VARIATIONAL ANALYSIS OF
NON-LIPSCHITZ SPECTRAL FUNCTIONS

JAMES V. BURKE AND MICHAEL L. OVERTON

ABSTRACT. We consider spectral functions f o A, where f is any permutation-
invariant mapping from C” to R, and ) is the eigenvalue map from C"*" to
C™, ordering the eigenvalues lexicographically. For example, if f is the function
“maximum real part”, then f o A is the spectral abscissa, while if f is “maxi-
mum modulus”, then fo is the spectral radius. Both these spectral functions
are continuous, but they are neither convex nor Lipschitz. For our analysis,
we use the notion of subgradient extensively analyzed in Variational Analysis,
R.T. Rockafellar and R. J.-B. Wets (Springer, 1998), which is particularly well
suited to the variational analysis of non-Lipschitz spectral functions. We derive
a number of necessary conditions for subgradients of spectral functions. For
the spectral abscissa, we give both necessary and sufficient conditions for sub-
gradients, and precisely identify the case where subdifferential regularity holds.
We conclude by introducing the notion of semistable programming: minimiz-
ing a linear function of a matrix subject to linear constraints, together with the
constraint that the eigenvalues of the matrix all lie in the right half-plane or on
the imaginary axis. This is a generalization of semidefinite programming for
non-Hermitian matrices. Using our analysis, we derive a necessary condition
for a local minimizer of a semistable program, and give a generalization of the
complementarity condition familiar from semidefinite programming.

1. INTRODUCTION

Let M"™ denote the Euclidean space of n x n complex matrices. For any X € M",
the n eigenvalues of X are the n roots of its characteristic polynomial det(¢I — X).
We denote these by A (X),..., A\, (X), repeated according to multiplicity and or-
dered lexicographically so that, if ¥ < ¢, then either Re Ax(X) > Re Ap(X), or
Re M\ (X) = Re A(X) with Im Ag(X) > Im A(X). Thus we uniquely define the
eigenvalue map

A M"— C™.

This paper considers variational properties of functions of the eigenvalue map.
It builds on two foundations. On the one hand, it extends earlier work of the
authors [BO92a, BO92b, BO94] as well as other work done by the authors with
R.S. Womersley [OW88] and J. Moro [MBO97]. On the other hand, its approach
is very much inspired by the beautiful recent work of Adrian Lewis on analysis of
eigenvalues for the Hermitian (and real symmetric) matrix case [Lew96a, Lew96b,
Lew99].

Following Lewis, we define a spectral function (equivalently, an eigenvalue func-
tion) as an extended-real-valued function of the eigenvalue map, writing it in the
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composite form
fod:M" — [—o0,+00], (1.1)

where the only restriction on the function f : C™ = [—00, +00] is that it must be
invariant under permutation of its argument components. Thus, the lexicographic
order used to define A has no influence on the value of f o A. This implies that, if
f is continuous on C™, then f o\ is continuous on M™ (though X is not), since the
unordered n-tuple of roots of a polynomial is a continuous function of its coefficients.
Spectral functions of great interest in applications include the spectral abscissa

(max Re)o A
and the spectral radius
(max mod) o A

where mod(z) = |z| for € C. Although these spectral functions are continuous,
they are neither convex nor Lipschitz on M"™. For example, let ¢ € R and consider

01
X@—[to]
whose eigenvalues are ++1/t. We have
a(X(@t) =+t ift>0; 0ift<0

and

(X (1) = VT

The development of tools for studying the variational properties of general non-
convex functions has been a very active area of research for 25 years, beginning
with Clarke’s analysis of locally Lipschitz functions [Cla73]. Clarke’s generalized
gradient is a convex-set-valued map, reducing to the well known subdifferential of
convex analysis in the convex case, and to a singleton (the derivative) in the smooth
case. In more recent years, attention has turned to the nonconvex-set-valued map
advocated by Mordukhovich [Mor76] and Ioffe [Iof81], and extensively analyzed by
Rockafellar and Wets [RW98, Chap. 8]. Following Lewis [Lew99], we confine our
attention to this map, defining subgradients and horizon subgradients accordingly.
As we shall demonstrate, this choice is very well suited to variational analysis of
non-Lipschitz spectral functions.

We now introduce the necessary notation; see [RW98, Chap. 8] for more details.
Let ¢ : E — [—00,+00], where E is a finite-dimensional Euclidean space, real or
complex, with the real inner product (-,-), and let € E be such that ¢(z) < oo.
A vector y € E is a regular subgradient of ¢ at x (written y € d¢(x)) if

ming 2@ +2) = 9(@) = (1,2)
250 [ 2|

> 0. (1.2)

A vector y € E is a subgradient of ¢ at x (written y € O¢(x)) if there exist sequences
z; and y; in E satisfying

T =T (1.3)
d(zi) = o(z) (1.4)
yi € 0¢(:) (1.5)
Yi = Y. (1.6)
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A vector y € E is a horizon subgradient of ¢ at z (written y € 0%°¢(x)) if y =0
or there exist sequences z;,y; € E satisfying (1.3), (1.4), and (1.5), but, instead of
(1.6),

siyi >y, $il0,
where by s; | 0, we mean s; — 0 and s; € R4, the nonnegative real numbers.

It follows from the definition that 5¢(a:), the set of regular subgradients of ¢ at x,
is closed and convex (though possibly empty). The set of subgradients, d¢(x), is not
necessarily convex. For example, if E = R and ¢(z) = —|z|, then ¢(0) = 0, and
0¢(0) = {—1,1}. For the same example, 0°¢(0) = {0}. For the function ¢(z) =
|2|1/2, we have dp(0) = 8¢(0) = 8°4(0) = R, while for the function ¢(z) = z1/3,
we have 8¢(0) = 8¢(0) = P and 8°¢(0) = R.,.. If ¢ is a convex function, H¢ = d¢
and coincides with the ordinary subdifferential of convex analysis.

We shall also need the concepts of horizon cone and subdifferential regularity,
which we define, to avoid unnecessary complication, under the assumption that ¢ is
continuous and has at least one regular subgradient at z. In this case, since 5¢(x)
is nonempty, closed and convex, the horizon cone of 5¢(x) is defined by

éamm:{y:g+weémm W€R+} (1.7)

where §j is any element of ¢ () [RW98, Theorem 3.6]. Directly from the definitions,
we have

dp(z) C 9g(z) and 0 € dp(xz)™ C 0 ¢(a).
We say that ¢ is subdifferentially regular at x if [RW98, Corollary 8.11]
Op(x) = dp(x) and Ip(x)™ = 8°¢(x).
Finally, the subderivative of ¢ at x in the direction w is

Bl + tw) - Bla)

d¢(z)(w) = lim inf (1.8)
t10 t
w! —w
We have, immediately from the definition, that
0¢(z) = {y : (y,w) < dg(x)(w), YweE}. (1.9)

In Appendix A, we establish the following useful lemma:

Lemma 1.1. Let ¢ : E = [—o00, +00], with ¢(x) finite, and let w € E with w # 0.

Set
v : [0,0] = E is continuous for some § > 0,
[(z,w) =<7~ with v(0) = z and v/, (0) = w , (1.10)
where
')  1im Y8 = 7(0)
Y (0) = ltlﬁ)l 7 .
Then

dp(z)(w) = _inf d(¢ o 7)(0)([|w])),

vEr(z,w)

where the infimum is attained.

An immediate corollary is:
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Corollary 1.2. Let ¢ : E — [—o00, 00|, with ¢(z) finite. Then
Op(x) ={y = (y,w) < d(o7)(0)(1), Vy € T(z,w) with [lw]| =1} .

Our primary interest is in the case where E is a complex space. It is important
to note that the definitions given above are independent of whether we regard E
as a complex space, say C™, or the corresponding real space, R?". For example,
if E = C and ¢(z) = Re z, then d¢(z) = d¢(z) = {1}, while if ¢(z) = |z|, then
d¢(x) = O¢(x) = {z/|z|} for z # 0 and {y : |y| <1} for z = 0. Thus, our use of a
complex domain is purely for convenience; all results could be stated equivalently
using a real domain.

The convenient interplay between C and R? is illustrated by the following pair
of lemmas, which we shall need later. First we need to define some notation. The
inner product on C" is defined by

(z,y) = Re z*y = Re ijyj.
J
where z* denotes the conjugate transpose of the vector z, with T; denoting the
complex conjugate of z;. The norm ||z|| denotes the Euclidean vector norm. The
imaginary unit is denoted v—1.
Let v : R?2 = R be given, and let us define a function x : C — R by
Re ,u]

k(p) = y(x) where =z = [Im u

If v is differentiable, with gradient V+, we define ¥’ : C — C by
K (n) = (Vy(@)h + v=1(Vy(2))2. (1.11)

If v is continuously differentiable at x, then &' is continuous at u, and we say that
k is differentiable in the real sense. If v is twice differentiable, with Hessian V2, we
define " : C2 = C by

" (u;v) = (V*9(2))uRe v + (V2y(2))12Im v

+v=1 (V*y(2))12Re v + v=1 (V2y(x))22Im . (1.12)
If v is twice continuously differentiable at z, then k" (-, v) is continuous at u, and

we say that x is twice differentiable at y in the real sense.
Taylor’s theorem tells us that

1o+ ) = 7(@) + 5(T1(@),0) + 3520, V@) +ols?) (113
for v € R? and s € R.. It follows that
K+ sv) = k(p) + s(s'(p), v) + %820/, K" (1, ) + o(s?) (1.14)

for v € C and s € R. We therefore have:

Lemma 1.3. Let x € R? and let v : R? — R be twice continuously differentiable
at x, with gradient Vv and Hessian V2v. Let x € R? and suppose Vy(x) #0. Let
v,w € R? satisfy v L Vy(z) and w = §V~y(x), where

vIV2y(z)v

§=—2 Y 1Y
2(|Vy(2)|1?
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Then
v(z + sv + s*w) = y(z) + o(s?),
for s € R.
Proof. Apply (1.13). QED

Lemma 1.4. Let the assumptions of the previous lemma hold and define k, ' and

k" as above. Let v,w € C satisfy v = £v=1k'(u) and w = dx' (), where
(v, 6" (p, v))
f=—-—"1"""""""¢€R.

