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ABSTRACT

Domain decomposition methods are powerful iterative methods for solving sys-

tems of algebraic equations arising from the discretization of partial differential

equations by, e.g., finite elements. The computational domain is decomposed into

overlapping or nonoverlapping subdomains. The problem is divided into, or as-

sembled from, smaller subproblems corresponding to these subdomains.

In this dissertation, we focus on domain decomposition methods for mortar

finite elements, which are nonconforming finite element methods that allow for

a geometrically nonconforming decomposition of the computational domain into

subregions and for the optimal coupling of different variational approximations in

different subregions.

We introduce a FETI method for mortar finite elements, and provide numer-

ical comparisons of FETI algorithms for mortar finite elements when different

preconditioners, given in the FETI literature, are considered. We also analyze

the complexity of the preconditioners for the three dimensional versions of the

algorithms.

We formulate a variant of the balancing method for mortar finite elements,

which uses extended local regions to account for the nonmortar sides of the subre-

gions. We prove a polylogarithmic condition number estimate for our algorithm in

the geometrically nonconforming case. Our estimate is similar to those for other

Neumann–Neumann and substructuring methods for mortar finite elements.

In addition, we establish several fundamental properties of mortar finite ele-

ments: the existence of the nonmortar partition of any interface, the L2 stability

of the mortar projection for arbitrary meshes on the nonmortar side, and prove

Friedrichs and Poincaré inequalities for geometrically nonconforming mortar ele-

ments.

v



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1

1.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Trace Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 8
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Chapter 1

Introduction

1.1 An Overview

Domain decomposition methods are powerful iterative methods for solving systems

of algebraic equations arising from the discretization of partial differential equa-

tions (PDEs) by, e.g., finite elements. The computational domain, i.e., the domain

where the PDE is defined and must be solved, is decomposed into overlapping

or nonoverlapping subdomains. The problem is divided into, or assembled from,

smaller subproblems corresponding to these subdomains. More generally, we can

consider the decomposition of the finite element space into a sum of subspaces,

which are often related to the subdomains or to other sets. The subproblems are

solved directly or iteratively, and the exchange of information between subspaces

is handled by an iterative method. These algorithms can be regarded as methods

for building Krylov space preconditioners for the linear systems.

The best of the domain decomposition methods converge in relatively few iter-

ation steps. The iteration count is independent of the number of subregions and

depends only weakly on the dimension of the finite element spaces used in the

discretization. These scalability properties are due in part to the use of a coarse

space, which has few degrees of freedom compared with the original finite element

problem. At each iteration step, the corresponding coarse solver smoothes out the

low frequency components of the iteration error, while the local solvers smooth out

the high frequency ones.
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The first domain decomposition algorithm is believed to be the alternating

Schwarz method, which was developed in the 19th century by Schwarz [115]. It is

an iterative method and was used by Schwarz for proving the existence of solutions

for elliptic PDEs on domains which are the union of subregions with non-void inter-

section, if the PDE can be solved in each subregion. The interest in this algorithm

was revived in the 1980’s by P. L. Lions [87, 88], who analyzed a variational for-

mulation of the Schwarz method. Numerous domain decomposition methods have

been designed, studied, and implemented in the last decade; see Section 3.3 for a

brief overview. Two monographs by Smith, Bjørstad, and Gropp [122] and Quar-

teroni and Valli [108] have appeared recently, and yearly international conferences

are being held; see [67, 37, 38, 68, 73, 107, 74, 69, 16, 92, 82].

In this thesis, we concentrate on mortar finite elements, which are nonconform-

ing finite element methods that allow for a geometrically nonconforming decompo-

sition of the computational domain into subregions and, at the same time, for the

optimal coupling of different variational approximations in different subregions.

Here, optimality means that the global error is bounded by the sum of the local

approximation errors on each subregion.

The mortar finite element methods were first introduced by Bernardi, Maday,

and Patera in [13, 14], for low-order and spectral finite elements, and were extended

to three dimensional elements in [8, 9].

Mortar finite elements have several advantages over the conforming finite ele-

ments. For example, the mesh generation is more flexible and can be made quite

simple on individual subregions. This also makes it possible to move different parts

of the mesh relative to each other, e.g., in a study of time dependent problems.

The same feature is most valuable in optimal design studies, where the relative

position of parts of, e.g., an automobile or an electrical machine, is not fixed a pri-

ori. The mortar methods also allow for local refinement of finite element models

in only certain subregions of the computational domain, and are well suited for

parallel computing; cf. [71].

Let us briefly describe the mortar finite element space V h for the two dimen-

sional case. The computational domain Ω is decomposed into a nonoverlapping

polygonal partition {Ωi}i=1:N , possibly made of curvilinear polygons. The parti-
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tion is called geometrically conforming if the intersection between the closure of

any two subregions is either empty, a vertex, or an entire edge, and it is called

nonconforming otherwise. The restriction of V h to any subregion Ωi is a conform-

ing finite element or spectral element space. These spaces can be independent of

each other, and can differ in degree and type.

Across the interface Γ, i.e., the set of points that belong to the boundaries of

at least two subregions, pointwise continuity is not required. We partition Γ into

a union of nonoverlapping subregion edges called nonmortars. The edges across

Γ, not chosen to be nonmortars, are called mortars. We note that the partition

and the choice of nonmortars are not unique; however, any choice can be treated

similarly. On the two sides of a nonmortar edge γ, there are two distinct traces

of the mortar functions and we only require that their difference is L2−orthogonal

to a space of test functions defined on γ. This space is generally a subspace of

codimension two of the restriction of V h to γ; this allows the values of the mortar

function at the end points of any nonmortar to be genuine degrees of freedom.

As we have just seen, when introducing a mortar finite element space on Ω, the

first step is to decompose Ω into nonoverlapping subregions. Since the domain de-

composition methods are also based on such a decomposition of the computational

domain, there exists a natural connection between mortars and domain decompo-

sition. In the recent past, this connection has been the basis for extensive studies

of domain decomposition methods for mortars; see [3, 44, 45, 46, 84, 85, 81, 126,

2, 1, 36, 134], and also Chapter 2 for more details.

This thesis is also focused on domain decomposition methods for mortar finite

elements. Our main goal has been to obtain numerical and theoretical performance

estimates for these methods of the same form as in the conforming finite element

case.

In Chapter 5, we analyze the Finite Element Tearing and Interconnecting

(FETI) method of Farhat and Roux [61] applied to mortar finite elements. The

FETI method is an iterative substructuring method where Lagrange multipliers

are used to enforce continuity conditions across the subdomain interface. There-

fore, we can apply this method to mortar finite elements without changing the

algorithm. The main difference is that the Lagrange multipliers matrix is used to
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enforce mortar conditions across the interface, instead of pointwise continuity.

Our numerical experiments, which were performed both in two and three di-

mensions, show that the original preconditioner for the FETI method with con-

forming elements used in [61] does not perform well in the mortar case. However,

a new preconditioner recently suggested by Klawonn and Widlund [78] performs

satisfactory. The number of iterations required to achieve convergence depends

only weakly on the number of nodes in each subregion and is independent of the

number of subregions. Thus, by these experiments with the mortar case, we were

led to believe that the new preconditioner might always have a better performance

than the original preconditioner, even for the conforming case. Our numerical tests

confirm this hypothesis. The number of iterations for the conforming finite ele-

ments FETI method with the new preconditioner is roughly half of that required

with the original preconditioner. We also analyze the extra computational effort,

due to the complexity of the mortar conditions, required for the implementation

of the FETI algorithm with new preconditioner, in the three dimensional case. We

conclude that the improvement of the iteration count offsets this extra cost.

In Chapter 6, we formulate a variant of the balancing method of Mandel and

Brezina [89] for mortar finite elements. The balancing method is a hybrid nonover-

lapping Schwarz method of Neumann-Neumann type. An important role is played

by the counting functions associated with the boundary nodes of each subregion.

They indicate to how many local spaces a node on the interface belongs, and are

used to construct the local approximate solvers and a coarse space of minimal

dimension. In the mortar case, the values of a mortar function on a nonmortar

side depend on its values on the mortar sides opposite the nonmortar. In our

algorithm, we choose to extend the local spaces to capture this feature. We also

change the counting functions, which are now associated to the number of local

spaces to which a boundary node belongs. We prove an upper bound for the con-

dition number of our balancing algorithm for geometrically nonconforming mortar

case, which is of the same form as the condition number estimates for other domain

decomposition methods for mortars; see, e.g., Achdou, Maday, and Widlund [3]

and Dryja [46].

Another part of our work is concerned with establishing several fundamental
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properties of mortar finite elements. We present these results in Chapter 4.

By using a combinatorial argument, we prove the existence of the nonmortar

partition of any interface, in two and three dimensions, for general geometrically

nonconforming partitions.

The mortar projection is the operator which gives the values of the mortar

finite element function at the interior nodes of a nonmortar as obtained from the

mortar conditions. We show that the mortar projection is stable in L2 for arbitrary

meshes on the nonmortar. The constant in the stability inequality depends only

on the polynomial degree of the finite element space on the nonmortar, and does

not depend on the properties of the nonmortar mesh.

Another important issue in the study of mortar methods is to compare the

condition numbers of the stiffness matrices of the discretized system, obtained when

using mortar and continuous elements. For a geometrically conforming partition,

it has been shown by Bernardi and Maday [10, 11] that the condition number

behaves as in the continuous case. We show that the same result holds for the

geometrically nonconforming case, by proving a Friedrichs-type inequality for the

mortar functions. The same type of arguments also lead to a proof of a Poincaré-

type inequality for mortar finite element methods.

The L2 stability result of Section 4.2 has appeared as a technical report [123].

The Friedrichs and Poincaré inequalities for mortars have also appeared as a tech-

nical report [124] which has been submitted for publication. The numerical results

for two dimensional problems of Chapter 5 appear in papers written jointly with

Axel Klawonn [125, 126], the first of which has been accepted for publication in [82].

In the remainder of this chapter, we give a brief presentation of certain Sobolev

spaces and some of their properties. In Section 1.3, we present the variational for-

mulation of our elliptic boundary values problem, and, in Section 1.4, we describe

the finite element spaces we considered in this thesis. We conclude the chapter

by presenting, in Section 1.5, some technical results on Sobolev norms for finite

element functions which are often used in the analysis of domain decomposition

methods.
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1.2 Sobolev Spaces

Sobolev spaces are essential tools in solving elliptic partial differential equations.

Using the variational formulation of the PDE, the existence of a generalized so-

lution in the appropriate Sobolev space can be established by using variational

methods, in particular the Lax-Milgram lemma. Regularity results are also ex-

pressed by bounding the Sobolev norm of the solution of the PDE in terms of the

Sobolev norm of the boundary data and the right hand side; cf. [29, 86].

In this section, we present some basic results on Sobolev spaces, which are used

in the study of domain decomposition methods, and are relevant for this thesis.

We restrict our presentation to the spaces we need in our work. For a description

of the general spaces and their properties, see [4, 86, 95].

Let Ω ⊂ Rd, d ∈ {1, 2, 3}, be a bounded domain with smooth boundary. The

space L2(Ω) is defined as the space of square integrable functions,

L2(Ω) = {u : ||u||L2(Ω) =
(∫

Ω

|u|2dx
)1/2

<∞}.

Let k be a positive integer. The Sobolev space Hk(Ω) is the Hilbert space of

functions with weak derivatives of all orders less than and equal to k in the space

L2(Ω). In particular, the inner product on H1(Ω) is

(u, v)H1(Ω) =

∫

Ω

uv dx +

∫

Ω

∇u · ∇v dx.

The H1-seminorm and norm of u ∈ H1(Ω) are, respectively,

|u|2H1(Ω) =

∫

Ω

|∇u|2 dx;

||u||2H1(Ω) = |u|2H1(Ω) + ||u||2L2(Ω).

Of particular interest for domain decomposition methods, see, e.g., [52], is the

scaled norm obtained by dilation of a domain of unit diameter,

||u||2H1(Ω) = |u|2H1(Ω) +
1

diam(Ω)2
||u||2L2(Ω), (1.1)

where diam(Ω) is the diameter of Ω.
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The Sobolev spaces can also be defined as the closure of C∞(Ω) in the cor-

responding norm, e.g., H1(Ω) is the closure of C∞(Ω) with respect to || · ||H1(Ω).

Let C∞
0 (Ω) ⊂ C∞(Ω) be the set of smooth functions with compact support. The

subspace H1
0 (Ω) ⊂ H1(Ω) is the closure of C∞

0 (Ω) with respect to || · ||H1(Ω), and

consists of all the functions from H1(Ω) which vanish on ∂Ω in the L2 sense.

The following lemma gives necessary and sufficient conditions for a piecewise

H1 function to be H1 on the entire domain. The proof is elementary, and is based

on Green’s formula; cf. [41].

Lemma 1.1. Let {Ωi}i=1:N be a nonoverlapping partition of the domain Ω, and

let u be a function defined on Ω such that u ∈ H1(Ωi), i = 1 : N . Then u ∈ H1(Ω)

if and only if the jump of u across the interface between the subregions {Ωi}i=1:N

vanishes in the L2 sense.

On the entire space Rd, another way to introduce the Sobolev spaces is by

using the Fourier transforms; see [63] for more details. In this setting, let Fu be

the Fourier transform of u, and let

(Fu)(ζ) = (1 + |ζ|2)s/2û(ζ).

Then u ∈ Hs(Rd) if and only if Fu ∈ L2(Rd), and

||u||Hs(Rd) = ||Fu||L2(Rd).

We note that this definition holds for every real number s ∈ R. For negative

numbers, the space H−s(Rd) is isomorphic to the dual space of Hs(Rd) with respect

to the inner product

< u, v > = (Fu,Fv)L2(Rd). (1.2)

The fractional Sobolev spaces on bounded domains are introduced in a slightly

different way. If k is a positive integer, then H−k(Ω) is the dual space of Hk
0 (Ω)in

the L2 inner product; see (1.2). Let s ∈ R such that s is not an integer. Then,

Hs(Ω) can be obtained from Hbsc(Ω) and Hdse(Ω) by using the K-method of inter-

polation; cf., e.g., Lions and Magenes [86] and Triebel [131]. Alternatively, for s

positive, it follows from an extension theorem that any u ∈ H s(Ω) can be obtained

7



as the restriction of ũ ∈ Hs(Rd). It also follows from a density result that C∞
0 (Rd)

is dense in Hs(Ω) .

For the purpose of this thesis, we restrict our attention to the spaces H s(Ω),

−1 ≤ s ≤ 1. For these spaces, the smoothness conditions imposed on the boundary

of Ω can be relaxed to Ω being a bounded Lipschitz domain, which is satisfied, e.g.,

by polygonal and polyhedral domains.

1.2.1 Trace Theorems

The trace theorems are results concerning the restriction of elements of Sobolev

spaces on a domain to the boundary of the domain. Their duals are the extension

theorems. The following trace theorem will be useful later on; see [4] for the general

theory.

Theorem 1.1. If Ω is a Lipschitz domain and u ∈ Hs(Ω), 1/2 < s ≤ 1, then,

γ0u = u |∂Ω∈ H
s−1/2(∂Ω).

Moreover, the restriction operator from Hs(Ω) to Hs−1/2(∂Ω) is onto and contin-

uous,

||γ0u||Hs−1/2(∂Ω) ≤ C(s,Ω)||u||Hs(Ω),

where C(s,Ω) is a constant that depends only on s and Ω.

The next theorem is a variant of Theorem 1.1, for functions in H1(Ω). We

consider the norms given by (1.1), such that the dependence of the constants on

the domain Ω can be specified.

Theorem 1.2. If Ω is a Lipschitz domain, then

|u|2H1/2(∂Ω) ≤ C|u|2H1(Ω),

and

||u||2L2(∂Ω) ≤ C
(
diam(Ω)|u|2H1(Ω) +

1

diam(Ω)
||u||2L2(Ω)

)
.
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Let Λ ⊆ ∂Ω be a subset of the boundary of Ω of positive measure. Then

H1/2(Λ) is the trace space of H1(Ω) on Λ. As we mentioned before, the fractional

Sobolev spaces can also be obtained by using the K-method of interpolation. Thus,

H1/2(Λ) = [L2(Λ), H1(Λ)]1/2. The scaled norm on H1/2(Λ) given by K-method

interpolation is equivalent to

||u||2H1/2(Λ) = |u|2H1/2(Λ) +
1

diam(Ω)
||u||2L2(Λ).

