On universal classes of extremely random constant time hash functions
and their time-space tradeoff

Alan Siegel

Courant Institute
New York University
New York, NY 10012

Abstract

A family of functions F' that map [0,n] — [0,n], is said to be h-wise independent if
any h points in [0,n] have an image, for randomly selected f € F, that is uniformly
distributed. This paper gives both probabilistic and explicit randomized constructions
of nf-wise independent functions, € < 1, that can be evaluated in constant time for
the standard random access model of computation. Simple extensions give comparable
behavior for larger domains. As a consequence, many probabilistic algorithms can for
the first time be shown to achieve their expected asymptotic performance for a feasible
model of computation.

This paper also establishes a tight tradeoff in the number of random seeds that must

be precomputed for a random function that runs in time 7" and is h-wise independent.

Categories and Subject Descriptors: E.2 [Data Storage Representation]: Hash-table repre-
sentation; F.1.2 [Modes of Computation]: Probabilistic Computation; F2.3 [Tradepffs among
Computational Measures]; F.2.1 [Computation in finite fields]; G.3 [Probability and Statis-

tics]: Random number generation.
General terms: Algorithms, Theory.

Additional Key Words and Phrases: Hash functions, universal hash functions, hashing, limited inde-

pendence, storage-time tradeoff.

The work of the author was supported in part by ONR grant N00014-85-K-0046, NSF grants
CCR-8906949, CCR-8902221, and CCR-9204202.

On universal classes of extremely random constant time hash functions and their time-space tradeoff

1. Introduction

Many probabilistic algorithms and data structures have been proven to work well when
fully random functions are used as unit time subroutines. For example, in the case of
uniform hashing and double hashing, the expected cost for inserting the (an+1)-st item
into a table of size n has been shown to be {1~ +0(1) probes [6] and [7]. Moreover, this
cost has been shown to be optimal for that genre of data access [24]. Yet the significance
of these performance bounds for real computation is by no means clear. The difficulty
is that they have been proven for hash functions that are assumed to be fully random.
If, for example, we wish to hash data from [1,7?] into [1,n], then there are n"* different
functions that can perform such a mapping, and the program length of such a function
must be about n?logn bits on the average. Such functions are much larger than the

hash table they are intended to service.

On the other hand, results based upon full randomness sometimes translate into av-
erage case performance guarantees for real computation. In the case of double hashing,
for example, which requires 2logn random bits per hash key, we may take these bits
to be any fixed portion of the key itself, provided it is at least 2logn bits long. Then
the probabilistic bound holds as an average case analysis. Just what to do for smaller
number ranges is less clear. For uniform hashing, which requires additional randomness,
the question of how to interpret a probabilistic upper bound on performance is even
more problematic. Yet even where such average case results are meaningful, we would
rather establish randomized performance bounds—which hold, on average, for any set of

data—instead of a bound that cannot be applied to any fixed instance of data.

It is also worth noting that there are different kinds of probabilistic algorithms.
Some require streams of disposable random bits, and a successtul computation can be
verified without their retention. In this case, there may be little need to store the
random choices apart from concerns about reproducing the exact computation, and no
need to have high speed random access for such data. Other algorithms may require

2

On universal classes of extremely random constant time hash functions and their time-space tradeoff

only a moderate number of random bits, which can be readily stored and accessed. For
these applications, it may be sufficient to postulate the existence of a random bit source.
Precomputed random strings might be streamed sequentially from secondary storage,
and it i1s even conceivable that a source of quantum mechanical uncertainty could be
used to generate the bits on the fly, provided its capacity and degree of randomness

were adequate for the task at hand.

Other kinds of computations are based upon random functions, where some domain
is mapped into a range according to, say, a uniform distribution, and the mapping of
specific values must be recalled at periodic instances. This form of computation is less
forgiving since the random decisions must be recalled. If the computation is dominated
by such calculations, then the speed of the calculations may be important as well. In
hashing, for example, random functions are used to locate items in a search table for
subsequent retrieval. Ideally, the mapping of an item to a probe location should be done
in constant time. Additional considerations include the storage allocated for the hash
computation and the load or fraction of storage that can be occupied by data before
the search performance becomes unacceptable. For large scale parallel computation,
a random function might be shared by a large number of processors, and its program
size, therefore, might be required to comprise a negligible percentage of local memory;
it might also be required to exhibit high degrees of randomness, and to have a long
expected lifetime before probabilistic events occur that require its replacement (with
new random seeds).

Carter and Wegman introduced universal hash functions [3] and thereby provided a
theoretical framework to formalize methods that exploit actual hash functions exhibiting
fixed degrees of freedom. Related works [22], [11] have sometimes required a little more

limited randomness, which is usually formalized along the following lines:

Definition 1.

A family of hash functions F' with domain D and range R is (h,)-wise independent

3

On universal classes of extremely random constant time hash functions and their time-space tradeoff
itV yy,...y, € RV distinct zq,29,...2,€ D :

Thus the distribution of a random f € F on any h points is nearly uniform, and
(h, p)-wise independence implies (j, p)-wise independence for j < h. For expositional
simplicity, we will frequently suppress the g parameter and simply refer to (h)-wise
independence.

The limited randomness provided by such classes is frequently sufficient to achieve
an expected performance for many randomized algorithms that is equivalent to the
use of fully random hash functions. For example, recent randomized routing schemes
for size n Omega networks have been proven to give optimal expected performance
(up to constant factors), given a random §(log n)-wise independent hash function ([5],
[13]). The hash functions used to date have typically been polynomials of degree Slogn
defined on finite fields.

In particular, Carter and Wegman exhibited the universal classes of (h)-wise inde-

pendent hash functions that map [0,m — 1] — [0,n - 1]:

Fiy={f1f(z)=(3 a2’ mod p) mod n, a;€[0,p-1]}, (1)

0<y<h

where p > m is prime. They showed that if, for any set S c [0,p — 1], a hash function
is randomly selected from F(h) (independent of 5), to bucket hash S into the n buckets
[0,n — 1], then the sum of the expected j-th moments of the bucket populations is es-
sentially the same as that resulting from fully random functions, for j < h. For bucket
hashing with separate chaining, the second moment of the expected chain lengths (i.e.
bucket populations) determines the expected retrieval time, whence pairwise indepen-
dence guarantees optimal expected performance.

In the case of randomized routing on n-node bounded degree graphs, the O(logn)

cost for each memory reference hashed by a function from F; () is readily subsumed

8log n
by the Q(logn) delay in routing the data ([5], [13]). Recently, O(log n)-wise independent
hash functions have also been shown to give optimal expected probe performance for

4

On universal classes of extremely random constant time hash functions and their time-space tradeoff

double hashing ([16]). But this efficiency is only in terms of probe counts; the cost to
compute a single hash address is clogn, given the hash functions developed to date.
Thus the formal results of [16] are that dictionaries can be accessed with O(logn)
computations per data operation, which is hardly surprising. For PRAM emulation
on Omega networks (c.f. [5], [13), there would seem to be limited opportunity to
exploit pipelining to mask latency for read intensive algorithms, as long as each address
computation requires the evaluation of a polynomial having logn degree. Optimal

speedup would appear to be beyond reach, even in theory.

