SCHWARZ METHODS OF NEUMANN-NEUMANN TYPE
FOR THREE-DIMENSIONAL ELLIPTIC
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Abstract. Several domain decomposition methods of Neumann-Neumann type are considered for
solving the large linear systems of algebraic equations that arise from discretizations of elliptic problems
by finite elements. We will only consider problems in three dimensions. Several new variants of the
basic algorithm are introduced in a Schwarz method framework that provides tools which have already
proven very useful in the design and analysis of other domain decomposition and multi-level methods.

The Neumann-Neumann algorithms have several advantages over other domain decomposition
methods. The subregions, which define the subproblems, only share the boundary degrees of free-
dom with their neighbors. The subregions can also be of quite arbitrary shape and many of the major
components of the preconditioner can be constructed from subprograms available in standard finite
element program libraries. However, in its original form, the algorithm lacks a mechanism for global
transportation of information and its performance therefore suffers when the number of subregions
increases. In the new variants of the algorithms, considered in this paper, the preconditioners include
global components, of low rank, to overcome this difficulty. Bounds are established for the condition
number of the iteration operator, which are independent of the number of subregions, and depend only
polylogarithmically on the number of degrees of freedom of individual local subproblems. Results are
also given for problems with arbitrarily large jumps in the coefficients across the interfaces separating
the subregions.
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1. Introduction. The Neumann-Neumann algorithms are domain decomposi-
tion methods for solving large linear systems of algebraic equations arising from el-
liptic partial differential equations. Their origin can be traced to the work of Dihn,
Glowinski, and Périaux [12]. The algorithms have been developed further by a num-
ber of French scientists in particular Bourgat, Glowinski, Le Tallec, and Vidrascu [3],
De Roeck and Le Tallec [11], Le Tallec, De Roeck, and Vidrascu [25]; see in particular
the thesis of Yann-Hervé De Roeck [10].

We have previously discussed this method, and variants with preconditioners that
include a coarse space component, in two conference papers; cf. Dryja and Widlund
[18,15]. The purpose of this paper is to provide a fuller discussion, to introduce
additional variants of the algorithm, and to give detailed proofs. We also again
address the interesting issue of finding preconditioners with a performance insensitive
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to the jumps in the coefficients that e.g. arise in simulation of composite materials; cf.
De Roeck and Le Tallec [11]. Previous results that are independent of the size of such
discontinuities have primarily been given for preconditioners that can be constructed
from a direct sum of subspaces. Examples of such methods are given in Bramble,
Pasciak, and Schatz [5], Mandel [28,27,26], and Smith [38]; see also the discussion
in Dryja and Widlund [18] or section 2.5 of Smith [37]. For other recent work on
Neumann-Neumann preconditioners that incorporates a coarse solver, see Mandel
[30,31].

It has been known since 1958, cf. Hestenes [24], that the rate of convergence
of a preconditioned conjugate gradient method can be estimated in terms of the
condition number of a generalized eigenvalue problem; see also Golub and Van Loan
[22]. The results for all good algorithms of the Neumann-Neumann class show that
the condition number of the operator, which is relevant for the iterative method,
is bounded polylogarithmically in H/h and that the bound is independent of the
number of subregions. Here H and h denote the typical diameter of a subregion
and an element, respectively. We note that log(H/h) is a measure of the number
of refinement steps if the final triangulation is obtained by successive refinement,
by a fixed factor, starting from an original, coarse decomposition into subregions.
Typically, if a loosely coupled parallel or distributed computer system is used, each
subregion is assigned to one or a pair of processors of the system. Feasible values of
H/h are then dictated by the size of the local memory of each processor. We can
therefore expect that a doubling of H/h would require at least an eightfold increase
in the size of the local memory. If, on the other hand, the number of subregions
and processors grows, it becomes increasingly important that the rate of convergence
should remain close to constant; for a discussion of actual numerical performance of
various domain decomposition methods for three-dimensional problems, see Gropp

and Smith [23], Mandel [28,27,29], and Smith [39].

We focus exclusively on three dimensional problems, and assume that the elliptic
problem is of second order, and that it is defined on a bounded polygonal region 2.
Two model problems are introduced in Section 2 where we also show how the large
linear system of equations can be reduced to a system for the degrees of freedom on T',
the union of the interfaces that separate the subregions. As an introduction, we also
discuss the algorithm in the case of two subregions. In Section 3, we develop basic tools
for the analysis of Schwarz methods. We have written on this subject before but have
found that the current more powerful version of the theory provides improved bounds
in several cases. In Section 4, we prove a result for the original Neumann-Neumann
algorithm. As shown already in Widlund [40], we must introduce a coarse space in
order to make the rate of convergence independent of the number of substructures. A
variety of possibilities are explored in the remainder of the paper where we establish
polylogarithmic bounds, i.e. establish that the algorithms are almost optimal in a
certain sense. Several of these results have previously been announced without proof

in Dryja and Widlund [20].

At times our analysis is quite technical. We have found subtle differences between
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methods sometimes succeeding in establishing a strong result for one method while
failing in the case of another, seemingly quite similar algorithm.

It is known from numerical experiments, as well as theory, that the rate of conver-
gence of many domain decomposition algorithms is adversely affected by high aspect
ratios of the subregions; see e.g. Mandel and Lett [33] and Smith [37]. It is believed
that the Neumann-Neumann algorithms are less sensitive to extreme geometry than
the iterative substructuring methods of Bramble, Pasciak, and Schatz [5], Dryja [13],
and Smith [38]. We know of no systematic experimental study comparing the perfor-
mance of the Neumann-Neumann and other main contending algorithms for difficult
problems in three dimensions, but recent results by Mandel and Brezina [32] indicate
that the Neumann-Neumann algorithms indeed are quite promising in this respect.
We note, however, that the Neumann-Neumann algorithm can be up to twice as expen-
sive per step as the Neumann-Dirichlet algorithms introduced in Dryja, Proskurowski,
and Widlund [14], Dryja [13], and Widlund [40]; cf. discussion in Section 2. At this
time, it is not clear how much more robust the Neumann-Neumann algorithms, which
treat the subregions in a fully symmetric way, are than the Neumann-Dirichlet meth-
ods if equal care is exercised in designing a proper scaling of the variables.

2. The Finite Element Model Problems. To simplify our presentation, we
consider only two model problems: a standard Poisson equation and a special second
order problem with discontinuous, piecewise constant coefficients.

Model Problem I is of the form:

Find u € Hj(Q) such that

(1) a(u,v) = f(v), Vo € Hy(R)

(2) a(u,v):/QVu-V'vdx, f(v) :/va dx

and Hj () is the subspace of H'(§2) with zero trace on 952, the boundary of €. It is
well known that this bilinear form defines the standard seminorm of H'(). We also
consider the case where an essential boundary condition is imposed only on a subset
0Qp C 0N of positive measure with a natural boundary condition on its complement
00y = 0Q \ 0Qp. By Friedrichs’ inequality, a(-,-) is still positive definite; cf. Necas
[35].

The region € is a bounded, polyhedral region in three dimensions. A coarse trian-
gulation is introduced by dividing €2 into nonoverlapping simplices ;, t = 1,..., N,
also called substructures. We assume that 0{2p is the union of the closure of faces of
some, or all, of the boundary substructures. The substructures €2; are further divided
into elements in such a way that a conforming triangulation of all of €2 is obtained.
We associate parameters H and h with these coarse and fine triangulations and as-
sume that all the substructures and elements are shape regular in the sense common
in finite element theory. All our results, except those in Section 5, can be extended to
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non-simplicial substructures. The sets of nodes in ;, 9€; are denoted by €, 5, 98, 1,
etc.