Let H
1/2
00 (Λ) = [L2(Λ), H1

0(Λ)]1/2 be a space obtained by the K-method of in-

terpolation. This space plays an important role in the analysis of the domain

decomposition methods. It can also be characterized as the maximal subspace of

H1/2(Λ) of the functions which will belong to H1/2(∂Ω) when extended by zero to

the rest of ∂Ω. We note that the embedding H
1/2
00 (Λ) ⊂ H1/2(Λ) is strict. The

appropriate norm for this space is

||u||2
H

1/2

00 (Λ)
= ||u||2H1/2(Λ) +

∫

Λ

u2(x)

d(x, ∂Λ)
dσx.

The last term comes from the part of the H1/2-seminorm of u corresponding to

∂Ω \ Λ, where u vanishes by definition. From the intrinsic formula for the H1/2

seminorm, it follows that

||u||2
H

1/2

00
(Λ)

= ||u||2L2(Λ) +

∫

Λ

∫

Λ

|u(x)− u(y)|2

|x− y|d
dσxdσy +

∫

Λ

u2(x)

d(x, ∂Λ)
dσx. (1.3)

1.2.2 Poincaré and Friedrichs Inequalities

The Poincaré and Friedrichs inequalities provide simple equivalent norms for spaces

like H1
0 andH1, and are used to derive convergence and condition number estimates

for finite element methods. They can be proven using the Rellich compactness

theorem and the completeness of Sobolev spaces; see [41, 96].

We are interested in formulations of the inequalities specifying the dependence

of the constants on the domain Ω; see [96] for elementary proofs. We introduce

the following notations: Let Ω̂ ⊂ Rd, d ∈ {2, 3}, be a reference Lipschitz domain of

unit diameter, and let Ω be a domain of diameter diam(Ω) obtained by a uniform

dilation of Ω̂.
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Theorem 1.3. (Poincaré’s Inequality) There exists a constant C that depends

only on Ω̂, such that

||u||2L2(Ω) ≤ C
(
diam(Ω)2|u|2H1(Ω) +

1

diam(Ω)d

∣∣∣
∫

Ω

udx
∣∣∣
2)
, ∀u ∈ H1(Ω).

Theorem 1.4. (Friedrichs’ Inequality) Let c > 0 and let Λ ⊂ ∂Ω such that

cµ(∂Ω) ≤ µ(Λ),

where µ is the Lebesgue measure. Then,

||u||2L2(Ω) ≤ C
(
diam(Ω)2|u|2H1(Ω) +

1

c2diam(Ω)d−2

∣∣∣
∫

Λ

udσ
∣∣∣
2)
, ∀u ∈ H1(Ω),

where C is a constant that does not depend on u, Ω, Λ, or c.

Let Λ ⊂ ∂Ω and let

H1
0,Λ(Ω) = {u ∈ H1(Ω) | u|Λ = 0}. (1.4)

The next corollary follows directly from Theorem 1.4.

Corollary 1.1. If µ(Λ) > 0, then the H1-seminorm is an equivalent norm on

H1
0,Λ(Ω), i.e.,

||u||H1(Ω) ≤ C|u|H1(Ω), ∀u ∈ H1
0,Λ(Ω).

1.3 Variational Formulation of Elliptic Problems

The variational methods are used extensively in solving self-adjoint elliptic PDEs,

see, e.g., [29, 63, 96], and they are fundamental for the finite element methods;

see [27, 41]. To simplify our presentation, we only discuss the Poisson problem on

a domain Ω, with mixed Neumann-Dirichlet boundary conditions.

Let ∂Ω = ∂ΩN ∪ ∂ΩD, where ∂ΩN and ∂ΩD are the parts of the boundary

where Neumann and Dirichlet boundary conditions are imposed, respectively. For

unique solvability, we require that ∂ΩD has positive Lebesgue measure.
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Let f ∈ L2(Ω), and let H1
0,∂ΩD

(Ω) be defined as in 1.4. We look for a solution

u ∈ H1
0,∂ΩD

(Ω) of the mixed boundary value problem



−∆u = f on Ω
u = 0 on ∂ΩD
∂u
∂n

= 0 on ∂ΩN .
(1.5)

A simple application of Green’s theorem will result in

a(u, v) = f(v), ∀ v ∈ H1
0,∂ΩD

(Ω), (1.6)

where

a(v, w) =

∫

Ω

∇v · ∇w dx and f(v) =

∫

Ω

fv dx.

A solution u of (1.6) is called a weak solution of the mixed problem (1.5). The

main ingredient in the proof of the existence and uniqueness of a weak solution is

the Lax-Milgram Lemma.

Lemma 1.2. (Lax–Milgram [83]) Let X be a Hilbert space and let aX : X×X → R

be a bilinear form. If aX(·, ·) is continuous and coercive, i.e.,

c||x||2X ≤ aX(x, x), ∀ x ∈ X,

aX(x, y) ≤ CaX(x, x)1/2aX(y, y)1/2 ∀ x, y ∈ X,

where c, C > 0, then for every continuous functional T : X → R there exists a

unique solution xT ∈ X such that

aX(xT , x) = T (x), ∀x ∈ X.

The continuity of aX(·, ·) follows from the Schwarz inequality. Using Corol-

lary 1.1, we obtain that a(·, ·) is coercive. The existence of the weak solution u of

(1.6) can therefore be established by using Lemma 1.2. From a classical regularity

result, see [86], we obtain that, if Ω is bounded and regular enough, e.g., a C2

domain, then u ∈ H2(Ω) and

||u||H2(Ω) ≤ C||f ||L2(Ω),

where C depends only on Ω. Using once again Green’s theorem we obtain that

any weak solution u ∈ H2(Ω) is a solution of the mixed problem (1.5).
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1.4 Finite Element Methods

The main difficulty in any study of mortar finite elements comes from the fact

mortar elements are discontinuous across subdomain interface. To concentrate on

this problem, and simplify our presentation, we consider only low order mortar

elements. The underlying conforming finite elements are Q1 or P1 elements on

rectangular domains. In this section, we give a brief presentation of these elements.

Let K ⊂ R2. A rectangular grid on K provides a triangulation of K, which

is required to be shape regular, i.e., the ratio of the largest and smallest side of

each rectangle is uniformly bounded from above. The restriction of Q1(K) to each

rectangle is a bilinear function, with four degrees of freedom. Enforcing pointwise

continuity at the nodes of the rectangular grid results in uniquely determined

continuous functions.

The three dimensional elements are defined in a similar fashion, using paral-

lelipipeds, and can be extended to affine deformations of parallelipipeds.

The P1 elements can be defined, in two dimensions, on arbitrary polygonal

domains K partitioned into triangles. The restriction of P1(K) to each triangle is

a linear function with three degrees of freedom, i.e., the values of the finite element

function at the vertices of the triangle. As for Q1 functions, enforcing pointwise

continuity at the nodes of the partition of K results into uniquely determined

continuous functions. In three dimensions, the P1 elements are defined similarly,

using tetrahedra for the partition of K.

We note that, in two dimensions, both P1 or Q1 elements results into identical

projections across the interface, since the restriction of either P1(K) or Q1(K) to

∂K is a piecewise linear function of the mesh partition of ∂K.

1.5 Cutoff Estimates

A result which is often needed in the analysis of domain decomposition methods,

e.g., of substructuring methods, is a bound for the energy of a finite element

function which has been cut down to zero at all nodes except for one vertex, or for

the nodes on one side of the domain, in terms of the energy of the original function;
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see, e.g. [23, 48, 89]. In the next lemma we present a classical polylogarithmic

bound of this type, which will be used in Chapter 5 and in Chapter 6.

Theorem 1.5. Let D be a rectangle of diameter H, and let V h be a low order

finite element space over D, with mesh size h. Let w ∈ V h, and w̃ ∈ V h(∂D) such

that w̃ is equal to w |∂D at all the interior nodes of one side of D and vanishes at

all the other nodes. Then,

||w̃||2H1/2(∂D) ≤ C(1 + log(H/h))2
(
|w|2H1/2(∂D) +

1

H
||w||2L2(∂D)

)
;

||w̃||2H1/2(∂D) ≤ C(1 + log(H/h))2
(
|w|2H1(D) +

1

H2
||w||2L2(D)

)
.

If w̃ vanishes at all the nodes of ∂D, except at one vertex, where it is equal to w,

then

||w̃||2H1/2(∂D) ≤ C(1 + log(H/h))
(
|w|2H1/2(∂D) +

1

H
||w||2L2(∂D)

)
;

||w̃||2H1/2(∂D) ≤ C(1 + log(H/h))
(
|w|2H1(D) +

1

H2
||w||2L2(D)

)
.

We note that, in each case, the second inequality follows form the first one, by

using the trace Theorem 1.2.
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Chapter 2

Mortar Finite Elements

2.1 Introduction

Mortar finite elements are nonconforming finite element methods that allow for

nonconforming decomposition of the computational domain into subregions and for

the optimal coupling of different variational approximations in different subregions.

Because of these features, the mortar elements can be used effectively in solving

large classes of problems.

The mortar finite element methods were first introduced by Bernardi, Maday,

and Patera in [13, 14], for low-order and spectral finite elements. A three dimen-

sional version was developed by Ben Belgacem and Maday in [9], and was further

analyzed for three dimensional spectral elements in [8]. See also Seshaiyer and

Suri [117, 118] for mortar hp finite elements, Hoppe [72], Ben Belgacem, Buffa,

and Maday [5], and Buffa, Maday, and Rapetti [30] for mortar H(curl) elements.

Cai, Dryja, and Sarkis [33] have extended the mortar methods to overlapping de-

compositions, and another family of mortar elements has recently been introduced

by Wohlmuth [138].

Several domain decomposition methods for mortar finite elements have been

shown to perform similarly to the case of conforming finite elements; cf. Achdou,

Maday, and Widlund [3] and Dryja [44, 45] for iterative substructuring methods,

Widlund [134] for additive Schwarz algorithms, Dryja [46], Le Tallec [84], and Le

Tallec, Sassi, and Vidrascu [85] for Neumann-Neumann algorithms, and Lacour
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and Maday [81] and Klawonn and Stefanica [126] for the FETI method. For other

studies of preconditioners for the mortar method, see Casarin and Widlund [36]

for a hierarchical basis preconditioner, Achdou, Kuznetsov, and Pironneau [2], and

Achdou, and Kuznetsov [1] for iterative substructuring preconditioners. Multigrid

methods have also been used to solve mortar problems; cf. Braess, Dahmen, and

Wieners [18], Braess, Dryja, and Hackbusch [19], Wieners and Wohlmuth [136,

135], and Wohlmuth [139].

2.2 2–D Low Order Mortar Finite Elements

To introduce a mortar finite element space, the computational domain Ω is decom-

posed using a nonoverlapping partition {Ωi}i=1:N , consisting of polygons,

Ω =
N⋃

i=1

Ωi, Ωj

⋂
Ωk = ∅ if 1 ≤ j 6= k ≤ N.

As in Section 1.3, let ∂ΩD be the part of ∂Ω where Dirichlet conditions are

imposed. If an edge of a polygon intersects ∂ΩD, we require that the entire edge

belongs to ∂ΩD. The partition is said to be geometrically conforming if the inter-

section between the closure of any two subregions is either empty, a vertex, or an

entire edge, and it is nonconforming otherwise.

The interface between the subregions {Ωi}i=1:N , denoted by Γ, is defined as the

closure of the union of the parts of {∂Ωi}i=1:N that are interior to Ω:

Γ = ∪N
i=1(∂Ωi \ ∂Ω).

Alternatively, Γ can be defined as the set of points that belong to the boundaries

of at least two subregions.

We denote by V h be the space of low order mortar finite elements, and by

V h(S) the restriction of V h to a set S. For every subregion Ωi, V
h(Ωi) is a con-

forming element space. The mortar elements are nonconforming finite elements,

since pointwise continuity is not required across Γ. Instead, we choose a set of

open edges (γl)l=1:L of the subregions {Ωi}i=1:N , called nonmortars, which form a
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Figure 2.1: Partition of Γ into nonmortars (dotted)

disjoint partition of the interface,

Γ =

L⋃

l=1

γl, γm ∩ γn = ∅ if 1 ≤ m 6= n ≤ L;

see Figure 2.1. We impose weak continuity conditions for the mortar finite element

functions, in the sense that the jump of a mortar function across each nonmortar

is required to be orthogonal to a space of test functions.

In Section 4.1, we prove that a nonmortar partition of the interface is always

possible. The partition is not unique, but any choice can be treated the same from

a theoretical point of view.

The edges of {Ωi}i=1:N that are part of Γ and were not chosen to be nonmortars

are called mortars and are denoted by {ζm}
M
m=1. We note that the mortars also
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cover the interface:

Γ =
M⋃

m=1

ζm, ζm ∩ ζn = ∅ if 1 ≤ m 6= n ≤M.

Each nonmortar γl belongs to exactly one subregion, denoted by Ωi(l). Let Γl

be the union of the parts of the mortars that coincides geometrically with γ l.

Γl =

q(γl)⋃

i=1

(ζ l,i ∩ γl). (2.1)

For each γl, we will choose a space of test functions Ψh(γl) which is a subspace

of V h(γl), the restriction of V h(Ωi(l)) to γl, and which is of codimension two. Thus,

when the space V h(Ωi(l)) is piecewise linear, i.e., P1(Ωi(l)) or Q1(Ωi(l)), Ψh(γl) is

given by the restriction of V h(Ωi(l)) to γl, subject to the constraints that these con-

tinuous, piecewise linear functions are constant in the first and last mesh intervals

of γl.

The mortar projection on γl is defined on all of L2(Γl) and takes values in

V h(γl). For two arbitrary values q1 and q2, and for ul ∈ L2(Γl), the function

πq1,q2
(ul) ∈ V

h(γl) equals q1 and q2 at the two end points of γl, and satisfies
∫

γl

(ul − πq1,q2
(ul))ψds = 0, ∀ψ ∈ Ψh(γl). (2.2)

We are now able to define the mortar finite element space V h fully. Any mortar

function v ∈ V h, vanishes at all the nodes on ∂ΩD. The restriction of v to any

Ωi is a P1 or a Q1 finite element function. Across the interface, we require v to

satisfy the mortar conditions for each nonmortar γl, i.e., v|γl
is equal to the mortar

projection of v|Γl
. The values of v at the end points of γl (denoted by Al and Bl)

are genuine degrees of freedom:

v|γl
= πvl(Al),vl(Bl)(v|Γl

).

Since V h(Ωi) ⊂ H1(Ωi), we obtain, from Theorem 1.1, that the restriction of a

mortar function v to any nonmortar γl belongs to the space H1/2(γl). Then, the

test functions space Ψh(γl) may be embedded in the dual space of H1/2(γl) with

respect to the L2 inner product, and therefore Ψh(γl) ⊂ H−1/2(γl).
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Figure 2.2: Test functions; classical mortars–left; new mortars–right

Based on this observation, a space of discontinuous piecewise linear test func-

tions Ψh
new(γl) for low order mortars has been developed by Wohlmuth [138].

There, the test function associated to the first interior node on γl is constant

1 on the first mesh interval, decreases linearly from 2 to −1 on the second mesh

interval, and vanishes everywhere else. A similar test function is considered for the

last interior node on γl. For any other node on γl, the test function corresponding

to such a node has the support on the two mesh intervals having the node as an

end point; it increases linearly from −1 to 2 on the first interval and decreases

from 2 to −1 on the second interval; cf. Figure 2.2.

The new mortar space has similar approximation properties as the classical

mortar space; cf. [138]. In a recent paper [140], multigrid methods for the new

mortar methods are introduced and analyzed.

A major advantage of the new mortar finite element space is that the mortar

projection can be represented by a banded matrix, as opposed to the classical

mortar finite element method, where the mortar projection matrix is, in general,

a full matrix; see Section 2.2.1 for more details.
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2.2.1 Matrix Formulation of the Mortar Conditions

From the mortar conditions (2.2), it follows that the interior nodes of the nonmor-

tar sides are not associated with genuine degrees of freedom in the finite element

space V h. To emphasize this aspect, we present here the matrix formulation of the

mortar conditions.

Let γ be an arbitrary nonmortar side, and let u be a mortar function. Let uγ

be the vector of the interior nodal values of u on γ. For simplicity, we assume that

the mesh is uniform on γ, of mesh size h. Let uΓ(γ) be the vector of the values of u

at the end points of γ and at all the nodes on the edges opposite γ, such that the

intersection of γ and the support of the corresponding nodal basis functions is not

empty. Then uγ is uniquely determined by uΓ(γ), and the mortar conditions (2.2)

can be written in matrix form as

Mγuγ −NγuΓ(γ) = 0, (2.3)

solving for uγ,

uγ = PγuΓ(γ), (2.4)

with Pγ = M−1
γ Nγ.

