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Abstract

We consider the problem of efficiently encoding a signal by transforming it to a new
representation whose components are statistically independent (also known as facto-
rial). A widely studied family of solutions, generally known as independent components
analysis (ICA), exists for the case when the signal is generated as a linear transforma-
tion of independent non-Gaussian sources. Here, we examine a complementary case, in
which the signal density is non-Gaussian but elliptically symmetric. In this case, no lin-
ear transform suffices to properly decompose the signal into independent components,
and thus, the ICA methodology fails. We show that a simple nonlinear transformation,
which we call radial Gaussianization (RG), provides an exact solution for this case. We
then examine this methodology in the context of natural image statistics, demonstrating
that joint statistics of spatially proximal coefficients in a multi-scale image representa-
tion are better described as elliptical than factorial. We quantify this by showing that
reduction in dependency achieved by RG is far greater than that achieved by ICA, for
local spatial neighborhoods. We also show that the RG transformation may be closely
approximated by divisive normalization transformations that have been used to model
the nonlinear response properties of visual neurons, and that have been shown to reduce
dependences between multi-scale image coefficients.

1 Introduction

Processing of signals is often facilitated by first transforming to a representation in which
individual components are statistically independent. In such a “natural” coordinate system,



the components of the signal may be manipulated, transmitted or stored more efficiently.
It has been proposed that this principle also plays an important role in the formation of
biological perceptual systems (Attneave, 1954; Barlow, 1961). The problem of deriving an
appropriate transformation for a given source, based on the statistics of observed samples,
has been studied for more than a century. The classical solution, principal components
analysis (PCA), is a linear transformation that is derived from the second-order signal
statistics (i.e., the covariance structure). Although it may be computed for any source with
finite variance, it is only guaranteed to fully eliminate dependencies for Gaussian sources.

Over the past twenty years, a more general family of methods known as independent
component analysis (ICA) has been developed to handle the case when the signal is formed
from linear combinations of independent non-Gaussian sources. Again, the solution is a
linear transformation that is derived from statistical properties of the source (typically,
the second-order statistics, augmented with a higher-order set of marginal measurements).
ICA methods have shown success in blind signal separation problems(Comon, 1994), and
in deriving bases for natural signals (Olshausen and Field, 1996; van der Schaaf and van
Hateren, 1996; Bell and Sejnowski, 1997; Lewicki, 2002).

As with PCA, the ICA transformations may be computed for nearly any source, but
they are only guaranteed to eliminate dependencies when the the assumed linear mixture of
independent sources model is correct. And even in cases where the methodology seems to
produce a sensible solution, the components of the resulting representation may be far from
independent. A case in point is that of natural images, for which derived ICA transforma-
tions consist of localized oriented basis functions that appear similar to the receptive field
descriptions of neurons in mammalian visual cortex (Olshausen and Field, 1996; Bell and
Sejnowski, 1997; van der Schaaf and van Hateren, 1996). But the responses of such linear
filters exhibit striking dependencies (Wegmann and Zetzsche, 1990; Zetzsche et al., 1993;
Simoncelli, 1997; Buccigrossi and Simoncelli, 1999a), and although dependency between
these responses is reduced compared to the original pixels (Zetzsche and Schönecker, 1987),
such reduction is relatively small (Bethge, 2006). A number of recent attempts to model
local image statistics have proposed the use of spherically or elliptically symmetric non-
Gaussian densities, whose components exhibit clear dependencies (Zetzsche and Krieger,
1999; Wainwright and Simoncelli, 2000; Huang and Mumford, 1999; Parra et al., 2001;
Hyvärinen et al., 2000; Srivastava et al., 2002; Sendur and Selesnick, 2002; Portilla et al.,
2003; Teh et al., 2003; Gehler and Welling, 2006).

Here, we consider the factorization problem for the class of elliptically symmetric den-
sities (ESDs). For this source model, we prove that linear transforms have no effect on
the dependencies beyond second order, and thus that ICA decompositions offer no advan-
tage over second-order decorrelation methods such as PCA. We introduce an alternative
nonlinear procedure, which we call radial Gaussianization (RG), whereby the norms of
whitened signal vectors are nonlinearly adjusted to ensure that the resulting output density
is a spherical Gaussian, and thus factorized into independent components. We demon-
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strate this methodology on data from photographic images. Using nonparametric estimates
of the transformation, we show that RG produces much more substantial reductions in
multi-information of pairs or blocks of nearby bandpass filter coefficients than does ICA.

Finally, we show that divisive normalization, which have previously been shown empir-
ically to reduce higher-order dependencies in multi-scale image representations (Schwartz
and Simoncelli, 2001; Wainwright et al., 2002; Malo et al., 2000b; Valerio and Navarro,
2003a; Gluckman, 2006; Lyu and Simoncelli, 2007), can approximate the RG transform.
Thus, RG provides a more principled justification of these previous empirical results in
terms of a specific source model.

2 Eliminating Dependencies with Linear Transforms

The problem of selecting a transformation that maps a source signal drawn from a known
density to a new representation whose individual components are statistically independent
is highly under-constrained (Hyvärinen and Pajunen, 1999). Indeed, even when one spec-
ifies a particular target density, there are an infinite number of transformations that can
map a random variable associated with the input density into one associated with the target
density. This is most easily understood in one dimension, where the well-known process of
histogram equalization provides a natural choice for mapping any density to a uniform den-
sity (and from there, using an inverse equalization, to any desired density). The histogram
equalization operation is clearly not unique, since (for example) it can be followed by any
transformation that permutes equal-size intervals of source values, without affecting the
uniform distribution of the output. The multiplicity of solutions for the density-mapping
problem only becomes worse in higher dimensions.

An intuitively sensible means of selecting a transform from amongst the solution set is to
require that it minimize the expected distortion of the original data: minfE

(
|~x− f(~x)|2

)
.

This is analogous to solving an under-constrained linear inverse problem by selecting the so-
lution with minimal norm. As an example, the histogram-equalization procedure mentioned
above satisfies this property.

In practice, it is important to develop methods for selecting factorizing transforms based
on observed data (i.e., samples from the source density). One can attempt to infer a
(nonparametric) density from the data samples, but this is generally impractical for high-
dimensional data. Instead, many well-known solutions may be derived by assuming the data
are drawn from a source density that is a member of some parametric family, estimating the
parameters, and then applying a transformation matched to the resulting density. In the
following sections, we review several solutions to the problem of dependency elimination,
emphasizing the underlying source model assumptions.
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2.1 Multi-information

We quantify the statistical dependency for multi-variate sources using the multi-information
(MI) (Studeny and Vejnarova, 1998), which is defined as the Kulback-Leibler divergence (Cover
and Thomas, 2006) between the joint distribution and the product of its marginals:

I(~x) = DKL

(

p(~x)

∥
∥
∥
∥
∥

∏

k

p(xk)

)

=

d∑

k=1

H(xk) −H(~x), (1)

where H(~x) is the differential entropy of ~x, and H(xk) denotes the differential entropy of the
kth component of ~x. In two dimensions, MI is equivalent to the mutual information (Cover
and Thomas, 2006) between the two components.1 From a coding perspective, MI measures
the additional cost of encoding the components of ~x independently, as compared with the
cost of jointly encoding ~x. As a measure of statistical dependency among the elements of ~x,
MI is non-negative, and is zero if and only if the components of ~x are mutually independent.
Furthermore, MI is invariant to any operation that operates on individual components of
~x (e.g., element-wise rescaling) since such operations produce an equal effect on the two
terms in Eq. (1).