Let V(Q) be the finite element space of continuous, piecewise linear functions,
defined on the fine triangulation, which vanish on 0€2p. The discrete Model Problem I
is of the form:

Find u, € V" such that

(3) a(up,vy) = flon), Yo, € V"
or alternatively, find = such that
(4) Kz=5b

Here K is the stiffness matrix with elements k;; = a(¢;, ¢;) and ¢; and ¢; are standard
finite element basis functions. z is the vector of nodal values and b the load vector
with elements f(¢;).

Our results can be extended to general conforming finite element approximations
and self-adjoint, second order, elliptic problems. This includes cases where the co-
efficients are discontinuous and vary greatly from substructure to substructure. For
some of our algorithms, we are able to obtain bounds that are independent of the size
of the jumps. In particular, we consider Model Problem II, in which case

(5) a'?(u,v) = /Q p(x)Vu-Vuodz

with p(x) > 0. We assume that the jumps of p(z) occur only at substructure interfaces
and, for simplicity, that the coefficient takes on a constant value p(z) = p;, @ € @, in
each substructure. We can easily generalize our results to the case when the relative
variation of p(z) over each subregion is modest.

In a first step of many domain decomposition methods, all unknowns except
those common to at least two substructures are eliminated, by Gaussian elimination,
reducing the system (4) to a system of linear algebraic equations for the nodal values
on the interface I' only. We now describe this procedure.

Let K be the stiffness matrix of the bilinear form a;(up,vr) = aq,(un,vr)
which represents the contribution of the substructure §2; to the integral a(up,vy) =
aq(up,vy). Let x and y be the vectors of nodal values that correspond to two arbitrary
finite element functions uy, and vy, respectively. Then the stiffness matrix K of the
entire problem can be obtained by using the method of subassembly,

(6) J:TKy = Z;c(i)TK(i)y(i)

Here z() is the subvector of all nodal parameters of €; U 9€Q;. We represent K as

K9 K4
(7) KOT g0
15 Kpp
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dividing the subvector ) into two, :L’(Ii) and xg), corresponding to the variables that
are interior to the substructure and those on I', respectively. All of the latter are
shared with at least one other substructure. In the case when 9y is not empty, we
allocate the degrees of freedom on 90 \T" to the appropriate sets of interior variables.
We note that given the K for Model Problem I, we can, after introducing weights
pi, easily assemble the stiffness matrix for Model Problem II in the same way as in
the formula (6).

Since the interior variables are associated with only one of the substructures, they
can be eliminated locally and in parallel. The resulting reduced matrices are Schur

complements and have the form
®) 6 = K8l - K0T K]

It now follows straightforwardly that the Schur complement corresponding to the
global stiffness matrix A and the nodal values of I';, is given by S where

) S = T 4" S04

We note that this is also a process of subassembly and that we can obtain the Schur
complement for Model Problem II from the weights p; and the S of Model Problem I.
If the local problems are solved exactly, what remains is to find a sufficiently accurate
approximation of the solution of the linear system

(10) Szp = bg

The new right hand side b is obtained from the elimination of all the sets of interior
variables. We note that the elimination of the interior variables of a substructure can
be viewed in terms of an orthogonal projection, with respect to the bilinear form, of
the solution u;, of (3) onto the subspace H}(Q;) N V. (We will always tacitly assume
that HJ(2;) is extended by zero outside of €;.) These subspaces are orthogonal, in
the sense of a(-,-), to the piecewise discrete harmonic functions defined by

(11) a(up,vp) =0, Vo, € Hy(Q)NV" i=1,...,N
or alternatively by
(12) KWW 4 kW0 —0 i=1,...,N

From now on, we will only consider finite element functions and drop the subscript
h from our functions.
It is convenient to rewrite (10) in variational form. Let s;(u,v) and s(u,v) be the

forms defined by (9), i.e.
(13) si(u,v) = :cg)S(i)yg) and  s(u,v) = v5Syp

In what follows, it is convenient to associate the bilinear form s;(-,-) with Model
Problem I and write those of Model Problem II as p;s;(-, ).
)



Equation (10) can be rewritten as

(14) yLSxg = yLbs, Vyg or s(u,v) = f(v), Vv e VHIT)
For Model Problem II, we obtain the bilinear form s(?)(-, -), by subassembly, from the
forms p;si(-,-).

Here, and in what follows, u is the discrete harmonic part of the solution and
V(T) the subspace of V"(Q) spanned by the nodal basis functions associated with
the nodes on I'. It is easy to see that since u is discrete harmonic, we can instead use
discrete harmonic functions, uniquely defined in terms of their values on I, as test
functions. In what follows, we will therefore primarily regard V*(T') as a space of
discrete harmonic functions.

Problem (10) can be solved by a variety of Neumann-Neumann methods, some of
which will be described as Schwarz type methods in this paper. As an introduction, we
now consider the case of two substructures; see Bjgrstad and Widlund [1,2] for early
work on a variety of algorithms. In the two substructure case, it is natural to denote
the subvectors of nodal values associated with the two substructures €24, €2,, and their
common interface I' by (), 2 and 2, respectively. Then, the construction of an
iterative substructuring method amounts to finding a preconditioner for

§.(3) — (5(1) + 5(2))50(3) —

The well-known Neumann-Dirichlet method corresponds to multiplying this equation
by (SM)=1 or (@)1, and solving the resulting equation by a conjugate gradient
method. The Schur complements need not be explicitly computed and the action of
(SM)~! on a vector can be found at the expense of solving a problem on €y, with
appropriate Neumann data on I', and then extending this solution continuously to
2, by solving a Dirichlet problem; cf. Bjgrstad and Widlund [2]. For the Neumann-
Neumann method, we instead use (SM)™' + (37! treating the subregions in a
symmetric way. We then have to solve one Neumann and one Dirichlet problem on
each subregion in each step of the iteration.

In the case of many regions, a Neumann-Neumann method can be derived from
a special Neumann-Dirichlet algorithm if there is a red-black ordering of the subre-
gions; cf. Dryja [13], Dryja and Widlund [18], and Widlund [40]. Good bounds can
therefore be obtained, for certain variants of the Neumann-Neumann method, from
older results on the Neumann-Dirichlet algorithm by noting that the operator of the
preconditioned system of equations is the sum of two Neumann-Dirichlet operators
corresponding to a red-black and the corresponding black-red ordering. We also note
that the preconditioner for the original Neumann-Neumann algorithm can be con-
structed from the (S(i))_l, and certain diagonal scaling matrices, by a subassembly
process; cf. De Roeck [10]. Here we have ignored the technical complication stemming
from the fact that the Schur complements, corresponding to interior subregions, can
be singular. This is no longer an issue for the algorithms, considered in this paper.

3. Abstract Schwarz Methods. In this section, we describe and analyze the
convergence of abstract Schwarz methods. This is a modification of a theory that
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has been developed previously for the additive case by Dryja and Widlund [16,17,19]
and Nepomnyaschikh [34]. A difference is that we now include the effects of inexact
solvers from the beginning.