We note that Nγ is a banded matrix with a band of similar size for both the

classical and the new mortars. For the classical mortar method, Mγ is a tridiagonal

matrix,

Mγ =
h

6




5 1
1 4 1

. . .
. . .

. . .

1 4 1
1 5



,

and the mortar projection matrix Pγ is a full matrix. The projection of a nodal

basis function from the mortar side, i.e. ul,Γ has all entries equal to 0, except for

one, which is equal to 1, results in a function with support equal to γ, the nodal

values of which decay exponentially to 0 at the end points of γ.

For the new mortar method, Mγ is a diagonal matrix,

Mγ = h I,
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and Pγ = Nγ/h is banded. Therefore, the mortar projection of a nodal basis

function on the mortar side vanishes outside the mesh intervals on the nonmortar

which intersect its support.

2.3 The 3-Dimensional Case

In this case, the mortars and nonmortars are open faces of subregions, and the

mortar projections are defined differently than in the two dimensional case.

To introduce the mortar finite element space, we follow the outline from the

previous section. Let {Ωi}i=1:N be a nonoverlapping polyhedral partition of Ω. If a

face or an edge of a polyhedron intersects ∂ΩD at an interior point, then the entire

face or edge is assumed to belong to ∂ΩD. The partition is said to be geometrically

conforming if the intersection between the closures of any two subregions is either

empty, a vertex, an entire edge, or an entire face, and it is nonconforming otherwise.

The nonmortars {Fl}
L
l=1 are faces of the subregions {Ωi}i=1:N , such that

Γ =

L⋃

l=1

F l, Fm ∩ Fn = ∅ if 1 ≤ m 6= n ≤ L;

see Section 4.1 for a proof of the existence of such partition. The mortars are the

faces which have not been chosen to be nonmortars, and their closures also cover

the interface.

Across each nonmortar face Fl, we impose mortar conditions as follows. Op-

posite Fl we find a union of parts of mortar faces which we denote by Gl. We note

that Gl coincides geometrically with Fl. Let Ψh(Fl) ⊂ V h(Fl) be the test function

space. The value of a test function at a node on ∂Fl is a convex combination of its

values at the neighboring interior nodes of Fl. Thus, the weights are positive and

their sum equals one, but they are otherwise arbitrary. The dimension of Ψh(Fl)

is equal to the number of interior nodes of Fl.

The mortar projection on Fl is defined on all of L2(Gl) and takes values in

V h(Fl). Let ul ∈ L
2(Gl), and let wl be a piecewise linear function defined on ∂Fl.

Then πwl
(ul) ∈ V

h(Fl) is the mortar projection of ul if

πwl
(ul) |∂Fl

= wl, and (2.5)
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∫

Fl

(ul − πwl
(ul)) ψds = 0, ∀ψ ∈ Ψh(γl). (2.6)

The mortar finite element space V h consists of functions v which vanish at all

the points of ∂ΩD Its restriction to any Ωi is a P1 or a Q1 finite element function.

We also require v to satisfy the mortar conditions for each nonmortar Fl, i.e.,

v|
Fl

= πv|∂Fl
(v|Fl

).

From the definition of the mortar projection, cf. (2.5), (2.6), it follows that the

values of v at all the boundary nodes of the nonmortars are genuine degrees of

freedom.

We conclude this section by noting that a version of the new mortars for the

3–D case has been developed by Wohlmuth and Krause [140].

2.4 Stability Properties of Mortar Projections

The discontinuity of the mortar functions across the interface is the main difference

between mortar and conforming finite elements. To show that mortars perform

similarly to the conforming finite elements, we need estimates for the jump of the

mortar function across an arbitrary nonmortar side. Since the jump is given in

terms of the mortar projection, it is important to establish stability properties of

the mortar projections in several norms, for different mortar finite elements.

In this section, we present some classical stability results for low order mortars,

which are valid in both two and three dimensions. In Section 4.2, we show that

the mortar projection with zero values at the end points of the nonmortar side is

stable in the L2 norm for arbitrary nonuniform meshes on the nonmortar.

Let γ be a nonmortar side, and let V h(γ) be the continuous piecewise linear

space which is the restriction of V h to γ. Let πγ : L2(γ) → V h(γ) ∩ H1
0 (γ) be

the mortar projection operator which vanishes at the end points; cf. (2.2) with

q1 = q2 = 0 and πγ = π0,0. The following stability properties of πγ were first

proven for uniform meshes in [13, 14], and by Ben Belgacem [6, 7] for quasiuniform

meshes.
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Theorem 2.1. The mortar projection πγ which assumes values 0 at the end points

of γ is stable in the L2–norm and the H1
0–seminorm,

||πγ(χ)||L2(γ) ≤ C||χ||L2(γ), ∀χ ∈ L2(γ);

|πγ(χ)|H1
0
(γ) ≤ C|χ|H1

0
(γ), ∀χ ∈ H1

0 (γ),

where C is a constant independent of h. By interpolation, a similar bound can be

obtained for the H
1/2
00 norm, i.e.,

||πγ(χ)||
H

1/2

00 (γ)
≤ C||χ||

H
1/2

00 (γ)
∀χ ∈ H

1/2
00 (γ).

Similar results have been proven for mesh-dependent norms in Braess, Dahmen,

Wieners [18], and for the case when the ratio of any two neighboring mesh intervals

over γ is uniformly bounded in Seshaiyer and Suri [117]. In the three dimensional

case, the L2 stability of the mortar projection which vanishes on the boundary of

the nonmortar side was established by Ben Belgacem and Maday [9].

We note that proofs similar to those for the results of Theorem 2.1 provide

stability inequalities for the more general case when λ ∈ H1(γ), and πγ(λ) vanishes

at the end points of γ.

2.5 Variational Formulation of Mortar Problems

In this section, we modify the variational formulation of the elliptic problems

discretized with conforming finite elements, see Section 1.3, and apply it to the

mortar finite element case. The main difference comes from the fact that mortar

elements are only piecewise H1 functions.

As before, we discuss the Poisson problem




−∆u = f on Ω
u = 0 on ∂ΩD
∂u
∂n

= 0 on ∂ΩN .
(2.7)

with f ∈ L2(Ω) and u ∈ H1
0,∂ΩD

(Ω).

We discretize (2.7) using a low order mortar finite element space V h, corre-

sponding to the nonoverlapping partition {Ωi}i=1:N of Ω. Using the fact that
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V h(Ωk) ∈ H
1(Ωk), k = 1 : K, we obtain

aΓ(u, v) = f(v), ∀v ∈ H1
0 (Ω), (2.8)

where the bilinear form aΓ(·, ·) is defined as the sum of contributions from the

individual subregions

aΓ(v, w) =
K∑

k=1

∫

Ωk

∇v · ∇w dx,

and

f(v) =

∫

Ω

fv dx.

The discrete problem is then:

Find uh ∈ V
h such that aΓ(uh, vh) = f(vh), ∀ vh ∈ V

h. (2.9)

We note that, for wh = vh, we obtain the square of what is often called a broken

norm,

aΓ(vh, vh) =
K∑

k=1

|vh|
2
H1(Ωk).

Here the norm has been broken along Γ and it is finite for any mortar function uh

even if uh is discontinuous across Γ.

The existence and uniqueness of the solution of problem (2.9) follows from the

Lax-Milgram Lemma 1.2 as soon as we have proven the coercivity of the broken

norm with respect to the L2 norm,

c||vh||
2
L2(Ω) ≤ aΓ(vh, vh), ∀ vh ∈ V

h,

where c is a positive constant. This inequality can be regarded as a Friedrichs

inequality for mortar finite elements, and was first established in [13, 14]; see also

Section 4.3.

2.6 Error Estimates

An important feature of mortar finite elements is that the mortar solution uh

approximates the exact solution u with the same accuracy as a corresponding
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conforming finite element solution. The proof we present here follows the same

steps as the proofs in [9, 13], which are given for both the two and three dimensional

elements.

We assume that the exact solution satisfies u ∈ H2(Ω). From the second Strang

lemma, see [127],

K∑

k=1

||u− uh||H1(Ωk) ≤ C
(

inf
vh∈V h

K∑

k=1

||u− vh||H1(Ωk) + sup
wh∈V h

|aΓ(u, wh)− f(wh)|∑
k ||wh||H1(Ωk)

)

= C
(

inf
vh

K∑

k=1

||u− vh||H1(Ωk) + sup
wh

∫
Γ

∂u
∂n

[wh] dσ∑
k ||wh||H1(Ωk)

)
, (2.10)

where [wh] is the jump of wh across the interface. We note that the first term of

(2.10) is the best approximation error, while the second term is the consistency

error.

The best approximation error can be estimated by using interpolation inequal-

ities for conforming finite elements, see [41], and stability properties of the mortar

projections, see Section 2.4. Thus,

inf
vh∈V h

K∑

k=1

||u− vh||H1(Ωk) ≤ Ch||u||H2(Ω).

To estimate the consistency error, we use the fact that the jump of a mortar

function is orthogonal to the space of test functions. We find

∫

Γ

∂u

∂n
[wh] dσ ≤ Ch||u||H2(Ω)

K∑

k=1

||wh||H1(Ωk).

The following upper bound is therefore established,

K∑

k=1

||u− uh||H1(Ωk) ≤ Ch||u||H2(Ω),

and it has the same form as for the conforming finite element case.

2.7 Saddle Point Formulation

We use the same notations as in Section 2.2, and concentrate our attention on

the mortar conditions (2.2). Let [vl] be the jump of vh ∈ V h across γl. The test
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functions from the mortar conditions can also be regarded as Lagrange multipliers.

In other words, a function u is in the mortar space V h if and only if
∫

γl

[vl]µlds = 0, (2.11)

for all nonmortar sides γl and for all Lagrange multipliers µl which form a basis

for Ψh(γl). From the trace theorem 1.2, [vl] ∈ H1/2(γl). Therefore the dual space

H−1/2(γl) is a natural embedding space for µl.

Let Mh =
∏

l Ψ
h(γl) ⊂

∏
l H

−1/2(γl), and µh ∈ Mh, with µh = (µl)l=1:L. The

bilinear form b(·, ·) is given by

b(vh, µh) =
L∑

l=1

∫

γl

[vh]µlds.

Then vh is a mortar function if and only if b(vh, µh) = 0, ∀µh ∈M
h. The discrete

problem (2.9) can be written in a saddle point (mixed) formulation as follows:

Find (uh, λh) ∈ V
h ×Mh such that

aΓ(uh, vh) + b(vh, λh) = fΓ(vh), ∀ vh ∈ V
h

b(uh, µh) = 0, ∀ µh ∈M
h.

The saddle point formulation for mortars has been introduced by Ben Bel-

gacem [7], where the Babuška-Brezi condition is also established. Similar results

for mesh dependent norms [137] have been proven by Braess and Dahmen [17],

Braess, Dahmen, and Wieners [18] and Wohlmuth [138].

The saddle point formulation is useful in the practical implementation of mortar

finite elements, since it decouples the nodes on opposite sides across the interface,

and provides a straightforward way to enforce the mortar conditions. The stiff-

ness matrix is then block diagonal, with each block corresponding to a Neumann

problem on one subregion. A mixed formulation along the same lines is possible

for conforming finite elements, when continuity at the matching nodes is required.

One of the domain decomposition methods we present in this thesis, FETI, uses

this saddle point formulation. The primal variables are eliminated and a pre-

conditioned problem is solved for the Lagrange multipliers. Therefore, a FETI

method for mortars can be developed just by replacing the pointwise matching
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conditions across Γ of the standard finite element case by the mortar conditions;

see Chapter 5.
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Chapter 3

Domain Decomposition Methods

3.1 Direct vs. Iterative Methods

When solving a strongly elliptic, self-adjoint PDE, the stiffness matrix of the result-

ing linear system is sparse, banded, symmetric, and positive definite. This system

may be solved by using direct or iterative methods. For two dimensional problems,

the work and storage required for direct methods grows moderately with the num-

ber of degrees of freedom. To be more precise, assume we want to solve a Poisson

problem on a rectangular domain using a Q1 finite element with N nodes on each

side. Let n = N2 be the number of the degrees of freedom. Nested dissection

provides an asymptotically optimal ordering of the nodes, and it is therefore an

efficient direct method. The work and storage required are O(n3/2) and O(n logn),

respectively; cf. [66]. Therefore, this and other direct methods are well-suited for

solving two dimensional problems.

For three dimensional problems, the work and storage required by the direct

methods grow much faster, which makes them less attractive. For nested dissection,

the work and storage are O(n2) and O(n4/3), respectively; see [114]. Therefore, in

the three dimensional case, iterative methods, where the solution is obtained as

the limit of a sequence of approximate solutions which are computed recursively,

are more practical.

A class of such iterative methods are the domain decomposition methods, which

provide Krylov space preconditioners for the linear system. The computational
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domain is decomposed into overlapping or nonoverlapping subdomains, and local

spaces are introduced by restricting the finite element space used to discretize the

PDE on each subdomain. In each iteration, a problem similar to the original one

is solved on each subdomain, either exactly or approximately.

Many domain decomposition methods have good parallelization properties since

the local problems can be solved in parallel. If a coarse space with a few degrees of

freedom in each subdomain is used in the design of the algorithms, together with

the local spaces, then convergence can be achieved in relatively few iterations. For a

good method the number of iterations is independent of the number of subdomains

and depends only polylogarithmically on the number of nodes in each subdomain.

3.1.1 Preconditioned Conjugate Gradient Methods

The conjugate gradient (CG) method is an efficient iterative method for solving

linear systems of equations. It requires little storage and, for well-conditioned

problems, converges in relatively few iterations.

When an elliptic self-adjoint PDE is discretized using a finite element space,

the resulting linear system,

Ax = b, (3.1)

has a symmetric positive definite stiffness matrix A. A domain decomposition

method will provide a symmetric, positive definite preconditioner M of A. The

preconditioned version of (3.1),

MAx = Mb, (3.2)

is then solved by a conjugate gradient method.

Following [130], we now present the preconditioned CG algorithm for solving

(3.2). We note that the (unpreconditioned) conjugate gradient algorithm can be

obtained from the preconditioned version if we let M = I.
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Preconditioned Conjugate Gradient Iteration

x0 = 0, r0 = b, p0 = Mr0, n = 1

while (Mrn−1, rn−1) ≥ tol

zn−1 = Mrn−1

βn = (zn−1, rn−1)/(zn−2, rn−2) (β1 = 0)

pn = zn−1 + βnpn−1 (p1 = z0)

αn = (zn−1, rn−1)/(Apn, pn)

xn = xn−1 + αnpn

rn = rn−1 − αnApn

n = n+ 1

end

Here, (·, ·) is the l2 inner product. Let ||e||2A = (Ae, e), and let κ(MA) be the l2

condition number of the preconditioned matrix MA, i.e.,

κ(MA) =
λmax(MA)

λmin(MA)
.

Then, by a standard error estimate,

||xn − x||2A ≤ 2

(√
κ(MA)− 1√
κ(MA) + 1

)2n

||x0 − x||2A.

Many domain decomposition methods result in good and robust precondition-

ers, with small condition number κ(MA), and require a small number of iterations

until satisfactory convergence is achieved. Also, the preconditioner M is never

formed explicitly, since it is needed only in a matrix vector multiplication. In

domain decomposition, this is done by solving problems similar to the original

problem on small subdomains of the computational domain. In the CG algorithm,

the local problems can be solved in parallel

Modified versions of the CG algorithm are used to solve symmetric indefinite

problems or some special positive definite nonsymmetric problems; see, e.g., Szyld

and Widlund [128]. Nonsymmetric problems can also be solved, e.g., by the GM-

RES method of Saad and Schultz [113] which we will not discuss here.
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3.2 Abstract Schwarz Theory

The general concepts of the Schwarz theory were first introduced by Dryja and

Widlund in [49, 50]. Since then, many domain decomposition methods have been

formulated and analyzed in this framework. We will use this elegant framework

throughout this thesis. In this section, we present the abstract theory, as devel-

oped in Smith, Bjørstad, and Gropp [122]; see also [70, 141, 142] for different

presentations.

Let V be a finite dimensional space, with inner product a : V × V → R, and

let f : V → R, be a continuous operator. We want to find a solution u ∈ V for the

model problem

a(u, v) = f(v), ∀ v ∈ V. (3.3)

The space V is written as a sum of subspaces Vi ⊂ V , i = 0 : N ,

V = V0 + V1 + . . .+ VN .

