
Kmax: Analyzing the Linux Build System

NYU CS Technical Report TR2015-976

Paul Gazzillo
New York University

gazzillo@cs.nyu.edu

ABSTRACT
Large-scale C software like Linux needs software engineering tools.
But such codebases are software product families, with complex
build systems that tailor the software with myriad features. This
variability management is a challenge for tools, because they need
awareness of variability to process all software product lines within
the family. With over 14,000 features, processing all of Linux’s
product lines is infeasible by brute force, and current solutions em-
ploy incomplete heuristics. But having the complete set of com-
pilation units with precise variability information is key to static
tools such a bug-finders, which could miss critical bugs, and refac-
toring tools, since behavior-preservation requires a complete view
of the software project. Kmax is a new tool for the Linux build
system that extracts all compilation units with precise variability
information. It processes build system files with a variability-aware
make evaluator that stores variables in a conditional symbol table
and hoists conditionals around complete statements, while tracking
variability information as presence conditions. Kmax is evaluated
empirically for correctness and completeness on the Linux kernel.
Kmax is compared to previous work for correctness and running
time, demonstrating that a complete solution’s added complexity
incurs only minor latency compared to the incomplete heuristic so-
lutions.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software configu-
ration management; D.3.3 [Programming Languages]: Language
Constructs and Features—Patterns, Modules, packages

General Terms
Systems, Language, Software Engineering

Keywords
Kmax, Linux, C, Kbuild, Kconfig, Makefiles, Build Systems

1. INTRODUCTION
As software systems become larger, automated software engineer-
ing tools such as source code browsers, bug finders, and automated
refactorings, become more important. Larger systems are more vul-
nerable to bugs, and modifications to the codebase are more dif-
ficult to verify by hand due to the larger number of interactions
between features of the system. C is the language of choice for
many common large-scale software systems, including the Linux
kernel, the Apache web server, and the GNU compiler collection,
all of which are used in critical computing systems. One facet of
large-scale software development is variability management, with
which software systems are tailored to a specific use by enabling
features at build-time. With such variability, a codebase encom-
passes a family of customized software product lines, which share
portions of the source code and features. Variability amplifies the
difficulty of creating and using automated software tools, because
such tools need to be aware of the variability in order to operate on
all product lines in the software family. Worse still, variability in-
troduces new classes of bugs. Abal et al found bugs resulting from
the interactions and dependencies between features of the Linux
kernel, but lacking automated tools, found them by manually ex-
amining patches send to the Linux kernel mailing list [3].

New languages and formalisms for describing variability promise
safety and the easier application of software engineering tools [19,
16, 25], but until such variability tools are widespread, an abun-
dance of critical C software remains that uses ad-hoc techniques
for variability. In our previous work, SuperC, we preprocess and
parse all variations of C source files in the Linux kernel, which uses
the preprocessor to implement variability within source files [14].
While this provides the foundation for variability-aware tool im-
plementation for individual source files, large C programs are com-
prised of potentially thousands of compilation units, i.e., C files
compiled separately and linked to form the final program. The
Linux kernel v3.19, for instance, contains over 20,000 compilation
units, but only a subset of these compilation units are used for a
single software product line, depending on the selected features.

Being able to extract all compilation units and their variability
information is crucial for software engineering tools. For instance,
C function calls can cross compilation unit boundaries, only being
referenced by an extern declaration. Without knowing the com-
plete set of compilation units that may be linked together, static
analyses cannot find all callees. Bug-checking in particular is lim-
ited without variability-awareness. Chou et al shows that static
checkers find bugs in the Linux kernel [9], but they only oper-
ate on one software product line. Families of product lines har-
bor untestable bugs, since it is not feasible to check every possible
combination of features separately. Variability-awareness enables
tools to operate across sofware product lines. For instance, know-

ing which compilation units are linked under which combinations
of features can help root out linker errors without having to build
and link every possible variation of the software. Additionally, pre-
vious work on translating Linux’s extensive C preprocessor use to
a safer alternative, such as aspects [4] or to the ASTEC preproces-
sor [19], depends on a complete view of the kernel source.

This paper focuses on the Linux build system due to its size,
complexity, and prevalence. Several software projects also use
Linux’s build system tools to manage variability, including the Busy-
Box toolkit [8] and the uClibc library [26], and Kmax’s approach
applies generally to any build system language that uses condition-
als to implement variability. The Linux build system is a relevant
target for Kmax, because Linux is a frequent object of study for
researchers, yet it is difficult to extract variability information from
its build system. For instance, Liebig et al computes statistics on
variability metrics in the Linux kernel [18]. But that study along
with others, including including this author’s previous work, use an
incomplete set of compilation units to experiment on the 2.6.33.3
version Linux [15, 14]. All three report using 7,665 or fewer units
while there are 9,344, which is off by more than 15%. At best,
this leads to incomplete data. At worst, static analysis tools get
a incomplete view of the kernel, missing critical problems in the
source code. These incomplete studies can be traced to back to a
single tool, KBuildMiner.

Using a fuzzy parser for Linux Makefiles, KBuildMiner collects
compilation units by looking for usage patterns [6]. This approach
misses the mark, because some compilation unit names are defined
by concatenation and function calls, which requires evaluating the
make language. Furthermore, some Kbuild files need to be hand-
modified to fit the syntax recognized by the parser. Aware of the
limitations of KBuildMiner, Dietrich et al sought to improve the
state of build system analysis with GOLEM. GOLEM enables one
or more features at a time and runs make to see which compila-
tion units get activated [10]. While this semi-brute-force approach
successfully avoids having to try all combinations of features, its
heuristic approach falls short.

This paper introduces Kmax. Kmax extracts all compilation
units and their variability information without using heuristics. At
its core is its variability-preserving make evaluator, that records all
possible compilation units that comprise any software product line,
and the feature selections that lead to these compilation units. In
addition to evaluating most of the make language, it employs three
key techniques: (1) it maintains a conditional symbol table with all
possible variable definitions, (2) it evaluates all branches of condi-
tionals blocks, and (3) it hoists conditionals around statements that
contain conditionals. During processing, Kmax’s make evaluator
tracks the combinations of features as a boolean expression, called
a presence condition. By tracking the presence condition during
evaluation, it can discover the combination of features that enables
each compilation unit.

The contributions of this paper are as follows:

1. Algorithms to find selectable features and evaluate a subset
of the make language across software product lines,

2. A new tool, Kmax, that implements the algorithms to ex-
tract compilation units and their presence conditions from
the Linux build system, and

3. Empirical evaluation of Kmax’s correctness and performance
with a comparison to previous work.

Kmax is available at http://cs.nyu.edu/~gazzillo/kmax.html.