VR

Then
K + sv + s°w) = K(p) + o(s?),

for s € R.
Proof. This is the complex analogue of Lemma 1.3, and is proved using (1.14).
QED

We conclude the introduction with some matrix notation. The inner product on
MP" is defined by

(X,Y)=Retr X*Y =Re Y Treyrs.
7,8

By X ~* we mean (X*)~! = (X~1)*. By || X|| we mean 1/(X, X), though any norm
would suffice. By Diag(x) we mean the diagonal matrix constructed from the vector
x, while diag(X) is the vector constructed from the diagonal entries in the matrix

X. The identity matrix is denoted I, and the vector whose components are all one
is denoted e; their dimensions will be evident from the context.

2. COMMUTATIVITY AND THE SCHUR FORM
The following result is essential for all subsequent analysis.

Theorem 2.1. IfY is a subgradient or horizon subgradient of a spectral function
foXlat X, thenY*X = XY™,

Proof. We follow the proof in [Lew99, Theorem 3|, where a closely related result is
given for spectral functions on the space of Hermitian matrices. Instead of [Lew99,
Theorem 1], the result we need here is that the orbit of X, that is the set of matrices
similar to X, is a submanifold whose tangent space at X is given by

Tx ={XZ-ZX:ZeM"}
and whose normal space at X is given by
(Tx): ={Y e M": XY* =Y*X}.

This fact is presented in [Arn71]. Although a proof of the formula for Tx is not to
be found in [Arn71], one is easily constructed by generalizing the proof of [Lew99,
Theorem 1] to the non-Hermitian case. The rest of the proof follows exactly as in
the proof of [Lew99, Theorem 3]. QED

A unitary matrix U transforms X into Schur form if U* XU is upper triangular.
An immediate corollary of Theorem 2.1 is the existence of a unitary matrix U which
simultaneously transforms both X and Y™ to Schur form:
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Corollary 2.2. IfY is a subgradient or horizon subgradient of a spectral function
foX at X, then there exists a unitary matriz U which simultaneously triangularizes
X and Y™, i.e. such that

R=U'XU and S=U'YU (2.1)

are respectively upper and lower triangular. Furthermore, U can be chosen so that
the diagonal components of R appear in any desired order, e.g.

diag(R) = A(X). (2.2)

Proof. The existence of the simultaneously triangularizing unitary matrix U fol-
lows from [HJ85, Thm 2.3.3]. For the ordering, see Lemma B.1 in Appendix B.
QED

To go further we must establish some more notation. Let pq,...,u, be the
distinct eigenvalues of X, ordered lexicographically. Thus A(X) is a vector whose
components are the p;, repeated according to multiplicity. Let m{) be the multi-
plicity of the eigenvalue pj;. Given a Schur form R = U*XU, where U is unitary
and diag(R) = A(X), we may partition R into the block upper triangular form

RO ... RGp)
R= : (2.3)
R(pp)
where, for each j, R is upper triangular and
diag(RU9) = e € Cm(j), (2.4)

i.e., all diagonal components of RU7) equal ;. It will be convenient to also partition
S, satisfying (2.1), conformally, as
(1)
s ... g(pp)
where, for each j, SU7) is lower triangular.
The following lemmas will be useful.

Lemma 2.3. Suppose that
T-'RT =R

where R and R are both upper triangular, and the diagonal components of R and R
are both ordered lexicographically, i.e., diag(R) = diag(R). Let R and R have the
block triangular structure given in (2.3),(2.4). Then T has the same block triangular
structure. Furthermore, if T is unitary, it is not only block triangular, but block
diagonal.

Proof. The proof recursively applies the result for the following partitioning:
RO R(12) . [RD  RO2)
“l o R T o ReY|

where the diagonal blocks are square with dimensions n; and n» respectively, and
where no diagonal entry in R appears on the diagonal of R(?. Recall that
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diag(R) = diag(R). Let

T(ll) T(12)
= [T(m) T(22)]-

Since RT = TR, we have

REDT(1) _ (1) p11)
Since R('1) and R(??) have no common diagonal entry, we conclude, applying [HJ91,
p. 270], that T(*Y) = 0. This shows that T is block triangular. Furthermore, it

follows immediately from the definition that if T is unitary, we also have T(12) = (.
QED

Lemma 2.4. Let the assumptions of Lemma 2.3 hold, and assume also that
T*ST—* =8,

where S and S both have the block structure shown in (2.5), with SU) (but not

necessarily SU9) ) lower triangular for each j. Then, for each j, the blocks SU9)

and SUD have the same eigenvalues. Furthermore, if SU9) is also lower triangular
for each j, then there exists a permutation matriz Q such that

Q diag(R) = diag(R) = diag(R) and Q@ diag(S) = diag(9).
Proof. Since, by Lemma 2.3, T* is block lower triangular, we have, for each j,
(T y* §Uh) (TG =* = §Ud), (2.6)

so the eigenvalues of $U7) and SU7) are the same. If the matrices are lower trian-
gular, their eigenvalues appear on the diagonals. Hence, for the jth block, there is
a permutation matrix Q) such that

QYWdiag(SY9)) = diag(SU7)). (2.7)

Now set @ to be the block diagonal permutation matrix whose jth block is Q).
Multiplication by @ leaves diag(R) invariant since each of the diagonal blocks of R
has constant diagonal entries, so the proof is complete. QED

An immediate consequence of Lemma 2.4 is that, although S in (2.1) may not

be unique, its diagonal entries are uniquely determined, up to permutations within
blocks.

3. A GENERAL NECESSARY CONDITION FOR SUBGRADIENTS OF f o A IN TERMS
OF SUBGRADIENTS OF f
The following is a key result.

Theorem 3.1. LetY be a subgradient or horizon subgradient of a spectral function
foAat X, ie.

Y €d(foN)(X) or Y €d®(foN(X)

respectively, with R = U*XU upper triangular, S = U*YU lower triangular, and
diag(R) = A\(X), for some unitary matriz U, as in Corollary 2.2. Then

diag(S) € 9f(A(X)) or diag(S) € 0% f(MX))

respectively. Furthermore, if Y is a regular subgradient of f o A\, then diag(S) is a
reqular subgradient of f.
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Proof. First suppose that Y is a regular subgradient. Then

f(diag(R) + 2z) = (f o A)(U(R + Diag(2))U") (3.1)
= (f o A)(X + UDiag(2)U™)
> (f o A)(X) + (Y, UDiag(2)U") + o([|2[]) (32)
= f(diag(R)) + (diag(5), 2) + o([|z]) (3.3)

so diag(S) € Of(diag(R)) = 8f(A(X)). Here (3.1) and (3.3) hold because the
eigenvalues of a triangular matrix appear on its diagonal, and (3.2) follows directly
from the definition (1.2).

Now assume only that Y is a subgradient, not necessarily regular, so there is a
sequence of matrices X; — X, with f(A(X;)) = f(A(X)) and a sequence of regular
subgradients Y; € 8(f o \)(X;), with ¥; — Y. By Corollary 2.2 there exists a
sequence of unitary matrices U; with

Ri = U;XiUi and Sz = U:YZU,

respectively upper and lower triangular for all . Furthermore, the freedom in
the simultaneous triangularization procedure allows us to choose the order of the
diagonal components in R; so that diag(R;) — diag(R) = A(X). (This does not
imply that diag(R;) is lexicographically ordered.) From an identical argument to
(3.1)-(3.3), we have

diag(S;) € df (diag(R;)). (3.4)

Since the set of all unitary matrices is compact, we can also assume U; — U, which,
while not necessarily the same as U, is also a simultaneously triangularizing matrix.
Let R = U*XU and § = U*YU; by construction, diag(R) = diag(R), and R and
S are respectively upper and lower triangular. We have

U*RU=R and U*SU=2S8

where U = U*U is unitary, allowing us to apply Lemmas 2.3 and 2.4 to obtain the
existence of a permutation matrix @) satisfying

Q diag(R) = diag(R) = diag(R) and @ diag(S) = diag(S).
Taking limits in (3.4) yields
diag(S) € 9f(diag(R)). (3.5)
By [RW98, 10.7, p. 428] or [Lew99, Proposition 2],

Vdiag(S) € 0f(Vdiag(R)),

for any unitary matrix V. Choosing V = Q7 completes the proof.

The proof for the horizon subgradients is identical: instead of ¥; — Y, we have
s;Y; = Y, where s; | 0, and so instead of (3.5), we obtain diag(S) € 9* f(diag(R)).
QED

Both the statement and the proof of this result were inspired by Lewis [Lew99,
Proposition 5], where a related result was proved for the Hermitian case.
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4. NECESSARY CONDITIONS BASED ON THE JORDAN FORM

A nonsingular matrix P transforms X to Jordan form if
Jm J1(j)
PlXP=J= , where JU) = . (40)
J®) J(j,)
q()
B 1

with J) = oo , k=1,...,49, j=1,...,p. (4.2)

Hj
Each J, ,gj ) is a Jordan block of size mgcj ) x mfcj ) for the eigenvalue p;. The multiplicity
of p; is
e
m\) = Z mscj ).
k=1

The size of the largest Jordan block for u; is denoted
n) =  max m,(cj).
k=1,...,q(@
An eigenvalue y; is said to be nonderogatory if ¢'9) = 1 and semisimple if n() = 1.
These cases coincide if and only if m(?) = 1, in which case u; is said to be simple.
The set of matrices with a given Jordan block structure defines a submanifold of
M" whose properties are well known [Arn71]. Nonderogatory Jordan structures
are the most generic.
We note that

XP=PJ, and P~'X=JPL

Therefore, for each Jordan block J ,gj ), the corresponding block of mg ) columns of P

(respectively rows of P~!) contains a chain of mi’ ) generalized right (respectively
left) eigenvectors of X. The first column (respectively last row) in this block is
a right (respectively left) eigenvector. When p; is semisimple, the corresponding
chains have length one, so the generalized eigenvectors are actually eigenvectors.