When ~x has finite second-order statistics, MI may be further decomposed into two parts,
representing second-order and the higher-order dependencies, respectively, as:

I(~x) =

d∑

k=1

log(Σkk) − log |Σ|
︸ ︷︷ ︸

second−order dependency

+DKL (p(~x) ‖ G(~x)) −
d∑

k=1

DKL (p(xk) ‖ G(xk) )

︸ ︷︷ ︸

higher−order dependency

, (2)

where Σ is the covariance matrix of ~x, defined as E((~x − E~x)(~x − E~x)T ), and G(~x) and
G(xk) are zero mean Gaussian densities with the same first and second order statistics (i.e.,
mean and covariance matrix) as ~x and xk, respectively. The quantity DKL (p(~x) ‖ G(~x) ) is
also known as the negentropy.

2.2 Principal Components Analysis

The most well-known solution to the dependency elimination problem corresponds to the
case of a Gaussian source model for ~x. In this case, the the higher-order terms in Eq.(2)
are zero, and any linear transform that diagonalizes the covariance matrix is sufficient to
completely eliminate statistical dependencies in ~x. This is easily seen from the first two

1As such, multi-information is sometimes casually referred to as mutual information.
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terms of Eq. (2): since the determinant of a diagonal matrix is the product of the diagonal
elements, log |Σ| is equal to the sum of the log of the diagonal elements,

∑d
k=1 log(Σkk).

But there are an infinite number of linear transforms that can diagonalize the covariance
matrix. Assuming that ~x has zero mean, the covariance matrix is written Σ = E{~x~xT }.
We may decompose the covariance matrix in terms of an orthogonal matrix of eigenvectors,
U , and a diagonal matrix of eigenvalues, Λ, such that Σ = UΛUT . The classical solution,
generally known as principal components analysis (PCA) (Jolliffe, 2002), transforms the
data with the orthogonal eigenvector matrix, ~y = UT~x, resulting in a Gaussian density
whose diagonal covariance matrix containing the eigenvalues.

2.3 Whitening and ZCA

The diagonalizing transform in PCA is often followed by a “whitening” step, in which each
component is re-scaled by its standard deviation, ~xwht = Λ−1/2UT~x, ensuring that the
components of the output signal have unit variance. A two-dimensional illustration of this
two-step whitening procedure is illustrated in the left column of Fig. 1.

This whitening transform is not unique: Any matrix of the form V Λ−1/2UT is a whiten-
ing transform, where V can be any orthogonal matrix. A common choice, known as zero-
phase component analysis (ZCA) (Bell and Sejnowski, 1997), is to select V = U , which
results in a symmetric transformation matrix. We show in Appendix A that ZCA is the
whitening solution that satisfies the minimal distortion principal.

2.4 Independent Component Analysis

A PCA or whitening linear transformation is sufficient to remove all statistical dependen-
cies in Gaussian variables, and it has appealing advantage of efficient computation due to
numerical linear algebra. PCA may be applied to any source density with finite covariance,
but it is not always guaranteed to generate a factorial output density. A natural question
is whether there exists a class of non-Gaussian densities that can also be factorized with
linear transforms, and if so, whether those transforms can be easily determined from data.
Although PCA is roughly a century old, the answer to this question has only been ex-
pressed quite recently. Consider the family of source densities that is generated by linearly
transforming a factorial source. That is, ~x = M~s, where p(~s) =

∏

k p(sk). Clearly, when
the matrix M is invertible, its inverse provides a linear transformation that can factorize
the density p(~x) into the original scalar sources. The procedure for recovering the inverse
transformation matrix, M−1, and the original factorial source from data ~x is known as Inde-
pendent Components Analysis (ICA) (Comon, 1994; Cardoso, 1999). For our purposes here,
we assume M is square and invertible, although the ICA methodology may be generalized
to arbitrary matrices.

The ICA computation can be better understood by expanding M in terms of its singular
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r e s c a l e a x e s t o u n i t v a r i a n c e
r o t a t e t o p r i n c i p a l c o m p o n e n t a x e s

G a u s s i a n i z er a d i a l c o m p o n e n tr o t a t e t o i n d e p e n d e n tc o m p o n e n t a x e s
G a u s s i a n i z em a r g i n a l c o m p o n e n t s

Figure 1: Three methods of dependency removal with their associated source models. Each con-

sists of a sequence of transformations on multi-dimensional probability densities, depicted as two-

dimensional contour plots. Red ellipses indicate covariance structure. Inset graphs indicate shape of

a slice through the density along the indicated dashed red line. Left: Principal components analysis

(PCA), applied to a Gaussian source. The first transformation rotates the coordinate system to

the principal coordinate axes of the covariance ellipse, and the second rescales each axis according

to its standard deviation. The output density is a spherical and unit variance Gaussian. Middle:

Independent components analysis (ICA), applied to a linearly transformed factorial density. The

first two steps are identical to the PCA case, and map the covariance ellipse (red) to the unit circle.

The third is an additional rotation that aligns the source components with the axes of the space. A

final nonlinear marginal transformation can be used to map the output density to a spherical Gaus-

sian. Right: Radial Gaussianization (RG) applied to an elliptically symmetric (but non-Gaussian)

density. The first two transformations are again identical to the PCA case. Finally, a nonlinear

radial transformation is used to map the density to a spherical Gaussian.
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value decomposition: M = UΛV T , where U and V are orthogonal matrices, and Λ is
a diagonal matrix containing the singular values of M . Most ICA algorithms assume,
without loss of generality, that the components of the initial source ~s are zero-mean with
unit variance, and E{~s~sT } = I. This implies that the transformation Λ−1UT is a whitening
operator for ~x. The ICA transformation may thus be seen as a concatenation of a traditional
whitening operation, followed by orthogonal transform V that eliminates the MI of the
whitened variable ~xwht.

I(V ~xwht) =
d∑

k=1

H((V ~xwht)k) −H(V ~xwht)

=

d∑

k=1

H((V ~xwht)k) −H(~xwht) − 〈log |V |〉~xwht

=
d∑

k=1

H((V ~xwht)k) −H(~xwht).

Since the second term is a constant with regards to V , finding V reduces to minimizing the
first term (the sum of the transformed marginal entropies). While some ICA algorithms
optimize the sum of marginal entropies directly, most implementations choose to optimize
the expected value of a higher-order “contrast function” to avoid the difficulties associated
with entropy estimation (Comon, 1994; Bell and Sejnowski, 1997; Cardoso, 1999). Though
not usually included, a final nonlinear operation may be applied to map each of the inde-
pendent components to a unit-variance Gaussian. This marginal Gaussianization procedure
results in a factorial (and thus spherically symmetric) Gaussian density. This sequence of
ICA operations is illustrated in the middle column of Fig. 1.

ICA is a natural generalization of PCA, and can be applied to an arbitrary source (as
long as the covariance and the higher-order contrast exist). However, the components of the
ICA-transformed source are only guaranteed to be independent when the source is indeed
a linearly transformed random variable with a factorial density.

3 Eliminating Dependencies in Elliptical Symmetric Sources

The linear methods of dependency removal described in the previous section have been suc-
cessfully applied to a wide range of problems across diverse disciplines. However, they are
only guaranteed to remove dependencies of sources that are linearly transformed factorial
densities (this includes both Gaussian and non-Gaussian cases), and thus it is worth consid-
ering dependency elimination for other source models. Here, we focus on a family that may
be viewed as an alternative generalization of the Gaussian source model: the elliptically
symmetric density (ESD) models.
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E l l i p t i c a lL i n e a r l yt r a n s f o r m e df a c t o r i a l
F a c t o r i a l G a u s s i a n S p h e r i c a l

Figure 2: Venn diagram of the relationship between density models. The two circles rep-
resent the two density classes considered in this article: the linearly transformed factorial
(independent) densities, and elliptically symmetric densities (ESDs). The intersection of
these two classes is the set of all Gaussian densities. The factorial densities form a subset of
the linearly transformed factorial densities (i.e., those transformed by a diagonal matrix),
and the spherically symmetric densities form a subset of the ESDs.

