the outcome will inevitably be

a broken glass. There are no instances of a glass not being broken, so

we cannot tell what difference Bob or Susie make to the breaking. This

example illustrates the situation when we know that we do not know: we

cannot postulate any causes (even prima facie ones) of the glass breaking.

Without further information, we can only say that it is a property of the

system that the glass always breaks. Whether this result is acceptable or

not depends on how one feels about determinism, but it is not intrinsically

incorrect and it may be argued that it is in fact the correct result.

Game

Game,B_throw

1

Game,S_throw

1

B_hit,S_hit

1

Glass_broken

1

1

(a)

Game

Game,B_throw

Game,B_hit

Game,S_throw

Glass_broken, S_hit

(b)

Game

Game,B_throw

0.9

B_hit

0.8

Glass_broken

0.9

1

(c)

Figure 4.3.: Bob and Susie throwing rocks at a glass bottle.
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4.4.2 Overdetermination

Continuing with Bob and Susie, let us alter the example slightly. In this

case we will remove the deterministic element, and will try to find which

of them breaks the glass. Since we do not give any preference to earlier

explanations over later ones, we will not give any weight to the fact that

Bob throws his rock earlier. Thus, both will be equally strong causes of

the glass breaking, with the strength of these claims proportional to the

probability with which the glass breaks when each throws. If each is as

likely to throw their rock and, once thrown, equally likely to break the

glass, then they are equally possible causes of the glass breaking. Unlike

the results from approaches based on counterfactuals, we do not find that

neither causes the glass to break.

This looks promising, so let us continue with a trickier case: preemption.

We will alter the example so that Bob’s rock always hits the glass before

Susie’s does. That is, when Susie’s rock hits, the glass is already broken

(see figure 4.3b). In this case, Bob’s throw and his rock hitting the glass

preempts Susie’s from causing the glass to break. Now, if we are not

looking for something that causes a glass to break within a specific

amount of time, but rather any earlier cause, we would find both Bob’s

hitting the glass and Susie’s throw equally causal. However, we can define

the propositions of the system differently, looking just at whether they

throw or hit, and thus find that only Bob makes a difference to the glass

breaking. In any case, the important feature of this new system is that

the glass is already broken when Susie’s rock hits it, so we will correctly

find that Susie’s rock hitting the glass makes no difference to it breaking.

104



4.4 difficult cases

4.4.3 Causal Chains

Our previous examples with Bob and Susie are also instances of causal

chains. In this case, it is normally said that if we have the chain X →

Y → Z, where X causes Y and Y causes Z, then X should be a cause of Z

(and not a spurious one). Let us just focus on Bob for a moment. Now,

take a chain going from the beginning of the game to Bob’s throw to the

glass breaking, and assume this is the only way the game can lead to

the broken glass (since our transitions are not deterministic, there will

be others, but we will assume they are to states that have no path to

“glass broken”) (figure 4.3c). We will further assume that the probability

of a broken glass, outside this game, is very small. Then, the Game (G),

Bob’s Throw (T ) and Bob’s rock hitting the glass (H) will be prima facie

causes of the glass breaking (B). To determine if H is insignificant, we

can calculate εavg(H,B) as follows:

εavg(H,B) =(P(B|H∧G) − P(B|¬H∧G) + P(B|H∧ T) − P(B|¬H∧ T))/2

=
0.9 − 0 + 0.9 − 0

2

= 0.9.

Note that this computation simply produces the probability of B given

H, since neither T nor G can cause B except through H. Thus εavg for

T and G will be undefined, as H also does not occur except through G

and T and probabilities such as P(B|¬G∧H) will be undefined. We will

not find T and G insignificant, but rather we cannot assess their roles.

However, H is not insignificant, as we would correctly assume. Note that
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in this example we did not include the time between the cause and effect

in order to simplify matters, we only assumed that the cause is earlier

than the effect.

Let us again alter this example and see what happens in the case where

it is possible for members of the causal chain to occur outside the chain.

That is, what happens if it is possible for Bob’s rock to hit the bottle

without being thrown by Bob. This does not make much sense in this

example, but as a general case, it is quite possible that an element of the

chain can have multiple causes. Take the following case:

W

X

0.9

Y

0.8

Z
0.9

0.1

0.2

We will again assume that the probability of Z is very low. Then as

before, W,X and Y are prima facie causes of Z, because P(Z|Y) = 0.9,

P(Z|X) = 0.72 and P(Z|W) = 0.648. Then,

εavg(Y,Z) = (P(Z|Y ∧X) − P(Z|¬Y ∧X) + P(Z|Y ∧W) − P(Z|¬Y ∧W))/2

=
0.9 − 0 + 0.9 − 0

2

= 0.9,

εavg(X,Z) = (P(Z|X∧ Y) − P(Z|¬X∧ Y) + P(Z|X∧W) − P(Z|¬X∧W))/2

=
0.9 − 0.9 + 0.72 − 0.09

2

= 0.63,and

εavg(W,Z) = (P(Z|W ∧ Y) − P(Z|¬W ∧ Y) + P(Z|W ∧X) − P(Z|¬W ∧X))/2

=
0.9 − 0.9 + 0.72 − 0.72

2

= 0.

Thus if these are the only factors in our system, we have correctly ranked

Y as being the most important and X as being second in importance,

which is consistent with how we would think about the problem. If you
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could find out whether X is true or whether Y is true, which is more

useful to know? The answer is Y. However, we do have one problem here,

in that W is seemingly irrelevant for Z. This is actually not a problem,

if we remember our goals. In the next chapter we will not be given this

structure, we will have to find it. Now, Y having higher relevance for Z

than X will give us good reason to suspect precisely the structure in this

diagram. Further, we will find the relationships between W and X and

between X and Y, recovering the true relationships of the system. Finally,

if we had a number of other factors, outside this chain, against which to

test W’s relevance, we might find it has more value to the prediction of Z.

Nevertheless, we are not disturbed by the idea of W being insignificant

for Z, even if some consider it a cause of X. It is perfectly fine to say that

W does not cause Z, but rather causes X, which in turn causes Y, which

causes Z. In fact this is a much truer representation of the system.

4.4.4 Transitivity

The problem of the previous section leads us directly to the question of 1)

whether causality is transitive and 2) whether transitivity is captured in

our representation of causal relationships. We will not address the first

question, but note that as we saw earlier when looking at the counterfac-

tual approach to causality (Chapter 2.2.2), we can arrive at anomalous

results when we allow that if C causes D and D causes E, that C causes

E.19 In general our definitions, like Suppes’ [124], are not transitive, but

we do indirectly allow transitivity in other ways. Remember that we allow

multiple transitions between cause and effect. This means that if we are

19 For further discussion on the transitivity of causation see [28].
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looking at whether some C causes some E in at least 2 time units, then

there will be at least 2 states on the path from C to E. These states may

be labeled with causes of E and in fact we may see that C causes E only

because it does so through those states. In the previous example, imagine

if the lower bound was, instead of one time unit, three time units. Then

W would be the only cause of Z, and we would be, indirectly, allowing

transitivity. Anomalous results caused by this approach can be remedied

by carrying out the analysis in a smaller time window.

1
 S, ¬ J

0.69

2
 J, ¬ N

0.3

3
 J, N

0.01

4
 D

0.9
5

 ¬ D

0.1

0.1

0.9

1

0.5

0.01

0.49

Figure 4.4.: Example structure containing states with their labels and transitions
with their associated probabilities. s1 is the initial state. This is an
altered version of figure 4.1.
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4.4.5 Cycles

One side effect of the structures we use is that due to the total transition

function, we must allow cycles in the graph (either that or an infinite

number of states, which we do not allow). Inference methods, such as

those based on Bayesian networks, generally specify that the structure

must be a DAG (directed acyclic graph), but this is limiting in that

the probabilities in the graph only convey the probability of the effect

happening at some point after the cause. But in many cases it is better to

think of this as an ongoing situation, where there may be a number of

opportunities for the cause to occur and to bring about the effect (i.e. in a

window of time after the cause, where we may want to vary this window

to test a number of possibilities). For example, take the structure in 4.1,

where the propositions have the following interpretations: S is “being

suicidal”, D is “being dead” (where ¬D means alive), J is “jumps from

building” and N is “net below area being jumped from” (¬N means there

is no such net). In the figure shown, we have specified that a person who

is dead remains dead but that one who survives an attempted suicide

somehow becomes immortal and remains not dead forever. If we remove

all three of the self loops, we end up with a familiar DAG and avoid

such problems. However, it would be better to augment the graph as

follows (shown in figure 4.4), resulting in a graph with cycles that behaves

as expected. We should keep the self loop at s4, as we do not want to

allow resurrection in this example. At s5 we should add an edge with

non-zero probability to s1, meaning that there is some probability that a

person who survives a suicide attempt will become suicidal again. This
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means changing the probability on the self loop, to make sure the sum

of the transition probabilities at s5 add to one. We should also allow a

transition from s5 to s4, in consideration of the possibility that the person

may die of other causes. Our goal at the moment is not to reconstruct the

most accurate structure of suicide by jumping from buildings, but rather

illustrate the expressiveness of PCTL as opposed to other frameworks as

well as the desirability of cycles in a causal structure.

Then, if we make no other modifications, we see that given an infinite

amount of time, a person who becomes suicidal will eventually succeed

in their attempts. This is a result we could not achieve without allowing

cycles in our graph. However, it is not particularly useful to assume that a

person has infinite time to kill himself. Thus we can add an upper bound

and ask whether a person who becomes suicidal will successfully kill

themselves within x units of time. Such a question is easily represented

and posed in the framework presented, but has no analogue in the

graphical models previously described.
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5
I N F E R R I N G C A U S A L I T Y

In the previous chapter we defined the kinds of causes we will aim to

identify. Now we will discuss the details of how to go about testing

these in a set of data. We will begin by considering the set of causal

hypotheses, the format of the data and the satisfaction of formula in time

series data before discussing significance testing and in particular the

choice of threshold for determining the significance of causes. Finally,

we will examine theoretical issues such as the complexity of the testing

procedures.

5.1 testing prima facie causality

5.1.1 The set of hypotheses

The hypotheses are a set of formulas representing causal relationships.

Each of these is of the form:

c;>r,6s e, (5.1)

where c and e are PCTL state formulas, 1 6 r 6 s 6 ∞ and r 6= ∞.

These will be tested to find those that meet the conditions for prima facie

causality, as defined in Chapter 4. To form this set, the simplest case is
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5.1 testing prima facie causality

when we have some knowledge of the system and either explicitly state

the formulas that may be interesting or use our background information

to generate the set. For instance, we may have data for a set of neurons

firing over time, where we know the time window between one neuron

firing and it causing another to fire, and we are only interested in simple

relationships between individual neurons. In the next type of case, we

may have information on the timing, but not about the complexity of

the relationships. Here we could choose to generate increasingly large

formulas and stop at some predefined size, or determine this threshold

based on whether or not the quality of causal relationships is continuing

to increase. In the case of limited data, we could begin by determining

what types of formulas may be found (at satisfactory levels of significance)

using this data based on formula size, length of the time series, and the

number of variables. Finally, when the related timing is unknown, we can

simply generate formulas with various associated time windows, testing

which are most significant.

5.1.2 The set of data

Testing the set of hypotheses for prima facie causality means testing

whether the relationships are satisfied by the data, and with what prob-

abilities. We must first relate the observational data to logical formulas.

We assume that the data consists of a series of time points, with measure-

ments of variables or the occurrence of events at each. For instance, a

subset of one data set (which may have any number of time points and

variables) might look like:
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5.1 testing prima facie causality

t1 t2 t3

a 1 0 1

b 0 0 1

c 1 1 0

Here we have observations of three variables at three time points. When

specifying the logical formula denoting causal relationships in this sys-

tem, the set {a,b, c} will contain the atomic propositions. In this case,

occurrence of a proposition is denoted by 1, and non-occurrence by 0. We

see that at t1, a and c are true. Another way of describing this is to say

that the system is in a state where a and c are true. Each observation

yields a state the system can occupy, and the temporal order of these

observations shows possible transitions between states. We assume that

there is some underlying structure, which may be very complex and

include thousands of states, and we are observing its behavior over time.

Note that we can have two types of data. In the first, we observe

one long sequence of times. In that case, we see one of many partial

runs of the system. The second type is a group of (usually shorter)

observation sequences (also called traces in model checking). Cases like

this arise in medical domains, where we have sets of patients observed

over time. While one long run may initially seem equivalent to many

shorter runs, there are some important distinctions. To understand these,

let us consider an example. Assume the underlying structure is as shown

in figure 5.1. Say we then observe the sequence P,Q,S, T , ..., T ,S, ... and

do not know the underlying model (as this is normally the case). If we

see only this one trace (beginning from the start state, s1), we will never

see the transition from s1 to s3 (i.e. P, R) and will not know that it is

possible. However, if we have a large set of short traces, then as the size
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s1 Pstartstart

s3 Rs2 Q

s4 S s5 T s6
s7

0.5
0.5

0.6
0.4

0.4
0.6

1

1

1

1

Figure 5.1.: Example of a probabilistic structure that might be observed.

of this set increases, we will get closer to observing the actual transition

probabilities. That is, half the traces will begin with P,Q and the other

half with P,R.

Note that in practice many systems, such as biological systems, have

cyclic patterns that will repeat over a long trace. That is, these systems

can be modeled as recurrent Markov processes. While we may only

observe the start state once, we will see other states and transitions

repeated multiple times. With a recurrent Markov process, we can then

infer properties from one long trace. However, when the system is non-

recurrent, inference may require a set of traces sampled from a population.

If the properties of interest are related to the first few timepoints and do

not occur again, then we will not be able to infer these from a single trace.

In cases where one has control over the data collected, it is worth noting

the differences between the two types.
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5.1 testing prima facie causality

5.1.3 Intuition behind procedure

Before discussing how to test logical formulas in data, let us consider

an example to see the general idea behind this. Say we are testing

c ;
>1,62

>p e for some p and we observe the sequence c,a, cd, f, e,ac, eb.

We may represent this as:

c a c,d f e a, c e,b

Now we must determine whether the probability of the formula, given

what we have observed, is at least p. Thus the part of this sequence that

we are interested in is:

c c e c e

Since we do not know the underlying structure and are not trying to

infer it (consider that for a set of 1000 genes that are only on or off, there

are 2
1000 possible unique states and there may be multiple states with

the same labels) we observe all instances of c as possibly leading to e,

regardless of what the current underlying state is (there may be no path,

or there could even be a deterministic path). At this point, we consider

any timepoint (and thus state) where c is true, to be identical. That means

that the above sequence looks like the following set of paths:

c

c e

c e
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and will seem to be generated by the following (partial) structure:

c e

The probability of the leads-to formula we are testing is the probability

of the set of paths leading from c to e (within the specified time limit),

which is defined by how frequently we observe those paths from c. Thus

when we have a trace of times labeled with c and e, and a formula

c;>1,62 e, the probability of this formula is the number of time points

labeled with c where e also holds in at least one and fewer than two

time units, divided by the number of time points labeled with c. In this

example, the probability is estimated to be 2/3. The trace is then said to

satisfy the formula c;>1,62

>p e if p 6 2/3.

5.1.4 Satisfaction of a formula

Testing the set of hypotheses for prima facie causality means testing

whether each relationship is satisfied by the data, and with what prob-

ability. Now we move to the general case, where we begin with either

one long time series or a set of shorter ones, and a set of formulas to be

tested.1 The satisfaction and probability of PCTL formulas relative to a

trace consisting of a sequence of ordered timepoints (with either mea-

surements at every point in time, for some granularity of measurement,

or time indices of the measurements such that we can compute the time

1 For an introduction to the problem of runtime verification, see [73].
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5.1 testing prima facie causality

between two measurements) for any PCTL formula is as follows.2 Note

that our approach differs from others using PCTL [14], as we must deal

with 1) long traces that cannot be broken up into shorter traces based

on knowledge of the start state 2) short traces whose first observations

vary and are not indicative of the start state. Thus, we cannot use the

usual approach of computing the probability of a formula by finding the

number of traces satisfying the formula.

We assume that propositions are events that either occur or do not or

are otherwise known to be either true or false at every time point along

the trace. Each timepoint is considered to be initially labeled with the

atomic propositions true at that time. Assume that t is a time instant

in the observed trace.3 From these propositions, we may define more

complex state and path formulas, which describe properties true at a

particular instant (a state) or for a sequence of times (a path).

1. Each atomic proposition is a state formula.

An atomic proposition is true at t if it is in L(t) (the labels of t).

2. If g and h are state formulas, so are ¬g, g∧ h, g∨ h, and g→ h.

If a time point t does not satisfy g, then ¬g is true at t. If both g and h

are true at t, then g∧h is true at t. If g is true or h is true at t, then g∨h

is true at t, and if ¬g is true at t or h is true at t, then g→ h is true at t.

3. If f and g are state formulas, and 0 6 r 6 s 6 ∞ with r 6= ∞,

fU>r,6sg and fU>r,6sg are path formulas.

2 For the case of a set of traces, the frequencies below simply refer to the frequencies in the
combined set of time points.

3 In the unlikely event that a structure is given, this procedure is unnecessary and one may
proceed with the algorithms of Hansson and Jonsson [49], with the modified version of
leads-to. However, we remind the reader that it is unlikely to begin with a structure, and
attempting to infer one may introduce further errors.
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The “until” path formula fU>r,6sg is true for a sequence of times begin-

ning at time t if there is some r 6 i 6 s such that g is true at t+ i and

∀j : 0 6 j < i, f is true at t+ j. The “unless” path formula fU>r,6sg is

true for a sequence of times beginning at time t if either fU>r,6sg is true

beginning at time t, or ∀j : 0 6 j 6 s, f is true at t+ j.

4. If f and g are state formulas, then f;>r,6s g, where 0 6 r 6 s 6∞
and r 6= ∞ is a path formula.

We now treat leads-to formulas separately. Recall that leads-to was

originally defined using F>r,6se, where the associated probability of

the leads-to is that of the F part of the formula. Thus the computed

probability will be that of e occurring within the window r–s after any

timepoint, while we actually want the probability of e in the window

r–s after c. Note that when checking formulas in a structure, we do

not have this difficulty, as we are computing the probabilities relative to

particular states. However, when we must check formulas in traces (when

a model is not given or will not be inferred), we do not know which state

a timepoint corresponds to and thus we can only compute the probability

relative to a trace. Thus, the formula f ;>r,6s g is true for a sequence

of times beginning at time t if f is true at t and there is some i, where

r 6 i 6 s, such that g is true at t+ i. Note that when r = 0, this reduces

to the usual case of leads-to with no lower bound.

5. If f is a path formula and 0 6 p 6 1, [f]>p and [f]>p are state

formulas.

The probabilities here are in fact conditional probabilities. There are two

primary cases. For [fU>r,6sg]>p the probability p ′ associated with the
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data is estimated as the number of time points that begin paths satisfying

fU>r,6sg divided by the number of time points labeled f∨g. The formula

[fU>r,6sg]>p is satisfied by the trace or set of traces if p ′ > p. In the

case of a U formula, the probability is estimated the same way as for the

preceding case, except that we consider the timepoints beginning paths

satisfying fU>r,6sg (which includes paths where f holds for s time units,

without g later holding). For a leads-to formula, h = f ;>r,6s g, the

probability is estimated as the number of time points that begin sequences

of times labeled with h, divided by the number of time points labeled

with f. Thus, the probability of f;>r,6s g is the probability, given that f

is true, that g will be true in between r and s units of time.

See Appendix D.1 for algorithms.

Let us see that this formulation yields our desired result. That is, let

p = P(gt ′ |ft), where t+ r 6 t ′ 6 t+ s. Dropping the time subscripts for

the moment, by definition we have:

P(g|f) =
P(g∧ f)

P(f)
.

Recall that the probabilities are in fact frequencies, so that the probability

P(x) of some formula x, is the number of time points labeled with x

divided by all time points. Thus, using #x to denote the number of time

points with some label x, and T to denote the total number of timepoints,

we find:

P(g|f) =
(#g∧ f)/T

#f/T

=
(#g∧ f)

#f
.
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Thus, we return to our previous statement, which is that the probability

of such a formula is the number of states beginning paths satisfying the

leads-to formula, divided by the number of states satisfying f.

The prima facie causes are those in the set of hypotheses where the

associated probability, computed from the data, is greater than the prob-

ability of the effect alone and where the relationship satisfies our other

conditions – namely that the time lag is such that c is prior to e.

5.2 testing for significance

In the previous chapter we defined a new value, εavg, that indicates how

significant a prima facie cause is for its effect. We then defined that a cause

is ε-insignificant if its |εavg| < ε, for some small value of ε. Now we will

discuss the computation of εavg as well as how to find an appropriate

value for ε.

5.2.1 Computing εavg

Let us recall the definition for εavg. With X being the set of prima facie

causes of e, we compute:

εavg(c, e) =

∑
x∈X\c

εx(c, e)

|X \ c|
, (5.2)

where:

εx(c, e) = P(e|c∧ x) − P(e|¬c∧ x). (5.3)
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Recall that each c and x are of the form c;>s,6t e and x;>s ′,6t ′ e. That

means that c∧ x refers to c and x being true such that e could be caused

in the appropriate intervals. That is, P(e|c∧ x) means P(eA|cB ∧ xC)

where the time subscripts are constrained by:

B+ s 6A 6 B+ t, and

C+ s ′ 6A 6 C+ t ′.

As before, we compute this probability with respect to a probabilistic

structure or set of data using the satisfaction rules described earlier. For

example, if part of the observed sequence is c at time 0 and x at time 15,

where s = s ′ = 20 and t = t ′ = 40, then e must occur in the overlap of

these windows, shown in gray below.

c

0

x

15 20 35 40 55

Thus, this will be considered an instance of (c∧ x) ; e if there is an

observation eA such that: 20 6 A 6 40 and 35 6 A 6 55. That is, there

must be an instance of e between times 35 and 40. If e was true at A = 10,

then only c would have been true before e, while if e was true at A = 50,

then c’s time window to cause e would be over.

Recall that the probabilities here come from frequencies of occurrence

in the data. The computation is exactly as described for leads-to formulas

in the previous section. Thus, remembering that there are time subscripts

and constraints on the time of e:

P(e|c∧ x) =
#(e∧ c∧ x)

#(c∧ x)
, (5.4)
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and

P(e|¬c∧ x) =
#(e∧¬c∧ x)

#(¬c∧ x)
, (5.5)

where these refer to the number of paths where e holds after c∧ x (or

¬c∧ x) holds, in the appropriate time window, divided by the number of

paths where c∧ x (or ¬c∧ x) holds.