We also define
NO =g — 1, j=1,...,p. (4.3)
The matrix N@ is called the nilpotent part of J@, since (N@)n? = 0.

Theorem 4.1. IfY is a subgradient or horizon subgradient of a spectral function
foXat X, then any P satisfying (4.1), (4.2) also satisfies

w® W ij?ﬂ
PYP* =W = , WO =1 Doy (44)
wP) Wq((JJ'))l .. Wq((ﬂj))q »
where Wﬁﬁ.) is a rectangular mgj ) xm(sj) lower triangular Toeplitz matriz, r = 1,. .. .49,

s=1,...,¢q9, j =1,...,p. By this we mean that, for each Wr(g), the value of
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the k, ¢ entry in Wr(g) depends only on the difference k — £ (is constant along the
diagonals), and is zero if k < 1 or mgj) -k > mgj) — £ (is zero above the main
diagonal, drawn either from the top left of the block, or from the bottom right).

Proof. The proof follows immediately from the fact that the matrices commuting
with the Jordan form J are exactly the matrices W described in the theorem
statement; see [LT85, Sec. 12.4] for a proof and [Arn71, Sec. 4.2] or [OW88] for
illustrations. QED
It follows immediately that if an eigenvalue y; is nonderogatory (¢'9) = 1), then
W) is lower triangular Toeplitz, i.e.,
09)
Géj)
w@ = . . , (4.5)
o, o
for some 01(3]'), (=1,...,mY,
We can relate the conditions on subgradients derived from the Schur and Jordan
forms as follows.

Corollary 4.2. LetY be any subgradient or horizon subgradient of a spectral func-
tion f o A, satisfying (2.1), (2.2), (2.3), (2.4), (2.5) as well as (4.1), (4.2), (4.4).
Then, for each j, S5 and W9 have the same eigenvalues, namely, the diagonal
entries of SU9) . Furthermore, if p; is nonderogatory, SU99) and W9 are both lower
triangular with the same constant diagonal entry.

Proof. We have
X =URU*=PJP~!, Y=USU*=P*WP*
)
T'RT =J, T*ST*=W, (4.6)
where T = U*P. Applying Lemma 2.4 with R = J and S = W gives the desired

result. The last statement is an immediate consequence of the fact that W) is
lower triangular Toeplitz in the nonderogatory case. QED

For regular subgradients, there is a much stronger result.

Theorem 4.3. If Y is a regular subgradient of a spectral function fo X at X,
then any P satisfying (4.1), (4.2) also satisfies

W W
P*YP* =W = . , W = . . A
w® Wq((]j)) @
Hg])
6 .
where W = | - - - k=1,...,¢9, j=1,....,p, (4.8
g(j) L aéj) egj)

(7)
mk]
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for some 0?), t=1,...,n9, j=1,...,p. Thus, for each j, W9 is block diagonal
with (square) lower triangular Toeplitz blocks, and, furthermore, the entries on the
diagonals of the Toeplitz blocks are constant not only within each block, but also
across all ¢4 blocks. Finally,

e

W =369 (N0)) 7, =1 (4.9

=1
where NU) is defined in (4.3).

Proof. Suppose that for some j, W) has a nonzero entry in an off-diagonal block
of (4.4); suppose this occurs in the rth row and sth column of the entire matrix W
and let 3 be this nonzero value. Let Z = PV P!, where all components of V are
zero except the r, s component, which is set to 8. Then

(Y, 2y =(W,V) =8> > 0.
The eigenvalues of X + ¢Z are the same as the eigenvalues of X for all £ € R, so

piat FONE 12) —(FoNX) = (¥Vit2) _ (7)o
10 1£Z]] 1l
Thus Y is not a regular subgradient of f o X at X (substituting ¢tZ for z in (1.2)).
This proves that the off-diagonal blocks of W () are zero. That the diagonal blocks
are lower triangular and Toeplitz is known from Theorem 4.1.
We must now show that, for each j, and each pair k, k', with 1 < k < k' < ¢(¥),

and each £ satisfying 1 < £ < min(mij),mg)), the constant entry on the diagonal

£ — 1 positions below the main diagonal of W,Sc) equals the constant entry on the
diagonal £ — 1 positions below the main diagonal of W,g,’ ,)c,. Suppose this is not the
case for some j,k, k' and £. Without loss of generality we may assume k' = k + 1.
Let r be the integer such that the rth diagonal entry of the entire matrix W is in
the last diagonal position of W,gfc) and, therefore, the (r 4+ 1)th diagonal entry of W
is in the first diagonal position of W,gi)l p+1- Now consider the case £ = 1, so that

the diagonals in question are the main diagonals of the blocks W,Efc) and W,Si)l kbl
with constant values 8; and (s respectively, with 8; # (2. Suppose further that
RefB; > Refs. Let Z = PVP~!, where V has all zero components except

Upr.r U, r+1 ]. ]_
’ ’ = . 4.11
Ur41,r vr+1,r+1:| |:_]- _]-:| ( )

We have
(Y,Z) = (W,V) = Ref1 — Refa > 0. (4.12)

Both eigenvalues of (4.11) are zero, so, since r and r + 1 correspond to different
Jordan blocks of J corresponding to the same eigenvalue p;, the eigenvalues of
X +tZ are the same as the eigenvalues of X for all ¢. Therefore (4.10) holds, and
Y is not a regular subgradient of fo A at X. If Ref; < Ref2, we reverse the sign of
V' and make the same conclusion. If the real parts of 8; and 3, are the same, their
imaginary parts must differ, and so we multiply V' by ++=1 and reach the same
conclusion. This completes the proof for the case £ = 1, showing that the constant

on the main diagonals of ngfc) is the same for all k = 1,... ,¢"%.
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We now generalize this argument to the case £ > 1. Consider the diagonals £ —1
positions below the main diagonals of the blocks W,Sc) and W,gi)l k41, With constant
values 51 and 2 respectively, with 81 # B2. Suppose again that Ref; > Ref2. Let
7 = PVP~! where V has all zero components except in the four entries whose
row index is either r or r + £ and whose column index is either r — £+ 1 or r + 1.
Let the two nonzero entries in row r have the value 1 and the two nonzero entries
in row 7 + £ have the value —1, so that (4.12) holds. We must now determine the
eigenvalues of X +¢Z. The part of J+tV which needs examination is the following
diagonal block (of dimension 2¢):

2 1
t it : (4.13)

.1

Lt —t Hj ]
Consideration of the characteristic polynomial shows that all eigenvalues of (4.13)
equal pj, for all t. Therefore, the eigenvalues of X + tZ are the same as the
eigenvalues of X for all #, (4.10) holds, and Y is not a regular subgradient of f o A
at X. As earlier, if it is not the case that Re; > Ref:, the proof is modified by
scaling the choice of V' appropriately.

The final statement is an immediate consequence of the definition of the nilpotent
matrix N, QED

If an eigenvalue y; is nonderogatory, i.e. ¢} = 1, the structure on W) imposed
by (4.4) and that imposed by (4.7) are the same, but the latter is more restrictive if
t; is derogatory. In Section 8, we shall see that, in the derogatory case, subgradients
do not necessarily satisfy the more restrictive block diagonal condition required for
regular subgradients.

The condition on the regular subgradients, derived from the Jordan form, can
now be related to the condition derived from the Schur form.

Corollary 4.4. Let Y be a regular subgradient of a spectral function fo X at X,
and assume (2.1), (2.2), (2.3), (2.4), (2.5) as well as (4.1), (4.2), (4.7), (4.8) all
hold. Then

diag(W) = diag(S) € 9f(A(X)),
with
diag(S(jj)) = 09)6 € Cm(j), ji=1,...,p.

Proof. Since Y is regular, W), like S, is lower triangular. Therefore, by Corol-
lary 4.2 and Lemma, 2.4, we know there exists a permutation matrix ) satisfying

Qdiag(J) = diag(J) and @ diag(W) = diag(95).

This shows that diag(W) = diag(S), since, from Theorem 4.3, any permutation
matrix @ satisfying @ diag(J) = diag(J) also satisfies @ diag(W) = diag(W). We
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know that diag(S) € 0f(A\(X)) from Theorem 3.1. The last statement is an imme-
diate consequence. QED

5. FURTHER DECOMPOSITION OF THE SPECTRAL FUNCTION

In order to state additional necessary conditions that subgradients must satisfy,
we assume the spectral function f o A can be decomposed further as
fol=gohol (5.1)

where g : R™ — [—00,+00] and h : C™ — R™, with g invariant under permuta-
tions of its argument components and h mapping each of its argument components
by the same complex-to-real function, i.e.,

he()\) Zlﬁ()\e), l= 1,...,n (5.2)

where £ : C — R. For example, if ¢ = max and k = Re, the composite function
is the spectral abscissa, while if ¢ = max and ¥ = mod, it is the spectral radius.
Recall from Section 1 that & is continuously differentiable at u € C in the real sense
if its derivative k' defined in (1.11) is continuous at g. A chain rule then gives the
following:

Theorem 5.1. Let (5.2) hold, where k is continuously differentiable at p; in the
real sense, j =1,...,p, and let

K = diag ([5'(M (X)), - .. , &' O (X)) .

Suppose that Kz = 0 implies z = 0 for all z € 0°g(h(\(X))), i.e. for all horizon
subgradients of g at h(A(X)). (This is true, for example, if K is nonsingular, or
if g is convexr and finite-valued.) Let Y be a subgradient or horizon subgradient of
goholXatX, ie.