Accordingly, it is reasonable to ask,
Is there an inherent logn penalty for computing such hash functions,

or can we do better?

This paper shows how to trade the time complexity of (h)-wise independent hash
functions for the number of random bits provided to it, and gives a mechanism for
computing (n?)-wise independent functions in O(1) time from n¢ random words, for
any fixed € < 1, and suitably fixed 6 depending on € and the word size of the domain.
More precisely, the tradeoff is between the evaluation time for function evaluation and
the workspace plus precomputation that is needed to provide a pool of random words.
The actual number of random seeds required for the computation is 6(h), which is

optimal.

Moreover, we establish a tight T'-S-h tradeoff among the requisite number of probes
T to a pool of S random seeds and the amount of independence h exhibited by the family
of random hash so constructed. The actual construction simply combines the probed
data values with the “Exclusive-Or” operator and uses twice the number of probes
proved necessary by the lower bound. While the question of how to compute these
probe sequences effectively is still open, we show that constant time random families
with very high independence are programmable, for a constant that is exponential in
the time predicted by a nonuniform model of computation.

5

On universal classes of extremely random constant time hash functions and their time-space tradeoff

An immediate consequence of these constructions is that double hashing using these
universal functions has (constant factor) optimal performance in time, for load factors
bounded below 1. Another consequence is that a 7-time PRAM algorithm for nlogn
processors (and n¥F memory) can be emulated on an n-processor machine interconnected
by an n x logn Omega network with a multiplicative penalty for total (non-switching)
work that, with high probability, is only O(1); optimal speedup is achieved.

The paper is organized as follows. Section 2 presents three random function con-
structions, from probabilistic (i.e., nonconstructive) but extremely efficient, to pro-
grammable (with code). They all run in constant time and are effectively (n?)-wise
independent, for different, suitably small fixed 6 > 0. Section 3 gives a lower bound to
show that the first construction is optimal, in terms of the number of random words
that are used per function evaluation. Section 4 gives a few applications while Section

5 presents the conclusions and the main open question concerning these hash functions.

2. The hash function

The motivating question leading to our constructions is based on the following simple
observation. Given h random elements from domain [0, m — 1], these coefficients can be
used as in equation (1) to construct an (h)-wise independent hash function. Evidently,
evaluation requires O(h) time. If m random elements are provided, then table lookup
gives an O(1) time function. What sort of random functions can be constructed from
n¢ random seeds?

For the purposes of this paper, we might view the physical storage as size n within
a virtual address space of n¥, and take nf to be an acceptable portion of space to
allocate for random functionf computation. Our underlying model of computation is
the Random Access Machine where both memory access and the basic arithmetic and

logic operations can be executed on words in unit time (c.f.[1]).

TThe performance, on the other hand, only gets better if more space is available for the hashing

operation.

On universal classes of extremely random constant time hash functions and their time-space tradeoff

We temporarily suppress the issue of program size and construct a family of fast
highly independent hash functions that map [0,n* —1] onto [0,n* — 1] and use n¢ words
of random input. We are also suppressing the issue of domain size. The reason this can
be done is well known: a simple linear congruence hash function can be used to map

any fixed set of s < n elements from a large domain D = [0,m] into the small domain

1

[0,7*], so that the probability no collisions occur is at least 1— g -

Such mappings can

be pieced together from techniques in [3], [9] and [4]. The details of this construction
are in Appendix 1.
Consequently, this space reducing prehashing step has only a minimal impact on

the performance of the resulting hash functions. We may formalize this fact as follows.

Definition 2.
A family of hash functions F' with domain D and range R is r-practical (h, p)-wise
independent if for any subset S € D, with |S| < n, 3F c F : |F - F| < |F|/|R|" and
Y yq,...yp € R,V distinet @y,29,...2, € 5
£
i

(| F)|
||k

<HfeF :h(z;)=vy;i=1,2,....h} <

The real point of this definition is to quantify the performance of good hash func-
tions that are constructed by a randomized algorithm, which might include a prehashing

k. For most applications, it suffices to have

step that randomly selects a prime p ~ n
almost all hash functions exhibit the collective randomness that is desired. If a ran-
domly selected function is from a poorly behaved subset, we can, depending on the
underlying process at hand, attribute a cost of n! for using it, where, say, [< r. Then
the expected performance penalty for these bad functions is a negligible O(%) The
reason that our hash functions are defined on [0, n* — 1] for fixed but unspecified k is to
expose the tradeoffs in computational resources and residual errors such as that caused
by the prehashing step that contracts our domain to a polynomial size. The bound on
the distribution for F is stated in a two-sided form to facilitate inclusion-exclusion cal-

culations. Such formulations hold for most families of universal hash functions defined

7

On universal classes of extremely random constant time hash functions and their time-space tradeoff

to date, although the original definitions of (k)-wise independence have not required it.
As for the factor p, our basic constructions satisfy the criterion for ¢ = 1, as do the
degree h — 1 polynomials taken mod p.

The crux of the problem, then, is to construct (h)-wise independent maps from
[0,p — 1] onto [0,p — 1], for a fixed prime p > n* (or where p is a power of 2). If
the ultimate intended range is smaller, say [0,n — 1], then a final postprocessing that
computes the outcome mod n will give the result with a small number of hash functions
that skew onto [0, p mod n| those data items provisionally mapped into [p—n|2]|,p—1].
This final skewing increases in u by a factor of (1 +n/p)?, which is quite modest for,
say, p > hn?.

We shall restrict, for the moment, the problem to constructing fully (k,1)-wise
independent hash functions that map [0,p — 1] onto [0,p — 1], given an auxiliary pool
of about n¢ random (logp)-bit words, for some ¢ < 1, and fixed prime p ~ nfF. Now
any random hash function must have a mechanism that associates each element in
[0,p — 1] with a few of these random words, as otherwise no random computation can
result. If the association is deterministic, then it can be represented by a bipartite
graph G on the vertex setst [0,p— 1] and [0, p¢ — 1]). Moreover, such a bipartite graph
must associate at least [random numbers with each set of [elements from [0,p — 1],
for [< h, as otherwise there are not enough degrees of freedom to achieve (h)-wise
independence. According to Hall’s Theorem, which is also known as the Marriage
Theorem, this criterion is equivalent to every subset of A elements in [0,p — 1] having
a matching in the graph with its neighbors, which comprise a small subset contained

within the p¢ words. Suitable graphs are formalized as follows.

Definition 3.
Let a (p,€,d, h)-weak concentrator be a bipartite graph on sets of vertices I (inputs)

and O (outputs), where |[I| = p, |0] = p¢, and the following hold. Each input has

TOf course the graph could be defined with the first vertex set restricted to just [0, n* —1].

8

On universal classes of extremely random constant time hash functions and their time-space tradeoff
outdegree d. Any set of h inputs has edges that achieve a matching with some h

outputs.

