
Fast Algorithms for

Discovering the Maximum Frequent Set

by

Dao-I Lin

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 1998

Approved:

Zvi M. Kedem

c Dao-I Lin

All Rights Reserved, 1998

To my daughter, Shang Lin

iv

Acknowledgements

I am most grateful to my advisor, Professor Zvi M. Kedem, for guiding me through

the doctoral studies. He has been very considerate with a sometimes very frustrated

student. His continued support and deep involvement have been invaluable during

the preparation of this thesis.

I would like to specially thank Sridhar Ramaswamy for his encouragement and

very valuable comments and suggestions. Especially, he suggested a very intuitively

appealing name for the algorithm forming the core of the thesis: \Pincer-Search."

Many in-depth discussions with him have been of great help in my research.

I would like to thank Dennis Shasha for showing me some important papers in

this area. I would like to thank Thomas Anantharaman for being on my thesis

committee.

I would like to thank Rakesh Agrawal, Ramakrishnan Srikant, and Roberto J.

Bayardo for kindly providing me with experimental data.

I would like to thank my parents, Chin-Yung Lin and Yeh San-May Lin, for

v

their unconditional support over the years. I would like to thank my father-in-law,

Bor-Jen Wu, and my mother-in-law, Wen-Hao Lian, for taking good care of my

daughter during the time I studied. Finally, I thank my wife, Ling-Hsiang Wu, for

encouraging me to pursue my goal of getting a doctoral degree.

This research was partially supported by the National Science Foundation under

grant number CCR-94-11590.

vi

Contents

Dedication iv

Acknowledgements v

List of Figures x

1 Introduction 1

2 Association Rule Mining 6

2.1 The Setting of the Problem . 6

2.2 The Maximum Frequent Set . 9

2.3 A Common Scheme for Discovering the Frequent Set 10

2.4 Typical Algorithms for Frequent Set Discovery 16

2.4.1 AIS and SETM Algorithms 16

2.4.2 Apriori and OCD Algorithms 18

2.4.3 DHP and Partition Algorithm 21

vii

2.4.4 Sampling Algorithm . 24

2.4.5 A-Random-MFS, DIC, Eclat, MaxEclat, TopDown, Clique,

and MaxClique Algorithms 26

2.5 Other Related Work . 30

3 Fast Algorithms for Discovering the Maximum Frequent Set 32

3.1 Our Approach to Reducing the Number of Candidates and the Num-

ber of Passes . 32

3.2 Two-Way Search by Using the MFCS 36

3.3 Updating the MFCS E�ciently . 39

3.4 New Candidate Generation Algorithms 42

3.4.1 New Preliminary Candidate Set Generation Procedure . . . 43

3.4.2 New Prune Procedure . 44

3.4.3 Correctness of the New Candidate Generation Algorithm . . 45

3.5 The Pure Pincer-Search Algorithm 47

3.6 The Adaptive Pincer-Search Algorithm 49

3.6.1 Delay the Use of the MFCS 49

3.6.2 Relaxing the MFCS . 50

3.7 Counting the Supports of All Frequent Itemsets E�ciently 52

4 Performance Evaluation 54

viii

4.1 Preliminary Discussion . 55

4.1.1 Auxiliary Data Structures Used 55

4.1.2 Scattered and Concentrated Distributions 56

4.1.3 Non-Monotone Property of the Maximum Frequent Set . . . 57

4.2 Experiments . 58

4.2.1 Scattered Distributions . 58

4.2.2 Concentrated Distributions 59

4.2.3 Using a Hash-Tree . 67

4.2.4 Census Databases . 74

4.2.5 Stock Market Databases . 76

5 Concluding Remarks 86

5.1 Summary . 86

5.2 Future Work . 87

Bibliography 89

ix

List of Figures

2.1 An Example Database . 7

2.2 Two Closure Properties . 12

2.3 One-Way Searches . 14

2.4 Apriori Algorithm . 19

2.5 Apriori-gen Algorithm . 19

2.6 Join Procedure . 20

2.7 Prune Procedure . 20

3.1 Two-Way Search . 34

3.2 The Search Space of Pincer-Search 39

3.3 MFCS-gen Algorithm . 40

3.4 Pincer-Search . 41

3.5 Recovery Algorithm . 44

3.6 New Prune Algorithm . 45

3.7 New Candidate Generation Algorithm 45

x

3.8 The Pincer-Search algorithm . 48

3.9 Complete Hash-Tree for Final Support Counting 53

4.1 Scattered Distribution T5.I2.D100K 60

4.2 Scattered Distribution T10.I4.D100K 61

4.3 Scattered Distribution T20.I6.D100K 62

4.4 Concentrated Distribution T20.I6.D100K 64

4.5 Concentrated Distribution T20.I10.D100K 65

4.6 Concentrated Distribution T20.I15.D100K 66

4.7 Scattered Distribution T5.I2.D100K (Using a Hash-Tree) 68

4.8 Scattered Distribution T10.I4.D100K (Using a Hash-Tree) 69

4.9 Scattered Distribution T20.I6.D100K (Using a Hash-Tree) 70

4.10 Concentrated Distribution T20.I6.D100K (Using a Hash-Tree) . . . 71

4.11 Concentrated Distribution T20.I10.D100K (Using a Hash-Tree) . . 72

4.12 Concentrated Distribution T20.I15.D100K (Using a Hash-Tree) . . 73

4.13 Census Database . 75

4.14 NYSE Databases June 3, 1997 (60-minute's interval) 80

4.15 NYSE Databases June 20, 1997 (60-minute's interval) 81

4.16 NYSE Databases June 23, 1997 (60-minute's interval) 82

4.17 NYSE Databases June 3, 1997 (30-minute's interval) 83

4.18 NYSE Databases June 20, 1997 (30-minute's interval) 84

xi

4.19 NYSE Databases June 23, 1997 (30-minute's interval) 85

xii

Chapter 1

Introduction

Knowledge discovery in databases (KDD) has received increasing attention and

has been recognized as a promising new �eld of database research. It is de�ned

by Fayyad et al. [FPSU96] as \the non-trivial process of identifying valid, novel,

potentially useful, and ultimately understandable patterns in data". The key step

in the knowledge discovery process is the data mining step, which is \consisting of

applying data analysis and discovery algorithms that, under acceptable computa-

tional e�ciency limitations, produce a particular enumeration of patterns over the

data" [FPSU96]. This thesis addresses an important pattern discovery algorithm,

which can be applied to many data mining applications.

A key component of many data mining problems is formulated as follows. Given

a large database of sets of items (representing market basket data, alarm signals,

1

etc.), discover all frequent itemsets (sets of items), where a frequent itemset is

one that occurs in at least a user-de�ned percentage (minimum support) of the

database. Depending on the semantics attached to the input database, the frequent

itemsets, and the term \occurs," we get the key components of di�erent data

mining problems such as the discovery of association rules (e.g., [AS94] [HF95]

[MTV94]), theories (e.g., [GMS97]), strong rule (e.g., [P91]), episodes (e.g., [MT95]

[MT96c]), and minimal keys (e.g., [GMS97]).

Typical algorithms for �nding the frequent set, i.e., the set of all frequent item-

sets, operate in a bottom-up breadth-�rst fashion (e.g., [AIS93a]) [AS94] [AS96]

[BMUT97] [HF95] [MT97] [MTV94] [ORS98] [PCY95] [SON95]). The computation

starts from frequent 1-itemsets (minimal length frequent itemsets at the bottom)

and then extends one level up in every pass until all maximal (length) frequent

itemsets are discovered. All frequent itemsets are explicitly examined and discov-

ered by these algorithms. When all maximal frequent itemsets are short, these

algorithms perform reasonably well. However, performance drastically decreases

when any of the maximal frequent itemsets becomes longer, because a maximal

frequent itemset of size l implies the presence of 2l�2 non-trivial frequent itemsets

(its nontrivial subsets) as well, each of which is explicitly examined by such algo-

rithms. In data mining applications where items are correlated, maximum frequent

itemsets could be long [BMUT97].

2

Therefore, instead of examining and \assembling" all the frequent itemsets, an

alternative approach might be to \shortcut" the process and attempt to search

for maximal frequent itemsets \more directly," as they immediately specify all

frequent itemsets. Furthermore, it su�ces to know only the maximal frequent

set in many data mining applications, such as the minimal key discovery and the

theory extraction.

Finding the maximum frequent set (or MFS), the set of all maximal frequent

itemsets, is essentially a search problem in a hypothesis search space (a lattice of

subsets). The search for the maximum frequent set can proceed from the 1-itemsets

to n-itemsets (bottom-up) or from the n-itemsets to 1-itemsets (top-down).

We present a novel Pincer-Search algorithm, which searches for the MFS from

both bottom-up and top-down directions. It performs well even when the maximal

frequent itemsets are long.

The bottom-up search is similar to Apriori [AS94] and OCD [MTV94] algo-

rithms. However, the top-down search is novel. It is implemented e�ciently by

introducing an auxiliary data structure, the maximum frequent candidate set (or

MFCS), as explained later. By incorporating the computation of the MFCS in

our algorithm, we are able to e�ciently approach the MFS from both top-down

and bottom-up directions. Unlike the bottom-up search that goes up one level in

each pass, the MFCS can help the computation \move down" many levels in the

3

top-down direction in one pass.

In this thesis, we apply the MFCS concept to the association rule mining. In

fact, the MFCS concept can be applied in solving other data mining problems as

long as the problem has the closure properties to be discussed later. The monotone

specialization relation discussed in [MT97] and [M82] was addressing the same

properties.

Popular benchmark databases designed by Agrawal and Srikant [AS94] have

been used in [AS96], [ORS98], [PCY95], [SON95], and [ZPOL97]. We use these

same benchmarks to evaluate the performance of our algorithm. In most cases, our

algorithm not only reduces the number of passes of reading the database but also

reduces the number of candidates (for whom support is counted). In such cases,

both I/O time and CPU time are reduced by eliminating the candidates that are

subsets of maximal frequent itemsets found in the MFCS.

The organization of the rest of the thesis is as follows. The procedures for

mining association rules, the cost of the processes, and the properties that can be

used to reduce the cost will be discussed in Chapter 2. In this chapter, we will

also discuss the traditional one-way search algorithms. Chapter 3 will discuss the

concept of our two-way search algorithm, called Pincer-Search, and the implemen-

tation of this algorithm. Two technical issues and the techniques to address them

will be discussed. Chapter 4 presents the results of our experiments on synthetic

4

and real-life census and stock market databases. Chapter 5 concludes this thesis.

5

Chapter 2

Association Rule Mining

2.1 The Setting of the Problem

This section briey introduces the association rule mining problem. To the extent

feasible, we follow the terminology of [AIS93a].

Let I = fi1; i2; : : : ; img be a set of m distinct items. The itemsets could repre-

sent di�erent items in a supermarket or di�erent alarm signals in telecommunica-

tion networks [HKMRT96]. A transaction T is a set of items in I. A transaction

could represent some customer purchases of some items from a supermarket or

the set of alarm signals occurring within a time interval. A database D is just a

set of transactions. A set of items is called an itemset. Note that the items in

an itemset are assumed to be stored in some domain dependent total order. For

instance, if an item is represented as a number, then the items are stored in a

6

Figure 2.1: An Example Database

numerical order. If an item is represented as a string, then the items are stored in

a lexicograpgical order. The number of items in an itemset is called the length of

an itemset. Itemsets of some length k are referred to as k-itemsets.