We note that this sum is not necessarily direct.

Let ãi : Vi × Vi → R, be bilinear forms which are symmetric, continuous, and

coercive. Let T̃i : V → Vi be the corresponding projection-like operators, defined

by

ãi(T̃iv, vi) = a(v, vi), ∀ vi ∈ Vi, (3.4)

where v ∈ V . Let Ii : Vi → V , be the embedding operator. Using the operators

Ti : V → V , Ti = IiT̃i, several methods for solving (3.3) can be introduced, which

result in a preconditioned equation with the same solution u as (3.3).

The additive Schwarz method requires solving

Tasu = gas, (3.5)

where

Tas = T0 + T1 + . . .+ TN and gas =
N∑

i=0

Iigi,

with gi = T̃iu. From (3.3) and (3.4) it follows that

ãi(gi, vi) = ãi(T̃iu, vi) = a(u, vi) = f(vi), ∀ vi ∈ Vi.
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Therefore, gas is obtained by solving a set of local problems,

ãi(gi, vi) = f(vi), ∀ vi ∈ Vi,

which do not require any knowledge of u.

The equation (3.5) is the preconditioned version of (3.3). Therefore (3.5) is

solved directly by a CG iteration, without any further preconditioning; cf. Sec-

tion 3.1.1 with M = I.

The multiplicative Schwarz method consists of solving

Tmsu = gms, (3.6)

where

Tms = I − (I − TN ) . . . (I − T1)(I − T0),

and gms is computed without knowing u, by solving N problems of the same form

as (3.4). Since Tms is a nonsymmetric operator, the equation (3.6) is generally

solved by a GMRES iteration. Symmetric version of the multiplicative method

have also been suggested, corresponding to the operators

Tsms = Tms + T T
ms − T T

msTms;

T̄sms = Tms + T T
ms,

where the transpose operator is computed with respect to a(·, ·). Because of sym-

metry, the CG iteration can be used with these methods.

We note that, in this abstract setting, the alternating Schwarz method [115]

can be regarded as a multiplicative method.

In practice, the multiplicative algorithms converge faster than the additive

ones, which, in turn, have more potential for parallelization. The hybrid meth-

ods combine good features of the additive and multiplicative methods to obtain

good convergence and parallelization properties. Cai [31] advocates the use of the

operator

γT0 + I − (I − TN) . . . (I − T1)(I − T0),

with γ > 0 a balancing parameter, and Mandel [89] suggests the operator

T0 + (I − T0)(T1 + . . .+ TN),

which is used in the balancing method; see Mandel and Brezina [91].
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3.2.1 Abstract Convergence Estimates

The convergence analysis of the Schwarz methods relies on three assumptions which

must be satisfied, and the parameters therein.

The first assumption requires a stable splitting of V in terms of the subspaces

(Vi)i=0:N .

Assumption 1: There exists a minimum constant C0 with the property that, for

all u ∈ V , there exist ui ∈ Vi such that

u =

N∑

0=1

ui,

and
N∑

i=0

ãi(ui, ui) ≤ C2
0a(u, u).

The next assumption quantifies the orthogonality of the subspaces V1, . . . , VN .

We note that the space V0 is not included in this assumption.

Assumption 2: There exist minimal constants 0 ≤ εij ≤ 1 such that

|a(Iivi, Ijvj)|
2 ≤ εija(Iivi, Iivi)a(Ijvj, Ijvj), ∀ vi ∈ Vi, vj ∈ Vj, i, j = 1 : N,

and let ρ(ε) be the spectral radius of the matrix ε = {εij}
N
i,j=1.

The final assumption requires the existence of a lower bound for the norm given

by ãi(·, ·) in terms of the norm induced by the inner product a(·, ·).

Assumption 3: There exists a minimal parameter ω ∈ [1, 2) such that

a(Iivi, Iivi) ≤ ωãi(vi, vi), ∀ vi ∈ Range(Ti), ∀ i = 0 : N. (3.7)

The form of the Assumption 3 presented here has been introduced by Widlund

in [133]. The classical form assumption, see [122], required the bound (3.7) to hold

for all vi ∈ Vi. The importance of the modified assumption is emphasized in the

analysis of the balancing method, for both conforming and mortar finite elements;

see Section 6.2.2 and Section 6.5 of Chapter 6.

The classical estimate for κ(Tas), the condition number of the additive Schwarz

method, follows from Assumptions 1–3; see [122] for a proof.
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Theorem 3.1. If Assumptions 1-3 are satisfied, then

C−2
0 a(v, v) ≤ a(Tasv, v) ≤ ω(1 + ρ(ε))a(v, v) ∀ v ∈ V, (3.8)

and therefore

κ(Tas) ≤ C2
0ω(1 + ρ(ε)).

We note that ω and C2
0 balance each other, in the following sense: If the

approximate bilinear forms ãi(·, ·) are all multipied by a constant factor µ̃, then

Assumptions 1–3 hold if the parameters ω and C2
0 are replaced with ω/µ̃ and µ̃C2

0 ,

respectively. Thus, the effect of scaling does not change the value of the product

C2
0ω, which is important given the estimate for κ(Tas) from Theorem 3.1.

The relative scalability of these parameters offers flexibility in choosing the

local approximate bilinear forms ãi(·, ·) and local solvers T̃i.

For the multiplicative method, the convergence estimate from the next theorem

has been obtained by Bramble et al. [24]; see also Griebel and Oswald [70] for a

more detailed analysis.

Theorem 3.2. If Assumptions 1-3 are satisfied, then

κ(Tsms) ≤
[1 + 2ω2ρ2(ε)]C2

0

2− ω
. (3.9)

It is easy to see that if the product C2
0ω is constant, then the right hand side of

(3.9) is minimal for the smallest possible ω. We note that this optimality condition

has already been enforced in Assumption 3.

3.3 Several Domain Decomposition Methods

In this section, we present several examples of how the abstract Schwarz theory

can be used to give convergence estimates for various domain decomposition meth-

ods. We restrict the discussion to results obtained for the Poisson problem (2.7)

discretized by conforming finite elements or spectral elements. The changes which

have to be made for the mortar case, and some results we have obtained for those

algorithms are presented in Chapters 5 and 6.

33



We begin by specifying the spaces and bilinear forms for some general methods.

The space V is the finite element space or the spectral element method used to

discretize the PDE, and a(·, ·) is the bilinear form obtained from the variational

formulation (2.8) of the original problem.

The spaces Vi, i = 1 : N , are local spaces. To construct them, the com-

putational domain Ω is decomposed into subdomains {Di}i=1:N , not necessarily

disjoint,

Ω =

N⋃

i=1

Di.

For many domain decomposition methods, Vi is a subspace of V consisting of

functions which vanish at all the degrees of freedom outside Di, Then, Ii is the

embedding operator and ãi(·, ·) may equal the restriction of a(·, ·) to Vi × Vi, in

which case Assumption 3 is satisfied with ω = 1.

The operators T̃i are given by (3.4). We note that computing T̃iv for v ∈ V is

equivalent to solving a problem similar to the original one on the smaller subspace

Vi. For all the methods of Section 3.2, in each step of the CG iteration N local

problems must be solved each time the preconditioned operator, e.g., Tas or Tms,

is applied to a vector.

The space V0 is a coarse space which has a small number of degrees of freedom

in each subdomain. It plays a crucial role in domain decomposition methods,

since algorithms without a coarse space have a condition number, and therefore

a rate of convergence, which depends on the number of subdomains; see [122]

for a detailed explanation. A good coarse space solver provides the mechanism

for global communication of information between subdomains in each iteration.

It is therefore possible for the condition number of the resulting algorithm to be

independent of the number of subregions.

Choosing the appropriate coarse space V0 and a coarse solver a0(·, ·) for each

method is critical for obtaining a successful method. In the some cases, the coarse

space is embedded in V , V0 ⊂ V , and a0(·, ·) = a(·, ·); see [35, 52], while in other

cases, V0 might be unrelated to the decomposition {Di}i=1:N ; see [32, 39, 40].

Then, an operator QH : V → V0 with good approximation properties is needed in

establishing that the constant C0 of Assumption 1 is independent of the properties
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of the discretization and of the number of subdomains N .

3.3.1 Overlapping Methods

Assume that the decomposition {Di}i=1:N of Ω is assembled from subdomains

which intersect their neighbors, and let δ be the minimal overlap of any two sub-

regions with nonempty intersection. The methods using such a decomposition are

called overlapping, and have been proven to have very good convergence properties.

In [52], Dryja and Widlund construct the overlapping subdomains by extending

the subregions of a coarse triangulation partition of Ω. Then, the coarse space can

be chosen to be a low order finite element space on the coarse mesh defined by the

nonoverlapping partition of Ω. The condition number of the two-level additive and

multiplicative Schwarz methods is bounded from above by C(1 +H/δ), where H

is the diameter of the coarse mesh, and C is a constant independent of the number

of subdomains and the number of nodes in each subdomain. This result is sharp;

cf. Brenner [26].

For non–embedded meshes with a coarse space independent of the overlapping

partition, a similar bound exists; cf. Chan, Smith, and Zou [39]. The same bound

holds for the p-version finite element method spectral elements; cf. Pavarino [101,

102], Casarin [34, 35], and Pahl [98].

3.3.2 Nonoverlapping Methods

If {Di}i=1:N is a nonoverlapping partition of Ω, there are several nonoverlapping

domain decomposition methods with good convergence properties. The variables

corresponding to the interior nodes of the subdomains are eliminated, which results

in a Schur complement problem for the unknowns corresponding to the interface

nodes.

The substructuring methods, which have been studied extensively by Bramble,

Pasciak, and Schatz [20, 21, 22, 23], involve using a preconditioner where some of

the couplings between nodes are dropped.

Several iterative substructuring method have also been analyzed by Smith [119,

120]. For the vertex-based algorithms, a preconditioner is obtained by dropping the
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coupling between the faces, edges, and vertices of the subdomains {Di}i=1:N , while

keeping the coupling between vertices. For the wire basket algorithms, we group

the vertices and edges into a wire basket, and drop the coupling between the faces

and the wire basket, and between pairs of faces. For both algorithms the condition

number is bounded by C(1 + log(H/h))2; cf. Dryja, Smith, and Widlund [48]. For

spectral elements, a polylogarithmic bound, C(1 + logp)2, has been established by

Pavarino and Widlund [103, 104]; see also Bică [15] for a similar result for p-version

finite elements.

The Neumann-Neumann methods are nonoverlapping additive Schwarz meth-

ods where the local problems are Neumann problems on each floating subdomain,

i.e. subdomain the boundary of which does not intersect ∂ΩD. The local solvers

can be defined by weighted H1 inner products on each subdomain. In [53], Dryja

and Widlund proved that the condition number for optimal Neumann-Neumann

methods is bounded by C(1 + log(H/h))2, and in [28], Brenner and Sung have

proved that this bound is sharp. The balancing method of Mandel and Brez-

ina [89, 91] is a hybrid method of Neumann-Neumann type using a special space of

so-called balanced functions; see Chapter 6. The same condition number estimate,

C(1 + log(H/h))2, also holds for the balancing method.

The FETI method of Farhat and Roux [61, 62] is a Lagrange multiplier based

iterative substructuring method. We will present it in great detail in Chapter 5.

The condition number of this method is of order (1 + log(H/h))3 for a general

partition, and (1+log(H/h))2 for a partition without crosspoints, i.e., points which

belong to the boundary of more than two subdomains; cf. Mandel and Tezaur [93].

Another FETI method which has a condition number of order (1 + log(H/h))2 for

arbitrary partitions has been recently suggested by Klawonn and Widlund [78].

Other nonoverlapping methods exist, but they will not be discussed in any

detail in this thesis; see, e.g., the multilevel Schwarz methods [51, 47, 143, 144].

Many decomposition methods have been extended to other elliptic problems,

like linear elasticity and plate and shell problems; see, e.g., [25, 55, 94, 75, 76, 77,

105, 106, 121].
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Chapter 4

Some Properties of Mortar Finite
Elements

4.1 The Existence of the Mortar Partition

In the geometrically conforming case, when each edge or face has exactly one edge

or face opposite, the interface can be partitioned into nonmortars by choosing

either one of those two sides as a nonmortar.

In this section, we prove the existence of the nonmortar partition in the ge-

ometrically nonconforming case. We first discuss the two dimensional case, and

then indicate how our proof can be extended to three dimensions. We use the

same notations as in Section 2.2. Let Γ be the interface between the subregions

{Ωi}i=1:N , and let σk
j , 1 ≤ j ≤ nk be the open sides of the subregion Ωk which do

not intersect ∂Ω. Let S be the set of all the sides, and let

S =
K⋃

k=1

nk⋃

j=1

σk
j .

Since Γ = S, it is enough to find a nonmortar partition of S.

Let σ ∈ S be an arbitrary side. We assume, for clarity reasons, that σ is

parallel to the x-axis. Let Aσ and Bσ be the left and right end points of σ; cf.

Figure 4.1. The support of σ, supp(σ), is defined as follows: let dσ be the line

passing through σ, and let Cσ be the leftmost point on dσ such that AσCσ is a

union of sides from S. Similarly, let Dσ be the rightmost point on dσ such that
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Figure 4.1: Support of side σ

Α Βσ σ
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BσDσ is a union of sides from S. The points Cσ and Dσ exist since Ω is bounded

and there is a finite number of sides in S. The open segment CσDσ is called the

support of σ. We note that it is possible for several sides to have the same support,

but the support of any side is unique.

Theorem 4.1. For any partition {Ωi}i=1:N of Ω, there exists a decomposition of

the interface Γ into nonmortars.

Proof. Let σ1 be an arbitrary side, and supp(σ1) its support. Let S1 = S\supp(σ1).

Using an inductive process, we may choose an arbitrary side σp+1 from Sp, p ≥ 1,

and define

Sp+1 = Sp \ supp(σp+1).

Then,

Sp+1 = S \

p+1⋃

j=1

supp(σj).

Since the number of sides from S is finite, after a finite number of steps, P , the

set SP will be empty, SP = ∅. Therefore,

S =

P⋃

p=1

supp(σp). (4.1)
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We now show that the union in (4.1) is disjoint. We prove, by contradiction,

that

supp(σr) ∩ supp(σq) = ∅, ∀ 1 ≤ q < r ≤ P. (4.2)

If (4.2) does not hold, then there exist q and r such that

σ̃ = supp(σr) ∩ supp(σq) 6= ∅,

where 1 ≤ q < r ≤ P . Since all the support segments are open, σ̃ is an open

segment. Note that σ̃ ⊂ S. Then there exists σ ∈ S such that σ ∩ σ̃ 6= ∅, and

therefore

σ ∩ supp(σr) 6= ∅; σ ∩ supp(σq) 6= ∅.

From the definition of supp(σ), it follows that

supp(σ) = supp(σr) = supp(σq). (4.3)

Since q < r,

supp(σr) ⊂ Sr−1 ⊆ Sq ⊂ S \ supp(σq). (4.4)

From (4.3) and (4.4),

supp(σq) ⊂ S \ supp(σq),

which is a contradiction. Our claim (4.2) is therefore proven.

Since Γ = S, from (4.1) and (4.2), it is enough if we prove that a consistent

choice of nonmortars can be made for every supp(σp), p = 1 : P . This can be

done, e.g., by choosing as nonmortars all the sides from supp(σp) which belong to

subregions which are on the same side of supp(σp).

In the three dimensional case, the support of a face σ is the union of all the

faces which are coplanar with σ, such that supp(σ) is connected. Then supp(σ)

is a polygon, not necessarily convex, and the supports of two different faces are

either disjoint, or they coincide. The rest of the proof and the choice of nonmortars

follow as in the two dimensional case.
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4.2 L2 Stability of the 1-D Mortar Projection

In Section 2.4, we have presented some stability properties for the low order mortar

projections. In this section, we address the issue of the L2 stability of the mortar

projection for a more general class of mortar finite elements.

Following the notations of Section 2.2, let V h be the a mortar finite element

space whose restriction to any subregion Ωk is a conforming Pmk
or Qmk

finite

element space. The mortar conditions (2.2) across the nonmortars of the interface

correspond to a different mortar projection. More formally, if γ is a nonmortar side,

let V h(γ) be the continuous piecewise polynomial space which is the restriction of

V h to γ. We then define the mortar projection operator πγ : L2(γ) → V h(γ)∩H1
0 (γ)

by the following L2-orthogonality condition:
∫

γ

(χ− πγ(χ))ψds = 0, ∀ψ ∈ Ψh(γ).