3.1 Elliptically Symmetric Densities

The family of elliptically symmetric random vectors ~x ∈ Rd are densities of the form:

p(~x) =
1

α|Σ| 12
f(−1

2
~xT Σ−1~x), (3)

where Σ is a positive definite matrix (Fang et al., 1990). When ~x has finite second-order
statistics, Σ is a multiple of the covariance matrix. With Σ fixed, p(~x) is completely de-
termined by the generating function f(·) : R+ ∪ {0} 7→ R+ ∪ {0}, which has to satisfy
∫∞
0

f(−r2/2) rd−1 dr ≤ ∞. The normalizing constant α is then accordingly chosen so that
the density integrates to one.

The definitive characteristic of ESDs is that the curves of constant probability are ellip-
soids determined by Σ. When ~x is transformed with a whitening matrix as shown in section
2.3, the resulting density of ~xwht is a special ESD whose Σ is a multiple of the d-dimensional
identity matrix, and thus the density is spherically symmetric (also called “isotropic”). The
level surfaces of a spherically symmetric density are then hyperspheres in the d-dimensional
space (right column in Fig. 1).

When the generating function in the ESD definition is an exponential, the resulting ESD
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is a multivariate Gaussian with zero mean and covariance matrix Σ. The same Gaussian
variable ~x can also be regarded as a linear combination of independent Gaussian components
~s that each has a unit variance, as ~x = Σ−1/2~s. In fact, Gaussian is the only density that is
both elliptically symmetric and linearly decomposable into independent components (Nash
and Klamkin, 1976). In other words, the Gaussian densities correspond to the intersection
of the ESDs and the linearly transformed factorial densities. Restricting this further, an
isotropic Gaussian is the only density that is both spherically symmetric and factorial (i.e.,
with independent components). These relationships between Gaussians, ESDs, and the
linearly transformed factorial densities are illustrated in the Venn diagram of Fig. 2.

Besides Gaussians, the ESD family also includes a variety of known densities and density
families. Some of these have heavier tails than Gaussians, such the multi-variate Laplacian,
the multi-variate Student’s t, and the multi-variate Cauchy. More general leptokurtotic
ESD families include the α-stable variables (Nolan, 2007) and the Gaussian scale mixtures
(GSM) (Kingman, 1963; Yao, 1973; ?). The ESDs also include densities with lighter tails
than a Gaussian, such as the uniform density over the volume of a d-dimensional hyper-
ellipsoid.

3.2 Linear Dependency Reduction for ESDs

As described in the section 2, linear transforms can be used to remove statistical depen-
dencies of Gaussians (e.g., PCA, whitening and ZCA), as well as the more general class of
linearly transformed factorial densities (ICA). In this section, we show that, apart from the
special case of the Gaussian, linear transforms cannot eliminate the dependencies found in
ESDs.

A linear whitening operation can be used to transform an elliptically symmetric variable
to one that is spherically symmetric, thus eliminating the second-order dependencies of
Eq.(2). But unlike the ICA case, there is no orthogonal matrix V that can affect the
MI of the spherically symmetric density of ~xwht (again, apart from the case of Gaussians,
where I(V ~xwht) is always zero regardless the choice of V ). The reason is simple: p(~xwht)
is isotropic (it is a function only of the vector length |~x|), and thus it is invariant under
orthogonal linear transformation, as

p(V ~xwht) =
|V |
α
f(−(V ~xwht)

T (V ~xwht)/2)

=
1

α
f(−~xT

whtV
TV ~xwht/2)

=
1

α
f(−~xT

wht~xwht/2) = p(~xwht).

Thus, I(V ~xwht) = I(~x), since the MI is function of the joint density.
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3.3 Radial Gaussianization

Given that linear transforms are ineffective in removing dependencies from a spherically
symmetric ~xwht (and hence the original ESD variable ~x), we need to consider non-linear
mappings. As described previously, the Gaussian is the only spherically symmetric density
that is also factorial. Thus, given a non-Gaussian spherically symmetric variable ~xwht, a
natural solution for eliminating dependencies is to map it into a spherical Gaussian. As
described in section 2, selecting such a non-linear mapping without any further constraint
is a highly ill-posed problem. But in this case, we can select the mapping that satisfies
the minimum distortion principle, which is the one that acts radially, mapping the radial
density function, f(|~xwht|2), to one corresponding to a spherical Gaussian density. We refer
to this operation as radial Gaussianization (RG). Specifically, the RG transform is defined
as:

~xrg = g(‖~xwht‖)
~xwht

‖~xwht‖
, (4)

where the scalar function g(·) is chosen such that the resulting ~xrg is an isotropic Gaussian
variable. Specifically, note that the generating function for p(~xwht) is related to the marginal
distribution of r = ‖~xwht‖ as:

pr(r) =
rd−1

β
f(−r2/2), (5)

where Γ(·) is the standard Gamma function, and β is the normalizing constant that ensures
that the density integrates to one. Thus, any g(·) that transforms pr(·) to the corresponding
radial marginal distribution of an isotropic Gaussian density with unit component variance,
which is a chi-density with d degrees of freedom:

pχ(r) =
rd−1

2d/2−1Γ(d/2)
exp(−r2/2), (6)

will transform ~xwht to an isotropic Gaussian variable ~xrg. This is a one-dimensional density-
mapping problem, and the classical solution (which satisfies the minimal distortion criterion)
is the continuous monotonic mapping given by composition of the inverse cumulative density
function of pχ with the cumulative density function of pr: as:

g(r) = F−1
χ Fr(r). (7)

An example in the case of transforming a spherically symmetric two dimensional Student’s
t variable to the corresponding Gaussian variable is illustrated in Fig. 3.

Note that Eq.(4) is not the only operation that transforms ~xwht to an isotropic Gaussian
variable. For example, one could also transform the space with any orthogonal matrix V ,
since V ~xrg is also an isotropic Gaussian variable. However, Eq.(4) is the solution that
minimizes the expected distortion between ~xwht and V ~xrg, measured by the mean square
error E(‖~xwht − V ~xrg‖2).

10



g(r)

pout(r)

pin(r)

rin

rin

rout

Figure 3: Radial Gaussianization procedure for 2D data. rin are the radii of the input data,
and rout are the radii of RG transform output. pout(r) is a chi-density with one degree of
freedom (d− 1 for a d-dimensional space).

3.4 RG for General Signal Models

If ~x is not an elliptically symmetric variable, applying RG may not eliminate the higher-
order dependencies. In fact, when ~x has a factorial joint density (i.e., the components are
already independent), RG will generally increase dependency. We can quantify this by re-
examining the decomposition of multi-information given in Eq. (2), applied to a whitened
source (i.e., where the second-order terms have been eliminated):

I(~x) = DKL (p(~x) ‖ N (~x)) −
d∑

k=1

DKL (p(xk) ‖ N (xk)) . (8)

Now rewrite ~x in generalized polar coordinates, ~x = r ·~u, where r = ‖~x‖, and ~u is a random
vector on the surface of the unit hypersphere d-dimensions. For spherically symmetric
densities, p(~x) = pχ(r)U(~u), where U(~u) denotes a uniform density on the hypersphere. We
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can rewrite the first term of the MI expression of Eq. (8) in polar form:

DKL (p(~x) ‖ N (~x)) =

∫

~x
p(~x) log

p(~x)

N (~x)
d~x

=

∫

r,~u
p(r, ~u) log

p(r, ~u)

N (r, ~u)
drd~u

=

∫

r
pr(r) log

pr(r)

pχ(r)
dr +

∫

r,~u
p(r, ~u) log

p(~u|r)
N (~u|r)drd~u

Therefore the multi-information can be expanded as

I(~x) = DKL (pr(r) ‖ pχ(r) ) +

〈
p(~u|r)
U(~u)

〉

~x

−
d∑

k=1

DKL (p(xk) ‖ N (xk)) . (9)

The RG operation always eliminates the first term in Eq. (9). When p(~x) is elliptically
symmetric, the second term is also zero, since the density of ~u is uniform and independent
of r. Finally, for elliptically symmetric sources, the last term will also be zero, since RG
ensures that the joint density is spherically Gaussian, and thus that the marginals will be
Gaussian with unit variance.