We now give one algorithm for computing

εx(c, e) = P(e|c∧ x) − P(e|¬c∧ x) (5.6)

relative to a trace T . As before, we note that c and x have corresponding

formulas c;>r,6s e and x;>r ′,6s ′ e. We assume all times satisfying c,

x and e are already labeled. Then c∧ x refers to c and x holding such

that either could be a cause of x. Thus the primary task of the algorithm

is to identify instances of c∧ x that fit these criteria, and then to identify

instances of e that fall in the overlap of the time windows from these

instances. Similarly, for ¬c∧ x, we find instances of x where there is no

overlapping window with an instance of c.
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Algorithm 5.1 εx(c, e)
cT = {t : c ∈ labels(t)}, xT = {t : x ∈ labels(t)}, eT = {t : e ∈ labels(t)}
W =W ′ = ∅
E = E ′ = 0

for all t ∈ cT do
if ∃t ′ ∈ xT : [t+ r..t+ s]

⋂
[t ′ + r ′..t ′ + s ′] 6= ∅ then

W =W
⋃
{(t, t ′)}

end if
end for
for all t ′ ∈ xT do

if @t ∈ cT : [t+ r..t+ s]
⋂
[t ′ + r ′..t ′ + s ′] 6= ∅ then

W ′ =W ′
⋃
{t ′}

end if
end for
for all (t, t ′) ∈W do

if ∃t ′′ ∈ eT : t ′′ ∈ [t+ r..t+ s]
⋂
[t ′ + r ′..t ′ + s ′] then

E++
end if

end for
for all (t ′) ∈W ′ do

if ∃t ′′ ∈ eT : t ′′ ∈ [t ′ + r ′..t ′ + s ′] then
E ′ ++

end if
end for
return E

|W|
− E ′

|W ′|

In summary, we begin with a set of prima facie causes (identified by

generating or otherwise specifying some set of potential relationships

and testing which of these satisfy the conditions for prima facie causality

relative to the given data) and then compute the average significance for

each of these causes, yielding a set of εavg’s. We must now determine

what value of ε to use when determining which of these causes are

significant.
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5.2.2 Choice of ε

One can determine an appropriate threshold through simulation (creating

data with a structure similar to the real data of interest), or examining

the hypotheses manually. However, since we are generally testing large

datasets for which there are a multitude of hypotheses, we may use the

resulting empirical statistics to our advantage. We assume that while

there may be many genuine causal relationships in some tested set, these

are still relatively few compared with the total number of hypotheses

tested. The key observation here is that this relatively large number of

non-causes will provide a background (or control) against which we may

compare the true causes.

We accept that all thresholds have tradeoffs: if ε is too low, we will call

too many causes significant (making false discoveries), while if ε is too

high we will call too many causes insignificant (leading to false negatives).

For our purposes, we concentrate on the first case. While we may miss

some causes, we aim to be confident in those identified. The priorities of

other users may vary, and they may wish to focus on identifying the full

set of causes (at the expense of some of those identified being spurious).

Many statistical methods exist for both purposes. We will concentrate on

controlling the false discovery rate (FDR), which is the number of false

discoveries as a proportion of all discoveries. In our case this will be the

number of non-causes we call significant as a proportion of all causes

deemed significant. The basic idea is that when doing many tests we are

more likely to see results that seem significant, just by chance. To control

for this, we generally compute some statistic (such as a p-value) for each
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hypothesis, and compare these against the distribution expected under

the null hypothesis. For a particular value of this statistic, we accept a

hypothesis (rejecting the null hypothesis), if this value is significant when

compared with the null hypothesis and after accounting for the number

of tests being conducted. To determine the null hypothesis in our case,

we would need to know how the εavg’s would be distributed if there

were no genuine causal relationships. As an alternative, methods using

empirical nulls allow us to estimate these from the data. These methods

are particularly suited to cases with many tests and few true positives, as

they allow better estimation of the null.

For an introduction to multiple hypothesis testing and false discovery

rate control, see Appendix B. It is assumed that the reader is familiar with

the goals and procedures of these methods, so we will only discuss the

case of the empirical null here.

Computing the fdr

The basic idea of this approach is that we assume our data mostly fit a null

model, where there are no causal relationships, with deviations from this

model indicating true causal relationships. This assumption implies that

we expect the computed εavg’s to follow a normal distribution, with the

z-values calculated from these ε’s having a mean of zero and a standard

deviation of one. These ε’s (even with no true causal relationships in

the system) are not all equal to zero due to correlations from hidden

common causes and other factors influencing the distributions, such as

noise. The distribution of ε tends toward a normal due to the large

number of hypotheses tested.
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When there are causal relationships in the system, then there are

two classes of ε’s: those corresponding to insignificant causes (which

may be spurious or too small to detect) and those corresponding to

significant causes (which may be genuine), with the observed distribution

being a mixture of these classes. Then, p0 and p1 = 1 − p0 are the

prior probabilities of a case (here, a causal hypothesis) being in the

“insignificant” or “significant” classes respectively, with these probabilities

distributed according to an underlying density. Since the insignificant

class is assumed to be much larger than the significant class, and normally

distributed, we can identify significant causes by finding these deviations

from the normal.

For this purpose, we will calculate the local false discovery rate (fdr).

Instead of computing p-values for each test and then determining where

in the tail the cutoff should be after correcting for the many tests con-

ducted, as is done when controlling the false discovery rate (FDR), this

method instead uses z-values and their densities, to identify whether, for

a particular value of z, the results are statistically significant after taking

into account the many tests. We will use an empirical Bayesian solution

to fdr control, as described by Efron [29]. This local method is better

suited to the case of many hypotheses, but the same calculations can be

done with the standard tail-area FDR [30].

With N hypotheses H1, H2, . . ., HN we have z-values z1, z2, . . ., zN.

The z-value, also called the standard score, is the number of standard

deviations a result is from the mean. In the case of our causal analysis,

these z-values are computed from the εavg’s. We begin by assuming

the N tests fall into two classes, namely, interesting and un-interesting

(not-null and null). We also assume the proportion of interesting cases
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is small relative to N, say, 10%. These classes correspond to rejection

and acceptance of the null hypothesis, with prior probabilities p0 and

p1 = 1 − p0. That is, p0 and p1 are the prior probabilities of a case (here,

a causal hypothesis) being in the “interesting” or “uninteresting” classes

respectively. The densities (f0(z) and f1(z)) describe the distribution of

these probabilities. When using a theoretical null, f0(z) is the standard

N(0, 1) density. Note that we need not know f1(z), though we must

estimate p0 (usually p0 > 0.9). We define the mixture density:

f(z) = p0f0(z) + p1f1(z), (5.7)

then the posterior probability of a case being uninteresting given z is

Pr{null|z} = p0f0(z)/f(z), (5.8)

and the local false discovery rate, is:

fdr(z) ≡ f0(z)/f(z). (5.9)

Note that, in this formulation, the p0 factor is ignored, yielding an upper

bound on fdr(z). Assuming that p0 is large (close to 1), this simplification

does not lead to massive overestimation of fdr(z). One may also choose

to estimate p0 and thus include it in the FDR calculation, making fdr(z) =

Pr{null|z}. The procedure is then:

1. Estimate f(z) from the observed z-values;

2. Define the null density f0(z) from either the data or using the

theoretical null;
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3. Calculate fdr(z) using equation (5.9);

4. Label Hi where fdr(zi) is less than the threshold (say, 0.01) as

interesting.

Then, for each prima facie cause where the z-value associated with its

εavg has fdr(zi) less than a small threshold, such as 0.01, we label it as a

just so, or significant, cause. With a threshold of 0.01, we expect 1% of

such causes to be insignificant, despite their test scores.

5.3 correctness and complexity

In this section we show that the associated procedures for verifying formu-

las over traces yield the desired results, and analyze their computational

complexity.

5.3.1 Correctness

Correctness of procedure for checking until formulas in traces

Theorem 5.3.1. The satisfaction by a time point t of the until formula fU>r,6sg,

where 0 6 r 6 s <∞ is given by:

satU(t, r, s) =



true if (g ∈ labels(t))∧ (r 6 0),

false if (f /∈ labels(t))∨ t = |T | ∨ s = 0,

satU(t+ 1, r− 1, s− 1) otherwise. (5.10)
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Proof. Assume trace T , where times t ∈ T satisfying f and satisfying g

have been labeled. Then, we will show by induction that any time t

will be correctly labeled by equation 5.10. By definition, a timepoint t

satisfies fU>r,6sg if there is some r 6 i 6 s such that g is true at t+ i

and ∀j : 0 6 j < i, f is true at t+ j.

Base cases:

satU(t, r, 0) =


true if g ∈ labels(t),

false otherwise.

(5.11)

satU(|T |, r, s) =


true if (g ∈ labels(|T |))∧ (r 6 0),

false otherwise.

(5.12)

Note that in the first base case, since we have already stipulated

that r 6 s, we know that if s = 0, r 6 0. However in the second

base case we must add the condition on r. If s = 0, the only way the

formula can be satisfied is if t is labeled with g. Similarly, if t = |T |,

then this is the last timepoint in the trace and t can only satisfy the

formula if it is labeled with g.
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Inductive step: Assume we have satU(n, r, s). Then, for s > 0 and n+

1 6= |T |:

satU(n− 1, r+ 1, s+ 1) =



true if (g ∈ labels(n− 1))

(∧r 6 0),

false if f /∈ labels(n− 1),

(satU(n, r, s) otherwise. (5.13)

Timepoint n− 1 satisfies the formula if it satisfies g or if it satisfies

f and the next timepoint, n, satisfies the formula. However, we

assumed that we can correctly label timepoints with f and g as well

as sat(n, r, s).

Corollary. The satisfaction by a time point t of the until formulas fU>r,6∞g
or fU>r,<∞g, where r 6= ∞ is given by satU(t, r, |T |).

Corollary. The probability of the formula fU>r,6sg, in a trace of times T ,

where 0 6 r 6 s 6∞ is given by:

|{t ∈ T : satU(t, r, s)}|
|{t ′ ∈ T : (f∨ g) ∈ labels(t ′)}|

. (5.14)

Correctness of procedure for checking unless formulas in traces

Claim. The satisfaction by a time point t of the unless formula fU>r,6sg, where

0 6 r 6 s <∞ is given by:
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satU(t, r, s) =



true if (g ∈ labels(t)∧ r 6 0)

∨(f ∈ labels(t)∧ s = 0),

false if (f /∈ labels(t))∨ (t = |T |)

(∨s = 0),

satU(t+ 1, r− 1, s− 1) otherwise. (5.15)

Proof. Assume trace T , and times t ∈ T satisfying f and satisfying g

have been labeled. Then, we will show by induction that any time t

will be correctly labeled by equation (5.15). By definition, a timepoint t

satisfies fU>r,6sg if there is some r 6 i 6 s such that g is true at t+ i and

∀j : 0 6 j < i, f is true at t+ j, or if ∀j : 0 6 j 6 s, f is true at t+ j.

Base case:

satU(t, r, 0) =


true if (g ∈ labels(t))∨ (f ∈ labels(t)),

false otherwise.

(5.16)

satU(|T |, r, s) =



true if (g ∈ labels(|T |)∧ r 6 0)

∨ (f ∈ labels(|T |)∧ s = 0, )

false otherwise.

(5.17)

If s = 0, the only way the formula can be satisfied is if t is labeled

with either f or g. Similarly, if t = |T |, then this is the last timepoint
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in the trace and t can only satisfy the formula if it is labeled with f

or g in the appropriate time window.

Inductive step: Assume we have satU(n, r, s). Then, for s > 0 and n+

1 6= |T |:

satU(n− 1, r+ 1, s+ 1) =



true if (g ∈ labels(n− 1))

(∧r 6 0),

false if f /∈ labels(n− 1),

satU(n, r, s) otherwise. (5.18)

Timepoint n− 1 satisfies the formula if it satisfies g or if it satisfies

f and the next timepoint, n, satisfies the formula. Note that we

assume s > 0 and thus the formula cannot be satisfied by only

f being true. However, we assumed that we can correctly label

timepoints with f and g as well as sat(n, r, s).

Corollary. The satisfaction by a time point t of the unless formulas fU>r,6∞g
or fU>r,<∞g, where r 6= ∞ is given by satU(t, r, |T |).

Corollary. The probability of the formula fU>r,6sg, in a trace of times T ,

where 0 6 r 6 s <∞ is given by:

|{t ∈ T : satU(t, r, s)}|
|{t ′ ∈ T : (f∨ g) ∈ labels(t ′)}|

. (5.19)
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Correctness of procedure for checking leads-to formulas in traces

Claim. The satisfaction by a time point t of the leads-to formula f ;>r,6s g

is given by:

satL(t, r, s) =


true if f ∈ labels(t)∧ (trueU>t+r,6sg) ∈ labels(t),

false otherwise.

(5.20)

Proof. Assume trace T , and times t ∈ T satisfying f and satisfying g

have been labeled. We have already shown that we can correctly label

times that begin sequences where until formula are true, and thus we

can correctly label whether a state t satisfies trueU>t+r,6sg. We have

also assumed that states satisfying f are already correctly labeled with f.

Thus, we can label states with the conjunction of these formulas. Thus by

definition of leads-to – that g holds in the window [r, s] after f – we can

correctly label times with such formulas.

Corollary. The satisfaction by a time point t of the leads-to formulas f;>r,6∞
g or f;>r,<∞ g, where r 6= ∞ is given by satL(t, r, |T |).

Corollary. The probability of the formula f ;>r,6s g, in a trace of times T ,

where 0 6 r 6 s <∞ is given by:

|{t ∈ T : satL(t, r, s)}|
|{t ′ ∈ T : f ∈ labels(t ′)}|

. (5.21)
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This case is similar to the until and unless case, with the exception that

the denominator consists of the set of states satisfying f, instead of f∨ g.

5.3.2 Complexity

We will now analyze the time complexity for each of the algorithms and

procedures discussed. Note that each procedure (aside from the model

checking ones) assume that all states have already been labeled with the

formulas of interest. The complexity of that task is not included in the

other procedures since it is assumed that this is performed once, with the

results saved for use in the later tasks. That is, if we at some point label a

time point with a formula f, we assume that when we are later interested

in when f is true, we can reuse that result.

Complexity of model checking over traces

We begin with a trace of times, T . First, the complexity of labeling times

along a trace with a proposition is proportional to the length of the time

series, which is also denoted by T . Then, assuming states are labeled with

f and g, labeling the sequence with ¬f, f∨ g, f∧ g and f→ g is also of

time complexity O(T).

Next we have until, unless and leads-to path formulas, and finally

the computation of the probabilities of these formulas. For an until or

unless formula, such as fU>r,6sg, the worst case for a single timepoint is

when r = 0 and involves checking the subsequent s timepoints and thus

for s 6= ∞, the worst case complexity for the entire sequence is O(Ts),

while for s = ∞, it is O(T 2). However, these formulas naively assume all
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timepoints are labeled with f and thus all t ∈ T are candidates for starting

such a path. Thus instead of T , the formulas should use T ′, the number of

states labeled with f. For a leads-to formula, f;>r,6s g, the complexity

for a single timepoint is O(|s− r|), where s 6= ∞. Where s = ∞, this is

again O(T). As for the until/unless case, if we assume all timepoints

are labeled with f, then the complexity for a trace is O(T |s− r|) or O(T 2),

though in practice most times will not be labeled with f and thus these

will be significantly reduced.

Once states have been labeled as the start of path formulas or with the

appropriate state formulas, computing the probability for a state formula

is O(T).

For any formula f, the worst case complexity of testing f in a trace T ,

assuming that the subformulas of f have not already been tested, is thus

O(|f|× T 2), where |f| is the length of the formula.

Complexity of testing prima facie causality

For a single relationship, f;>r6s g, again assuming times satisfying f

and g are labeled as such, we must simply compute the probability of

this formula along the trace (O(T)) and compare this with the computed

probability of F6∞g (also O(T)). Thus for M relationships the complexity

is O(MT). In the case where we have N possible causes of N effects, then

this case has complexity O(N2T).

Complexity of computing εavg

Assuming timepoints are already labeled with c, e and x, computing

εx(c, e) has complexity O(T). Thus, in the worst case, computation of

one εavg(c, e) is O(NT), where there are N causes and M effects and
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all N causes are prima facie causes of e. To compute the significance

for each cause of e we must repeat this N times so the complexity is

O(N2T). Finally, repeating this for all M effects, we find the complexity

is O(MN2T). In the case where the causes and effects are the same

(say when testing relationships between pairs of genes or neurons), then

N =M and the worst case complexity is O(N3T).

5.4 other approaches

Alternatively, one could begin by inferring a model. Then, satisfaction

of formulas and algorithms for model checking are exactly that of [49].

However, model inference is a difficult task and may include development

of phenomenological models and abstractions of the true structure. When

inferring a model, there is again the problem of a non-recurrent start

state. The probabilities inferred will not necessarily correspond to the

true probabilities of the structure. Further, it is unknown whether, as

the number of observations tends towards infinity, the inferred model

approaches the true structure. Thus, since we are generally interested

in a set of properties that is small relative to the size of the underlying

structure, we focus on inferring the correctness of those properties. In

other cases, for a relatively small structure one may wish to begin by

inferring a model.

136



6
T O K E N C A U S A L I T Y

In this chapter, we relate our theory (developed in the preceding chapters)

for general, type-level, cases to particular, token-level, instances. We

begin in section 6.1 with a discussion of what constitutes a token-level

case and how these differ from type-level ones, before reviewing some of

the ways token causality has been reasoned about. Then, in section 6.2

we formulate a new approach to this problem, showing how to use

previously inferred type-level causes and token level observations to

rank possible token-causes of an effect. In section 6.3, we illustrate the

approach by working through two examples. Finally, in section 6.4 we

turn our attention to the analysis of cases that have proven difficult for

approaches to token causality.

6.1 introduction to token causality

6.1.1 What is token causality?

Thus far we have developed a new approach to recognizing and inferring

general, type-level, causal relationships. However, in many cases we want

to find the cause not of a kind of event, but of a particular one that actually
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6.1 introduction to token causality

occurs at some point in time and space.1 When we are assigning credit or

blame, such as in legal or moral cases, or determining why a patient is ill,

we are seeking token-level relationships explaining particular instances.

Type-level relationships relate to general, statistical, properties from many

repeated observations of a system or population, and allow us to predict

the occurrence of the effect if the cause were to happen. Token-level

relationships relate to single occurrences or individuals and help us to

explain the occurrence of something that has already happened.

One particularly important use of token causality is in diagnosing

patients. While there are general relationships between diseases and

symptoms (and between risk factors and diseases), each patient must

be understood individually in order to determine their best course of

treatment. For example, when a patient arrives with a cough, his doctor’s

initial hypothesis may be that he has the common cold. However, patients

can be queried and further examined using medical tests and by reviewing

their prior medical history. Thus, after finding out that the patient also

has a fever, shortness of breath, and chest pain, the doctor may update

her original hypothesis and order a chest x-ray to confirm the diagnosis

of pneumonia. It is important to note the distinction between the type

(general) and token (singular) cases. While the type-level relationships

provide initial hypotheses, these are confirmed or rejected based on the

token-level information, relating the current symptoms and past medical

1 The definition of an “event” is inherently ambiguous and it is unclear at what point
something goes from being a single event to being a sequence of events. For the moment
we will stick to the extreme cases, where the distinction is clear. However, it should be
noted that we do not assume that an event be instantaneous in time. While an effect
could potentially (but not necessarily) be instantaneous, we consider the token-level event
(or occurrence) to include the actual occurrence of both the cause and the effect. Thus,
since we assume a cause (other than ones simultaneous with their effects, which we have
ignored) precedes its effect in time, the entire event must have a non-trivial duration.
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history to known relationships that indicate factors that could cause these

symptoms. In short, token-level causality relates to the question of “why”

on a particular occasion and type-level causality relates to the question of

“why” in general.

6.1.2 Why do we need a notion of token causality?

Once we have a set of type-level causes, our work is not done. When we

want to find out who caused a car accident, why a house caught on fire, or

what made a person ill, knowing the type-level causes of accidents, fires

and illness may give us some hypotheses, but these relationships alone are

not enough for us to determine the token-level causes. We might believe

at first glance that our type-level causes can explain these observances,

but while a type-level cause can indicate that a token-level case is likely

to have a particular cause, it does not necessitate this. Note also that

a token-level case may correspond to multiple type-level relationships.

Bob’s death can be a token of “death”, “death caused by cancer”, “death

caused by lung cancer”, “death of a 77-year old man” and so on.

For example, going back to the case of diagnosing a patient, if a doctor

suspects a patient has a particular illness, she may try to show how

the patient’s history and symptoms fit with the known course of the

suspected illness – and conversely, the doctor would likely come up with

the potential diagnosis by observing the similarity of the patient’s case

to a known disease. However, conflating this correlation between type

and token with the necessity of a token relationship following from a

type one is akin to conflating causation and correlation. An extreme
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example of this in action would be choosing a treatment based entirely

on the general, population-level, causes of a patient’s symptoms. We

would have type-level relationships indicating causes of, say, coughs and

chest pains, or headaches and fatigue, with treatment for these based

on what has proven effective over the entire population. Then, each

individual’s treatment would be based not on his actual disease, but on

what worked in the population for treating the general cause of these

symptoms. For example, a patient with chronic fatigue syndrome might

be treated for depression, as this could be a more common explanation

for the same symptoms. While we may have certain hypotheses, based on

known type-level relationships, we must also be willing to abandon these

hypotheses in the face of evidence against them. Thus, we need a way of

reasoning about single cases that takes this into account, allowing us to

use knowledge gleaned from type-level relationships while admitting the

possibility that the sequence of events may be entirely different in token

cases.

Discrepancies between type and token arise in two primary scenarios.

First, if the sample from which the type-level relationships are inferred

differs from that of the token case, the single case causalities will differ.

Unless we have background knowledge or may experiment on or other-

wise probe the system, we may not be able to identify such a discrepancy.

Let us say we learn that smoking causes lung cancer within 10 to 20 years

and then see a patient who smoked and developed lung cancer within

10 to 20 years. However, this patient happens to have a genetic mutation

such that smoking lowers his risk of lung cancer, and in fact it was his

exposure to radon during his career as an experimental physicist that
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caused his lung cancer.2 In this case, if we know nothing of the connection

between radon exposure and lung cancer, our token inferences will be

incorrect. However, in order to know that it is possible for smoking to

be prevented from causing cancer, we must have previously had data for

groups of people with the same mutation as well as for people repeatedly

exposed to radon. Our explanations are only as good as the current

state of knowledge, so we must either have previous type-level data

that supports these claims or we must be able to use some background

knowledge to rule out type-level causes and guide the exploration of new

relationships.

The second case where type and token may differ is when a less sig-

nificant or even an insignificant (using our terminology from Chapter 4,

referring to the relative magnitude of the related εavg significance scores)

type-level cause token-causes the effect. In this case, even without back-

ground information, the situation is amenable to automated inference. It

is problematic only when a more significant cause also occurs or when

we have incomplete knowledge of what occurred. For instance, one

highly significant cause of chickenpox is close contact with someone who

is infected. Another less likely cause is the chickenpox vaccine, which

usually prevents the illness but causes it in a small percentage of people

vaccinated. Now consider the case where we know that a person received

the vaccine and then developed chickenpox, but we do not know whether

she was exposed to anyone with the illness. Depending on the probability

that she came into contact with an infected person, given that she now

2 This is also an example of the mechanism connecting cause and effect failing: here
smoking was prevented from causing cancer by the genetic mutation. Another case could
be a gun that is fired, but which was unloaded before firing.
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has the illness, it is possible that we might find both the potential causes

(exposure and the vaccine) equally significant at the type-level.

The method developed in this chapter will help assemble and under-

stand the facts surrounding a token event by relating these to type-level

relationships. We are not trying to develop a metaphysical theory of

token causality, and make no claim as to whether one can ultimately be

reduced to the other. Rather we suggest that there is a need for rigorous

methods for relating general properties to singular cases. Our focus here

is on developing a methodology, much as we did for type-level causes,

that can be used to automatically analyze token causes. In some cases

the result will be that the most significant type-level cause is the most

significant token-level cause, but to arrive at that answer we need to

relate our observations to the previously determined type-level causes.