Here, χ ∈ L2(γ) and the test function space Ψh(γ) is the subspace of V h(γ), whose

restriction to the first and last mesh intervals are polynomials of degree 1 less than

the corresponding degree from V h(γ).

As we mentioned in Section 2.4, the stability of the mortar projection has been

established for various meshes; see Bernardi, Maday, and Patera [13, 14] for uniform

meshes, Ben Belgacem [7] and Braess, Dahmen, Wieners [18] for quasiuniform

meshes. In a more general case, Seshaiyer and Suri [116, 117] give a proof of the

L2 stability of the mortar projection, if the ratio of any two neighboring mesh

intervals over γ is uniformly bounded. The constant in their bound depends on

the maximum value of that ratio and on m, the polynomial degree.

In this section, we prove that the mortar projection is uniformly stable in L2 for

arbitrary meshes, with the constant in the bound depending only on m. Our result

is obtained by refining a method used in Ben Belgacem and Maday [9] for mortar

projections with uniform meshes for three dimensional mortar finite elements.

Before we begin our analysis of the L2 stability of the mortar projection, let us

comment on the issue of the H1
0 stability. In [117], Seshaiyer and Suri prove that

the mortar projection is stable in the H1
0 norm, if the ratio of any two neighboring

mesh intervals is uniformly bounded. In [43], Crouzeix and Thomée prove a similar
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result for the L2-projection from L2(γ) onto V h(γ) ∩H1
0 (γ). They also show that

the projection is not stable in the H1
0 norm for arbitrary meshes. Therefore, it is

reasonable to believe that some condition on the mesh of γ is necessary in order

to obtain the H1
0 stability of the mortar projection πγ.

4.2.1 Technical Tools

The most important result of this section gives a good L2 approximation (see

Lemma 4.3 for the precise result) of a polynomial from V h(γ) which vanishes

at the end points of γ by another polynomial from Ψh(γ). To do so, we need

some results about minimizing the L2 norm of polynomials satisfying certain con-

straints. The main idea of the proofs is to use Legendre polynomial expansions

and Lagrange multipliers methods; see, e.g., [12] for elementary properties of the

Legendre polynomials.

For simplicity, we only work with odd degree polynomials. Similar estimates

and results can also be derived for even degree polynomials.

Lemma 4.1. Let P be a polynomial of degree 2n+1 on [−1, 1], with P (−1) = c1

and P (1) = c2. Then

inf
P
||P ||2L2(−1,1) =

2(c21 + c22)(n + 1) + 2c1c2
(n+ 1)(2n+ 1)(2n+ 3)

.

Proof. We write P in the basis of Legendre polynomials,

P (x) =

2n+1∑

k=0

akLk(x). (4.5)

Since Lk(1) = 1 and Lk(−1) = (−1)k, the conditions P (−1) = c1 and P (1) = c2

can be expressed as

2n+1∑

k=0

ak = c2, and

2n+1∑

k=0

(−1)kak = c1,

or, equivalently:

n∑

k=0

a2k =
c1 + c2

2
(4.6)
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n∑

k=0

a2k+1 =
c2 − c1

2
. (4.7)

The Legendre polynomials are orthogonal in the L2 inner product, and

||Lk||
2
L2(−1,1) =

1

k + 1/2
.

Therefore

||P ||2L2(−1,1) =

2n+1∑

k=0

a2
k

k + 1/2
. (4.8)

Therefore, we can split our minimization problem into two subproblems, corre-

sponding to the even and odd degree coefficients, respectively, which will be solved

in a similar fashion.

For the subproblem corresponding to {a2k}k=0:n, we want to minimize

n∑

k=0

a2
2k

2k + 1/2
,

subject to the constraint (4.6). From Schwarz’s inequality, we find

( n∑

k=0

a2
2k

2k + 1/2

) ( n∑

k=0

2k + 1/2
)

=
( n∑

k=0

a2
2k

2k + 1/2

) (n+ 1)(2n+ 1)

2

≥
( n∑

k=0

a2k

)2

=
(c1 + c2)

2

4
.

We note that, in Schwarz’s inequality there exist coefficients a2k, k = 0 : n, such

that equality is realized. Therefore,

min�
a2k=(c1+c2)/2

n∑

k=0

a2
2k

2k + 1/2
=

(c1 + c2)
2

2(n+ 1)(2n+ 1)
. (4.9)

Similarly, for the problem corresponding to {a2k+1}k=0:n, we obtain:

min�
a2k+1=(c2−c1)/2

n∑

k=0

a2
2k+1

2k + 3/2
=

(c2 − c1)
2

2(n+ 1)(2n+ 3)
. (4.10)

Adding (4.9) and (4.10), we obtain:

inf
P
||P ||2L2(−1,1) =

2(c21 + c22)(n+ 1) + 2c1c2
(n + 1)(2n+ 1)(2n+ 3)

.
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Lemma 4.2. Let P be a polynomial of degree 2n+1 on [−1, 1], with P (−1) = 0

and P (1) = c2. Expand P in the Legendre polynomials basis and assume that a2n+1,

the coefficient of the highest degree term in the expansions, is given. Then

inf
P
||P ||2L2(−1,1) = a2

2n+1

2(2n+ 3)(n+ 1)

n(2n + 1)(4n+ 3)
−

2c2a2n+1

n(2n + 1)
+

c22
2n(2n+ 1)

. (4.11)

If the value of P at −1 is no longer required to be 0, then

inf
P
||P ||2L2(−1,1) = a2

2n+1

8(n+ 1)2

(4n+ 3)(2n+ 1)2
−

4c2a2n+1

(2n+ 1)2
+

2c22
(2n+ 1)2

. (4.12)

Proof. Writing P in the Legendre basis as in (4.5), and imposing P (−1) = 0 and

P (1) = c2, we obtain

a2n+1 +

2n∑

k=0

ak = c2, and − a2n+1 +

2n∑

k=0

(−1)kak = 0.

Since a2n+1 is fixed, we can solve for
∑
a2k and

∑
a2k+1:

n∑

k=0

a2k =
c2
2
, and

n−1∑

k=0

a2k+1 =
c2 − 2a2n+1

2
.

In Lemma 4.1, we have solved the problem of minimizing
∑2n+1

k=0
a2

k

k+1/2
, when

the sums of the odd and even terms, respectively, are kept constant. Using that

result and (4.8), we obtain

inf
P
||P ||2L2(−1,1) = a2

2n+1

1

(2n+ 1) + 1/2
+

c22
2(n+ 1)(2n+ 1)

+
(c2 − 2a2n+1)

2

2n(2n + 1)

= a2
2n+1

2(n+ 1)(2n+ 3)

n(2n + 1)(4n+ 3)
−

2c2a2n+1

n(2n+ 1)
+

c22
2n(n+ 1)

.

If the value of P at −1 is no longer fixed, then the only condition that the

coefficients {ak}k=0:2n must satisfy is

2n∑

k=0

ak = c2 − a2n+1.

43



Using once again Schwarz’s inequality, and without splitting the problem into two

cases, we obtain:

( 2n∑

k=0

a2
k

k + 1/2

) ( 2n∑

k=0

k + 1/2
)

=
( 2n∑

k=0

a2
k

k + 1/2

) (2n+ 1)2

2
≥ (

2n∑

k=0

ak)
2,

which can be written as:

2n∑

k=0

a2
k

k + 1/2
≥

2

(2n+ 1)2
(

2n∑

k=0

ak)
2 =

2(c2 − a2n+1)
2

(2n+ 1)2
.

Therefore:

||P ||2L2(−1,1) =

2n+1∑

k=0

a2
k

k + 1/2
≥

2a2
2n+1

4n+ 3
+

2(c2 − a2n+1)
2

(2n+ 1)2
.

Since in Schwarz’s inequality there exist coefficients ak, k = 0 : 2n such that

the equality is realized, we conclude that there exists a polynomial P such that

inf
P
||P ||2L2(−1,1) =

2a2
2n+1

4n+ 3
+

2(c2 − a2n+1)
2

(2n+ 1)2

= a2
2n+1

8(n + 1)2

(4n+ 3)(2n+ 1)2
−

4c2a2n+1

(2n+ 1)2
+

2c22
(2n+ 1)2

.

The next lemma is the main result of this section. We introduce the following

notations. Let γ = [a, b] be a segment partitioned into intervals {Ij}j=1:(N+1),

Ij = (xj−1, xj), with a = x0 < x1 < . . . < xN+1 = b, and let hj = xj − xj−1,

for j = 1 : N + 1. Let {mj}j=1:(N+1) be a set of positive integers. We define the

piecewise polynomial spaces V h(γ) and Ψh(γ) as follows:

V h(γ) = {v ∈ C(0, 1); v|Ij
∈ Pmj

(Ij), ∀ j = 1 : N + 1}, (4.13)

Ψh(γ) = {v ∈ C(0, 1); v|Ij
∈ Pmj

(Ij), ∀ j = 2 : N ;

v|Ij
∈ Pmj−1(Ij), j ∈ {1, N + 1}}. (4.14)
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Lemma 4.3. Let πχ ∈ V h(γ) ∩H1
0 (γ). Then there exists a function χh ∈ Ψh(γ)

and a constant 0 < C(m) < 1, depending only on m1 and mN+1, and not on the

partition of γ, such that

||πχ− χh||L2(γ) ≤ C(m)||πχ||L2(γ). (4.15)

More precisely,

C(m) = max
{(

1−
1

m2
1

)1/2

,

(
1−

1

m2
N+1

)1/2 }
.

Proof. We will choose χh to be equal to πχ on all of the partition intervals except

for the first two and the last two intervals. If we look for χh equal to πχ on all the

intervals except the first and last ones, it can be proven that the best constant M

in (4.15) would depend on h0 and h1, which we want to avoid. Since χh will be

defined in a similar way at both ends of γ, we only present the construction of χh

on I1 = (x0, x1) and I2 = (x1, x2).

We may assume, without any loss of generality, that m1 and m2 are odd, i.e.,

m1 = 2n1 + 1 and m2 = 2n2 + 1; similar results can be obtained for all the other

cases. Let β1 = πχ(x1) and β2 = πχ(x2). Note that πχ(x0) = 0, since πχ vanishes

at the end points of γ. We require that χh(x2) = β2, and denote the value of χh

at x1 by α1, which will be different than β1: χh(x1) = α1 6= β1. We will look for

χh ∈ Ψh(γ) such that ||πχ − χh||L2(γ) is minimal, and then choose α1 such that

relation (4.15) will hold on the two intervals I1 and I2.

On I2, πχ−χh is a polynomial of degree 2n2 +1 which takes the values β1−α1

and 0, respectively, at the left and right end points. After a suitable change of

variables, which maps I2 into (−1, 1), and using Lemma 4.1, we can find χh on I2

such that
8

h2
||πχ− χh||

2
L2(I2) =

2(β1 − α1)
2

(2n2 + 1)(2n2 + 3)
. (4.16)

On I1, πχ−χh is a polynomial of degree 2n1 + 1 which takes the value β1−α1

at x1, the left end point of I1. Let a be the coefficient of L2n1+1 in the Legendre

expansion of πχ over I1. Since χh is a polynomial of degree 2n1 over I1, a is also

the coefficient of L2n1+1 in the Legendre expansion of πχ − χh. After a suitable
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change of variables, which maps I1 into (−1, 1), and using (4.12) from Lemma 4.2,

there exists χh, satisfying all the above mentioned properties, such that

8

h1

||πχ−χh||
2
L2(I1) = a2 8(n1 + 1)2

(4n1 + 3)(2n1 + 1)2
−

4a(β1 − α1)

(2n1 + 1)2
+

2(β1 − α1)
2

(2n1 + 1)2
. (4.17)

We now find lower bounds for ||πχ||L2(I2) and ||πχ||L2(I1). On I2, πχ takes

the values β1 and β2 at the end points. After a change of variables and using

Lemma 4.1, we obtain

8

h2
||πχ||2L2(I2) ≥

2(β2
1 + β2

2)(n2 + 1) + 2β1β2

(n2 + 1)(2n2 + 1)(2n2 + 3)
. (4.18)

The minimal value of the right hand side of (4.18) is obtained for β2 = −β1/2(n2 +

1), and therefore:

8

h2

||πχ||2L2(I2) ≥
(
1−

1

4(n2 + 1)2

) 2β2
1

(2n2 + 1)(2n2 + 3)
. (4.19)

On I1, πχ takes the values 0 and β1 at the end points, and in its Legendre

expansion the coefficient of L2n1+1 is a. After a change of variables, and using

(4.11) from Lemma 4.2, we obtain

8

h1
||πχ||2L2(I1) ≥ a2 2(2n1 + 3)(n1 + 1)

n1(2n1 + 1)(4n1 + 3)
−

2β1a

n1(2n1 + 1)
+

β2
1

2n1(2n1 + 1)
. (4.20)

We choose α1 = β1/2, and compare the L2 norms of πχ−χh and πχ separately

on I1 and I2.

On I2, we obtain by using (4.16) and (4.19), that

||πχ− χh||
2
L2(I2) ≤

2

3
||πχ||2L2(I2). (4.21)

On I1, we obtain by using (4.17) and (4.20), that

||πχ− χh||
2
L2(I1) ≤ (1− 1/(2n1 + 1)2) ||πχ||2L2(I1). (4.22)

We make a similar construction for χh on IN−1 and IN . Since πχ−χh vanishes

outside the first and last two mesh intervals of γ, we can conclude, by using (4.21)

and (4.22), that

||πχ− χh||L2(γ) ≤ C(m)||πχ||L2(γ),

where C(m) depends only on m1 and mN+1, and not on the particular properties

of the partition of γ.
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4.2.2 Stability property of the mortar projection

We are now able to prove the uniform stability of the mortar projection onto

V h(γ) ∩H1
0 (γ), i.e., that the bound is independent of the mesh. In Theorem 4.2,

the spaces V h(γ) and Ψh(γ) are those defined in Section 4.2.

Theorem 4.2. Let γ be a nonmortar side, and let m be the degree of the piecewise

polynomial restriction of the mortar function to γ. Let πγ be the mortar projection

of L2(γ) into V h(γ) ∩H1
0 (γ), which satisfies

∫

γ

(χ− πγ(χ))ψds = 0, ∀ψ ∈ Ψh(γ).

Then there exists a constant C̃(m) depending only on m such that

||πγ(χ)||L2(γ) ≤ C̃(m)||χ||L2(γ), ∀χ ∈ L2(γ).

More precisely,

C(m) = max
{
m2

1, m
2
N+1

}
.

Proof. Let ph : L2(γ) → Ψh(γ) be the L2 projection into the space Ψh(γ):
∫

γ

(χ− ph(χ))ψds = 0, ∀ψ ∈ Ψh(γ),

where ph(χ) ∈ Ψh(γ). Then
∫

γ

(πγ(χ)− ph(χ))ψds = 0, ∀ψ ∈ Ψh(γ),

and therefore ph(χ) is the projection of πγ(χ) into Ψh(γ). Then:

||πγ(χ)− ph(χ)||L2(γ) = inf
χh∈Ψh(γ)

||πγ(χ)− χh||L2(γ) ≤ C(m)||πγ(χ)||L2(γ),

with M < 1, according to Lemma 4.3, applied for the case when all the degrees

mj are equal to m.

A simple computation will lead us to the desired conclusion:

||πγ(χ)||2L2(γ) =

∫

γ

(πγ(χ)− ph(χ))πγ(χ)ds +

∫

γ

ph(χ)πγ(χ)ds

=

∫

γ

(πγ(χ)− ph(χ))2ds +

∫

γ

ph(χ)πγ(χ)ds

≤ C(m)2||πγ(χ)||2L2(γ) + ||πγ(χ)||L2(γ)||ph(χ)||L2(γ).
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Since C(m) < 1, and since ph(χ) is an L2 projection of χ:

||πγ(χ)||L2(γ) ≤
1

1− C(m)2
||ph(χ)||L2(γ) ≤

1

1− C(m)2
||χ||L2(γ).

4.3 Poincaré and Friedrichs Inequalities for Mor-

tars

As we have mentioned in Section 2.2, a mortar finite elements function is only

piecewise H1, but not in H1(Ω). Therefore, the Friedrichs and Poincaré inequali-

ties, as presented in Section 1.2.2, cannot be applied to mortar functions. In this

section, we show that these inequalities also hold for mortars, if the H1 seminorm

in replaced by the broken seminorm

aΓ(vh, vh) =

N∑

i=1

|vh|
2
H1(Ωi)

.

