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ha(@) = max {y"Az: yeRN, ze R, [y|=|z]=1}
= max {tr AU : U=zy", yeRY, z2eRY, Jy| =|z] =1}.
This maximum is achieved by matrices of the form
{U=Quu™PT: w=1[u 0]; wue®, |u|=1}, (10)
since then R R
tr AU = w!'Sw = 5.
Notice the appearance of the symmetric rank-one matrix ww?. It follows
from standard results in convex analysis [16] that dhs(a) is the convex hull
of (10). The proof is completed by noting that the convex hull of
{fuu? : weR, |Ju| =1}
is [11, Lemma 1]

{ Uy € SR tr Uy =1, Uy >0}

Alternatively, the theorem may be proved less directly by applying [11,
Thm 2] to the maximum eigenvalue of

0 A
AT o
noting that the negative copies of the singular values are of no interest.
It is interesting to note that [11, Thm 1] does not seem to generalize

nicely to the singular value case, because there does not seem to be any
simple formula for the convex hull of

{z9": y, z2€RY, Jyl =2 =1}

Constructing a structure function for hjz is similar to the process for hs.
Let
b = (3, vecskew B,vecskew C,vecdiag D)

where B and C' are skew-symmetric matrices of order N, and D is a diagonal
matrix of order N — ¢. Define ¢g(b) = § and

®(a,b) = vecsym (¢ PT(Sym a)Qe® — [ ﬂOI g ])

As in the case of hg, it is necessary to introduce further restrictions on b in
order to obtain the right dimension count and a regularity condition on .
In this case, the appropriate restriction is apparently that the leading ¢ by
t blocks of B and C' be equal.

12



to hear of other structured convex functions that arise in applications and
have a genuinely different structure from those discussed here.
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Appendix.
Suppose that n = N2, define

A = Mat a
to be the N by N matrix defined by the elements of @, and let
¢ = vecmat A.
Let
hs(a) = the maximum singular value of the matrix Mat a.
Let @ be given, with A = Mat a. Suppose the singular values of A are

01 =""=0;>0441 > "> 0N,

with P and @ orthogonal matrices whose columns are respectively the left
and right singular vectors of A, i.e.

AQ = PS

where ¥ = Diag(;). The following result is already known [22], but the
simple derivation may be of interest.

Theorem.

Ohs(@) = {veesym QUPT : U € SRV, U = l Uél 8 ]

Upp € SR, tr Uy =1, Uy > 0}

Proof: A standard variational result is

11



Suppose that convergence does take place towards a point z satisfying
0 € 0f(z). In order to guarantee that the convergence rate is second-
order, we need the manifold € and the associated structure function to be
more than just C'!, but rather C'? with a Lipschitz condition on the second
derivative. (If we insist that @ be C? in its original definition, we cannot
claim that TQ(a@) and aff dh are, in general, orthogonal complements. A
counterexample is obtained by considering a function which is C* but not
C*? in a certain direction.)

A Newton step for (8)—(9) linearizes ® to make first-order approxima-
tions to the constraint manifold, and uses a quadratic objective based on
the Hessian of i(m, b,u). Considering again the orthogonal decomposition
of the variable space into the tangent space to the constraint manifold and
the affine hull of the generalized gradient, we see that first-order approxima-
tion is used in the latter direction while second-order information is needed
in the former direction. Given regularity conditions on the functions a(z)
and ®(a,b), as well as the usual second-order positive definite condition in a
subspace, quadratic convergence of such a Newton method can be expected.

There is one important difficulty which has not yet been discussed, and
that is the dependence of the definition of the structure function itself on
Z. In the case of the function hq, this simply means that an “active set”
of indices must be identified. This is a standard approach in nonlinear and
minmax programming and is quite acceptable, at least for nondegenerate
problems, since it only requires estimating which elements of @ are coa-
lescing to the same maximum value. In the case of the function kg, the
multiplicity ¢ of the maximum eigenvalue must be identified: this is also
acceptable for the same reason. But more is needed in the case of hy: the
definition of the structure function also requires @, which is assumed to be
a set of eigenvectors corresponding to an ezactly multiple eigenvalue. In
practice, however, the eigenvalue will be multiple only at the limit point of
the iteration. The best we can do is to define ® in terms of the eigenvectors
of the current matrix iterate. It turns out that quadratic convergence is still
obtained, but the convergence analysis is substantially complicated by this
difficulty: see [14] for details.