Let V be a finite dimensional space with the scalar product b(u,v). We consider
the abstract problem

(15) b(u,v) = f(v), YvoeV
and let
V=W+Vi+---+ Wy

This is not necessarily a direct sum of spaces; in many cases of interest, the represen-
tation of an element of V in terms of components of the V; is not unique. The first
space Vy represents a special coarse subspace. If no such space is used, it is just left
out of the consideration.

Let b;(u,v), © =0,---, N, be symmetric, positive definite bilinear forms on V; x V;.
We introduce operators 7;: V — V;, by

(16) bi(Tiu,v) = b(u,v), Yv eV,
and put
T=Ty+ T+ +Ty

A possible choice is b;(u, v) = b(u,v). In that case, the operator T; = P;, the projection
which is orthogonal with respect to the inner product b(-,-).
We replace (15) by

N
(17) Tu=g, 9=y ¢ ¢i=Twu
=0
The right hand side ¢ is obtained by solving
bi(gi, vi) = bu,vi) = f(vi), Vo€V

Equation (17) is typically solved by a conjugate gradient method, without further
preconditioning, using b(-,-) as the inner product.

THEOREM 1. Let

(i) there exist a constant Cy such that for all w € V there exists a decomposition
u = Efio u;, u; € V;, such that
N

bi(ug, ui) < CEb(u,u)

=0

K3

(it) there exist a constant w such that for i =0,..., N,

bu,u) < wb(u,u), Yu eV,
7



(ii1) there exist constants €, 1,7 =1,..., N, such that
b(u,u;) < eijb(ui,ui)lm b(uj,uj)l/?, Yu; € V;, Yu; € V;
Then, T 18 invertible and
(18) Ci2b(u,u) < b(Tu,u) < (p(E) + Dwb(u,u), YueV

Here p(€) is the spectral radius of the matriz £ = {e; }

1,5=1"

Proof. The left inequality: By (16) and assumption (i), we have

b(u7 u) = Zﬁo b(uv uz) = Ef\;() bz(ﬂ”) ui)
< (SN b(Tou, Tw)) (2N by, ui) )2
< (2N b(u, Tru) )'* Co(b(u, u) )72

Hence, T is invertible and
b(u,u) < Cob(Tu,u)

The right inequality: We first note that it is easy to prove, using the definition of
the T; given in (16) and assumption (ii), that ||Z;||, < w. Indeed,

W(Tiu, Tiu) < wbi(Tiu, Tiu) = wb(u, Tiu)
< cob{us,u) "2 Tow, Tou) >

Thus,
W T, Tou) < b, )

which implies || Ti|[s < w.
Using assumptions (iii) and (ii) and the definition of the T}, we obtain
b(zf\;l Tiu, Eﬁl Tiuw) = E?;’:l W(Tiu, Tju)
< E?;:l e b(Tou, Tiu ) 20(Tyu, Tiu)'/?
< Sl € (IT T3 l1) 20 Tiwe, ) 2 0( Ty, w)' 2
< HE0 TN, WTiu, )
< p(E)wb(u, u)' Po(L, Tru, 0L, Tou)'/?

Hence,

N N
W3 T, 5 Tow) < () but )
=1 =1

and therefore

(19) b(; Tiu,u) < p(E)wb(u,u)
8



Finally, we note that
b(Tou,u) < wb(u,u)

and complete the proof of the right inequality of (18) by adding the two last inequal-
ities. O

We remark that the theory easily can be extended, with minor modifications, to
cases where there are several special spaces. Thus, if there are two such spaces, we
exclude them both when considering the strengthened Cauchy-Schwarz inequalities of
(7217) of Theorem 1 and the factor (p(£)+ 1) is replaced by (p(€) + 2). We also remark
that an examination of the proof shows that the upper bound of T' can be replaced by
([)(é) + ||Zo||») b(w, ). Here the elements of £ are given by ||E||;/262']'||T]'||;/2. We note
that the rate of convergence of an additive Schwarz method is affected by the scaling
of the bilinear forms b;(-,-), relative to each other, and hence the scaling of the T;.
Not only the upper but also the lower bound on 7' is affected. It is also easy to show
that if we normalize the operators T; so that they all have norm 1, then the bound
for the condition number of the additive algorithm will be at least as good as before.

There is a corresponding theory for the multiplicative Schwarz methods. The
principal contributors are Bramble, Pasciak, Wang, and Xu [6], and Xu [42]; cf. also
Cai and Widlund [9] for a variant of the theory for nonsymmetric and indefinite
problems. In the multiplicative case, we need to provide an upper bound for the
spectral radius, or norm, of the error propagation operator

(20) Ex=(I-Ty) - (I-T)

Examining the factors of this product, we note that |[I — T;||, > 1 if ||Ti]|, > 2.
Therefore an assumption that w < 2 is most natural. If w is too large, we can scale
the bilinear forms b;(-,-) to decrease ||T;||, appropriately. As previously noted, the
parameter Cy also changes if the T}, and hence the b;(-, -), are rescaled. It is also clear
that a multiplicative method might be very slow if some of the ||T;||, are very small.

The result that we are going to state in Theorem 2 will, for technical reasons,
be given in terms of @ = max(1l,w) rather than w. This bound is of interest only
when the parameter w < 2 and is bounded from below away from zero. The result is
expressed in terms of @ and the two other parameters of Theorem 1 and is a variant
of results due to Bramble, Pasciak, Wang, and Xu [6].

THEOREM 2. The error propagation operator of the multiplicative Schwarz algo-
rithm satisfies

(2-4)
E < 1-
Bl = J (1 +202p(EP)C3

Here © = max(1l,w).
Proof. Our task is to estimate the norm of the error propagation operator Ey of
the multiplicative Schwarz method. We begin by observing that with

Ei=I-T;)---(I-T), E.,=1I,
9



and R]' = QTJ — Tf = (2 — Tj)Tj
we have

E'E; -~ E!,\E;;1 = E'R; 1 E;

Here, and in what follows, the transpose is with respect to the bilinear form b(-,-).
This leads to the identity

N
(21) I-ENEn=) E/  RE;,

=0

It is easy to see that a satisfactory upper bound for ||Ex||s can be obtained by showing
that the operator on the right hand side of (21) is sufficiently positive definite. We
note that, for w = max||T}||, < 2, the operators R; are positive semidefinite and that

R]' Z (2 — w)T]- Z (2 — (.(AJ)T]

Therefore,
N

(22) I—EYEn>(2-0)Y E" \T,E;i
7=0

A direct consequence of the definition of the operator E; is that

i-1 -1
(23) I=E_1+Y TvEx1=E; 1 +To+ > TiEr
k=0 k=1

For 57 > 0, we therefore obtain
j-1
W(Tju,u) = b(Tju, Ej_yu) + 6(Tiu, Tou) + > b(Tju, Ty Ey_qu)

k=1

This expression can, by using Schwarz’s inequality, the upper bound on ||T;||5, and
the definition of the ¢;;, be bounded from above by

j—1
b(Tju, u)l/2(b(T]’Ej_1u, E]‘_lu)l/2 + b(TjTou, Tou)l/2 +w Z Ejkb(TkEk_lu, Ek_lu)l/Q)
k=1

Since €;; = 1, we can combine the first and third terms. Denote by ¢ a vector with
the components

Cp = b(TkEk_l’LL, Ek_lu)l/Q’ k = ]_7 . 7_Z\f
Cancelling a common factor and using elementary arguments, we find that

b(Tju,u) < 2@2(5c)§ + 26(T; Tou, Tou)
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We now sum from j = 1 to N, use (19), and add the term b(Thu, u) to both sides and
obtain

b(Tu,u) < 20°p(E)* el + (1 + 26%0(€))b( T, u)

and finally,

N
b(Tu,u) < (14 25%(€)2) S b(EL Ty B,y u)

i=0

The proof can now be completed by using (22) and the lower bound given in Theorem
1. O

We will only formulate our results for additive Neumann-Neumann algorithms.
However, all our proofs rely only on bounds on the three parameters Cy,w, and p(E).
Therefore there are no difficulties in formulating results for the corresponding multi-
plicative Schwarz algorithms.