2. PROBLEM AND SOLUTION APPROACH

Figure 1: Hierarchy of source code in the Linux kernel codebase.
Each architecture directory is a separate root of the source tree and
includes the rest of the common codebase. Some compilation units
appear in the common codebase, but can only be enabled when
building for one architecture, e.g., ps3disk.c can only be enabled
in arch/arm

Kmax’s challenges stem from both the difficulty of evaluating the
make language in the presence of variability and the peculiarities
of the Linux source tree’s organization. Its build system uses two
specification languages, Kconfig to define features and their con-
straints and Kbuild, a make-based language that describes how fea-
tures control the build process. To build one product line from the
Linux codebase, the user first selects the architecture. Then the
user selects the features to include in the kernel, such as drivers
and file systems. Once configured, the build process is typical of C
programs, using make to run the Kbuild files, compiling and link-
ing the compilation units according to the selected features. The
process Kmax uses to extract the compilation units and their vari-
ability information from the build system mirrors the build process.
Given an architecture, Kmax first processes the Kconfig files to find
the domain of features. Then, using its variability-preserving make
evaluator on the Kbuild Makefiles, it extracts the compilation units
while recording their presence conditions. The challenges to this
process include handling architecture-specific source code, finding
selectable features, the particulars of Kbuild, and evaluating make
across software product lines. These challenges and Kmax’s solu-
tion approach are detailed below.

2.1 Architecture-Specific Source Code
The Linux kernel source code is hierarchical. Top-level directo-
ries define major subsystems, such as net/ for networking and
drivers/, and nest related code in subdirectories, for example,
net/ethernet and drivers/video. While the codebase con-
tains source code that is mostly shared by all software product
lines, each architecture serves as the root of its own hierarchy.
Figure 1 illustrates this with a forest. At the roots of the trees
are the architecture-specific source code directories. These direc-
tories roughly form the hardware abstract layer (HAL), defining
macros, functions, types, and include paths that the rest of the code-
base uses. Beneath the HAL are the top-level directories, to which
each architecture points to form the rest of its hiearchy. There are
two consequences to this structure. Firstly, static analyses only
make sense only after a HAL is selected and should operate on
one architecture at at time. Secondly, not all compilation units are
accessible to each architecture’s product lines. As Figure 1 also
shows, finding these compilation units is not straightforward. The
drivers/block/ps3disk.c compilation unit is part of every ar-
chitecture’s hierarchy. But because of the constraints on features,

http://cs.nyu.edu/~gazzillo/kmax.html

Metric Count
Total compilation units 21,158

Shared compilation units 13,881
Architecture-specific units in arch/ directories 5,973
Architecture-specific units in common directories 1,304

Total features 14,636
Shared 9,658
Architecture-specific 4,978

Per-architecture compilation units
Minimum 13,906
Maximum 15,976

Per-architecture features
Minimum 9,684
Maximum 11,232

Table 1: Linux v3.19 build system metrics broken out by
architecture-sharing.

1 config USB
2 tristate "Support for Host-side USB"
3 depends on USB_ARCH_HAS_HCD
4 select NLS # for UTF-8 strings

(a) A feature definition. From drivers/usb/Kconfig.

1 if USB
2 source "drivers/usb/storage/Kconfig"
3 endif

(b) Kconfig’s if and source commands. From drivers/usb/Kcon-
fig. Edited to show one out of nine includes.

1 config BLK_DEV_IDE_ICSIDE
2 tristate "ICS IDE interface support"
3 depends on ARM && ARCH_ACORN

(c) A feature unselectable in most architectures. From driver-
s/ide/Kconfig.

Figure 2: Examples of Kconfig from Linux v3.19.

defined in Kconfig files, only software product lines built for the
arm architecture can ever enable this compilation unit. Kmax first
employs its Selectable algorithm to find architecture-specific fea-
tures. Then Kmax only allows selectable features to be enabled
when extracting compilation units from Kbuild. Table 1, gener-
ated by Kmax, illustrates how much architectures share with each
other. While most architecture-specific compilation units live in the
arch/ directory, more than a thousand are in the common source
code directories. As for features, nearly a third are architecture
specific.

2.2 Finding Selectable Features
Kconfig files use a domain-specific specification language to define
features and their constraints. Figure 2 shows several representa-
tive examples from Linux. (All examples in this paper come from
Linux v3.19). Example (a) defines the USB feature that enables Uni-
versal Serial Bus (USB) support. Line 1 is the variable declaration,
while line 2 gives USB its type, tristate. Tristate variables can
be set to one of three values, y for inclusion the compiled kernel,

1 obj-$(CONFIG_USB_UAS) += uas.o
2 obj-$(CONFIG_USB_STORAGE) += usb-storage.o
3 usb-storage-y := scsiglue.o protocol.o transport.o usb.o
4
5 obj-$(CONFIG_USB_STORAGE) += storage/

Figure 3: Snippets of Kbuild from Linux v3.19. Lines 1–3 are from
drivers/usb/storage/Makefile, line 5 from drivers/usb/Makefile.

m for inclusion as a loadable kernel module, and an empty string
for exclusion from the kernel. Other types include boolean, which
is tristate without the m, string, and number. The latter two take
constants of their respective types, and they can be used in boolean
expressions with relational operators. The text after tristate on
line 2 is displayed to the user during interactive feature selection.

Kconfig provides three ways to specify constraints between fea-
tures. The depends on keyword on line 3 of example (a) creates a
direct dependency on USB_ARCH_HAS_HCD. USB support can only
be enabled if USB_ARCH_HAS_HCD is also enabled. The dependency
can be any boolean expression of features. Another way to make a
dependency is with the select keyword, as shown on line 4. This
reverse dependency forces NLS to be enabled when USB is enabled,
regardless of NLS’s other dependencies. Example (b) shows the last
way to create a dependency, with an if/endif block. Every fea-
ture defined in the block on lines 1–3 gets a direct dependency on
USB. The source statement on line 2 includes another Kconfig file,
which is used to form the hierarchy of Kconfig files.

Example (c) shows an architecture-specific variable defined in
the shared part of the Kconfig hierarchy. BLK_DEV_IDE_ICSIDE
is defined for all architectures, but can only be enabled for ARM
because of its direct dependence on the ARM feature. For exam-
ple, x86’s Kconfig files never define ARM, making it an unreach-
able feature. In contrast, BLK_DEV_IDE_ICSIDE is reachable, but
its dependencies prevent it from ever being enabled when build-
ing for x86, making it unselectable. A feature is selectable only if
two conditions hold: (1) it is reachable and (2) any dependencies
are also selectable. Kmax uses Linux’s own parser for the Kcon-
fig files, which yields a in-memory representation of the features
and their constraints as boolean expressions. The Selec-table al-
gorithm finds the selectable features for an architecture. As Table 1
shows, out of 14,636 features in Linux v3.19, only between 9,684
and 11,232 are selectable for any given architecture.

2.3 The Particulars of Kbuild
Compilation units are defined in Kbuild using Makefile syntax.
Their names are added to Kbuild’s reserved variables obj-y for
built-ins and obj-m for dynamically-loadable modules. The build
system later uses these lists to compile and link the kernel binaries.
Since enabled tristate features are set to y or m, Kbuild files make
use of a common pattern where the obj- prefix is concatenated
with the value of the feature. Figure 3 is an example of this pattern.
On line 1, uas.c is only compiled if the USB_UAS feature is enabled
with y or m. In Makefile syntax, $(CONFIG_USB_UAS) expands to
the value of the feature, which is given the CONFIG_ prefix as a de
facto namespace. Adjacent strings get concatenated, requiring no
special operator. When USB_UAS is set to y, expansion and concate-
nation yield the string obj-y, while the += operator appends uas.o
to the existing definition of the obj-y variable, adding it to the list
of built-in compilation units. When disabled, USB_UAS expands to
the empty string, adding the compilation unit to the variable obj-,
which is ignored by Kbuild. This pattern makes clear which feature
controls a compilation unit, only compiling it when the feature is

1 ifdef CONFIG_NO_BOOTMEM
2 obj-y += nobootmem.o
3 else
4 obj-y += bootmem.o
5 endif

(a) Makefile conditionals create mutually-exclusive compila-
tion units. From mm/Makefile.