We conclude by soliciting examples of other interesting convex functions.
We are aware of many examples related to those discussed here, such as other
polyhedral functions [7,10], the maximum singular value of a nonsymmetric
matrix (see Appendix), other norm functions [22], diagonal scaling problems
[12,21], sums of eigenvalues [13], etc. The ideas discussed in this paper are
apparently applicable to all these functions. We would be very interested

10



function g and point b. Given a regularity condition on the function a(z), we
can expect to find the same orthogonal decomposition of the variable space
into the tangent space to the composite manifold and the affine hull of
the composite subdifferential (generalized gradient). Consider the equality-
constrained nonlinear program

zeﬁ%g‘l,i%ew 9(b) (8)
s.t.  ®(a(z),b) = 0. (9)

The corresponding Lagrangian is
L(2,6,4) = g(b) + (u, ®(alz), b))
We have Vbi = V3L and
V. L(z,b,u) = VeaVaL(a(z),b,u) = V,aV,®(a(z),b) u.
Let
U(z)={v: 3, u s.t. VoL(z,b,u)=v; ViL(z,b,u)=0; ®(a(z),b)=0}.
Then if ¥(a) = aff dh(a), we also have ¥(Z) =

larity condition on @, a necessary condition for ( \
nonlinear program is that V, L(Z,b,u) = 0, V, L(Z,b,u) = 0, ®(a(Z),b) = 0.
If ¥(z) = aff 0f(Z), this means that 0 € aff 0f(z). We therefore have

the standard necessary condition for Z to minimize the composite function

df(z). Given a regu-

aff ¢
,b,u) to locally solve the
b,

[ = hoa, with the exception of the inequalily conditions on the dual variables
defining Oh(a) .

These ideas suggest that the Newton step for the nonlinear program (8)-
(9) is the main ingredient needed to construct a second-order minimization
algorithm for h o a. Of course, we want convergence to a point = with
0 € 3f(Z), not just 0 € aff 9f(Z). The best way to ensure this seems to
be to compute approximate dual variable information at every step, check
the necessary inequality condition on these quantities (z > 0 in the case
of hi, Sym uw > 0 in the case of hy), and, if this condition does not hold,
conclude that the current manifold (defined by z) is not optimal, and take
a step away from the manifold instead of towards it. It may not be obvious
how to do this: in the case of hg, see [11, Sec. 3].

'Tt is instructive to compare these formulas and conclusions with the results for the
general polyhedral case given by Osborne [10, pp.191-193].



to 0®;/0a;, evaluated at (a,b). Then
VoL(a,b,u)=V,® u,

Vil(a,b,u)=Vg+ V@ u,

and, of course,

Vul(a,b,u)= 9.
Define the set

V(a)=4d: 3b, u st. V,L(a,b,u)=d; VyL(a,b,u)=0; @(a,b)=0}.

Since the definition of I depends on @, so does the definition of ¥. In the
case of the ordinary max function hy, we have b = 3,

0L(a,b,u)
ap

Vol(a,b,u) = lé ]u: lg ]

so we see from (3) that, if a is near enough to a, the set ¥(a) is precisely
aff 0hq(a).

Now consider the max eigenvalue function hy. It is straightforward to
show that

=1-¢eTu

ViL(a,b,u) =

and

VaL(a,g, u) = vecsym QuaT,

where U = Sym u. (This equation does not hold in a neighborhood of (a,Z),
but only at the point.) The first component of Vi, L(a,b,u) is

70L(g’ﬂb7 u) =1-tr UH,
where Uy is the leading ¢ by ¢ block of U. Furthermore, it can be shown
[14, Thm 5.2] that setting the other components of VbL(ﬁ,Z, u) to zero gives
the condition that all elements of U outside the U;; block must be zero.
Therefore, we see from (5) that ¥(a) is precisely aff 0hy(a).