We note that there are many other variants of the basic algorithms that can
be analyzed similarly. We note that one of the most powerful of the algorithms is
obtained by solving the equation

(I—Ex)u=3§

by the GMRES method or another conjugate gradient type method for nonsymmetric
problems; cf. Saad and Schultz [36]. A preconditioner for the standard conjugate
gradient method can also be obtained from a symmetrized version of the multiplicative
method; see Cai [8] and Dryja, Smith, and Widlund [15] for further discussion.

4. A Method Without a Coarse Space. We only consider Model Problem I,
i.e. when s(u,v) is derived from the bilinear form given by (2). Let V;(I') C V*(T') be
the subspace of discrete harmonic functions that vanish on I'y \ 9€; . It is then easy
to verify that

(24) VAT) = V(D) + -+ + V(D)

Using the notations of Section 3, we choose V = VH(T'), V; = Vi(T'), : = 1,2,..., N,
and b(u,v) = s(u,v). There is no coarse space Vj.

The auxiliary bilinear forms b;(u,v): V;(I')x V;(I') — R, are introduced in terms of
a set of bilinear forms 4;(-,-) and counting functions v; € V*(T"), which are associated
with the 0€Q;. The bilinear forms §;(-,-) on V; x V; are defined similarly to the s,(-, )
of Section 2, but in terms of the bilinear form

1
(25) a;(u,v) = /91 Vu- -Vovdx + 72 /Qz uv dz

Thus, §;(u,v) is the bilinear form given by the Schur complement with respect to

a;(u,v). The second term in a;(u,v) is introduced to make the local problems, related

to the b;(u,v), nonsingular. We remark that for the algorithm considered in this
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section, we can replace 1/H? in the last term in (25) by a positive constant and still
obtain as strong a result on the condition number. However, we have chosen a scaling
that makes the smallest eigenvalue of a;(-,-) of the same order of magnitude as the
smallest nonzero eigenvalue of the Neumann problem, of the Laplace operator, on the
same subregion.

The auxiliary bilinear forms, which complete the definition of this Schwarz algo-
rithm, are given by

(26) bi(u,v) = ai(Hi(viu), Hi(viv)) = §(In(viu), In(viv))

Here I}, is the interpolation operator onto V(). H;w is the discrete harmonic exten-
sion, with respect to the bilinear form a;(+, -), of the finite element interpolant I,w of
the values of a continuous function w defined on 9€2;, i.e. the solution of a Dirichlet
problem

ai(Hw,v) =0, Yoe Vi HY ()

with 7:(2w(”c) = w(x), v € 08, . (Similarly, the discrete harmonic extension, in the
sense of a;(+,-), of w is denoted by H;w.) The counting functions v; are defined by

vi(x) = number of 0Q;, to which z € 99Q;; belongs
I/Z(T}) = 0, T € Ph \ 6Qi7h

Thus at the nodes of a face F;; of €, i.e. the interior of the intersection of the closures
of two adjacent substructures §2; and Q;, v;(z) = 2, while v;(z) > 2 for any nodal
point on the wire basket W;, formed by the union of the edges and vertices of the
substructure €Q;. If 9€); intersects €2 then we set

(27) I/Z($) = 1, T € (aQ¢7h N th) \ Ty
The pseudo inverses I/;r of the v; define a partition of unity, i.e.

Sul(z)=1, z€TUQ

Here v(z) € Vi(T') is defined by

(28) vi(z) = vi(a)™Y, 2 € 0%y, vi(z)=0, z e (TUa)\ o,
The operators T;: V* — V;, are introduced by

(29) bi(Tou,v) = s(u,v),  VYveV

and the operator T by

T=T + - +Ty
12



THEOREM 3. For all u € VMT), with the T; defined by (29), and for Model
Problem 1,

(30) YoH?*s(u,u) < s(Tu,u) <y (1 +log(H/R))s(u,u)

Here v and v, are constants independent of H and h.
In preparation for the proof of Theorem 3, we formulate several auxiliary results.

We use the weighted norm defined by (25),

||u||12111(§2¢) = |u|121[1(9¢) + EHUH%Q(Q)'
LEMMA 1. For allu € V()

hed . fu(@)* < C(1+log(H/h))|ulliq,)

zEW; p

Here W, ), 1s the set of nodes on W;, the wire basket of ;.

This lemma is virtually identical to Lemma 4 of Dryja [13]; cf. also Lemma 2.4
in Bramble and Xu [7].

We need an estimate of the discrete harmonic extension of boundary values ob-
tained by replacing the values on 0€; ) by zero except on one face F;;. Let 6;; €
Vi(T') + Vi(T') be defined by its boundary values 6;;(z) = 1, « € F;jn, and 6;;(z) =
0, @ € I'y \ Fij 4. An estimate of the norm of this discrete harmonic function is given
in Dryja, Smith, and Widlund [15].

LEMMA 2. Let 6;; be defined as above. Then

16|51 0,y < CH(1 + log(H/R))

The proof of the next lemma differs only slightly from that of Lemma 3 in Dryja [13];
see also Dryja, Smith, and Widlund [15].
LEMMA 3. Let 6;; be defined as above and let u € V*(€);). Then,

[Hi(0u)lf 0 < C(1 +log(H/R))* [ullf g,

Before we prove Theorem 3, we establish an additional auxiliary result, which is
closely related to part (ii) of Theorem 1.

LEMMA 4. Consider Model Problem I and let the bilinear forms b;(-,-) and s(-,-)
be defined as in (26) and (13), respectively. Then, for ¢ > 0,

s(u,u) < C(1 4 log(H/R))b;(u,u), Yu € V;
Proof. ForueV,,1=1,...,N,
(31) tyw) = siCay ) + 3 55ty )

J
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where the summation is over the €2; that have a face F;;, edge &;;, or vertex V;; in
common with ;. We first show that

(32) si(u,u) < C(1 4 log(H/R)) bi(u,u), Yu eV

We decompose u into two terms, u = %Ih(l/iu) + %Ih((Z —v;)u), using the counting
function v;. We note that the second term vanishes on the faces of ;. It is elementary
to show that

(33) si(u,u) <

¢

Si(Ih(l/iu), Ih(yzu)) -+ %SZ(I}L((Q - I/Z')u), Ih((Q - yi)u))

N —

The first term is bounded by %§i(Ih(1/Z-u), Ii(vu)) = %bi(u, ). This follows from basic
properties of discrete harmonic functions and the definition of b;(+, ). To estimate the
second, we use Lemma 1. We note that the energy of a discrete harmonic function can
be bounded from above by the function obtained by extending its boundary values
by zero. We combine this observation with a simple computation of the energy of a
function which vanishes at all nodes except those on the wire basket. We obtain

si(In((2=vi)u), In((2—vi)u)) = ai(Hi((2—vi)u), Hi(2—vi)u) < Ch D |(2 = vi)u(a)|?

z€W;

Since (2 — vi(x))/vi(x)] £ C,x € W;p, we can use Lemma 1 to estimate the right
hand side of this expression by C(1 4+ log(H/h))b;(u,u) as required. Inequality (32)
has thus been established.