It is important to note that the constants in the inequalities we derive depend only

on the diameter of Ω, and neither on the properties of the partition {Ωi}i=1:N , nor

on those of the mortar finite element. Using the Friedrichs inequality, we prove,

in Section 4.3.4, that the condition number of the unpreconditioned mortar finite

element method has the same upper bound as in the continuous finite element

case, and does not depend on the number of the subregions in the partition of Ω.

This is a refinement of a result of Bernardi, Maday, and Patera [13, 14], where

a Friedrichs inequality is proven using the Rellich compactness theorem. This

leads to an estimate of the condition number which depends on the number of the

subregions in the partition {Ωi}i=1:N and their diameters.

In the geometrically conforming case, a variant of the Friedrichs inequality for

mortars was proven by Bernardi and Maday [10, 11].

To keep the presentation simple, our model problem will be Poisson’s equa-

tion with Dirichlet boundary conditions on Ω, a bounded open polygon in R2.

Our results can also be obtained, using the same methods, for any second order
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self-adjoint elliptic problems with mixed boundary conditions, and for the three

dimensional case.

Following the construction from Section 2.2, let {Ωi}i=1:N be a geometrically

nonconforming polygonal partition of Ω, and V h a mortar finite element defined

on this partition. Let Hi be the diameter of Ωi, hi the smallest diameter of any

of the elements of Ωi, and h = min hi, i = 1 : N . We do not require that all

the Hk are of the same order of magnitude, but only require that the diameters

of any two adjacent subregions Ωr and Ωs (∂Ωr ∩ ∂Ωs 6= ∅) are comparable, i.e.,

c ≤ Hr/Hs ≤ C, where c and C are positive constants independent of the

subregions considered. We assume that all the subregions are generated from a

finite number of reference domains Ω̂j, j = 1 : J , by mappings Fi, such that

Ωi = Fi(Ω̂j), and

||∂Fi|| ≤ CHi, ∀ i = 1 : N ; ||∂F−1
i || ≤ CH−1

i , ∀ i = 1 : N.

As a consequence, we note that the length of every side of Ωi is bounded from

below by a uniform fraction of Hi.

4.3.1 Technical Results

We begin with a version of the Friedrichs inequality on a reference subregion Ω̂.

Lemma 4.4. Let Ω̂ ⊂ R2 be a fixed, open, bounded domain with Lipschitz bound-

ary. Let c0 > 0 and let Λ̂ ⊂ ∂Ω̂ be a part of the boundary of Ω̂ such that

c0µ(∂Ω̂) ≤ µ(Λ̂),

where µ is the Lebesgue measure. Then,

||w||2
L2(

�

Ω)
≤ C( |w|2

H1(
�

Ω)
+

1

c0
|

∫
�

Λ

wdσ|2 ), ∀ w ∈ H1(Ω̂),

where C is a constant that depends only on Ω̂, and not on w, Λ̂, or c0.

We also need a generalized version of the Friedrichs inequality. We note that

Lemma 4.4 follows from Lemma 4.5.
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Lemma 4.5. Let Ω̂ ⊂ R2 be a fixed, open, bounded domain with a Lipschitz bound-

ary, let c0 ∈ (0, 1) be a constant, and let Λ̂ ⊂ ∂Ω̂ such that

c0µ(∂Ω̂) ≤ µ(Λ̂). (4.23)

Let ψ̂ be a bounded positive function defined on Λ̂ with the following properties:

0 ≤ ψ̂ ≤ 2 and
1

2
µ(Λ̂) ≤ µ({x ∈ Λ̂ : ψ̂(x) ≥ 1}). (4.24)

Then, the following inequality holds,

||w||2L2(
�

Ω) ≤ C ( (diam(Ω̂))2|w|2
H1(

�

Ω)
+

1

c20

∣∣∣∣
∫

�

Λ

wψ̂dσ

∣∣∣∣
2

), ∀w ∈ H1(Ω̂), (4.25)

where C is a constant independent of c0, w, Λ̂, and ψ̂.

Proof. We may assume that diam(Ω̂) = 1. The general inequality is obtained

easily by a scaling argument.

Suppose that Lemma 4.5 is not true. Then there exists a sequence {wn}n=1:∞

of functions in H1(Ω̂), a sequence of boundary parts (Λ̂n)n=1:∞ satisfying (4.23),

and a sequence of functions (ψ̂n)n=1:∞ defined on (Λ̂n)n=1:∞ and satisfying property

(4.24), such that

||wn||L2(
�

Ω) = 1, ∀ n = 1 : ∞; (4.26)

|wn|
2
H1(

�

Ω)
+

1

c20

∣∣∣∣
∫

�

Λn

wnψ̂ndσ

∣∣∣∣
2

≤
1

n
, ∀ n = 1 : ∞. (4.27)

For n → ∞, wn converges to 0 in the H1(Ω̂)-seminorm. Therefore, the sequence

{wn} is bounded in H1(Ω̂), and we obtain, from the Rellich theorem, the existence

of a subsequence of {wn} that converges in the L2(Ω̂) norm. For simplicity, we also

denote this subsequence by {wn}. Since |wn|
2
H1(

�

Ω)
→ 0, we also have convergence

of {wn} in the H1(Ω̂) norm. The limit function is a constant function, c̃.

From (4.27), we know that |
∫

�

Λn
wnψ̂ndσ| → 0. Since wn → c̃ in H1(Ω̂), and

the functions ψ̂n are uniformly bounded by assumption, we obtain, using a trace

theorem, that ∣∣∣∣
∫

�

Λn

ψ̂ndσ

∣∣∣∣ |c̃| → 0. (4.28)
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From (4.23) and (4.24):

∣∣∣∣
∫

�

Λn

ψ̂ndσ

∣∣∣∣ ≥
1

2
µ(Λ̂) ≥

c0
2
µ(∂Ω̂). (4.29)

Finally, from (4.28) and (4.29), we obtain that c̃ = 0, which implies wn → 0 in

L2(Ω̂). This contradicts assumption (4.26), and the proof is completed.

The next lemma is purely geometrical, and a version of it has first appeared in

Bernardi and Maday [10].

Lemma 4.6. Let Ω be a bounded domain in the plane and let {Ωi}i=1:N be a shape

regular partition of Ω. where Ωk is a polygon of diameter Hk. The ratio of the

diameters of neighboring subregions is uniformly bounded.

Let ` be a line passing through Ω and let (Ωi,`)i=1:n(`) be the subregions with

interiors intersecting `. Then,

n(`)∑

i=1

Hi,` ≤ Cdiam(Ω),

where C is a constant which depends only on the minimal angle of the polygonal

subregions {Ωi}i=1:N , and not on their diameters (Hk)k=1:K.

Proof. The proof is a straightforward generalization of that of Lemma 2.2 from [10].

It is based on the assumptions that neighboring subregions have comparable di-

ameters and that the minimal angle for the polygonal subregions is uniformly

bounded. Each subregion can be decomposed into triangles with a common vertex

in the centroid of the subregion, and having one of the sides of the polygon. Then,

the same proof given in [10] by Bernardi and Maday for the case of a triangular

partition of Ω will work for our problem.

4.3.2 An Estimate of the L2 Norm of Jumps Across Non-

mortars

An important step in the proofs of the Friedrichs and Poincaré inequalities for

mortar finite elements is an estimate of the L2 norm of the jump of the mortar
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finite element function v over the nonmortars. We restrict the technical discussion

of this section to the case when all subregions are rectangles. In the last section,

we explain how our results can be extended for a general polygonal partition.

Let γ be a nonmortar side of the subregion Ωl, and let vl be the restriction of

the mortar function v to Ωl. Let ζl,i, i = 1 : q(γ) be the mortars opposite γ across

the interface Γ. Let Ωl,i be the subregion which has ζl,i as a side, and let

δi,i+1 = ∂Ωl,i ∩ ∂Ωl,i+1, ∀ i = 1 : (q(γ)− 1).

Since every subregion Ωl,i has a diameter on the order of Hl, q(γ) is uniformly

bounded by a constant C which depends only on the lower and upper bounds of

the ratios of the diameters of adjacent subregions.

Let ṽ be the function that is equal to vl,i (the restriction of v to Ωl,i) on ζl,i. We

note that ṽ can have two values at the vertices on the interface Γ that are interior

to γ.

Lemma 4.7. Let [v] = vl − ṽ be the jump of v across the nonmortar γ. Then,

∫

γ

[v]2dσ ≤ C µ(γ)( |vl|
2
H1(Ωl)

+

q(γ)∑

i=1

|vl,i|
2
H1(Ωl,i)

), (4.30)

where C is a constant that does not depend on γ, and µ is the Lebesgue measure.

Proof. By definition, ∫

γ

[v]2dσ =

∫

γ

|vl − ṽ|2dσ. (4.31)

Since any space of test functions Ψh(γ) contains the constant functions, and

since the functions vl and ṽ satisfy the mortar conditions (2.2), we find that the

averages of vl and ṽ over γ are equal, i.e.,
∫

γ

vldσ =

∫

γ

ṽdσ = vγµ(γ).

Opposite Ωl, we construct a rectangle Ωnew with one side equal to γ and with

sides of length min{µ(δi,i+1)}, i = 1 : (q(γ)− 1), perpendicular to γ.

Let vnew be an extension of ṽ from γ to Ωnew with the following properties:

vnew ∈ H
1(Ωnew), (4.32)
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Figure 4.2: Local nonconforming situation

∫

γ

vnewdσ =

∫

γ

ṽdσ = vγµ(γ). (4.33)

Note that vnew need not be a finite element function, and its trace on γ need not

be equal to ṽ. We just require that the average of vnew over γ is equal to that of ṽ.

We now provide the details of the construction of vnew. Without loss of gener-

ality, we consider the case of only three rectangles Ωl,1, Ωl,2, Ωl,3. Let vl,1, vl,2, and

vl,3 be the restrictions of v to Ωl,1, Ωl,2, Ωl,3, respectively. These functions may be

discontinuous across δ1,2 and δ2,3; cf. Figure 4.2, where Ωnew = ABQP , δ1,2 = CE

and δ2,3 = DF .

For every segment δi,i+1, we construct in one of the rectangles Ωl,i or Ωl,i+1 (say

on Ωl,i) a function χi ∈ H1(Ωl,i) such that χi is equal to vl,i+1 − vl,i on δi,i+1 and

vanishes on the side opposite δi,i+1

The choice of whether to construct the function χi on Ωl,i or Ωl,i+1 is made

according to which of ∂Ωl,i ∩ γ and ∂Ωl,i+1 ∩ γ is the largest. If µ(∂Ωl,i ∩ γ) ≥

µ(∂Ωl,i+1 ∩ γ), we choose subregion Ωl,i; otherwise Ωl,i+1. As a consequence, since

the subregions Ωl,i and Ωl,i+1 have diameters on the order of Hl, we find that the

length of the intersection of γ with the boundary of the chosen domain is on the

order of Hl.

This choice avoids potential difficulties that occur in the study of the geomet-

rically nonconforming case, due to small intersections of boundaries of two subre-
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gions. Such a configuration can appear naturally, e.g., from a small perturbation

of a geometrically conforming partition.

In our case, we construct the functions χ2 and χ3 as follows:

χ2 : Ωl,2 → R; χ2|Ωnew∩δ1,2
= (vl,1 − vl,2)|Ωnew∩δ1,2

;

χ2|Ωnew∩δ2,3
= 0;

∫

CD

χ2 dσ = 0;

χ3 : Ωl,2 → R; χ3|Ωnew∩δ2,3
= (vl,3 − vl,2)|Ωnew∩δ2,3

;

χ3|Ωnew∩δ1,2
= 0;

∫

CD

χ3 dσ = 0.

For this purpose, we use extension and trace theorems on the unit square Ω̂;

see, e.g., Nečas [97] and Section 1.2.1.

Let ŝ, ŝ1, ŝ2, and ŝ3 be the sides of Ω̂, in consecutive order. If ψ̂ ∈ H
1
2 (ŝ), we

can, using several reflections, extend it to a function E(ψ̂) ∈ H
1
2 (∂Ω̂) such that

||E(ψ̂)||
H

1
2 (∂

�

Ω)
≤ C||ψ̂||

H
1
2 (ŝ)

.

Let φ1 and φ2 be positive C∞(∂Ω̂) functions with the following properties: φ1

is 1 on ŝ and 0 on ŝ2 (the side opposite to ŝ in the rectangle Ω̂) and is bounded

from above by 1 on ∂Ω̂; φ2 is supported in ŝ1, and
∫

ŝ1
φ2dx = 1. The function

E0(ψ̂) = φ1E(ψ̂)− φ2

∫

ŝ1

φ1E(ψ̂)dx

is an extension of ψ̂ satisfying

E0(ψ̂)|ŝ = ψ̂; E0(ψ̂)|ŝ2 = 0;

||E0(ψ̂)||
H

1
2 (∂

�

Ω)
≤ C||ψ̂||

H
1
2 (ŝ)

;
∫

ŝ1

E0(ψ̂)dσ = 0.
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Since E0(ψ̂) ∈ H
1
2 (∂Ω̂), there exists a harmonic extension of E0(ψ̂) to the unit

square Ω̂, û ∈ H1(Ω̂), which does not have to be a finite element function, such

that

|û|H1(
�

Ω) ≤ C||E0(ψ̂)||
H

1
2 (∂

�

Ω)
≤ C||ψ̂||

H
1
2 (ŝ)

.

There exists a diffeomorphism F : Ω̂ → Ωl,2 that induces a natural mapping

from the functions defined on Ωl,2 into the functions defined on Ω̂. We construct

χ2 in the following steps:

1. let ψ̂2 := (vl,1 − vl,2)|Ωnew∩δ1,2
◦ F ;

2. let û2 be the extension of E0(ψ̂2) from ∂Ω̂ to Ω̂ described above;

3. let χ2 := û2 ◦ F
−1.

From the properties of F and the extensions on Ω̂, we obtain

|χ2|H1(Ωl,2) ≤ C|û2|H1(
�

Ω) ≤ C||E0(ψ̂2)||H 1
2 (∂

�

Ω)
≤ C||ψ̂2||H 1

2 (ŝ)

= C||v̂l,1 − v̂l,2||H 1
2 (

�

Ω∩δ̂1,2)
,

||χ2||L2(CD) ≤ Cµ(CD)||û2||L2(∂
�

Ω) ≤ Cµ(γ)||û2||L2(∂
�

Ω) ≤ Cµ(γ)||û2||H 1
2 (∂

�

Ω)

= Cµ(γ)||E0(ψ̂2)||H 1
2 (∂

�

Ω)
≤ Cµ(γ)||ψ̂2||H 1

2 (ŝ)

= Cµ(γ)||v̂l,1 − v̂l,2||H 1
2 (

�

Ω∩δ̂1,2)
.

Therefore, χ2 has the following properties:

χ2|Ωnew∩δ1,2
= (vl,1 − vl,2)|Ωnew∩δ1,2

;

χ2|Ωnew∩δ2,3
= 0;

∫

CD

χ2dσ = 0; (4.34)

|χ2|H1(Ωl,2) ≤ C||v̂l,1 − v̂l,2||H 1
2 (

�

Ω∩δ̂1,2)
; (4.35)

||χ2||L2(CD) ≤ Cµ(γ)||v̂l,1 − v̂l,2||H 1
2 (

�

Ω∩δ̂1,2)
. (4.36)

The function χ3 is constructed similarly.

Finally, vnew is defined as follows:

vnew =





vl,1 on Ωl,1 ∩ Ωnew;
vl,2 + χ2 + χ3 on Ωl,2 ∩ Ωnew;

vl,3 on Ωl,3 ∩ Ωnew.

(4.37)
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We note that vnew is continuous by construction.

We now show that vnew satisfies (4.32) and (4.33). Since vnew is piecewise H1

and continuous, it follows from Lemma 1.1 that vnew ∈ H1(Ωnew). From (4.34),

it results that
∫

γ

vnewdσ =

∫

AB

vnewdσ =

∫

AB

ṽdσ +

∫

CD

χ2 +

∫

CD

χ3dx

=

∫

AB

ṽdσ = vγµ(γ).

Using the construction of vnew and Ωnew, we begin the proof of (4.30):

∫

γ

[v]2dσ =

∫

γ

|vl − ṽ|2dσ ≤ 2

∫

γ

|vl − vγ|
2dσ + 2

∫

γ

|ṽ − vγ|
2dσ

≤ 2

∫

γ

|vl − vγ |
2dσ + 4

∫

γ

|vnew − vγ|
2dσ + 4

∫

γ

|ṽ − vnew|
2dσ.(4.38)

We now estimate the three terms of (4.38). For the first two, we use Lemma 4.4

and Lemma 4.5, both for the unit square Ω̂, which is the reference subregion. We

will apply the Friedrichs inequality, trace theorems, and inverse inequalities only on

the reference unit square Ω̂, since we look for results independent of the partition

{Ωi}i=1:N of Ω.