A transaction T is said to support an itemset X � I i� it contains all items of

X, i.e., X � T . The fraction of the transactions in D that support X is called the

support of X, denoted as support(X). There is a user-de�ned minimum support

threshold, which is a fraction, i.e., a number in [0,1]. An itemset is frequent i� its

support is above the minimum support. Otherwise, it is infrequent.

Example See Fig. 2.1. There are �ve distinct items, 1 through 5, in the database.

There are four transactions. If the minimum support is set to 0.5, then the frequent

7

itemsets are f1g, f2g, f3g, f4g, f1,2g, f1,3g, f1,4g, f2,3g, f2,4g, f3,4g, f1,2,3g,

f1,2,4g, f1,3,4g, f2,3,4g, and f1,2,3,4g, since they occur in at least half of the

database (half of the transactions). For instance, itemset f1,2g is frequent, since

three out of the four transactions (transaction 1, 3, and 4) contain items 1 and 2

(i.e., the support of f1,2g is 0.75). On the other hand, itemset f2,5g is infrequent,

since only one out of the four transactions contains items 2 and 5 (i.e., the support

of f2,5g is 0.25). 2

An association rule has the form R : X ! Y , where X and Y are two

non-empty and non-intersecting itemsets. The support for rule R is de�ned as

support(X [Y). A con�dence factor (represented by percentage), de�ned as

support(X [Y)=support(X) (assume support(X) > 0), is used to evaluate the

strength of such association rules. The semantics of the con�dence of a rule in-

dicates how often it can be expected to apply, while its support indicates how

trustworthy this rule is.

For example, if the minimum con�dence is set to 100%, then the association rule

f1,4g ! f2,3g holds. But the f1,2g ! f3,4g does not hold because its con�dence

is 67%.

The goal of association rule mining is to discover all rules that have support

and con�dence greater than some user-de�ned minimum support and minimum

con�dence thresholds, respectively.

8

The normally followed scheme for mining association rules consists of two stages

[AS94]:

1. the discovery of frequent itemsets, followed by

2. the generation of association rules.

Example Consider the database as in Fig. 2.1. Suppose the minimum support is

set to 75% and the minimum con�dence is set to 100%. The �rst step discovers

the frequent set, which is ff1g, f2g, f3g, f1,2g, f1,3gg. The second step generates

the association rules. In this example, two association rules will be generated:

f2g ! f1g and f3g ! f1g. 2

Because the association rule generation step is rather straightforward and also

because the frequent itemsets discovery step is the most time consuming process,

we explicitly focus the thesis on the discovery of frequent itemsets.

2.2 The Maximum Frequent Set

Among all the frequent itemsets, some will satisfy the property that they have no

proper superset that are themselves frequent. Such itemsets are maximal frequent

itemsets. In other words, an itemset is a maximal frequent itemset if and only if

it is frequent and no proper superset of it is frequent. Obviously, an itemset is

9

frequent if and only if it is a subset of a maximal frequent itemset. The maximum

frequent set (or MFS) is the set of all the maximal frequent itemsets.

Example See Fig. 2.1. When the minimum support is set to 50%, within all

the frequent itemsets, the itemset f1,2,3,4g is a maximal frequent itemset, since

it is frequent and no proper superset of it is frequent. Therefore, the MFS is

ff1,2,3,4gg. In general, there will be more than one maximal frequent itemset in

the MFS. 2

Since an itemset is frequent if and only if it is a subset of a maximal frequent

itemset, one can discover the MFS �rst and then generate the subsets of the MFS

and count their supports by reading the database once. A complete hash-tree, to

be discussed in Section 3.7, can be built for this purpose, and then the supports

can easily be counted by reading the database once.

Therefore, the problem of discovering the frequent set can be transformed into

the problem of discovering the maximum frequent set. The maximum frequent set

forms a border between frequent and infrequent sets. Once the maximum frequent

set is known, the frequent and infrequent sets are known.

2.3 A Common Scheme for Discovering the Frequent Set

A typical frequent set discovery process follows a standard scheme. Throughout

the execution, the set of all itemsets is partitioned, perhaps implicitly, into three

10

sets:

1. frequent: This is the set of those itemsets that have been discovered so far as

frequent

2. infrequent: This is the set of those itemsets that have been discovered so far

as infrequent

3. unclassi�ed: This is the set of all the other itemsets.

Initially, the frequent and the infrequent sets are empty. Throughout the exe-

cution, the frequent set and the infrequent set grow monotonically at the expense

of the unclassi�ed set. The execution terminates when the unclassi�ed set becomes

empty, i.e., when every itemset is either in the frequent set or in the infrequent

set. In other words, the execution terminates when all maximal frequent itemsets

are discovered.

Consider any process for classifying itemsets and some point in the execution

where some itemsets have been classi�ed as frequent, some as infrequent, and some

are still unclassi�ed. Two closure properties can be used to immediately classify

some of the unclassi�ed itemsets:

Property 1: If an itemset is infrequent, all it supersets must be infrequent, and

they do not need to be examined further

11

Figure 2.2: Two Closure Properties

Property 2: If an itemset is frequent, all its subsets must be frequent, and they

do not need to be examined further

Example Consider the database as in Fig. 2.1 and see Fig. 2.2. The itemset f5g

is infrequent and therefore itemset f2,5g must be infrequent, as the support of

f2,5g must be equal or less than the support of f5g. In other words, there will be

an equal number or fewer transactions containing both items 2 and 5 than those

containing item 5. Conversely, if itemset f1,2,3,4g is frequent, then itemset f1,2,3g

must be frequent, as there will be an equal number or more transactions containing

items 1, 2, and 3 than those containing items 1, 2, 3, and 4. 2

12

In general, it is possible to search for the maximal frequent itemsets either

bottom-up or top-down. If all maximal frequent itemsets are expected to be short

(close to 1 in size), it seems e�cient to search for them bottom-up. If all maximal

frequent itemsets are expected to be long (close to n in size) it seems e�cient to

search for them top-down.

We �rst sketch a realization of the most commonly used approach of discovering

the MFS. This is a bottom-up approach. It consists of repeatedly applying a pass,

itself consisting of two steps. At the end of pass k all frequent itemsets of size k

or less have been discovered.

As the �rst step of pass k + 1, itemsets of size k + 1 each having two frequent

k-subsets with the same �rst k�1 items are generated. Some of these itemsets are

pruned, as they do not need to be processed further. Speci�cally, itemsets that are

supersets of infrequent itemsets are pruned (and discarded), as of course they are

infrequent (by Property 1). The remaining itemsets form the set of the candidates

for this pass.

As the second step, the support for these itemsets is computed and they are

classi�ed as either frequent or infrequent. The support of a candidate is computed

by reading the database.

Example Fig. 2.3 shows an example of this bottom-up approach. Consider the

same database as in Fig. 2.1. All �ve 1-itemsets (f1g, f2g, f3g, f4g, f5g) are

13

Figure 2.3: One-Way Searches

candidates in the �rst pass. After the support counting phase, the 1-itemset f5g is

determined to be infrequent. By Property 1, all the supersets of f5g need not be

considered. So the candidates for the second pass are f1,2g, f1,3g, f1,4g, f2,3g,

f2,4g, f3,4g. The same procedure repeats until all the maximum frequent itemsets

(in this example, only one: f1,2,3,4g) are obtained. 2

In this bottom-up approach, every frequent itemset must have been a candi-

date at some pass and is therefore explicitly considered. As we can see from this

example, every frequent itemset (subsets of f1,2,3,4g) need to be visited before the

14

maximal frequent itemsets are reached. Therefore, this approach is e�cient only

when all maximal frequent itemsets are short.

When some maximum frequent itemsets happen to be long, this method will

be ine�cient. In this case, it might be more e�cient to search for those long

maximum frequent itemsets using a top-down approach.

A top-down approach starts with the single n-itemset and decreases the size

of the candidates by one in every pass. When a k-itemset is determined to be

infrequent, all of its (k � 1)-subsets will be examined in the next pass. On the

other hand, if a k-itemset is frequent, then all of its subsets must be frequent and

need not be examined (by Property 2).

Example See Fig. 2.3 and consider the same database as in Fig. 2.1. The 5-itemset

f1,2,3,4,5g is the only candidate in the �rst pass. After the support counting phase,

it is infrequent. The candidates for the second pass are all the 4-subsets of itemset

f1,2,3,4,5g. In this example, itemset f1,2,3,4g is frequent and all the others are

infrequent. By Property 2, all subsets of f1,2,3,4g are frequent and need not be

examined. The same procedure repeats until all maximal frequent itemsets are

obtained (i.e., after all infrequent itemsets are visited). 2

In this top-down approach, every infrequent itemset is explicitly examined. As

shown in Fig. 2.3, every infrequent itemset (itemset f5g and its supersets) needs

to be visited before the maximal frequent itemsets are obtained.

15

Note that, in a \pure" bottom-up approach, only Property 1 above is used to

prune candidates. This is the technique that many algorithms (e.g., [AS94] [AS96]

[BMUT97] [HF95] [MT97] [MTV94] [ORS98] [PCY95] [SON95]) use to decrease

the number of candidates. In a \pure" top-down approach, only Property 2 is used

to prune candidates. This is the technique used in [ZPOL97] and [MT96a].

2.4 Typical Algorithms for Frequent Set Discovery

We briey discuss existing frequent set discovery algorithms in a roughly chrono-

logical order.

2.4.1 AIS and SETM Algorithms

The problem of association rule mining was �rst introduced in [AIS93a]. An algo-

rithm called AIS was given for discovering the frequent set. To �nd the frequent

itemsets, AIS creates candidates while reading the database. During each pass,

the entire database is read. A candidate is created by adding items to those item-

sets, called frontier itemsets, that were found frequent in the last pass. To avoid

generating candidates that do not occur in the database, a candidate is generated

only when a transaction containing the candidate is read. New candidates are

generated by extending the frontier itemsets with the other items in a transaction.

An expected support factor is used to determine when to stop extending the

16

frontier itemsets. This expected support for a candidate itemsetX+Y is calculated

by the formula f(I1) � f(I2) � � � f(Ik) � (x� c)=dbsize, where X is a frontier itemset,

Y = fI1; I2; : : : ; Ikg, X+Y is a k-extention of X, X appears in a total of x records,

c is the number of records that have been processed in the pass in which X + Y

is �rst considered as a candidate, f(Ij) is the support of itemset fIjg, and �nally

dbsize is the size of the database. In here, k-extention of X means adding k items,

which are not in X, into the itemset X.

For instance, if itemset f1,2g is a frontier itemset, for transaction f1,2,3,4,6g,

we could have the following candidates:

1. f1,2,3g expected frequent: continue extending

2. f1,2,3,4g expected infrequent: do not extend any further

3. f1,2,3,6g expected frequent: cannot extend any further

4. f1,2,4g expected infrequent: do not extend any further

5. f1,2,6g expected frequent: cannot extend any further

Itemset f1,2,3,4,6g was not considered, since f1,2,3,4g was expected to be in-

frequent. Similarly, f1,2,4,6g was not considered, since f1,2,4g was expected to be

infrequent. Itemsets f1,2,3,5g and f1,2,5g were not considered, since the item 5

was not in the transaction.

17

Two complicated heuristics, remaining tuples optimization and pruning func-

tion optimization, were used to prune candidates. Unfortunately, this algorithm

still generates too many candidates.

SETM [HS93] algorithm was later designed to use only standard SQL com-

mands to �nd the frequent set. However, like AIS, SETM also creates candidates

on-the-y while reading the database. Both algorithms are not e�cient, since they

generate and count too many unnecessary candidates.