Yed(gohod)(X) or Y €d®(gohol)(X)

respectively, with R = U*XU upper triangular, S = U*YU lower triangular, and
diag(R) = A\(X), for some unitary matriz U, as in Corollary 2.2. Then

diag(S) = Kw
where
w € Og(h(A(X))) CR" or w e 0%g(h(A(X))) CR"
respectively.
Proof. Applying Theorem 3.1 with f = g o h, we find
diag(S) € d(go h)(A\(X)) or diag(S) € 8*°(go h)(A(X)).

The result therefore follows from applying the basic chain rule for subgradients
[RW98, Theorem 10.6] to g o h. QED

An important special case is:
Corollary 5.2. Let the assumptions of Theorem 5.1 hold, with X andY also sat-

isfying (4.1), (4.2) and (4.4). Suppose that, for j =1,...,p, &'(p;) # 0 and p; is
nonderogatory, so that (4.5) holds. Define

? j=17"'7p (5'3)
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and
0':[01,...,01,...,Up,...,0p]T, (5.4)
each o; being repeated m(9) times. Then
o € dg(h(AM(X))) CR™ or o€ d®g(h(AMX)) CR" (5.5)
respectively (according to whether Y is a subgradient or a horizon subgradient).

Proof. This is an immediate consequence of Corollary 4.2 and Theorem 5.1. QED

We obtain a similar result for regular subgradients without the nonderogatory
assumption:

Theorem 5.3. Let the assumptions of Theorem 5.1 hold, with X andY also satis-
fying (4.1), (4.2) and (4.4) respectively. Assume also thatY is a regular subgradi-
ent, so that (4.4) reduces to (4.7), (4.8). Suppose that £'(u;) #0, for j=1,...,p,
and define o; by (5.3) and the vector o by (5.4). Then

o € dg(h(\(X))) CR™.
Proof. Applying Theorem 3.1 again with f = g o h, we find
diag(S) € 8(g o h)(A(X)).

The result therefore follows from [RW98, Exercise 10.7], together with Corollary 4.4.
QED

Theorem 5.3 gives a condition on the diagonal components of the matrices W,Sfc)
in (4.8) that must hold if Y is to be a regular subgradient. We now give an additional
necessary condition on the subdiagonal components of the ngi): again for the case
of regular subgradients. Recall that & is twice continuously differentiable at y € C
in the real sense if its second derivative £ (-,v), defined in (1.12), is continuous at
73
Theorem 5.4. Let (5.2) hold and suppose that k is twice continuously differen-
tiable at p; in the real sense, for j =1,... ,p. Assume that&'(p;) #0,j=1,...,p,
and suppose also that g is Lipschitz at h(A(X)). Let X have the Jordan form (4.1),
(4.2), and suppose that Y is a regular subgradient of goho X at X, so that con-

ditions (4.7) and (4.8) hold. Then a further necessary condition is that, for each
j=1,...,p withn9) > 2, we have

(65K (1)) > —om;, (5.6)
where
ez(l]) ! n" !
%= ) and ;= (vV=1K'(1), 6" (15, v=16'(115)))- (5.7)
j
Proof. First note that o; is real from Theorem 5.3, and 7; is real by definition.
Suppose that (5.6) does not hold, for some eigenvalue u; with n() > 2. Let r be an
integer such that the row 7 + 1, column r component of the matrix W is in block
W,Sc), for some k with mg) > 2, this component therefore having the value 051).
Let Z = PV P~! where V has all zero components except

_[oW) 0
o B (58)

Up,r Ur,r41
Ur+1,r  Urti,r4+1
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where
§=—s—H__ (5.9)
20 (1)
Thus
(¥,2) = (W, V) = —ojm; — (65", K (1;)?), (5.10)

which is positive by assumption. The only eigenvalues of X + tZ not equal to a
corresponding eigenvalue of X are eigenvalues of the 2 by 2 matrix

pj + 0K (1) 1 ]
—ts'(ug)?  py+ 0! ()]
These eigenvalues are

i) = iy + 08" (1) & v VR (1), (511)
Since &'(u1j) # 0, we may apply Lemma 1.4, identifying /t with s, to conclude that
K(1£(t)) = K£(u;) + o(t). (5.12)

Since g is Lipschitz, we therefore have
fming Q0RO VX +12) —(goho N)(X) —(Y,t2) _ (V.2) _
o liz4] izl =~

and thus Y is not a regular subgradient of the spectral function gohoA. QED

Theorem 5.3 and Theorem 5.4 respectively give conditions on the main diagonal
and the subdiagonal of W that must hold if the associated matrix Y is a regular
subgradient. There is, in general, no restriction on the lower subdiagonal compo-
nents of W,Sfc), i.e. 0;’ ), . ,02§Cj). We prove this in the case of the spectral abscissa,
in Section 7.

6. SPECTRAL MAX FUNCTIONS

An important class of spectral functions consists of those that can be expressed
in the form (5.1), where g : R™ — R is the ordinary “max” function. We call these
spectral max functions.

Let us define the active set

A= {j : max(h(A\(X))) = £(i;)}- (6.1)
An eigenvalue p; is said to be active if j € A, and inactive otherwise. We now show
that if an eigenvalue p; is inactive, the block W) in (4.4) must be zero. This is
obvious for regular subgradients, but to prove this in general we need the following
useful tool:

Lemma 6.1. (Arnold [Arn71, Theorem 4.4]) Let X have Jordan form (4.1), (4.2),
and let X; — X. Then there exists P; — P such that for i sufficiently large,

A%
P7'X,P,=L; = (6.2)
Ll(l’)

where LY has dimension m@ x m().
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Since P; — P, we have L; — J, but L; is not, in general, the Jordan form of X;.
This would not be possible because the Jordan form is not continuous. However,
the transformation that takes L; into Jordan form necessarily respects the block
diagonal structure in (6.2). Thus, the Jordan form of X is displayed by

Q7' P X, PQ; (6.3)

where @; and Q; ! do not necessarily converge, but have the same block diagonal
structure as (6.2).
We are now ready to prove:

Theorem 6.2. Let (5.2) hold, where g is the maz function. Define A as in (6.1).
Let Y be a subgradient or a horizon subgradient of g o ho A at X, so that (4.4)
holds. Then, for 1 < j <p,

jg A=W =0, (6.4)

Proof. First suppose that Y is a regular subgradient. Suppose also that p; is an
inactive eigenvalue, i.e. with j ¢ A, and that W) #£ 0. Let

Z =PVpP!

with V chosen to have one nonzero entry, in its jth diagonal block, in the same
position as a nonzero entry of W), so that (W, V) is positive. Thus, for t € R
sufficiently small, all eigenvalues of X +¢Z are identical to corresponding eigenvalues
of X, except the eigenvalues corresponding to p;. Therefore, by continuity of
eigenvalues, g o h o X is identical at X + tZ and X, for sufficiently small ¢. This
yields a contradiction of the form (4.10).

Now suppose that Y is any subgradient, so that there is a sequence X; — X and
Y; » Y with

Y; € 8(g o ho M) (X,).

By Lemma 6.1, there exists P; — P such that (6.2) holds. Since the Jordan form
of X; has the block diagonal form (6.3), Theorem 4.3 shows that

Wi=QiFYiP "Q;"
has a block diagonal structure that respects the block diagonal structure shown in
(6.2). Now suppose p; is not an active eigenvalue of X. By eigenvalue continuity,

the eigenvalues of Lz(j) cannot be active eigenvalues of X; for ¢ sufficiently large.

Therefore, since Y; is regular, the corresponding block Wi(j ) must be zero, for ¢
sufficiently large. Since W; and @; both have a block diagonal structure consistent
with (6.2), and since

Q"WiQi = PIYiP, " - W,
it follows that W) = 0. The proof for horizon subgradients is identical. ~ QED

We now consider how the results of the previous section specialize to the case
of spectral max functions. The max function g is convex, so all its subgradients
are regular, and its only horizon subgradient is zero. Using the well known formula
for the subgradients of g, we therefore have, under the assumptions of Corollary
5.2 (where we assume that all p; are nonderogatory, in the case where Y is a
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subgradient) or Theorem 5.3 (where we assume that Y is a regular subgradient),
that the o; defined in (5.3) satisfy

g €R, 0;20, > mWo;=1, (6.5)
jeEA
with
0; =0, forj¢A (6.6)

(In fact, (6.6) is a consequence of (5.3) and (6.4).) In particular, if A contains only
one index, say j, then
1
g = m
If we further assume that this eigenvalue p; is simple (and therefore nonderogatory)
the only possible value for Y is

Y = Iil(/J,j)UU*7
where v is the column of P associated with p; (a right eigenvector of X) and u* is
the row of P~1 associated with p; (a left eigenvector of X); note that u*v = 1. In
this case, g o h o A is differentiable at X.

Likewise, when Y is a horizon subgradient of a spectral max function, the as-
sumptions of Corollary 5.2 imply that, instead of (6.5), we have

0;=0, j=1,...,p. (6.7)

This follows because zero is the only horizon subgradient of the max function.
We can be more specific: if & = Re, so that goho X is the spectral abscissa, then

k'(p;) = 1, and so 99) =05, j=1,...,p. In this case, (6.5) reduces to

6 er, 67 >0, Y mPe) =1. (6.8)
JjeEA
and (6.7) reduces to
09 =0, j=1,...,p. (6.9)

On the other hand, if x = mod, so that g o h o X is the spectral radius, then
K (15) = i /lmsl, so
=,
|11

Strictly speaking, in the spectral radius case, Corollary 5.2 and Theorem 5.3 do not
apply if any eigenvalue p; is zero; however, in view of Theorem 6.2, it is easy to
extend them to cover this case as long as at least one eigenvalue is nonzero. The
spectral radius case where all eigenvalues are zero is exceptional.