We now consider s;(u, u) of a substructure ; that has only a vertex V;; in common
with 0€2;. It is easy to see, using an inverse inequality and Lemma 1, that

si(w,u) < Chlu(Vij)|* < ChEoew, , [vi(z)u(z)]®

(34) < C(1 +1log(H/R))bi(u,u)

Here we have used the fact that v; is bounded from below on 0€); and the definition
of b;(u,u).

We next estimate s;(u,u) of a substructure that has an edge &;; in common with
09);. Proceeding as in (34), we obtain by the same argument,

5i(uu) < OhTaes,, u@) < ChToem,, lile)ule)

(35) < C(1 +log(H/h)) bi(u,u)

We finally estimate a term s;(u, u) of a substructure that has a face F;; in common
with 9€;. We use the decomposition v = I;(6;;u)+ I,((1 —6;; )u). Since v;(z) = 2,z €
Fijh, We obtain

(36)  sj(u,u) < %Sj(fh(@ﬂ/iu)afh(ez'ﬂ/z'u)) + 28;(In((1 — 6;)u), In((1 — 6;5)u))

Using Lemma 3 and the definition of b;(u,u), the first term can be estimated by
C(1+log(H/h))*b;(u,u). The common argument of the second term of (36) vanishes
14



at all nodes except those on the wire basket W; and the term can be estimated using
the techniques already developed in this proof.
Substituting these bounds into (36), we obtain

si(u,u) < C(1+log(H/R))*b;(u,u)

The proof of the lemma is now completed by using formula (31) and the estimates of
the individual terms. 0O

We now return to Theorem 3. The proof consists of estimating the three param-
eters of Theorem 1.

Proof. Assumption (i): We use the partition of unity defined by the I/Z»T and choose
u; = Ih(yju), i =1,...,N, where u € V*(T'); see (28). It is easy to see that u; € V;,
that u = >N, u;, and that

bi(ui,u;) = &i(ﬂiu,f{iu) < a;(u,u)
cf. (26). Hence, by subassembly and Friedrichs’ inequality, we obtain

al 1 1 1
bi(us,u;) < alu,u) + —=(u,u)rz2) < C—a(u,u) = C—s(u,u
" ) < o) + (o)) <€) = Cgrzs(ae)
Here C' can be chosen as H? + A\[' with \; the smallest eigenvalue of the Laplace
operator on {2 with the boundary conditions of the original problem. This estimate
shows that the parameter C? of assumption (i) is bounded by C'/H?, as required.

Assumption (ii): A bound of the form w < C(1 +log(H/h))? is obtained directly
from Lemma 4.

Assumption (iii): It is easy to see that p(&) is bounded by a constant that is
independent of the number of substructures since the number of substructures, to
which any z € {2 belongs, is uniformly bounded. O

A variant of Theorem 3 has previously been established in De Roeck and Le
Tallec [11]. We believe that our proof, based on Theorem 1, is simpler. We also
note that an estimate of the condition number as in Theorem 3, but with a factor
H*(1+log(H/h))*, i.e. with an additional factor (1 4 log(H/h))?, was given already
in Theorem 4 of Dryja and Widlund [18]. In that paper, we also discussed the special
case when there is a red-black ordering of the substructures and indicated how certain
estimates for algorithms with coarse spaces could be derived from earlier work on the
Neumann-Dirichlet algorithm. In such a case a bound with a factor (1 + log(H/h))?
suffices; cf. e.g. Dryja [13].

4.1. Remarks on Implementation. We now briefly discuss how the method
can be implemented. We certainly recommend the use of a preconditioned conjugate
gradient method, but for simplicity, we consider only the first Richardson method for
solving the equation

N
(37) Tu=g, g=3 Tu
=1
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Here the T; are defined by (29). The Richardson iteration is defined by
u"t =" — 7T (" — )

The best choice of the acceleration parameter is 7 = 2/(Apin(T) + Apmaz(T)); some
information on the spectrum is necessary for a good choice of the parameter 7. Let
r" = T(u" —u) = YN, r* where v = Ti(u" — u). To find r® € V;, we solve

(38) bi(r,v) = s(u”,v) — f(v) = F(v), YveV,

We use q;k = Ih(z/;r¢k) as test functions where ¢y, is the standard nodal basis function
associated with the nodal point x; € 0€;. We can rewrite (38) as

a7, o) = F(dr), Vi € V()
cf. (26). Here 7" = I(v;r?) and F(qﬁk) = F([h(y;f(/ﬁk)) for any ¢ associated with a

node of 9€2; ;. F(qﬁk) vanishes for any ¢; associated with an interior node. To compute

the values of s(u”™, ¢x), we must solve
ai(Hiu™,v) =0, Yo HY(Q)NVHQ), i=1,...,N
with Dirichlet data given by u” on 0€; \ 9Qx.

In summary, in each step and for each substructure, we must solve a Neumann
problem for the local problem defined by the positive definite form a;(-,-) and a
Dirichlet problem for the original elliptic problem. In addition, we have to compute
and assemble the contributions to the residual from neighboring substructures and
carry out some basic linear algebra operations. The same observations are valid for
the conjugate gradient version of the algorithm.

5. A Method with a Standard Coarse Subspace. We now describe a vari-
ant of the Neumann-Neumann method with a preconditioner which incorporates a
mechanism for the global transportation of information. The factor 1/H? can now be
removed from the estimate of the condition number that follows from Theorem 3. We
consider Model Problem I only; we have not been able to provide a good bound which
is independent of the values of the coefficients of Model Problem II; cf. the discussion
of this issue in Dryja, Smith, and Widlund [15]. We use the decomposition

(39) VID) =Vo+ Vit -+ Wy

Vo(T) is the restriction of VH(Q) to T where V(Q) C V(Q) is the space of piecewise
linear, continuous functions, defined on the coarse mesh, and which vanish on 0. (In
its present form, this algorithm is limited to the case where the set of substructures
form a regular finite element triangulation of 2.) We use

bo(u,v) = s(u,v).

The spaces V;, t = 1,..., N, are defined as in Section 4, i.e. V; is the subspace of
discrete harmonic functions that vanish on I'y, \ 9Q; ;. The bilinear forms b;(-,-) are
defined by equation (26).
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The operators T; and T are defined as before in terms of the bilinear forms and
subspaces, i.e. by

(40) bz(T'zl%U) = S(u,'l)), velV;
and by
T=Ty+Ti+ - +Ty

THEOREM 4. For all u € VH(T'), with the T, defined by (40), and for Model
Problem 1,

(41) 7o S(uv u) < S(Tu7 u) < 71(1 + 1Og(H/h))2 3(u7 u)
Here vy and v, are constants independent of H and h.