2.4.2 Apriori and OCD Algorithms

The Apriori algorithm [AS94] is a typical bottom-up approach algorithm, which

perform much better than AIS and SETM. It repeatedly uses Apriori-gen algo-

rithm to generate candidates and then count their supports by reading the entire

database once. The algorithm is described in Fig. 2.4.

Apriori-gen is a candidate generation algorithm. Its underlying approach is

based on the Property 1 (see page 11) mentioned above. The candidate generation

algorithm is schematically described in Fig. 2.5.

The join procedure (see Fig. 2.6) of the Apriori-gen algorithm combines two

frequent k-itemsets, which have the same (k�1)-pre�x, to generate a (k+1)-itemset

as a new preliminary candidate.

Following the join procedure, the prune procedure (see Fig. 2.7) is used to

18

Algorithm: Apriori algorithm

Input: a database and a user-defined minimum support

Output: all frequent itemsets

1. L0 := ;; k := 1;

2. C1 := ffig j i 2 I g
3. Answer := ;
4. while Ck 6= ;
5. read database and count supports for Ck

6. Lk := ffrequent itemsets in Ckg
7. Ck+1 := Apriori-gen(Lk)

8. k := k + 1

9. Answer := Answer [Lk

10. return Answer

Figure 2.4: Apriori Algorithm

Algorithm: Apriori-gen Algorithm

Input: Lk, the set containing frequent itemsets found in

pass k

Output: new candidate set Ck+1

1. call join procedure to generate preliminary candidate set

2. call prune procedure to get final candidate set

Figure 2.5: Apriori-gen Algorithm

remove from the preliminary candidate set all itemsets c such that some k-subset

of c is not in the frequent set Lk. In other words, supersets of an infrequent itemset

are pruned.

Concurrently with the Apriori algorithm, Mannila et al. [MTV94] proposed

an OCD algorithm, which used the same closure property to eliminate candidates.

The candidate generation process is also divided into two steps. First, the prelim-

19

Algorithm: The join procedure of the Apriori-gen algorithm

Input: Lk, the set containing frequent itemsets found in

pass k

Output: preliminary candidate set Ck+1

/* The itemsets in Lk are sorted */

1. for i from 1 to jLk � 1j
2. for j from i+ 1 to jLkj
3. if Lk:itemseti and Lk:itemsetj have the same (k � 1)-prefix

4. Ck+1 := Ck+1 [fLk:itemseti [Lk:itemsetjg
5. else

6. break

Figure 2.6: Join Procedure

Algorithm: The prune procedure of the Apriori-gen algorithm

Input: Preliminary candidate set Ck+1 generated from the

join procedure above

Output: final candidate set Ck+1 which does not contain any

infrequent subset

1. for all itemsets c in Ck+1

2. for all k-subsets s of c

3. if s 62 Lk

4. delete c from Ck+1

Figure 2.7: Prune Procedure

inary candidate set is calculated as C 0

k = fX [X 0 j X;X 0 2 Lk�1 and jX \X 0j =

k � 2g. Second, the actual candidate set is calculated as Ck = fX 2 C 0

k j X con-

tains k members of Lk�1g. But, in general, the �rst step might produce a superset

of the candidates produced in the join procedure of the Apriori algorithm.

The Apriori-gen algorithm has been very successful in reducing the number of

candidates and has been used in many subsequent algorithms, such as Partition

20

[SON95], DHP [PCY95], Sampling [T96b], DIC [BMUT97], and Clique [ZPOL97].

2.4.3 DHP and Partition Algorithm

DHP [PCY95] tried to improve Apriori by using a hash �lter to count the upper-

bound of the support for the next pass. The upper-bound can be used to eliminate

candidates. This algorithm is targeting on reducing the number of candidates in

the second pass, which could be very large.

We use an example to show how the hash �lter works. Suppose the frequent

1-itemsets are f1g, f2g, f3g, f5g in a database of �ve items, 1, 2, 3, 4, and 5. In

the �rst pass, while a transaction is examined, DHP not only uses this transaction

to update the support of all 1-itemsets in this transaction but also updates the

counts in a hash table for 2-itemsets. For instance, suppose the hash function is

de�ned as h(fx; yg) = (10x+ y) mod 7. A transaction f1,3,5g will allow DHP to

increment supports for 1-itemsets f1g, f3g, and f5g. DHP will also update the

counts in index h(f1; 3g), index h(f1; 5g), and index h(f3; 5g) of the hash table.

That is, DHP will update index 6, index 1, and index 0 of the hash table.

After the database is read once, we can look at the hash table and create a hash

�lter. If the count in a bucket is less than the product of the minimum support

and the database size, then 2-itemsets in this bucket must be infrequent. In this

case, the value is set to 0 in the �lter. Otherwise, the value is set to 1 in the �lter.

21

This �lter is later used to prune candidates. Note that if the count in a bucket

is above the threshold, it is not guaranteed that the itemsets in that bucket are

frequent unless there is only one itemset has been hashed to that bucket.

By using this hash �lter, some candidates can be pruned before reading the

database in the next pass. However, according to the investigations done in [AS96],

this optimization may not be as good as using a two-dimensional array as discussed

in [SA95a]. Furthermore, like Apriori, DHP considers every frequent itemset.

Savasere et al. [SON95] proposed a Partition algorithm. This paper addresses

two issues in previous algorithms. The �rst issue is that the algorithms discussed

so far require reading the database many times (as many times as the length of

the longest frequent itemset). The second issue is that most of the records in the

database are not useful in the later passes, since many of the records may not even

contain the items in the candidates. In other words, a record that does not contain

any item in any candidates can be removed without a�ecting the support counting

process.

The �rst issue is addressed by horizontally dividing the database into equal

sized partitions, which can �t in main memory. Each partition is processed inde-

pendently to produce a local frequent set for that partition in the �rst pass. The

process in each partition is using a bottom-up approach similar to Apriori but with

a di�erent data structure (to be discussed later). After all local frequent sets are

22

discovered, their union, called global candidate set, forms a superset of the actual

frequent set. It relies on the fact that if an itemset is frequent then it must be

frequent in at least one of the partition. Similarly, if an itemset is not frequent in

any partition, then it must be infrequent.

During the second pass, the database is read again to produce the actual sup-

port for the global candidate set. Therefore, the entire process takes only two

passes.

The computation in each partition is using a regular bottom-up approach. It

will extend the length of the candidates by one in every loop until no more candi-

dates can be generated. To prevent reading the database each time the length of

the candidate is incremented, the database is transformed into a new data struture,

called TID-list. Each candidate stores a list of the transaction IDs that support

this candidate. The database needs to be partitioned into a size that �ts into the

main memory. The use of the TID-list implicitly addresses the second issue, since

only those transactions that support current candidates will be in the TID-list.

However, this TID-list incurs additional overhead, since the transaction ID for a

transaction containing m items may appear, in the worst case, in (mk) TID-lists for

the kth pass ((mk) means choose k items from those m items).

There are three major problems with this Partition approach. First, it requires

the choice of a good partition size to get a good performance. If the partition

23

is too big, then the TID-list might grow too fast and no longer be able to �t in

the main memory. But, if the partition is too small, then there will be too many

global candidates and most of them will turn out to be infrequent. Second, it

is negatively impacted by data skew, which causes the local frequent set to be

very di�erent from each other. Then, the global candidate set will be very large.

Third, this algorithm will consider more candidates than Apriori. If there are long

maximal frequent itemsets, this algorithm is infeasible.

2.4.4 Sampling Algorithm

Toivonen [T96b] proposed to consider only some samples of the database and

discover an approximate frequent set by using a standard bottom-up approach

algorithm, such as the OCD algorithm or the Apriori algorithm. This random

sampling approach can solve the data skew problem in the Partition algorithm.

Sampling algorithm is a guess-and-correct algorithm [MT96a] [MT97]. It guesses

an answer in the �rst pass, then corrects the answer in subsequent passes.

Unlike Partition, which look at the entire database, Sampling looks only at a

part of the database in the �rst pass. Therefore, a frequent itemset found in the

sample database may not be actually frequent (false positive) and an infrequent

itemset found in the sample database may turn out to be frequent (false negative).

The false positive itemsets can easily be removed once the entire database is read

24

and the actual supports are known. The missing frequent itemsets (false negative

itemsets) require a more complicated way to be recovered.

To reduce the number of false negative itemsets, the minimum support can be

set to a lower value. However, to guarantee that no false negative itemset appears,

some itemsets constituting so called negative border need to be examined. Given

a set S of itemsets closed with respect to the set inclusion relation (i.e., satisfying

both Property 1 and Property 2), the negative border Bd�(S) of set S consists of

those minimal itemsets not in S. From subset lattice point of view, this negative

border contains the neighbor itemsets of the local maximal frequent itemsets. The

problem of computing the negative border can be transformed into a hypergraph

traversal problem [MT97].

If no itemset in the negative border turns out to be frequent, then there is no

false negative itemset. Otherwise, some false negative itemsets may need to be

recovered. They can be recovered by further extending the negative border.

The performance of this Sampling algorithm relies on the sample database.

This algorithm will consider at least the same candidates as Apriori. Therefore, it

is still ine�cient when the frequent itemsets are long.

25

2.4.5 A-Random-MFS, DIC, Eclat, MaxEclat, TopDown, Clique, and

MaxClique Algorithms

A randomized algorithm called A-Random-MFS for discovering the maximum fre-

quent set was presented by Gunopulos et al. [GMS97]. The randomized algorithm

alone cannot guarantee completeness. Therefore, a complete algorithm that can

discover all maximal frequent itemsets requires repeatedly calling the randomized

algorithm until no new maximal frequent itemset can be found. It requires comput-

ing a set containing minimal orthogonal elements which is similar to the negative

border in the Sampling algorithm. This computation is in general non-trivial.

There is no known polynomial algorithm for this.

The proposed randomized algorithm contains a loop to keep randomly extend-

ing the length of a frequent itemset until it become infrequent. It is assuming that

the database �ts in the main memory. However, it is not clear how this algorithm

can be used to handle the cases when the database resides on the disk. When

the database cannot �t in the main memory, it is expensive to determine whether

the extended itemset is frequent or not, since extending the length by one require

reading the database once.

Brin et al. [BMUT97] proposed a dynamic itemset counting (DIC) algorithm

which combines candidates with di�erent lengths into one pass. This algorithm

focuses on reducing the number of passes of reading the database. DIC works like

26

a train running over the database with stops at every M transactions (M is an

adjustable parameter). The track (database) is a circle. The database is divided

horizontally into segments of equal size M .

DIC starts counting the supports of 1-itemsets while the �rst segment is read. It

starts counting the supports of some 2-itemsets while the second segment is read.

Those 2-itemsets, generated by combining local frequent 1-itemset found in the

�rst segment, will be counted. After reading the second segment of the database,

additional 2-itemsets could become candidates because additional 1-itemsets may

become locally frequent with respect to the �rst and the second segments. Some

2-itemsets may become locally frequent and they may be used to generate some

3-itemsets as candidates. The supports of those 1-itemsets, 2-itemsets, and 3-

itemsets will be counted together starting from the third segment. The process

continues until no frequent itemsets can be found. Property 1 is also used here for

candidate pruning.

In general, this algorithm can reduce the number of passes the database is read.

It can perform well when the data is fairly homogenous throughout the �le, and

M is reasonably small. However, like Partition, this approach is sensitive to data

skew. When the data is non-homogenous, this algorithm may su�er because too

many local frequent itemsets will turn out to be infrequent globally. This algorithm

will consider more candidates than Apriori, therefore, it is also infeasible for �nding

27

long frequent itemsets.