We conjecture that this result, ¥(a) = aff dh(a), can be stated and
proved in a fairly general setting.

Now recall that our objective is to minimize the composite function
f=hoa. Suppose that a point Z is given: this defines @ = a(z), which
in turn defines a composite structure function ® and the associated smooth



where @ is defined in (4) and I denotes the identity matrix of order t. We
have s = N(N + 1)/2. Clearly, ¢ is smooth, and letting

b = (ha(@), vecskew 0, (Ary1, ..., AN)),

we have @(&,Z) = 0. Furthermore, ®(a,b) = 0 implies that A = Sym «
is similar to a diagonal matrix whose first ¢ elements are 3. Since the
eigenvalues of a matrix are a continuous function of the matrix elements,
this implies that the maximum eigenvalue of A equals 3 if a is sufficiently
close to a.

This choice of structure function has one difficulty: n+r—s, the number
of variables in (a,b) reduced by the number of equations in ®, equals n +
1 — ¢, which is not the dimension of (@). This implies that too many
variables were introduced in b, or alternatively, that not enough equations
were imposed in ®. The inevitable conclusion is that a desirable regularity
condition, namely that the Jacobian of ® have full rank at (&,3), will fail
to hold. It turns out [14] that the solution to this difficulty is to restrict
the leading ¢ by ¢ block of B to be zero. This reduces r by ¢(t — 1)/2, so
that n+r —s =n+1— 1t + 1)/2, as desired. An alternative approach
to parameterizing (@) for the max eigenvalue function has recently been
proposed by [18].

It is no surprise to find that TQ(a) and aff Jh(a) are orthogonal com-
plements, since h is smooth when restricted to £ and, on the other hand,
the subdifferential describes exactly directions in which A is nonsmooth.
Theorem 13.1 of [16] is highly relevant in this regard. More worthy of note,
perhaps, is that for the interesting function hg, beautifully simple arguments
from convex analysis show that dhy(@) has the form (5), while equally beau-
tiful and simple arguments from differential geometry show that the tangent
space TQ(a) is orthogonal to the affine hull of (5). We must, however, be
cautious in making general statements. In particular, nothing has yet been
said about the uniqueness of 2: clearly, one should define © to have dimen-
sion as large as possible. Provided this is done properly, it seems that the
orthogonal complementarity of TQ(a) and aff 0h should hold in general.

Let us introduce a Lagrangian

L(a,b,u) = g(b) + (u, ®(a,b)).

Since the definition of the structure function ® depends on @, so does the
definition of the Lagrangian. Let VL denote the gradient of L with respect
to a, etc., with V,®, for example, being the matrix with ¢, ;7 element equal



Clearly, the conditions on the structure function are satisfied. Note that,
in this case, » + r — s, the number of variables in a and b reduced by the
number of equations in ®, equals 1, the dimension of €2.

Now consider hy, the ordinary max function, with ¢ defined in (1). The
manifold ©(a) is defined by constraining a; = --- = a4, which is an affine
space with dimension n 4+ 1 — ¢ (codimension ¢ — 1). As was the case with
ho, we see from (3) that (a) and aff dhq(a) are orthogonal complements.
Let r=1,b=0€eR, s =1,

ar —
g(B)=p and ®(a,f)= :
ar — B
Letting B = hi(a), we have @(a,ﬁ) = 0. The equation ®(a,) = 0 implies
that a; = -+ = a; = §, and hence, if a is close enough to @, the max element

equals 8. Thus, the conditions on the structure function are satisfied. We
have n+r —s=n+ 1 —t, the dimension of Q(a).