Now let us turn to Theorem 5.4. In the spectral abscissa case, with kK = Re, we
have k'(1) = 1 and &"(u,v) = 0, so condition (5.6) reduces to

Re 65 > 0. (6.10)
(In this case, the proof of Theorem 5.4 simplifies considerably, since 7 (t) — p; are
imaginary and therefore Lemma 1.4 is not needed.) In the spectral radius case,
where k = mod, we have, for u; # 0, &'(u;) = p;/|p;| and
YT —(Im p5)° = (Re p3)*(Im p5) + v=1(Im p5)* (Re 1) + v=1(Re p;)*
"l ||t ’

., D.

’i”(lll
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so n; = 1/|p;|, and condition (5.6) reduces to
(69, 12) > =0l
7. THE REGULAR SUBGRADIENTS OF THE SPECTRAL ABSCISSA

In this section we specialize the discussion further to the spectral abscissa
a=gohol, (7.1)
where ¢ is the “max” function and h maps the eigenvalues to their real parts, i.e.

k in (5.2) is the function Re. With this choice of spectral function, the active set
of eigenvalues at X is given by
A={j:a(X)=Rey;} (7.2)
We shall show that the necessary conditions, derived in the previous sections, for YV
to be a regular subgradient of a at X, are also sufficient conditions; that is, these
conditions completely characterize da(X).
Let P, denote the space of polynomials in { of degree n or less. Define the

abscissa of a monic polynomial p € P,, to be the maximum of the real parts of its
roots:

a(p) = max{Re ¢ : p(¢) = 0},
and extend the definition of a to the linear space P,, by defining it to be oo for
polynomials which are not monic. The spectral abscissa of a matrix is the abscissa
of its characteristic polynomial, i.e.,
a(X) = a(det(¢I — X)).

Before we state the main theorem about regular subgradients of the spectral ab-
scissa, we need two key results. The first of these concerns the characteristic poly-
nomial of a matrix depending on a single parameter.

Lemma 7.1. Let A(t) denote a continuous curve in M™ satisfying
Aty =X +tZ + o(t), (7.3)

so that A € T'(X, Z), where T is defined in (1.10). By the derivative, with respect
to t, of a polynomial whose coefficients are functions of t, we mean the polynomial
obtained by differentiating each coefficient. Define the polynomials p(¢) and ¢({) by

p(¢) = det (T = A(t)|ymg = det (T = X) = [[ (¢ =)™, (7.4)
Jj=1
Q) = 5 det (< - A)| . (7.5
t=0
Let X have Jordan form (4.1), (4.2), let
V=prlzp

and let VD) be the m() x m9) diagonal block of V' corresponding to the block J)
of J. (Note that V is not necessarily block diagonal.) Then

(@

(0 = - Xp: ﬁ C—pm)™ | |t ((N(ﬂ)e_l V(m) (€= )™t
' =1
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where N is defined in (4.3).

Proof. The determinant of a matrix is a differentiable, complex-valued spectral
function whose derivative is well known. For a smooth matrix function M : R —
M", we have!

t:O)

as long as M(0) is nonsingular [Lax97, Chapter 9]. Since the derivative we are
evaluating is a polynomial in {, we may assume ( is not an eigenvalue of X without
loss of generality. Therefore, we obtain

%det (M (1)) - det(M(0)) tr ((M(O))_l %M(t)

4(Q) ==p(Q) tr ((T=X)""Z (7:6)
=—p()tr P((I-J) ' P'Z
=—p(Q)tr (I-J)'V (7.8)
= p(Q) Yotr ()T~ NO) T VO, (79)
j=1

The proof is completed by using (7.4) and noting that
A\ —1 i j . () _1
(I _ 7Nu)) — [+ NG . g1 (Nu))”
for any scalar v, since (N@)n? = 0. QED

The next result concerns the subderivative of the abscissa of the characteristic
polynomial. Recall that the subderivative of a function was defined in (1.8).

Theorem 7.2. Let p(¢) and q(¢) be defined as in Lemma 7.1. Then

da(p(())(4(¢)) = o0 (7.10)
if any of the following conditions is violated for any j € A:

Re tr (N(j)V(“)) <0, TIm tr (N(ﬂv(m) —0, (7.11)
A\ £ . .
tr ((NU)) V(“)) =0, £=2,...,n0 1. (7.12)
On the other hand, if (7.11) and (7.12) hold for all j € A, then

Re tr V9
m@)

da(p()) (a(C)) = max{ e A} . (7.13)

Proof. The proof is a consequence of [BO99, Corollary 1.7], using Lemma 7.1.
QED

We are now in a position to present the main result of this section.
Theorem 7.3. Let X have Jordan form (4.1), (4.2). Then da(X), the set of reg-

ular subgradients of the spectral abscissa a at X, is the set of matrices Y satisfying
(4.7), (4.8), (6.4), (6.8) and (6.10).

1Equivalently, via the ordinary chain rule, the complex gradient of det(M) is (det(M)M~1)*,
for any nonsingular matrix M.
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Proof. That these conditions are necessary for Y to be a regular subgradient was
proved in Theorem 4.3, Theorem 5.3, Theorem 5.4, and Theorem 6.2. Now suppose
that Y satisfies these conditions. We must prove that Y is a regular subgradient.

By Corollary 1.2, to show that Y is a regular subgradient of a at X, it is sufficient
to show that

(Y, Z) < d(a0 A)(0)(1), (7.14)
for all matrix curves of the form (7.3) where ||Z|| = 1. We have
a (A(t)) — a(A(0))

d(aco 4) (0)(1) = liminf

t
— limint @ (det (¢I — A(t))) — a(det (¢ — A(0)))
t10 t
g (O + 1(O) +0(1) — a (8(0)) 7.15)
10 t )
> da (p(¢)) (¢(¢)) - (7.16)

Here (7.15) follows from the definitions of p(¢) and ¢(¢) in (7.4) and (7.5), and
(7.16) is a consequence of Lemma 1.1.
Using (4.7), (4.8), or equivalently (4.9), as well as (6.4), we have
e _ s
(v,2)=W,V) =33 Re (0§” tr (NU)) V(jj)> . (7.17)
JEA £=1
If any of (7.11), (7.12) are violated, then (7.10) must hold, and so (7.16) shows
that (7.14) holds trivially. On the other hand, suppose that (7.11), (7.12) hold for
all j € A, implying that (7.13) holds. Using these conditions, together with (7.17),
(6.8) and (6.10), we have

Y,2) = Z (O'jRe tr VU9 4 Re 0§j)Re tr (N(j)V(jj)))
jeA
S Z O’jRe tr V(jj)
jeA
< da(p(¢))(4(<))-
Combining this with (7.16) gives (7.14), as desired. QED
It follows from Theorem 7.3 that if Y is a regular subgradient of @ at X and y;

is semisimple, then W) must be a multiple of I. If all active eigenvalues of X are
semisimple, W must be diagonal. In particular, we have:

Corollary 7.4. Suppose X is the n by n zero matrixz. Then the spectral abscissa
a has only one reqular subgradient at X. Specifically,

This result was to some extent anticipated in [OW88, Theorem 4.3], though
the result there is weaker and stated in the spectral radius context (for a nonzero
semisimple eigenvalue). This stands in marked contrast to the well known result
for the Hermitian case: see Section 9.

If at least one of the active eigenvalues of X is not semisimple, i.e. has a Jordan
block of order greater than one, 504(X ) is unbounded, since there is no restriction
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éj) 09 for j € A, except Re Héj) > 0. More specifically, we

on the values of 657, ... .60,

have:

Corollary 7.5. Let X have Jordan form (4.1), (4.2) for some P. Then da(X)>,
the horizon cone of da(X), is the set of matrices Y satisfying (4.7), (4.8), (6.4),
(6.9) and (6.10). If all active eigenvalues of X are semisimple, the only matriz in
this set is Y = 0; on the other hand, if at least one active eigenvalue of X is not
semisimple, O (X)* is unbounded.

Proof. The proof follows immediately from the definition of the horizon cone in
(1.7). QED

8. THE SUBGRADIENTS AND HORIZON SUBGRADIENTS OF THE SPECTRAL
ABSCISSA

In this section we consider all subgradients and horizon subgradients of the
spectral abscissa «, giving complete characterizations in the nonderogatory and
semisimple cases.

We begin with a corollary of results proved earlier:

Corollary 8.1. Let X satisfy (4.1), (4.2) for some P. A necessary condition for
Y to be a subgradient of the spectral abscissa o at X is that (4.4) and (6.4) hold,
where the eigenvalues of Y (equivalently of W) are all real, nonnegative, and sum
to one. Furthermore, a necessary condition for Y to be a horizon subgradient of o
at X is that (4.4) and (6.4) hold, and that Y (equivalently W) is nilpotent (all its
eigenvalues are zero).

Proof. The first statement follows from Corollary 4.2, Theorem 5.1 and Theorem
6.2, using the subdifferential of the max function. The second follows in the same
way, since the only horizon subgradient of the max function is zero. QED

To go further, we consider two cases separately: (1) all active eigenvalues of X
are nonderogatory, and (2) all active eigenvalues are semisimple.

In the nonderogatory case, Corollary 5.2 shows that if Y is a subgradient or hori-
zon subgradient, satisfying (4.4) and (4.5), then (6.8) must hold, thus characterizing
the diagonal components of W), We now turn our attention to the subdiagonal
condition (6.10), showing that it applies to all subgradients and horizon subgra-
dients, not just regular subgradients, under the nonderogatory assumption. We
conjecture that Theorem 5.4 can be extended in this way for all spectral functions
of the form g o h o A, but, to avoid unnecessary complication, we generalize it only
for the spectral abscissa, with active set defined by (7.2). Even in this case, the
proof depends on machinery not needed by any of our other results; despite some
effort, we have not succeeded in finding a simpler proof.

Theorem 8.2. Let X have Jordan form (4.1), (4.2), and suppose that all active
eigenvalues of X are nonderogatory. LetY be a subgradient or horizon subgradient
of a at X, satisfying (4.4) and (4.5). Then (6.10) holds for all j with m) > 2.