Concurrently with our work, Zaki et al. [ZPOL97] discussed bottom-up and

top-down lattice traversals, which are similar to what we have discussed in Sec-

tion 2.3. In addition to the pure bottom-up and pure top-down traversals, they

proposed a hybrid traversal, which contains a look-ahead phase followed by a pure

bottom-up phase. The look-ahead phase consists of extending the frequent 2-

itemsets one item at a time until the extended itemset becomes infrequent. After

the look-ahead phase, an Apriori-like bottom-up traversal is then executed.

Note that, their hybrid method looks ahead only at some long candidate item-

sets during the initialization stage (in the second pass). As will be discussed in the

next chapter, our approach, in contrast, looks ahead at long candidate itemsets

throughout the entire execution.

Like A-Random-MFS algorithm, this hybrid traversal requires the database to

be stored in main memory. TID-list was used for this purpose. However, as we

have discussed, using the TID-list has some weaknesses.

They presented two di�erent ways to cluster the itemsets after the frequent

2-itemsets are discovered. Equivalence class clustering groups itemsets together if

they have the same �rst item (same 1-pre�x). Maximal uniform hypergraph clique

clustering groups itemsets together if they are in the same maximal uniform hyper-

graph clique. The maximal uniform hypergraph clique is similar to our MFCS (to

28

be discussed in the next chapter). For every cluster generated, they then applied

the lattice traversals (either bottom-up, top-down, or hybrid) to each cluster (a lat-

tice for each cluster). The maximal uniform hypergraph clique approach provides

a more precise approximation of the maximal frequent itemsets but at a higher

computation cost. The equivalence class approach requires less computation, but

usually can not approximate the maximal frequent itemsets precisely.

They proposed six algorithms based on the combinations of the di�erent lattice

traversing methods and the di�erent clustering methods. Eclat uses equivalent

class clustering with bottom-up traversal. MaxEclat uses equivalent class cluster-

ing with hybrid traversal. Clique uses maximal uniform hypergraph clique clus-

tering with bottom-up traversal. MaxClique uses maximal uniform hypergraph

clique clustering with hybrid traversal. TopDown uses maximal uniform hyper-

graph clique clustering with top-down traversal. Equivalent class clustering with

top-down traversal was not discussed, since it is too ine�cient.

One of the most important di�erences between MaxClique and Pincer-Search

is that MaxClique only calculates the maximal uniform hypergraph clique in the

second pass. However, simply considering the maximal uniform hypergraph clique

based on the frequent 2-itemsets may be very inaccurate. In contrast, our Pincer-

Search algorithm repeatedly maintains the upper-bound of the frequent itemsets

(MFCS) throughout the entire process. The approximation is dynamically adjusted

29

based on all available information and therefore is very accurate. Actually, the

MFCS in the Pincer-Search algorithm is the most accurate approximation one can

get when no additional information is available.

Another important di�erence is that they used a bottom-up approach to cal-

culate the maximal uniform hypergraph clique. Conceptually, it keeps applying

Apriori-gen until no more candidates can be generated. In contrast, Pincer-Search

uses a top-down approach. As will be discussed in the next chapter, this top-down

approach has the advantage that it is suitable for incremental updates. It updates

the MFCS only when a new infrequent itemset is discovered.

In fact, MaxClique can be viewed as a special case of our Pincer-Search algo-

rithm, if we discard the inplementation details.

2.5 Other Related Work

General survey papers regarding data mining problems can be found in, e.g.,

[FPS96] [FPSU96] [M97] [PBKKS97].

In addition to the algorithms discussed so far, there has been extensive research

relating to the problem of association rule mining such as [BMS97], [GKMT97],

[HCC92], [HF95], [MT96b], [ORS98], [S96], [SA95b], [SA96b], [SVA97], [T96a], and

[KMRTB94]. Similar candidate pruning techniques has been applied to discover se-

quential patterns (e.g., [MT95] [MT96c] [SA95a] [SA96a] [Z97]) and episodes (e.g.,

30

[MT95] [MT96c]). Some other papers concentrate on designing parallel algorithms

on share-nothing parallel environment (e.g., ([AS96] [HKK97]) and share-memory

parallel environment (e.g., [ZPOL96]). The discovery of frequent set is a key pro-

cess in solving these problems. A good algorithm for discovering frequent set could

be applied in solving these problems.

Mannila and Toivonen [MT97] [GKMT97] analyze the complexity of the (level-

wise) bottom-up breadth-�rst search style algorithms. As our algorithm does not

�t in this model, their complexity low bound does not apply to it.

Our work was inspired by the notion of version space in Mitchell's machine

learning paper [M82]. We found that if we treat a newly discovered frequent item-

set as a new positive training instance, a newly discovered infrequent itemset as

a new negative training instance, the candidate set as the maximally speci�c gen-

eralization (S), and the MFCS as the maximally general generalization (G), then

we will be able to use a two-way approaching strategy to discover the maximum

frequent set (generalization in his terminology) e�ciently. We will discuss this in

detail in the next chapter.

31

Chapter 3

Fast Algorithms for Discovering

the Maximum Frequent Set

3.1 Our Approach to Reducing the Number of Candidates

and the Number of Passes

As discussed in the last chapter, the bottom-up approach is good for the case when

all maximal frequent itemsets are short and the top-down approach is good when

all maximal frequent itemsets are long. If some maximal frequent itemsets are long

and some are short, then both one-way search approaches will not be e�cient.

To design an algorithm that can e�ciently discover both long and short max-

imal frequent itemsets, one might think of simply running both bottom-up and

32

top-down programs at the same time. However, this naive approach is not good

enough. We can actually do much better than that.

Recall that the bottom-up approach described above uses only Property 1 to

reduce the number of candidates and the top-down approach uses only Property 2

to reduce the number of candidates. Conceivably, a process that relies on both

properties to prune candidates could be much more e�cient than a process that

relies on only the �rst or the second.

In our approach of combining the top-down and bottom-up searches, we rely

on both properties to prune candidates and make use of the information gathered

in one direction to prune more candidates during the search in the other direction.

If some maximal frequent itemset is found in the top-down direction, then this

itemset can be used to eliminate (possibly many) candidates in the bottom-up

direction. The subsets of this frequent itemset can be pruned because they are

frequent (Property 2). Of course, if an infrequent itemset is found in the bottom-

up direction, then it can be used to eliminate some candidates in the top-down

direction (Property 1). This \two-way search approach" can fully make use of both

properties and thus speed up the search for the maximum frequent set. We call

this \two-way search approach" as Pincer-Search method. This two-way search

approach was �rst introduced in [L96] [L97] and formalized in [LK97] [LK98].

Let us use an example to explain the concept of this two-way search approach.

33

Figure 3.1: Two-Way Search

Considering the same database as in Fig. 2.1, Fig. 3.1 shows the process of the

Pincer-Search algorithm. Through this example, we will see that by combining

both bottom-up and top-down searches in each pass and by using both properties

to eliminate candidates, we could actually use less candidates and less passes than

both bottom-up and top-down approaches in discovering the maximum frequent

set.

Example See Fig. 3.1. In the �rst pass, all �ve 1-itemsets are the candidates for the

bottom-up search and the 5-itemset f1,2,3,4,5g is the candidate for the top-down

search. After the support counting phase, infrequent itemset f5g is discovered by

the bottom-up search and this information is shared with the top-down search.

This infrequent itemset f5g not only allows the bottom-up search to eliminate

its supersets as candidates but also allows the top-down search to eliminate its

34

supersets as candidates in the second pass. In the second pass, the candidates for

the bottom-up search are f1,2g, f1,3g, f1,4g, f2,3g, f2,4g, and f3,4g. Itemsets

f1,5g, f2,5g, f3,5g, and f4,5g are not candidates, since they are supersets of f5g.

The only candidate for the top-down search in the second pass is f1,2,3,4g, since

all the other 4-subsets of f1,2,3,4,5g are supersets of f5g. After the second support

counting phase, f1,2,3,4g is discovered to be frequent by the top-down search. This

information is shared with the bottom-up search. All of its subsets are frequent

and need not be examined. In this example, itemsets f1,2,3g, f1,2,4g, f1,3,4g, and

f2,3,4g will not be candidates for our bottom-up or top-down searches. After that,

the program can terminate, since there are no candidates for either bottom-up or

top-down searches. 2

In this example, our two-way approaching method actually considers less can-

didates than both one-way bottom-up and top-down approaches. Interestingly,

this two-way approaching method also uses fewer passes of reading the database

than either bottom-up or top-down approaches. The \pure" bottom-up approach

would have taken four passes in this example. The \pure" top-down approach

would have taken �ve passes. Our Pincer-Search method used only two passes. In

fact, our two-way approaching method will always use at most as many passes as

the minimum of the passes used by bottom-up approach and top-down approach.

Reducing the number of candidates is of critical importance for the e�ciency of

35

the frequent set discovery process, since the cost of the entire process comes from

reading the database (I/O time) to generate the supports of candidates (CPU

time) and the generation of new candidates (CPU time). The support counting of

the candidates is the most expensive part. Therefore, the number of candidates

dominates the entire processing time. Reducing the number of candidates not only

can reduce the I/O time but also can reduce the CPU time, since fewer candidates

need to be counted and generated.

Therefore, it is important that Pincer-Search reduces both the number of can-

didates and the number of passes. A realization of this two-way search algorithm

is discussed next.

3.2 Two-Way Search by Using the MFCS

We have designed a combined two-way search algorithm for discovering the max-

imum frequent set. It relies on a new data structure during its execution, the

maximum frequent candidate set, or MFCS for short, which we de�ne next.

De�nition 1 Consider some point during the execution of an algorithm for �nding

the MFS. Some itemsets are frequent, some infrequent, and some unclassi�ed. The

maximum frequent candidate set (MFCS) is the set of all maximal itemsets that

are not known to be infrequent. To be more speci�c, it is a minimum cardinality

set of itemsets such that the union of all the subsets of its elements contains all

36

the frequent itemsets but does not contain any infrequent itemsets, that is, it is a

minimum cardinality set satisfying the conditions

FREQUENT � [f2X j X 2 MFCSg

INFREQUENT \ f2X j X 2 MFCSg = ;

where FREQUENT and INFREQUENT, stand respectively for sets of all frequent

and infrequent itemsets (classi�ed as such so far). (2X is the power set of X.)

Thus obviously at any point of the algorithm MFCS is a superset of the MFS.

When the algorithm terminates, the MFCS and the MFS are equal.

The computation of our algorithm follows the bottom-up breadth-�rst search

approach. We base our presentation on the Apriori algorithm, and for greatest

ease of exposition we present our algorithm as a modi�cation to that algorithm.

Briey speaking, in each pass, in addition to counting supports of the candidates

in the bottom-up direction, the algorithm also counts supports of the itemsets in

the MFCS: this set is adapted for the top-down search. This will help in pruning

candidates, but will also require changes in candidate generation, as explained

later.

Consider a pass k, during which itemsets of size k are to be classi�ed. If some

itemset that is an element of the MFCS, say X, of cardinality greater than k is

found to be frequent in this pass, then all its subsets must be frequent. There-

fore, all of its subsets of cardinality k can be pruned from the set of candidates

37

considered in the bottom-up direction in this pass. They, and their supersets will

never be candidates throughout the rest of the execution, potentially improving

performance. But of course, as the maximum frequent set is �nally computed,

they \will not be forgotten."

Similarly, when a new infrequent itemset is found in the bottom-up direction,

the algorithm will use it to update the MFCS. The subsets of the MFCS must not

contain this infrequent itemset.