Now consider hy(a), the maximum eigenvalue of A = Sym a. We have
n = N(N+1)/2, where N is the dimension of A. Define ¢, the multiplicity of
the largest eigenvalue, by (4). The manifold ©(a) is defined by constraining
the ¢ largest eigenvalues of Sym a to be equal. This is a nonlinear manifold,
with dimension n+1—%(¢+1)/2 (codimension #(t+1)/2—1), a fact apparently
first observed in [19]. Let TQ(a) be the linear manifold which is tangent
to (@) at @. Then it can be shown, using elementary techniques from
differential geometry described in [1, Sec. 2] or [6, Prop. 2.1.1], that the
tangent space T(a) is orthogonal to the affine space (6), aff dhy(a).

The best way to parameterize (@) using a structure function is not
obvious, but one convenient way is as follows. Let

b = (8, vecskew B,vecdiag D),

where 3 € R, B is a skew-symmetric matrix of order N, ie. B = =BT, with
vecskew B the corresponding vector in RVW-1/2 and D is a diagonal
matrix of order N — ¢, with vecdiag D the corresponding vector in RV,

Thus, b € R, where r = N(N 4+ 1)/2 —t + 1. Define g(b) = § and

®(a,b) = vecsym (¢ BQT(Sym a)Qe® — [ /60] 10) ]),



see Burke [2] for a more general treatment, including an interesting histor-
ical account of convex composite optimization. Another general treatment
is given by [25].

Our key assumption is that, given any point a, the local structure of the
convex function A is known. By this we mean that a manifold ©(@), contain-
ing the point @ and contained in ", on which h reduces to a smooth function
near @, is known. More specifically, suppose that (@) is the solution set of
a known equation

®(a,b) =0, (7)
projected into R™. Here the structure function
d: RTXR =R s O,
with @(&,3) = 0 for some b € R", and with, for some positive ¢,

®(a,b)=0and |[l[ea—a||<e = h(a)=g(b)

where
g: =R isCL

We have introduced the additional variables & € " in order to facilitate
the description of Q by the structure function ®. Our use of the structure
function @ is partly inspired by the notion of structure functionals for poly-
hedral convex functions introduced by Osborne[10] and may be viewed as a
generalization of this concept to the nonpolyhedral case.

Before applying these ideas to hy and hg, let n = 2 and consider the
simple convex function

1
ho(a) = §af—l— las| .

To avoid the trivial case, assume dy = 0. The subdifferential is then easily
seen to be

{a: ay =ay; ay €[-1,1]},

SO

aff Oho(a) ={a: a1 =ay}.

The manifold Q(a) is the linear space {a: ay = 0}. Note particularly that
Q(a) and aff Ohg(a) are orthogonal complements. To parameterize £ in the
structure function notation, let » = 1, and write 6 = § to emphasize that

beR. Let s =2,

-t i = [127]



case of hy, there are no second-order effects to consider, since hy is polyhe-
dral. But in the case of hy, we would like to use second-order information
as well; the subdifferential does not contain this information.

For the composite function f = hoa, it is well known that a generalized
subdifferential, more often known as a generalized gradient, can be obtained
by means of a chain rule [5,7]. Composing the subdifferential of the convex
function h with the gradient of the smooth function a, we have

df(z) = Oh(a)o Va(z)

={veR": v=(d Va(z)), for some d € dh(a)}.

A necessary condition for optimality is then
0€df(z).

Let & be a given point, defining @ = a(Z), and consider f; = hyoa, f3 = hyoa.
We have

t o
0fi(z)={v: v, = Zuigﬂ, we R, lu=1, u>0}
=1 Lk

and

A da  ~ Uiy 0
0f2(z) = {v: = 0T r_ 11
OhE)=te: we =t UG (Sym 5,09 L‘[ 0 0]’

Uy € SR, tr Uy =1, Uy > 0},

But, since the second-order information in A9 is not contained in the subdif-
ferential, the second-order information in f; cannot be obtained from simply
composing the subdifferential of hy with the Hessian of a.