Estimate of
∫

γ
|vl − vγ |

2dσ:

∫

γ

|vl−vγ|
2dσ = µ(γ)

∫

ŝ

|v̂l−vγ|
2dσ ≤ µ(γ)||v̂l−vγ||

2
L2(∂

�

Ω)
≤ Cµ(γ)||v̂l−vγ ||

2
H1(

�

Ω)
,

where the last inequality follows from the trace Theorem 1.2. Since,
∫

ŝ

(v̂l − vγ)dσ = 0,

we obtain, from the Friedrichs inequality, see Theorem 1.4,

||v̂l − vγ||H1(
�

Ω) ≤ C|v̂l|
2
H1(

�

Ω)
,

and therefore,
∫

γ

|vl − vγ|
2dσ ≤ Cµ(γ)|v̂l|

2
H1(

�

Ω)
≤ Cµ(γ)|vl|

2
H1(Ωl)

. (4.39)
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Estimate of
∫

γ
|vnew − vγ|

2dσ:

From (4.33) we obtain that
∫

γ
(vnew − vγ)dσ = 0. Applying the same method as

for the first term, we get
∫

γ

|vnew − vγ|
2dσ ≤ Cµ(γ)|vnew|

2
H1(Ωnew). (4.40)

The last inequality holds since, by assumption, the diameters of adjacent subre-

gions are uniformly comparable. From the construction of vnew, we find:

|vnew|
2
H1(Ωnew) ≤ 3

( 3∑

i=1

|vl,i|
2
H1(Ωl,i)

)
+ 3|χ2|

2
H1(Ωl,2) + 3|χ3|

2
H1(Ωl,2) (4.41)

The estimates of |χ2|
2
H1(Ωl,2) and |χ3|

2
H1(Ωl,2) are similar, so we derive only one

of them. One of the sides of the subregions Ωl,1 and Ωl,2 that intersect Ωnew ∩ δ1,2

is a nonmortar side. For our proof it does not make any difference which it is, and

we can assume that it is a side of Ωl,1. To this nonmortar will correspond a space

of test functions Ψ1,2. Denote by ψ1,2 ∈ Ψ1,2 the test function that is equal to 1

at all the nodes on the nonmortar side that are also in Ωnew ∩ δ1,2 except for the

last one, and is equal to 0 at all the other nodes. We replace Ωnew ∩ δ1,2 with CE.

From the mortar condition (2.2), we obtain:
∫

CE

vl,1ψ1,2dσ =

∫

CE

vl,2ψ1,2dσ.

Let α denote the following congruent terms:

α =

∫
CE

vl,1ψ1,2dσ∫
CE

ψ1,2dσ
=

∫
CE

vl,2ψ1,2dσ∫
CE

ψ1,2dσ
.

Then it is easy to see that:
∫

CE

(vl,1 − α)ψ1,2dσ =

∫

CE

(vl,2 − α)ψ1,2dσ = 0. (4.42)

Since the rectangles (Ωl,i)i=1:3 are neighbors of Ωl, their diameters are of the

same order as Hl, the diameter of Ωl. Moreover, CE has a length on the order of

Hl since it is a side of the rectangle Ωl,2, and the following estimate holds,

c0µ(∂Ωl,1) ≤ c̃0Hl ≤ µ(CE).
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Here, c0 is a constant that does not depend on the subregion Ωl,1. It is easy to see,

from the definition of ψ1,2, that

1

2
µ(CE) ≤ µ({x ∈ CE : ψ1,2(x) ≥ 1}).

Therefore, conditions (4.23) and (4.24) of Lemma 4.5 are satisfied. Let F :

Ω̂ → Ωl,2 be the diffeomorphism between Ωl,2 and the reference unit square Ω̂. The

induced mapping takes a function u defined on Ωl,2 into the function û = u ◦ F

defined on Ω̂. It is easy to see that conditions (4.23) and (4.24) are also satisfied

on Ω̂. From Lemma 4.5, we obtain:

||v̂l,1− α̂||
2
H1(

�

Ω)
≤ C

(
|v̂l,1|

2
H1(

�

Ω)
+

1

c20

∣∣∣
∫

ŝ1

(v̂l,1− α̂)ψ̂1,2dσ
∣∣∣
2 )

= C|v̂l,1|
2
H1(

�

Ω)
, (4.43)

since, by (4.42), the integral over ŝ1 vanishes. Using a trace theorem, inequalities

of Sobolev norms on affine equivalent domains, and (4.43), we obtain:

||v̂l,1 − α̂||2
H

1
2 (

�

Ω∩δ̂1,2)
≤ C||v̂l,1 − α̂||2

H
1
2 (∂

�

Ω)
≤ C||v̂l,1 − α̂||2

H1(
�

Ω)
≤ C|v̂l,1|

2
H1(

�

Ω)

≤ C|vl,1|
2
H1(Ωl,1).

Once again, C is a constant that does not depend on the subregion Ωl,1. A similar

estimate holds for vl,2 − α. Therefore,

||v̂l,1 − v̂l,2||
2

H
1
2 (

�

Ω∩δ̂1,2)
≤ 2||v̂l,1 − α̂||2

H
1
2 (

�

Ω∩δ̂1,2)
+ 2||v̂l,2 − α̂||2

H
1
2 (

�

Ω∩δ̂1,2)

≤ C(|vl,1|
2
H1(Ωl,1) + |vl,2|

2
H1(Ωl,2)). (4.44)

From (4.35) and (4.44), we obtain,

|χ2|
2
H1(Ωl,2) ≤ C(|vl,1|

2
H1(Ωl,1) + |vl,2|

2
H1(Ωl,2)).

Since the estimate of χ3 is similar, we obtain, using (4.41), an estimate of vnew,

|vnew|
2
H1(Ωnew) ≤ C

3∑

i=1

|vl,i|
2
H1(Ωl,i)

. (4.45)

From (4.40) and (4.45),

∫

γ

|vnew − vγ|
2dσ ≤ Cµ(γ)

3∑

i=1

|vl,i|
2
H1(Ωl,i)

. (4.46)
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Estimate of
∫

γ
|ṽ − vnew|

2dσ:

From the definitions of ṽ and vnew, we find

∫

γ

|ṽ − vnew|
2dσ =

∫

CD

|χ2 + χ3|
2dσ ≤ 2||χ2||

2
L2(CD) + 2||χ3||

2
L2(CD).

From (4.36) and (4.44), we obtain,

||χ2||
2
L2(CD) ≤ Cµ(γ)||v̂l,1 − v̂l,2||

2

H
1
2 (Ωnew∩δ1,2)

≤ C(|vl,1|
2
H1(Ωl,1) + |vl,2|

2
H1(Ωl,2)),

and therefore, ∫

γ

|ṽ − vnew|
2dσ ≤ Cµ(γ)

3∑

i=1

|vl,i|
2
H1(Ωl,i)

. (4.47)

We now complete the proof of our lemma. Substituting the estimates (4.39),

(4.46), and (4.47) into (4.38), it results that

∫

γ

[v]2dσ ≤ 3

∫

γ

|vl − vγ|
2dσ + 3

∫

γ

|vnew − vγ |
2dσ + 3

∫

γ

|ṽ − vnew|
2dσ

≤ Cµ(γ)|vl|
2
H1(Ωl)

+ Cµ(γ)
3∑

i=1

|vl,i|
2
H1(Ωl,i)

+ Cµ(γ)
3∑

i=1

|vl,i|
2
H1(Ωl,i)

≤ Cµ(γ) ( |vl|
2
H1(Ωl)

+
3∑

i=1

|vl,i|
2
H1(Ωl,i)

),

where C is a constant not depending on the length of γ.

4.3.3 Proofs of the main results

We are now ready to state and prove the Poincaré and Friedrichs inequalities for

mortar finite elements.

Theorem 4.3. (Friedrichs inequality) For every v ∈ V h,

||v||2L2(Ω) ≤ C(diam(Ω))2

K∑

k=1

|vk|
2
H1(Ωk),

where C is a constant independent of (Hk)k=1:K, (hk)k=1:K, and K.
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Proof. We may assume that no edge of the subregions is parallel to the x- or y-

axis. Otherwise, since the number of support lines for the edges is finite for any

partition of Ω, we can rotate Ω to obtain the desired property.

Let `0 be a parallel to the x-axis passing through Ω. The intersection of `0 and

the interface Γ consists of a finite number, n(y0)− 1, of points, denoted by P1, P2,

. . . , Pn(y0)−1 in increasing order of their x-coordinates. Let {P0, Pn(y0)} = ` ∩ ∂Ω,

such that P0 is the leftmost of the two points, and let (αi(y0), y0) be the coordinates

of Pi, for i = 0 : n(y0). Then,

{(α0(y0), y0), (αn(y0)(y0), y0)} = ` ∩ ∂Ω,

(αi(y0), y0) ∈ Γ ∩ `0, ∀ i = 1 : n(y0)− 1,

αi(y0) ≤ αi+1(y0), ∀ i = 0 : n(y0)− 1.

Let γ`,i, for i = 1 : n(y0) − 1, be the nonmortar to which Pi belongs; if Pi

is vertex of a subregion, and there are several nonmortars ending at Pi, we can

choose γ`,i arbitrarily among them.

Let (x, y0) ∈ `0 be an arbitrary point on `0. Denote by n(x, y0) the well-defined

index with the property:

αn(x,y0)(y0) ≤ x < αn(x,y0)+1(y0).

By integrating ∂v/∂x along `0 from (α0(y0), y0) to (x, y0), we obtain:

|v(x, y0)− v(α0(y0), y0)| ≤

n(x,y0)∑

i=0

∣∣∣∣∣∣∣

αi+1(y0)∫

αi(y0)

∂v

∂x
(t, y0)dt

∣∣∣∣∣∣∣
+

n(x,y0)∑

i=1

|[v](αi(y0), y0)|.

Since v ∈ V h and (α0(y0), y0) ∈ ∂Ω, we find that v(α0(y0), y0) = 0. Using the

Schwarz inequality and the previous formula, we obtain:

|v(x, y0)| ≤

n(x,y0)∑

i=0

(αi+1(y0)− αi(y0))
1
2

( αi+1(y0)∫

αi(y0)

∣∣∣∣
∂v

∂x

∣∣∣∣
2

dt
) 1

2

(4.48)

+
( n(x,y0)∑

i=1

µ(γl,i)
) 1

2
( n(x,y0)∑

i=1

1

µ(γl,i)
‖[v](αi(y0), y0)|

2
) 1

2

.
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Squaring both sides of (4.48) and apply Schwarz inequality, the inequality becomes:

|v(x, y0)|
2 ≤ 2

(n(x,y0)∑

i=0

(αi+1(y0)− αi(y0))
) (n(x,y0)∑

i=0

αi+1(y0)∫

αi(y0)

∣∣∣∣
∂v

∂x
(t, y0)

∣∣∣∣
2

dt
)

+ 2
(n(x,y0)∑

i=1

µ(γl,i)
) (n(x,y0)∑

i=1

1

µ(γl,i)
|[v](αi(y0), y0)|

2
)
.

Since

n(x,y0)∑

i=0

(αi+1(y0)− αi(y0)) = αn(x,y0)+1(y0)− α0(y0) ≤ diam(Ω),

and, since, from Lemma 4.6,

n(x,y0)∑

i=1

µ(γl,i) ≤

n(y0)∑

i=1

µ(γl,i) ≤ diam(Ω),

we obtain,

|v(x, y0)|
2 ≤ 2 diam(Ω)

n(x,y0)∑

i=0

αi+1(y0)∫

αi(y0)

∣∣∣∣
∂v

∂x
(t, y0)

∣∣∣∣
2

dt (4.49)

+ C diam(Ω)

n(x,y0)∑

i=1

1

µ(γl,i)
|[v](αi(y0), y0)|

2.

Integrate (4.49) over Ω. The first term is then bounded from above by

2(diam(Ω))2
K∑

k=1

|vk|
2
H1(Ωk).

Let γ be a nonmortar with endpoints of coordinates (x1, y1) and (x2, y2), and

slope λ. Since no edge of the subregions {Ωi}i=1:N is parallel to the x- or y-axis,

then λ 6= 0 and λ 6= ∞ and we can write the equation for γ as x = y
λ

+ b. When

the second term of (4.49) is integrated, the jump of v across γ is integrated over

y1 ≤ y ≤ y2 and x ≥ y
λ

+ b. Its contribution is equal to

1

µ(γ)

y2∫

y1

∫

x≥ y
λ
+b

∣∣∣[v](y
λ

+ b, y)
∣∣∣
2

dxdy ≤
1

µ(γ)
diam(Ω)

∫ y2

y1

∣∣∣[v](y
λ

+ b, y)
∣∣∣
2

dy
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=
1

µ(γ)
diam(Ω)

√
λ2

1 + λ2

∫

γ

[v]2dσ

≤ diam(Ω)
1

µ(γ)

∫

γ

[v]2dσ.

As a consequence, after integrating (4.49) over Ω, we find

||v||2L2(Ω) ≤ 2 (diam(Ω))2
K∑

k=1

|vk|
2
H1(Ωk)

+ C (diam(Ω))2
∑

γ nonmortar

1

µ(γ)

∫

γ

[v]2dσ. (4.50)

If γ is a side of the subregion Ωl, then, from Lemma 4.7 and using the notations

therein, we have

1

µ(γ)

∫

γ

[v]2dσ ≤ C(|vl|
2
H1(Ωl)

+

q(l)∑

i=1

|vl,i|
2
H1(Ωl,i)

). (4.51)

Recall that Ωl,i are the subregions with a side opposite γ. When we add (4.51)

over all nonmortar sides γ, every term |vl,i|
2
H1(Ωl,i)

appears a finite number of times,

which is bounded from above independently of (Hk)k=1:K, and (hk)k=1:K. Then,

∑

s nonmortar

1

µ(γ)

∫

γ

[v]2dσ ≤ C

K∑

k=1

|vk|
2
H1(Ωk). (4.52)

Substituting (4.52) into (4.50), we obtain

||v||2L2(Ω) ≤ C (diam(Ω))2

K∑

k=1

|vk|
2
H1(Ωk).

The next theorem is a variant of the Poincaré inequality. The proof is similar

to that of Theorem 4.3 and it is based on Lemma 4.7.

Theorem 4.4. (Poincaré inequality) For every v ∈ V h,

||v||2L2(Ω) ≤ C(diam(Ω))2
K∑

k=1

|vk|
2
H1(Ωk) + C

1

σ(Ω)
|

∫

Ω

vdx|2,

where C is a constant independent of (Hk)k=1:K, (hk)k=1:K, and K, and σ(Ω) is

the area of Ω.
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Proof. The proof follows the steps of the proof of the Friedrichs inequality. We

can again assume that no edge of the subregions is parallel to the x- or y-axis.

Let (x1, y1) and (x2, y2) be arbitrary points in Ω. We evaluate v(x1, y1) −

v(x2, y2) by adding the integral of ∂v
∂y

from (x1, y1) to (x1, y2) and the integral of ∂v
∂x

from (x1, y2) to (x2, y2), taking the jumps of v across the interface Γ into account.

We square both sides of the resulting inequality and integrate them twice over

Ω, once with respect to (x1, y1) and once with respect to (x2, y2).

The left hand side becomes
∫

Ω

∫

Ω

|v(x1, y1)−v(x2, y2)|
2dx1dy1 dx2dy2 = 2σ(Ω)||v||2L2(Ω) − 2|

∫

Ω

vdx|2, (4.53)

with σ(Ω) on the order of (diam(Ω))2.