Since the relationships inferred are logical formulas with time constraints

between cause and effect, we will need to determine whether what was

seen constitutes an instance of each known relationship. If we do not have

the truth value for all propositions at all times, then we will calculate the

probability, given the observations, of the token case satisfying the logical

formulas associated with each causal relationship. Then, with a set of

possible type-level relationships that could explain the token case, we will

rank their significance for the token case. As before, we will not attempt

to find the true cause of every effect in an error-free manner. Instead we

will determine the most probable causes given the type-level inferences

and token-level observations.
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6.1.3 How can we reason about token causality?

Most of the prior work in this area has addressed the metaphysics of

token causality, leaving open the practical problem of how to reason

about such cases in an automated algorithmic way. Among philoso-

phers, there is no consensus as to how to combine type- and token-level

information: we may learn type-level claims first and then use these

to determine token level cases [127]; the type-level relationships may

follow as generalizations of token-level relationships [52]; or they may

be treated as entirely different sorts of causation [27]. One algorithmic Eells’s view is

also described in

section 2.3.3 of

Chapter 2.

The

counterfactual

approach of

Lewis, described

in section 2.2.2

primarily applies

to token-level

cases.

exception is Pearl’s work on the “actual cause”, which attempts to link

Pearl’s theory of

the “actual cause”

is discussed in

Chapter 3.

type-level structural models with counterfactual analysis of token-level

cases. However, among other problems, since the underlying models

and theory were not explicitly developed for cases involving time, and

allow for inference from non-temporal data, we cannot avoid cases such

as smoking at 10am causing lung cancer at 2pm. We could only exclude

this case manually using background knowledge, but this becomes more

difficult as we must decide at what point the event of smoking should

be considered to fulfill the relationship (e.g. a week, a month, or a year

before lung cancer).

Given the relative sparsity of algorithmic methods for token-level infer-

ence (compared with those for type-level inference), it would be useful

to be able to repurpose some of the metaphysics for our epistemic ends.

While the approaches highlighted provide solid ground on which to deter-

mine whether something is a token cause, they may not be practical (due

to requirements of knowledge or computationally infeasible calculations)
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if translated directly. Yet we can take inspiration from these accounts,

adapting them to suit the needs of methodology Regardless of which

theory is correct (leaving aside what it means to be “correct” here, as we

are still interested only in what can be learned – not the underlying fact

of what is), and whether one (a type or token level claim) is necessary or

sufficient for the other, we can make some token-level claims by using

our type-level inferences as support. We will use the strength associated

with our type-level causes to assess the strength of the token-level claims.

One way of relating these two levels of causality is by using the connect-

ing principle, introduced by Elliot Sober [119]. Sober introduces a notion

of support, where this is a numerical quantity whose value indicates how

likely it is that a particular type-level cause token-caused a particular,

actually occurring, effect. The support of the token hypothesis (such as

that Bob’s smoking caused his lung cancer) is proportional to the strength

of the corresponding type-level relation (such as smoking causes lung

cancer). The connecting principle is stated as follows [119]:

Definition 6.1.1 (Connecting Principle). With C being a causal factor

with magnitude m for producing E in population P, the support for the

hypothesis that C actually occurring at t1 caused E to occur at t2 – given

the type-level relation between C and E and the fact that instances of C

and E token-occurred in population P – is the magnitude m associated

with the type-level relationship. This is written as:

S{C(t1) token caused E(t2)|C(t1) and E(t2) token occurred in P} = m.

The value of this support can range from −1 to +1, as this is the range

of m. Here C and E are types of causes and effects and the time-indices
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indicate the token events that occur at particular places and times, repre-

sented by ti. The measure of m used by Sober is Eells’s ADCS (average See Chapter 2

Section 2.3.3 for

a discussion of

the ADCS.

degree of causal significance). Restated, this is:

m =
∑
i

[P(E|C∧Ki) − P(E|¬C∧Ki)]× P(Ki), (6.1)

where the Kis are the background contexts and this measurement denotes

the magnitude of causal factor C for effect E in population P. As before,

the background contexts (each denoted by Ki) are formed by holding

fixed all factors in all possible ways. We can see now that just as we

replaced the ADCS with εavg, that εavg will be our value of m (and that See Chapter 4 for

a discussion of

εavg.
our earlier arguments against context unanimity will apply here as well).

For a particular token case, according to Sober, the relevant population

means using whatever is known about the case. So, if a person’s age and

weight are known, then the population is one comprised of individuals

with those properties. If less is known, perhaps only that he is a U.S.

citizen, then the relevant population is U.S. citizens. However, in practice

we will not have arbitrarily specific type-level relationships that will allow

us to take advantage of all available information. Further, truly using

all information about the token-case will result in a population of size

one (the single case under study). Thus we note that the likelier case is

that we will have separate structures (and/or type-level relationships)

representing different populations (e.g. one for, say, middle aged smokers

and another for elderly non-smokers) or the features that would define

someone or something as being part of a population could simply be

propositions.3 Thus we may still have varying results based on the finer

3 Note that in this case, saying that something is true for a population, where the population
is defined by properties p1,p2...pn means testing whether, in addition to the formulas
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details, but whether and how these are used depends on both the available

type and token-level information.

The main principle here is that a known type-level relationship between

some c and e is good evidence for c causing e, if we see that both c and e

have occurred. Clearly, the type-level relationship alone is not enough, the

relation must actually be instantiated. In both Sober’s method and ours,

though, the type-level causes are precisely such due to their frequency of

observation in some population. That is, if we find that 80% of people

who develop disease X die shortly after, then we have reason to believe

that if we observe a new patient who contracts X and dies, this is another

instance of the disease being fatal.

6.2 from types to tokens

We now turn our attention to formulating a new approach. The prob-

lem we aim to solve is one where we have inferred some type-level

relationships (using the method discussed in Chapters 4 and 5) and are

attempting to explain the occurrence of an effect using this type-level

information and knowledge of the token-level event (which consists of a

sequence of times, with propositions true at those times). A token-level

hypothesis is that, given a type level relationship such as c;>r,6s
>p e and

the satisfaction of c and e (remember these are logical state formulas)

based on the token-level observations, an instance of c token-caused an in-

stance of e. The result of the procedure will be a ranking of the type-level

causes (possible explanations for the token-level effect) using a measure

for the causal relationships, p1 ∧ p2 ∧ · · ·pn holds. For example, instead of a structure
representing the functioning of a bull market, we could have relationships where causes
are of the form c∧ b, where c is any state formula, and b denotes a bull market.

146



6.2 from types to tokens

of their significance combined with their probability of token occurrence.

Thus we again do not partition our possible explanations into causes and

non-causes, but rather quantitatively assess their significance, with those

having the highest values of the measure being likelier explanations for

the token case.

In section 6.2.2, taking inspiration from Sober’s work, we will define a

measure (called support) of the significance of a token-level cause for a

particular type-level instance. Since we rarely have complete knowledge

of a scenario (in the case of diagnosis, we cannot do all medical tests and

patient histories contain many omissions) we allow for the possibility

that we may only have evidence pointing towards the cause’s occurrence.

Thus, this support weights a measure of the type-level significance by

the probability of the relationship having occurred in the token-case,

given the observations. In Chapter 4, we introduced a new measure for

type-level significance (called εavg), which is the average difference in

probability a cause makes to its effect given, pairwise, all other prima

facie causes of the effect. In the case where we know the truth value for

all propositions (and thus whether or not a particular cause occurred

in such a way that it could have caused the effect), the support for a

token-level hypothesis that actually occurs will be exactly equal to the

associated εavg(c, e).

In section 6.2.3, we discuss the computation of the probability of a

cause in detail. There we may use either a structure (a probabilistic

Kripke structure as described earlier) or the original data used for the

type-level inference along with the token-level observations to find the

probability of any cause having occurred, given the observations. Note

that the probabilities do not directly relate to Eells’s probability trajecto-
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ries (discussed earlier in this chapter and in Chapter 2). While we are

determining probabilities, and in theory we could calculate the prob-

ability that a causal relationship is satisfied at each time instant given

the observations up until that time, these would not produce the same

results as Eells’s analysis, since the probabilities would still be based on

the type-level distributions.4

Before we can assign support to causes, we must first determine which

hypotheses should be examined. Since there can be a number of sig-

nificant causes and multitudes of insignificant ones, we need a way of

systematically exploring these that allows for differences between the type

and token level, while remaining computationally feasible. In section 6.2.1

we recognize that since the measure of support defined will be larger for

actually occurring genuine and just so causes than for insignificant causes,

we can begin by testing which of these occurred in the token case. If none

occurred or we cannot determine their truth value, then we can calculate

the probabilities for these significant type-level causes token-occurring

and test whether any insignificant type-level causes token-occurred. In

the case of diagnosis, this would mean first testing which significant

causes of a patient’s symptoms occurred. Then, if none are satisfied by

the patient’s history, we may examine less likely relationships. Finally, in

section 6.2.4, we bring all of these pieces together, and discuss the proce-

dure for taking type-level relationships and a token-level observation and

assigning support to the potential causes.

4 For example, Eells’s discusses the case of a squirrel kicking a golfball and raising the
probability of it going into the hole based on the exact way it was kicked. We cannot
account for the individual squirrel kicking the ball in a way that was different from
squirrels in general.
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6.2.1 What can be a token cause?

We start with the question of selecting the hypotheses to examine further.

First, we note that an insignificant type-level cause can be a token-level

cause. In fact, a token-level cause does not have to be even a prima facie

type-level cause. Think of the case of seatbelts and automobile deaths.

While in general seat belts help prevent deaths from automobile accidents,

there are cases (though rare) where seat belts in fact cause death (for

example, via chest or neck injury). We want to be able to consider such

cases, and not immediately rule out factors that are not causes at the type

level.

At this point it seems like we may have to enumerate every conceivable

potential cause of the effect, an inefficient and possibly hopeless pursuit.

However, let us recall that we are calculating the support of token causal

claims with the presumption that we are interested in those with high

levels of support. If two possible token causes took place on a particular

occasion and one is a type-level genuine cause while the other is a type-

level insignificant cause, the more likely explanation for the effect is that

it was token caused by the type-level genuine cause. That is, if we have a

number of token causal hypotheses, those with the highest support will

be those with the highest value for εavg – our just so or genuine causes.

Thus, if we know that a just so cause of the effect in question took place,

we do not need to examine any insignificant or non-prima facie causes

of the effect, as the only other causes that may have higher significance

for the effect are other just so or genuine ones. If none of the just so
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or genuine causes occurred, then at that point we would go down the

hierarchy of all possible explanations.

We will illustrate this with the following scenario. A student, Alice,

achieved a perfect score on her exam. Alice says that this was because

she remembered to wear her lucky sweater. Bob disagrees and told Chris

that Alice must have studied a lot. If Alice then confirms that she did

spend a lot of time studying, what should Chris believe? We may safely

assume that studying is a genuine cause for success on an exam, and that

any role played by sweaters is negligible. If we put aside any individual

prior beliefs Chris might have about the impact of sweaters and luck

on exam success, then he would not continue to ask about increasingly

unlikely factors once he knows that Alice has studied for the exam (i.e. a

type-level genuine cause has token occurred). However, if Alice said that

she had not studied, then Chris may be more willing to accept the sweater

hypothesis. In a slightly trickier case, Alice might have said that she did

well because she had a cup of coffee before the exam. It is possible that in

general coffee has a minor impact on studying, but that for Alice, it helps

her concentrate and enables her to perform better on her exams (or might

have some placebo effect, since she believes it will work). However if we

do not have type-level information about Alice’s past history and what

affects her grades, we could only assess the situation using our general

type-level relationships. We cannot account for varying information or

beliefs between individuals in a system. One could potentially extend this

approach to include prior beliefs, using these to weight the support of a

hypothesis for each individual. However, it is unclear whether support

should vary between individuals. Certainly it would not change the fact

150



6.2 from types to tokens

of what actually caused the effect, but could be important in cases where

type-level information is not all public and scattered across individuals.

While an insignificant cause can be a token-level cause, we begin by

assessing the just so and genuine causes. We are considering the most

plausible hypotheses first, and may miss atypical cases where there is an

unusual explanation for the effect and both it and a genuine cause token-

occur. However, if these more plausible causes are found not to have

caused the effect, then we will go back to the set of all possible causes,

using the facts we have about the situation to narrow these to a smaller

set of those that are satisfied by the data, and then assess the support

for each of these. In this way we can use token events to find causal

relationships we may have missed. If there are a number of token-level

instances where the only possible cause is one we previously deemed

insignificant, then we must reevaluate this assertion.

6.2.2 Support of a causal hypothesis

We now turn our attention to reformulating Sober’s connecting principle

for our purposes. Recall that we have type-level relationships of the form:

c;
>r,6s
>p e, (6.2)

where c and e are PCTL state formulas, 1 6 r 6 s 6∞, r 6= ∞, and p is a

probability. Unlike in Sober’s examples, we will not always know if c is

true, and may only have evidence pointing toward this. For example, e

could be related to a particular illness, and we might have symptoms and
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a medical history that make c seem likely, but we will not know for sure

whether c is true or false. Thus, we cannot simply use the strength of the

type-level relationships, but rather must weight these by the probability

that they token-occurred.

Our notation for token cases will be as follows. First, a token case

(also referred to as an event) is defined by a sequence of times and

propositions true at those times. Thus when we refer to the effect having

“token-occurred” we mean that the PCTL state formula that represents

the effect (e) is satisfied at some actual time (t2), and represent this by

et2
. Then, our token-level causal hypothesis will be that c (where there is

a type-level relationship between c and e as described in formula (6.2))

at a time t1, where t2 − s 6 t1 6 t2 − r, caused et2
. We will write this

hypothesis as:

ct1
; et2

. (6.3)

This is not a PCTL leads-to formula, but rather denotes that c at time t1

(with associated constraints on t1) “led-to” e at time t2.

Thus the support that we aim to compute is S(ct1
; et2

), which we

will define as:

S(ct1
; et2

) = S(ct1
; et2

|ct1
, et2

)× P(ct1
, et2

). (6.4)

That is, we are computing support for the hypothesis that ct1
, where

t1 ∈ [t2 − s, t2 − r], token-caused et2
. This is equal to the support for

this hypothesis given the evidence that c token-occurred at t1 and e

token-occurred at t2 (meaning that times t1 and t2 satisfy these logical
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formulas), multiplied by the probability of this evidence (which is simply

the probability that c and e token-occurred at these times). In the case

where we know that they have token-occurred (by determining that the

formulas have been satisfied), then this reduces to the case outlined by

Sober [119], where the probability of the evidence was always assumed

to be one.

Let us look in detail at the components of equation (6.4). First, we

define that:

S(ct1
; et2

|ct1
, et2

) = εavg(c, e), (6.5)

meaning that the support for the token-level hypothesis given the evi-

dence of the token-occurrence of c and e in such as way as to satisfy the

corresponding type-level relationship, is exactly the strength of the type-

level causal relationship, which we previously computed to be εavg(c, e).

Recall that with X being the set of prima facie causes of e, this is defined

as:

εavg(c, e) =

∑
x∈X\c

εx(c, e)

|X \ c|
, (6.6)

where:

εx(c, e) = P(e|c∧ x) − P(e|¬c∧ x). (6.7)

Note that there are still time windows associated with the relationships This measure is

introduced in

Chapter 4, with

more detail on

its computation

given in

Chapter 5.2.1.

between c and e and between x and e, and that when calculating the
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probabilities, these windows constrain the instances of each formula that

will be considered.

Then, to determine P(ct1
, et2

), we first note that we are calculating this

probability relative to our observations (a sequence of times with the

propositions true at each time, denoted by V).5 Thus, if both ct1
and et2

are satisfied by this sequence of observations, their probability will be one

(as they actually occurred). Since we assume that we always know that

et2
is true (since we are attempting to explain it), the relevant probability

is that of ct1
, which is P(ct1

|V).6 We now redefine support.

Definition 6.2.1 (Support for a token-level cause). Assume that: there is

a type-level relationship between c and e of the form c;
>r,6s
>p e; e token-

occurred at time t2; the token-level observations are V ; the probability,

given the data, that c token-occurred at time t1 where t1 ∈ [t2 − s, t2 − r],

is P(c|V); and εavg(c, e) is the strength of the type-level relationship

between c and e. Then the support for the hypothesis that ct1
(where this

denotes only c’s occurrence in the relevant time range) token-caused et2

(where this hypothesis is written ct1
; et2

) is:

S(ct1
; et2

) = εavg(c, e)× P(ct1
|V). (6.8)

5 Note that this set of observations may be quite large, with many facts being irrelevant.
For example, when explaining a death, the day of the week on which the person died
is unlikely to have any bearing on the cause of death. Yet, there may be causes that
while insignificant, do have some small impact. Note though that if a number of these
insignificant causes together have a meaningful impact on the probability of c, then their
conjunction will be a genuine or just so cause, so we only need to concern ourselves with
the case where the cause makes a very small difference. Since together these insignificant
causes must still be insignificant, a likely heuristic approach is to limit the knowledge
used to events that are part of causes and effects of c.

6 We cannot yet disentangle the probability of something actually occurring from the
probability that it is known that it actually occurred. If we know that something occurred,
we say its probability is one. However, even if it did actually occur, if we do not know
this fact, its probability will not necessarily be one in our system.
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We assume that if the type-level relationship is related to a particular

population, then e and c must token-occur in that same population.

However, given the ambiguity of the definition of a population, it is

likelier that one will define the properties related to the population by

additional propositions as part of the cause c.

6.2.3 Calculating the probability of a cause token-occurring

Assume that there is a type-level causal relationship between some c

and some e (which are each logical state formulas) such that c causes

e in between r and s time units, the effect occurs at time t, our token-

level observations are V and we are now attempting to calculate the

probability of c occurring at time t ′, where t ′ ∈ [t− s, t− r]. To calculate

the probability of a particular cause (c) token-occurring, we could go

back to our original data, using frequencies (calculating the frequency

of sequences where the evidence holds). However if we have or have

inferred the structure of the system, we may use that as follows.7 First

note that we are computing the posterior probability of c having occurred

at a time where it could have caused the effect (i.e. the logical formula c

being satisfied by a particular time point). Our evidence is a sequence of

observations, comprised of a set of time-ordered facts about the scenario

(V). It will be easier to later represent the probability of ¬ct ′ than ct ′ and

thus we are now interested in:

P(ct ′ |V) = 1 − P(¬ct ′ |V). (6.9)

7 The same procedure may be used with a set of time series data in the same way we tested
prima facie causality in Chapter 5.
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Since

P(¬ct ′ |V) =
P(¬ct ′ ∧V)

P(V)
, (6.10)

we see that:

P(ct ′ |V) = 1 −
P(¬ct ′ ∧V)

P(V)
. (6.11)

Then, note that the facts we have about the current scenario will be time-

indexed such that we have facts at times t0, t1 and so on (where these

are ordered observation times). These facts constrain the set of states our

system has occupied (assuming our model of the system is correct, or our

data is representative of the system). If q is true at t = 3 then at t3 the

system must be in a state labeled with q. Let us now construct the set F

where each fi ∈ F is the conjunction of facts that are known to be true at

time i, for i ∈ [0..t], where time zero is the beginning of the token event

and the effect e occurred at time t. When for a particular i there are no

known facts of that time then fi = true. Otherwise, a particular fi might

be something like (asbestos∧ smoking).

Remember that there is relationship such as:

c;>r,6s
p e, (6.12)

between c and e (and c and e are themselves logical state formulas)

where we assume s > r, e is true at time t, and that we are computing

P(ct ′), where t ′ ∈ [t− s, t− r]. Then, when computing the numerator

of equation (6.11) we add to our set F: {¬c ∈ fi : t− s 6 i 6 t− r}. For

both numerator and denominator, we proceed in the same manner, with
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the only difference being the addition of ¬c to the fis of the numerator.

The negated c means that c did not occur in such a way as to satisfy

the formula representing the relationship between c and e. Thus we are

calculating the probability of c not having happened during that time

window, given e’s occurrence and all other known facts about the case.

Claim. With K = 〈S, si,L,T〉 being the structure representing the system, and

where states satisfying each fj ∈ F have been labeled as such and all states are

labeled with true, then for 0 6 t <∞, the probability (denoted µtm(s0)) of the

set of paths beginning in s0 where each sj |=K fj, and the paths are of length t,

is given by the following recurrence, where we begin with j = t and s = s0:

P(j, s) =



1, if j = 0 and ft−j ∈ labels(s);

0, if ft−j /∈ labels(s);∑
s ′∈S T(s, s

′)× P(j− 1, s ′), otherwise.

(6.13)

Proof. For the set of states s and integer time t, take Π(t, s0) to be the

sequences of states s0 → s1 → . . .→ st, beginning in s0 and where, for all

j from 0 to t, sj |=K fj. Then, by definition

µtm(s0) =
∑

s0→s1···→st∈Π(t,s0)

T(s0, s1)× · · · × T(st−1, st). (6.14)

We will show by induction that the recurrence of (6.13) satisfies this

equation.
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Base case (j = 0): According to the recurrence in (6.13), P(0, s0) = 1 if

s0 |=K f0. By definition, the µm-measure of a path of one state is 1,

so µ0

m(s0) = P(0, s0) = 1. If s0 2K f0 then P(0, s0) = 0. Note that the

formula for µm above only considers paths such that each si |=K fi.

Thus, since s0 2K f0, by definition s0 /∈ Π(0, s). Adding zero leaves

both µm and P unchanged and thus they are still equivalent.

Inductive step: If we assume P(j− 1, s1) = µ
j−1

m (s1) then we must show

P(j, s0) = µ
j
m(s0).

By definition:

µjm(s0) =
∑

s0→···→sj∈Π(j,s0)

T(s0, s1)× · · · × T(sj−1, sj). (6.15)

This can be rewritten:

µjm(s0) =
∑
s1

T(s0, s1)×
∑

s1→···→sj∈Π(j−1,si)

T(s1, s2)×· · ·×T(sj−1, sj).

(6.16)

However, we assumed P(j− 1, s1) = µ
j−1

m (s1), and since by defini-

tion:

µj−1

m (s1) =
∑

s1→···→sj∈Π(j−1,si)

T(s1, s2)× · · · × T(sj−1, sj), (6.17)

we find:

µjm(s0) =
∑
s1

T(s0, s1)× P(j− 1, s1). (6.18)
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When s0 |=K f0, this is equal to the third item of our recurrence:

∑
s ′∈S

T(s, s ′)× P(j− 1, s ′).

When s0 2K f0, both µm and P are zero.

Note that our times begin at t = 0, upon entry to the start state of

the system. Thus, we are computing the probability of the set of paths

from that start state such that each state si satisfies the corresponding

fi. This means that with V being our time-indexed evidence, including

¬c at the appropriate times, the recurrence above yields the probability

P(¬c∧V) in the case where t 6= ∞. However, since we know that e has

occurred at some actual time t, the path from si must be of length t and

is thus finite. For the denominator of equation (6.11), P(V), we repeat the

same procedure, with F modified such that it does not include ¬c as it

did for the numerator. Thus, following this procedure we have calculated

P(ct ′ |V) for a particular potential cause c of effect e, with evidence V.