1 obj-$(CONFIG_SMP) += smp.o
2
3 # after hoisting
4 ifeq (CONFIG_SMP, y)
5 obj-y += smp.o
6 endif
7 ifndef CONFIG_SMP
8 obj- += smp.o
9 endif

(b) Using Kbuild’s reserved obj-y variable with feature variable
expansion. From kernel/Makefile.

1 cacheops-$(CONFIG_CPU_SH2) := cache-sh2.o
2 cacheops-$(CONFIG_CPU_SH2A) := cache-sh2a.o
3 cacheops-$(CONFIG_CPU_SH3) := cache-sh3.o
4 # three more reassignments
5 obj-y += $(cacheops-y)

(c) Variable assignment creates mutually exclusive compilation
units. From arch/sh/mm/Makefile.

1 # From arch/x86/Makefile
2 ifeq ($(CONFIG_X86_32),y)
3 BITS := 32
4 else
5 BITS := 64
6 endif
7
8 obj-$(CONFIG_X86_LOCAL_APIC) += probe_$(BITS).o

(d) Compilation unit names can be generated from Makefile
variables. From arch/x86/kernel/apic/Makefile.

Figure 4: Examples from Linux v3.19 of the challenges of evaluat-
ing Kbuild.

enabled.
Line 2 is an example of a composite compilation unit. If a compi-

lation unit, such as usb-storage.o, has no corresponding C file,
the Kbuild evaluator looks for a variable with the name of the com-
pilation unit plus a -y or -objs suffix. In this case, usb-storage-y
on line 3 defines the constituent compilation units, which can them-
selves be composite. As with obj-, a composite’s variable name
may be concatenated with a feature to conditionally include com-
pilation units.

Line 5 adds a subdirectory name to obj-y or obj-m instead of a
compilation unit. The Kbuild evaluator enters these subdirectories
to find more compilation units, which is how the Kbuild hierarchy
is formed. Each subdirectory’s compilation units are linked into
builtin.o or .ko files for modules. Once finished with the subdi-
rectory, Kbuild replaces storage/ with storage/builtin.o for
linking into the parent directory’s own builtin.o. The subdir-y
variable may also be used to explicitly add subdirectory names for
Kbuild to traverse.

1 # From net/ipv6/Makefile.
2 obj-$(subst m,y,$(CONFIG_IPV6)) +=

inet6_hashtables.o
3
4 # From arch/s390/Makefile.
5 head-y += arch/s390/kernel/$(if $(CONFIG_64BIT)

,head64.o,head31.o)
6
7 # From arch/arm/Makefile.
8 machdirs := $(patsubst %,arch/arm/mach-%/,$(

machine-y))

(e) Makefiles can use functions when expanding features.

1 obj-$(CONFIG_BLK_DEV_IDE_ICSIDE) += icside.o

(f) Some compilation units depend on architecture-specific fea-
tures. From drivers/ide/Makefile.

Figure 4: More examples from Linux v3.19 of the challenges of
evaluating Kbuild.

2.4 Challenges to Evaluating make
Even though they frequently use common patterns, Kbuild files
have the full power of the make language features available to use.
Figure 4 contains examples that illustrate Kbuild usage. The first
two examples show how Kbuild files make certains combinations
of features mutually exclusive, the next two show variable expan-
sion and functions used while defining compilation units, and the
last is an example of an architecture-specific compilation unit.

Example (a) is a tests for the feature named CONFIG_NO_BOOTMEM
and compiles one of nobootmem.o or bootmem.o, but never both.
Kmax first evaluates the conditional expression on line 1 to find the
conditions needed to enter the if-branch. It then evaluates the state-
ments in both branches on lines 2 and 4, storing both definitions of
obj-y in its conditional symbol table. Example (b) shows a feature
SMP concatenated with the obj- to conditionally compile smp.o on
line 1. When features or other Makefile variables that have multi-
ple definitions are expanded, it is an implicit conditional, since each
definition has a condition, called a presence condition, under which
it is expanded. Kmax handles multiply-defined variables by ex-
panding all their definitions to a conditional and hoisting it around
the statement. Lines 3–9 show the conceptual result of hoisting,
although Kmax does not explicitly create a conditional block.

Example (c) shows how variable reassignment can implicitly cre-
ate mutually exclusive feature combinations. Because cacheops-y
is reassigned repeatedly on lines 1–3, only one of the named com-
pilation units can appear in any single software product line. Kmax
creates an entry for each possible definition of cacheops-y along
with a boolean expression representing the conditions under which
the definition is possible.

Example (d) shows a case where a compilation unit’s name is
constructed by concatenation with the value of a variable. BITS
is a global variable, defined in a top-level Makefile, that expands
to either 32 or 64 depending on a feature as shown on lines 2–6.
On line 8, Kmax expands both definitions a conditional, hoists the
implicit conditional around the entire assignment statement, and as
with the the conditional in example (a) stores both compilation unit
names.

Example (e) shows function calls used while defining compila-
tion units. Line 2 uses the substitute function to force the compi-
lation unit to be built-in, instead of a module. Line 5 uses the con-
ditional function to decide between compilation units. And Line 8

Algorithm 1 Find selectable features.

1: procedure Selectable(v, C)
2: procedure Evaluate(e)
3: if e = l ∧ r then
4: return Evaluate(l) ∧ Evaluate(r)
5: else if e = l ∨ r then
6: return Evaluate(l) ∨ Evaluate(r)
7: else if e = w, for config variable w then
8: return Selectable(w, C)
9: else if e = ¬w, for config variable w then

10: return true
11: end if
12: end procedure
13: if v < C then
14: . Unreachable variables never selectable
15: return false
16: else if v ∈ C and v.direct = v.reverse = ∅ then
17: . Non-dependent variables always selectable
18: return true
19: else . v is reachable and has dependencies.
20: . Check v’s dependencies.
21: return Evaluate(v.direct ∨ v.reverse)
22: end if
23: end procedure

uses pattern substitution to generate a list of directories from arm
machine names. These cases in particular make it difficult to collect
compilation units without doing some evaluation. As with variable
expansion, any feautres used in function arguments are expanded
to a conditional and hoisted around the function calls. After hoist-
ing, the functions can be evaluated normally under each resulting
presence condition.

Example (f) shows the architecture-specific feature from Fig-
ure 2c being used to control a compilation unit. Because this fea-
ture is only available when compiling for ARM, Kmax takes a set
of selectable configuration variables for each architecture before
evaluating Kbuild Makefiles.

3. ALGORITHMS
The core of Kmax’s solution comprises the Selectable algorithm
that finds features available to a given architecture and a make lan-
guage evaluator the collects all compilation units, recording their
enabling features as boolean expressions. This section describes
these algorithms in detail.

3.1 Selectable Features
Kmax finds selectable features by excluding those that depend only
on other unreachable or unselectable features. Kmax employs Linux’s
own Kconfig parser, which produces a in-memory list of features
and symbolic boolean expressions for their dependencies. It then
uses the Selectable algorithm on each one, which returns true if
selectable.