Proof. First suppose that Y is a subgradient. Then there exist sequences X; — X
and Y; € da(X;) with ¥; — Y. We wish to show that ng ), the subdiagonal entry
in the Toeplitz matrix W), satisfies (6.10) for all eigenvalues p; with m() > 2:
suppose that this is not the case for some j. Let r be an integer such that the row
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7+ 1, column r component of W is in block W) this component therefore having
the value Héj ),

By [Arn71, Theorem 4.4], there exists a sequence P; — P such that (6.2) holds.
Consider the sequence Pi_lXiPz- — J. By applying Lemma B.2 in Appendix B to
each diagonal block of Pi_lXiPi separately, we see that there exists a sequence of
unitary matrices U; — I such that

U'PT'XPU =T, — J,

where T; is upper triangular for all . Thus the eigenvalues of X; appear on the
diagonal of T;. Furthermore, there exists a sequence of diagonal matrices D; — I,
each differing from I only in the rth diagonal position, such that

D;szDz = TZ’,

with the row 7, column 7 + 1 component of T} exactly equal to one; this is possible
because the corresponding entry in J is one. Let

Z; = BU;D;VD;'U; P ",

where V' has all zero components except that the row r + 1, column r entry is —1.
We have

Vi, Zi) = (P*YP™*,V) = (W,V) = —Re 65" > 0, (8.1)

the inequality holding by our hypothesis that (6.10) does not hold.
Now consider the eigenvalues of X; +tZ;, where t € R*. Since

X; +tZ; = BU;D;i(T; + tV)D;'U; P2,

the only eigenvalues of X; + tZ; not equal to a corresponding eigenvalue of X; are
eigenvalues of the 2 by 2 matrix

ygl) 1

-t 1/1(2) ’
where vV and v®

i ?) are respectively the rth and (r + 1)th diagonal entries of T},
which are eigenvalues of X;. These eigenvalues are

M40 —
T+ (t) = Vi Y ;—V’ + 5\/(1/?) — V§2)> — 4¢.

By considering a subsequence if necessary, we may assume that either (1) 1/1(1) = 1/1(2)

for all 4, or (2) 1/51) # I/Z(Z) for all ¢. In the first case,
Re 7+(t) = I/z-(l)
for all ¢, and hence the spectral abscissa difference quotient
o(Xi +t7Z;) — a(X5)

is zero for all £ > 0 and all ¢. In the second case, we have

(1) (2) (1) (2)
R vy t
re(t) = Ak ( . o ) o
1

%
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Suppose without loss of generality that Re I/i(l) > Re I/i(z). Then the maximum of
the real parts of the two eigenvalues 7 (t) is

1 _ (2)
Re I/i(l) —t Re v; Re I;’ o(t).
Vz'(l) _ Uz@)‘
Consequently, in both cases (1) and (2), we have
hmhﬁaﬁ&+¢zn—a0&)50

t10 t
and therefore, using (8.1) and choosing i sufficiently large,
i inf a(X; +17Z;) — a(X;) — (V3,1Z;)
£10 [|tZ]]

Thus, Y; is not a regular subgradient of a at X;, and we have our desired contra-
diction.

When Y is a horizon subgradient, the proof is almost identical. Instead of Y; — Y

we have s;Y; — Y, with s; | 0, so (Y}, Z;) in (8.1) must be multiplied by s;. The

contradiction is then obtained exactly as before. QED

<0.

We are now ready for the main result of this section, characterizing regularity
of the spectral abscissa. Recall from Section 1 that a function is subdifferentially
regular at X if all its subgradients at X are regular and all its horizon subgradients
at X are contained in the horizon cone of the set of regular subgradients.

Theorem 8.3. The spectral abscissa a is subdifferentially regular ot X if and only
if all active eigenvalues of X are nonderogatory.

Proof. First suppose that all active eigenvalues of X are nonderogatory. Let X
have Jordan form (4.1), (4.2), and let Y be a subgradient of o at X. Since all
active eigenvalues are nonderogatory, W in (4.4) satisfies (4.5) as well as (6.4).
Corollary 5.2 shows that (6.8) must hold, and Theorem 8.2 shows that (6.10) must
also be satisfied. Furthermore, Theorem 7.3 tells us that the conditions just de-
scribed are exactly those characterizing regular subgradients, so Y must be regular.
This proves da(X) = da(X). If Y is a horizon subgradient, the same conditions
hold except that, instead of (6.8), we have (6.9). Thus 8®°a(X) = da(X)™® (see
Corollary 7.5), and subdifferential regularity is proved.

For the converse, suppose that X has an active derogatory eigenvalue p;, so that
¢'9) > 2. Let B; be a real, positive sequence converging to zero, and define

X;=P(J+BE)P! (8.2)

where FE is zero except in the mgj ) diagonal positions corresponding to the Jordan

block Jl(J), where the entries in E are one. The matrix X; has only one active
eigenvalue, namely p; + 8;, with multiplicity m&’ ), and the expression on the right-
hand side of (8.2) is the Jordan form of X; (although the diagonal entries of J+ G;E
may not be lexicographically ordered). Consequently, from Theorem 7.3, the regular

subgradients of a at X; include the matrix
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Since this remains true for all 3; > 0, E is a subgradient of o at X. However,
E is not a regular subgradient of a at X, because it does not satisfy (4.7), (4.8).
(It satisfies the block partitioning requirement, but not the condition that the
diagonal entries be the same across all blocks corresponding to p;.) Therefore, a
is not subdifferentially regular at X. QED

Example. Let X be the Jordan block

X=[8 é]

Theorem 7.3 shows that

éa(X):{ [142 1(/]2] :ReTZO}.

and therefore, by definition,

A 0 0
oo .
Oa(X) —{ [T 0].Re7'20}.
It is instructive to consider a specific sequence

o |&iv-T 1

Xi= [ 0 —eim] =X

where ¢; > 0, ¢, = 0 as i — oco. The matrix X; has distinct eigenvalues, so its
Jordan form is diagonal, and does not converge to J. Both eigenvalues are active

for all €; > 0. It is easily verified, using the Jordan form of X; and Theorem 7.3,
that

da(X;) = { [(a ~ %jﬁ/q . 0 U] . oel, 1]}. (8.3)

Let Y; € da(X;), with o; being the corresponding value of o in (8.3). If Y; —» Y,
then its bottom left entry must converge to a limit: any imaginary limit is possible,

but since ¢; — 0, we must have g; — % Thus, the subgradient Y is regular (an

element of da(X)). On the other hand, if s;¥; — Y, with s; | 0, then the diagonal
entries of Y are both zero (Y is nilpotent), i.e., the horizon subgradient Y is an
element of the recession cone 5a(X )*°. Theorem 8.3 shows that these properties
hold for every sequence X; — X, i.e., a is subdifferentially regular at X.

Theorem 8.3 also demonstrates that f o A may not be subdifferentially regular
at X, even if f is subdifferentially regular at A\(X), as is the case for the convex
function f = max Re. This is in contrast with the Hermitian case discussed in
[Lew99].

We now turn to semisimple eigenvalues, for which the subdifferential properties
of the spectral abscissa are quite different from the nonderogatory case.

Theorem 8.4. Let X have Jordan form (4.1), (4.2) for some P, and suppose that
all active eigenvalues of X are semisimple, so that JU) = wu;il, for all j € A. Then
the set of subgradients of the spectral abscissa at X consists of those matrices Y
satisfying
w@)
PYP*=W = Y ,
w
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each W) being m9) x m'9) | where W@ = 0 if j ¢ A, and the eigenvalues of Y
(equivalently of W ) are all real, nonnegative, and sum to one. Furthermore, the set
of horizon subgradients of o at X consists of the matrices Y satisfying the same
block structure, but such that Y (equivalently W) is nilpotent (all its eigenvalues
are zero).

Proof. That the conditions stated here are necessary for Y to be a subgradient has
already been established in Corollary 8.1; since all active eigenvalues are semisimple,
the nonzero Wr(ﬁ) in (4.4) are all scalars and hence are trivially Toeplitz. We need
to prove that the given conditions are also sufficient. Let Y satisfy these conditions.
The matrix W = P*Y P~* is block diagonal by assumption, and although it may

not be diagonalizable, there exists a sequence W; — W with W; diagonalizable, say
W; =T, * DT},

where T; is block diagonal and D; is diagonal. By scaling and shifting D;, equiva-
lently W;, we may assume that the diagonal entries of D; are real, nonnegative and
sum to one, without changing the limit . Now define

X;=PT;(J + K;)) T 'P~,

where K; is diagonal with distinct diagonal entries, all having the same real part,
and converging to zero. Since the blocks of J are multiples of the identity and 75 is
block diagonal, X; — X if K is chosen to converge to zero sufficiently fast (relative
to [|T:||||7;1]]). Thus, by Theorem 7.3,

Y; = P™*W,P* = P~*T;*D;T} P* (8.4)

is a regular subgradient of a at X;, for all ¢. Since Y; — Y, it follows that Y is a
subgradient of a at X. The proof for the horizon subgradients is almost identical:
now the eigenvalues of W are zero, so D; — 0, but we can assume its entries are
real, nonnegative, and sum to s;, with s; | 0. The left-hand side of (8.4) must then
be multiplied by s;; then Y; is a regular subgradient as before, and since s;Y; = Y,
the latter is a horizon subgradient of a at X. QED

In particular, we have:

Corollary 8.5. Suppose X is the n by n zero matriz. Then the set of subgradients
of the spectral abscissa o at X is the set of all matrices whose eigenvalues are real,
nonnegative and sum to one, and the set of horizon subgradients is the set of all
nilpotent matrices.

Note that nonzero horizon subgradients arise in both the nonderogatory and
semisimple cases, if any active eigenvalue of X has multiplicity greater than one.