Note that if observation does not begin at the start state of the system,

the procedure may be easily used with a trace or set of traces, as is done

in the case of inferring type-level relationships. It may be helpful at this

point to consider an example. Turn to Appendix E.1 to go through the

calculations for a particular cause and effect.
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6.2.4 Procedure for assigning support to causes

Recall that we have sets of type-level genuine, just so, and insignificant

causes of the token-effect in question. In order to determine the support

for each (as defined in section 6.2.2), we must first ascertain – using

the facts about the situation – which of these occurred. When we do

not have enough information to determine if one has occurred, we use

the above procedure to determine its probability using our observed

evidence. Recall that the support for each hypothesis is the previously

computed εavg, weighted by the probability of the cause occurring given

the observations. That is, the largest possible value of the support for a

token hypothesis is its associated εavg (since the probability can be at

most one). If any genuine or just so type-level causes have occurred, this

means that they will have the highest values of this support. As our goal

is to find the likeliest causes (those with the most support) we can begin

by taking these sets and testing whether any of their members are true

on the particular occasion.

That is, with C being the set of just so and genuine causes of the effect,

e, and F being the set of time indexed propositions, we test whether each

c ∈ C is true on this occasion given the facts. Let us recall the types of

formulas and discuss their truth values:

1. Each atomic proposition is a state formula.

2. If g and h are state formulas, so are ¬g, g∧ h, g∨ h, and g→ h.

An atomic proposition, g, is true at time t if it actually occurred at t.

Conversely, ¬g is true at t if g is not true at t. Then, g∧ h is true at t if
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both g and h are true at t; g∨ h is true at t if at least one of g or h is true

at t and g→ h is true at t if at least one of ¬g or h is true at t.

3. If f and g are state formulas, and 0 6 r 6 s 6 ∞ with r 6= ∞,

fU>r,6sg and fU>r,6sg are path formulas.

The path formula fU>r,6sg is true for a sequence of times, beginning at

time t if there exists an r 6 i 6 s such that at time t+ i the state formula

g is true and ∀j : 0 6 j < i the state formula f is true at t+ j. The path

formula fU>r,6sg is true for a sequence of times beginning at time t if

either fU>r,6sg is true beginning at t or ∀j : 0 6 j 6 s, f is true at t+ j.

4. If f and g are state formulas, then f;>r,6s g, where 0 6 r 6 s 6∞
and r 6= ∞ is a path formula.

For consistency with the type-level case, we treat leads-to formulas sepa-

rately. The formula f;>r,6s g is true for a sequence of times beginning

at time t if f is true at t and there exists an i, where r 6 i 6 s, such that g

is true at t+ i.

Finally,

5. If f is a path formula and 0 6 p 6 1, [f]>p and [f]>p are state

formulas.

In the token case, these state formulas are true at time t if there is a

sequence of times, beginning at t that satisfy the path formula f.

Following this formulation, we may identify if any c ∈ C is true on the

occasion in question, in which case its support is simply the associated

εavg value. However, if this set is empty – either none occurred or we

do not have enough information to determine whether any occurred –
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we must then calculate their probabilities, as described in the previous

section. Note that we cannot assume that if the probability of a genuine

or just so cause is non-zero, then the support for the corresponding

token hypothesis will be greater than for any insignificant causes. We

did not test whether any insignificant causes actually occurred, so it

is possible that for a genuine cause, its probability is low enough that

despite its higher value for εavg, an actually occurring (probability = 1)

insignificant cause has a larger value for the support. In the case where

there are many insignificant causes, testing whether each occurred may

be computationally intensive. It is possible to define a threshold such that

if the support for a cause is below it, insignificant and other causes are

examined.

In any case, we begin with the probabilities, and thus support, for all

genuine and just so causes. When these values are very low or zero, we

must examine the other potential explanations: our previously discarded

insignificant causes, and perhaps those that are not even prima facie

causes. Further, it is possible that a negative cause (one that normally

prevents the effect) actually was the token cause. After examining all

of these, the final result is a set of possible explanations ranked by

their support, with those having the highest values being the preferred

explanations for the effect.
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6.3 whodunit? (examples of token causality)

6.3.1 The return of Bob and Susie

Let us now return to a simple example to see how this approach works

out in practice. We will again take the example of Bob and Susie, who

are each armed with rocks that they may throw at a glass bottle. Now

let us say we have already found one type level genuine cause (with all

other causes being insignificant) of such a bottle breaking in this system.

This relationship is represented by:

T ;
>1,62

>p1

G. (6.19)

That is, throwing (T ) a rock from a certain distance causes the glass to

break (G) in greater than or equal to one time unit, but less than or equal

to two time units, with at least probability p1. Since we have found this

to be a type-level cause, we have the associated value of εavg for the

relationship: εavg(T ,G).

Now, on this particular occasion we aim to analyze, we will start with

the following facts:

1. Bob threw his rock at time 3;

2. Susie threw her rock at time 4;

3. The glass broke at time 4;

4. The only genuine cause of a broken glass is that in formula (6.19).
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As a timeline:

0 3

TB

4

TS,G

For each proposition (B,S,G), we have marked its time of occurrence

(with TB denoting T being true due to Bob’s throw and TS denoting T

being true due to Susie’s throw). Our type level relationship says that if

T is true at some time t then it can lead to G being true at time t+ 1 or

t+ 2. The facts we begin with are that T is true at t = 3 and at t = 4. We

first test whether our type level relations token-occurred. For TB to satisfy

the causal formula of (6.19), G would need to be true at t = 4 or t = 5. G

is true at t = 4 and thus TB can be considered as a possible token-cause

of G. Now, for TS to be a token cause of G, G would need to be true at

t = 5 or t = 6. However, G is true at t = 4, which means this causal

relationship did not occur, and TS is not a possible token cause (since it

could not lead to G at the time at which G actually occurred). Thus in

this case our only potential token cause is TB, and the support for this

token cause will be εavg(T ,G). Note that while in our system TB must

have caused G, the support for the hypothesis that TB token-caused G is

not one. If T had an εavg of one, meaning that it is the only type-level

cause of the effect and no other factors make a bit of difference, then the

support would be one.

6.3.2 The case of Ronald Opus

Take the following example, a paraphrased and condensed version of one

presented by Don Harper Mills [126]:
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A medical examiner viewed the body of Ronald Opus and

determined that he died due to a gunshot wound to the head.

It was found that he had jumped from a high building, intend-

ing to commit suicide, as was revealed in the note he had left.

However, a few feet into his jump he was shot and instantly

killed. Further, there was a net erected for window washers

just two floors down from the roof, and it is assumed that this

net would have prevented the completion of the suicide. It

was also assumed that neither the jumper nor the shooter was

aware of the net. Accordingly, the medical examiner ruled this

a homicide, as Ronald would not have died had he not been

shot.

It turned out that directly across the street from where Ronald

was shot, an old couple had been arguing. The husband had

threatened his wife with a shotgun, but due to his anger he

could not hold the gun straight. Thus when he pulled the

trigger, he shot the jumper across the street. The man and

his wife insisted that they did not know that the gun was

loaded and that he was merely threatening the woman, as

he frequently did, with an unloaded shotgun. Since he had

no intention of killing anyone, it seemed that the shooting of

the jumper was an accident (as the gun had been accidentally

loaded).

However, there was a witness who had seen the couple’s son

load the shotgun a few weeks prior. Their son, upset that

his mother had cut him off financially, and knowing that his
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father threatens his mother with an unloaded gun when he is

upset, had loaded the gun with the expectation that his father

would shoot her. Thus it now seems the son is responsible for

Ronald’s death.

Upon further investigation, it was revealed that their son, the

same Ronald Opus, had become quite distraught about his

situation, and his failure to get his mother murdered. In fact

he was so upset that he jumped off the building across the

street, but was killed on his way down by a shotgun blast

through the window. The case was ruled a suicide.

Our goal is to use the facts about the case to determine whether the

death should be ruled a murder, accident, or suicide. Unlike our previous

examples, where the answers were intuitively obvious, the result is not

immediately clear when we attempt to reason about this case. It is even

more difficult to try to understand it using an automated method, where

there is no room for intuition and background knowledge. This brings us

to our first obstacle: throughout the example there is reference to what

the father knew or what Ronald knew. However, we have not given any

way to denote what a person knew, only the facts of the case. That is, we

allow for the possibility that someone may commit a murder by shooting

a person with a gun – even if they do not know that the gun they have

shot is loaded. In most cases, we would reason about such a scenario

as an accident.8 Further, we have no method for representing intentions,

8 Interestingly, this is not always true in legal cases. For example, if in the course of
committing a crime, one has a gun, the punishment automatically increases. If the gun is
wielded or fired, it increases even more. The Supreme Court recently ruled that even in
cases where the gun is fired accidentally, and is not known by the firer to be loaded, the
increased automatic punishment still applies [20].
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outside of adding these as propositions in our causal formulas. Despite

the limitations of our method, we will attempt to dissect this example

and make a ruling in order to show that we can make some advances

even in such difficult cases.

Let us begin by summarizing what is known. At some time, a few

weeks before the man and his wife had the fatal argument, Ronald was

seen loading his father’s gun. During the course of the argument, a

suicidal Ronald jumped off a building across the street. At the same time,

his father pulled the trigger, firing the fatal shot through an open window.

As a timeline this is:

load gun argue jump shoot dead

Note that we have taken these facts about the case for granted. We have

not examined who the witness was who saw Ronald load the gun, nor

the possible motives of this person. It is possible that this witness was

actually the husband or wife or a third party who wanted to protect the

husband. We have accepted that the husband was once again threatening

his wife, with no intention of killing her on this particular occasion,

despite his pulling the trigger. Further, we have believed that both the

husband and wife are truthful about not knowing whether the gun was

loaded – and not knowing that Ronald was outside the window. We

have also assumed that neither Ronald nor his father knew about the net

outside. We will accept these facts about the case in order to somewhat

simplify our difficult task, but the reader should keep in mind what we

have assumed and how the scenario would change if these assumptions

did not hold. We will continue to omit time indices, as the case is already
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quite complex, but remember that the events and causal relationships

have associated times. We assume that the occurrences fit within the

known time windows for any relevant type-level relationships.

Recall that when looking at the support for a hypothesis, we compute

the support for c token causing e given that c and e token-occurred in

population P, where there is a type-level relation between c and e in P.

Our first task is to identify the type-level causes of death, whose support

we will then compute. However, before we can do that we must identify

the relevant populations. If we assume that the mother’s actions (being

the subject of threats) did not contribute to her son’s death, we then have

to consider populations related to the remaining two people. We will

assume that we have access to precisely the populations and type-level

relationships that we desire. Ronald’s father frequently threatens his

wife with an unloaded gun, and is part of a population of people who

frequently wield unloaded guns and for whom shooting a gun has a very

low probability of death. In fact, in that population, shooting is not a

type level (positive) cause of death, and there are possibly no instances of

a gun being loaded within it (population F).

Ronald, on the other hand, is part of a population of people who are

homicidal (population H) since he was plotting the murder of his mother,

and later suicidal as well (population SH) as he was distressed about the

failure of his plans. In such populations, one would likely think that

shooting a gun is a type level cause of death. Unfortunately, someone in
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these populations did not shoot the gun. Thus, if our known type-level

causes are:

(jump∧no net) ; death (in S), and (6.20)

loaded gunU(shoot∧ loaded gun) ; death (in SH), (6.21)

then, we still have no type-level causes that actually occurred. What we

can do then is assess the strength of other, possibly insignificant, causal

relationships: loading a gun in population H (perhaps loading a gun that

someone else shot, or a gun that is later shot), jumping from a building

with a net in population SH, and shooting a gun in population F. That is,

load gun; death (in H), (6.22)

jump ∧net; death (in SH), and (6.23)

shoot; death (in F). (6.24)

Now, as before, we begin by testing which of these occurred on the

occasion in question. Then, we will use the associated ε’s to determine

the support for each. First, all three relationships are satisfied by the

known facts. Next, for the ε’s, it seems that sensible that jumping with

a net rarely results in death and that the support for the relationship in

(6.22) is likely quite high, and certainly much higher than the ε associated

with (6.24). While the details may change based on the length of time

between the loading and shooting (accounting for the fact that a gun may

become unloaded by someone other than the initial loader), the ranking

of these possible causes should persist, with loading a gun being more
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significant than shooting a presumably unloaded gun and jumping out a

window onto a net.

The intuition behind using two populations is that each man had

different intentions and different sets of knowledge, and thus the same

action by both would correspond to different rules and probabilities.

Ronald knew that his father would hold and possibly pretend to shoot

the gun, and loaded it with the intent to kill his mother. That is, Ronald

had full knowledge of the scenario surrounding the gun, which is taken

into account somewhat by noting that he is part of population H. His

father assumed that the gun was in the same state where he left it,

and would behave as it had in the past, namely, that it would not be

loaded when he pulled the trigger. Reasoning about the father as part of

population F, as he continued to act as part of F, captures this in a crude

way.

Since Ronald loading has the highest level of support, it is the likeliest

token cause of his death. However, the judgement on whether this

corresponds to a suicide, homicide or accident goes beyond the reasoning

we can do here. In order to do that we would need rather convoluted

relationships such as “shooting a loaded gun with homicidal intensions

leads to death by homicide.”

6.4 difficult cases

We will now look at a few classic scenarios that have been difficult to

reason about in the token case. Since the examples are generally abstract

and we are primarily looking at the reasoning behind them, details such
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as the time subscripts of events have been omitted in some cases where

the problem is clear without them.

6.4.1 Overdetermination

Symmetric case

We begin with symmetric overdetermination, where two known type-level

causes of an effect both occur in the token case such that either could

have caused the effect. Let us discuss Bob and Susie one last time. Recall

that we have two people, each armed with a rock, which they may throw

at a glass bottle. Let us say that Bob is standing a little closer to the bottle

than Susie is. So, Susie aims and throws (St) her rock a little earlier than

Bob does (Bt), but their rocks hit the glass simultaneously, breaking (G)

it shortly after impact. That scenario may correspond to the following

type-level relationships:

BT ;
>1,62

>p1

G, and (6.25)

ST ;
>3,64

>p2

G, (6.26)

where people of type Bob, who stand closer to the bottle in this game,

are represented by B and the relationship in (6.25) and those of type

Susie, who stand further from the bottle, are represented by S and the

relationship in (6.26). The facts are:

1. Susie threw her rock at t = 1;

2. Bob threw his rock at t = 3;
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3. The glass broke at t = 4; and

4. The only significant causes of a broken glass are those in formu-

las (6.25) and (6.26).

We analyze this scenario as follows. First, note that both BT and ST

occurred in such a way as to satisfy the formulas in (6.25) and (6.26). For

BT at time 3 to cause G, G would have to occur between time 4 and 5,

which it did, and for ST at time 1 to cause G, it would have to occur

between times 4 and 6, which is also true. Thus we know not only that

the probability of each potential cause given the evidence is one, but

also that each occurred at such a time as to fulfill the corresponding

token-level relationships. Then the support for BT and ST causing G will

be the computed εavg’s. If these are equal, the support for either as the

token-cause of the glass breaking will be the same. However, if Susie’s

aim is better, her value of εavg will be larger and thus the support for

her breaking the bottle higher. Note that in that case we would not say

that Bob’s throw did not cause the glass to break, but only that there is

more support (proportional to the difference in probability) for ST than

BT causing G. Note that in practice, if instead of children throwing rocks

we had the possible culprits for a patient’s heart failure or carriers of an

infectious illness, it is desirable to be able to identify multiple potential

causes, with their associated weights.

Asymmetric case

In the previous case, either rock being thrown could have been the cause

of the bottle breaking. Now we perturb this scenario slightly to make it

asymmetrical, and an example of preemption. In this case, Bob throws
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his rock a bit earlier than Susie throws hers, so his rock hits and breaks

the glass before hers does. Now the bottle is already broken when Susie’s

rock hits it. We should deem Bob’s throw the cause of the glass breaking.

If ST occurs at such a time that it could have caused G (according to the

inferred rules), then we have no way to account for the fact that the bottle

is already broken – we cannot augment the type-level relationships with

our observations to give further constraints. However, since there is a

small window of time in which a rock hitting a bottle can cause the bottle

to break, if we can model the events more finely using variables such as

BH and SH to denote whether the corresponding rocks have hit the bottle,

then we can correctly handle this case. If in practice we find incorrect

diagnoses using our inferred type-level causes, we can take this as an

indication that these are too coarsely grained to capture the details of

the system, and we should go back and look for relationships with more

detail and at a finer timescale. This has traditionally been a difficult case

for methods that look for the earliest cause that accounts for the effect. In

those cases, if Susie throws earlier than Bob, but is standing further away,

so that her rock still hits after the glass is broken, we incorrectly find that

since she threw the first rock, she caused the bottle to break.

It is important to note that the difficulties in our case are due to not

modeling the events finely enough and not being able to account for

observations that are outside the causal formulas. Had we not observed

the rocks hitting the bottle, the idea that either throw could have caused

the glass to break would be acceptable. The contradiction is that we cannot

augment the type-level relationships with our observations of further

constraints. We could look for more specific type-level relationships,
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using the rock hitting the bottle as an event, or specifying that the rock

hits an unbroken bottle.

6.4.2 The hard way

Another set of examples all have the same structure, but highlight various

features of the problem as well as the differing intuitions one may have in

each case. In these types of scenarios a cause of the effect occurs, followed

by an event that usually makes the effect less likely, but which in this

particular case seems to bring about the effect. Thus the effect occurred,

but happened “the hard way” – with most odds stacked against it. While

there are a number of examples of this type, we will look at the three

most widely used, and introduce one of our own.

Sherlock Holmes and the Boulder

We begin with an example by Good [43], with some modifications by

Hitchcock [55]. Sherlock Holmes takes a walk below a cliff, where his

nemesis, Moriarty, is waiting for him. Moriarty has set a boulder on the

edge of the cliff so that when he sees Holmes walk past, he will push

the boulder off the edge, giving him a 90% chance of killing Holmes.

Holmes’s loyal companion Watson, however, sees what Moriarty is plot-

ting and decides to push the boulder out of Moriarty’s hands. Just as

Holmes walks below them and Moriarty is about to push the boulder,

Watson runs over and pushes it first, trying to aim it in another direction.

This random push, since Watson is unable to see Holmes and be sure that

the boulder is aimed away from him, has a 10% chance of killing Holmes.
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In an unfortunate turn of events, the boulder falls directly on Holmes,

killing him.

The type level relationships are that a boulder pushed by an enemy (E)

is a type-level cause of death by boulder (D), with probability 0.9:

E;>0.9 D,

while a boulder pushed by a friend (F) is likely not a type-level cause of

death, but this depends on the probability of death by boulder. That is,

F;>0.1 D,

but we do not know P(D), so we are not sure whether the probability

of death is raised. Let us say the probability of death by boulder (this

includes boulders pushed as well as those falling from above) is lower

than 0.1. Then, F is a prima facie cause ofD. It may still be an insignificant

cause of D but the value of εavg is quite likely to be positive. Now, one

type-level cause of death has occurred: F. We find that the support for F

as a token cause of death is positive, but probably small (since F actually

occurred, the support is precisely the earlier computed ε). Nevertheless,

no other causes occurred, so we are left with F as the only possibility.

However, as Hitchcock [55] notes, we are comparing the probability of

death when pushed by Watson to the probability of death when not

pushed at all, not to the probability when the boulder is pushed by

Moriarty. This is why, while we may not think Moriarty caused Holmes’s

death, we find that relative to no push, he raised the probability of death.

In the traditional counterfactual approaches, we would have reasoned
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that if Watson had not pushed the boulder, Moriarty would have, and

thus Watson did not cause the death since Holmes would have died

anyway. This seems plausible, but it requires us to accept that Moriarty’s

push was inevitable.

In the other case, P(D) is somewhere in between, perhaps 0.5 (maybe

there are frequently falling boulders). Now, we have one type-level cause

of death, but it did not actually occur, since Moriarty was prevented

from pushing the boulder. Thus, we must examine other possible causes,

testing relationships comprised of the facts known about the scenario. The

primary possibility is that F led to D. However, F lowers the probability

of death (it is a negative cause of death by boulder). Thus, the computed

εavg(F,D) will be negative, and the support for a boulder pushed by

Watson as the token-cause of Holmes’s death is negative. What does

it mean for the actual cause to have negative support? Remember, we

are implicitly, through the εavg, comparing one possible cause to others.

In this case we have found that at the type level, F is a negative cause

of death. When a negative cause is the token-cause of death, we could

potentially give it the interpretation of “despite”, as a negative cause

usually has the opposite outcome. In the case where the actual cause

is only insignificant, it is not clear that we can use the same despite

interpretation, but perhaps just that the effect was unlikely. Now, we

could go further and say that witnessing a foe attempting to push a

boulder is a cause of a friend rushing in and pushing it instead. That

is, since it is known that pushes by foes are more deadly than pushes

by friends, a friend is likely to attempt to save the person by pushing

the boulder themselves. However, we do not automatically say that if

X caused Y and Y caused Z then X caused Z, so it would not change
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the cause of death in this case. We would only say that witnessing

Moriarty about to push the boulder caused Watson to push the boulder,

and Watson’s pushing the boulder caused Holmes’s death. Whether

Moriarty caused Holmes’s death by causing Watson to push the boulder

is a separate issue that is relevant primarily in cases of assigning blame,

but we will not discuss this here.

The plant and the defoliant

This example, due to Cartwright [10], has the same structure as the case

of Sherlock Holmes, but may lead to a different interpretation. Nancy

wants to get rid of some poison oak in her garden, so she sprays it with a

defoliant that will cause the plant to die with probability 0.9. However,

even after a few months, the plant is still alive. Let us say that the

probability of plant death in the absence of a defoliant is only 0.1. We

will shift our attention to survival, though, so this case better parallels

that of Holmes. Thus, spraying the plant with the defoliant (D) leads to

survival with probability 0.1, whereas the probability of survival if no

action is taken is 0.9. In the previous case, the probability of death from

Moriarty’s push was 0.1, whereas the probability of death if no action

was taken on Moriarty’s part was 0.9.

In the case of the defoliant, it does not make much sense to ask what

caused the survival, as the plant was alive both before and after the

spraying. When reasoning about death, the system (Holmes or the plant)

is in a different state after some action is taken, so we aim to determine

why the system has changed states. The fact that we do not usually ask

what caused a state to persist is likely responsible for our thought that

the spraying did not cause the survival, while we would agree that it
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can at least be argued that Watson caused Holmes’s death, regardless

of P(D).9 That said, we can in fact reason about the case as before and

compute the support of spraying with defoliant (D) as a token-cause of

survival (S). Note:

P(S|D) < P(S).

Thus D is not a prima facie cause of survival, but is in fact a negative

cause of survival. As in the case of Holmes, the computed εavg will be

negative and the support for D as a token cause of S will be negative.

We can again give this the interpretation of: the plant survived despite

the spraying of the defoliant (a type-level negative cause of survival),

which is consistent with one’s intuitions about the problem. Note that

this hypothesis is only tested due to our knowledge of the problem – it

is unlikely that we would wonder what caused survival and if we did,

there are likely genuine causes (sunlight, water, etc) which did occur and

thus we would not automatically examine an insignificant cause such as

the defoliant. Despite that, we are still able to test this hypothesis and

arrive at an answer that is consistent with intuition.

The golfer and the squirrel

We now look at a classic example, due to Rosen [110], with some modifi-

cations by Salmon [112] and Hitchcock [55].