Figure 3.2 conceptually shows the combined two-way search. the MFCS is

initialized to contain a single element, the itemset of cardinality n containing all

the elements of the database. As an example of its utility, consider the �rst pass

of the bottom-up search. If some m 1-itemsets are infrequent after the �rst pass

(after reading the database once), the MFCS will have one element of cardinality

n � m. This itemset is generated by removing the m infrequent items from the

initial element of the MFCS. In this case, the top-down search goes down m levels

in one pass. In general, unlike the search in the bottom-up direction, which goes

up one level in one pass, the top-down search can go down many levels in one pass.

By using the MFCS, we will be able to discover some maximal frequent itemsets

in early passes. This early discovery of the maximal frequent itemsets can reduce

the number of candidates and the passes of reading the database which in turn

can reduce the CPU time and I/O time. This is especially signi�cant when the

38

Figure 3.2: The Search Space of Pincer-Search

maximal frequent itemsets discovered in the early passes are long.

For our approach to work e�ciently, we need to address two issues. First,

how to update the MFCS e�ciently? Second, once the subsets of the maximal

frequent itemsets found in the MFCS are removed, how do we generate the correct

candidate set for the subsequent passes in the bottom-up direction?

3.3 Updating the MFCS E�ciently

Consider some itemset Y that has been \just" classi�ed as infrequent. By the

de�nition of the MFCS, it will be a subset of one or more itemsets in the MFCS

and we need to update the MFCS such that its subsets will not contain Y . To

update the MFCS, we will do the following process for every superset of Y that is

in the MFCS. We replace every such itemset (say X) by jY j itemsets, each obtained

39

by removing from X a single item (element) of Y . A newly generated itemset is

added to the MFCS only when it is not a subset of any itemset in the MFCS.

We do this for each newly discovered infrequent itemset. Formally, we have the

MFCS-gen algorithm as in Fig. 3.3 (shown here for pass k).

Algorithm: MFCS-gen

Input: Old MFCS and the infrequent set Sk found in pass k

Output: New MFCS

1. for all itemsets s 2 Sk
2. for all itemsets m 2 MFCS

3. if s is a subset of m

4. MFCS := MFCS n fmg
5. for all items e 2 itemset s

6. if m n feg is not a subset of any itemset in the MFCS

7. MFCS := MFCS [fm n fegg
8. return MFCS

Figure 3.3: MFCS-gen Algorithm

Example See Fig. 3.4. Suppose ff1,2,3,4,5,6gg is the current (\old") value of the

MFCS and two new infrequent itemsets f1,6g and f3,6g are discovered. Consider

�rst the infrequent itemset f1,6g. Since the itemset f1,2,3,4,5,6g (element of the

MFCS) contains items 1 and 6, one of its subsets will be f1,6g. By removing item 1

from itemset f1,2,3,4,5,6g, we get f2,3,4,5,6g, and by removing item 6 from itemset

f1,2,3,4,5,6g we get f1,2,3,4,5g. After considering itemset f1,6g, the MFCS be-

comes ff1,2,3,4,5g, f2,3,4,5,6gg. Itemset f3,6g is then used to update this MFCS.

Since f3,6g is a subset of f2,3,4,5,6g, two itemsets f2,3,4,5g and f2,4,5,6g are gen-

40

Figure 3.4: Pincer-Search

erated to replace f2,3,4,5,6g. Itemset f2,3,4,5g is a subset of itemset f1,2,3,4,5g in

the new MFCS, and it will not be added to the MFCS. Therefore, the MFCS be-

comes ff1,2,3,4,5g, f2,4,5,6gg. The top-down arrows in Fig. 3.4 show the updates

of the MFCS. 2

Lemma 1 The algorithm MFCS-gen correctly updates the MFCS.

Proof: The algorithm excludes all the infrequent itemsets, so the �nal set will not

contain any infrequent itemsets as subsets of its elements. Step 7 removes only

one item from the itemset m: the longest subset of the itemset m that does not

contain the infrequent itemset s. Since this algorithm always generates longest

itemsets, the number of the itemsets will be minimum at the end. Therefore, this

algorithm generates the MFCS correctly. 2

41

3.4 New Candidate Generation Algorithms

Recall that, as discussed in Section 2.4.2, a preliminary candidate set will be gener-

ated after the join procedure is called. In our algorithm, after a maximal frequent

itemset is added to the MFS, all of its subsets in the frequent set (computed so

far) will be removed. We show by example that if the original join procedure of

the Apriori-gen algorithm is applied, some of the needed itemsets could be miss-

ing from the preliminary candidate set. Consider Fig. 3.4. Suppose the original

frequent itemset L3 is ff1,2,3g, f1,2,4g, f1,2,5g, f1,3,4g, f1,3,5g, f1,4,5g, f2,3,4g,

f2,3,5g, f2,4,5g, f2,4,6g, f2,5,6g, f3,4,5g, f4,5,6gg. Assume itemset f1,2,3,4,5g in

the MFCS is determined to be frequent. Then all 3-itemsets of the original fre-

quent set L3 will be removed from it by our algorithm, except for f2,4,6g, f2,5,6g,

and f4,5,6g. Since the Apriori-gen algorithm uses a (k � 1)-pre�x test on the fre-

quent set to generate new candidates, and no two itemsets in the current frequent

set ff2,4,6g, f2,5,6g, f4,5,6gg share a 2-pre�x, no candidate will be generated by

applying the join procedure on this frequent set. However, the correct preliminary

candidate set should be ff2,4,5,6gg.

Based on the above observation, we need to recover some missing candidates.

42

3.4.1 New Preliminary Candidate Set Generation Procedure

In our new preliminary candidate set generation procedure, the join procedure of

the Apriori-gen algorithm is �rst called to generate a temporary candidate set,

which might be incomplete. When it is incomplete, a recovery procedure will be

called to recover those missing candidates.

All missing candidates can be obtained by restoring some itemsets to the current

frequent set. The restored itemsets are extracted from the MFS, which implicitly

maintains all frequent itemsets discovered so far.

The �rst group of itemsets that needs to be restored contains those k-itemsets

that have the same (k � 1)-pre�x as some itemset in the current frequent set.

Consider then in pass k, an itemset X in the MFS and an itemset Y in the

current frequent set such that jXj > k. Suppose that the �rst k � 1 items of Y

are in X and the (k� 1)st item of Y is equal to the jth item of X. We obtain the

k-subsets of X that have the same (k � 1)-pre�x as Y by taking one item of X

that has an index greater than j and combining it with the �rst k� 1 items of Y ,

thus getting one of these k-subsets. After these k-itemsets are found, we recover

candidates by combining them with itemset Y as shown in Fig. 3.5.

Example See Fig. 3.4. The MFS is ff1,2,3,4,5gg and the current frequent set

is ff2,4,6g, f2,5,6g, f4,5,6gg. The only 3-subset of ff1,2,3,4,5gg that needs to

be restored for itemset f2,4,6g to generate a new candidate is f2,4,5g. This is

43

Algorithm: The recovery procedure

Input: Ck+1 from join procedure, Lk, and current MFS

Output: a complete candidate set Ck+1

1. for all itemsets l in Lk

2. for all itemsets m in MFS

3. if the first k � 1 items in l are also in m

4. /* suppose m:itemj = l:itemk�1 */

5. for i from j + 1 to jmj
6. Ck+1 := Ck+1 [ffl:item1, l:item2,..., l:itemk, m:itemigg

Figure 3.5: Recovery Algorithm

because it is the only subset of ff1,2,3,4,5gg that has the same length and the

same 2-pre�x as itemset f2,4,6g. By combining f2,4,5g and f2,4,6g, we recover

the missing candidate f2,4,5,6g. No itemsets need to be restored for itemsets

f2,5,6g and f4,5,6g. 2

The second group of itemsets that need to be restored consists of those k-subsets

of the MFS having the same (k� 1)-pre�x but having no common superset in the

MFS. A similar recovery procedure can be applied after they are restored.

3.4.2 New Prune Procedure

After the recovery stage, a preliminary candidate set will be generated. We can

then proceed to the prune stage. Instead of checking to see if all k-subsets of an

itemset X are in Lk, we can simply check to see if X is a subset of an itemset in

the current MFCS as shown in Fig. 3.6. In comparison with the prune procedure

44

of Apriori-gen, we use one fewer loop.

Algorithm: New prune procedure

Input: current MFCS and Ck+1 after join and recovery

procedures

Output: final candidate set Ck+1

1. for all itemsets c in Ck+1

2. if c is not a subset of any itemset in the current MFCS

3. delete c from Ck+1

Figure 3.6: New Prune Algorithm

3.4.3 Correctness of the New Candidate Generation Algorithm

In summary, our candidate generation process contains three steps as described in

Fig. 3.7.

Algorithm: New candidate generation algorithm

Input: Lk, current MFCS, and current MFS

Output: new candidate set Ck+1

1. call the join procedure as in the Apriori algorithm

2. call the recovery procedure if necessary

3. call the new prune procedure

Figure 3.7: New Candidate Generation Algorithm

Lemma 2 The new candidate generation algorithm generates correct candidate

set.

Proof: Recall the candidate generation process as in Apriori-gen. There are four

possible cases when we combine two frequent k-itemsets, say I and J , which have

45

the same (k�1)-pre�x, to generate a (k+1)-itemset as a new preliminary candidate.

In this proof, we will show that, even though that we remove the subsets of the

MFS from the current frequent set, our new candidate generation algorithm will

handle all these cases correctly.

Case 1: fI is not a subset of X j for all X 2 MFSg and fJ is not a subset of

Y j for all Y 2 MFSg. Both itemsets are in the current frequent set.

The join procedure will combine them and generate a preliminary

candidate.

Case 2: fI is a subset of X j X 2 MFSg and fJ is not a subset of Y j for

all Y 2 MFSg. I is removed from the current frequent set. However,

combining I and J will generate a candidate that needs to be exam-

ined. The recovery procedure discussed above will recover candidates

in this case.

Case 3: fI and J are both subsets of some X j X 2 MFSg. Don't combine

them, since the candidate that they generate will be a subset of X

and must be frequent.

Case 4: Not in Case 3 and fI is a subset of some X j X 2 MFSg and fJ

is a subset of some Y j Y 2 MFSg and X 6= Y . Both I and J are

removed from the current frequent set. However, by combining them,

46

a necessary candidate will be generated. Similar recovery procedure

as discussed above will recover missing candidates of this case.

Our preliminary candidate generation algorithm considers the same combina-

tions of the frequent itemsets as does in the Apriori-gen algorithm. This pre-

liminary candidate generation algorithm will generate all the candidates, as the

Apriori-gen algorithm does, except those that are subsets of the MFS. By the re-

covery procedure, some subsets of the MFS will be restored in the later passes

when necessary.

Lemma 1 showed that MFCS will be maintained correctly in every pass. There-

fore, our new prune procedure will make sure no superset of infrequent itemsets is

in the preliminary candidate set. Therefore, the new candidate generation algo-

rithm is correct. 2

3.5 The Pure Pincer-Search Algorithm

We now present our complete algorithm (see Fig. 3.8), The Pincer-Search Al-

gorithm, which relies on the combined approach for determining the maximum

frequent set. Lines 9 to 12 constitute our new candidate generation procedure.