For general sources, the second term of Eq. (9) is typically non-zero, but is not affected
by a radial transform such as RG. On the other hand, the RG operation may actually
increase the last term. When the density is close to elliptically symmetric, the increase
in the last term may be relatively smaller than the reduction caused by the elimination
of the first term, and thus RG may still achieve reduction in multi-information. But for
densities that are close to factorial, it is possible that RG will result in a net increase in
MI. Therefore, the effectiveness of RG in reducing higher-order dependency is determined
by the underlying data model.

Summarizing, ICA and RG are procedures for dependency elimination, each producing
an optimal result for a complementary generalization of the Gaussian source model, as
illustrated to Fig. 2. Each can be optimized for, and applied to, data drawn from an
appropriate source model. A natural question then arises: how relevant is the elliptically
symmetric family (and the RG transformation) for real-world signals? In the next section,
we examine this question in the context of photographic images.

4 Local Image Statistics

The characterization of statistical properties of images is of central importance in solving
problems in image processing, and in understanding the design and functionality of biologi-
cal visual systems. The problem has been studied for more than fifty years (see (Ruderman,
1996) or (Simoncelli and Olshausen, 2001) for reviews). Early analysis, developed in the
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television engineering community, concentrated on second-order characterization of local
pixel statistics. If one assumes translation-invariance (stationarity), then the Fourier ba-
sis should form a suitable Principal Components basis. In practice, when one computes
a PCA solution on blocks drawn from photographic images, the basis functions appear as
block-global oriented bandpass functions, but are typically not pure sinusoids due to the
non-uniqueness of the eigenvalues.

Starting in the 1980’s, researchers began to notice striking non-Gaussian behaviors of
bandpass filter responses (Burt and Adelson, 1981; Field, 1987), and this led to an influ-
ential set of results obtained by using newly developed ICA methodologies to exploit these
behaviors (Olshausen and Field, 1996; van der Schaaf and van Hateren, 1996; Bell and
Sejnowski, 1997; Lewicki, 2002). These analyses generally produced basis sets containing
oriented filters of different sizes with frequency bandwidths of roughly one octave. The
nature of these results was widely hailed as a confirmation of central hypotheses that had
become standard in both scientific and engineering communities. Specifically, the biological
vision community had discovered neurons in the primary visual cortex of mammals whose
primary response behaviors could be approximated by local oriented bandpass filters, and
these were hypothesized to have been developed under evolutionary pressure as an efficient
means of representing the visual environment (Barlow, 1961; Field, 1987). On the other
hand, the computer vision and image processing communities (partly motivated by the
biological observations, and partly by a desire to capture image features such as object
boundaries) had long advocated the use of banks of local oriented filters for representation
and analysis of image data (Koenderink, 1984; Granlund, 1978; Adelson et al., 1987; Mallat,
1989).

Despite the success of ICA methods in providing a fundamental motivation for the use of
localized oriented filters, there are a number of simple observations that indicate inconsisten-
cies in the interpretation. First, from a biological perspective, it seems odd that the analysis
produces a solution that seems to bypass the retina and the lateral geniculate nucleus, two
stages of processing that precede visual cortex and exhibit significant nonlinear behaviors in
their own responses. Linear approximations of the response properties of these neurons are
isotropic (i.e., non-oriented) bandpass filters. If the optimal decomposition for eliminating
dependencies are oriented bandpass filters, why do we not see these in retina? Second, the
responses of ICA or other bandpass oriented filters exhibit striking dependencies, in which
the variance of one filter response can be predicted from the amplitude of another nearby
filter response (Simoncelli and Buccigrossi, 1997; Buccigrossi and Simoncelli, 1999b). This
suggests that although the histograms of responses of bandpass oriented filters are heavy-
tailed, the joint histograms of pairs of responses are not consistent with the factorial source
model assumed by ICA. A related observation is that the marginal distributions of a wide
variety of bandpass filters (even a “filter” with randomly selected zero-mean weights) are
all highly kurtotic (Zetzsche et al., 1997). This would not be expected for the ICA source
model: projecting the local data onto a random direction should result in a density that
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becomes more Gaussian as the neighborhood size increases, in accordance with a generalized
version of the Central Limit Theorem (Feller, 1968). A recent quantitative study (Bethge,
2006) showed that the oriented band-pass filters obtained through ICA optimization lead
to a surprisingly small improvement in terms of reduction in multi-information relative to
second order decorrelation methods such as PCA. Taken together, all of these observations
suggest that the filters obtained through ICA optimization are perhaps not as special as
initially believed.

In fact, for some time there has been empirical evidence (along with associated modeling
efforts) indicating that local joint densities of images are elliptically symmetric. This was
first noted with regards to pairwise joint statistics of Gabor filters of differing phase (Weg-
mann and Zetzsche, 1990), and later extended to filters at nearby positions, orientations
and scales (Wainwright and Simoncelli, 2000; Zetzsche and Krieger, 1999). As a result,
many recent successful models of local image statistics are based on elliptically symmet-
ric densities (Wainwright, 1999; Huang and Mumford, 1999; Parra et al., 2001; Hyvärinen
et al., 2000; Srivastava et al., 2002; Sendur and Selesnick, 2002; Portilla et al., 2003; Teh
et al., 2003). As introduced in the previous section of this article, this suggests that Radial
Gaussianization may be an appropriate methodology for eliminating local statistical depen-
dencies. In this section, we examine this hypothesis empirically, first by testing the local
statistics of bandpass filter responses for ellipticity, and then by comparing the reduction
in multi-information (MI) that is obtained using PCA, ICA and RG.

4.1 Ellipticity of Local Image Statistics

We examine the statistics of local blocks of image. We first remove the local mean by con-
volving with an isotropic band-pass filter2. that captures an annulus of frequencies in the
Fourier domain ranging from π/4 to π radians/pixel. We applied this transformation to
a set of different photographic images, commonly known as ”Barbara”, ”boats”, ”camera-
man”,”hill”,”Lena”,”baboon”,”pepper”, and ”house” 3. These are 8-bit JPEG-compressed,
and thus not directly representative of light intensities, but the results we report here are
not significantly different when examined in intensity-calibrated images.

4.1.1 Sphericality of Pixel Pairs

We first examine the statistical properties of pairs of band-pass filter responses with different
spatial separations. The two-dimensional densities of such pairs are easy to visualize, and
can serve as an intuitive reference when we later extend to the multi-dimensional pixel
blocks.

2Specifically, we use one subband of a non-oriented steerable pyramid (Simoncelli and Freeman, 1995).
3All images are available from Javier Portilla’s web page at

http://www.io.csic.es/PagsPers/JPortilla/denoise/.
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The top row of Fig. 4 (labeled “raw”) shows example contour plots of the joint histograms
obtained from image “boats”. The plots were arranged so that a 2D Gaussian density
will have equally spaced contour lines. Consistent with previous empirical observations
(Wegmann and Zetzsche, 1990; Wainwright and Simoncelli, 2000), the joint densities are
non-Gaussian, and have roughly elliptical contours for nearby pairs. For pairs that are
distant, both the second order correlation and the higher-order dependency become weaker
and the corresponding joint and conditional histograms become more separable, as would
be expected for two independent random variables.

The second row in Fig. 4 (labeled “ica”) shows the ICA-transformed pairs, denoted as
~xica, computed using the RADICAL algorithm (Learned-Miller and Fisher, 2000). RADI-
CAL is an implementation of ICA that directly optimizes the MI instead of some surrogate
contrast function, using a smoothed grid search over a non-parametric estimate of entropy.
Note that for adjacent pairs, the transformed density does not become factorial: it has
contours that are approximately circular, yet it is not an isotropic Gaussian, which is is
the only case where both spherical symmetry and complete factorization are both satisfied.
Thus ICA has not succeeded in removing higher-order dependencies. On the other hand,
for pairs that are further apart, the raw density is more factorial, and remains relatively
unchanged by the ICA transformation.