9 Another way of explaining this is that the situation would correspond better to the
Holmes case if there was a 99% effective defoliant, thus using the weaker one relative
to the stronger version can be argued to have caused the survival of the plant [55].
Alternatively, this case can be understood in terms of capacities. While the push of a
boulder is capable of causing death, the spray of a defoliant does not seem to have the
needed capability to cause survival.
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Alvin, a slightly above average golfer, tries to make a birdie

on a particular hole. He hits the ball and it looks like he might

just make the shot. However, a mischievous squirrel comes

by and kicks the ball. Usually when such squirrels kick golf

balls they lower the probability of making birdies. However,

in this case the squirrel kicked the ball right toward the hole

and Alvin made the shot.

Now, the question is: what caused the birdie? The squirrel’s kick (K)

lowered the probability of a birdie (B) but it seems to have caused it.

Recalling the work of Eells, which we discussed in Chapter 2.3.3, we

could analyze this example using its probability trajectory. In that way,

we distinguish between the general properties of squirrels and golf balls

and how this particular squirrel affected the probability of this particular

golf ball going into the hole. However, it is unlikely that without extensive

background knowledge we could ever know the true probability trajectory

– that is, the probability of a birdie at each moment in time from Alvin’s

shot to the actually occurring birdie. So, we will proceed as discussed

above.

First, what are the relevant type-level causes of birdies? For the sake

of simplicity the times of cause and effect are omitted, but we assume

some known window of time after the ball is hit in which a birdie may

be made (i.e. hitting the ball on Tuesday cannot cause a birdie on Friday).
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We will assume that an above average golfer hitting the ball (A) raises the

probability of a birdie (B): 10

P(B|A) > P(B).

Thus, A; B, with some moderate probability. However, kicks by squir-

rels (K) lower the probability of birdies:

P(B|K) < P(B),

so K is not a prima facie cause of B and is likely a negative cause of B.

In this example, we have only one type-level positive cause of the birdie:

the golfer’s swing. So, we will find that this swing token-caused the

birdie since there are no other type-level causes of birdies. If we still

want to assess the significance of the squirrel for the birdie, we will find

as before that squirrels have negative significance for birdies, and the

birdie occurred despite the squirrel. Note that we cannot capture the

fact that this particular squirrel happened to kick this particular ball in

just such a way that we know it was actually responsible for the birdie.

Here we diverge from the results of Eells, who, using his probability

trajectories (showing the probability of the birdie became higher after the

kick and remained high until the actual birdie occurred) found that the

squirrel’s kick caused the birdie. Due to the probability trajectory Eells

can distinguish between the general properties of squirrels and golf balls

and how this particular squirrel affected the probability of this particular

golf ball going into the hole.

10 Note that if Alvin was a terrible golfer, the analysis would be unchanged, with the
exception that the hypothesis with the most support (Alvin or the squirrel causing the
birdie) could change depending on just how bad a golfer Alvin is.
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Since we do not know and cannot represent this change in probability

in our method, we will only find that the birdie occurred despite the

squirrel, not any contribution the squirrel made to the birdie. While this

result may be problematic, it is also important to consider how often

– and in what cases – we will actually know such a trajectory and get

results inconsistent with our knowledge of the situation. A possible real

world equivalent is: Alvin has a genetic mutation that gives him an above

average probability of developing lung cancer. Once he finds out about

this, he stops smoking in order to protect his lungs. Two years later, he

is diagnosed with lung cancer. In general, we would say that cessation

of smoking lowered Alvin’s probability of lung cancer. Thus, we would

say that his lung cancer was despite the fact that he stopped smoking.

However, later research shows that, oddly enough, people with Alvin’s

mutation are more likely to develop lung cancer once they stop smoking.

We can use this added information and find that stopping smoking was a

positive cause of developing lung cancer. Note that our first assessment

was correct as far as knowledge at the time, when we learned more about

the underlying type-level relationships, we were able to better explain

Alvin’s condition. In the case of the squirrel, perhaps this particular

squirrel was benevolent and attempting to aid the golfer. If we later

obtain this information, we could find that he was a token-cause of the

birdie.

A car accident and seatbelt use

We now return to our previous example of a car accident in which a

seatbelt causes death, which turns out to be another example of things

happening “the hard way.” On Monday morning Paul drove his car to
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work, wearing his seatbelt as he always does. Unfortunately, on this

particular drive he was in a bit of a rush and collided head on with an ice

cream truck. The collision resulted in injury to Paul’s carotid artery. He

later died, apparently due to this injury.

Let us make the example somewhat tricky by assuming we know only

of a general type-level relationship between seatbelts and death (that is,

not one involving carotid artery injury specifically). This relationship

accounts for the myriad ways (including by carotid artery injury) a seat

belt can cause death. However, since seatbelts generally prevent death,

the associated probability will be quite low. Let us further assume that

a seatbelt can only cause death in the context of a car accident. Then,

we have general relationships between death (D), car accidents (C) and

wearing a seat-belt (S):

P(D|C∧¬S) > P(D|C∧ S) > P(D), (6.27)

and a general relationship between car accidents and death:

P(D|C) > P(D). (6.28)

For ease we have omitted the time subscripts and assume the token

events are within the known type-level time frames. So, this is akin to the

probability of death within some window of time, versus the probability

of death within some window of time given that the person has been in a

car accident. While it may be that being in a car accident and not wearing

a seatbelt is a significant type-level cause of death, being in a car accident

and wearing a seatbelt results in a lower probability of death. However, it
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is still at least a prima facie cause of death. It seems unlikely that seatbelt

use plus a car accident should be a negative cause of death, so we will

ignore that possibility.

Given we have the relationship, C; D (let us say that this is all consid-

ered to be a single population, not separate populations of seatbelt users

and non-users or good drivers and bad drivers), which is a significant

type-level cause of death, we find that it occurred in the token case, it is

the only type-level genuine or just so cause that occurred (since C∧¬S

is false), and it has a value of support equal to the associated εavg. This

means that unless C∧ S is a significant type-level cause, we would not

automatically consider it as a possible explanation for the effect. Thus,

regardless of whether the specific injury was caused by the seatbelt, it

would still be the car accident that caused death. While this explanation

is not as precise as what we may desire, note that the seatbelt injury only

occurs within the context of a car accident, so we can think about this

case as death by car accident, with the mechanism being carotid artery

injury due to the seatbelt. That is, there is a general relationship between

car accidents and death, and this relationship may be fulfilled by a variety

of means (seatbelt injury, airbag injury, ejection, etc.).

As before, we may still want to test the hypothesis of C∧ S causing

death (just as we tested other unlikely hypotheses outside our general

algorithm in the previous sections). In this case, we see that it did occur

and its support will be exactly equal to its εavg, which will be less than

that of C as a cause of death. Thus what we may know to be the “actual

cause” will have less support than a more general cause. This case has

a slightly different structure than the previous ones, since we included

the general car accident-death relationship. If we omitted this, and only
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had C∧¬S as a type-level genuine cause, with C∧ S as an insignificant

or negative cause of death, we would have precisely the same case as

in the previous example, with Holmes, Watson, and Moriarty. Similarly,

we could have previously looked at the probability of death when hit by

a boulder (regardless of who caused it) and found that to be the cause

of death. In the modified seatbelt case, where we omit the relationship

C ; D, we have no occurring significant type-level causes. Thus, we

examine our insignificant and other causes. In this case, C∧ S would be

found to be the only known potential cause and would again have low

support. Just as before, we would say this was an unlikely occurrence,

but the seeming cause of death.
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A P P L I C AT I O N S

We will discuss two types of applications: one involving synthetically

generated data, where the goal is to see how well our algorithms can

recover the known causes, and the other using real data, where the goal

is to find novel relationships of interest. We look first at validation on

generated neuronal data, then at both validation and experimentation on

financial time series. We will also compare the software implementation

of our approach, called, AITIA, against other competing algorithms.

7.1 neural spike trains

We begin our study of applications with the case of synthetically gener-

ated neural spike trains. The inferred relationships will be simple (one

neuron causing another to fire in some pre-defined window of time), but

the data will allow us to validate our algorithms in an area of interest. As

discussed in Chapter 3, there has been much recent work on determining

the connectivity between neurons by applying causal inference methods

to spike train measurements. This is an area where timing information is

a central part of the causal relationships, so it is useful to compare our

approach to others that include this information to varying extents.
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7.1.1 Synthetic MEA data

The data were created to mimic multi-neuronal electrode array (MEA)

experiments, in which neuron firings may be tracked over a period of

time.1 Data was generated for five different structures, with neurons

denoted by the 26 characters of the English alphabet. Each data set

contained 100,000 firings generated using one of the five structures plus a

degree of noise (this is a parameter that was varied). A total of 20 data

sets were generated, with two runs output for each structure and each of

two noise levels. The five structures (shown in figures 7.8, 7.9, 7.10, 7.11,

and 7.12), include a binary tree of four levels, a chain of neurons, and so

called “scatter gather” relationships in various configurations.

At each time point a neuron may fire randomly (with the probability

of this happening depending on the noise level selected, with a higher

noise level meaning a higher probability) or may be triggered to fire by

one of its cause neurons. Additionally, there is a 20 time unit refractory

period after a neuron fires and then a 20 time unit window after this

when it may trigger another to fire. Consequently, our algorithm need

only search for relationships where one neuron causes another to fire

during a window of 20–40 time units after the causal neuron fires. That

means that when testing for prima facie causality, the relationships will be

of the form c;
>20,640

>p e, where c and e represent the firing of individual

neurons.

1 The data was provided as part of the 4
th KDD workshop on Temporal Data Mining. It is

publicly available at: http://people.cs.vt.edu/˜ramakris/kddtdm06/.
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7.1.2 Comparison with BNs, DBNs and Granger causality

We compared our results to those found with the TETRAD IV [42] im-

plementation of the PC algorithm of SGS [120], the Banjo package for

DBN inference [50] and the granger.test function in the MSBVAR R [8]

package on the same data. All algorithms tested for simple pairwise

relationships between neurons, but the use of timing information varied.

When possible we used the default settings for each software package.

Our algorithm tested for relationships where one neuron causes another

in 20–40 time units. We then computed the empirical null from the set

of εavg values using the method and R code made available by Jin and

Cai [60].

TETRAD IV was given the full time series data and for each input it

produced a graph with both directed and undirected edges (with the

undirected edges indicating a relationship, with the algorithm unable to

determine whether the nodes cause each other or have a common cause).

Undirected edges were not considered to be true or false positives, they

were ignored in these calculations to provide better comparison with

other algorithms.

The Banjo package was used with simulated annealing, testing for links

between neurons in 20–40 time units (note that this is not a window, but

rather determines whether A causes B in 20 time units, 21 time units,

and so on with one arrow in the graph for each of these temporal links).

Based on information in the documentation and the size of the problem,

the algorithm was allowed to run for 30 minutes on each input file. The

algorithm output the graph with the highest score, indicating edges
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Method FDR FNR Intersection

AITIA 0.0093 0.0005 0.9583

Granger 0.5079 0.0026 0.7530

DBN 0.8000 0.0040 0.4010

PC 0.9608 0.0159 0.0671

Table 1.: Comparison of results for four algorithms on synthetic MEA data, with
ours being AITIA.

between each of the neurons for each of the timepoints. The algorithm

never identified relationships between a pair of neurons for the entire

time window (i.e. an edge between them for each value in [20,40]), so

we collapsed all inferences to be between two neurons (i.e. if there was

an edge between two neurons for any value in [20,40], we called that a

positive. If there were ten edges found between two neurons, that still

corresponded to one relationship).

We used the granger.test function with a lag of 20 time units, as

it is not possible to specify a window of time using this algorithm2.

The algorithm output F-scores and p-values for each possible pairwise

relationship. To determine the threshold at which a relationship was

considered a positive result, we used the same false discovery control

approach as was used with our own algorithm.

The results for all algorithms over all datasets (five patterns with two

runs each for a low and high noise level) are as shown in Table 1. While

we are primarily focused on controlling the FDR, we also include statistics

for the FNR (fraction of false negatives out of all negatives – these occur

when we fail to identify a causal relationship) as there is generally a

tradeoff between controlling the FDR and FNR. Here we see that in fact

2 If we had used 40, then in scenarios such as A causes B and B causes C, the algorithm
would be likely to find A causes C.
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we have the lowest values for both the FDR and the FNR, with an FDR

of less than 1% (two orders of magnitude lower than the competing

approaches). Note that for all methods, the FNR is fairly low. This is due

to the small number of true positives compared with the large number of

hypotheses tested. Finally, since there were two runs for each embedded

pattern at each noise level, we tested the robustness of our findings by

calculating the size of the intersection between those runs. That is, we

measure the number of significant causal relationships found in both

runs, as a fraction of the size of the union of both runs. Our algorithm

was the most consistent according to this measure.

Looking at the results for each algorithm, the false discovery rate for

the PC algorithm is not unexpected, as the method tests for relationships

between neurons, without testing the timing of that relationship. However,

it is interesting to note that DBNs fared worse than Granger causality

by all measures, despite the fact that Granger causality has difficulty

distinguishing between mere correlations and causation. One possible

reason for this is that since the graphical model methods score the entire

graph, in theory they must search exhaustively over graphs, but this is not

feasible, and thus heuristics must be used. While the greedy algorithms

may get stuck in local maxima, simulated annealing algorithms must

be stopped before they overfit the data. This overfitting is likely what

happened, and why DBN methods perform better when the consensus of

a set of graphs is taken [130]. On the other hand, both Granger causality

and our algorithm run for set periods of time, consistently returning the

same results for the same input.

We will examine in detail one of the five structures recovered. Fig-

ure 7.11 shows the true embedded structure, which is one of the most
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difficult to infer, as neurons such as D and E are both highly correlated

with H and I. The results for our algorithm are shown in figure 7.2,

with a histogram of the computed z-values for the 641 prima facie causal

hypotheses. The empirical null in this case is given by N(−0.14, 0.39), so

it is shifted slightly to the left of the theoretical null, and is significantly

narrower. The tail of the distribution extends quite far to the right, con-

tinuing up to 8 standard deviations away from the mean (almost 20 times

the empirical standard deviation). A close up of this area is shown in

figure 7.3. The results obtained here are consistent with the known causal

structures that were used to create the simulated data.

In figure 7.1 we compare our results on this structure with those of

the other algorithms, to better visualize the false discoveries and non-

discoveries made by each. Looking at the output from the Granger

algorithm, we see that in this case all of the true relationships were identi-

fied, but that neurons with a common cause were found to be linked. For

example, there is no causal relationship between B and C, but because

they are both caused by A, the Granger test found a strong correlation

between them. The results from the PC algorithm show that only one

relationship, an undirected one between B and C, was found in both

runs for this dataset. That means that depending on the input, entirely

different relationships were found, suggesting that the algorithm is over-

fitting to the particular dataset, while also missing the true relationships,

since the temporal component is excluded. Note that this is one of the

cases where the assumptions made by the PC algorithm hold, as all

common causes are measured and in the dataset, and since there are no

inhibitory relationships, none could be “canceled out” by an unlucky

distribution. Finally, looking at the DBN result for this dataset, shown
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in figure 7.7, we see that while the correct relationships were identified

(again remembering that an edge between A and B means A causes B at

some specific time within 20–40 time units, but for ease of representation

we are not showing the edge for each temporal relationship), there are

many erroneous edges. Unlike the results of the Granger algorithm, these

edges are totally unrelated to the embedded pattern (i.e. they are not

misinterpreting a correlation as a causal connection). As noted above,

we see that in large part these relationships are found in only one run,

suggesting that the software is overfitting the particular distribution given.

7.2 finance

7.2.1 Simulated financial time series

Data

To compare the proposed approach to existing approaches in finance, we

developed a set of simulated financial time series.3 This allowed us to

embed a variety of causal relationships in the data and see how well each

algorithm is able to recover these, finding the specific weaknesses of each.

To do this we used a factor model [34] that allowed two kinds of causal-

ity: one through the influence of factors on stock portfolios and the other

a direct dependency between individual portfolios. Our simulated market

consisted of 25 portfolios, with data generated for six scenarios during

3 The data was generated in close collaboration with researchers in mathematical finance.
In particular, the methodology for simulating the data was developed by Petter Kolm,
with assistance from students in NYU’s mathematical finance program.
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Name One lag Random lag Portfolio dependency

A
B X

C X

D X

E X X

F X X

Table 2.: Summary of datasets created. Half the portfolios in a dataset may have
their factors lagged by a single amount (one lag), or half may have
each individual factor lagged by a random amount in [0, 3] (random
lag). When dependency between portfolios is included, there are three
portfolios whose return at ti depends on the returns of another portfolio
at t.

two 3001 day time periods. In each scenario factors could be shifted for

each individual portfolio or there might be dependency between portfo-

lios. We initially assume that a portfolio’s return at time t depends on

the values of the factors at time t− 3, making it possible to test whether

factors may be treated as common causes of portfolio returns.

The six portfolios, summarized in table 2, contain three (A–C) with no

dependency between individual portfolios, and three (D–F) where three

such relationships were included. Each portfolio in the set can have its

factors lagged the same amount (A,D), have half the portfolios lagged by

a different amount (B,E) or have half the portfolios lagged by a random

amount in the range [0,3], where each factor for a portfolio can be lagged

independently of the others (C,F). To summarize, the six types of datasets

generated are:

• A: All portfolios lagged t− 3, no dependency between portfolios;

• B: Half of the portfolios lagged t− 1, half t− 3, no dependency

between portfolios;
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• C: Half of the portfolios have each factor lagged by random amount

between t− 0 and t− 3, other half t− 3, no dependency between

portfolios;

• D: All portfolios lagged t− 3, three causal relationships between

individual portfolios;

• E: Half of the portfolios lagged t− 1, half t− 3, three causal rela-

tionships between individual portfolios; and

• F: Half of the portfolios have each factor lagged by random amount

between t− 0 and t− 3, other half t− 3, three causal relationships

between individual portfolios.

This means that each portfolio could have all of its factors lagged the

same amount (cases A,B,D, and E) or some portfolios may have each

factor lagged independently (cases C and F).

The return for portfolio i at time t is then given by:

ri,t =
∑
j

βijfj,t ′ + εi,t, (7.1)

where factor j at time t is denoted fj,t. In case A, t ′ = t− 3. In cases D, E,

and F, ε is the sum of the randomly generated idiosyncratic (also called er-

ror) terms plus, in the case where portfolio i depends on portfolio k, εk,t−1.

To construct these series, we used the Fama-French daily factors [34] from

July 1963 through December 2007, and the 5× 5 size/book-to-market

portfolios, also generated by Fama-French [37]. For each of the scenarios

A through F we constructed two return series, the first using daily returns

from July 2, 1975 through May 15, 1987 and the second from April 12,
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1995 through March 14, 2007 (time points 3000 to 6000 and 8000 to 11000

in the factor series respectively).

Tests & Results

We compared our algorithm with the MSBVAR granger.test [8] function

in R, as the Granger test is a standard method used in analyzing such

data. In order to assess the algorithms as well as some common assump-

tions and practices, we conducted a series of tests on the twelve datasets

(six scenarios for two ranges of timepoints): one using the generated

returns (sequences of ri,ts as defined in (7.1)), one using the actual error

terms used to construct the returns (sequences of εi,ts as defined in (7.1)),

one using the generated returns with the known factors (sequences of

fj,ts) included to give a total of 28 variables, and finally one comprised

of residuals calculated by regressing the returns on the known factors

(approximating a common approach to such time series). For both al-

gorithms we tested pairwise relationships between elements of the time

series (portfolios, and in some cases factors) at lags of 1, 2, and 3 days.

For our algorithm, this meant testing whether a positive/negative return

for one variable caused a positive/negative return in another. Since the

Granger implementation only returned the significance of a relationship

between variables (regardless of whether it was positive or negative), true

positives were broadly defined as being that there is a causal relationship

between two variables in a certain amount of time.

The procedure for each was to define the set of causal relationships

to be tested and then run each algorithm to compute the significance of

each relationship in this set, resulting in a set of εavg’s for our algorithm

and F-statistics with their associated p-values for granger.test. Then,
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the empirical null hypotheses and false discovery rates for each test were

computed and relationships with an fdr< 0.01 called significant. For our

tests we used the locfdr R package from Efron et al. [31] to compute the

null hypothesis, while we found that due to the different distribution, the

fdrtool package [123] provided better results for granger.test.

In order to compute FDR and FNR rates, we must understand what

constitutes a true positive. In the simplest case, when using the generated

returns, there should be no causal relationships found in scenario A,

while in B and C we should find that portfolios with lags less than t− 3

should cause those with greater lags, with the time associated with the

relationship being that of the difference between the lags. In datasets

D–F, our findings should be the same, with the addition of the embedded

relationships between portfolios. While the way the data is generated

may make it seem that the factors could cause the portfolio returns,

examination of the factors reveals that this is not the case. Recall that

the Fama-French factors are constructed from the stocks themselves, thus

when we lag the factors this is a proxy for some portfolios responding to

external influences and affecting the market factors earlier than others.

In the datasets consisting only of the error terms, we should find only

the embedded relationships between portfolios (since there is no influence

from factors in these time series). Similarly, when we look at the residuals,

we expect that the result should ideally be the same as that for the error

terms and no influence from factors should remain. However, in practice,

the returns are not so cleanly split into factor/error terms and the result

of regressing on the factors and removing this component is not the

same as the original error terms. We confirmed that this is the case, and

that the relationships between lagged and unlagged portfolios persist.
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Method FDR FNR Intersection

AITIA 0.0775 0.0417 0.8090

Granger 0.6547 0.0863 0.4347

Table 3.: Comparison of results for two algorithms on synthetic financial data.

This data was not used for computation of error rates. Finally, we can

also include the factors in the dataset. If the factors were not derived

from the stocks, we would find them to be common causes of the lagged

portfolios. However, since they may be viewed as both cause and effect,

it is not possible to truly determine the underlying structure in this case.

For our assessment of the two algorithms we focus on the returns data

(which in addition to being the most straightforward was also the one

on which both algorithms performed best). We will briefly discuss the

idiosyncratic (error) term data, but for the above reasons, the residual

and combined portfolio/factor experiments do not lend themselves to

rigorous quantitative assessment.

In Table 3 are FDR, FNR and intersection results for the generated

returns. These values are across all twelve datasets (two for each scenario),

and include relationships with all levels of lags. We also compare how

consistent our results are by computing the intersection of relationships

found in both time ranges for a particular scenario. Since the only causal

relationships in the system are those we embed, the relationships found

should be the same. Note that once again we have the lowest values for

both FDR and FNR, as well as the most consistent results.

On the error (also called idiosyncratic) returns, the FDRs were quite

high (0.827 for our method and 0.988 for Granger), owing to the fact that

there are extremely few true positives (a total of 3 in each of the D–F
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datasets and 0 in each of the A–C datasets) and potentially some lingering

dependency between portfolios. The 18 true positives were found by both

algorithms, with both having zero false negatives. The only substantial

difference was in the quantities of false discoveries. While the rates were

high for both algorithms, our approach made 86 false discoveries (out of

104 total) while Granger made 1442 (out of 1460).