The MFCS is initialized to contain one itemset, which consists of all the

database items. The MFCS is updated whenever new infrequent itemsets are

found (line 8). If an itemset in the MFCS is found to be frequent, then its subsets

47

Algorithm: The Pincer-Search algorithm

Input: a database and a user-defined minimum support

Output: MFS which contains all maximal frequent itemsets

1. L0 := ;; k := 1; C1 := ffig j i 2 I g
2. MFCS := ff1; 2; : : : ;ngg; MFS := ;
3. while Ck 6= ;
4. read database and count supports for Ck and MFCS

5. remove frequent itemsets from MFCS and add them to MFS

6. Lk := ffrequent itemsets in Ckg n fsubsets of MFSg
7. Sk := finfrequent itemsets in Ckg
8. call the MFCS-gen algorithm if Sk 6= ;
9. call the join procedure to generate Ck+1

10. if any frequent itemset in Ck is removed in line 6

11. call recovery procedure to recover candidates to Ck+1

12. call new prune procedure to prune candidates in Ck+1

13. k := k + 1

14. end-while

15. return MFS

Figure 3.8: The Pincer-Search algorithm

will not participate in the subsequent support counting and candidate set gener-

ation steps. Line 6 will exclude those itemsets that are subsets of any itemset

in the current MFS, which contains the frequent itemsets found in the MFCS. If

some itemsets in Lk are removed, the algorithm will call the recovery procedure to

recover missing candidates (line 11).

Theorem 1 The Pincer-Search algorithm generates all maximal frequent itemsets.

Proof: Lemma 1 showed that our candidate generation algorithm will generate

candidate set correctly. The Pincer-Search algorithm will explicitly or implicitly

discover all frequent itemsets. The frequent itemsets are explicitly discovered when

48

they are discovered by the bottom-up search (i.e., they were in the Lk set at some

point). The frequent itemsets are implicitly discovered when the top-down search

discovers their frequent supersets (which are maximal) earlier than the bottom-up

search reaches them. Furthermore, only the maximal frequent itemsets will be

added to the MFS in Line 5. Therefore, the Pincer-Search algorithm generates all

maximal frequent itemsets. 2

3.6 The Adaptive Pincer-Search Algorithm

3.6.1 Delay the Use of the MFCS

In general, one may not want to use the \pure" version of the Pincer-Search algo-

rithm. For instance, in some cases, there may be too many infrequent 2-itemsets.

In such cases, it may be too costly to maintain the MFCS. The algorithm we have

implemented is in fact an adaptive version of the algorithm. This adaptive ver-

sion does not maintain the MFCS, when doing so would be counterproductive. It

delays the maintenance of the MFCS until a later pass when the expected cost

of calculating the MFCS is acceptable. This is also the algorithm whose perfor-

mance is being evaluated in Chapter 4. Thus the very small overhead of deciding

when to use the MFCS is accounted in the performance evaluation of our adaptive

Pincer-Search algorithm.

Another adaptive approach is to generate all candidates as the Apriori algo-

49

rithm, but not to count the support of the candidates that are subsets of any

itemset in the current MFS. This approach simpli�es the pure Pincer-Search algo-

rithm in such a way that it need not do the candidate recovery process mentioned

in Section 3.4. A ag, indicating whether a candidate should be counted or not,

can be easily maintained. Based on the way of doing the recovery process, the cost

of the recovery process can be estimated by the number of the current frequent

set and the number of the current MFS. When the estimated cost exceeds some

threshold, we can switch from the recovery procedure to the candidate generation

procedure that generates all candidates. This way, we can still omit the support

counting phase, which is the most time-consuming process.

3.6.2 Relaxing the MFCS

Recall that the MFCS is de�ned as a minimum cardinality set of itemsets such that

the union of all the subsets of its elements contains all the frequent itemsets but

does not contain any infrequent itemsets. Because of the \minimum cardinality"

in the de�nition, the procedure to maintain the MFCS requires the dropping of

those itemsets that are subsets of some other itemsets in the MFCS. If we remove

this requirement, we could have more itemsets in the MFCS in the earlier passes,

but in return, we might be able to approach the MFS in a more aggressive way.

Consider the same example as in Fig. 3.4. We did not add itemset f2,3,4,5g

50

into the MFCS, since it is a subset of the itemset f1,2,3,4,5g, which is already in

the MFCS. If we relax the de�nition of the MFCS and allow itemset f2,3,4,5g to be

an element in the Relax-MFCS, then we could have the following three cases.

Case 1: If itemset f1,2,3,4,5g is infrequent and itemset f2,3,4,5g is frequent,

then we can use f1,2,3,4g to eliminate bottom-up candidates in this

pass.

Case 2: If both itemsets are infrequent, then we can use infrequent itemset

f2,3,4,5g to update itemset f1,2,3,4,5g. This helps the MFCS moving

down faster.

Case 3: If itemset f1,2,3,4,5g turns out to be frequent and of course itemset

f2,3,4,5g is frequent, then the support counting for itemset f2,3,4,5g

seems to be wasted when comparing with the pure Pincer-Search

algorithm.

The full e�ect of relaxing the MFCS, and when to relax the MFCS requires

further study.

51

3.7 Counting the Supports of All Frequent Itemsets E�-

ciently

In those cases when we need to know the supports of all frequent itemsets, we can

build a complete hash-tree, as shown in Fig. 3.9, for the maximum frequent set.

This tree can be viewed as a special case of the hash-tree [AS94] in the Apriori

algorithm with the leaf nodes containing only one itemset. Unlike their hash-tree

which stores only the itemsets with same length, this complete hash-tree store all

the subsets of the maximal frequent itemsets (of di�erent length).

The support counting process can be done as the Apriori algorithm with only

a minor change. We add a �eld for storing the supports of the internal nodes. The

support in every node is incremented whenever the node is visited in the forward

direction (Apriori only increments the leaf nodes.) To increment the supports

of candidates supported by a transaction, all combinations of the items in the

transaction are considered.

Let us consider an example to demonstrate how the support counting process

works. Suppose the maximum frequent set is ff1,2,3g, f2,3,4gg. The complete

hash-tree is shown in Fig. 3.9. The database contains three transactions: f1,2,3,5g,

f1,2,3,4g, and f2,3,4g. All combinations of the items in each transaction are enu-

merated in an increasing (left justi�ed) lexicographical order and the tree is visited

in that order. If an item in the transaction is not in the tree, then stop and try the

52

Figure 3.9: Complete Hash-Tree for Final Support Counting

next enumerated sequence. In other words, the tree is traversed in a depth-�rst

fashion. The support is incremented by one when a node is visited in the forward

direction (i.e., it is not incremented during backtracking).

For instance, the (left justi�ed) lexicographical enumeration for transaction

f1,2,3,5g is 1, 12, 123, 1235, 125, 13, 135, 2, 23, 235, 25, 3, and 35. This means the

traversal of the tree is node f1g, node f2g, and node f3g. There is no branch for 5

from node f3g, so backtrack to node f2g. There is no branch for 5 from node f2g

either, so backtrack to node f1g. Then try branch 3, backtrack to root, and then

visit node f2g, and so on. Similarly, the enumeration for transaction f1,2,3,4g is

1, 12, 123, 1234, 124, 13, 134, 2, 23, 234, 24, 3, 34, and 4. The enumeration for

transaction f2,3,4g is 2, 23, 234, 24, 3, 34, and 4.

The supports of all frequent itemsets can be counted e�ciently this way by

reading the database only once.

53

Chapter 4

Performance Evaluation

For the Pincer-Search algorithm to be e�ective, the top-down search needs to reach

the maximal frequent itemsets faster than the bottom-up search. A reasonable

question can be informally stated: \Can the search in the top-down direction

proceed fast enough to reach a maximal frequent itemset faster than the search

in the bottom-up direction?" There can be no categorical answer, as this really

depends on the distribution of the frequent and infrequent itemsets. However,

according to both [AS94] and our experiments, a large fraction of the 2-itemsets

will usually be infrequent. These infrequent itemsets will cause the MFCS to go

down the levels very fast, allowing it to reach some maximal frequent itemsets

after only a few passes. Indeed, in our experiments, we have found that, in most

cases, many of the maximal frequent itemsets are found in the MFCS in very early

54

passes. For instance, in the experiment on database T20.I15.D100K (Fig. 4.6), all

maximal frequent itemsets containing up to 17 items are found in 3 passes only!

The performance evaluation presented compares our adaptive Pincer-Search al-

gorithm to the Apriori algorithm. We restrict this performance comparison because

it is su�ciently instructive to understand the characteristics of the new algorithm's

performance.

4.1 Preliminary Discussion

4.1.1 Auxiliary Data Structures Used

Since we are interested in studying the e�ect of using the MFCS to reduce the

number of candidates and the number of passes, we didn't use more e�cient data

structures, such as hash tables (e.g., [AS94] [PCY95]), to store the itemsets. We

simply used a link-list data structure to store the frequent set and the candidate

set in each pass. The databases used in performance evaluation, are the synthetic

databases used in [AS94], the census databases similar to [BMUT97], and the stock

transaction databases from New York Stock Exchange, Inc. [NYSE97].

Also, as done in [ORS98] and [SA95a], we used a one-dimensional array and

a two-dimensional array to speed up the process of the �rst and the second pass

correspondingly. The support counting phase runs very fast by using an array, since

no searching is needed. No candidate generation process for 2-itemsets is needed

55

because we use a two-dimensional array to store the support of all combinations

of those frequent 1-itemsets. We start using the link-list data structure after the

third pass. For a fair comparison, in all the cases, the number of candidates shown

in the �gures does not include the candidates in the �rst two passes. The number

of the candidates in the Pincer-Search algorithm includes the candidates in the

MFCS.

4.1.2 Scattered and Concentrated Distributions

We �rst concentrated on the synthetic databases, since they allow us experimenting

di�erent distributions of the frequent itemsets. For the same number of frequent

itemsets, their distribution can be concentrated or scattered. In concentrated dis-

tribution, the frequent itemsets, having the same length, contain many common

items: the frequent items tend to cluster. If the frequent itemsets do not have

many common elements, the distribution is scattered. By using the synthetic data

generation program as in [AS94], we can generate databases with di�erent distri-

butions by adjusting various parameters. We will present experiments to examine

the impact of the distribution type on the performance of the two algorithms.

In the �rst set of experiments, the number of the maximal frequent itemsets jLj

is set to 2000, as in [AS94]. The frequent itemsets found in this set of experiments

are rather scattered. To produce databases having a concentrated distribution

56

of the frequent itemsets, we decrease the parameter jLj to 50 in the second set of

experiments. The minimum supports are set to higher values so that the execution

time will not be too long.

4.1.3 Non-Monotone Property of the Maximum Frequent Set

For a given database, both the number of candidates and the number of frequent

itemsets increase as the minimum support decreases. However, this is not the case

for the number of the maximal frequent itemsets. For example, when minimum

support is 9%, the maximum frequent set may be ff1,2g, f1,3g, f2,3gg. When

the minimum support decreases to 6%, the maximum frequent set could become

ff1,2,3gg. The number of the maximal frequent itemsets decreased from three to

one.

This \nonmonotonicity" does not help bottom-up breadth-�rst search algo-

rithms. They will have to discover the entire frequent itemsets before the max-

imum frequent set is discovered. Therefore, in those algorithms, the time, the

number of candidates, and the number of passes will monotonically increase when

the minimum support decreases.

However, when the minimum support decreases, the length of some maximal

frequent itemsets may increase and our MFCS may reach them faster. Therefore,

our algorithm does have the potential to bene�t from this nonmonotonicity.