Algorithm 1 defines Selectable, which takes a feature name v
and the list of features C produced by the Kconfig parser. Lines
13–15 check whether v is reachable by checking it against the list
of parsed features. Unreachable features are never selectable. Lines
16–18 look at features with no dependencies. Such variables are al-
ways selectable, since there are no other features constraining them.
Lines 19–21 check all other features, i.e., those that are reachable,
but have dependencies. Evaluate determines whether such a vari-

able is selectable by examining its dependencies. Since either a di-
rect or reverse dependency can allow a variable to be enabled, their
expressions are first ORed. Lines 2–12 define Evaluate, which
computes the given boolean expression e, recursively evaluating its
subexpressions and any other features used. Lines 3–4 handle an
AND operator by ANDing the results from checking the subex-
pressions for selectability. Only when both subexpressions allow
selection will the expression be selectable. Lines 5–6 handle an
OR operator by ORing the subexpression. Only one subexpres-
sion needs to be true for selectability. Lines 7–8 recursively check
features used in the expression by recursively calling Selectable.
This call is optimized by memoizing the return value for features
previously evaluated.

Evaluating selectability mirrors evaluating boolean expressions,
except for negation. To see why this is, take a feature VAR that
depends on ¬DEP. If DEP is unselectable, then VAR is selectable,
because of the negation. If instead DEP is selectable, using boolean
negation would force the VAR to be unselectable. This would be
incorrect, because VAR can still be enabled when DEP is disabled.
Thus negation gives no information about selectability, so lines 9–
10 always return true so as not to incorrectly limit selectability.
The Selectable algorithm has a complementary Unselectable al-
gorithm that returns true when a feature cannot be selected. This al-
gorithm differs only in the grayed sections of Algorithm 1, namely
the boolean operators and the true and false constants. Swapping
AND with OR and true with false yields the complementary algo-
rithm. The resulting sets of selectable and unselectable features are
also complementary.

3.2 Evaluating the make Language
The selectable features are fed to Kmax’s make evaluator, which
evaluates Kbuild files across all software product lines. To acheive
this, Kmax uses a conditional symbol table that holds all defini-
tions of the make variables it encounters, enters and evaluates all
branches of conditionals, and hoists conditionals that appear within
statements to evaluate all possible complete statements. Because
the Linux build system keeps compilation units in the obj-y and
obj-m, Kmax finds all compilation units by inspecting the contents
of the conditional symbol table. To record the features that control
each compilation unit, Kmax’s evaluator tracks the presence condi-
tion, a boolean expression of features, at each point in the Kbuild
file, saving the presence condition when encountering a new com-
pilation unit. The following describes the conditional symbol table,
hoisting, and the evaluation algorithm.

A conditional symbol table maps a variable name to a list of (d, c)
tuples, where d is a definition and c is a presence condition repre-
senting a boolean expression of features. The conditional symbol
table is initialized to contain all selectable tristate and boolean fea-
tures. A tristate feature is represented as a Makefile variable v and
is initialized to

T (v)← { ("y", v = "y"), ("m", v = "m"), ("",¬ defined(v)) }

These initial conditions are tautologies, i.e., v expands to y when
v = "y" is true and it expands to nothing when v is undefined.
Once expanded, however, these initial conditions ensure variability
information is carried along in presence conditions in subsequent
evaluation. For instance, the following variable definition involves
the expansion of a second variable in order to determine the name
of variable being assigned:

obj-$(CONFIG_USB_UAS) += uas.o

Because CONFIG_USB_UAS has multiple definitions, the evaluator
expands all possible definitions, using a conditional block to pre-
serve the presence conditions of the expanded variable definitions:

obj-
ifeq (CONFIG_USB_UAS, y)

y
else

empty
endif
+= uas.o

But such a statement with an embedded conditional is not read-
ily able to be evaluated. To handle conditionals within statements,
Kmax hoists the conditional around the entired statements, yielding
two complete variable assignments. Hoisting takes every possible
combination of conditionals that appears within a statement and
makes each complete statement explicit:

ifeq (CONFIG_USB_UAS, y)
obj-y += uas.o

else
obj- += uas.o

endif

Hoisting leaves a conditional block surrounding two assignment
statements. Kmax’s evaluator handles conditionals by entering and
evaluating the contents of each branch, while tracking the presence
condition that controls each statement. After evaluating the above
example, the symbol table gets four new entries, two for obj-y and
two for obj-, since both variable names are possible and each has
two possible definitions:

T (“obj-y”)← { ("uas.o", CONFIG_USB_UAS=y),
("", ¬ defined(CONFIG_USB_UAS) }

T (“obj-”) ← { ("", CONFIG_USB_UAS=y),
("uas.o", ¬ defined(CONFIG_USB_UAS) }

Note that the symbol table’s entries record not only contents of
obj-y, but also the features that lead to it.

Algorithm 2 is the pseudo-code for Kmax’s evaluator. State-
ments takes a list of parsed statements S , a presence condition p,
and a conditional symbol table T . It supports three kinds of state-
ments: conditionals, variable assignment, and includes. Lines 3–
7 handle conditionals by first expanding any variables or function
calls in its conditional expression with a call to the Expands pro-
cedure on line 5. This returns a list of (e, c) tuples where e is an
expansion of the expression and c is the presence condition of the
expansion. Each conditional expression is conjoined with its pres-
ence condition, and the resulting conjunctions are unioned to pro-
duce cif, which represents all the ways the conditional block’s ex-
pression can be made true and the if-branch entered. Line 6 enters
the if-branch with an updated presence condition, recursively call-
ing Statements on the branch’s statements. The else-branch is
similarly evaluated on line 7, but with the negation of the condition
that enters the if-branch as the presence condition.

Variable assignment is handled on lines 8–16. Line 9 first ex-
pands the variable name, because the variable name itself can con-
tain variable expansions and function calls. Likewise, the definition
is expanded. The nested for loops on lines 11–12 try each combi-
nation of variable name and definition that resulted from expanding
them. So when a feature is used to add a new compilation unit as in
obj-$(CONFIG_USB_UAS) += uas.o, both obj-y and obj- get
assigned. The conditions of the assignment are stored with the def-
inition in the conditional symbol table. Line 14 updates each vari-
able name’s entry in T with a new definition under the combined
presence condition that yielded the name and definition combina-
tion.

This variable assignment is a simplification of what the Kmax
tool actually does, because Makefiles have several assignment op-

Algorithm 2 Evaluate the statements of a Makefile.

1: procedure Statements(S , p,T)
2: for s ∈ S do
3: if s is a conditional (e, S if, S else) then
4: . Compute all possible ways to enter the if-branch.
5: cif ←

∨
e′ ∧ c for (e′, c) ∈Expand(e, p,T)

6: Statements(S if, p ∧ cif,T)
7: Statements(S else, p ∧ ¬cif,T)
8: else if s is a variable assignment (ev, ed) then
9: V ←Expand(ev, p,T)

10: D←Expand(ed, p,T)
11: for (v, cv) ∈ V do
12: for (d, cd) ∈ D do
13: . Add each possible definition to T .
14: T (v)← T (v) ∪ { (d, p ∧ cv ∧ cd) }
15: end for
16: end for
17: else if s is an include of e then
18: I ←Expand(e, p,T)
19: for (i, c) ∈ I do
20: S i ← parsed statements from file i
21: Statements(S i, p ∧ c,T)
22: end for
23: end if
24: end for
25: end procedure

Algorithm 3 Expand Makefile expressions, hoisting conditionals.