We note that while our FDR on the returns data is substantially lower

than that of granger.test, it is still higher than our desired rate of

0.01. This is entirely due to difficulties in correctly inferring the null

distribution. Since the number of true positives can be substantial (in

some cases much greater than the 10% frequently assumed), we violate

one of the assumptions of these methods: that our observation is mostly

from the null distribution and that there are a small number of deviations

from that, corresponding to non-nulls. In fact in many cases visual

inspection of the graphs reveals that a human could clearly see the

separation between the two classes (See examples in figure 7.4). When

we allow for manual choice of thresholds, our FDR is reduced below

our specified threshold (to 0.0097), with a negligible increase in false

negatives (from 0.0417 to 0.0480). The results also become quite consistent

(intersection of greater than 98%), meaning that the true positives are

found in both runs (and that it is possible to improve results by calling

significant only those causes found significant in both runs). Further

work on empirical null methods will be necessary to bring automated

analysis closer to this ideal.
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7.2.2 Actual financial data

To determine how similar actual market data is to our synthetic returns,

we tested our algorithm on daily stock returns using the CRSP database,

downloaded through WRDS. We began with all stocks that were in the

S&P 500 for the entirety of January 1, 2000 to December 31, 2007 and that

remained in the S&P 500 through September 2009. Since this yielded over

2000 trading days and hundreds of stocks, we tested random subsets of

100 stocks in this set. Over the entire timecourse, we found no significant

relationships (using fdr< 0.01), when testing for pairwise relationships be-

tween stocks at a timescale of one day. Looking at the last 800 timepoints,

we found a single significant relationship, and again found zero looking

at the last 400 timepoints. In figure 7.5 we show the histograms for the test

results, which illustrate that in all cases they conform closely to the null

normal distribution. No significant relationships were found at longer

time scales (i.e. multiple days). One explanation for the few discoveries

made is that at the timescale of one day and over long periods of time,

relationships between companies do not persist (and are overshadowed

by market-wide factors).

Finally, we focused on one year of trading, using the last 252 timepoints

from this series. Due to the shorter time series, we examined a larger

set of stocks: those that were in the S&P 500 during the 2000–2007 time

period. There were 386 such stocks, and 27 significant relationships. The

significant relationships are shown in figure 7.6 and are primarily of the

form “a price increase in x causes a price decrease in y in exactly 1 day”

(denoted by a dashed line in the figure), with a few of the form “a price
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increase in x causes a price increase in y in exactly 1 day” (denoted by

a solid line in the figure). Many of the causes in this set are companies

involved in oil, gas and energy, while financial companies appear to be

influenced by results from the technology sector.
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Figure 7.1.: Graphs representing inference results, with arrows denoting that
the neuron at the tail causes the neuron at the head to fire: 7.1a
Arrows denote relationships where the cause leads-to the effect in
20–40 time units, 7.1b Arrows denote that a neuron causes another
to fire in 20 time units, 7.1c Arrows denote conditional dependence
relationships and have the usual BN interpretation. Colored (and
dashed/dotted) arrows refer to relationships that were found in one
of the two runs for this parameter setting, with solid black arrows
denoting relationships found in both runs. The DBN results appear
separately in figure 7.7, as the graph is quite large.
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Figure 7.2.: Neural spike train example. We tested pairwise causal relationships,
taking into account the known temporal constraints on the system.
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Figure 7.3.: Close-up of the tail area of Figure 7.2. The relationships in this area
are exactly those of Figure 7.11.
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(a) Results for one of the “C” datasets.

(b) Results for one of the “B” datasets.

Figure 7.4.: Histogram of z-values computed from the set of εavg values for two
tests, using our algorithm.

202



7.2 finance

−5 0 5
0

500

1000

1500

All timepoints

Data

f(z)

Empirical null

Theoretical null

−5 0 5
0

500

1000

1500

800 timepoints

−5 0 5
0

500

1000

1500

400 timepoints

Figure 7.5.: Test results for our inference algorithm on various sized subsets of
the actual market data.
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Figure 7.6.: Relationships found in one year of actual market data.
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Figure 7.7.: Graph representing results from DBN algorithm on pattern 4 of
the synthetic MEA data. Arrows denote relationships whether the
neuron at the head causes the neuron at the tail to fire at some
specific time within the range [20,40]. Colored (and dashed/dotted)
arrows refer to relationships that were found in one of the two runs
for this parameter setting, with black arrows denoting relationships
found in both runs.
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Figure 7.8.: Neuronal pattern 1.
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Figure 7.10.: Neuronal pattern 3.
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Figure 7.11.: Neuronal pattern 4.
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Figure 7.12.: Neuronal pattern 5.
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C O N C L U S I O N S A N D F U T U R E W O R K

8.1 conclusions

Understanding the complex causal relationships governing why things

happen is at the heart of many disciplines, including biology, finance

and the social sciences. It has been difficult, though, to determine these

relationships from observational data alone and the problem of formaliz-

ing the conditions for causality in terms of algorithms has only recently

been addressed. However, there is a rich literature in philosophy on what

constitutes a causal relationship and how these can be identified. In this

dissertation, I have built on these philosophical foundations, using the

fact that the conditions for identifying causality can be translated into

the framework of temporal logic and model checking, and developed a

powerful new approach to causal inference.

I have shown how the problem of causal inference is, in many cases, one

of understanding the relationships of sequences of events over time. By

translating these notions to PCTL, we allow description of vital features

that have previously been left out of computational approaches to causal

inference, namely the temporal component of the causal relationship as

well as explicit description of the sets of conditions comprising a cause.

This allows for a notion of causality that goes beyond simply “a causes

b”, while making sure that a and b are described in a well defined way
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that allows for automated testing of the formulas in observational data.

Since the rules for building such statements are given by the logic, I

have described straightforward methods of computing the probability

of any such statement from the data. Unlike competing methods using

graphical models, this approach also allows for cycles and feedback loops.

I augmented PCTL so that it is possible to reason about the truth value

of formulas involving windows of time, and developed algorithms for

determining the truth value of formulas in a trace (or set of traces) of

data.

Many prima facie (potential) causes – those that precede and raise the

probability of their effects – may seem to arise by chance, so I introduced

a new method for computing the significance of each cause. Inspired by

philosophical methods, but focused on computational feasibility as well

as practical applications, the approach is to compute the average impact

a cause has on its effect given (pairwise) each of the other possible causes

of that effect. Once we have computed this impact, or significance score,

we must determine at what level to call something causally significant.

Treating the problem of weeding out insignificant causes as a multiple

hypothesis testing problem using an empirical null allows us to remain

neutral as to the underlying distribution of the data, and still control our

false discovery rate.

This approach has been tested on synthetic data, where we can evaluate

our findings against some ground truth, as well as real data where we

aim to discover novel relationships. One set of generated data was created

by another research group [107] to mimic the structure of neurons firing

over time. In collaboration with researchers in quantitative finance, we

ourselves constructed a second synthetic data set with a structure similar
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to that of stock price movements. In both cases, by using the right tools for

the job, namely those that can take into account the important temporal

information in these examples with strong temporal dynamics, we have

outperformed leading methods from both computer science and finance.

We have achieved extremely low (nearly zero) false discovery rates, while

succeeding in making a large number of valid discoveries.

This general approach will find applications in a wide variety of areas,

from politics (where a candidate’s favorability ratings can be influenced

by their choice of words in speeches as well as actions such as votes), to

finance (where the price movement of a stock is a result of both hidden

market factors as well as the movements of other individual stocks and

sectors) to computational biology (where we want to find the genes

responsible for particular traits or find regulatory networks among genes).

One of the most important emerging applications is in the analysis of

electronic health records (EHRs), which contain valuable information on

patients over long periods of time. We can use these to determine at a

population level what causes a condition such as congestive heart failure

and which tests should be done to predict it earlier and more accurately.

This can also be used at the level of patients to determine what affects a

particular person’s glucose levels over time and whether her medication

is effective in controlling these.

I have also shown how the type-level inferences can be used for token-

level reasoning. The approach discussed allows us to take an effect

whose occurrence we want to explain, and a sequence of time-indexed

observations, and use these to determine the likelihood that various type-

level causes are responsible the effect in the token case. Unlike other

approaches in the literature, this does not require complete knowledge of
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the scenario (i.e. the truth value for all propositions in the system), and

outputs a score for each possible cause (rather than simply caused/did

not cause). It was demonstrated that this method can handle many of

the examples and counterexamples found in the philosophical literature.

Specifically, the inclusion of temporal information and allowance for

multiple causes of varying degrees help to provide intuitively correct

answers in difficult cases. The method developed allows us to extend

our general inferences to specific cases. For example, after finding causes

for various medical conditions, we can then take a patient’s incomplete

medical history and assess her possible diagnoses. Further, we can also

use this method for predictive purposes (prognosis), where the effect has

not yet occurred and we want to determine its likelihood.

The research contributions of this dissertation may be summarized as

follows:

• Development of philosophically sound working definitions for

causality in temporal systems, which allow for cycles & feedback

and explicit description of the temporal component of causal rela-

tionships.

• Efficient algorithms for type-level inference of prima facie causes

from time-series data, where causal relationships are described as

temporal logic formulas.

• New measure for the significance of causal relationships, which

builds on work in philosophy while remaining practically applicable

and yielding superior practical performance when compared with

other methods.
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• Method for translating type-level relationships into token-level in-

ferences, which allows for incomplete information. The method

correctly handles many of the difficult cases found in the philosoph-

ical literature.

• New approach to the epistemology of causality, an overlooked area

of research in philosophy, which addresses both type and token

causality.

• Adaptation of PCTL to model-checking over traces, and augmenta-

tion of path formulas to include a lower bound on timings (allowing

representation of windows of time).

• Rigorous comparative analysis of the performance of many defini-

tions of causality in several important practical domains: finance

and neuroscience.

8.2 future work

The methodologies described in this work are only the beginning of what

is needed. Here I outline a few of the most promising and pressing

directions for future work. While not discussed here, there is also a

need for heuristics and methods to improve computational performance.

However, the algorithms are nearly all easily parallelizable.
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8.2.1 Simpson’s paradox and abstraction

A primary problem when dealing with probabilistic causality is knowing

whether the relationships we observe are genuine or if they are due to

a chance distribution of the variables. Simpson’s paradox is when we

find a correlation between variables in a set of subpopulations, but this

correlation is reversed when the populations are combined. In terms of

causality, we might find that a medication does not improve prognosis

in a combined population of men and women, but that it is beneficial

when we consider populations of just men or just women. However,

since we have a notion of token causality, it is possible to use instances

where we do know (or know with high probability) the true cause to

refine our theory. If on many occasions the token and type-level causal

relationships are in conflict, we may be observing this paradox. This

directly relates to another vital question: at what level should we look at

a system? Depending on our purposes (e.g. vaccine development versus

public policy), the desired level of detail will differ. Biological systems

may be viewed in terms of populations, individual people, organs, or

cells. Abstraction, an important topic in computer science, may be able to

help us determine which variables should be measured and examined

more precisely.

8.2.2 Causality in time and space

Recent experiments have allowed measurement of neurons such that

we know not only their firing times, but also their locations. Similarly,
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methods for measuring gene expression have also moved towards exper-

iments in both time and space. It is desirable then to be able to reason

about spatial locality: 1) relationships in one area may not be the same as

those elsewhere; 2) there may be a certain proximity required for a causal

relationship to be possible. Additionally, previous philosophical theories

that focused on causal processes (where we think of a causal relationship

as transmission of a conserved quantity, such as momentum) stipulate

both temporal and spatial locality as essential features of causality. It may

be possible to bridge the gap between these and probabilistic methods by

incorporating spatial information.

At the same time, we have assumed that our distributions are station-

ary but this will not be true in all cases. For example, in applications

to finance, the relationships between companies (due to mergers and

acquisitions, for one) change, as do the legal rules governing their behav-

ior. It will be important to determine the times when the causal regime

changes not just to determine when our rules stop being true, but also

for inference. Further, in applications involving medical records, patients

may have different stages of a disease, and the causal relationships at each

stage may vary. If we assume the relationships in a long time series are

stationary, but there are instead distinct periods with differing structures,

we will likely fail to find the true relationships.

8.2.3 Variable representation

In this work it was assumed that propositions are true or not at particular,

discrete, time instants. In order to define propositions and their truth
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values, continuous variables had to be discretized such that they related

to propositions that may be only true or false. However, variables may

have durations (such that smoking for 10 years causes lung cancer),

and continuous magnitudes (one gene causes another to have a certain

level of regulation or smoking 10 packs a day versus 1 pack, in contrast

to simply smoking versus not smoking) which may be important for

practical applications. Finally, we may be more interested in an effect that

persists for some time than one that is instantaneous, but as yet we also

have no method for representing how long the effect lasts.

8.2.4 Token causality

There are a number of important future directions in the area of token

causality. The problems found here are not simply theoretical, but are

found in practical scenarios where we want to determine who is to blame

for an accident, why a patient developed a set of symptoms, and whether

a change in policy affected a company’s stock prices. Thus far we have

greatly simplified our task by assuming that for each possible fact, we

either correctly know it to be true or false, or we do not know its truth

value. However, in applications such as those in politics or finance, in-

dividuals may have varying states of knowledge about the world and

some of their information may be both conflicting and incorrect. We

must understand how to assess token causality in these cases. This area

has similarities to argumentation and legal reasoning (where we perhaps

need to understand the support for token-level hypotheses at the level

of individuals), and applications in disease diagnosis, where a patient’s
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medical record may have incorrectly recorded tests and conflicting diag-

noses and we want to find both the best explanation for their symptoms

and the best course of treatment.

In the case of diagnosis of patients, symptoms may seem to rule out

the true cause of the disease as a result of errors in measurement and

recording of laboratory tests. However, since patients can be queried

using medical tests, we could potentially suggest which additional infor-

mation would most aid the diagnosis. Thus we would also like to know

what information would be most useful for determining the token-cause.

Further, if we can determine the actual cause in a token case, we could

potentially use this information to reassess inferred type-level causes

(pointing to novel relationships or the need for better inferences).

8.3 bibliographic note

The work presented here has been published in various forms. An intro-

duction to the type-level approach, as well as comparison on neuronal

data with competing algorithms (see Chapters 4 and 7) was published as

a conference paper:

Samantha Kleinberg and Bud Mishra. The Temporal Logic of Causal

Structures. In Proceedings of the 25th Conference on Uncertainty in Ar-

tificial Intelligence (UAI-09), pages 303–312, Corvallis, Oregon, 2009.

AUAI Press.

A popular account of the type-level approach, with extensive discussion

of the future applications to healthcare and systems biology as well
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as experiments involving time-series microarray data, appears in the

following invited paper:

Samantha Kleinberg and Bud Mishra. Metamorphosis: the Coming

Transformation of Translational Systems Biology. Queue, 7(9):40–52,

2009.

The use of multiple hypothesis testing and false discovery control meth-

ods for assessing the statistical significance of causal relationships (see

Chapter 5) as well as experimental results on neuronal data, microarray

data, and political data were presented at the following conference and

appear in the following refereed volume:

Samantha Kleinberg and Bud Mishra. Multiple Testing of Causal

Hypotheses. Canterbury, UK, September 2008. CAPITS Causality

Study Fortnight.

Samantha Kleinberg and Bud Mishra. Multiple Testing of Causal

Hypotheses. In Phyllis McKay Illari, Federica Russo, and Jon

Williamson, editors, Causality in the Sciences. Oxford University

Press, 2010. (To appear).

Parts of the methodological aspects of token causality (see Chapter 6)

are published as a conference paper:

Samantha Kleinberg and Bud Mishra. The Temporal Logic of Token

Causes. In Proceedings of the 12th International Conference on the Prin-

ciples of Knowledge Representation and Reasoning (KR2010), Toronto,

Canada, May 2010. (To appear).

The methods developed in this work have also led to two pending

patents:
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For Inferring And/Or Determining Causation In Time Course Data
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Filed 2/21/2010 Methods, Computer-Accessible Medium And Systems
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lar Causality (U.S. Provisional Patent Application)
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A B R I E F R E V I E W O F T E M P O R A L L O G I C & M O D E L

C H E C K I N G

A temporal logic is any logic that includes modal operators allowing

reasoning about when formulas are true. Originally introduced by philoso-

phers, the first work in this area was in the form of tense logic, introduced

by Arthur Prior in the 1960s [106]. In the 1970’s Amir Pnueli built upon

these ideas and provided the first introduction of temporal logic for

concurrent systems in computer science [103].

An important problem in computer science is verifying the correctness

of systems. However, deductive verification, proving the correctness of a

system using a set of axioms and rules, is a time consuming process. It

can be used in the case of systems with infinite states, though in that case

it may use an unlimited amount of time and memory. Model checking

imposes restrictions so that we can automate much of the process. It

allows verification of finite state concurrent systems, where the system

will always terminate with an answer.

a.1 types of temporal logic

There are three main temporal logics: CTL* (which includes computation

tree logic (CTL) [18] and linear temporal logic (LTL) [103] as subsets),

the µ-calculus [33] and interval temporal logic (ITL) [91]. We will review
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CTL and then its probabilistic variant, PCTL. In CTL, the future is not

deterministic – there may be any number of possible future paths through

time from the current state, whereas in LTL from a given state there is

only one possible path through time. Probabilistic computation tree logic

(PCTL) extends CTL to allow reasoning about nondeterministic systems

where properties of interest may be of the form “a property will hold

within some (discrete) amount of time, 99% of the time.”

a.1.1 CTL

Temporal logics are generally interpreted over graphs called Kripke [69]

structures. A Kripke structure is defined by a set of reachable states

(nodes of the graph), labels that describe the properties true within each

state, and a set of edges denoting the transitions of the system [19].

Definition A.1.1. Let AP be a set of atomic propositions. A Kripke

structure M over AP is a four tuple M = (S,S0,R,L) where:

• S is a finite set of states,

• S0 ⊆ S is the set of initial states,

• R ⊆ S× S is a total transition relation, such that ∀s ∈ S, ∃s ′ ∈ S s.t.

(s ′, s) ∈ R, and

• L : S→ 2
AP is a function that labels each state with the set of atomic

propositions that are true within it.

A path in the Kripke structure is an infinite sequence of states π =

s0, s1... such that for every i > 0, (si, si+1) ∈ R. πi is used to denote the

suffix of path π starting at state si.
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Formulas in CTL are composed of paired path quantifiers and temporal

operators. Path quantifiers describe whether a property holds A (“for all

paths”) or E (“for some path”) starting at a given state. The temporal

operators describe where along the path properties will hold. This means

that while AGf is a valid CTL formula, AGFf is not, since F must be

paired with one of A or E. The operators are:

• F: “finally”, at some state on the path the property will hold;

• G: “globally”, the property will hold along the entire path;

• X: “next”, the property will hold at the next state of the path;

• R: “release” (also called weak until), for two properties, the first

holds at every state along the path until a state where the second

property holds, with no guarantee that the second property will

ever hold (in which case the first must remain true forever);

• U: “until”, for two properties, the first holds at every state along

the path until at some state the second property holds.

The syntax of CTL is defined as follows. First, there are two types of

formulas: path formulas, which are true along a specific path, and state

formulas, which are true in a specific state. Then, where AP is the set of

atomic propositions, the syntax of state formulas is given by:

• If p ∈ AP, then p is a state formula;

• If f and g are state formulas, then so are ¬f, f∨ g and f∧ g;

• If f is path formula, then Ef and Af are state formulas.

Path formulas are specified by:
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• If f and g are state formulas, then Ff, Gf, Xf, fRg, fUg, are path

formulas.

The basic CTL operators are: AX, EX, AF, EF, AG, EG, AU, EU, AR and

ER. However each can be expressed in terms of EX, EG and EU:

• AXf ≡ ¬EX(¬f)

• EFf ≡ E[TrueUf]

• AGf ≡ ¬EF(¬f)

• AFf ≡ ¬EG(¬f)

• A[fUg] ≡ ¬E[¬gU(¬f∧¬g)]∧¬EG¬g

• A[fRg] ≡ ¬E[¬fU¬g]

• E[fRg] ≡ ¬A[¬fU¬g]

Figure A.1 illustrates the most common operators in terms of computation

trees. Note that each tree continues infinitely beyond the states shown.

Then, the truth values of path and state formulas are represented as

follows. For a state formula f, M, s � f means that formula f holds at

state s in the Kripke structure M. For a path formula g, M,π � g means

that g holds along path π in Kripke structure M.

a.1.2 PCTL

While CTL allows us to ask which properties of a non-deterministic

system are possible, there are many cases in which we will want to know

just how likely these properties are. In these cases, we want to be able
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Figure A.1.: Illustrations of CTL formulas.
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to represent the probability that a formula will hold. However, we also

would like to specify deadlines for these properties. That is, an upper

bound on how long they may take to hold with a certain probability.

Hansson and Jonsson introduced probabilistic computation tree logic

(PCTL) [49] to address these types of problems.

The formulas in PCTL are interpreted over probabilistic Kripke struc-

tures (also called discrete time Markov chains), where a structure is a

four tuple: K = 〈S, si,L,T〉, such that:

• S is a finite set of states;

• si ∈ S is an initial state;

• L is a labeling function assigning atomic propositions (AP) to states,

L : S→ 2
AP;

• T is a transition probability function, T : S× S→ [0, 1] such that for

all s in S:

∑
s ′∈S

T(s, s ′) = 1.

The formulas are comprised of atomic propositions a in the universe

AP, propositional logical connectives (such as ¬,∧,∨) and modal oper-

ators denoting time and probability. As in CTL, there are two types of

formulas: path formulas and state formulas, which are defined induc-

tively as:

• Each atomic proposition is a state formula;
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• If f and g are state formulas, so are ¬f, f∧ g, f∨ g, f→ g;

• If f and g are state formulas, and t is a nonnegative integer or ∞,

then fU6tg and fU6tg are path formulas;

• If f is a path formula and p is a real number with 0 6 p 6 1, then

[f]>p and [f]>p are state formulas.

Now we will define the truth values of formulas for specific structures

in terms of their satisfaction relations. The satisfaction relation, s �K f,

means that state formula f is true in state s in structure K. Then, s �K a

(state s satisfies atomic proposition a) iff a ∈ L(s). Relations for ¬,∧,∨

and → are then defined as usual. The path satisfaction relation, σ �K f

means that the path σ satisfies the path formula f in model K. Then we

have the following path relations:

• σ �K fU6tg iff ∃i 6 t such that σ[i] �K g and ∀j : 0 6 j < i : (σ[j] �K

f) (strong until);

• σ �K fU6tg iff σ �K fU6tg or ∀j : 0 6 j 6 t : (σ[j] �K f) (weak

until);

• s �K [f]>p if the µm-measure of the set of paths σ starting in s for

which σ �k f is at least p;

• s �K [f]>p if the µm-measure of the set of paths σ starting in s for

which σ �k f is greater than p.

where the µm-measure is the sum of probabilities over the set of paths

from s that satisfy f.

One may also define analogues to the usual path quantifiers A (“for

all paths”) and E (“for some future path”) and temporal operators F
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(“eventually holds”), G (“holds for entire future path”), and X (“at the

next state”). These operators are defined by:

• Af ≡ [f]>1

• Ef ≡ [f]>0

• G
6t
>p ≡ fU

6t
>pfalse

• F
6t
>pf ≡ true U

6t
>pf

• AGf ≡ true U6∞
>1
false

• AFf ≡ fU6∞
>1
f

• EGf ≡ fU6∞
>0
false

• EFf ≡ true U6∞
>0
f

a.2 model checking

In model checking, the problem is to determine which states in the system

satisfy some temporal logic formula. If the initial states of the system are

in that set of states, then the model satisfies the formula.

a.2.1 CTL Model Checking

We begin with a Kripke structure M = (S,R,L) and a CTL formula

f. The basic principle is that states are labeled with subformulas that

are true within them, and in each iteration more complex formulas

are analyzed. During the procedure there are six main cases: f,¬f, f∨
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g, EXf, E[fUg], EGf (as was noted before, all other formulas can be ex-

pressed in terms of those).