57

4.2 Experiments

The test databases are generated synthetically by an algorithm designed by the

IBM Quest project [AABMSS96]. The synthetic data generation procedure is

described in detail in [AS94], whose parameter settings we follow. The number of

items N is set to 1000. jDj is the number of transactions. jT j is the average size

of transactions. jIj is the average size of maximal frequent itemsets. Thus, e.g.,

T10.I4.D100K speci�es that the average size of transactions is ten, the average

size of maximal frequent itemsets is four, and the database contains one hundred

thousand transactions.

4.2.1 Scattered Distributions

The results of the �rst set of experiments are shown in Fig. 4.1, Fig. 4.2, and

Fig. 4.3. For the experiments on database T10.I4.D100K, see Fig. 4.2, the best

improvement occurs when minimum support is 0.5%. In this experiment, Pincer-

Search ran about 1.7 times faster than the Apriori algorithm. The improvement

came from reducing the number passes of reading the database and the number of

candidates.

In the experiment on database T5.I2.D100K, see Fig. 4.1, Pincer-Search used

more candidates than Apriori. That is because of the number of additional can-

didates used in the MFCS is more than the number of extra candidates pruned

58

relying on the MFCS. The maximal frequent itemsets, found in the MFCS, are

so short that not too many subsets can be pruned. However, the I/O time saved

compensated for the extra cost. Therefore, we still get an improvement.

Depending on the distribution of the frequent itemsets, it is also possible that

our algorithm might spend time counting the support of the candidates in the

MFCS while still not �nding any maximal frequent itemsets from the MFCS. For

instance, our algorithm took more time than the Apriori algorithm in the case

when the minimum support is set to 0.75% and the database is T10.I4.D100K.

However, since there were only a few candidates in the MFCS, the di�erence is

quite small.

Fig. 4.3 shows the results of experiments on database T20.I6.D100K. The best

improvement in these experiments occured when minimum support is 0.5%. In

this case, the Pincer-Search ran about 1.4 times faster than the Apriori algorithm.

The reduction of the number of passes and the number of candidates contribute

to the improvement.

4.2.2 Concentrated Distributions

In the second set of experiments we study the relative performance of the two

algorithms on databases with concentrated distributions. The results are shown

in Fig. 4.4, Fig. 4.5, and Fig. 4.6. In the �rst experiment, see Fig. 4.4, we use

59

Figure 4.1: Scattered Distribution T5.I2.D100K

60

Figure 4.2: Scattered Distribution T10.I4.D100K

61

Figure 4.3: Scattered Distribution T20.I6.D100K

62

the same parameters as the T20.I6.D100K database in the �rst set of experiments,

but the parameter jLj is set to 50. The improvements of Pincer-Search begin to

increase. When the minimum support is 18%, our algorithm runs about 2.3 times

faster than the Apriori algorithm.

The non-monotone property of the maximum frequent set, considered in Sec-

tion 4.1.3, impacts on this experiment. When the minimum support is 12%, both

Apriori algorithm and Pincer-Search algorithm took eight passes to discover the

maximum frequent set. But, when the minimum support decreases to 11%, the

maximal frequent itemsets become longer. This forced the Apriori algorithm to

take more passes (nine passes) and consider more candidates to discover the max-

imum frequent set. In contrast, the MFCS allowed our algorithm to reach the

maximal frequent itemsets faster. Pincer-Search took only four passes and consid-

ered fewer candidates to discover all maximal frequent itemsets.

We further increased the average size of the frequent itemsets in the next two

experiments. The average size of the maximal frequent itemsets was increased to

10 in the second experiment and database T20.I10.D100K was used. The results

are shown in Fig. 4.5. The best case, in this experiment, is when the minimum

support is 6%. Pincer-Search ran approximately 23 times faster than the Apriori

algorithm. This improvement mainly came from the early discovery of maximal

frequent itemsets which contain up to 16 items. Their subsets were not generated

63

Figure 4.4: Concentrated Distribution T20.I6.D100K

64

Figure 4.5: Concentrated Distribution T20.I10.D100K

65

Figure 4.6: Concentrated Distribution T20.I15.D100K

66

and counted in our algorithm. As shown in this experiment, the reduction of the

number of candidates can signi�cantly decrease both I/O time and CPU time.

The last experiment ran on database T20.I15.D100K. As shown in Fig. 4.6,

Pincer-Search took as few as three passes to discover all maximal frequent itemsets

which contain as many as 17 items. This experiment shows improvements of more

than two orders of magnitude when the minimum supports are 6% and 7%. One can

expect even greater improvements when the average size of the maximal frequent

itemsets is further increased.

4.2.3 Using a Hash-Tree

Our �rst implementation of the Pincer-Search algorithm did not use a hash-tree for

the support counting phase. On Sridhar Ramaswamy's suggestion, we incorporated

a hash-tree into our implementation. Using a hash-tree did improve the overall

performance a lot. Both Apriori algorithm and Pincer-Search algorithm bene�t

from using it. The speed up is about four to eight times. In addition to using the

hash-tree, the databases were converted from a text format into a binary format.

This also improves the I/O time for about 20 to 30%. Fig. 4.7{Fig. 4.12 show

the results of the same experiments as previous sections, but with the help of the

hash-tree.

67

Figure 4.7: Scattered Distribution T5.I2.D100K (Using a Hash-Tree)

68

Figure 4.8: Scattered Distribution T10.I4.D100K (Using a Hash-Tree)

69

Figure 4.9: Scattered Distribution T20.I6.D100K (Using a Hash-Tree)

70

Figure 4.10: Concentrated Distribution T20.I6.D100K (Using a Hash-Tree)

71

Figure 4.11: Concentrated Distribution T20.I10.D100K (Using a Hash-Tree)

72

Figure 4.12: Concentrated Distribution T20.I15.D100K (Using a Hash-Tree)

73

4.2.4 Census Databases

A PUMS �le, which contains public use microdata samples, was provided to us

by Roberto Bayardo from IBM. This �le contains actual census entries which

constitute a �ve percent sample of a state that the �le represents. This database

is similar to the database looked at by Brin et al. [BMUT97]. As discussed in

that paper, this PUMS database is very hard. That is because there are many

more items than in the previous synthetic supermarket databases: there are about

7000 items in this PUMS database, in comparison with 1000 items in the synthetic

databases. Furthermore, a number of items in the census database appear in a

large fraction of the database and therefore very many frequent itemsets will be

discovered. From the distribution point of view, this means that some maximal

frequent itemsets are quite long and the distribution of the frequent itemsets is

quite scattered.

In order to compare the performance of the two algorithms within a reasonable

time, we used the same approach as they proposed in the paper: we remove all

items that have 80% or more support from the database. The experimented results

are shown in Fig. 4.13.

In this real-life census database, the Pincer-Search algorithm also performs well.

In all cases, the Pincer-Search algorithm used less time, few candidates, and fewer

passes of reading the database. The overall improvement in performance ranges

74

Figure 4.13: Census Database

75

from 10% to 650%.

4.2.5 Stock Market Databases

We also conducted some experiments on the stock market databases. We used

the trading data of June 1997, collected by the New York Stock Exchange, for

the experiments. The trading data contains the symbol, price, volume, and time

for every trade. Around 3000 common stocks were chosen for these experiments.

We are interested in discovering the price changing patterns in the database. A

simpli�ed problem can be stated as the followings:

\What are those stocks that their trading prices go up and down together 2/3

of the time in one day?"

Whether the price of a stock goes up or down is determined by looking at

the �rst and the last trading price of the stock within an interval of time. If the

last price is higher than the �rst price, then the price is up. If there is no trade

for a stock during this period of time, then assume that the price is unchanged.

Otherwise, the price is down. Collect all those stocks that their prices go up during

this period of time and treat them as a transaction in our association rule mining

problem. Do the same for those stocks that their prices go down during this period

of time and form another transaction. Now, we can run the frequent set discovery

algorithm to discover the price changing patterns.

76

We ran experiments on every trading day of June 1997. Here, we only show the

experiments on those days that reect extreme cases when either Pincer-Search or

Apriori performed best. The experiments on June 3, June 20, and June 23 are

shown in Fig. 4.14, Fig. 4.15, and Fig. 4.16 respectively. The minimum supports

range from 40% to 73%. We cannot choose a �xed range of minimum support

because of the data in each day are quite di�erent from each other. The interval

was set to 60 minutes.

For the experiments on June 3 data and June 23 data, Pincer-Search performed

much better than the Apriori algorithm. For the experiments on June 20 data,

even though the Pincer-Search algorithm used fewer passes and fewer candidates

than the Apriori algorithm, the overhead of maintaining the MFCS costs too much.

The Apriori algorithm performed better in this case. It is possible to adjust some

of the parameters in the adaptive approach to reduce the di�erences. We would

like to study in the future a good way of dynamically adjusting the parameters.

Because of the number of records in the database is 15, which is very small,

we have only a few available values on setting the minimum support. As we can

see from these �gures, there is a big jump in execution time when we decrease the

minimum support down to some point. For instance, see the experiment of June

3, when the minimum support is decreased from 53% (8/15) to 46% (7/15), the

execution time increases signi�cantly. When we decrease the minimum support

77

further, neither algorithm can complete the execution due to the limited size of

the main memory. However, we suspect that Pincer-Search will do better when

the minimum support is decreased (maximal frequent itemsets will be longer). In

many cases, Pincer-Search did �nd many very long maximal frequent itemsets in

very early passes. However, since the MFS is not complete, we cannot draw any

conclusion.

In many of these experiments, Pincer-Search did use fewer passes. However, as

the database is so small, the property of reducing the passes of reading the database

for Pincer-Search algorithm did not contribute to the saving of the execution time.

The improvement came purely from reducing the number of candidates.

To increase the number of records, one could reduce the interval (below 60 min-

utes) or consider all the trades in a month or even a year. However, by combining

multiple days' data together, we might lose the opportunities to discover some

distinguished patterns that occur only in some of the days. Therefore, we tried to

increase the size of the database by reducing the size of the interval. The inter-

val was set to 30 minutes and the results were shown in Fig. 4.17, Fig. 4.18, and

Fig. 4.19. Pincer-Search didn't perform better than Apriori in these experiments,

because the average transaction length and the average maximal frequent itemset

length were short.

In all the other experiments that are not shown here, both algorithms perform

78

competitively, since the maximal frequent itemsets are all short. The totals of the

execution time of all other experiments are 3,451,328 seconds and 3,175,642 seconds

for Pincer-Search and Apriori respectively. The totals of the candidates used are

162,258 and 110,358, and the total passes used are 714 and 863 for Pincer-Search

and Apriori respectively.

We will study other problems in discovering other interesting price changing

patterns.

79

Figure 4.14: NYSE Databases June 3, 1997 (60-minute's interval)

80

Figure 4.15: NYSE Databases June 20, 1997 (60-minute's interval)

81

Figure 4.16: NYSE Databases June 23, 1997 (60-minute's interval)

82

Figure 4.17: NYSE Databases June 3, 1997 (30-minute's interval)

83

Figure 4.18: NYSE Databases June 20, 1997 (30-minute's interval)

84

Figure 4.19: NYSE Databases June 23, 1997 (30-minute's interval)

85

Chapter 5

Concluding Remarks

5.1 Summary

An e�cient way to discover the maximum frequent set can be very useful in various

data mining problems, such as the discovery of the association rules, theories,

strong rules, episodes, and minimal keys. The maximum frequent set provides a

unique representation of all the frequent itemsets. In many situations, it su�ces to

discover the maximum frequent set, and once it is known, all the required frequent

subsets can be easily generated.