Next, we compare the distributions of the ICA-transformed pairs with those of synthe-
sized data with related spherically symmetric or completely factorized distributions. Shown
in the third row of Fig. 4 (labeled “ss”, for spherically symmetric) are histograms of syn-
thetic 2D samples that preserves the radial component of the ICA-transformed pairs with
randomized orientations from samples of a uniform distribution on the unit circle. This
implies these samples are from a spherically symmetric density that has the same radial
marginal density as the ICA-transformed pairs. Shown in the next row (labeled as ”fac”,
for factorial) are histograms of synthetic 2D samples that preserves the marginal distribu-
tion of the ICA-transformed pairs but with no inter-dependency. This results in a factorial
density that has the same set of marginal densities as the ICA-transformed pairs. Compar-
ing the histograms in the second, third and fourth rows, we see that the densities of the
ICA-transformed adjacent pairs are much more similar to the spherically symmetric den-
sity than the factorial density. As the separation increases, the ICA-transformed density
becomes less circular and starts to resemble the factorial density.

The isotropy of the above shown 2D joint densities can be further quantified by mea-
suring the sample kurtosis of marginal projections in different directions4. The fifth row
of Fig. 4 shows the kurtosis of the ICA-transformed pairs (black dashed curve) plotted
as a function of marginalization direction. For the spherically symmetric densities of the

4We define kurtosis as the ratio between the fourth order centered moments and the squared second order

centered moment (i.e., variances): κ(x) = E
˘

(x − E(x))4
¯

/
`

E
˘

(x − E(x))2
¯´2

. With this definition, a
Gaussian density has kurtosis of 3.
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third row, the marginal kurtosis (blue solid curve) is constant with respect to direction,
apart from fluctuations due to estimation errors from finite sampling. On the other hand,
the kurtosis of the factorial density (red dashed curve) varies with rotation. For nearby
pairs, the density of the ICA-transformed pairs is clearly seen to be better approximated by
that of the spherically symmetric distributed samples than that of the factorial-distributed
samples. As the distance increases, the marginal kurtosis of the ICA-transformed pairs
fluctuates more and begins to resemble that of the factorial-distributed samples.

4.1.2 Sphericality of Pixel Blocks

The analysis of the previous section indicates that pairs of nearby pixels with mean re-
moved have approximately spherical symmetric joint densities after whitening. But this
does not necessarily guarantee the densities of b× b blocks of nearby pixels are also spheri-
cally symmetric (after whitening). To examine the isotropy of these densities, we computed
the kurtosis for a large set of random projections. If the joint density has spherical sym-
metry, then the kurtosis (and all statistics) should be identical for marginals along any
direction. On the other hand, for a non-Gaussian factorial density with identical marginals,
such higher-order statistics will vary depending on how close a randomly chosen projection
direction is to one of the cardinal axes. We can thus use the distribution of such higher-order
statistics over random projections as an indicator of isotropy of the joint density.

Shown in Fig. 5 are distributions of kurtosis over 105× b2 random projections for square
blocks of pixels, after their means removed with band-pass filtering and their covariance
reduced to identity matrix with whitening. Further more, these blocks are transformed
with ICA to align the cardinal axis with the most sparse marginals. In this case the ICA
transform is implemented with the FastICA algorithm, which is more efficient and reliable
for data of more than a few dimensions. Following (Bethge, 2006), we used contrast function
g(u) = 1 − exp(−u2) and the optimization was done using the symmetric approach. The
factor of b2 in the number of sampled projections compensates for the expected increase
in sampling-induced variability that arises as the block size increases. In each plot, the
black curves correspond to the ICA-transformed band-pass filtered pixel blocks. As in
the pairwise case, the blue curves correspond to synthetic data sets of the same size and
dimensionality that retain the radial density but with randomized orientations, whose joint
density is spherically symmetric. Similarly, the red curves correspond to synthetic data
sets formed by samples from a factorial density with the same marginal densities as the
ICA-transformed pixel blocks.

These distributions of kurtosis can be used as an indicator of the Sphericality of the un-
derlying joint density. Specifically, the mean of these distributions indicates average kurtosis
over all marginals, and can be taken as a measure of the Gaussianity of “typical” projections
of the data. To understand this, consider the curves (in red) corresponding to the factorized
data. For small block sizes, the kurtosis varies substantially, ranging from roughly 3 to over
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Figure 4: Contour plots of joint histograms of pairs of band-pass filter responses from an
isotropic subband of the “boats” image with different spatial separations (given in units of
pixels). See text for details.
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Figure 5: Distribution of kurtosis for whitened and ICA transformed pixel blocks (black),
sphericalized samples (blue) and independent components (red). See text for details.
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20. The large values correspond to marginal directions that are well-aligned with one of
the cardinal axes. The smaller values correspond to marginal directions that are poorly
aligned with the cardinal axes (e.g., the marginal along the direction [1, 1, · · · , 1]/

√
N), and

thus are averaging together the independent marginal variables. These averages tend to
be significantly more Gaussian than the distributions along the cardinal axes, which is the
underlying motivation for most ICA algorithms to find the most non-Gaussian axes. As
the block size grows, alignment with the cardinal axes becomes rarer, and the distribution
becomes more concentrated toward the kurtosis values expected of “typical” marginal di-
rections. By the Central Limit theorem, these values converge to 3 as the dimensionality
goes to infinity.

On the other hand, the width of the kurtosis distribution is determined by two factors:
first, the variability of kurtosis due to changes in the shape of the marginal projections along
different directions. And second, there is additional variability that arises from sampling.
This portion of the variability may be seen directly in the distributions corresponding to
the sphericalized data (blue curves). Since these distributions are spherically symmetric,
all marginals should have the same kurtosis, and the only source of variability is due to
sampling.

Given the above, consider the distributions of kurtoses for the ICA-transformed data
(black dashed curves). For all block sizes, these have a mean that is similar to that of
the sphericalized data, but consistently and substantially larger than that of the factorized
data. We also see that the ICA-transformed data is not as concentrated as the sphericalized
data. Thus, there is some real variation in kurtosis that cannot be attributed to sampling
artifacts. Although this implies that the ICA-transformed distributions are not perfectly
spherical, they are still much closer to spherical than factorial. This suggests that RG is
likely to be more effective in reducing statistical dependencies than linear transforms such
as PCA and ICA. In the next section, we test this assertion directly.

4.2 Reducing Local Image Dependencies with Radial Gaussianization

We begin by comparing the reduction of statistical dependency in pixel pairs using each
of the methods described previously. We estimated the MI for ~xraw, ~xwht, ~xica and ~xrg on
pairs of band-pass filtered responses separated by distances ranging from 1 to 32 samples.
Here, the MI was computed using a recent non-parametric method based on the order
statistics (Kraskov et al., 2004). This approach belongs to the class of ”binless” estimator
of entropy and mutual information, which alleviates the strong bias and variance intrinsic
to the more traditional binning (i.e., “plug-in”) estimators. It is especially effective in this
particular case, where the data dimension is two.

In order to implement RG, we have to estimate the radial component of the whitened
source density from data. rom a set of training data {~x1, · · · , ~xn}, a trapezoidal approx-
imation of Fr, F̂r, is obtained as following. First, we re-order the training data into
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Figure 6: Left: MI (bits/pixel) for pairs of band-pass filtered pixels and their transfor-
mations with PCA, ICA and RG, as a function of spatial separation. Right: same data,
re-plotted as a proportion of the MI of the band-pass filtered pixel pairs. The top of the
red region corresponds to the results for PCA, and the bottom to those for ICA.