The rules for labeling states are as follows. a state is labeled with ¬f if

it is not labeled with f, a state is labeled with f∨ g if it is labeled with

either f or g and a state is labeled with EXf if the state has a transition to

a state labeled with f. The final two cases are somewhat more complex.

For a formula h = E[fUg], we first find states labeled with g, and then for

each such state where there is a path from those states where each state

on the path is labeled with f, it is labeled with h. As the formulas are

built incrementally, beginning with those of size one, the states satisfying

f and g have already been labeled at this point.

Finally, for g = EGf1:

Lemma A.2.0.1. M, s � EGf iff:

1. s ∈ S ′.

2. There exists a path in M ′ leading from some s to some t in a nontrivial

SCC2 of the graph (S ′,R ′).

where M ′ is formed from M by removing all the states where f does not hold,

and updating R and L accordingly.3

Labeling states with some formula where all of its subformulas have

already been processed takes time O(|S|+ |R|). So, for a formula of size

|f|, the complexity is O(|f|(|S|+ |R|)). This is because each iteration takes

O(|S|+ |R|) and the algorithm begins with the innermost formula, working

1 [19], 36.
2 A strongly connected component (SCC) is a set of vertices in the graph where for each

pair u and v in the component, there is a path from u to v and one from v to u. An SCC
is nontrivial if it consists of more than one node, or it has one node with a self loop.

3 M ′ = (S ′,R ′,L ′) where S ′ = {s ∈ S|M, s � f},R ′ = R|S′×S′L ′ = L|S′ .
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outward, so when we get to formula f, every component of f has already

been processed, and there are at most |f| subformulas of f.

a.2.2 PCTL Model Checking

Model checking in the probabilistic case proceeds similarly to the case of

CTL, labeling states with subformulas true within them, beginning with

all states labeled with the propositions true within them. The labeling

rules for states are:

• A state is labeled with ¬f if it is not labeled with f.

• A state is labeled with f∧ g if it is labeled with both f and g.

• A state is labeled with f∨ g if either f or g are in its labels.

• A state is labeled with f→ g if it is labeled with ¬f or with g.

As before, our other cases reduce to a small set: fU6tg, combined with

[f]>p, [f]>p. In the case where the probability and time do not take Formulas using

U can be defined

in terms of U

formulas.

extreme values (0 or 1 and ∞ respectively), fU6t
>pg is checked as follows,

with the > p case being the same except that states will be labeled with

the formula if the calculated probability is strictly greater than p.

As shown by Hansson and Jonsson [49]:

Proposition A.2.1. Assume the states satisfying f and g are labeled as such.

Then, for t 6= ∞, the µm measure for the set of paths σ from s for which

σ �K fU6tg is given by P(t, s), where this is defined to be 0 if t < 0 and is

otherwise given by:
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P(t, s) =



1 if g ∈ labels(s);

0 if f /∈ labels(s);

∑
s ′∈S T(s, s

′)× P(t− 1, s ′) otherwise.

(A.1)

The labeling algorithm follows from this recursion, labeling state s with

fU
6t
>pg if P(t, s) > p. The complexity of the resulting algorithm (remem-

bering that all subformulas have been checked) is O(t(|S|+ |E|)). This is

the same as the earlier complexity for a CTL formula where all subfor-

mulas have been checked, with an added factor of t. Checking whether a

structure satisfies formula f, as before, depends on the size of f and is at

most O(tmax(|S|+ |E|)|f|), where tmax is the maximum time parameter

in f.

Faster algorithms, linear in |S|, exist for the cases where p takes the

values 0 or 1 regardless of the value of t. In the case where the probability

is not 0 or 1, and t = ∞, a different approach is required, as the one

given above would not terminate. In this case states in S are divided into

a few subsets Ss, R, Q. Ss contains states labeled with g, Q are states

not labeled with f or g as well as those from which it is not possible to

reach a state in Ss, and R is the set of states for which the probability of

reaching a state in Ss is 1. Then, as shown by Hansson and Jonsson [49]:

Proposition A.2.2. Assume that in structure K, states satisfying f and g have

been labeled with these formulas. Then, with Q and R defined above, the µm-

measure for the set of paths σ from s for which σ �K fU6∞g is given by the

solution to P(∞, s):

229



appendices

P(∞, s) =



1 if s ∈ R;

0 if s ∈ Q;

∑
s ′∈S T(s, s

′)× P(∞, s ′) otherwise.

(A.2)

Solving with Gaussian elimination gives a complexity of O((|S|− |Q|−

|R|)2.81). Algorithms for finding Q and R are described in Appendix C,

where we reformulate until formulas to allow for a lower bound on the

associated timing.

a.2.3 Symbolic Model Checking

The previous algorithms described used explicit representations of the

Kripke structure. These explicit methods were linear in both the size of the

formula and the size of the system, however this still problematic, in that

the size of the transition system grows exponentially with linear growth

in the number of variables (this is referred to as state space explosion).

Symbolic model checking techniques allow for compact representation

of large amounts of states. Binary decision diagrams, used to represent

Boolean functions, can be used to encode Kripke structures to allow this

symbolic model checking.

Ordered binary decision diagrams (OBDDs) are concise representations

of boolean formulas that are obtained from taking binary decision trees by

merging subtrees with identical structures to create a DAG. Determining

the variable ordering is a difficult problem, but once an ordering is
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established, the diagrams are canonical. Reducing the diagrams in this

manner means that to test whether two formulas are equivalent, we

can test whether their OBDDs are isomorphic. Each state of the Kripke

structure is represented by a boolean formula, and then the transition

from one state to another is the conjunction of their formulas.

Symbolic algorithms manipulate boolean formulas, rather than the

graph-based representation of the Kripke structure. The idea is that states

satisfying a CTL formula are characterized in terms of least/greatest

fixpoints of sets, where a set S ′ ⊆ S is a fixpoint of a function τP(S) →

P(S) if τ(S ′) = S ′. The least element is the empty set (or false) and the

greatest element is S (true), where these least and greatest fixpoints will

correspond to properties that are eventually and always true respectively.

In the case of CTL formulas, we can represent the formulas EGf as

f∧ EXEGf and EFp as p∨ EXEFp. Then, we can write EFp recursively

as U = p∨ EXU, which implies that EFp ⊆ U. Then, EFp = µU.p∨ EXU

(where µ denotes a least fixpoint and ν denotes a greatest fixpoint). The

computation is again iterative, where we begin with U = ∅, or false, and

then at each iteration we have Ui = p∨ EXUi−1. Note that EGp would

be the greatest fixpoint of a similar function, where the ∨ is replaced by

a ∧.
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A L I T T L E B I T O F S TAT I S T I C S

b.1 multiple hypothesis testing

When testing a single hypothesis, we can make the decision about whether

to accept or reject the null hypothesis based on the likelihood that the

results would occur if the null hypothesis were true. However, when

we are testing multiple hypotheses at once, the likelihood that we will

get such results – even under the null hypothesis – increases and we

must account for this. For example, we may test the fairness of a coin by

flipping it 10 times and seeing how many times it comes up heads and

how many times it comes up tails. If there were nine heads, we would

likely say that it is biased, as the probability of this happening when the

coin is fair is ≈ 0.010, and the p-value 0.022. Frequently, a significance

level of p < α = 0.05 is sufficient to reject the null hypothesis, and thus

we would call the coin unfair. In the case where we are testing 100 fair

coins, we may incorrectly deem 5 unfair (ntests ×α). Thus it is necessary

to account for the fact that we are performing many tests simultaneously,

thus increasing our chances of seeing unlikely or anomalous behavior

[122, 29, 5].

232



appendices

b.1.1 Basic Definitions

First, we define two types of error. Type I errors (α) are those where we

reject a true null hypothesis. The per-comparison error rate is the prob-

ability of making such an error during each significance test. Type II

errors (β) are those where the null hypothesis is not rejected when it

should be. Whereas Type I errors mean we have made a false discovery

(false positive), Type II errors mean we have missed an opportunity for

discovery (false negative). While it is desirable to reduce both types of

error, it may sometimes only be possible to trade one kind off against the

other. The best trade-offs are judged in terms of the relative costs of these

errors in a particular domain of application.

Thus, we define next the error rates over all the hypotheses being

tested. The familywise error rate (FWER) is the probability of rejecting

one or more true null hypotheses (i.e. the probability of having at least

one Type I error), during all tests. For the FWER to approach a desired

bound of α� 1 we need each of the, say, n tests to be conducted with an

even stricter bound, such as αn , as required by the so-called Bonferroni

correction [5]. However, the FWER has low power, meaning that we have

a good chance of making a Type II error [4]. Another measure, called

the false discovery rate (FDR), estimates the proportion of Type I errors

among all rejected hypotheses (that is, the number of false discoveries

divided by the total number of discoveries). This measure results in more

power than the FWER while still bounding the error. The main idea

is that, if we are rejecting only a few null hypotheses, then each false

discovery we make in that case is more significant than rejecting a large
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number of null hypotheses and making more false discoveries. That is, in

the first case, the false discoveries are a larger percentage of the overall

number of discoveries than they are in the later case.

b.1.2 Controlling the FDR

The introduction of the FDR and procedures for controlling it are de-

scribed by Benjamini and Hochberg [4]. The procedure is as follows.

When testing m hypotheses, order the p-values P(1) 6 P(2) · · · 6 P(m).

Then with k selected as the largest i such that:

P(i) 6
i

m
α, (B.1)

we reject all H(i), i = 1, 2, . . ., k. In the case when all hypotheses are true

this controls the FWER, and otherwise controls the proportion of erro-

neous rejections. For independent test statistics, this procedure controls

the FDR at rate α. However, it was later shown that this also holds for

positively dependent test statistics and can be modified to control the

FDR in other cases [5].

b.1.3 Using an empirical null hypothesis

In the methods described so far, it was necessary to use a theoretical

null hypothesis, namely, that values have a standard normal distribution.

However, this may not be appropriate for all data. It is possible, then,

to take advantage of the multitude of hypotheses being tested and to

determine the correct null hypotheses from the data. The use of an
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empirical null hypothesis was described by Efron [29], and provides a

novel empirical Bayesian solution to the problem. In that work, Efron

described how one may estimate the empirical null distribution and

how the choice of null hypothesis has a large impact on the discoveries

made. For example, data from microarrays, financial markets, and neural

spike trains may have different underlying distributions and thus their

empirical nulls vary from the theoretical null in different ways [67]. In

practice, most methods for inferring the null hypothesis empirically

attempt to fit to the central peak of the data.

b.1.4 Computing the fdr

Here, we use local false discovery rate (fdr) calculations, which use

densities, as our N’s are large, though these methods may also be used

with standard tail-area FDR methods such as that described in section

B.1.2 [30]. We follow the formulation described by Efron [29].

With N hypotheses H1, H2, . . ., HN we have the corresponding z-values

z1, z2, . . ., zN. These values, also called the standard score, are the number

of standard deviations by which a result deviates from the mean. In the

case of our causal analyses, these z-values are computed from the εavgs.

We begin by assuming the N cases fall into two classes: one where the

effects are either spurious or not large enough to be interesting (and

thus where we accept the null causal hypotheses), and another where

the effects are large enough to be interesting (and where we will accept

the non-null hypotheses as true). We also assume the proportion of

non-null cases is small relative to N, say, around 10%. Then, p0 and
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p1 = 1 − p0 are the prior probabilities of a case (here, a causal hypothesis)

being in the “uninteresting” or “interesting” classes respectively. The

densities, f0(z) and f1(z), of each class describe the distribution of these

probabilities. When using a theoretical null, f0(z) is the standard N(0, 1)

density. Note that we need not know f1(z), though we must estimate p0

(usually p0 > 0.9). We define the mixture density:

f(z) = p0f0(z) + p1f1(z), (B.2)

then the posterior probability of a case being uninteresting given z is

Pr{null|z} = p0f0(z)/f(z), (B.3)

and the local false discovery rate, is:

fdr(z) ≡ f0(z)/f(z). (B.4)

Note that, in this formulation, the p0 factor is ignored, yielding an upper

bound on fdr(z). Assuming that p0 is large (close to 1), this simplification

does not lead to massive overestimation of fdr(z). One may also choose

to estimate p0 and thus include it in the FDR calculation, making fdr(z) =

Pr{null|z}. The procedure is then:

1. Estimate f(z) from the observed z-values;

2. Define the null density f0(z) either from the data or using the

theoretical null;

3. Calculate fdr(z) using equation (B.4);

236



appendices

4. Label Hi where fdr(zi) is less than a threshold (say, 0.10) as inter-

esting.
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P R O O F S

c.1 probability raising

Here we claim that the following conditions for probabilistic causality,

are equivalent in non-deterministic cases:

P(E|C) > P(E) (C.1)

P(E|C) > P(E|¬C) (C.2)

Proof. Assume and 1 > P(C) > 0 (and thus 1 > P(¬C) > 0). By definition:

P(E) = P(E|C)× P(C) + P(E|¬C)× P(¬C) (C.3)

= P(E|C)× P(C) + P(E|¬C)× (1 − P(C)) (C.4)

= P(E|C) + [P(E|¬C) − P(E|C))× (1 − P(C)) (C.5)

Then, if P(E|¬C) > P(E|C), it must be that P(E|C) < P(E) in order to

maintain the equality, and if P(E|C) > P(E|¬C), then by the same reason

P(E|C) > P(E). Thus, if (C.2) is satisfied, (C.1) is satisfied. Conversely,

if P(E|C) > P(E), then we must have P(E|C) > P(E|¬C). Thus, if (C.1) is

satisfied (C.2) is satisfied and finally we conclude that (C.1)⇔ (C.2).
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c.2 leads to with both lower and upper time bounds

First, note that in definition 4.3.1, there is a window of time in which c

leads to e. That is, in our formulation, we add a minimum time after c is

true before which e is true. Here we show that it is possible to add such

a lower bound. By definition:

f
>t1,6t2

;
>p

g ≡ AG[f→ F
>t1,6t2

>p g], (C.6)

where t1 6 t2. Thus, we are actually only adding a minimum time to the

consequent of our conditional. If we can label states where F>t1,6t2

>p g is

true, then we can proceed as in the algorithms of Hansson & Jonsson [49].

We first recall that this is defined as:

F
>t1,6t2

>p g ≡ true U>t1,6t2

>p g. (C.7)

Thus we now focus on formulas of the form:

hU
>t1,6t2

>p g, (C.8)

where for a F formula, h = true.

Claim. The formula g1U
τ1,τ2

>p g2, where 0 6 τ1 6 τ2 6 ∞ and τ1 6= ∞ can

be checked in a structure K = 〈S, si,L,T〉, if it can be checked when τ2 < ∞
(Theorem C.2.1) and when τ2 = ∞ (Theorem C.2.2).

Corollary. If a state can be correctly labeled with g1U
τ1,τ2

>p g2, it can also be

correctly labeled with f;>t1,6t2

>p g.
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Since,

f
>t1,6t2

;
>p

g ≡ AG[f→ F
>t1,6t2

>p g], (C.9)

and

F
>t1,6t2

>p g ≡ true U>t1,6t2

>p g, (C.10)

then let g1 = true,g2 = g and τ1 = t1, τ2 = t2. All other components of

the leads-to formula can be checked and each subformula is independent

of the others. That is, if we replace F>t1,6t2

>p g by x in the formula above,

the resulting leads-to formula can be checked. Since we show x can be

checked, the entire formula can be checked.

We begin with the case where the upper bound, t2, is non-infinite and

then show how this extends to the case where it is.

Case 1: t2 6= ∞
Theorem C.2.1. For structure K = 〈S, si,L,T〉, we begin with all states

satisfying g or h labeled as such. Then for 0 6 t1 6 t2, with t2 <∞ the

µm-measure for the set of paths σ from s where σ |=K hU
>t1,6t2g is given

by P(t1, t2, s).

P(t1, t2, s) =



1 if t1 6 0, t2 > 0 and

g ∈ labels(s);

0 else if t2 < 0 or h /∈ labels(s);

∑
s ′∈S T(s, s

′)× P(t1 − 1, t2 − 1, s ′) otherwise. (C.11)
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Then, following this recurrence, states s will be labeled with hU>t1,6t2

>p g

if P(t1, t2, s) > p. Now, we prove that the recurrence correctly yields the

µm-measure.

Proof. For the set of states s and integer times t1 and t2 take Π(t1, t2, s) to

be the set of finite sequences of states s→ · · · → si → · · · → sj, beginning

in s, such that there is some j for which t1 6 j 6 t2, where sj |=K g and

for all i with 0 6 i < j, s |=K h and s 2K g.

Let µt1,t2

m (s) be the µm-measure of the set of paths σ ∈ Π(t1, t2, s) from

s where σ |=K hU
>t1,6t2g. Then, by definition, µt1,t2

m (s) is:

µt1,t2

m (s) =
∑

s→s1···→sj∈Π(t1,t2,s)

T(s, s1)× · · · × T(sj−1, sj). (C.12)

We have the following cases to consider:

Case 1: s |=K g, with t2 > 0 and t1 6 0

Then any path σ from s satisfies σ |=K hU
>t1,6t2 . Thus, µt1,t2

m (s) = 1.

Case 2: s 2K h, and s 2k g

Then for any path σ from s, σ 2K hUg>t1,6t2 . Since s does not

satisfy g or h, one cannot satisfy the formula by extending the path,

as h must hold until g holds. Thus, µt1,t2

m (s) = 0.

Case 3: s 2 g

Here we have two sub-cases.

(a) t2 = 0

Here, σ �K hU>t1,60g iff s |=K g. Thus, µt1,0
m = 0.

(b) t2 > 0

In this case there must be at least two states on the path. We
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can rewrite such paths σ ∈ Π(t1, t2, s) in terms of a transition

from s to σ ′ where σ ′ is σ after its first state. That is,

σ ∈ Π(t1, t2, s) iff σ ′ ∈ Π(t1 − 1, t2 − 1,σ[1]),

where:

σ = 〈σ[0],σ[1],σ[2] . . .〉.

Then

σ ′ = 〈σ[1],σ[2] . . .〉.

Thus,

µt1,t2

m (s) =
∑

s→···→sj∈Π(t1,t2,s)

T(s, s1)× · · · × T(sj−1, sj)

=
∑
s1

T(s, s1)×
∑

s1→···→sj∈Π(t1−1,t2−1,s1)

T(s1, s2)× · · · × T(sj−1, sj)

=
∑
s1

T(s, s1)× µt1−1,t2−1

m (s1)

The equation for µt1,t2

m (s) satisfies exactly the recurrence of equation

(C.11). We conclude that due to the uniqueness of the solution to this

equation, µt1,t2

m (s) = P(t1, t2, s).

242



appendices

Case 2: t2 = ∞
When t2 is infinite we cannot use the recurrence of equation (C.11), as

this will lead to an infinite number of computations. Since we are looking

for paths of a minimum length t1, we also cannot immediately proceed as

Hansson & Jonsson [49] do. We will instead identify three sets: P,Q and

R. Q is the set of states from which there is no path to g (in any amount

of time) or where neither h nor g holds. P is the set of states, including

those labeled with g, from which there exists at least one path to g that

is shorter than t1. Finally, R is the set of states that always reach g (i.e.

F>1g). Note that it is possible for a state to be in both R and P, as it may

have only paths resulting in reaching a state where g holds, but perhaps

at least some of these may do so in fewer than t1 time units.

We begin by decomposing K into strongly connected components

(SCCs), resulting in a directed acyclic graph (DAG). We add one condition,

which is that all states in an SCC must either be labeled with h or ¬h.

Note that when testing a leads-to formula, h = true, and since all

states are labeled with this, the condition is automatically met. First, we

define a non-trivial SCC as one with at least one node and one edge

(that is, there is one node with a self loop or there are multiple nodes).

We replace non-trivial SCCs with new states that are labeled with all

of the labels of the states comprising the SCC. That is, for an SCC, C,

f ∈ labels(C) if there is a state s ∈ C : f ∈ labels(s). As we are checking

whether a formula, g, will eventually hold, it is enough to know that we

can reach an SCC where it holds.
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Now we can partition the states into the three sets described earlier. We

begin by identifying the failure states Q and inconclusive states P. Akin

to the algorithm of Hansson and Jonsson, we form Q and P as follows.

Algorithm C.1 form-Q
Ss = {s : s ∈ S and g ∈ labels(s)}
Si = {s : s ∈ S and h ∈ labels(s),g /∈ labels(s)}
unseen = Si

⋃
Ss

fringe = Ss
mark = ∅
P = ∅
for i = 0 to |Si| do

if i < t then
mark = mark ∪ {s : (s ∈ fringe and s is an SCC)∨

(s ∈ fringe ∧ ∃s ′ ∈ mark : (T(s, s ′) > 0))}
P = P ∪ fringe

else
mark = mark ∪ fringe

end if
unseen = unseen − fringe
fringe = {s : (s ∈ unseen ∧ ∃s ′ ∈ fringe : T(s, s ′) > 0)}

end for
Q = S− ( mark∪ P)

When there are SCCs in the sets above, this means that all states in the

SCC are removed when an SCC is removed from a set. Similarly, if Q

contains any SCCs, we consider it to contain the set of states comprising

the SCC. Then Q is equivalent to the set Q identified by the algorithm of

Hansson & Jonsson [49].

Now that we have the set of states from which no success is possible,

we now find those (R) for which the probability of reaching a state where

g holds (i.e. a success) is 1. Here we do not concern ourselves with the

amount of time as we already have P and thus know which states will

not always reach g in at least t1 time units. Now we find whether it is

also possible to transition to states from which we will never reach g or
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whether these P states guarantee reaching g. As we are not checking the

length of the paths, we do not need to worry about termination and can

proceed as Hansson and Jonsson do, without decomposing the graph

into SCCs.

Algorithm C.2 form-R
form−Q
Ss = {s : s ∈ S and g ∈ labels(s)}
Si = {s : s ∈ S and h ∈ labels(s),g /∈ labels(s)}
Sf = {s : s ∈ S and h /∈ labels(s),g /∈ labels(s)}
unseen = Si
fringe = Q

⋃
Sf

mark = ∅
for i = 0 to |S− Ss| do

mark = mark ∪ fringe
unseen = unseen − fringe
fringe = {s : (s ∈ unseen ∧ ∃s ′ ∈ fringe : T(s, s ′) > 0)}

end for
R = S− mark

Theorem C.2.2. For structure K = 〈S, si,L,T〉 states satisfying g or h

have been labeled as such. For 0 6 t <∞, the µm-measure of the set of

paths σ from s where σ |=K hU
>t,6∞g is given by P(t,∞, s).
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P(t,∞, s) = if s ∈ R and s /∈ P then 1

else if s ∈ R and s ∈ P and t 6 0 then 1

else if s ∈ Q then 0

else if t > 0 then∑
s ′∈S

T(s, s ′)× P(t− 1,∞, s ′)

else∑
s ′∈S

T(s, s ′)× P(∞, s ′)

(C.13)

P(∞, s) = if s ∈ R then 1

else if s ∈ Q then 0

else
∑
s ′∈S

T(s, s ′)× P(∞, s ′)

(C.14)

Proof. We have three cases to consider.