In this thesis, we presented a novel algorithm that can e�ciently discover the

maximum frequent set. Our Pincer-Search algorithm could reduce both the number

of times the database is read and the number of candidates considered. Experi-

ments show that the improvement of using this approach can be very signi�cant,

86

especially when some maximal frequent itemsets are long.

A popular assumption is that the maximal frequent itemsets are usually very

short and therefore the computation of all (and not just maximal) frequent itemsets

is feasible. Such assumption on maximal frequent itemsets does not need to be

true in important applications. Consider for example the problem of discovering

patters in price changes of individual stocks in a stock market. Prices of individual

stocks are frequently quite correlated with each other. Therefore, the discovered

patterns may contain many items (stocks) and the frequent itemsets are long. We

expect our algorithm will be useful in these applications.

5.2 Future Work

The performance of the Pincer-Search algorithm in applications of discovering

other price changing patterns in stock markets will be studied. The maximal

frequent itemsets in many instances of such applications are likely to be long.

Therefore we expect the algorithm to provide dramatic performance improvements.

Many classi�cation problems as discussed in [B97] tend to have long patterns.

We will study the performance of the Pincer-Search algorithm on these problems.

In general, if some maximal frequent itemsets are long and the maximal frequent

itemsets are distributed scatteredly, then the problem of discovering the MFS

can be very hard. In this case, even Pincer-Search might not be able to solve it

87

e�ciently. Parallelizing the Pincer-Search algorithm might be a possible way to

solve this hard problem. We propose to divide the candidate set in such a way

that all the candidates that are subsets of an itemset in the MFCS are assigned to

a same processor.

Although there might be some duplicate calculations, this way of partitioning

the candidates can have the bene�ts that no synchronization or communication

among processors is needed. Each processor can run totally independent. The

duplicate calculations come from the following scenario: consider the MFCS in

the kth pass, if two itemsets in the MFCS have equal or more than k same items,

then there will be duplicate calculations if we assign these two itemsets (and their

subsets) to two di�erent processors.

We will study the performance of parallel Pincer-Search algorithms in the fu-

ture. The way to minimize the duplicate calculations and maximize the use of

available processors will be an important problem to study.

88

Bibliography

[AABMSS96] R. Agrawal, A. Arning, T. Bollinger, M. Mehta, J. Shafer, R.

Srikant. The Quest Data Mining System. In Proc. 2nd International Con-

ference on Knowledge Discovery in Databases and Data Mining (KDD),

Aug. 1996.

[AIS93a] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules be-

tween sets of items in large databases. In Proc. SIGMOD, May 1993.

[AIS93b] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A perfor-

mance perspective. IEEE Transactions on Knowledge and Data Engineer-

ing, Vol. 5, No. 6, Dec. 1993.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in

large databases. In Proc. 20th VLDB, Sept. 1994.

[AS96] R. Agrawal and J. Shafer. Parallel mining of association rules. IEEE Trans.

on Knowledge and Data Engineering, Jan. 1996.

89

[B97] R. J. Bayardo. Brute-force mining of high-con�dence classi�cation rules.

In Proc. 3rd International Conference on Knowledge Discovery and Data

Mining (KDD), Aug. 1997.

[BMS97] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: gener-

alizing association rules to correlations. In Proc. SIGMOD, May 1997.

[BMUT97] S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting

and implication rules for market basket data. In Proc. SIGMOD, May 1997.

[FPS96] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge discovery

and data mining: toward a unifying framework. In Proc. 2nd International

Conference on Knowledge Discovery and Data Mining (KDD), Aug. 1996.

[FPSU96] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthrusamy (Eds.).

Advances in Knowledge Discovery and Data Mining. AAAI Press, Menlo

Park, CA, 1996.

[GKMT97] D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen. Data min-

ing, hypergraph traversal, and machine leaning. In Proc. PODS, 1997.

[GMS97] D. Gunopulos, H. Mannila, and S. Saluja. Discovering all most speci�c

sentences by randomized algorithm. In Proc. International Conference of

Database Theory (ICDT), Jan. 1997.

90

[HCC92] J. Han, Y. Cai, and N. Cercone. Knowledge discovery in database: an

attribute-oriented approach. In Proc. 18th VLDB. Sept. 1992.

[HF95] J. Han and Y. Fu. Discovery of multiple-level association rules from large

databases. In Proc. 21st VLDB, Sept. 1995.

[HKK97] E. Han, G. Karypis, and Vipin Kumar. Scalable parallel data mining for

association rules. In Proc. SIGMOD, May 1997.

[HKMRT96] K. H�at�onen, M. Klemettinen, H. Mannila, P. Ronkainen, and H.

Toivonen. Knowledge Discovery from Telecommunication Network Alarm

Databases. In Proc. 12th International Conference on Data Engineering

(ICDE), Feb. 1996.

[HS93] M. Houtsma and A. Swami. Set-oriented mining of association rules. Re-

search Report RJ 9567, IBM Almaden Research Center, Oct. 1993.

[KMRTB94] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I.

Berkamo. Finding interesting rules from large sets of discovered association

rules. In Proc. 3rd International Conference on Information and Knowledge

Management, Nov. 1994.

[L96] D. Lin. Mining association rules with longest frequent candidates. Unpub-

lished manuscript. July 1996.

91

[L97] D. Lin. Mining association rules for long frequent itemsets. Unpublished

manuscript. March 1997.

[LK97] D. Lin and Z. Kedem. Pincer-Search: A new algorithm for discovering the

maximum frequent set. Technical Report TR1997-742, Dept. of Computer

Science, New York University, Sept. 1997.

[LK98] D. Lin and Z. Kedem. Pincer-Search: A new algorithm for discovering the

maximum frequent set. In Proc. of the 6th International Conference on

Extending Database Technology (EDBT). Mar. 1998.

[M82] T. Mitchell. Generalization as search. Arti�cial Intelligence, Vol. 18, 1982.

[M95] A. Mueller. Fast sequential and parallel algorithms for association rule min-

ing: A comparison. Technical Report No. CS-TR-3515 of CS Department,

University of Maryland-College Park.

[M97] H. Mannila. Methods and problems in data mining (a tutorial). In Proc.

of International Conference on Database Theory (ICDT), Jan. 1997.

[MT95] H. Mannila and H. Toivonen. Discovering frequent episodes in sequences.

In Proc. 1st International Conference on Knowledge Discovery and Data

Mining (KDD), Aug. 1995.

[MT96a] H. Mannila and H. Toivonen. On an algorithm for �nding all interesting

92

sentences. In 13th European Meeting on Cybernetics and Systems Research,

Apr. 1996.

[MT96b] H. Mannila and H. Toivonen. Multiple uses of frequent sets and con-

densed representations. In Proc. 2nd International Conference on Knowl-

edge Discovery and Data Mining (KDD), Aug. 1996.

[MT96c] H. Mannila and H. Toivonen. Discovering generalized episodes using min-

imal occurrences. In Proc. 2nd International Conference on Knowledge

Discovery and Data Mining (KDD), Aug. 1996.

[MT97] H. Mannila and H. Toivonen. Levelwise search and borders of theories in

knowledge discovery. Technical Report TR C-1997-8, Dept. of Computer

Science, U. of Helsinki, Jan. 1997.

[MTV94] H. Mannila, H. Toivonen, and A. Verkamo. Improved methods for �nding

association rules. In Proc. AAAI Workshop on Knowledge Discovery, July

1994.

[NYSE97] The TAQ Database Release 1.0 in CD-ROM, New York Stock Exchange,

Inc., June 1997.

[ORS98] B. �Ozden, S. Ramaswamy. and A. Silberschatz. Cyclic Association Rules.

In Proc. 14th International Conference on Data Engineering (ICDE), Feb.

1998.

93

[P91] G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules.

Knowledge Discovery in Databases, AAAI Press, 1991.

[PBKKS97] G. Piatetsky-Shapiro, R. Brachman, T. Khabaza, W. Kloesgen, and

E. Simoudis. An overview of issues in developing industrial data mining and

knowledge discovery applications. In Proc. 2nd International Conference

on Knowledge Discovery and Data Mining (KDD), Aug. 1996.

[PCY95] J. Park, M. Chen, and P. Yu. An e�ective hash-based algorithm for

mining association rules. In Proc. ACM-SIGMOD, May 1995.

[S96] R. Srikant. Fast algorithm for mining association rules and sequential pat-

terns. Ph.D. Thesis, University of Wisconsin, Madison, 1996.

[SA95a] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. 11th

Int'l Conference on Data Engineering (ICDE), Mar. 1995.

[SA95b] R. Srikant and R. Agrawal. Mining generalized association rules. In Proc.

21st VLDB. Sep. 1995.

[SA96a] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations

and Performance Improvements. In Proc. of the 5th International Confer-

ence on Extending Database Technology (EDBT). Mar. 1996.

94

[SA96b] R. Srikant and R. Agrawal. Mining Quantitative Association Rules in

Large Relational Tables. In Proc. SIGMOD, June 1996.

[SON95] A. Sarasere, E. Omiecinsky, and S. Navathe. An e�cient algorithm for

mining association rules in large databases. In Proc. 21st VLDB, Sept.

1995.

[SVA97] R. Srikant, Q. Vu, and R. Agrawal. Mining Association Rules with Item

Constraints. In Proc. of the 3rd International Conference on Knowledge

Discovery in Databases and Data Mining (KDD), Aug. 1997.

[T96a] H. Toivonen. Discovery of frequent patterns in large data collections. Tech-

nical Report A-1996-5 of the Department of Computer Science, University

of Helsinki, Finland, 1996.

[T96b] H. Toivonen. Sampling large databases for association rules. In Proc. 22nd

VLDB, Sept. 1996.

[Z97] M. J. Zaki. Fast mining of sequential patterns in very large databases.

Technical Report 668 of the Department of Computer Science, University

of Rochester. Nov. 1997.

[ZPOL96] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel data min-

nig for association rules on shared-memory multi-processors. Technical Re-

95

port 618 of the Department of Computer Science, University of Rochester.

May 1996.

[ZPOL97] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms

for fast discovery of association rules. In Proc. 3rd International Conference

on Knowledge Discovery and Data Mining (KDD), Aug. 1997.

96

Fast Algorithms for

Discovering the Maximum Frequent Set

by

Dao-I Lin

Advisor: Zvi M. Kedem

Discovering frequent itemsets is a key problem in important data mining applica-

tions, such as the discovery of association rules, strong rules, episodes, and minimal

keys. Typical algorithms for solving this problem operate in a bottom-up breadth-

�rst search direction. The computation starts from frequent 1-itemsets (minimal

length frequent itemsets) and continues until all maximal (length) frequent itemsets

are found. During the execution, every frequent itemset is explicitly considered.

Such algorithms perform reasonably well when all maximal frequent itemsets are

short. However, performance drastically decreases when some of the maximal fre-

quent itemsets are relatively long. We present a new algorithm which combines

both the bottom-up and the top-down searches. The primary search direction is

still bottom-up, but a restricted search is also conducted in the top-down direction.

This search is used only for maintaining and updating a new data structure we

designed, the maximum frequent candidate set. It is used to prune candidates in

the bottom-up search. A very important characteristic of the algorithm is that it

does not require explicite examination of every frequent itemset. Therefore the al-

gorithm performs well even when some maximal frequent itemsets are long. As its

output, the algorithm produces the maximum frequent set, i.e., the set containing

all maximal frequent itemsets, thus specifying immediately all frequent itemsets.

We evaluate the performance of the algorithm using well-known synthetatic bench-

mark databases and real-life census and stock market databases. The improvement

in performance can be up to several orders of magnitude, compared to the best

current algorithms.