1: procedure Expand(E, p,T)
2: . Initialize result with empty string for all presence condi-

tions.
3: R← { ("", true) }
4: for subexpression e ∈ E do
5: if e is variable expansion of v then
6: . Get all definitions, recursively expanding them.
7: R← R × {Expand(di, ci ∧ p,T) | (di, ci) ∈ T (v) }
8: else if e is function f with args (a1, a2, . . .) then
9: . Expand all function arguments.

10: An = Expand(an, p,T) for all an ∈ (a1, a2, . . .)
11: . Execute function for all argument combinations.
12: R← R × { f (a1i, a2 j, . . .) | a1i ∈ A1, a2i ∈ A2, . . . }

13: else . e is a string
14: . Append e to every expanded subexpression.
15: R← { (re, c) | (r, c) ∈ R }
16: end if
17: end for
18: return R
19: end procedure

erators, each with a different meaning. Variables come in two fla-
vors [1]. “=” creates a recursively-expanded variable. Its definition
gets expanded at the time of the assignment. In contrast, “:=” cre-
ates a simply-expanded variable whose definition is not expanded
until call-time. “?=” only updates the definition if the variable isn’t
already defined. Variable definitions can be appended to with the

“+=” operator. For the latter two operators, a previously undefined
variable becomes recursively-expanded by default.

Lines 17–22 evaluate the include statement. The file named in an
include statement can also come from variable expansion and func-
tion calls, so its name is expanded on line 18. Lines 19-21 parse
the statements from the file and evaluate them under the presence
conditions of the expanded filenames.

Algorithm 3 defines the Expand procedure that finds all possible
expansions of an expression. It takes an expression E, a presence
condition p, and a conditional symbol table T . Expand returns
a list of all possible expansions of the expression as (e, c) tuples,
where e is an expanded expression and c is its presence condition
that leads to the expansion. Line 3 initializes the result R with
an empty string and the true condition, since it is the only possi-
ble expansion so far. A Makefile expression can contain several
subexpressions that are either variable expansions, function calls,
or string constants. Once expanded, the resulting subexpressions
get concatenated. Lines 4–17 loops through each subexpression
and hoists its expansions with R to find all possible feature expres-
sions of the expanded subexpressions. The operator × represents
hoisting, which is formally defined as

R × E = [(e1e2, c1 ∧ c2) | (e1, c1) ∈ R and (e2, c2) ∈ E]

where e1e2 is concatenation.
Lines 5–7 handle the expansion of a variable v. Line 7 first gets

all definitions from the conditional symbol table T . Each defini-
tion is recursively expanded, since it may contain more variables
or function calls. The resulting expansions are then hoisted with
R. Lines 8–12 handle function calls where f is a function name
and a1, a2, . . . are its arguments. Its arguments first get expanded
on line 10, potentially yielding multiple expansions for each one.
Line 12 evaluates f for all possible combinations of arguments and
hoists the results with R. Finally, string constants are appended to
all subexpressions expanded so far in R on lines 13–15. Line 18
returns the final list of expansions R.

4. EMPIRICAL EVALUATION
Kmax is evaluated for correctness, by comparing to previous work,
and for performance. Section 4.1 uses the Linux source code to
evaluate Kmax’s completeness and correctness. First, all C files
in the source tree are reconciled with Kmax’s compilation units
or confirmed to be non-kernel compilation units. Second, Kmax’s
found compilation units are each mapped to its corresponding source
file. Section 4.2 compares the compilation units found by Kmax,
KBuildMiner, and GOLEM, and running time performance is com-
pared for all three tools.

4.1 Kmax Correctness
Kmax’s correctness is evaluated with a two-pronged approach. On
the one hand, if kmax gets all possible compilation units from vari-
ables, then we can be sure that there are none missing. On the other,
we start with all C files in the kernel source code, and ensure that
no possible compilation units are missed. If both hold true, then
Kmax correctly identifies all compilation units. That Kmax collects
all units from Makefile variables is matter of correctness of imple-
mentation. Since Kmax evaluates all possible variable definitions
of obj-y and obj-m even in all conditional branches, Kmax col-
lects all compilation units defined in Kbuild files by assignment to
these variables. Reconciling all C files in the Linux kernel is more
tricky. We need to ensure that any C files not identified by Kmax
are truly not kernel compilation units. To do so, we start with all
C files contained in codebase. Then we remove all C files Kmax

Type of C File Count
Found by Kmax

Compilation units 19,651
Library compilation units 200
Unconfigurable units 13
Host programs 9
Extra targets 12

Found by hand or additional scripts
From non-kbuild directories 524
Architecture-specific tools 150
ASM offsets files 31
Included C files 147
Helper programs 13
Skeleton files 3
Staging compilation units 4
Orphaned compilation units 27
Other non-Kbuild 18
Make targets 2

TOTAL C FILES 20,804
All C files in source tree 20,804

Table 2: Reconciling C files Linux v3.19 source tree with Kmax’s
compilation units.

identifies as compilation units. If Kmax is complete, the remaining
C files should not be kernel compilation units. This is verified this
by hand and with tool support where stated. There are many differ-
ent C files in the codebase that are not kernel compilation units, and
the following is a description of the process of eliminating those C
files.

There are two main ways we show a C file is not a kernel com-
pilation unit. The first way is to take the C file name and check by
hand that it is not in any Kbuild file for the kernel or that it is in
directory that is not part of the kernel. For instance, the scripts
directory contains the Kbuild and Kconfig tools themselves, includ-
ing a C program that parses and evaluates Kconfig constraints. This
program is not part of kernel program; it is used only used during
the build proess. The second way to rule out a C file uses Kmax’s
ability to collect variable definitions. The Kbuild files are used
to compile helper programs such as hex-to-binary converters used
during the build process. These non-kernel C files are identified
in other reserved Kbuild variables such as hostprogs-y. As with
kernel compilation units, we collect these compilation unit names
with Kmax and rule them out as kernel compilation units.

Table 2 lists the results of accounting for all C files in the kernel
source tree. The first column lists the type of C file identified, and
the second column lists its count. The C file types are divided into
those found from Makefile variables using Kmax and those verified
by hand. At the bottom of the table are the number of C files veri-
fied followed by the number of C files contained in the entire kernel
source tree, computed by running the unix find command from
the root of the source tree: find linux/ -name "*.c". The vast
majority of C files are kernel compilation units, with 19,651 files
corresponding to compilation units identified in obj-y or obj-m.
Library compilation units account for another 200 C files identi-
fied in lib-y and lib-m, special Kbuild variables used to build
libraries.

There are three types of non-kernel compilation units that Kmax
identifies, unconfigurable units, host programs, and extra targets.
An unconfigurable unit cannot be activated because of the feature
that controls it. Several compilation units in drivers/acpi/acpica/
are controlled by the Makefile variable ACPI_FUTURE_USAGE, which

Type of Unit Count
C files 19,651
ASM files 687
Library files 604
Generated 48
Other non-C files 156
No corresponding source 10
TOTAL UNITS 21,158

Table 3: The total number of compilation units found in Linux
v3.19 by Kmax with a breakdown by types of unit.

is not a feature. A unit can also become unconfigurable if con-
trolled by an unreachable or unselectable feature. For example,
arch/cris/arch-v32/kernel/smp.o is controlled by the fea-
ture SMP that is not defined in the cris architecture’s Kconfig files.
Even though Kmax excludes these from the list of compilation
units, it still finds them in Kbuild Makefiles.