Proof. Assumption (i): Let ug = Qou where Qq: V() — V4, is the Ly-projection;
cf. Bramble and Xu [7] and Xu [41] for a detailed discussion of the properties of this
operator. In particular, ¢}y is bounded in the energy norm and w = u — ug satisfies

w7,y < CHulfi g

w 1s decomposed, as in Section 4:

N N
w = Zuz = th(ij).
=1 =1

Using the H!—stability of Qo, we see that
bo(wo, o) = s(ug, o) < Cs(u,u)

By using the definitions of the u; and b;(-,-), we find

N N

S ~ 1
S b(us) = 32 6w Fw) < ol + 2ozl
=1 =1

The two terms on the right hand side can be estimated by Cs(u,u) by using the
H'—stability of Qp, and the bound on the Ly—norm of w, respectively. We thus
obtain an estimate of the parameter of Assumption (i): C3 = C.

Assumption (ii): Since we use an exact solver for the coarse space, ||Ty||s = 1.
The bound for the other subspaces follows directly from Lemma 4.

Assumption (iii): By exactly the same argument as in Theorem 3, we see that
p(€) <C. O

The implementation of this method is similar to that of Section 4 . We only note
that the problem defined in Vy = V¥ reduces to a regular finite element problem
defined on the coarse mesh.

17



6. A Method with a Coarse Space of Minimal Dimension. The algorithm
in this section has much in common with a method developed and analyzed recently
by Mandel and Brezina, cf. [30,32,31]. Essentially the same coarse space is used,
but our results and algorithms differ in several ways. Thus, we are able to design
algorithms with good bounds without imposing extra restrictions on the intersection
of the boundaries of the individual substructures and that of the original region. We
consider both Model Problem I and IT and show that the condition number is bounded
by C(1 + log(H/h))>.

The coarse spaces used in this Neumann-Neumann method is of minimal di-
mension with only one degree of freedom per substructure. We note that the basis
functions of this space have been used by Bramble, Pasciak, and Schatz [4,5] in the
design of an algorithm to solve the coarse problem, which in their case also involves
a number of additional degrees of freedom.

Before we introduce the subspaces and bilinear forms that define the method, we
partition the set of substructures into two sets N7 and N, respectively. The boundary
of a substructure in Ny intersects 9p in at least one point while those of the other,
the interior set Nj, do not. The set N is further divided into three disjoint subsets
NB.r, N g, and Ngy. The boundaries of these substructures have a face, only edges,
and only single vertices in common with 0€2p, respectively.

We first consider Model Problem I. The coarse space is defined by

Vo = span{v }ien,

where the generalized inverses v/ € V*(I') of the counting functions are given by (28).
It follows from the definition of the counting functions that an element of Vj takes on
constant values at the nodes of each face and of each edge. We note that when Model
Problem II is considered, later in this section, we will modify these basis functions and
enrich the coarse space by adding similar functions for the boundary substructures
in the set N y. In fact, we could use a larger coarse space with an additional degree
of freedom for each of the boundary substructures without any adverse effect on
our spectral bounds. Later we will also modify the bilinear forms for the boundary
substructures in the set N g.
The bilinear form for Vj is chosen as

(42) bo(u,v) = (1 +log(H/h))™* s(u,v)

The spaces Vi(T'), ¢ = 1,..., N, are the same as in Sections 4 and 5 and the
bilinear forms are also chosen as before; cf. (26). The Ti: V" — V;, are defined by

(43) bi(Tiu,v) = s(u,v), Yv eV,
and

T=To+Ti+ - +Tx
18



THEOREM 5. For all u € VH(T'), with the T; defined by (26), (42), and (43), and
for Model Problem 1,

Yos(u,u) < s(Tu,u) < y1(1 + log(H/R))? s(u,u)

Here v and v, are constants independent of H and h.
Proof. Assumption (i): For u € V(T), let ug = dieN; fLZV:r where

(44) U = — Z u(x) with m; = Z 1.

Mi peaq; , c€9Q; p
For convenience, we set u; = 0, i € Ng. We can then write ug = Y, ILVZT Let
w = In(vitu — @
wi = Ll — )

It is easy to see that u; € V; and that

N

u=uo+ Yy u;

=1
It follows from the definitions of the u; and b;(-,-) that

. _ _ 1 _
45) () < i — i — ) = [Vl + aglle — 0
We have to estimate b;(u;,u;) in terms of s;,(u,u). Let i € N;. We first show, by

a simple computation, that ||'122-||%2(Qi) < C’H||u||%2(89€). By a simple trace theorem,
||u||%2(89i) < CHa(u,u). It then follows that

a7, < CH @(u,u)
Therefore,

1 _ .
(46) —lle = @il < i, u)

Since the left hand side of (46) does not change if we add a constant to u, we can use
Poincaré’s inequality and find that

bi(ug,u;) < Csi(u,u)

For i € N, we instead use Friedrichs’ inequality. We recall that we have set
u; = 0 for these values of :. We extend the region of integration in the last term
of (45), including the substructures which are next neighbors. It follows from the
assumptions on 0€2p that one of these has a face which is part of 0Q2p. We can then
use Friedrichs’ inequality to remove the Ly—term of the weighted H'—norm and we

obtain
N N

(47) Z bi(ui,u;) < C’Z si(u,u) = Cs(u,u)
=1 =1
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To obtain a uniform bound on the parameter C3, we must also show that

(48) bo(uo, ug) = (1 + log(H/h))_2 s(ug,ug) < Cs(u,u) ,Yu e Vg

Let ug = u — w, where w = Y_; u;. We can reduce our task to estimating s(w,w)
since
(49) s(ug, ug) < 2s(w,w) + 2s(u,u)

Most pairs of subspaces are mutually orthogonal. Therefore,

N
(50) s(w,w) < C Y s(ui, ui)

=1
We can now use Lemma 4 and reduce the problem to estimating N, bi(ui,ug), a
problem which has already been solved in this proof. We obtain

s(ug, up) < C(1+ log(H/R))? s(u,u)

which proves (48).
Assumption (ii): For 7 = 0, we find that ||To||s = (1 + log(H/h))?, since, by

definition,
s(u,u) = (1 +log(H/R))? bolu,u) , Yu € Vy

The estimate

(51) s(u,u) < O(1 +log(H/R)? bi(u,u) , Vue Vi, i=1,...,N

is a direct consequence of Lemma 4.

Assumption (iii): By standard arguments, we show that p(£) < C; cf. the proof
of Theorem 3. 0O

We now turn to Model Problem II. A crucial change in the algorithm is that the
counting functions v; are replaced by weighted counting functions p; € V; defined in
terms of the coefficients of equation (5). They are introduced by

pi) =S p% 2 € 0Qin,  pi(x) =0, x €Ty \ 9
7

For each « € I';, the sum is taken over the values of 7 for which = € 99Q;. We note
that p; = v; for Model Problem I, where p; = 1, Vi. The pseudo inverse /,L:-r of p; 1s

T

introduced in the same way as v;; cf. (28).

We can now define the coarse space V; by
1/2
Vo = span{p;*ul}ien,

We note that the set of functions {[)}/Qluj} also form a partition of unity. For the
coarse space Vp, we use a bilinear form by(-, ), obtained from (42) by replacing s(-, -)

by s()(-,-). The other bilinear forms are defined by

~ ~

(52) bi(u,v) = a;(Hi(pau), Hi(piv)) = Si(In(piu), In(piv))
20



We next prove an analog of Lemma 4. Later on, we will introduce a different
bilinear form for the boundary substructures in N g and establish a bound similar
to that of this lemma; cf. Lemma 7.