9. THE HERMITIAN CASE

Let H™ denote the Euclidean space of n x n Hermitian matrices, i.e. those ma-
trices X satisfying X* = X. It is well known that the eigenvalues of X € H” are
real and that the eigenvalue map A is Lipschitz on H" (see e.g. [Kat84, Theorem
11.6.10]). Variational properties of A on H™ have been extensively studied, espe-
cially in the recent work of Lewis [Lew99]. Indeed, the general results given here
in Sections 2 and 3 are direct extensions of Lewis’ results. In this section we make
some further remarks about how the results given above specialize in the Hermitian
case.
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Let X = X*. Then the Schur form of Section 2 and the Jordan form of Section
4 are the same. More specifically, the following is true:
o the eigenvalues pj, j = 1,...,p, are real and semisimple, i.e. all mg) equal
one
e any unitary matrix U transforming X to Schur form R also transforms X to
Jordan form J; we may therefore assume without loss of generality that P in
(4.1) is unitary
e the Schur form R and the Jordan form J are the same, namely the diagonal
matrix Diag(A(X))
Furthermore, since all eigenvalues are real, the spectral abscissa of X is the maxi-
mum eigenvalue p1, and hence the active set A defined in (7.2) is {1}; i.e., only u
is active.
Let

w:H"> R

be the maximum eigenvalue function on H™. It is well known that w is convex. Let
us define a set ), depending on another set W, by

w
y(W)={Y : P*YP= ,
wp)

wWew, WW=0forj=2,... ,p}. (9.1)

where, as earlier, each W) is m{) x mU). Then, as is well known, e.g. [Lew96a],
we have for all X € H”,

d(X) = dw(X) = VW), 9°w(X) = {0}, (9.2)

where W is the set of m( x m(!) positive semidefinite Hermitian matrices with
trace one.

It is instructive to investigate whether (9.2) can be recovered from our charac-
terization of the subgradients of the spectral abscissa a defined on M"™. Let H, be
the subspace of M" consisting of all Hermitian matrices, and let «+ : H® — M" be
the canonical embedding of H” into M", so that

J(H™) = H,.

It is straightforward to show that the adjoint of ¢ is the linear operator which maps
a matrix to its Hermitian part, i.e.

7= % (Z+2%), forZeM" 9.3)
Since
w=aor: H" - R, (9.4)
we have
dw(X) = dw(X) = d(a 0 1)(X) = B(a 0 1)(X) (9.5)

for all X € H™.
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Now let X € M™ satisfy X = X*. Since all eigenvalues of X are semisimple,
Theorem 8.4 shows that

da(X) =Y (W) (9.6)

where W is the set of all (not necessarily Hermitian) m(") x m(") matrices whose
eigenvalues are real, nonnegative, and sum to one. However, from Theorem 7.3,
only one subgradient in da(X) is regular, namely, when W) is a multiple of the

identity. Thus
A 1

We now apply the basic chain rule of [RW98, Theorem 10.6] to the composition
ao¢. Since X is Hermitian, we obtain

(a0 1)(X) D 1*da(X) (9.8)
and
O(ao)(X) C1*0a(X). (9.9)

Comparing (9.2) with (9.7) and using (9.5) shows that, in fact, the inclusion (9.8)
is strict. On the other hand, comparison of (9.2) and (9.6) shows that the sets
on the left and right-hand side of (9.9) are the same (using (9.3)). Because a is
not regular at X (unless m(!) = 1), this equality condition could not be concluded
from the chain rule. This suggests that a version of the chain rule with weaker
hypotheses could be useful in this context. Similar remarks hold for the chain rule
for the set of horizon subgradients.

10. SEMISTABLE PROGRAMMING

We conclude by giving an example of an important class of optimization problems
that can be treated by our analysis. Consider the problem:

i (C, X) (10.1)
subject to (Ag,X)=bg, k=1,...,m
and a(—X) <0, (10.2)

where C € M", A, e M", k=1,...,m, and b € R™. We call this a semistable
program. The second constraint imposes the condition that the spectral abscissa
of —X is nonpositive, or in other words that all eigenvalues of X lie in the right-
half plane or on the imaginary axis. We call such matrices semistable. Semistable
programs have many potential applications in stability and control theory. The
choice of the right-half plane instead of the left-half plane is purely for notational
reasons; in applications, stability is usually associated with the left-half plane. If
the domain of the semistable program is restricted to the Hermitian matrices, the
problem reduces to a semidefinite program.

Semistable programs are, of course, not convex, and it is known that finding the
global minimum is NP-hard [BT97, Nem93]. However, local optimality conditions
may be addressed by means of the analysis developed in this paper. Here, we give
a first-order necessary condition for local optimality. Other optimality conditions
may also be derived but we leave these for future work.
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Theorem 10.1. (First-order necessary conditions, Fritz John type) If a matriz X
is a local minimizer of (10.1)—(10.2), then there exists a scalar n € Ry, a matriz
Y € M™ and a vector y € R™, not all zero, satisfying

nC =Y+ ypAg, and (10.3)
k=1
Y € pos da(—X) Ud®a(-X), (10.4)

where, for a nonempty Q C M",

posQ={tZ: Ze€Q, teRy}.
Proof. The semistable program (10.1)—(10.2) is equivalent to the problem

win (C, X) + 7(F(X))
where
F(X)=[(A1,X) = b1,...,{An, X) —b,])" € R™,

7 is the indicator function defined by, for x € R™,

7(0) =0, 7(x) =00 if x #0,
and

X={X: o-X)<0}

Applying the composite Lagrange multiplier rule [RW98, Example 10.8 together
with Proposition 10.3] gives the result. QED

The matrix Y is called the dual matriz. We leave for future work consideration
of the appropriate constraint qualification that would guarantee n > 0, allowing
the elimination of 1 and therefore the upgrading of the Fritz John condition to one
of Karush-Kuhn-Tucker type.

Notice that since 0 € 0°a(—X) for all X, it is not necessary to exclude the
case that all eigenvalues of X have strictly positive real part. Such a matrix X is a
local minimizer in the trivial case that C lies in the range of the Ay, k=1,... ,m.
However, this case is of little interest, since the spectral abscissa constraint is not
active. Accordingly, let us change the definition of active set to one suitable for
semistable programming, using

A= {j:Re pu; =0} (10.5)
With the understanding that this definition replaces (7.2), we then have:

Theorem 10.2. (First-order necessary conditions, Fritz John type, details) Sup-
pose that a matriz X is a local minimizer of (10.1)—(10.2), with X having Jordan
form (4.1), (4.2). Then there exists a scalar n € Ry, a matrix Y € M™ and a
vector y € R™, not all zero, satisfying (10.3), the Toeplitz block condition (4.4),
and the active set condition (6.4). Furthermore, the eigenvalues of Y (equivalently
of W) are real and nonnegative.

Proof. This is a consequence of Theorem 10.1 and Corollary 8.1. Notice that
the trace condition on the sum of the eigenvalues no longer appears as a necessary
condition; the positive multiplier implicit in the “pos” operator has been absorbed
into Y. QED

We now generalize the notion of complementarity, familiar from semidefinite
programming, to semistable programming.
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Theorem 10.3. (Complementarity) Suppose that a matriz X is a local minimizer
of (10.1)~(10.2), and Y is a dual matriz whose existence is guaranteed by Theorem
10.2. Then the eigenvalues of X are in the right-half plane, the eigenvalues of Y
are on the nonnegative real axis, and the eigenvalues of XY™ are on the imaginary
axis. More specifically, there exist U unitary and P nonsingular such that

" 5 |Ri1 R * o |Su 0
UXU_R_[O R22], UYU_S_[S21 0] (10.6)
and
e [0 U |
P XP_J_[O JQ], P*YP _W_[O 0] (10.7)

with RS* = S*R and JW* = W*J, where R11 and Rs2 are upper triangular, S11
is lower triangular, and J consists of Jordan blocks, with the eigenvalues of Ry
(and of J1) on the imaginary azis, the eigenvalues of Raa (and of Ja) strictly in
the right-half plane, and the eigenvalues of S11 (and of W1 ) on the nonnegative real
azis.

Proof. The block partitioning corresponds to the active set partitioning, with the
eigenvalues of Ry; (and Jy) being the active eigenvalues. The proof of (10.6) and
(10.7) follows from Corollary 2.2 and Theorem 10.2. The second diagonal block of
S vanishes because of Lemma 2.4 and Corollary 4.2: (4.6) implies (2.6), identifying
S77 with the second diagonal block of S and $77 with the second diagonal block of
W, which is zero (by Theorem 10.2).

The eigenvalues of JW* and of XY™ are the same as those of RS*, namely, its
diagonal entries, since RS™ is upper triangular. These eigenvalues are the pairwise
products (diag(R)),diag(S))e, £ =1,... ,n. Thus we get imaginary eigenvalues for
the first diagonal block (real times imaginary) and, more specifically, zero eigenval-
ues for the second diagonal block (complex times zero). QED

If X and Y are both Hermitian positive semidefinite, the statement that XY has
imaginary eigenvalues is equivalent to the statement XY = 0. More specifically,
both (10.6) and (10.7) reduce to

0 0 Q2 0
0 A 0 0
with U unitary and As and Q; both diagonal, real, and nonnegative (in fact A

strictly positive). Thus, Theorem 10.3 generalizes the well known notion of com-
plementarity in semidefinite programming.

U*XU:A:[ ] U*YU:Q:[
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APPENDIX A. PROOF OF LEMMA 1.1

We restate the definition of the subderivative and the statement of Lemma 1.1
with a slight change of notation.
Let ¢ : E = [—00,4+00], with ¢(Z) finite. The subderivative of ¢ at # in the
direction w is
d6(5) () = liminf 2EFTY) = ¢(@)

710 T
w—W
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Lemma A.1. Let ¢ : E — [—o0, +00], with ¢(Z) finite, and let © € E with @ # 0.
Set

v : [0,0] = E is continuous for some § > 0,

[(z,%) =< v with v(0) = & and v/ (0) = @ ,
where
iy g V(&) = 7(0)
74(0) = lim —————.
Then

dp(z)(w) = _inf _ d(¢ o) 0)([|@]]),

Y€ (7,1)
where the infimum is attained.