Host programs are tools compiled and run during the build pro-
cess but not compiled into the kernel. sound/oss/hex2hex.c, for
example, is a stand-alone program that converts hexadecimal codes
to a C array. Kmax finds these in several special Kbuild variables
such as hostprogs-y. Other programs compiled by Kbuild that
are not part of the kernel are put in the special variable ’extra-y’,
which is used during make clean to remove the compiled pro-
grams.

Four directories do not contain kernel source, as confirmed both
by their omission from Kbuild files and by manually inspecting the
directories and Linux documentation. These are Documentation/,
samples/, scripts/, and tools/ and account for 524 C files.
Similarly, there are architecture-specific tools/ directories and
bootloader code that is also not part of the kernel proper. ASM
offsets files are those used to generate the asm-offsets.h header
file for the given architecture by compiling the C file to assembly.
147 files have the .c extension, but are included via the #include
directive like headers in other C files. Helper programs are test code
or template files that were manually confirmed not to be referenced
by Kbuild files and usually contain comments that describe their
purpose. Similarly, skeleton files have the word “skeleton” in their
name and are templates for driver writers.

Some C files look like kernel compilation units, but are not refer-
enced by Kbuild. Four of these appear in the staging/ directory.
Drivers in this directory are pending inclusion into the mainline
kernel, and may not be completely integrated with Kbuild. 27 un-
referenced files are orphaned, perhaps representing dead code or
bugs in the Kbuild files. All orphans were investigated manually
to confirm their omission from Kbuild. The other non-Kbuild files
come from real-mode and user-mode Linux directories and were
also manually confirmed not to be used by Kbuild. Lastly, some
compilation units do not have the same name as their C counter-
part, because the Makefiles use make rules to build the unit instead
of Kbuild’s special obj-y variables. These represent a true limita-
tion of Kmax, since it does not evaluate make targets.

The limitations of this approach are that compilation units with-
out a source file behind it are not accounted for. Also, gathering
all compilation units depends on the correctness of the implemen-
tation, which can have bugs, in spite of a correct algorithm that
collects all variable definitions.

The second evaluation of Kmax correctness starts instead with
the compilation units and associates them with their corresponding
source files. Table 3 shows a breakdown by type of units and their
counts. Most compilation units are C files, but there are also hun-

Tool Units C File Units Archs Failed
Kmax 21,158 19,651 0
KbuildMiner 17,812 16,948 6
GOLEM 19,601 18,404 0

(a) The total number of compilation units found in Linux v3.19 by each
tool, the number of C file units, the number architectures the tool failed to
process.

Tool Extracted Misidentified Found
Kmax 15,124 – 15,124
KBuildMiner 15,056 450 14,606
GOLEM 15,031 404 14,627

(b) A summary of previous work’s precision in extracting compilation units
from the x86 version of Linux v3.19, with the number compilation units
misidentified for x86.

Tool Units Archs Failed x86 Misidentified
Kmax 13,510 0 9,344 –
KbuildMiner 11,220 0 9,136 195
GOLEM 11,325 0 9,145 185

(c) Comparison with Linux 2.6.33.3.

Table 4: A comparison of tools running on Linux v3.19.

dreds of assembly files. The library compilation units are mostly
assembly, as Table 2 shows only 200 are C files. 48 of the com-
pilation units do not exist in the source because they are gener-
ated while building the kernel, as confirmed by investigating their
Kbuild files. The other types of non-C files are firmware binaries
and device tree blobs which are loaded by the bootloader along
with the kernel. 10 compilation units are defined in Kbuild, but
have missing source code, representing errors or regressions.

4.2 Comparison
Kmax is compared to the previous tools KBuildMiner and GOLEM
for both correctness and performance. For correctness, each tool
was run on the Linux v3.19 source code for each architecture, and
their resulting compilation units collected. Since previous work
shows both tools running successfully on Linux v2.6.33.3 [2, 10],
the same experiment was repeated for that version. For perfor-
mance, each tool was repeatedly run on the x86 architecture alone
to collect its latency.

Table 4 compares the compilation units found by Kmax with
those found by the other tools. Table 4a list the total number of
compilation units extracted by each tool across all architectures,
how many correspond to C files, and the number of architectures,
if any, the tool failed to process. Kmax extracts more compilation
units when compared to both KBuildMiner and GOLEM by about
3,000 and 1,500 respectively. KBuildMiner, however, fails on six
out of the 30 architectures, which is partly responsible its low num-
bers.

To control for these failures, the tools are also compared on
the x86 architecture alone in Table 4b. This table lists the num-
ber of x86 compilation units extracted by each tool, how many are
misidentified as being part of the x86 architecture, and the actual
number of correct compilation units found. While the number of
units found is similar for each tool, this number does not reflect tool
precision. When compared to Kmax’s results, both KBuildMiner
and GOLEM misidentify more than 400 compilation units each as
being part of the x86 source code. These units were spot-checked
to confirm the misidentification.

Nearly all of these misidentified units appear in Kmax’s compi-

Tool Language Min Mean Max
Kmax python 46.69 sec 46.75 sec 46.80 sec
KBuildMiner java/scala 11.82 sec 12.32 sec 12.87 sec
GOLEM python 53.96 min 54.56 min 55.04 min

(a) Latency for Linux v2.6.33.3 x86.

Tool Language Min Mean Max
Kmax python 84.03 sec 84.15 sec 84.25 sec
KBuildMiner java/scala 44.17 sec 45.00 sec 45.87 sec
GOLEM python 3.41 hrs 3.42 hrs 3.43 hrs

(b) Latency for Linux v3.19 x86.

Table 5: Latency of each tool to compute the compilation units for
the x86 architecture of two Linux versions, v3.19 and v2.6.33.3.
Each tool was run five times, plus a warm-up run for KBuildMiner.
The minimum, average computed by the mean, and maximum are
listed in “sec” for seconds, “min” for minutes, and “hrs” for hours.

lation units for other architectures. For instance, both KBuildMiner
and GOLEM identify drivers/block/ps3disk.c. This compi-
lation unit is controlled by the PS3_DISK feature defined only in
arch/powerpc/platforms/ps3/Kconfig, making it only avail-
able when building for the PowerPC architecture. Another example
is drivers/ide/icside.c, illustrated in Figure 4f as being only
available for the arm architecture.

Some misidentified units can never be compiled into the kernel.
For example, compilation units from drivers/acpi/acpica such
as hwtimer.o are controlled by ACPI_FUTURE_USAGE, apparently
a non-feature used a a placeholder for future use. There are seven
such compilation units for KBuildMiner and three for GOLEM.
The remaining misidentified compilation units were all found in
other architectures by Kmax.