LEMMA 5. Consider Model Problem II and let the bilinear forms b;(-,-) and
s()(-,-) be defined as in (52) and (14), respectively. Then,

s(p)(u,u) <C(l+ log(H/h))2bi(u,u), Yu eV,

Proof. This proof is quite similar to that of Lemma 4. We begin by establishing
a bound for p;s;(u,u); cf. (32). We partition u € V; as

U = Z Ih(éwu) + W
J

and estimate the terms separately. Since, by assumption, p; and p;(z) are constant
on each face and p; < w;(z)?, we obtain, by using Lemma 3,

pisi(In(Oiju), In(Oiu)) = pil Hi(0iu) i,y < w5 Hi(0u) i g,
(0 i) | Fa o,y < C(1+log(H/R))*bi(u, u)

Here p;; is the constant value of p; on the face F;;.

We can use virtually the same argument as in the proof of Lemma 4 to estimate
pisi(W,W).

We also have to estimate p;s;(u,u), in terms of b;(u,u), for the values of j for
which 0€); has at least one point in common with 0€2;. There are no surprises; the
tools used here and in the proof of Lemma 4 are sufficient to obtain all the necessary
bounds. 0O

THEOREM 6. Assume that all the boundary substructures Q;,1 € Ng, have a face
which is a subset of ONp, i.e. Ng = Ng . Then, for allu € V*(T'), with the T; defined
by (42), (43), after replacing s(-,-) by s)(-,-), and (52), and for Model Problem II,

105 (1) < sO(Tu,u) < 31 (1 + log(H/R)) s (u,u)

Here ~o and 1 are constants independent of h, H, and the jumps of p(x).

We will return to the general case after the proof of this theorem.

Proof. Assumption (i): The coarse space component of an arbitrary u € V*(T') is
chosen as

(53) wo =Y wipy
1€NT

where u; is defined in (44). We again set u; = 0 for i € Ng. The rest of the decompo-
sition is given by

(54) ui = (pipl(u — ), i >0
We first consider 7 € N7 and obtain,

bi(ui,ui) < piai(u — uj,u — ;)
21



which can be estimated by Cp;s;(u,u); cf. the proof of Theorem 5. For a boundary
substructure, which by assumption has a face belonging to 92p, we can simplify
the arguments given in that proof; we work with only one substructure avoiding any
complications stemming from the different values of the coeflicient of equation (5).

The bound by(u, u) < Cs(?)(u, u) can also be established as before, without relying
on any new ideas.

Assumption (ii): We use the same arguments as in the proof of Theorem 5,
replacing s(-,-) by s)(-,-) and Lemma 4 by Lemma 5, and obtain the bound w <
C(1+log(H/R))>.

Assumption (iii): A constant bound for p(€) follows just as in the other proofs.
U

To complete our discussion, we now consider the case when the intersection of
0€; and 0Qp consists of only single points or edges, i.e. substructures in Ny and
N i, respectively. For those in Ny, we use the same bilinear form as for : € Ny, cf.
(52), while for those in N g, we use the Schur complement of the original problem

(1), i.e.
(55) bi(u,v) = si(Ln(pw), In(piv)), 1 € Npg

In addition, for each boundary substructure in Np v, we add a basis function /fL:r
to the coarse space Vp; we treat such substructures as if they belong to N except that
we truncate ,uZT replacing its value at @ € 0%, N OQp ;, by zero. For details, see the
proof of Theorem 7.

We are now ready to formulate a more general theorem.

THEOREM 7. For allu € VMT), with the T, defined by (42), (43), after replacing
s(+,-) by s, (52), and (55) and for Model Problem II,

105 (u,w) < (T, w) < (1 + log(H/R)) s (u, )

Here ~g and 1 are constants independent of h, H, and the jumps of p(x).

Before we turn to the proof of this theorem, we establish two additional auxiliary
results. We first establish a variant of Friedrichs’ inequality.

LEMMA 6. For any u € V; which vanishes only on a single edge of );,

||’U||%2(Qi) < CH2(1 +1Og(H/h))|u|f2111(Qi)

Proof. The proof of this result has much in common with that of Lemma 1;
cf. Bramble and Xu [7]. We limit ourselves to the case of a cubic subregion (0, H)?
assuming that the function vanishes on the edge between (0,0,0) and (0,0, H). We
can trivially bound ||u||%2((07H)3) by H?*max,, , ||u(z1, 22, -)||%2(07H). For each value of
x3, we can use the well known estimate

max |U(51717172,173)|2 < C(1 4+ log(H/R))||u(-, '7503)”%11((0,;1)2)

L1,T2

see Lemma 5 in Dryja and Widlund [21] or Lemma 2.3 of Bramble and Xu [7]. Since

any function v(x), which vanishes at a point satisfies,

(56) max |v(x)] < max|v(z) — ¢| + |¢|] £ 2max |[v(x) — ¢
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for any constant ¢, we can use Poincaré’s inequality and replace the H! —norm by the
corresponding seminorm. The proof is completed by integrating with respect to x3. O
The next Lemma complements Lemma 5.
LEMMA 7. Consider Model Problem II and a boundary substructure in the set
NB.g. Let the bilinear forms by(-,-) and s\)(-,-) be defined as in (55) and (14), respec-
tively. Then,

s(p)(u,u) < C(1+1log(H/R))bi(u,u), Yu € V;

The same bound holds for any subspace V; with elements constrained to be zero along
an edge.

Proof. The proof of this result has much in common with those of Lemmas 4
and 5. The main differences stem from the fact that we are using s;(-,-) instead of
$i(+,-) when defining the bilinear form b;(-,-). We also have to show that we can use
Lemma 6 instead of the standard Friedrichs’ inequality and still obtain a bound that
is quadratic rather than cubic in (1 + log(H/h)).

We begin by estimating the contribution of p;s;(u, u) to the bilinear form () (u, u).
The proofs of Lemmas 4 and 5 show that we can obtain an upper bound of the form
C(1 + log(H/h))8;(In(piw), In(piuw)). By using Lemma 6, we can replace $,(-,-) by
si(+,-) at the expense of a second logarithmic factor.

We now consider the remaining contributions p;s;(u,u) to the left hand side
5 (u,u). No new ideas are required for those j which correspond to a neighboring
substructure €2; which has only a vertex or an edge in common with ;. Similarly,
when two substructures have a face F;; in common, the terms related to the edges
common to ; and §2; can be handled in the same way as before. What remains is to
consider p;s;(In(8;;u), In(6;;u)). We write 0;;u = u;;60;; + 6;;(u — u;;) where

mg; c€Fijn z€F i h

and estimate the resulting two terms separately. We find that
pisi(wijbij, uiibi;) < C(1 4 log(H/h))si(piu, piu)

We obtain this bound by using Lemma 2 and the estimate

(55) H, < Clulfga,

which in turn follows from a trace theorem and elementary considerations. Using
Lemma 6, we can replace §;(u;u, p;u) by s;(pu, pu) at the expense of a second loga-
rithmic factor. The remaining term

p;8i(In(0ij(u — wij), In(0ij(u — uy5))

can be estimated using Lemma 3 and Poincaré’s inequality. 0O
We now turn to the proof of Theorem 7.
23



Proof. We will only consider the changes necessary in the proofs of Theorems 5 and
6; we have only to consider the substructures in the sets Vg g and N y. The only new
terms, b;(u;, u;), that we need to bound from above are those corresponding to Mg v.
They are very similar to those of the interior substructures but must nevertheless be
examined carefully. This is the only new technical work required; the bounds related
to Assumption (ii) follow from Lemmas 7 and 5 and the observation that Lemma 5
is valid for the boundary substructures in the set Mg y; the boundary condition only
imposes a harmless constraint on the subspace for which the required estimate already

has been established.