Our next observation is that these graphs can be constructed with very small out-

degree d.
er+e2
Lemma 1. Forr >0, d=2+ @ and h < 225 (p,€,d, h)-weak concentrators exist.
e(r+1)

Proof: We use the probabilistic method (c.f. [15]) to estimate the probability that
a randomly constructed graph will fail to meet the matching criterion. The construction
assigns, to each node in I = [0,p — 1], edges to d distinct random nodes in O = [0, p¢].
Thus a matching is guaranteed for subsets of d or fewer vertices in I. For larger
aggregates of size at most h, Hall’s Theorem says that there will always be a matching
if and only if each subset of j < h vertices in [has edges to at least j vertices in
O. The probability that some such aggregate fails to have a matching is less that the
expected number of such subsets that fail Hall’s criterion, which is the expected number
of subsets in [of size j whose neighbors lie within some subset of j —1 vertices in O. In
particular, the probability of a failure is overestimated by the expected number of pairs
(Scl,TcO0), where |S|=j, |T|=j-1, and all jd edges from S have destinations

within 7', for d < 7 < h. Evidently, the probability that the jd edges are so selected,

i—1.\ J .)
for any fixed (S5, 1), is <(]—dg—)) < (221)74 and the number of candidate (S,7') pairs is

() ”
just (5)(;1).

Following this prescription, we can estimate that the probability a randomly gen-
erated (p, ¢, d,d)-weak concentrator fails to be an (n,¢,d, h)-weak concentrator by sum-

ming over all relevant pairs of subsets to get:

9

On universal classes of extremely random constant time hash functions and their time-space tradeoff

Pr{failure} < 3 @ (jzi} <(Z§1>))]

d<j<h
. 'd
j-1y
<= OL5))
d<j<h 7-1
- prticj2itlti(r+1)/e

]'jp2je—|—(r—|—l)j—|—e
1_ Z e2J p]+]ej2]+l+(r+l)]/e
g21+1 2]c+(r—|—1)]—|—6

<p—fz e] (r+1) /6/p6+T)]

J<h

< (SRt < e S < o
: : p
J<h J<h

Since the probability is less than 1 that a randomly constructed graph fails to be
a (p,e,d, h)-weak concentrator, it follows that such a construction will succeed with
positive probability and hence these graphs do indeed exist. |

We have, as yet, no hash function; but each element, at least, is now associated with
a few random values. The obvious use for these values is as coefficients of a hashing
polynomial. By increasing the number of random values used in this calculation, we can
turn a weak concentrator into a calculation procedure for fully (h)-wise independent
hash functions.

Let GG be a (p,¢€,d, h)-weak concentrator. For each input ¢ in G, let ¢’s d neighbors
in G be stored in the set Adj(z). Let M,, be a p¢ x d array of words in [0,p — 1], whose
concatenated contents is m € [0, p — 1]P°¢, for some prime p > nk.

Define the random hash function
Si)= Y Ma(,Dil (mod p).

Thus a computing G (i) requires d? additions and d multiplications plus a comparable

number of modular divisions. The result turns out to be (h)-wise independent.

TWe are using a simple version of Stirling’s Formula: +/jj7e™7 < j! for j > 0. Subsequent
applications will be denoted by the annotated inequality sign <;.

10

On universal classes of extremely random constant time hash functions and their time-space tradeoff

Lemma 2. Let G be a (p, ¢, d, h)-weak concentrator. Then {5} ape 1s an (h, 1)-

me[0,p-1]
wise independent family of hash functions mapping [0,p — 1] — [0, p — 1].

Proof: It is not difficult to see that we need only establish the linear independence
of the systems of equations that constrain the m values to yield arbitrarily specified
values for f, on any h inputs. This is because such a system has h constraints in dp®
unknowns. If the system enjoys linear independence, then the null space has dimension
dp¢ — h, and each set of h values will be attained for p#“~% of the p®° sets of random
words. So suppose that specifying values for some input set I, where |Ij| < h, induces
a minimal dependent linear system. That is, a linear combination of the rows in the
linear system with row indices in I sums to the zero vector, and no row has a coefficient
of zero in the linear combination. Now [sources d|[;| edges, which reach at least |[g]
outputs, so there must be an output yy € O having exactly ¢ edges that originate in
1y, for some ¢ where 0 < ¢ < d. Consider the linear subsystem with rows indexed
by Iy = {t € Iy : yy € Adj(¢)}. By definition of yq, 1 < |I1] = ¢ < d. The subsystem
restricted to the variables M (yg, k), where kK =0,1,...d— 1 has coefficients that are the

Vandermonde submatrix

14 42 7d-1
1 iy 2 id-1
1oy @2 .. ad!
where I; comprises the distinct rows (iq,9,...,24). As is well known and easily veri-

fied, the determinate of the matrix (in the case ¢ = d — 1) is [[o<j<pcq(2g — %), which
shows that such a subsystem cannot be linearly dependent because no two rows are
the same. Since none of other rows with indices in I have any of the variables
M (yo,0), M(yg,1),..., M(yg,d — 1) present, the assumption that the system is mini-
mal and dependent is contradicted. |

So far, we have a probabilistic fast hashing procedure that is (h)-wise independent,
uses dp¢ random words of logp bits, and requires d? additions and d multiplications
per evaluation. The construction gives a generic transformation from a graph rich in

11

On universal classes of extremely random constant time hash functions and their time-space tradeoff

matchings to a family of highly random functions. We now give a more efficient con-
struction that uses better random graph properties, with a constant factor degradation
in the independence (or outdegree d), but where only one random value is stored per
output destination. The construction finds a sparse bipartite graph where every h rows

of its adjacency matrix is linearly independent. In fact, the linear independence holds

for GF(2), the field of integers mod 2.

Definition 4.

Let an (n,€,d, h)-weakly triangular graph be a bipartite graph on sets of vertices
I (inputs) and O (outputs), where |I| = n, |O] = nf, and the following hold. Each
node in [has an outdegree of at most d. The |I| x |O| adjacency matrix of the graph,
when restricted to any h input rows, and all |O| columns, can be be permuted into an
upper triangular form with nonzero diagonal: suitable row and column permutations
transform the h x n¢ submatrix S so that S(:,l) = 0, if ¢ > [and S(7,7) = 1, for
1=1,2,...,h.

Of course any (n, €, d, h)-weakly triangular graph is also (n, €, d, j)-weakly triangular, for

J <h.

Lemma 3. Let GG be (n,e¢,d,h)-weakly triangular. For each input ¢ in G, let ¢’s
neighbors in G be stored in the set Adj(z). Let M, be an array of n¢ words in [0,n — 1],
with concatenated contents m e [0,n—1]*", where n is a power of 2. Define the random

hash function
G ‘. _ '.
fan(i) = XORjeAdj(i)Mm(J)’

where XOR is the bitwise “Exclusive-Or” function (or any other commutative group
operation such as modular addition). Then {fﬂq}me[o,n—l]”e is an (h, 1)-wise independent
family of hash functions mapping [0,n — 1] — [0,n — 1].