To account for tool regressions on newer versions of Linux, the
same experiments were conducted on a version used in each tool’s
own previous work. Table 4c shows the number of units, fail-
ures, x86 units, and misidentifications for the 2.6.33.3 version of
Linux. KBuildMiner does not fail on any architecture, and finds
about as many compilation units as GOLEM. However, Kmax’s rel-
ative performance is comparable to v3.19, finding more than 2,000
more compilation units. The number of misidentifications by both
KBuildMiner and GOLEM is also comparable. While there are
about half the misidentifications compared to v3.19, there are also
about 40% fewer compilation units overall.

The latency of all three tools was tested by running each five
times for the x86 architecture of both Linux v2.6.33.3 and v3.19.
These experiments were run on a development machine with an In-
tel Core i5 3.30GHz processor and 8GB of RAM. Table 5 lists the
tool, the language its written in, and the latency. Since KBuild-
Miner uses the Java Virtual Machine (JVM), a warm-up run was
performed before collecting the five tests to avoid the additional
latency incurred by the first run.

Table 5a shows the results for Linux v2.6.33.3, listing the mini-
mum, average computed by mean, and maximum of the fives runs.
KBuildMiner is the fastest, since it parses the Kbuild Makefiles
without having to evaluate them and is written in Java. It takes on
average 12.32 seconds for the x86 architecture, while Kmax takes
46.75 seconds on average, nearly four times slower. But both take
less than a minute, while GOLEM takes nearly an hour. While
also written in python, GOLEM repeatedly executes make on each
Kbuild Makefile for one or more features at a time. Given the large
number of Makefiles and features in each, this process is time-

consuming without much better results than the faster KBuildMiner
parsing approach.

Table 5b shows the results for the same experiment on Linux
v3.19. Linux v2.6.33.3 has 9,344 compilation units for x86, while
v3.19 has 15,124, more than 60% more. As expected, all tools take
longer. KBuildMiner is still the fastest at 45 seconds, but takes
almost four times longer than on v2.6.33.3. GOLEM takes 3.42
hours on average, about 3.5 times longer. Kmax scales somewhat
better, taking about twice as long with 84.15 seconds on average.

KBuildMiner’s fuzzy parsing is the fastest, while GOLEM is
orders of magnitude more time-consuming than both of the other
tools. Given the added complexity of Makefile evaluation across
software product lines, Kmax incurs a relatively small latency com-
pared to parsing alone and scaled better for a larger version of the
Linux kernel. The trade-off is an accurate and precise set of com-
pilation units.

5. LIMITATIONS
Kmax does not evaluate the complete Make language. It supports
variable assignment and expansion, most function calls, and the in-
clude statement. Missing are Makefile rules. Rules build a target
file by running shell commands and user-defined functions. Rules
are used to run helper programs in Kbuild files, but do not limit
Kmax’s ability to find compilation unit names, which are specified
in special Kbuild variables like obj-y. This limitation did prevent
Kmax from finding two C files that correspond to compilation units
with a different name, because rules are used to compile them in-
stead of Kbuild. The shell function, like rules, can also be used to
call external programs. An external program could potential take
features and perform build steps outside the Kbuild specification.
This would be problematic for any attempt to find all compilation
units from the build system. External programs are used to gener-
ate header files like asm-offsets, creating an issue for software
tools like bug finders that try to process all possible source code,
including headers.

Some non-boolean variables are globally defined in non-Kbuild
Makefiles, e.g., the BITS variable from Figure 4b is used to gen-
erate some compilation unit names. Other non-booleans are fea-
tures. CONFIG_WORD_SIZE is used to construct compilation unit
names in the PowerPC architecture. Not defined in any Makefile,
one way get the range of values for this non-boolean is to look at the
default construct in its Kconfig definition, although not all non-
boolean features have explicit defaults. Kmax requires the non-
booleans to be preloaded in the conditional symbol table. There
are only three such multiply-defined variables needed by Kmax for
Linux v3.19 including the two described above. The last one is MMU
which, as defined under the microblaze architecture, is either set
to -nommu or the empty string and is used to choose between two
compilation units depending on support for a memory management
unit.

6. RELATED WORK
Both GOLEM and KBuildMiner are part of greater efforts not

just to find compilation units but also to map features to compila-
tion units. Dietrich et al compares GOLEM to other tools including
KBuildMiner to evaluate their coverage of compilation units [10].
KBuildMiner is a standalone tool described by Berger [6]. Both
GOLEM and KBuildMiner are part of greater efforts not just to find
compilation units also map features to compilation units. Tartler et
al describes using Undertaker to remove dead code from compi-
lation units, i.e., code that can never be enabled in any software
product line [24]. Andersen et al used KBuildMiner to create a fea-

ture model for Linux [5]. KBuildMiner has also been used solely as
a source for the set of compilation units. Liebig et al uses them for
analyzing Linux’s variability [17, 18]. Gazzillo and Grimm [14]
and Kastner et al [15] tests their parsers on this set of compilation
units as well. But since KBuildMiner yields incomplete results,
these analyses are not of the complete kernel.

There are many studies on Linux’s feature model, its build sys-
tem, and its variability mechanisms. Sincero et al identified Kcon-
fig as a feature model [22], and several publications demonstrate
building feature models from Kconfig. Berger et al compared Kcon-
fig and another modeling language called CDL to illustrate real-
world use of variability modeling [7]. She et al built a formal
hierarchy of features for Linux [21]. Dietrich et al quantified the
granularity of features in the Linux kernel [11]. Dintzner et al
tracked changes in Linux’s feature model over time [12]. Tartler
et al calculated code coverage for single software product line and
maximized coverage with a minimal set of features [23]. Nadi and
Holt analyzed Kbuild Makefiles to find anomalies such as unused
compilation units [20]. Thum surveys software product line analy-
sis techniques, categorizing methods for modeling features as well
as techniques for software tools to deal with variability in soft-
ware [25].

Kmax uses techniques from other tools that process source code
containing variability. Garrido et al discuss refactoring C code con-
taining preprocessor directives and macros and introduces condi-
tional symbol tables for storing multiple definitions across combi-
nations of features [13]. Gazzillo and Grimm formalize and use
hoisting to evaluate language constructs across feature combina-
tions in their configuration-preserving C parser [14].

7. CONCLUSION
Kmax is a building block for variability-aware software engineer-
ing tools that extracts Linux compilation units and their variability
information accurately, making heuristic approaches unnecessary.
This building block is key to project-wide static analysis tools, such
as bug-finders, code browsers, and refactoring tools. The core of
Kmax is its algorithm to evaluate make language across all com-
binations of features simultaneously. It collects all possible vari-
able definitions, evaluates all conditional branches, and maintains
a presence condition that determines the features controlling the
compilation units. Linux’s complex build process adds extras chal-
lenges, because each architecture forms the root of its own source
code hierarchy. Kmax uses the Selectable algorithm to deduce
which features belong to which architectures. Kmax is empirically
evaluated on the Linux 3.19, demonstrating the completeness and
correctness of Kmax’s results. Morever, it is compared to two pre-
vious solutions that approximate the complete set of compilation
units, revealing the limitations of heuristic solutions. A compar-
ison of running time shows that the added complexity needed by
Kmax only incurs a small trade-off in running time compared to
previous work.

Acknowledgements
I would like to thank Professor Thomas Wies for his advice and
support.

8. REFERENCES
[1] GNU make Manual.

https://www.gnu.org/software/make/manual.
[2] Kbuildminer.

https://code.google.com/p/variability/.