{~xi1 , · · · , ~xin}, such that ‖~xi1‖ ≤ · · · ≤ ‖~xin‖. Then F̂r is computed as

F̂r(r) =







0 r ≤ ‖~xi1‖
k
n k = argmaxj{j|‖~xij‖ ≤ r}
1 ‖~xin‖ ≤ r

(10)

In practice, if n is sufficiently large, the obtained F̂r(r) will be smooth and a good approx-
imation of Fr(r). A non-parametric estimation of Fχ(r), F̂χ(r) can be obtained similarly
by generating a set of d-dimensional isotropic Gaussian samples. From F̂χ(r) and F̂r(r),
a look-up table can be constructed with proper interpolation, as ĝ(r) = F̂−1

χ F̂r(r), to ap-
proximate the continuous function g(r). It is also possible, though not necessary, to further
reduce the complexity in specifying ĝ by fitting it with piece-wise smooth functions (e.g.,
splines).

The averaged results over three images, are plotted in Fig. 6. First, we note that PCA
produces a relatively modest reduction in MI: roughly 25% for small separations, decreasing
gradually for larger separations. More surprisingly, ICA offers no additional reduction for
small separations, and a relatively modest improvement for separations of between 12 and
32 samples. This is consistent with the histograms and kurtosis analysis shown in Fig. 4,
which suggest that the joint density of adjacent pairs have roughly elliptical contours. As
such, we should not expect ICA to provide much improvement beyond what is obtained
with a whitening step.
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The behavior for distant pairs is also consistent with the results shown in Fig. 4. These
densities are roughly factorial, and thus require no further transformation to reduce MI. So
ICA again provides no improvement, as is seen in the plots of Fig. 6 for separations beyond
32 samples. The behavior for intermediate separations is likely due to the fact that during
the transition from spherical to factorial symmetry, there is a range where the final rotation
transformation of ICA can result in a reduction in MI (e.g., middle columns Fig. 4).

In comparison to PCA and ICA, the non-linear RG transformation achieves an impres-
sive reduction (nearly 100%) in MI for pairs separated by less than 16 samples. Beyond
that distance, the joint densities are closer to factorial, and RG can actually make the pairs
more dependent, as indicated by an increase in MI above that of the original pairs.

In the next set of experiments, we generalize our analysis to examine the effects of
RG in reducing dependencies within pixel blocks. As with the kurtosis analyses of the
previous section, the generalization from pairs to blocks is more difficult computationally,
and more difficult to visualize. Specifically, direct estimation of the MI of pixel blocks
becomes increasingly difficult (and less accurate) as the block size grows. This problem
may be partially alleviated by instead evaluating and comparing differences in MI between
different transforms. The details of this computation are provided in Appendix C.

For the sake of comparison, we use ∆Ipca = I(~xraw) − I(~xpca) as a reference value, and
compare this with ∆Iica = I(~xraw)−I(~xica) and ∆Irg = I(~xraw)−I(~xrg). Shown in Fig.7 are
scatter plots of ∆Ipca versus ∆Iica (red circle) and ∆Irg (blue cross) for various block sizes.
Each point corresponds to MI computation over blocks from one of eight bandpass-filtered
test images. As previously, the ICA algorithm was implemented with FastICA.

As shown in Fig. 7, for small block sizes (e.g., 3 × 3), RG achieved a significant reduc-
tion in MI (roughly double that of PCA) , whereas ICA shows only a small improvement
over PCA. Since PCA-based whitening is usually used as preprocessing step for ICA, this
suggests that ICA algorithm does not offer much advantage over second-order decorrelation
algorithms such as PCA. Similar results were also obtained with the means of each block
removed in a slight different manner in (Bethge, 2006). These results may be attributed to
the fact that the joint density for small pixel blocks tend to be roughly elliptical. It also
suggests the amount of higher order dependency in these blocks is significant compared to
the second order correlations measured by the MI reduction of PCA. On the other hand,
as the block size increases, the advantage of RG in reducing statistical dependency fades,
consistent with the fact that the pairwise densities for coefficients become less elliptical with
distance, and thus the multi-dimensional joint density of larger blocks will tend to deviate
more from elliptically symmetric.
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Figure 7: Reduction of MI with PCA, ICA and RG for pixel blocks of various sizes. The
x-axis corresponds to ∆Ipca, the plus denotes ∆Irg, and circles denotes ∆Iica.
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5 Relationship to divisive normalization

In recent years, a local gain control model, sometimes known as divisive normalization (DN)
has become popular for modeling biological vision. In DN, responses of a band-pass filter are
divided by a Minkowski combination of a cluster of neighboring response amplitudes. This
type of model has been used to explain nonlinearities in the responses of mammalian cortical
neurons (Heeger, 1992; Geisler and Albrecht, 1992), and nonlinear masking phenomenon
in human visual perception (Foley, 1994; Watson and Solomon, 1997; Teo and Heeger,
1994). Statistically, it’s been shown that locally dividing bandpass-filtered images by local
standard deviation can produce approximately Gaussian marginal distributions(Ruderman,
1996), and that a weighted DN nonlinearity can reduce statistical dependencies of oriented
bandpass filter responses (Simoncelli, 1997; Buccigrossi and Simoncelli, 1999a; Malo et al.,
2000a; Schwartz and Simoncelli, 2001; Valerio and Navarro, 2003b). Recently, several
authors have developed invertible image transformations that incorporate DN (Valerio and
Navarro, 2003a; Malo et al., 2006; Gluckman, 2006; Lyu and Simoncelli, 2007). Since DN
provides a nonlinear means of reducing dependencies in bandpass representations of images,
it is natural to ask how it is related to the RG methodology introduced in this article.

Given decorrelated input variable ~x ∈ Rd, we define the DN transform as (Simoncelli,
1997):

ri =
xi

(b+
∑

j cjx
2
j )

1/2
, for i = 1, · · · , d. (11)

where ci and b are the transform parameters5. When the weights are all identical (ci = c,∀i),
DN becomes a radial transform:

φdn(~x) = gdn(‖~x‖) ~x

‖~x‖ , (12)

where
gdn(r) =

r√
b+ cr2

, (13)

with scalars b and c as transform parameters.
In practice, the transform parameters in the DN transform are learned from a set of

data samples. Previously, the DN parameter learning problem was formulated to maximize
likelihood, where specific marginals were assumed for ri (Schwartz and Simoncelli, 2001;

5For biological modeling, the DN transform is commonly defined using a rectified numerator:

Ri =
sign(xi)x

2

i

b +
P

j cjx2

j

(Schwartz and Simoncelli, 2001). Note that Ri can be mapped to ri using a point operation: ri = sign(Ri) ·
p

|Ri|. As MI is not affected by point-wise operations, we may choose either (r1, · · · , rd) or (R1, · · · , Rd)
for the analysis of dependency reduction.
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Wainwright et al., 2002). In this work, we employ an alternative learning scheme that
explicitly optimize the DN transform parameters with regards to the reduction of MI.
Specifically, we optimize the difference in MI from input data ~x to the DN transformed
data ~y = φdn(~x):

∆I = I(~x) − I(~y) =
d∑

i=1

H(xi) −
d∑

i=1

H(yi) +

〈

log

∣
∣
∣
∣
det

(
∂~y

∂~x

)∣
∣
∣
∣

〉

~x

. (14)

Note that
∑d

i=1H(xi) is a constant with regards to the DN transform parameters, and the
Jacobian of DN transform is given as (see Appendix):

det

(
∂~y

∂~x

)

=
b

(b+ cr2)d/2+1
,

the optimization is reduced to

argmax
b,c

−
d∑

i=1

H(yi) + log b− (d/2 + 1)〈log(b+ cr2)〉r. (15)

We then apply a grid search for the (b, c) values that maximizes Eq.(15), where the expecta-
tion over r is replaced by averaging oner training data, and the entropy H(yi) is computed
using a non-parametric m-spacing estimator.