Proof. Clearly the left-hand quantity is less than or equal to the right-hand quan-
tity, so we need only establish the reverse inequality. In order to do so, we con-
struct a curve v € I'(%, @) for which d(¢ o v)(0)(||@]]) < do(%)(w). Let (1, w"),
k=1,2,..., be a sequence that attains the “lim inf” in the definition of d¢(z)(w).
Without loss of generality, assume that ||@|| = 1, ||w®|| = 1, and the 7, converge to

zero superlinearly. Set zj, = 7 + 1wk, for k =1,2,..., so that 7, = ||zF — Z||. Let
sk = 2% — ¢+ and o = ||s*||. We have
k ~
ok -7 P
i BN (A1)
llz* — &l

Since the convergence is superlinear we have

LN (A.2)
Tk
o0
6= ZU,’ < 00,
i=1
lim Z& = 1, and (A.3)
k—o0 Tg
0o T
li £ =0. .
dm 2 (a4)
i=k+1

Define vy : [0,8] — E as the piecewise linear trajectory connecting the points z* in
succession, with v(0) = & and v(d) = x4, i.e.
t—t
y(t) = z* + U—ksk, t € [ty tha]
k

where -
th=> 01, k=12,....
i=k
We now show that !, (0) = @. For t € [ty, tg41],

’Y(t) -z ~ sk - 1 . tr
| —— =@l < [|== — @[ + —[la* — & — =5"]. (A.5)
t Ok tht1 Ok

Observe that



VARIATIONAL ANALYSIS OF SPECTRAL FUNCTIONS 31

using (A.1), (A.2), and (A.3), since

sk
Tk Te+1 Tk gt
= Sk — T E gkt

Ulc Ok Tk Ok
It remains to show that the second term on the right-hand side of (A.5) converges
to zero. Noting that t — tx+1 = oy, it is easily shown that

1 sk T, sk
— (mk -5 - tk—> = Bkt 2 (A7)
tht1 o te+1 Ok
Also,
t o = 0
L > 2o,
T Tk S TE
by (A.3), since
oo
Titl T T + 7
> s > LR
=kl TR itk

by (A.4). Therefore, using (A.1) and (A.6) we see that both terms on the right-
hand side of (A.7) converge to w. This shows that both terms on the right-hand
side of (A.5) converge to zero, yielding v/, (0) = w. Hence

d6(3) (@) = lim 2 =@

Koo [k — 7|

> liminf

o ||ly(t ) — | t
d((t) — #(z)
Rt w+ o1
=d(¢07)(0)(1),
completing the proof. QED

APPENDIX B. THE SCHUR FACTORIZATION

The two lemmas presented here are variations on standard results for the Schur
factorization [HJ85, Section 2.3].
The first result is surely known, but we were unable to find it in the literature.

Lemma B.1. Suppose A € M"™ and B € M" commute, i.e. AB = BA. Then
there exists a unitary matric U € M™ such that both U*AU and U*BU are up-
per triangular and the eigenvalues of A appear on the diagonal of U*AU in any
prescribed order.

Proof. We begin by showing that every eigenvalue of A has an associated eigen-
vector that is also an eigenvector for B. Let p be an eigenvalue of A and set
&, = Null (uI — A). For any v € £,, we have

ABv = BAv = uBv

so that Bv € £,. Therefore, £, is a B-invariant subspace. Consequently, by [HJ85,
p. 51], there is an eigenvector of B in &,.

This fact can now be used in conjunction with the proofs of Theorems 2.3.1 and
2.3.3 in [HJ85] to establish the result. QED
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The second result concerns the continuity of the Schur factorization of a pertur-
bation of a Jordan block.

Lemma B.2. Let J € M™ be a Jordan block, i.e., a single block of the form J,gj)
in (4.2). Then there exists g > 0 such that, if ||E|| = § < dg, there exists a unitary
matriz U with U*(J + E)U upper triangular and ||U — I|| = O(6*/™).

Proof. Without loss of generality, we may assume the diagonal entries of J are
zero. The proof is by induction, and is based on the standard proof of existence
of the Schur form [HJ85, Theorem 2.3.1]. There is nothing to prove when n = 1.
Suppose the lemma is true for n = k — 1; we sketch an argument that it must
then be true for n = k. The first step is to observe that any eigenvalue u of the k
by k matrix J + E must satisfy u = O(6'/*%) [Kat84, Section I1.1.2]. Let u be an
eigenvector corresponding to an eigenvalue y, with u = [ v*]*, where n € C and

v € C*=1. We have
1 m =(J+E) m = [8] +E m : (B.1)

If » = 0, we may normalize v so that [|v|| = 1, but then (B.1) contradicts the
fact that p = O(6'/*) (for § sufficiently small). Therefore, we may choose n = 1.
Defining E to be the kK — 1 by k — 1 matrix obtained by dropping the first column

and the last row from E, and setting F' = 0 0], where the identity block has

ul 0
order k — 1, we find, dropping the last equation from (B.1), that

(I+E~F)v=0(u)+0(3), with |E||+[|F|| = O(n) + O(8).

Since u = O(6'/*), the standard Banach lemma tells us that ||v|| = O(6'/*). Ap-
plying the Gram-Schmidt orthogonalization process to the k vectors u,es,... ey,
where u = [1 v*]* and e; is the jth column of the k by k identity matrix, results in
a unitary matrix Uy with ||Uy — I|| = O(6*/*) and

U (J + E)U; = [’g ‘1;(]

where K is an O(8'/*) perturbation of a k— 1 by k — 1 Jordan block. Applying the
inductive hypothesis, we obtain
USKUy =T
where T is upper triangular and
||U2 _ I” — O(él/k)l/(kfl)! — 0(61/’“’).

The desired unitary matrix which triangularizes J + E is therefore

1 0
U= [0 UQ]

which satisfies
|U =1l = O(|Uy = I|| + [|Us — I||) = O(6"/*").
QED

Numerical experiments suggest that it may be possible to improve the modulus
of continuity to |U — I|| = O(6Y/™).



[Arn71]

[BO92a]

[BO92b]

[BOY4]

[BO99]
[BT97]
[Cla73)
[HI85)
[HI91]
[Tof81]
[Kat84]

[Lax97]
[Lew96a]

[Lew96b]
[Lew99)
[LT85]

[MBO97]

[Mor76]

[Nem93]

[OW88]

[RW98]

VARIATIONAL ANALYSIS OF SPECTRAL FUNCTIONS 33

REFERENCES

V.I. Arnold. On matrices depending on parameters. Russian Mathematical Surveys,
26:29-43, 1971.

J.V. Burke and M.L. Overton. On the subdifferentiability of functions of a matrix spec-
trum I: Mathematical foundations; II: Subdifferential formulas. In F. Giannessi, editor,
Nonsmooth Optimization : Methods and Applications, pages 11-29, Philadelphia, 1992.
Gordon and Breach. Proceedings of a conference held in Erice, Italy, June 1991.

J.V. Burke and M.L. Overton. Stable perturbations of nonsymmetric matrices. Linear
Algebra and its Applications, 171:249-273, 1992.

J.V. Burke and M.L. Overton. Differential properties of the spectral abscissa and the
spectral radius for analytic matrix—valued mappings. Nonlinear Analysis, Theory, Meth-
ods and Applications, 23:467-488, 1994.

J.V. Burke and M.L. Overton. The subderivative of the abscissa mapping for polyno-
mials, 1999. In preparation.

V. Blondel and J.N. Tsitsiklis. NP-Hardness of some linear control design problems.
SIAM Journal on Control and Optimization, 35:2118-2127, 1997.

F.H. Clarke. Necessary conditions for nonsmooth problems in optimal control and the
calculus of variations. PhD thesis, University of Washington, 1973.

R.A. Horn and C.R. Johnson. Matriz Analysis. Cambridge University Press, Cambridge,
U.K., 1985.

R.A. Horn and C.R. Johnson. Topics in Matriz Analysis. Cambridge University Press,
Cambridge, U.K., 1991.

A.D. IToffe. Sous-différentielles approchées de fonctions numériques. Comptes Rendus de
I’Académie des Sciences de Paris, 292:675-678, 1981.

T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, New York, second
edition, 1984.

P. D. Lax. Linear Algebra. John Wiley, New York, 1997.

A.S. Lewis. Convex analysis on the Hermitian matrices. SIAM Journal on Optimization,
6:164-177, 1996.

A.S. Lewis. Derivatives of spectral functions. Mathematics of Operations Research,
21:576-588, 1996.

A.S. Lewis. Nonsmooth analysis of eigenvalues. Mathematical Programming, 84:1-24,
1999.

P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, New York
and London, 1985.

J. Moro, J.V. Burke, and M.L. Overton. On the Lidskii-Vishik-Lyusternik perturbation
theory for eigenvalues of matrices with arbitrary Jordan structure. SIAM Journal on
Matriz Analysis and Applications, 18:793-817, 1997.

B.S. Mordukhovich. Maximum principle in the problem of time optimal response with
nonsmooth constraints. Journal of Applied Mathematics and Mechanics, 40:960-969,
1976.

A. Nemirovskii. Several NP-hard problems arising in robust stability analysis. Math.
Control Signals Systems, 6:99-105, 1993.

M.L. Overton and R.S. Womersley. On minimizing the spectral radius of a nonsymmetric
matrix function — optimality conditions and duality theory. SIAM Journal on Matriz
Analysis and Applications, 9:473-498, 1988.

R.T. Rockafellar and R.J.B. Wets. Variational Analysis. Springer-Verlag, 1998.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WA 98195
E-mail address: burke@math.washington.edu

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NY

10012

E-mail address: overton@cs.nyu.edu