Case 1: s ∈ Q

By the definition of Q (it is not possible to reach a state where g

holds), µt,∞m (s) = 0.

Case 2: s ∈ R

(a) if s /∈ P

By the definition of R and by s only being in R, this means that

not only will a state where g holds be reached with probability

1, but that there are no paths from s where this will happen in

less than t time units. Thus, µt,∞m (s) = 1.
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(b) if s ∈ P and t 6 0

Now that t 6 0, we are only concerned with whether we

will reach an g state - in any amount of time - i.e. at any

state beginning at s. Thus, since s ∈ R, g is inevitable and

µt,∞m (s) = 1.

(c) if s ∈ P and t > 0.

See case 3.

Case 3: Here we have the cases where we have not yet achieved success

or failure and thus we consider transitions to the next states on

the paths σ from s. The recurrences are similar to that of equation

(C.11), with the difference being that once t 6 0, if we have still not

reached a success/failure state, we no longer need to keep track of

t and thus use exactly the recurrence of Hansson and Jonsson in

equation (C.14). If t > 0, then we can proceed as we did for the

finite case, rewriting the paths in terms of their sequences after the

first state. That is, we know that paths in this category must consist

of at least two states and as before, where σ ′ is σ after its first state:

σ ∈ Π(t,∞, s) iff σ ′ ∈ Π(t− 1,∞,σ[1]). (C.15)

The uniqueness of the solution for P(∞, s) was shown by Hansson

& Jonsson [49]. For the cases where P(t,∞, s) is used, once we know

that P(∞, s) is unique, this recurrence also has a unique solution and

since the µm-measure satisfies the same equation, we conclude that

P(t,∞, s) = µt,∞m (s).
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When handling the case of an infinite upper bound on the path length

Hansson & Jonsson [49] assure that their algorithm for computing the

probabilities recursively will terminate by first partitioning the set of

states, S, into those that guarantee success (g holds), failure (neither h

nor g holds, or it is not possible to reach a state where g holds) or are

inconclusive (h holds, and there is a path to a state where g holds). In

determining these sets, they begin with success states and expand the

“frontier” being explored by one transition during each iteration, only

extending successful paths by previously unseen states. We could not

do this, as we sometimes want to revisit states. This is necessary as

we stipulate a lower bound on the leads-to formula, so we may extend

a too-short path by visiting a cycle. However, if we do not keep track

of unseen states, we again have the problem of an infinite number of

computations.

Instead, we recognized that if we revisit a state, it must be due to a

cycle in the graph. Further, if we know that we have visited a cycle on a

path between some state s and some other state labeled with g, then we

know that we can find a path of at least length t1 between these states for

any t1, where t1 > 0 and t1 6= ∞.
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d.1 probability of a path formula in a trace

d.1.1 Leads-to

We begin with the leads-to formula f ;>r,6s g, and timepoints ti ∈ T

satisfying f and g labeled as such.

Algorithm D.1 leadsto− prob
F = {ti : f ∈ labels(ti)}
S = ∅
for all ti ∈ F do

if check_leadsto(g, ti+r, s− r) then
S = S

⋃
{ti}

end if
end for
return |S|/|F|

Algorithm D.2 check_leadsto(g, ti, s)
if g ∈ labels(ti) then

true
else if (s = 0)∨ (ti = |T |) then

false
else
check_leadsto(g, tt+1, s− 1)

end if

In the worst case, f occurs at every timepoint, g never occurs and s = ∞.

Then, for each t ∈ T , we iterate over the entire set T , making the algorithm
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O(T 2). However, in practice one would not consider the whole set T , but

only the sets of times labeled with g.

d.1.2 Until

We begin with the until formula fU>r,6sg, and timepoints ti ∈ T satisfy-

ing f and g labeled as such.

Algorithm D.3 until− prob
F = {ti : f ∈ labels(ti)}
G = {ti : g ∈ labels(ti)}
S = G
for ti ∈ F do

if check_until(r, s, ti) then
S = S

⋃
{ti}

end if
end for
return |S|/|F

⋃
G|

Algorithm D.4 check_until(r, s, ti)
if (r 6 0)∧ (g ∈ labels(ti)) then

true
else if (f /∈ labels(ti))∨ (ti = |T |)∨ (s = 0) then

false
else
check_until(r− 1, s− 1, ti+1)

end if

d.1.3 Unless

We begin with the unless formula fU>r,6sg, and timepoints ti ∈ T

satisfying f and g labeled as such.

250



appendices

Algorithm D.5 unless− prob
F = {ti : f ∈ labels(ti)}
G = {ti : g ∈ labels(ti)}
S = G
for ti ∈ F do

if check_unless(r, s, ti) then
S = S

⋃
{ti}

end if
end for
return |S|/|F

⋃
G|

Algorithm D.6 check_unless(r, s, ti)
if (r 6 0)∧ (g ∈ labels(ti)) or (f ∈ labels(ti)∧ s = 0) then

true
else if (f /∈ labels(ti))∨ (ti = |T |)∨ (s = 0) then

false
else
check_unless(r− 1, s− 1, ti+1)

end if
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e.1 calculating the probability of a particular cause

Take the structure in figure E.1, where X can cause Y through three paths:

A,B and C. Now let us say we have a particular token instance, where we

know that both X and Y occurred, and want to find the support for the

hypotheses (the three possible paths to Y), given that we know X1 and

Y3. Since we do not know whether A2, B2, or C2 are true, we must first

calculate these probabilities. The probability, P(C2|X1, Y3) is given by 1:

1 − P(¬C2|X1, Y3). (E.1)

Thus we now must compute:

P(¬C2 ∧X1 ∧ Y3)

P(X1 ∧ Y3)
(E.2)

1 In this special case, we could have simplified matters with the observation that:

P(C∨A∨B|X, Y) = 1,

since the only paths from X to Y are through states where one of these conditions is true.
These three conditions (Y,A and B) are also independent given X and Y and thus we
have:

P(C|X, Y) + P(A|X, Y) + P(B|X, Y) = 1,

and thus:

P(C|X, Y) = 1 − [P(A|X, Y) + P(B|X, Y)],

where P(A|X, Y) and P(B|X, Y) are defined as in equation (6.11).
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s1 X

0.1
start

s3 X,A s4X,Bs2 X,C

s5 Y

0.1
0.4

0.35

0.8
0.85

0.85

1

Figure E.1.: Token causality example.

First, taking the numerator, we construct K:

K = {k0 = true,k1 = X,k2 = ¬C,k3 = Y}.

Let us also say that there is a state s0 (not shown in Figure E.1), that is

prior to s1 and from which there is a transition to s1 with the probability

0.1 (shown with the dashed line in Figure E.1). Then, with t = 3, the set

of sequences, Π(t, s), satisfying all ki ∈ K are:

s0 → s1 → s3 → s5, and

s0 → s1 → s4 → s5.

We have two paths from X to Y that do not include a state where C is true

at time 2. Thus,

P(3, s0) = T(s0, s1)× P(2, s1),
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where,

P(2, s1) = T(s1, s3)× P(1, s3) + T(s1, s4)× P(1, s4).

Then, we have:

P(1, s3) = T(s3, s5)× P(0, s5), and

P(1, s4) = T(s4, s5)× P(0, s5).

In both cases,

P(0, s5) = 1.

Substituting this value and the known transition probabilities we find:

P(1, s3) = 0.85× 1 = 0.85, and

P(1, s4) = 0.85× 1 = 0.85,

thus:

P(2, s1) = 0.4× 0.85 + 0.35× 0.85.

Finally,

P(3, s0) = 0.1× (0.4× 0.85 + 0.35× 0.85)

= 0.06375. (E.3)
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This is the numerator of equation E.2. Now we can compute the

denominator similarly with:

K = {k0 = true,k1 = X,k2 = true,k3 = Y}.

We have three paths satisfying our conditions:

s0 → s1 → s2 → s5,

s0 → s1 → s3 → s5, and

s0 → s1 → s4 → s5.

These are all three paths from s1 (where X is true) to s5 (where Y is true).

As before:

P(3, s0) = T(s0, s1)× P(2, s1),

but now:

P(2, s1) = T(s1, s2)× P(1, s2) +T(s1, s3)× P(1, s3) +T(s1, s4)× P(1, s4).

Proceeding as before, with the addition of the path through s2:

P(1, s2) = T(s2, s5)× P(0, s5),

P(1, s3) = T(s3, s5)× P(0, s5), and

P(1, s4) = T(s4, s5)× P(0, s5).
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Once again:

P(0, s5) = 1.

Substituting this value and the transition probabilities we get:

P(1, s2) = 0.8× 1 = 0.8,

P(1, s3) = 0.85× 1 = 0.85, and

P(1, s4) = 0.85× 1 = 0.85.

Thus:

P(2, s1) = 0.1× 0.8 + 0.4× 0.85 + 0.35× 0.85,

and

P(3, s0) = 0.1× (0.1× 0.8 + 0.4× 0.85 + 0.35× 0.85)

= 0.07175.

Finally, substituting this and our previous result (E.3) into equation (E.2):

P(C2|X1, Y3) = 1 −
0.06375

0.07175

≈ 0.11.

The support for C2 ; Y3 is εavg(Ct, Yt+1)× P(C2). To find the proba-

bilities and thus the support for A2 and B2 we repeat this procedure,

changing the set K appropriately. As the calculations proceed in exactly
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the same way, we omit these calculations but note that the probabilities

are:

P(A2|X1, Y3) = 1 −
0.03775

0.07175

≈ 0.47.

P(B2|X1, Y3) = 1 −
0.042

0.07175

≈ 0.41.
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actual cause In terms of token causality, the actual cause is the cause of

an effect at a particular time and place. This is how the term is used

by Pearl [102]. Here it is used synonymously with genuine cause,

and applies to both type and token level cases.

asymmetry (of causation) Causality is asymmetric as the fact that x

causes y does not imply that y causes x. There is also tempo-

ral asymmetry, since it is generally (though not always) assumed

that the cause is earlier than the effect.

background context In this work, unless otherwise stated, background

contexts always refer to causal background contexts.

Bayesian network Also called a Bayes net, this is a graphical model

consisting of a directed acyclic graph, where the absence of an edge

represents conditional independence.

causal background context Relative to a particular effect, this is the set

of all factors relevant to the occurrence of the effect. When looking

at a particular cause of the effect, this may be reduced to the set of

all relevant factors that are independent of the cause (This is the

meaning in Eells’s work. See section 2.3.3.).

causal chain A sequence of relationships, x1 → x2 → ... → xn, where

each xi occurs before and causes the next xi+1.
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causal fork (Salmon and Reichenbach) There are various types of forks

(see conjunctive forks and interactive forks), but common to all of

them is a situation where two things seem correlated due to their

having a common cause.

causal relationship There is a causal relationship between x and y if

either x causes y or y causes x.

causal structure In this work, the term refers to the underlying DTMC

(a probabilistic Kripke structure) that is assumed to be generating

the behavior of the systems we observe.

causal sufficiency A set of variables is causally sufficient if it includes

all of the common causes of pairs on that set. This term is used

primarily by SGS [120].

causally connected (Reichenbach [108]) Two events are causally con-

nected if one is a cause of the other, or if they have a common

cause. In mechanistic theories, two events are causally connected if

they are connected by a mechanism.

causally relevant x is causally relevant to y if it is a positive cause or

negative cause of y. A factor with mixed relevance may also be

called causally relevant depending on the theory.

common cause z is a common cause of x and y if z is a cause of x and z

is a cause of y.

common cause principle (Reichenbach) If two events are probabilisti-

cally dependent, then if there is a third event such that conditional

259



glossary

on this event, the first two are no longer dependent, this third event

screens-off the first two, and is a common cause of both.

conjunctive fork (Reichenbach) With three events x, y and z, they form

a conjunctive fork if one of the events is a common cause of the

other two. That is, there is a correlation between y and z and it is

fully explained once we know x, as it is a cause of both y and z.

context unanimity The notion that a causal relationship must hold in all

background contexts. If x is a positive cause of y, then for context

unanimity to hold, there cannot be any backgrounds in which x is

not a positive cause of y (for example, one in which it is a negative

or neutral cause).

counterfactual (counterfactual conditional) These are of the form: If c

had not happened, then e would not have occurred.

counterfactual causal dependence With distinct events c and e, e causally

depends on c if: were c to occur, e would occur as well and if c

were not to occur, e would not occur either.

deterministic cause Synonymous with sufficient cause.

direct cause This is the most immediate cause of the effect. That is, it

does not bring about the effect by some intermediate factor. Note

that direct causes are relative to the scale at which we are viewing

a system. A direct cause at one level may be an indirect cause at

another. See indirect cause.

directed acyclic graph A graph with directed edges between nodes that

does not contain any directed cycles. In causality this usually
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refers to such a graph where a directed edge goes from the node

representing a cause to the node representing an effect.

dynamic Bayesian network A graphical model that describes the depen-

dencies of variables across time. A common implementation is one

Bayesian network describing the initial state of the system, with a

set of Bayesian networks (one for each time slice) and connections

between them describing dependencies between variables across

time.

epistemology (of causation) Epistemic theories of causality focus not on

what causality is, but how we can find causal relations. (See also

metaphysics (of causation)).

factor (causal) We use the term factor to mean that the causal relata

could be events, properties, facts, mental states, etc. We make no

claims as to what is capable of being a cause.

faithfulness (Primarily used by SGS) The independence relationships in

a causal graph are exactly those of the structure generating it.

genuine cause Usually this refers to the true cause of an effect, relative

to a particular theory. Note that most theories of causality do

not correctly handle all possible cases and thus something may

genuinely cause an effect without being labeled a genuine cause.

When we refer to genuine causes, we mean something independent

of theory: that objectively one thing causes another. Synonymous

with actual cause.
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Granger cause One time series, C, Granger causes another time series, E,

if the probability of E, given lagged values of all available informa-

tion including C, is statistically different from the probability of E

when the information does not include the lagged values of C.

graphical model A graph where edges between nodes (which represent

variables) describe conditional independencies. (See Bayesian net-

work).

indirect cause A cause that acts through some intermediate effects. There

are other events and factors between an indirect cause and its effect.

See direct cause.

insignificant cause A prima facie cause cause that makes little difference

to the effect. Note that some causes may seem insignificant based

on particular data sets, but turn out to be genuine.

interactive fork (Salmon) In this type of fork, two processes intersect

such that they are changed after their intersection and are not

screened off from one another by a common cause.

intervention In interventionist theories of causality, a cause is something

which may be used to alter, or manipulate, its effect. Then, under

an ideal intervention (one that modifies only the cause) the effect

should be modified, while the reverse is not true.

INUS condition An insufficient but non-redundant part of an unneces-

sary but sufficient condition.

Markov chain A sequence of states where the future is independent of

past states, conditioned on the present state.
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mechanism An interaction of parts that produces a particular behavior.

A causal mechanism elucidates how the cause brings about the

effect by detailing the processes connecting them.

metaphysics (of causation) When we discuss metaphysics of causation,

we are referring to what it means for something to be a cause,

what makes something an instance of causation rather than a mere

correlation. Here we are trying to get at the underlying fact of what

is.

mixed relevance x has mixed causal relevance for y if x raises the prob-

ability of y in some causal background contexts, and lowers it in

others. This definition is primarily used by Eells.

necessary cause For an effect e and cause c, c is necessary for e if e

cannot occur without c. That is, every occurrence of e is preceded

by an occurrence of c: e implies c.

negative cause A cause that inhibits, or prevents, the effect. In the case

of probabilistic causality, a negative cause decreases the probability

of the effect.

neutral relevance x has neutral causal relevance for y if x and y are

independent relative to all causal background contexts. That is, for

all contexts K, P(y|x∧K) = P(y|¬x∧K).

omission (causation by) The absence of a factor bringing about the effect.

For example, forgetting to water a plant can cause it to die.

overdetermination See redundant causation.
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perfect fork (Salmon) In this case there is a deterministic relation be-

tween a common cause and two effects, such that the related proba-

bilities are 0 or 1, so it is not possible to determine whether the case

is a conjunctive fork or interactive fork.

positive cause A cause that brings about the effect. In the case of prob-

abilistic causality, a positive cause increases the probability of the

effect.

preemption This is a special case of redundant causation. In this case

the potential causes are not symmetric, one actually occurs earlier,

bringing about the effect and preempting the other from causing

the effect. Difficulties arise when using counterfactual accounts of

causation, as had the first cause not occurred, the second would

have brought about the effect.

prima facie cause A seeming, or possible, cause. In probabilistic theories,

this is simply one that occurs earlier than and raises the probability

of the effect.

redundant causation This refers to token-level cases where multiple

causes of an effect are present, and either alone would cause the

effect. The term is used synonymously with overdetermination.

screening off See common cause principle.

Simpson’s paradox A correlation (positive or negative) between two vari-

ables is found in a general population but one can find subpopula-

tions such that in every subpopulation the relationship is reversed.

In terms of causality, we might find that C is a positive cause of
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E in a general population, but that in every subpopulation C is a

negative cause of E.

spurious A spurious cause is one that may seem genuine – by appearing

to raise the probability of the effect – but that is actually not causing

the effect.

sufficient cause For an effect e and cause c, c is sufficient for e if c alone

is enough to bring about c. That is, every occurrence of c is followed

by an occurrence of e: c implies e. These are also referred to as

deterministic causes. Note that this is not synonymous with causal

sufficiency.

supplementary cause Two events are supplementary causes if the prob-

ability of the effect given that both have occurred is greater than

the probability given either alone. This term is used mainly by

Suppes [124].

temporal priority A cause must be earlier than its effect. Note that this

does not always mean strictly earlier, as some theories allow cause

and effect to be simultaneous.

token cause The token cause of an effect that occurs at a particular point

in spacetime is the cause that also occurs and which is causally

connected to this particular occurrence of the effect.

token level We sometimes refer to two levels of causality. Token level

claims are those that refer to token causes. This is sometimes

referred to as actual or singular causality.
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transitivity (of causation) The notion that if A causes B and B causes C,

that A causes C.

trumping Trumping is a case of both redundant causation and preemp-

tion. Both causes occur, and either alone would have caused the

effect, but in fact the effect is due to only one of the causes. A

common example is the case of a soldier who hears an order to

advance from both a Sergeant and a major. He is actually obeying

the superior officer: the order by the major trumps that by the

Sergeant.

type level Type level claims refer to general properties between factors

or events, such as that between smoking and lung cancer.
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ADCS, see average degree of causal

significance

asymmetry (of causation), 19

average degree of causal signifi-

cance, 31, 89

Bayesian networks, 37–41

belief

and token causality, 150

Benjamini-Hochberg procedure,

234

Bonferroni correction, 233

causal background contexts, 30,

33, 34, 89–90

causal chains, 14, 60, 91

and determinism, 28

and preemption, 15, 29

and transitivity, 15

example, 105–107

causal connection

Reichenbach’s definition, 20

causal fork, 19

causal inference

as model checking, 66–68

data for, 112–114

hypotheses and, 111–112

causal Markov condition, 38

objections to, 40

causal relata, 59–60

causal relevance

Eells’ definition, 31

Reichenbach’s definition, 20

causal structure, 76

causal sufficiency, 40

causality

and time, 2–3, 64–65

as explanation, 1

causation

asymmetry of, 19

causes

as logical formulas, 60–61

genuine, 97–102

identification of, 61–64

insignificant, 88–96

just so, 96–97
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prima facie, 74–79

representation of, 66–68

significance testing and, 120–

128

common cause, 18, 20

common cause principle, 19–20,

38

completeness

of graphs, 38

complexity

of computing εavg, 135–136

of procedures for checking

formulas in traces, 134–

135

of testing prima facie causal-

ity, 135

computation tree logic, see CTL

connecting principle, 144–146

with incomplete information,

151–155

context unanimity, 31

argument against, 93–95

correctness

of procedures for checking

formulas in traces, 128–

134

correlation

limitations of, 1

counterfactual

causal dependence, 14

definition of, 13

theory and structural mod-

els, 43

theory of causality, 12–16

CTL, 220–222

cycles, 109–110

determinism

and causal chains, 28

example, 102–103

diagnosis

as token causality, 138–141

direct causes, 27

directed acyclic graph, 37

discrete time Markov chain, see

DTMC

DTMC, 69

dynamic Bayesian networks, 41–

42, 187, 189

and temporal logic, 41–42

Eells, Ellery, 30–35, 89–90

empirical null hypothesis, 187,

234–235

epistemology
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of causality, 59

error

types of, 233

event

alterations of, 16

definition of, 59–60

example

actual market data, 198–199

barometer and rain, 25

bias and graduate admissions,

20

car accident and seatbelt use,

181–184

causal chains, 105–107

cigarette labeling, 65

cycles, 109–110

determinism, 102–103

golfer and the squirrel, 178–

181

overdetermination, 104

plant and defoliant, 177–178

Ronald Opus, 164–170

Sherlock Holmes, Watson and

Moriarty, 174–177

simulated financial time se-

ries, 191–197

smoking and Simpson’s para-

dox, 21–22

synthetic neural spike trains,

185

testing formula in trace, 115–

116

transitivity, 107–108

factor model, 191–193

faithfulness, 39

objections to, 40

false discovery rate, see FDR

false negative

definition of, 233

false positive

definition of, 233

Fama-French, 193

familywise error rate, 233–234

FDR, 234

computing, 125–128

computing empirical null, 187

controlling, 124, 234

definition of, 233

local, 126–128

financial time series

actual market data, 198–199

results on, 196–199
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formulas

satisfaction in traces, 116–120

frame problem, 51

FWER, 234

genuine causes, 97–102

and false discovery control,

124

and token causality, 149–151

Suppes’ theory, 26

Granger causality, 48–50, 187, 188

and financial time series, 57

and neuronal data, 56

extensions of, 50

graphical models, 37, see Bayesian

networks, see dynamic Bayesian

networks

Hume, David, 8–10, 12

definition of cause, 9

ideal manipulations, 38

inference

BN approach, 37–41

in biology, 55–56

in financial data, 57

in neuronal data, 56–57

structural equations and, 42–

48

insignificant causes, 88–96

and false discovery control,

126, 149

and token causality, 176

definition, 92

example of, 95–96

interval logic, 54–55

intervention, 42, 50

INUS conditions, 10–12

just so causes, 96–97

Kripke structure, 220

probabilistic, 69, 224

leads-to formulas

probability of in traces, 119

satisfaction of in traces, 118

leads-to operator, 73

with lower time bound, 239–

248

Lewis, David, 13–16

revised theory, 15–16

local false discovery rate, 126, 235–

237, see also FDR

definition, 127

locality (in space-time), 9
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modal logic, 52–53

overview of, 50
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Mackie, John Leslie, 10
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Markov condition, 38

metaphysics
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minimal sufficient condition, 11

modal logic, 52–53
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model checking
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PCTL, 228–230
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model inference, 136

multiple hypothesis testing

introduction to, 232

negative causes

and token causality, 176

omission

causation by, 61

overdetermination, 12, 14, 15, 29,
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and token causality, 171–174

example, 104

trumping, 15

PC algorithm, 187
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formulas, 70–72, 224–225

introduction to, 68–74

leads-to operator, 73

path probabilities, 71
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possible worlds, 13
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overdetermination
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definition of, 76
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224
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redundant causation, see overde-
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Reichenbach, Hans, 18–20

representation of causality, 66–68

screening off, 18–22

significance of causes

testing, 120–128
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Simpson’s paradox, 20–22, 213
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Skyrms, Brian, 21
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