Fig.8 shows two comparisons of optimal RG and DN transformations. The first shows
results obtained by optimizing over 105 25-D multivariate Student’s t samples. The multi-
variate Student’s t density is a member of the elliptically symmetric family, and its MI can
be computed in closed form (see Appendix). Note that for relative small of r, the DN radial
map closely approximates the RG radial transform. But we also see that the DN radial
transform saturates at large values while the RG radial transform continues to increase.
Finally, note that DN eliminates only about half of the MI, whereas RG eliminates nearly
all of it.

The right side of Fig. 8 shows a comparison of RG and DN applied to image “boats”.
Similar to the case of multi-variate Student’s t, the DN radial transform is approximates
the RG radial transform, and reduces a substantial fraction of the MI. Nevertheless, it falls
significantly short of the performance of the RG transform.

More generally, we can show that the functional form of the DN transform suggests that
it cannot remove the dependencies of spherical densities. Specifically, the radial transform
in RG, g(·), is a monotonic bijection (one-to-one map) from [0,∞) to [0,∞), for the simple
reason that the support of the target χ-distribution takes [0,∞) as its domain. On the
other hand, the radial transform in DN, expressed in Eq.(13), saturates for large values of
r, i.e., there exist a constant C such that for any r ∈ [0,∞), gdn(·) ≤ C. Therefore, DN
transform cannot be used to gaussianize elliptically symmetric variables, and thus is not
able to completely remove their higher-order statistical dependencies.
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6 Discussion

We have introduced a new form of statistically-adaptive signal transformation, which is able
to remove dependencies of sources with elliptically symmetric densities. The methodology
is complementary to the ICA approach, which is effective for linearly transformed factorial
sources, but ineffective for ESDs. The optimal transformation, which corresponds to a
nonlinear adjustment of the signal amplitude, may be estimated non-parametrically from
sample data. Although we have not explored it here, it may be possible to express this
nonlinear transformation in closed form for specific sub-families of ESD.

An important aspect of our development of this topic is the emphasis on source models.
The RG transformation may be applied to data from any source, but it is only guaranteed
to produce independent responses when the source is elliptically symmetric, and it may
actually increase dependencies of certain class of source models. Thus, RG cannot be
applied blindly to data, but requires diagnostic tests to verify that the data are sufficiently
close to elliptical.

We have shown that this transformation is highly effective at removing dependencies
within local blocks of bandpass filtered images, much more so than ICA or sparse coding
methods, which are, in turn, only slightly better than PCA. This may be seen as clear evi-
dence that images are not well-modeled as linear combinations of sparse and/or independent
sources. Furthermore, the resulting transformation on the signal amplitude is similar to the
divisive normalization operation that has been used to model the responses properties of
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visual neurons. But unlike divisive normalization, RG is derived as an optimal procedure
for a specific family of density models.

There are several nonlinear methods for dependency removal in the literature. Kernel
PCA methods (Mika et al., 1999) operate by nonlinearly transforming the data to a space
where PCA is used to remove any remaining dependencies. The concept is quite general,
but success relies on choosing nonlinear kernel functions that are capable of Gaussianizing
the data. Chen and Gopinath proposed an iterative scheme that alternate between ICA
transformations and marginal Gaussianization (Chen and Gopinath, 2000). Although this
method is guaranteed to converge for any data source, the overall transformation (which
is a composition of the iterated alternating sequence of linear transforms and marginal
nonlinearities) is difficult to interpret and will generally result in a substantial distortion
of the original source space. This is especially true for elliptically symmetric sources. RG,
while only guaranteed to work correctly for elliptically symmetric densities, is a one-step
procedure.

Some authors have proposed the use of spherically symmetric densities for representation
of image features that are invariant to phases or orientations (Zetzsche and Barth, 1990;
Kohonen, 1996; Zetzsche and Krieger, 1999; Hyvärinen et al., 2000, e.g., ). In addition,
several recent approaches for unsupervised learning of image structures arrive at related
local descriptions. Specifically, independent subspace analysis(Hyvärinen and Hoyer, 2000),
topographical ICA (Hyvärinen et al., 2000), and hierarchical scale mixture models (Karklin
and Lewicki, 2005) each assume that image data are generated from linearly transformed
densities which are formed by combining clusters of variables whose dependency cannot
be reduced by linear transform. In all three cases, we believe the densities of these local
clusters are approximately elliptical, and thus the RG methodology may be relevant for
eliminating the dependencies captured by these generative models.

There are a number of extensions of RG that are worth considering, in the context of
image representation. First, we see that RG substantially reduces the multi-information for
small blocks, but that performance worsens as the block size increases. The RG solution
cannot provide a global solution for removing independence from images. A natural means
of extending a local statistical model is through Markov Random Fields, and we have
begun exploring such extensions, based on our previous work (Lyu and Simoncelli, 2008).
Second, since the RG methodology generates factorial responses, it provides a solution to
the Efficient Coding problem for elliptical signals, in the noise-free case (Barlow, 1961;
Simoncelli and Olshausen, 2001). It is important to examine how this solution would
be affected by the incorporation of sensor noise and/or channel noise. And finally, we
are currently examining the statistics of images after local RG transformations, with the
expectation that remaining statistical regularities (e.g., orientation and phase dependencies)
can be studied, modeled and removed with additional transformations.
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A ZCA

In this appendix, we show that ZCA is the whitening transform that minimizes expected
square distortion of the transformed data. We formulate this with an optimization:

min
W

E(‖~x −W~x‖2) s.t. E((W~x)(W~x)T ) = I. (16)

First, note that

E((W~x)(W~x)T ) = I ⇒WE(~x~xT )W T = I ⇒ E(~x~xT ) = W−1W−T .

Denote C = E(~x~xT ), we have
C = W−1W−T . (17)

Next, we rewrite the objective function in Eq.(16) as:

E(‖~x−W~x‖2) = E((~x−W~x)T (~x−W~x))

= E(tr[(~x−W~x)(~x−W~x)T ])

= tr[E((I −W )~x~xT (I −W )T ))]

= tr[(I −W )E(~x~xT )(I −W )T )]

= tr[(I −W )C(I −W )T )]

Using Eq.(17), we further transform

E(‖~x−W~x‖2) = tr[(I −W )W−1W−T (I −W )T )]

= tr[W−1W−T + I −W−1 −W−T ]

= tr[W−1W−T ] + d− 2tr[W−1].

Now using Eq.(17) again, we have

E(‖~x −W~x‖2) = tr[C] + d− 2tr[W−1]. (18)

Therefore, minimizing E(‖~x−W~x‖2) is equivalent to maximizing tr[W−1] as the first two
terms are constants. Now denote A = W−1, the original optimization becomes

max
A

tr[A] s.t. AAT = C. (19)

We solve Eq.(19) by introducing Lagrangian multipliers Mij which forms a matrix M . Note
that M is a symmetric matrix as the constraints are symmetric. The Lagrangian of Eq.(19)
is then

L(A) = tr[A] − tr[MT (AAT − C)]. (20)
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Taking derivative of Eq.(20) with regards to A and setting the result to zero yeild

∂L(A)

∂A
= 0 ⇒ I − (MTA+MA) = 0. (21)

As M is symmetric, this implies A = −1
2
M−1, and that A as well as W should also be

symmetric. We write the eigen-decomposition of W = UΓUT , the optimal solution to
Eq.(16) is obtained as

WCW T = I ⇒ UΓUTCUΓUT = I ⇒ UTCU = Γ−2. (22)

Therefore, U are the eigen-vectors of C and Γ contains the inverse of eigen-values of C.
This shows that W is the square root of C and thus the ZCA solution.

B Jacobian of Radial Transform

In this appendix, we show the Jacobian of a general radial transform as given in Eq.(4).