Proof: As in Lemma 2, we need only show that a minimal dependent set of row
vectors must comprise h+ 1 or more vectors. But this is immediate, since the system is

12

On universal classes of extremely random constant time hash functions and their time-space tradeoff

easily solved by the back substitution step of Gaussian elimination. Given j equations,
identify a variable that appears only once and first solve the j — 1 equations that are
independent of it. Then the last equation is readily solved under our commutative
group operation such as the “Exclusive-Or”. Since the number of solutions to j such
equations in [unknowns is n!~7, the (h,1)-wise independence is ensured. 1

We now show that some random graphs are weakly triangular. Later others will

also be shown to have this property.

Definition 5.

Let an (n,€,d, h)-weak expander be a bipartite graph on sets of vertices I (inputs)
and O (outputs), where |I| = n, and |O] = n¢, and the following hold. Each input has
an outdegree bounded by d. Any set of j inputs, for 1 < 7 < h, has edges to at least
l7d/2| + 1 different outputs.

Lemma 4. An (n,¢,d, h)-weak expander is (n,€,d, h)-weakly triangular.
Proof: Forj > 1, any j < h rows have at least |jd/2|+1 different output variables,
whence at least one such variable will appear in exactly one of the rows. Permuting this

variable and row into location S(1,1) leaves j — 1 rows with the same property, whence

recursion completes the construction. |
2 1+log d+log h :
Lemma 5. For ¢ > 2 + S IR (n,e,d, h)-weak expanders exist.

Proof: Proceeding as in Lemma 3 gives, for our previous random construction:

(e (Y
Prob{failure} < () () —me
22,0 Gare) e
<s Y (n=H2(jde[2)12)1 !
J<h
< Z(e—(l—l—logd—Hogh)d/?(hde/Q)d/Q)j/j!
J<h
<N (/27250 <1, 1
J<h

') is replaced by (’Zk) gives the

Combining Lemmas 3 and 4 with Lemma 5 where (]

following.

13

On universal classes of extremely random constant time hash functions and their time-space tradeoff

Theorem 1. For ¢ > 6+ % + I"Hgoid, there are fixed programs that, for each input from

Io

[0, 7% —1], “Exclusive-Or” together d words from a pool of n¢ random (k log n)-bit words
to compute an (n%, 1)-wise independent hash function mapping [0,n* — 1] — [0, 2% — 1],
where n is a power of 2. |

It is worth observing that the collections of n® random numbers used in Theorem
1 will yield a family of (h)-wise independent hash functions if they are selected from
a family of (dh)-wise independent pools. Thus each pool can be precomputed from
dh random seeds. Consequently the space-time tradeoff, for families of fast highly
independent hash functions, is not a function of the number of random bits that must
be specified (which is essentially its Kolmogorov complexity) but is really matter of

intrinsic storage requirements.

This second construction gives a more efficient family of hash functions, and again
provides a generic procedure that turns a good graph into a family of hash functions.
It does not quite supersede the first construction because there are no known explicit
graphs of either type. Should a short (deterministic or effective probabilistic) algorith-
m be found, which builds weak concentrators where an input’s adjacency list can be
generated in constant time, then fast highly independent hash functions will follow.
Similarly, effective procedures for constructing weak expanders will yield even better

hash functions.

The difficulty with the constructions presented so far is that the random graphs
GG require a huge description for their dn edges. Moreover, the problem of finding
such a graph seems to be quite difficult. Fortunately, Cartesian products can be used
to attain compact representations of less efficient hash functions, where we forgo some
randomness, and increase our O(1) operation count to an exponentially larger constant.
This section closes with a simple analysis of what can be done to achieve fast highly
independent hash functions that are less efficient than the constructions given so far,
but which nevertheless run in constant time and are spatially compact. These variations

14

On universal classes of extremely random constant time hash functions and their time-space tradeoff

can be applied to either formulation, but we shall restrict our attention, for the most

part to the latter, since they appear to be more efficient.

Definition 6.

Let the Cartesian product A x B of two bipartite graphs A = (I,0,F) and B =
(U,V,F) be the graph C = (W, X, H), with input vertex set W = I x U, output set
X =0 x V, and edge set H, which contains the edge from (¢,u) € W to (o,v) € X if

and only if edge(i,0) € F and edge(u,v) € F.

Lemma 6. Let GGy be (n,¢€,d, h)-weakly triangular, and G5 be (m, €, ¢, h)-weakly trian-
gular. Then the Cartesian product Gy x Gy is (mn, €, cd, h)-weakly triangular.

Proof: We need only verify the weak triangularity property for Gy x G5. Let
T1,Z9,...x; be an arbitrary set of { < h distinct inputs in [0,n — 1] x [0,m — 1]. Let z;
have the Cartesian product representation z; = (2(¢,1), 2(7,2)), z(¢,1) € Gy, 2(¢,2) € Gs.
The following procedure finds a permutation that is upper triangular for the z,.

Initialize the permutation of rows and columns to §;

Mark all outputs from G as free;

Assign 7 — {z|z(¢,1) = z for some i € [1,1]}. %By construction, Z; is nonempty.
repeat

Delete a z; € Z; that has a free output oy that is not an output of any other z € Zy;

%This can be done because (¢; is weakly triangular.

Mark o; as not free;

Assign [— {ala € [1,]] and z(a, 1) = z1}; %All such x4 agree in the Gy coordinate.

Mark all outputs in Gy as free;

Assign 7, — {z]z(1,2) = z for 1 € I};

for each 1 ¢ 1 do

Delete a zy € 75 that has a free output 09 that is not an output of another z € Z;
Mark oy as not free;
Assign row (z1,23) and column (01,09) to be next in the permutation

15

On universal classes of extremely random constant time hash functions and their time-space tradeoff

endfor
until 7, is empty;
return the permutation.
It is easy to see that the algorithm orders the nodes in an upper triangular order. |
In particular, if G is an (n¢, €,d, h)-weak expander, then the Cartesian product G1l/e
is (n,¢,d'/¢, h)-weakly triangular.

Combining Lemmas 3,4,5, and 6 with suitable rescaling gives gives the following.

Theorem 2. For ¢ > % + %ik, there are fixed programs of size O(e?d/k)n¢
that, for each input from [0, 7% — 1], “Exclusive-Or” together d*/¢ words from a pool
of n¢ random (klogn)-bit words to compute an (h, 1)-wise independent hash function
mapping [0,n* — 1] — [0,n* — 1], where n¢ is a power of 2.

Proof: We store an explicit (n¢,¢/k,d, h)-weak expander G as part of the hash
function; a value i € [0, n* — 1] is hashed by computing the adjacency list for 7 in G*/¢,
and applying the “Exclusive-Or” to the random words so probed as the neighbors of .

It only remains to verify the existence of an (n¢ e/k,d, h)-weak expander for the

parameters at hand. Computing as before gives,

. € e[k (jd/z)]
Prob{failure} < E 7?, n _ (6ozl
(J)(Jd/Z) (7

1<y<h

< Z(ne—ezd/%(jde/ﬁZ)d/z)j/ﬂ
J<h

< Y T IR e oyir2yi
i<h

< Z(e_(l—}-log d+log h)d/z(hde/:z)d/z)]/.]’
J<h

< E(l/z)jd/z/ﬂ <1. 1
I<h

The conditions of Theorem 2 can be simplified to yield, for example, an (n?®,1)-wise
independent family of hash functions on [0, 7% — 1], when ¢ = % +/k(6+ %ﬁ—d) The
functions can be evaluated in time d*/¢, and have a program size of O(n¢). The point
of this construction is that for fixed k and large, slowly growing h, € = O(%) +o(1) as

16

On universal classes of extremely random constant time hash functions and their time-space tradeoff
. — 0o0.