[3] I. Abal, C. Brabrand, and A. Wasowski. 42 variability bugs
in the linux kernel: A qualitative analysis. In Proceedings of
the 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, pp. 421–432, New York,
NY, USA, 2014. ACM.

[4] B. Adams et al. Can we refactor conditional compilation into
aspects? In Proceedings of the 8th ACM International
Conference on Aspect-Oriented Software Development, pp.
243–254, Mar. 2009.

[5] N. Andersen, K. Czarnecki, S. She, and A. Wąsowski.
Efficient synthesis of feature models. In Proceedings of the
16th International Software Product Line Conference -
Volume 1, SPLC ’12, pp. 106–115, New York, NY, USA,
2012. ACM.

[6] T. Berger, S. She, K. Czarnecki, and A. Wasowski.
Feature-to-code mapping in two large product lines. Tech.
report, University of Leipzig (Germany), University of
Waterloo (Canada), IT University of Copenhagen
(Denmark), 2010.

[7] T. Berger, S. She, R. Lotufo, A. Wąsowski, and
K. Czarnecki. Variability modeling in the real: A perspective
from the operating systems domain. In Proceedings of the
IEEE/ACM International Conference on Automated Software
Engineering, ASE ’10, pp. 73–82, New York, NY, USA,
2010. ACM.

[8] BusyBox. http://www.busybox.net/.
[9] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An

empirical study of operating systems errors. In Proceedings
of the 18th ACM Symposium on Operating Systems
Principles, pp. 73–88, Oct. 2001.

[10] C. Dietrich, R. Tartler, W. Schröder-Preikshat, and
D. Lohmann. A robust approach for variability extraction
from the linux build system. In Proceedings of the 16th
International Software Product Line Conference, pp. 21–30,
Sept. 2012.

[11] C. Dietrich, R. Tartler, W. Schröder-Preikshat, and
D. Lohmann. Understanding linux feature distribution. In
Proceedings of the 2012 Workshop on Modularity in Systems
Software, pp. 15–20, Mar. 2012.

[12] N. Dintzner, A. Van Deursen, and M. Pinzger. Extracting
feature model changes from the linux kernel using fmdiff. In
Proceedings of the Eighth International Workshop on
Variability Modelling of Software-Intensive Systems, VaMoS
’14, pp. 22:1–22:8, New York, NY, USA, 2013. ACM.

[13] A. Garrido. Program Refactoring in the Presence of
Preprocessor Directives. PhD thesis, University of Illinois at
Urbana-Champaign, 2005.

[14] P. Gazzillo and R. Grimm. SuperC: parsing all of C by
taming the preprocessor. In Proceedings of the ACM
Conference on Programming Language Design and
Implementation, pp. 323–334, June 2012.

[15] C. Kästner et al. Variability-aware parsing in the presence of
lexical macros and conditional compilation. In Proceedings
of the 26th ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pp.
805–824, Oct. 2011.

[16] C. Kästner et al. A variability-aware module system. In
Proceedings of the 27th ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pp. 773–792, Oct. 2012.

[17] J. Liebig et al. An analysis of the variability in forty
preprocessor-based software product lines. In Proceedings of

https://www.gnu.org/software/make/manual
https://code.google.com/p/variability/
http://doi.acm.org/10.1145/2642937.2642990
http://doi.acm.org/10.1145/2642937.2642990
http://dx.doi.org/10.1145/1509239.1509274
http://dx.doi.org/10.1145/1509239.1509274
http://doi.acm.org/10.1145/2362536.2362553
http://informatik.uni-leipzig.de/~berger/tr/2010-berger.pdf
http://doi.acm.org/10.1145/1858996.1859010
http://doi.acm.org/10.1145/1858996.1859010
http://www.busybox.net/
http://dx.doi.org/10.1145/502034.502042
http://dx.doi.org/10.1145/502034.502042
http://doi.acm.org/10.1145/2362536.2362544
http://doi.acm.org/10.1145/2362536.2362544
http://doi.acm.org/10.1145/2162024.2162030
http://doi.acm.org/10.1145/2556624.2556631
http://doi.acm.org/10.1145/2556624.2556631
http://doi.acm.org/10.1145/2254064.2254103
http://doi.acm.org/10.1145/2254064.2254103
http://dx.doi.org/10.1145/2048066.2048128
http://dx.doi.org/10.1145/2048066.2048128
http://doi.acm.org/10.1145/2384616.2384673
http://doi.acm.org/10.1145/1806799.1806819
http://doi.acm.org/10.1145/1806799.1806819

the 32th International Conference on Software Engineering,
pp. 105–114, May 2010.

[18] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and
C. Lengauer. Scalable analysis of variable software. In
Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pp. 81–91, New
York, NY, USA, 2013. ACM.

[19] B. McCloskey and E. Brewer. ASTEC: A new approach to
refactoring C. In Proceedings of the 10th European Software
Engineering Conference, pp. 21–30, Sept. 2005.

[20] S. Nadi and R. Holt. Make it or break it: Mining anomalies
from linux kbuild. In Proceedings of the 2011 18th Working
Conference on Reverse Engineering, WCRE ’11, pp.
315–324, Washington, DC, USA, 2011. IEEE Computer
Society.

[21] S. She, R. Lotufo, T. Berger, A. Wąsowski, and
K. Czarnecki. Reverse engineering feature models. In
Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pp. 461–470, New York,
NY, USA, 2011. ACM.

[22] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and
O. Spinczyk. Is the linux kernel a software product line? In
Proceedings of the International Workshop on Open Source
Software and Product Lines, SPLC-OSSPL, pp. 134–140,
2007.

[23] R. Tartler et al. Configuration coverage in the analysis of
large-scale system software. ACM SIGOPS Operating
Systems Review, 45(3):10–14, Dec. 2011.

[24] R. Tartler et al. Feature consistency in
compile-time-configurable system software: Facing the
Linux 10,000 feature problem. In Proceedings of the 6th
European Conference on Computer Systems, pp. 47–60, Apr.
2011.

[25] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A
classification and survey of analysis strategies for software
product lines. ACM Computing Surveys, 47(1):6:1–6:45,
June 2014.

[26] uClibc. http://www.uclibc.org/.

http://doi.acm.org/10.1145/2491411.2491437
http://dx.doi.org/10.1145/1081706.1081712
http://dx.doi.org/10.1145/1081706.1081712
http://dx.doi.org/10.1109/WCRE.2011.46
http://dx.doi.org/10.1109/WCRE.2011.46
http://doi.acm.org/10.1145/1985793.1985856
http://dx.doi.org/10.1145/2094091.2094095
http://dx.doi.org/10.1145/2094091.2094095
http://dx.doi.org/10.1145/1966445.1966451
http://dx.doi.org/10.1145/1966445.1966451
http://dx.doi.org/10.1145/1966445.1966451
http://doi.acm.org/10.1145/2580950
http://doi.acm.org/10.1145/2580950
http://doi.acm.org/10.1145/2580950
http://www.uclibc.org/

	Introduction
	Problem and Solution Approach
	Architecture-Specific Source Code
	Finding Selectable Features
	The Particulars of Kbuild
	Challenges to Evaluating make

	Algorithms
	Selectable Features
	Evaluating the make Language

	Empirical Evaluation
	Kmax Correctness
	Comparison

	Limitations
	Related Work
	Conclusion
	References