Denote ~y = φ(~x), we aim to compute det
(

∂~y
∂~x

)

. Note that
(

∂~y
∂~x

)

ij
= ∂yi

∂xj
. We will thus

compute ∂yi

∂xj
for i 6= j and ∂yi

∂xi
.

First, we have

∂yi

∂xj
=

∂

∂xj

[

g(‖~x‖) ~x

‖~x‖

]

= xi
∂‖~x‖
∂xj

[
g′(‖~x‖)
‖~x‖ − g(‖~x‖)

‖~x‖2

]

.

As ∂‖~x‖
∂xj

=
xj

‖~x‖ ,

∂yi

∂xj
=
xixj

‖~x‖

[
g′(‖~x‖)
‖~x‖ − g(‖~x‖)

‖~x‖2

]

.

Similarly,
∂yi

∂xi
=

∂

∂xi

[

g(‖~x‖) ~x

‖~x‖

]

=
g(‖~x‖)
‖~x‖ +

x2
i

‖~x‖

[
g′(‖~x‖)
‖~x‖ − g(‖~x‖)

‖~x‖2

]

.

Writing in matrix form, and denote r = ‖~x‖, we have

∂~y

∂r
=
g(r)

r
Id +

~x~xT

r

[
g′(r)

r
− g(r)

r2

]

, (23)

where Id is d-dimensional identity matrix.
Making use of identity det(aId + b~x~xT ) = ad−1(a+ b~xT~x) (Abadir and Magnus, 2005),

we can compute

det

(
∂~y

∂r

)

=

(
g(r)

r

)d−1 [g(r)

r
+ r

[
g′(r)

r
− g(r)

r2

]]

= g′(r)

(
g(r)

r

)d−1

.
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When the radial transform in question is in the form of divisive normalization, Eq.(12),
where g has form in Eq.(13), is

det

(
∂~y

∂~x

)

=
b

(b+ cr2)d/2+1
,

C Computing Differences in Multi-information

Direct estimation or optimization of multi-information is challenging, especially for high-
dimensional data. On the other hand, under our current setting, we are not required
to compute the multi-information directly, but rather more interested in the reduction of
multi-information using different methods. Therefore, it suffices to compute the difference
in multi-information between raw data and transformed data.

For an invertible transform φ : Rd 7→ Rd, the change in multi-information from ~x to its
transformation ~y = φ(~x) is given as:

∆I = I(~x) − I(~y)

=

d∑

i=1

H(xi) −H(~x) −
[

d∑

i=1

H(yi) −H(~y)

]

=

d∑

i=1

H(xi) −
d∑

i=1

H(yi) −
∫

~y
p(~y) log p(~y)d~y −H(~x)

=

d∑

i=1

H(xi) −
d∑

i=1

H(yi) −
∫

~x
p(~x) log

p(~x)
∣
∣
∣det

(
∂~y
∂~x

)∣
∣
∣

d~x−H(~x)

=

d∑

i=1

H(xi) −
d∑

i=1

H(yi) +

∫

~x
p(~x) log

∣
∣
∣
∣
det

(
∂~y

∂~x

)∣
∣
∣
∣
d~x

=

d∑

i=1

H(xi) −
d∑

i=1

H(yi) +

〈

log

∣
∣
∣
∣
det

(
∂~y

∂~x

)∣
∣
∣
∣

〉

~x

.

Therefore, the computation of ∆I can be split into two parts: (1) estimating marginal
entropies for the input and transformed variables, H(xi) and H(yi), and (2) computing the

expected log Jacobian
〈

log
∣
∣
∣
∂~y
∂~x

∣
∣
∣

〉

~x
.

C.1 Entropy Estimation

To estimate the entropy for the 1D marginal densities p(xi) and p(yi), we employed the non-
parametric m-spacing entropy estimator (Vasicek, 1976). We briefly describe this algorithm
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density (ent = 1) bias
√

var mse

Gaussian 2.43 × 10−3 3.17 × 10−3 3.99 × 10−3

Laplacian 5.72 × 10−3 7.49 × 10−3 9.42 × 10−3

Student t 4.36 × 10−3 6.38 × 10−3 7.73 × 10−3

Table 1: Bias and variance of the non-parametric entropy estimator on several example
densities. The unit for entropy is nat. Note that mse2 = bias2 + var.

here: a more comprehensive tutorial can be found at (Learned-Miller and Fisher, 2000). In
the m-spacing entropy estimation, one is given a set of i.i.d. data samples (x1, · · · , xN ).
The first step is to sort data into z1 ≤ · · · ≤ zN . Next, we choose an integer m to form the
m-spacing entropy estimator as:

Ĥ(z1, · · · , zN ) =
1

N

N−m∑

i=1

log

(
N

m
[zi+m − zi]

)

− ψ(m) + log(m) (24)

where ψ(x) = d
dx log Γ(x) is the digamma function. The m-spacing estimator is strongly

consistent, i.e. as m → ∞, and m/N → 0, Ĥ(z1, · · · , zN ) → H(z) with probability 1. We
set m =

√
N in our implementation.

To evaluate the bias and variance of this estimator we tested it on several densities whose
entropy can be computed in closed-form. Specifically, we generated 105 random trials of
2.5 × 105 samples, which is in the same order as the amount of data used in subsequent
experiments, from a Gaussian, a Laplacian and a Student’s t density, respectively. Dif-
ferential entropies of these densities afford closed-forms and can be found in (Cover and
Thomas, 2006). The parameters of each density is chosen so that they all have entropy
1. As summarized in Table 1, the m-spacing estimator leads to relatively small bias and
variances in the estimation.

For ~xraw and its linear transformations ~xpca and ~xica, it has been observed that the
marginals can be well fitted by the generalized Laplacian family (also known as the general-
ized Gaussians, or stretched exponential densities) (Mallat, 1989; Simoncelli and Adelson,
1996; Huang and Mumford, 1999):

p(x; p, s) =
p

2sΓ(1/p)
exp

(

−
( |x|
s

)p)

, (25)

which is determined by the shape parameter p and scale s. This suggests that we can esti-
mate the marginal entropy with a parametric approach, where we can first fit the generalized
Laplacian to the marginals by maximizing likelihood, and then compute the differential en-
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tropy as (Farvardin and Modestino, 1984):

H(x) =
1

p
− log

(
p

2sΓ(1/p)

)

. (26)

In practice, this parametric entropy estimator yields results that are close to that of the
non-parametric estimator when the marginal density of the source is well-approximated by
the generalized Gaussian family. However, for non-linear transformed ~xrg, especially when
the coefficient pairs are far apart or the size of coefficient blocks is large, the generalized
Laplacian is a poor fit to the marginals, and thus the parametric estimator may introduce
a large bias in estimation. For this reason, in subsequent numerical experiments, we report
only the results with the non-parametric estimator, as it is more flexible in dealing with
data for which no prior knowledge of marginal densities is available.

C.2 Computing Expected Log Jacobian

For linear transforms, the log Jacobian, log
∣
∣
∣det

(
∂~y
∂~x

)∣
∣
∣, is a constant equal to the log deter-

minant of the transform matrix. Note that when the linear transform is orthonormal the
log Jacobian is zero.

For the nonlinear RG transform, the log Jacobian can be directly computed from the
radial transform, g(r), as:

log

∣
∣
∣
∣
det

(
∂~y

∂~x

)∣
∣
∣
∣
= log g′(r) + (d− 1) log

g(r)

r
. (27)

where r = ‖~x‖. Then the expectation over ~x of the log Jacobian in this case is computed as

〈

log

∣
∣
∣
∣

∂~y

∂~x

∣
∣
∣
∣

〉

~x

= 〈log g′(r)〉r + (d− 1)

〈

log
g(r)

r

〉

r

.

In practical implementation, the differentiation is computed numerically. The expectation
is implemented by averaging over radii of training data.
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