For completeness, we state without proof the analogous composition formulation

for the first construction.

Lemma 7. Let GG be an (n¢¢,d, h)-weak concentrator. Then the Cartesian product
GY¢ is an (n,e,d'/¢, h)-weak concentrator. |

The families of hash functions have as yet been “demonstrated” only in a prob-
abilistic sense; no explicit constructions have been given. Formally, (that is, up to
constant factors) this distinction is moot. By increasing, slightly, the degrees of free-
dom in our probabilistic constructions, the same counting argument will ensure that
with probability 1 —1/n", a randomly selected graph is a weak concentrator or expander.
Accordingly, we may simply increase the size of the hash family by indexing it over all
graphs satisfying the (modified) size and degree parameters of Lemma 5. The resulting
randomized construction Fﬁ(n’f’d) is an explicit family of O(1) time hash functions that

is essentially (h)-wise independent, as characterized by Definition 2.

1+log d+log b

24r
Lemma 8. For ¢ > =+ Tog

, a random bipartite graph on [0, —1] x [0, n¢ —1]

with outdegree d is a (n,¢,d, h)-weak expander with probability exceeding 1 — 1.

n
Proof: We apply the random construction used for Lemma 5, but include the
(algorithm) simplifying modification that each input vertex receives d edges selected at

random with replacement:

ronais < 5 (7)) (42)”

1<y<h
<s 3 (P (jde/2)HR) !
2<y<h
< 2(1/2)161/2/;;'! <nr. 1
J<

Combining Lemmas 3,4, and 8, substituting n* for n, and n¢/* for n¢ gives the
following characterization of the family Fﬁ(n’e’d).

Theorem 3. For ¢ > % + fl_: + kw, Fﬁ(n’f’d) is an explicit family of r-practical

17

On universal classes of extremely random constant time hash functions and their time-space tradeoff
(h,1)-wise independent hash functions mapping [0,n* — 1] — [0,k — 1] FOmed) pag
) p pping U,) - Ly
2 . . 1
a program space of d%ne + O(1) (logn)-bit words, and for each input from [0,nF — 1],

computes the “Exclusive-Or” of d¥/¢ members in a pool of n¢ random (k log n)-bit words.

The requirement for ¢ is readily simplified to ¢ > % + \/kd—T + k%—h.

Proof: The program for F% is essentially an array A of dn€ words belonging to
[0,n<"/%]. The d edges emanating from vertex 7 € [0, n¢ — 1] of G are found in locations
All], for di < 1 < (d+1)i. Given j € [0,nF — 1], the d¥/¢ locations among the n¢ random
words are found by expanding the edges from vertex j of G1/¢ on the fly in O(d*/¢)
time. The program for this expansion requires O(1) space.

Thus it suffices to verify the existence of an (n€, e/k,d, h)-weak expander for the

parameters at hand. Computing as before gives,

. o\ ey [(FY3) !
Prob{failure} < Z n n . (%
(J)(Jd/z) (%

1<3<h

<o Y (n SR (de 2021/
1<j<h

< 3 (RS RIR e poyarzy gy
1<j<h

<nT Z (e—(1+logd+logh)d/2(hde/2)d/2)j/j!
1<y<h

<n" Y (1/2)742)50 <n=". 1
1<3<h

Here the bipartite graph is part of the random input, whereas before one good graph
was shown to service the entire family of hash functions. Thus in the former case, an
amortized randomized algorithm might require, upon rare occasion, new random seeds
to attain a better family member for the current data, but the graph would last forever;
for applications of Theorem 3, the new hash function candidate would include randomly
selected edges for a new random graph among its random seeds.

For completeness, a rather crudely transparent iterative version of the algorithm is
presented below.

function Random(z: in [0,n* —1]): in [0,n* - 1];

Global A: n¢ x 1 array of words in [0,n* —1];

18

On universal classes of extremely random constant time hash functions and their time-space tradeoff

Global G: n¢ x d array of words in [0, n<*/k — 1];
Local Iy, 13,.... [} in [0,d—1];
Local iy,13,...,1;): in [0,n¢—1];
Local j: in [0,n¢ - 1];
Local val: in [0,n*];
Assign (11,19, .. .,ik/e) —1;
val — 0;
forl{ —0tod-1do
for [, —0tod-1do

for lk/€<—0 tod-1do
Assign j — (Gliy, l1], Glig, L], Gligye,)
val — (A[j] XOR val)
endallfors; % Altogether, d¥/¢ XORs take place.

return(val).

3. A lower bound

We now show that the size of our random word pool cannot be materially reduced with-
out affecting the running time of the hash function. A family of (k, p)-wise independent
hash functions Fy; = {fm(z)} ey where fr, 1 S — S will be modeled as follows. Each
fm 1s defined by the same algorithm, which inputs = and then reads d locations in an
array A[l..z], that contains z values belonging to S. Index m is the string of concatenat-
ed data contained in A. The algorithm can even be viewed as probabilistic since values
found in A might be used with = in an adaptive search to determine which other array
locations to access. These values and = are then used deterministically to compute the

random function value in S. Let nt = nn-1)(n-2)...(n-75+1).

Theorem 4. Let Fy; = {fim}ney denote a family of (h,p)-wise independent hash
functions mapping S — S, where M c S#*. Then the time complexity T" to evaluate

19

On universal classes of extremely random constant time hash functions and their time-space tradeoff

f € Fyy satisfies either T' > h or
2> (h=2)H(1S] - p).

Proof: We may suppose that each computation of f examines d entries in the
array A. We show that d satisfies the constraint for 7". For each set (of & —1 locations
in the z element array A, we partition M into M¢ = <Mf,M§, ey M|%|h—1>’ where ME
is the set of strings in M that equal, on (, the ¢-th enumeration of a fixed ordering of

Sh=1_TLet S(¢,i) be the set of domain elements z € S that, when computing fm(z) for

m e Mf, have their d A-locations read from within (. Let

$o(C,i) = {S(c,z‘), provided [M§| > u|M|/|S|";
’ / if |MS] < pM|/|S|R.
Given an s € Sy((,1), fm(s) will be computed by probing the same d-tuple of locations

within ¢ for all m e M?.