There has been a great deal of recent work concerning second-order an-
alytical tools for general convex functions. An excellent overview is given by
Burke[3]; other references include [4,8,9,15,17,20]. We take a very different
approach here, assuming specifically that a lot is known about the structure
of the convex function. Work on numerical methods for convex composite
optimization has, on the other hand, been mostly limited to the case where
the convex function h is polyhedral: see [7,23,24,25,26]. These methods do
not easily generalize to the nonpolyhedral case in a satisfactory way since the
subproblems which need to be solved are not tractable in general. However,



the affine space of smallest dimension containing dh(a). We have aff dh(a) =
Oh(a) if and only if h is differentiable at @.

Duality principles which give a concise representation of the subdiffer-
ential of A are known for the functions h; and hy. In the first case, let @ be
a given point and assume without loss of generality that

o~

al:.”:at>at+12...zan7 (1)

for some integer {. Then, as is well known [7],
ahl(a):{[g]: weR, efu=1, u>0}, (2)
where e = [1...1]%. Consequently
aff Ohy(d) = {l B‘ ] s ue R, elu=1}. (3)

In the case of hy, suppose without loss of generality that the eigenvalues
of A = Sym a are

~ o~

/\1:---:Xt>xt+1>--->/\N (4)
with @ a matrix whose columns are a corresponding orthonormal set of

eigenvectors. Then [11],

ST A 7.
Ohy(a) = {veesym QUQT : U € SRV, U = l 5011 8 ]

Uy € SR tr Uy =1, Uy > 0}, (5)

Here SRYXN denotes the set of real symmetric matrices, tr denotes trace
and Uy > 0 means that Uyq is positive semi-definite. It follows that

aff ahQ(a) = {VeCSym @LT@T - Ue S%NXN’ U= l 81 8 ]’

LT11 € S-SRtXt, tr Lrll = 1} (6)

The subdifferential gives all the relevant first-order variational informa-
tion about A, but does not, of course, give second-order information. In the



(continuously differentiable). Thus
f: R =R
with
f(z) = h(a(z)).
In practice, the convex function h often has a rather special structure.
The simplest example is

hi(a) = the maximum element of the vector a.

In this case, hy is said to be polyhedral, since the epigraph of hy (the set of
points (a,n) € ™! satisfying > hq(a)) is a polyhedron.

Some more interesting examples are obtained by considering convex func-
tions whose argument, while conveniently denoted as a vector ¢ € R", is
really a matrix associated with that vector. If n = N(N 4 1)/2 for some
integer N, define

A=Syma
to be the N by N symmetric matrix defined by copying the elements of a
consecutively into its upper triangle, multiplying the off-diagonal elements
by the factor 1/+/2 for convenience, and let

a = vecsym A

denote the inverse operation, defining the vector a in terms of the elements

of A. Let
ha(a) = the maximum eigenvalue of the symmetric matrix Sym a.

By Rayleigh’s variational principle, kg is convex, but it is not polyhedral.
First-order optimality conditions for a convex function h are conveniently
described in terms of its subdifferential [16], defined by

Oh(a) ={deR": h(a)> h(a)+ (a —a,d), VYa e R"}.
A necessary condition for @ to minimize h is then
0 € Oh(a).

The subdifferential dh(a) is compact and reduces to a single point if and

only if h is differentiable at @, in which case 0h(a) = Vh(a). We shall need
to refer to the affine hull of the subdifferential,

aff Oh(a),
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Abstract

Structured nonsmooth optimization objectives often arise in a com-
posite form f = hoa, where h is convex (but not necessarily polyhedral)
and a is smooth. We consider the case where the structure of the non-
smooth convex function A is known. Specifically, we assume that, for
any given point in the domain of h, a parameterization of a manifold €2,
on which A reduces locally to a smooth function, is given. We discuss
two affine spaces: the tangent space to the manifold Q at a point, and
the affine hull of the subdifferential of h at the same point, and explain
that these are typically orthogonal complements. We indicate how the
construction of locally second-order methods is possible, even when h
is nonpolyhedral, provided the appropriate Lagrangian, modeling the
structure, is used. We illustrate our ideas with two important convex
functions: the ordinary max function, and the max eigenvalue function
for symmetric matrices, and we solicit other interesting examples with
genuinely different structure from the community.

A minimization objective which often arises in practice is the composite
function f = h o a where
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