We now turn to the estimate

for : € Ngy. Here u; = Ih(p}/Q/fL;r(u — ;) where il is obtained from p! by setting
its value at the node (or nodes) of 9€Q;, N OQp  to zero. We assume that there is
only one such node. The idea is quite simple. We write /fL:r = ,LL;r — /,L:r(rk)qbk and note
that pibi(Ih(/,L;r(u - uy)), Ih(,u;r(u — u;))) can be estimated as if the substructure were
interior. We have thus reduced the problem to estimating

bi(Ln(pi "l () b — w)), In(pi el (2 1 (u — @)

This expression, which is equal to p;8;(In(¢r(u —u;)), In(¢r(v —u;))), can be bounded
by

, 2 2
Cpi max [u(2) |6kl 0

Since u(xy) = 0, we can again use inequality (56). We finally use Lemma 1, Poincaré’s
inequality and the simple fact that ||¢k||%p(ﬂl.) <Ch. O

7. Methods with an Alternative Coarse Space. In this section, we add to
the diversity of our family of algorithms by describing and analyzing two additional
Neumann-Neumann methods for Model Problem II. We choose the same coarse space,
and by(-,-), for both, but the local spaces V; and the bilinear forms b(-,-), ¢ > 0,
are different in the two cases. We obtain bounds which are quadratic and cubic in
(1+log(H/h)), respectively.

We use a coarse space that is similar but somewhat larger than a space introduced
by Smith [37,38]. An element in Smith’s space is fully defined by the values on the wire
baskets of the substructures. We extend Smith’s space by introducing an additional
degree of freedom for each substructure face that does not belong to 0{2p. We note
that a less satisfactory result, than those of this section, is given as Theorem 5.3 in
Dryja and Widlund [20] where we used Smith’s original coarse space.

It is convenient to describe the space V) as the range of a nonstandard interpola-
tion operator I, given locally for x € 052; by

(59) Lu(e) =Y u(wr) gele JrZw7 i
rL€EW; h
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Here the ¢(x) are the standard nodal basis functions, the 6;;(z) the functions used
in Lemmas 2 and 3, and the u;; the average values defined by (57).
The associated bilinear form is given by

bo(u,v) = (1+1log(H/R))™" Tien pilh Loew, ,(ulz) — w;)(v(x) — v;)+
HYr con, (Ui — wi)(vi; — v;))

where u; is the average value defined in formula (44) and N is the set of all substruc-
tures.

For the first of the methods considered in this section, we choose the same local
spaces Vi, ¢ > 0, and bilinear forms b;(-,-), as in Sections 4, 5, and 6; cf. (26). The
operator 1" is given in terms of the bilinear forms as before.

THEOREM 8. For all u € VMT), with the T; defined by the bilinear forms and
subspaces just introduced, and for Model Problem I,

(60) Yo s(p)('u, u) < s(p)(Tu, u) < v(1+ log(H/R))? s(p)('u, u)

Here ~o and 1 are constants independent of h, H, and the jumps of p(x).

Proof. We can use many of the arguments developed in Theorem 7, but we must
also consider the effect of changing the coarse subspace V; and bilinear form bo(-, -).
When considering Assumption (i), we use the same decomposition of u as in Theorems
6 and 7; cf. (53) and (54). This is possible since the basis functions x! belong to the
coarse space Vj currently being considered. We have to prove that

bo(uo, ug) < C’s(p)(u,u)
for the new bilinear form. Let w = v — ug. Then
bo(wo, uo) < 2bp(u, u) + 2bo(w, w)

To estimate the first term of the right hand side, we consider the contributions to the
sum from one substructure ;. We use Lemma 1, the estimate (58), and Poincaré’s
inequality and arrive at the bound

bo(u,u) < Cs®)(u,u)
As in the previous section, u; = Ih(p}/Q,uZT(u — u;)). If we can prove that
bo(uiv ui) < C/)isi(uv u)

then we can estimate by(w, w) by s(")(u,u) and can conclude that C2 < C. Essentially
no new ideas are required and details are therefore not provided.

Assumption (ii): The estimate of || T}, ¢ > 0, follows as in the proof of Theorems
6 and 7. Therefore, what remains is only to establish that

s(p)('u,u) < C(1+1log(H/R))bo(u,u), Yu € Vo
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We recall that any uo € Vj is given by equation (59). We estimate the two terms
separately. Knowing that the energy of a discrete harmonic function, which differs
from zero only on the wire basket, can be bounded from above by the energy of its
trivial extension, we find that

pisi(u,u) = pisi(u — ti,u — us) < Cpi(h 3o |u(@) = wil® + 3 [ui; — wl*[16:] 51 a,))
J

z€W; n

The proof is completed by using Lemma 2.

Assumption (iii): The constant bound required can be obtained in a completely
routine way. [

We finally consider the second variant, which employs different local spaces. The
local space V;, ¢ = 1,..., N, associated with 0€2;, is now chosen as the space of
functions v € Vh(T) which vanish on the wire basket W, as well as at the nodes of
Ty \ 09 . We note that the bilinear form s;(u,v) is positive definite on this space
since we use Dirichlet conditions on the wire basket W;. It is easy to see that

(61) VED) =Vo+ Vit -+ Vy

For the local spaces, we now work with the Schur complements of Model Prob-
lem I, i.e.
(62) bi(u,v) = si(In(pu), In(pv)), i=1,--- N

THEOREM 9. For all u € VMT), with the T; defined by the bilinear forms and
subspaces just introduced, and for Model Problem II,

(63) yo(1 +log(H/h)) ™ s (u,u) < s(Tu,u) < v (1 + log(H/h))?* s (u,u) .

Here vy and 1 are constants independent of h, H, and the jumps of p(x).
Proof. Assumption (i): Let ug = I[u, as in (59), and let v = wug + w. Let
u; = Ih(pr/,L;rw). By using the definition (62), we easily obtain

Zbl(uuul) = Zsi(l—h(,uz 2) Ih ,uz z Z[)Z S;lw, UJ = 3(p)('w,w)

>0 i
By using Lemmas 1 and 2, and the formula for ug, we find that
5P )(uo, ug) < C(1+ log(H/h)) (u u).

Finally, we estimate bo(ug,uo) by 5 (u,u) by using (58), Lemmas 1 and 2, and
Poincaré’s inequality. The bound C§ < C(1 + log(H/h)) follows.

Assumption (ii): The bound ||Tp||s < C(1 + log(H/h))? has been established in
the proof of Theorem 8. Bounds of the same type follows for ||Ti||s, ¢ > 0, from
Lemma 7. We just have to recall that the elements of V; vanish on all the edges of €2;.

Assumption (iii): The constant bound required can be obtained in a completely
routine way. 0
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