There are (;,°) subsets (, and each subset induces a partition of M indexed by the
m-values restricted to (. Let ¥ = 370 33 IM¢[1S(¢,)], and set $g = 3¢ 325 [MF[1So(C,7)l.
It follows that |Sp((,%)| < h since otherwise there are h elements in S that hash to some
tuple with probability exceeding y/|S|*. Hence ¥ < ik 1)|Mf| =Y ¢(h—1)|M],
whence

Zo < (h-1)(, %)M (2)

On the other hand, each m-string in M will be probed, for each s € S, in d locations,

which means that the pair (s,m) is counted exactly (hf;fld) times in Y. Hence

s=(, 21 s (3)

Finally, each s € S may be able to encounter each of the |S|¢ sequences of probe val-
ues within (hf]fd) different (sets, which have h—1—d unprobed locations that can have

up to |S|h-1-4 different assignments. That is, any s € S belongs to at most (hfiild)|5|h‘1

different S(C,2). In view of this, we can count that X — ¥, < 3.3, ‘rgjl‘%l|5(f,i)| <

M -d _
lrg|h||5|(hfl_d)|5|h 1 whence

z—d
-Sy< (, 277 g)ulMl (1)

20

On universal classes of extremely random constant time hash functions and their time-space tradeoff
Combining equation (3) and inequality (4) gives

So> (27)M -). (5)

Combining inequalities (2) and (5) gives

(-0, 1) > (L2120 usi-w.

Eliminating common factors establishes that
d
4
—=——=>[5-p 1
(h_2)d__1 |S]—p
Notice that when A random probes to the pool are allowed, the bound on d collapses
to the empty requirement z? > 0. Of course h random numbers are necessary and
. . . k+128h_o(1)
sufficient, in this case. For d < h, at least d = —°62—" probes are needed per
evaluation of an (h)-wise independent hash function that uses a database of z = n¢

random klogn-bit words to map [0,n* — 1] — [0,n¥ — 1]. In view of Theorem 1, we

conclude that
T=0(k/e), forT < h.

Restated, we have a time-log(space) tradeoff: T'log(Space) > log(Range), where Space
is the number of words in the pool of random words (exhibiting (A7")-wise independence)
and log(Range) is the word size of the domain, range, and pool. Moreover, this lower
bound and tradeoff applies to any algorithm with any level of precomputation, for
we may simply view any internal storage and precomputed values as part of the pool
measured by z.

The dependence on r, for r-practical schemes is more dramatic. Our constructions
show that for any fixed r, linear hash functions can reduce the problem from a domain
of size S to one of size n" 12, provided the lookup table A contains random words from
S.

We also remark that the counting argument for Theorem 4 gives an average case
time bound. More precisely, let T' < h be the bound from Theorem 4. Then the time,

T-1 T2

averaged over all items in S, is at least T'— ﬁ((z)T_2 + (ZF_B +...4z), which can
h=-2)"" h=2)""

be expressed as T'— O(1) when z > ch for fixed ¢ > 1.

21

On universal classes of extremely random constant time hash functions and their time-space tradeoff
4. Applications

The constructions of Section 3 show that (h)-wise independent hash functions, for non-
constant h < n?® and sufficiently small constant § > 0, can actually be programmed as
constant time subroutines that require only a moderate size pool of random numbers
as input. Thus we have established the computational feasibility of any probabilis-
tic algorithm that has a performance bound based exclusively upon the use of such
functions.

The two examples cited in this section are by no means self-contained. The first,
which concerns the performance of double hashing, follows from an elaborate proof [16]
based on (O(logn))-wise independence. Consequently, Corollary 1 follows trivially. Yet
even the performance bounds for full independence [7] are subtle and educational, and
it is still not clear if the elegant proof technique of [7] can be translated into a proof for
limited independence.

The second application, which concerns the pipelined emulation of an idealized
nlogn processor parallel machine on an n processor real machine, requires simple mod-
ifications of the original construction [13], which is based upon (O(logn))-wise inde-
pendence. The original algorithm is elegant but sufficiently elaborate that we only
present the changes. In both applications, the original references are necessary and

recommended for a complete understanding of the results.

Corollary 1. For fixed load factor o < 1, O(logn)-wise independent hash functions
can be used for double hashing with constant expected probing for unsuccesstul search.
|
It should be noted that the [16] result only needs O(logn)-wise independent hash func-
tions that map, say, [0,n4] — [0,n — 1].

Randomized routing schemes and PRAM emulation have had a substantial and
fruitful recent literature [21], [17], [2], [12], [18], [19], [5], [13]. In particular, [5] and
[13] show formally (and perhaps plausibly) how nlogn-processor Omega-like networks

22

On universal classes of extremely random constant time hash functions and their time-space tradeoff

can, with very high probability, emulate an nlogn-processor PRAM with an optimal

performance penalty that is “only” a multiplicative factor of logn.

Both Karlin and Upfal [5] and Ranade [13] presented schemes for an nlog n-processor
emulation of nlogn-processor PRAM algorithms. The processors are interconnected on
an n x logn Omega network. For this configuration, no pipelining is possible with a
model featuring 100% randomized memory references, because each PRAM emulation
step causes the network to be effectively saturated for O(logn) time. Thus, their feasi-
bility results, which were based on hash functions comprising logn degee polynomials
sustain no performance penalty for evaluating such a polynomial for each memory ref-
erence. Given the logn performance cost for referencing, Karlin and Upfal did not need
to address the much less significant issue of what to do about hashing collisions at the
memory cell level; it simply cannot be a problem when O(logn) time is available to
locate each item. Ranade [13] mentions the issue and shows that a scheme using logn
reads per fetch readily solves the problem: his solution is to specify the location of items
by their row number (which is in [0,n — 1]) and the cell address of their module, but

modulo the logn modules in a row of an n x logn Omega network.

Now that highly independent hash functions can be evaluated in constant time,
it is natural to reexamine these models to see if optimal speed-up can be achieved by
pipelining these algorithms on machines that feature a reduced ratio of processor density
to routing capacity. The idea of pipelining that exploits large scale parallel slackness
to mask network latency can be traced to Smith [S-78], and has also been a subject of

theoretical study in [11] and [20].

It is a simple matter to adapt the [5] and [13] constructions to emulate an nlogn
PRAM machine on a machine having one column of n processors interconnected by an
n x logn Omega network. A PRAM step of nlogn parallel instructions is emulated by

executing logn of the instructions in a pipeline of each processor.

The machine would also have n memory modules, say, one per processor. Ranade’s

23

On universal classes of extremely random constant time hash functions and their time-space tradeoff

Common PRAM emulation scheme applies with a few simple modifications: First, the
hash function would still be used to map the PRAM address z € [0, n¥ —1] into [0,logn —
1] x [0,7 — 1] x [0,n[A-1]]. The data packets are always kept locally lexicographically
sorted (with the value x used to break and disambiguate ties). The first field, which,
in Ranade’s scheme, designated the column number of the destination module, is still
used for the sorting of packets, but has no meaning in this case since only one column is
active. The local process number (in [1,logn]) for each packet might be explicitly listed
in a separate field. The first phase of the algorithm requires each processor to provide
its data in sorted order to the next stages as appropriate. This preprocessing can be
done simply by following Ranade’s approach: each processor uses its row of switches as
a systolic bubble sorter for its packets. The “column” numbers cannot be arbitrarily
set to the local process number for emulation of the Common PRAM, since combining
would not be adequate to guarantee that only O(logn) messages would arrive at each
memory module, per PRAM step. Such a scheme would, however, be adequate for an

EREW emulator, and in this case the bubblesort can be skipped.

Now we can attain optimal speedup in emulation mode:

Corollary 2. A T-time nlogn processor PRAM algorithm with n¥ words of shared
memory can, with high probability, be emulated on a pipelined n processor n x logn
Omega network in time O(7T'logn).

Proof: The only issue to address concerns memory contention at the cell and

module levels.

We first observe that the n* data are indeed well distributed among the n modules.
From (h,u)-wise independence, we have that the expectation of the h-th moments of
the data counts apportioned among the modules is within a factor of g of the fully
random case: Formally, let m;(f) be the number of items, among the n* data, that are
mapped to module ¢ by the hash function f, for i = 1,2,...,n. Then E/[("})] =
E 4[> all size h—subsets of data PTOb{the subset hashes to module 7}] < ("hk)p/nh. Hence

24

On universal classes of extremely random constant time hash functions and their time-space tradeoff

ok

E[("7)] < ,u(nhh). We use this inequality in a Chebyshev bound: Prob{m; > yn*-14+h} =
- nk-1 m; m; nk

Prob{() > (")) = Probl et > 1) < Bligueg] < gy < - Thus

Prob{max;(m;) > ynf-1 + h} < ’;—Z Taking A = O(logn) sufficiently large and fixed
~ > 1 gives a polynomially small probability’ that ynf-! items are hashed to any of the
n modules.

We may suppose the aggregate storage capacity of the n modules is (y+1)n* (multi-
field) words. For simplicity, we may assume that the data is stored via bucket hashing
with separate chaining, and that v is large enough to accommodate this scheme trivially
k-

1 and each module

(say v = 3). Thus the global address space of a module is size n
can store ynf-1 chained elements in storage external to its formal table space.

In bucket hashing, an item hashed to a given location can be found in time propor-
tional to the number of items hashed to the same address, since these colliding items
are stored in a linked list. Thus the time required to satisfy r references to a single
module is proportional to the sum of the list lengths for the r locations.

For the pipelined emulation of a single PRAM step, we can measure delays due to
local collisions by a number of random variables, which get their randomness entirely
from the hash function used to translate variable names into address locations. Let, for
a single logn deep superstep that batches together one nlogn-way PRAM operation,
n; be the number of memory references to module 2, for : = 1,2,...,n. Let [; be the
sum of the list lengths of the locations referenced in module 2. Then the portion of the
running time, for the single step, that is due to local processing within each module
module is simply /;, and the maximum of these random variables measures the intrinsic
delay due to local retrievals. It is easy to use a buffer to sequence the return of data at
times consistent with Ranade’s original emulation algorithm, provided sufficient delay

is introduced to ensure that all internal processing is successtully completed, with high

TA value is polynomially small if it depends on parameters that can be set so that it is less than

nl—c for any fixed ¢ and sufficiently large n.

25

On universal classes of extremely random constant time hash functions and their time-space tradeoff

probability. The delay has two parts, one due to routing, which is O(logn) in size with
very high probability [13], and a second due to local access of multiple items hashed to
module z.

We shall declare the pipelined emulation to fail at any step where n; > Flogn, or

[; >4Blogn. Now,
Prob{max(n;) > flogn v max(l;) > 45logn} < n x Prob{n; > flogn}

+n x Prob{n; < Blogn Al; >43logn}.
Using (h, u)-wise independence with A > Blogn, we calculate that among a batch of

v < nlogn memory references, the probability, that at least Slogn of them will be
hashed to (bucket) locations within memory module 1, is bounded by the expected

number of such (flogn)-subsets:

1
(%13%3) M 1Y

nBlogn (ﬂlogn)' < (glogn)ﬁlogn'

Prob{n; > Blogn} < u

This probability is superpolynomially small in n for fixed j.

We may use (43 logn, ut)-wise independence to overestimate Prob{l; > 45lognan; <
Blogn} very crudely as the expected number of pairs (S7,S53) where S is a set of
J < Blogn references, among the actual v < nlogn memory references, that hash onto
module 1, and S5 is a set of 33logn elements, among the nf — v unreferenced items,

that hash into the hashing image of 7.

Blogn-1 k .
nlogn\ 1.; n J \38logn
Prob{l; > 4Blogn Any < Blogn} < p]Z_:l < i)(ﬁ) <3ﬁlogn)(n_k)
flogn-1 (1Ogn)jj3[§’logn

<SpoY, e
= J1(38logn)!

(logn)Plog n(Blogn)3hlogn
s (Blogn)!(38logn)!
€\Blogn/€\36logn

This probability is polynomially small in n. Hence Prob{max;(n;) > #lognvmax;(l;) >
43 1logn} is polynomially small.
Choosing suitably large constant 3 and h = 43logn gives the desired performance

bounds. 1

26

On universal classes of extremely random constant time hash functions and their time-space tradeoff

Double hashing (c.f [16]) provides a formally simpler hashing method with essentially
the same performance.

A formulation comparable to Corollary 2, conditioned on the existence of suitable
hashing algorithms and corresponding hardware, was recently given in [20]. Versions
of the basic counting estimates, with the exception of the bound on the aggregate
number of collision items encountered by a batch of references queued at one memory
module, can be found in [11] along with some early analysis of pipelining and various
hashing schemes. It should also be noted that the Fast Fourier Transform can be used
to evaluate k evaluations of a degree k polynomial in klog®k time (c.f. [1]). Thus it
is possible to use the above pipeline strategy on n processors with logn degree hash
functions to attain a performance cost of (loglogn)? operations per memory reference

rather than a naive logn. We have shown that this multiplicative performance penalty

can be reduced to O(1).

5. Conclusions

Real machines have significant amounts of memory. We have shown how to exploit
this capacity to store a sublinear sized database of random words in local memory to
define highly independent hash functions that can be evaluated in constant time. For the
development of probabilistic algorithms and the use of large scale parallel machines, this
capability has, at least, theoretical importance. We have also shown that such functions
have an intrinsic tradeoff between their evaluation time and the storage reserved for
precomputed data (or their amortized evaluation time and the space reserved for active
storage).

The high independence exhibited by our hash functions enriches the class of prob-
abilistic algorithms that can be shown to achieve their expected performance in real
computation. Proofs need not be restricted to h-wise independence for constant h, and
probability estimates can use the probabilistic method to calculate the expected number
of h-tuples satisfying various behavior criteria.

27

On universal classes of extremely random constant time hash functions and their time-space tradeoff

It is worth noting that the fast hash functions described in this paper are not really
necessary for pure routing problems. After all, if an adequately random assignment of
intermediate destinations provides, with very high probability, nearly optimal perfor-
mance in a Valiant-Brebner style of routing [21], then the same destinations could be

used for many consecutive routings.

What these fast hash functions really provide is nearly uniform mappings of data
to modules and cell locations and a convenient way to assert that with high probability,

¥ emulation sequence takes more than O(logn) time to complete. Thus,

no step in an n
fast hash functions are even important for fast deterministic routing schemes, if large
amounts of data have to be stored in a randomized manner. In addition, hash functions
computed from destination addresses provide a way for common memory references to

be fully combined en route in Ranade’s simple queue management scheme, and this is

important if combining is required to avoid hot spot contention.

From such a perspective, this work gives a theoretical foundation for the very prag-
matic use of Memory Management Units. This paper gives a formal proof that such
organizations work well in pipelined environments for a model of computation that is

feasible and “only” a constant factor slower than methods used in practice.

From a more abstract perspective, we have exposed a very close equivalence between
the true space-time computational complexity of (h)-wise independent hash functions
and single instances of bipartite graphs on [0,n — 1] x [0, €] that have low input degree
d and have good expansion properties for small vertex sets. A spatially compact graph
representation that can be used to compute the adjacency list of an input vertex in
time Tz = cd gives a time Ty = T hash function with a high degree of independence,
when augmented with a pool of n¢ random numbers. Similarly, a family of ed highly
independent hash functions gives such a graph with Tz = edTY, albeit with an additive
spatial cost of edn€ for the random numbers. It is worth remarking that the equivalence
holds in this direction because our probability estimates in Section 2 were calculated

28

On universal classes of extremely random constant time hash functions and their time-space tradeoff

from h-way expectations, and never used full independence. The resource blowup is the
modest factor ed because a random function value in [0,n—1] gives 1 points in [0, n¢—1].
A crude application of our lower bound imposes the requirement that d > 1/¢, while
our hash function construction gives sufficiency with d = 2/¢ + 1.

The most significant open question is how to find good weak expander-like graphs
that are defined by short efficient programs. The discovery of such an object might

have a very beneficial effect on the practicality of such a class of functions.

Acknowledgements

The author thanks J.P. Schmidt for stimulating discussion.

Appendix 1

Fact 1: Let P, = {p|p is prime and p € (n*log m, (2 + B)n*log m)}, for some small
suitably fixed # > 0. Then

Ve #yeD: Probyp {z =y mod p} <nFk

Proof: [9],[4] By the Prime Number Theorem, |P;| = %(1 - o(1)),

whence fewer than 1/nF of the elements of P, can divide |z — y|, since [lpep, P >

(n* log m)I Pkl > (m)"]c |

Fact 2: Let Fy(p) = {h | h(z) = (ax + bmod p) mod n*, a # 0,b € [0,p — 1]}, where

p > nk is prime. Then

Ve #ye(0,p—1]: Probyp) {f(x) = f(y)} <nt.
Proof: [3] Given z and y, x,y € [0,p— 1], « # y, the number of different f € Fy(p)
where f(x) = f(y), is precisely the number of 2 x 2 linear systems in a and b:

_ k ;
{ax—l—b_c—l-dn mod p c,d,e>0; c+dn* <p; c<nf; exd; c+ent <p.

ay—l—b:c—l—enkmodp
Now ¢ 4 dn* can have p different values. The remaining parameter e cannot be set to
d because this would give a = 0. Thus there are at most [p/n* — 1] different values

29

On universal classes of extremely random constant time hash functions and their time-space tradeoff

available for e. Since there are p(p— 1) different functions in Fp, and f(z) = f(y) for at
most p[p/n* - 1] < ppn;k1 of them, the result follows. |

Combining Facts 1 and 2 shows that a hash function selected at random from
Ff= Upe p, Fo(p) will, with probability exceeding 1 — 2(3)n~*%, map s items from D into
[0, %] with no collisions at all among its () pairs. We could take k = 4, so that the

probability of a collision is below 1/n?, and assume the functions F(h) are defined in

(1) for p ~ n*.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

[2] N. Alon, Z. Galil, and V.D. Milman. Better Expanders and Superconcentrators.
Journal of Algorithms, 8, 1987, pp. 337-347.

[2] R. Aleliunas. Randomized parallel communication, 13th PODC, Aug., 1982, pp.
60-72.

[3] J.L. Carter and M.N. Wegman Universal Classes of Hash Functions, Journal of
Computer and System Sciences 18, pp. 143154 (1979).

[4] M.L. Fredman, J. Komlés and E. Szemerédi. Storing a Sparse Table with O(1)
Worst Case Access Time, Journal of the Association for Computing Machinery,
Vol 31, No. 3, July 1984, pp. 538-544.

[5] A. Karlin and E. Upfal. Parallel Hashing - an Efficient Implementation of Shared
Memory, 18th Annual Symposium on Theory of Computing, May, 1986, pp. 160-
168.

[6] D.E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Searching,
Addison-Wesley, Reading, Mass., 1973.

[7] G. Lueker and M. Molodowitch. More Analysis of Double Hashing, 20th Annual
Symposium on Theory of Computing, May, 1988, pp. 354-359.

[8] A.Lubotzky, R. Phillips, and P. Sarnak. Ramanujan Graphs, Combinatorica, 8(3),
1988 pp. 261-277.

[9] K. Mehlhorn. On the Program size of Perfect and Universal Hash functions, 23rd
Ann. Symp. on Foundations of Computer Science, 1982, pp. 170-175.

[10] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching, Springer-
Verlag, Berlin Heidelberg, 1984.

[11] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs
by parallel machines with restricted granularity of parallel memories, Acta Infor-
matica, 21, 1984, pp. 339-374.

12] N. Pippenger. Parallel communication with limited buffers, 25th Annual Sympo-
g
stum on Theory of Computing, May, 1984, pp. 127-136.

30

On universal classes of extremely random constant time hash functions and their time-space tradeoff

[13] A.G. Ranade. How To Emulate Shared Memory, 28th Annual Symposium on Foun-
dations of Computer Science, October 1987, pp. 185-194.

[14] B. Smith. A pipelined, shared resource MIMD computer, Proceedings 1978 Inter-
national Conference on Parallel Processing, 1978, pp. 6-8.

[15] J. Spencer. Ten Lectures on the Probabilistic Method, SIAM, 1987.

[16] J.P. Schmidt and A. Siegel. The analysis of closed hashing under limited random-
ness, 22nd Annual Symposium on Theory of Computing, 1990, pp. 224-234.

[17] E. Upfal. Efficient schemes for parallel computation, 13th PODC, Aug., 1982, pp.
55-59.

[18] E. Upfal. A probabilistic relation between desirable and feasible models of parallel
computation, 16th Annual Symposium on Theory of Computing, May, 1984, pp.
258-265.

[19] E. Upfal and A. Wigderson. How to share memory in a distributed system, 25th
Annual Symposium on Foundations of Computer Science, October 1984, pp. 1701-
180.

[20] L.G. Valiant. General Purpose Parallel Parallel Architectures, TR-07-89, Center
for Research in Computing Technology, Harvard University, Cambridge, MA, 1989.

[21] L.G. Valiant and G.J. Brebner. Universal schemes for parallel communication, 13th
Annual Symposium on Theory of Computing, May, 1981, pp. 263-277.

[22] M.N. Wegman and J.L. Carter. New Classes and Applications of Hash Functions,
20th Annual Symposium on Foundations of Computer Science, October 1979, pp.
175-182.

[23] A.C. Yao. Should Tables Be Sorted?, Journal of the Association for Computing
Machinery, Vol 28, No. 3, July 1981, pp. 615-628.

[24] A.C. Yao. Uniform Hashing Is Optimal, Journal of the Association for Computing
Machinery, Vol 32, No. 3, July, 1985, pp. 687-693.

31