The right hand side is bounded from above by the sum of the H1-seminorms

of the restrictions of the finite element function v to the subregions {Ωi}i=1:N and

the result of the integration of the squares of all the jumps of v over nonmortar

sides. Reasoning as in the previous proof, we obtain a bound for the right hand

side,

4(diam(Ω))2σ(Ω)
K∑

k=1

|vk|
2
H1(Ωk) + C (diam(Ω))4

∑

γ nonmortar

1

µ(γ)

∫

γ

[v]2dσ. (4.54)

We use Lemma 4.7 to estimate the second term of (4.54). As in the previous

proof, the number of appearances for any term |vk|
2
H1(Ωk) does not depend on

(Hk)k=1:K , (hk)k=1:K , and K,

∑

γ nonmortar

1

µ(γ)

∫

γ

[v]2dσ ≤ C

K∑

k=1

|vk|
2
H1(Ωk). (4.55)

From (4.53), (4.54), and (4.55), we obtain,

2σ(Ω)||v||2L2(Ω) − 2|

∫

Ω

vdx|2 ≤ 4(diam(Ω))2σ(Ω)

K∑

k=1

|vk|
2
H1(Ωk)

+ C(diam(Ω))4
K∑

k=1

|vk|
2
H1(Ωk).
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Dividing both sides by σ(Ω) ∼= (diam(Ω))2, we find,

||v||2L2(Ω) ≤ C(diam(Ω))2
K∑

k=1

|vk|
2
H1(Ωk) + C

1

σ(Ω)
|

∫

Ω

vdx|2.

4.3.4 Condition Number Estimate

A consequence of the Friedrichs inequality is that the condition number of the

Poisson problem solved using mortar finite elements has the same form as in the

conforming case.

For simplicity, we assume that, for all the subregions in the partition of the

computational domain, Hk is of order H, and hk is of order h.

Theorem 4.5. For any u ∈ V h,

c

K∑

k=1

||u||2L2(Ωk) ≤ aΓ(u, u) ≤ C
1

h2

K∑

k=1

||u||2L2(Ωk), (4.56)

where c and C are constants that do not depend on the partition of Ω. The condition

number of the stiffness matrix Kmortar corresponding to the discrete mortar problem

satisfies

κ(Kmortar) ≤
C

h2
,

where C is independent of the partition of Ω.

Proof. From the definition of the broken norm, aΓ(u, u) =
∑K

k=1 |uk|
2
H1(Ωk). The

right inequality of (4.56) follows from the inverse inequality. The left inequality

follows from Theorem 4.3, since ||u||2L2(Ω) =
∑K

k=1 ||u||
2
L2(Ωk). The estimate of the

condition number is a direct consequence of (4.56).

4.3.5 Extensions to more general geometries

In this section, we extend the construction from Section 4.3.2 to a general partition.

The assumption that all subregions are rectangles was only used in Lemma 4.7, to
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Figure 4.3: Triangular subregions case

estimate of the L2-norm of the jumps of a mortar function across nonmortars. In

particular, we used the assumption in the construction of vnew.

We use the same notations, and make a similar construction, as in Section 4.3.2.

Once again, we require that the partition of Ω has all the properties required in

Section 4.3. Thus, the length of every side of Ωk is bounded from below by a

uniform fraction of Hk, each subregion is obtained from a finite number of reference

domains by a uniformly bounded mapping, and the ratio of the diameters of any

two adjacent subregions is uniformly bounded. For each partition, a (finite) number

of different reference domains might be required.

Opposite the nonmortar γ, we construct a polygon by cutting off part of the

union of the subregions, the boundaries of which intersect γ, by a line parallel to

γ; see Figure 4.3. Because of the properties just reviewed, we can choose that line

such that the length of the side parallel to γ of Ωl,i ∩ Ωnew is bounded from below

by a uniform fraction of Hl,i. As before, we extend the jump of v from δi,i+1∩Ωnew

to Ωl,i or Ωl,i+1 (say to Ωl,i), according to which of ∂Ωl,i ∩ γ and ∂Ωl,i+1 ∩ γ is the

largest. We can do this uniformly, using the corresponding reference domain. We

obtain a function χi vanishing on the sides opposite δi,i+1, the average of which
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over γ ∩ Ωl,i is 0, and which satisfies properties similar to (4.35) and (4.36); cf.

Section 4.3.2. After this step, the proof can be completed as before.

The construction presented above must be changed slightly, if there are triangles

among the subregions {Ωi}i=1:N . For a triangle with only one vertex on γ, we

cannot uniformly extend a function defined on one side so that it vanishes on an

opposite side; cf. Figure 2, for Ωl,2 ∩Ωnew. Instead, we can construct an extension

χ2 of vl,2 − vl,1 from δ1,2 ∩ Ωnew to Ωl,2 ∩ Ωnew satisfying

||χ2||H 1
2 (δ2,3∩Ωnew)

≤ ||χ2||H 1
2 (δ1,2∩Ωnew)

.

Then, we extend vl,3 − vl,2 + χ2 from δ2,3 ∩ Ωnew to Ωl,3 ∩ Ωnew, resulting in a

function, χ3, which vanishes on δ3,4, by using the usual construction. We can do

this since Ωl,3∩Ωnew is a quadrilateral, and the length of the side parallel to γ∩Ωl,3

is, by construction, uniformly bounded from below by Hl,3. A similar extension,

χ4, is made for the jump of v across δ4,5 on Ωl,4 ∩Ωnew. Thereafter, vl,4 − vl,3 + χ4

is extended from δ3,4 ∩ Ωnew to Ωl,3 ∩ Ωnew, resulting in a function which vanishes

on δ2,3. Finally, the function vnew is obtained by adding all the auxiliary functions

χi to v |Ωnew .
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Chapter 5

The FETI Method for Mortar
Finite Elements

5.1 Introduction

The FETI method is an iterative substructuring method using Lagrange multipliers

which is actively used in industrial–size parallel codes for solving difficult computa-

tional mechanics problems. This method was introduced by Farhat and Roux [61];

a detailed presentation is given in [62], a monograph by the same authors. Orig-

inally used to solve second order, self-adjoint elliptic equations, it has later been

extended to many other problems, e.g., time-dependent problems, cf. Farhat, Chen,

and Mandel [54], plate bending problems, cf. Farhat et al. [55, 59, 94], heteroge-

neous elasticity problems with composite materials, cf. Farhat and Rixen [109, 110],

acoustic scattering and Helmholtz problems, cf. Farhat et al. [57, 58] and Franca

et al. [64, 65], and linear elasticity with inexact solvers, cf. Klawonn and Wid-

lund [77]. We note that an algebraic version of the FETI method, the A–FETI

method, has also been studied; cf. Park et al. [99, 100]. Recent results have shown

that this method is mathematically equivalent to one instance of the FETI method;

see Rixen, Farhat, Tezaur, and Mandel [112].

The FETI method has been designed for conforming finite elements, and is

based on the decomposition of the computational domain Ω into non-overlapping

subdomains. Pointwise continuity across the interface is enforced by using La-

grange multipliers. After eliminating the subdomain variables, the dual problem,
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given in terms of Lagrange multipliers, is solved by a projected conjugate gradient

(PCG) method. Once an accurate approximation for the Lagrange multipliers has

been obtained, the values of the primal variables are obtained by solving a local

problem for each subdomain; see Section 5.2 for more details.

It was shown experimentally by Farhat, Mandel, and Roux [60] that applying a

certain projection operator in the PCG solver plays a role similar to that of a coarse

problem for other domain decomposition algorithms, and that certain variants of

the FETI algorithm are numerically scalable with respect to both the problem size

and the number of subdomains. Mandel and Tezaur later showed that for a FETI

method which employs a Dirichlet preconditioner the condition number grows at

most in proportion to (1 + log(H/h))2, if the decomposition of Ω does not have

crosspoints, i.e. the points that belong to the closure of more than two subdomains,

and as (1 + log(H/h))3 in the general case; cf [93, 129]. Here, H is the subdomain

diameter and h is the mesh size. Using a different preconditioner, Klawonn and

Widlund obtained a FETI method which converges in fewer iterations than the

classical FETI method, and proved an upper bound for the condition number of

their method which is on the order of (1 + log(H/h))2; cf.[78].

In Section 5.3, we discuss how the FETI method can be applied for solving

self-adjoint elliptic equations discretized by low order mortar finite elements. We

introduce three algorithms, corresponding to three different preconditioners for

the dual problem suggested in the FETI literature: The Dirichlet preconditioner,

which has been used successfully for conforming finite elements, see, e.g., Farhat,

Mandel, and Roux [55], a block–diagonal preconditioner used by Lacour [79, 80],

and the new preconditioner introduced by Klawonn and Widlund in [78]. We use

geometrically nonconforming mortar finite elements of the second generation, for

which no continuity conditions are imposed at the vertices of the subdomains.

In Section 5.5, we present numerical comparisons of the performances of the

three algorithms, which were implemented in both two and three dimensions. We

use geometrically nonconforming mortar finite elements of the second generation,

for which no continuity conditions are imposed at the vertices of the subdomains.

We conclude that the new preconditioner of Klawonn and Widlund performs best

in terms of both iteration and flop counts, and has scalability properties similar to
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those of the algorithm with the Dirichlet preconditioner in a conforming case.

For other work on FETI and Lagrange multiplier based substructuring methods

for problems with non–matching grids, see Farhat and Géradin [56], and Rixen,

Farhat, and Géradin [111] and the references therein.

5.2 The Classical FETI Algorithm

In this section, we review the original FETI method of Farhat and Roux for elliptic

problems discretized by conforming finite elements. Our presentation is similar to

that of Farhat, Mandel, and Tezaur [94].

For simplicity, we only discuss the Poisson equation with mixed boundary con-

ditions, 


−∆u = f on Ω
u = 0 on ∂ΩD
∂u
∂n

= 0 on ∂ΩN .
(5.1)

On Ω, we consider P1 or Q1 finite elements with mesh size h. The finite element

mesh is partitioned along mesh lines into N non–overlapping subdomains Ωi ⊂

Ω, i = 1 : N . Since the finite element mesh is conforming, the boundary nodes of

the subdomains match across the interface. A subdomain Ωi is said to be floating

if ∂Ωi ∩ ∂ΩD = ∅, and non–floating otherwise.

For each Ωi, let Ki and f̂i be the local stiffness matrix and right hand side,

respectively. As in other substructuring methods, the first step of the FETI method

consists in eliminating the interior subdomain variables. If Ki is written using

blocks obtained by ordering the interior nodes first, and the boundary nodes last,

then

Ki =
( KII,i KIB,i

KBI,i KBB,i

)
,

where KBI,i is the transpose matrix of KIB,i. Similarly,

f̂i =
( f̂I,i

f̂B,i

)
.

The Schur complement matrix S(i) and the corresponding right hand side fi are

given by

S(i) = KBB,i −KBI,iK
−1
II,iKIB,i;
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fi = f̂B,i −KBI,iK
−1
II,if̂I,i.

Let S = diagN
i=1S

(i) be a block–diagonal matrix, and let f be the vector [f1, . . . , fN ].

Similarly, we denote by ui the vector of nodal values on ∂Ωi and by u the vector

[u1, . . . , uN ].

If Ωi is a floating subdomain, then S(i) is a singular matrix and its kernel is

generated by a vector Zi which is equal to 1 at the nodes of ∂Ωi and vanishes at

all the other interface nodes. Let Z consisting of all the column vectors Zi. Then

KerS = RangeZ. (5.2)

Let B be the matrix of constraints which measures the jump of a given vector

u across the interface; B will also be referred to as the Lagrange multiplier matrix.

Each row of the matrix B is associated to two matching nodes across the interface,

and has values 1 and −1, respectively at the two nodes, and zero entries everywhere

else. A finite element function with corresponding vector values u is continuous if

and only if Bu = 0.

For a method without redundant constraints and multipliers, the number of

pointwise continuity conditions required at crosspoints, i.e., the points that be-

long to the closure of more than two subdomains, and therefore the number of

corresponding rows in the matrix B, is one less then the number of the subdo-

mains meeting at the crosspoint. There exist several different ways of choosing

which conditions to enforce at a crosspoint, all of them resulting in algorithms

with similar properties.

An alternative suggested in [109, 110] is to connect all the degrees of freedom

at the crosspoints by Lagrange multipliers and use a special scaling, resulting in a

method with redundant multipliers.

Let Wi be the space of the degrees of freedom associated with ∂Ωi \ ∂ΩD, and

let W be the direct sum of all spaces Wi. If U = RangeB is the space of the

Lagrange multipliers, then

S : W →W, B : W → U.

By introducing Lagrange multipliers λ for the constraint Bu = 0, we obtain a
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saddle point Schur formulation of (5.1),

Su + B′λ = f
Bu = 0,

(5.3)

where B′ denotes the transpose of B.

5.2.1 Algebraic Formulation

In the FETI method, the primal variable u is eliminated from (5.3) and the re-

sulting equation for the dual variable λ is solved by a projected conjugate gradient

method.

We note that S is singular if there exist at least one floating subdomains among

the subdomains Ωi, i = 1 : N . Let S† : W → W be the pseudoinverse of S, such

that S†b ∈ RangeS, for any b ⊥ KerS. A solution for the first equation in (5.3)

exists if and only if

f −B′λ ⊥ KerS. (5.4)

If (5.4) is satisfied, then

u = S†(f − B′λ) + Zα, (5.5)

where Zα is an element of KerS = RangeZ; cf. (5.2) to be determined.

Let G = BZ. Substituting (5.5) into the second equation in (5.3), it follows

that

BS†B′λ = BS†f +Gα. (5.6)

An important role in the FETI algorithm is played by V ⊂ U defined by

V = KerG′. In other words,

V = KerG′ ⊥ RangeG = BRangeZ = BKerS. (5.7)

Let P = I −G(G′G)−1G′ be the projection onto V . Since P (Gα) = 0, if P is

applied to (5.6), then

PBS†B′λ = PBS†f. (5.8)

It is easy to see that G′G is non–singular, by using the fact that

KerB ∩ RangeZ = KerB ∩KerS = ∅.
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We now return to the necessary condition (5.4). From (5.2), we obtain that

(5.4) is equivalent to f − B ′λ ⊥ RangeZ, which leads to

Z ′(f −B′λ) = 0

and therefore to

G′λ = Z ′f. (5.9)

Let F = BS†B′, d = BS†f , and e = Z ′f . We concluded that we have to

solve the dual problem (5.8) for λ, subject to the constraint (5.9); with the new

notations,

PFλ = Pd; (5.10)

G′λ = e. (5.11)

After that an approximate solution for λ is found, the primal variable u can be

obtained as follows: Solving for α in (5.6),

α = (G′G)−1G′(Fλ− d).

Then u can be obtained from (5.5) after solving a Neumann or a mixed boundary

problem on each floating and nonfloating subdomain, respectively, corresponding

to a vector multiplication by S†.

The main part of the FETI algorithm consists of solving (5.10) for the dual

variable λ, which is done by a projected conjugate gradient (PCG) method. Since

λ must also satisfy the constraint (5.11) let

λ0 = G(G′G)−1e (5.12)

be the initial approximation. Then G′λ0 = e and λ − λ0 ∈ KerG′ = V . If all

the increments λk − λk−1, i.e., the search directions, are in V , then (5.11) will be

satisfied.

One possible preconditioner for (5.10) is of the form PM , where

M = BSB′. (5.13)
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When a vector multiplication by M is performed, N independent Dirichlet prob-

lems have to be solved in each iteration step. Therefore, M is known as the

Dirichlet preconditioner. We note that the Schur complement matrix S is never

computed explicitly, since only the action of S on a vector is needed.

Mandel and Tezaur [93] have shown that the condition number of this FETI

method has a condition number which grows polylogarithmically with the number

of nodes in each subdomain,

κ(PMPF ) ≤ C

(
1 + log

H

h

)3

,

where C is a positive constant independent of h,H. If there are no crosspoints in

the partition of Ω, then the bound improves to (1 + log(H/h))2.

We conclude this section by presenting the PCG algorithm:

Projected Preconditioned Conjugate Gradient Iteration (PCG)

λ0 = G(G′G)−1e, r0 = Pd− PFλ0, n = 1

while (Mrn−1, rn−1) ≥ tol

wn−1 = Prn−1

zn−1 = Mwn−1

yn−1 = Pzn−1

βn = (yn−1, rn−1)/(yn−2, rn−2) (β1 = 0)

pn = yn−1 + βnpn−1 (p1 = y0)

αn = (yn−1, rn−1)/(Apn, pn)

λn = λn−1 + αnpn

rn = rn−1 − αnApn

n = n+ 1

end

In contrast to the CG algorithm of Section 3.1.1, in each iteration step of the

PCG algorithm, the residual and the search directions are projected onto the space

V , i.e. wn−1 = Prn−1 and yn−1 = Pzn−1. This projection step plays the role of a

coarse problem which is solved in each iteration, and is the reason why the FETI

method is numerically scalable.
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5.3 The FETI Algorithm for Mortars

As we have seen in Section 5.2, in the classical FETI algorithm the computa-

tional domain Ω is partitioned into nonoverlapping subregions, multiple degrees

of freedom are introduced for the matching nodes across the interface, and point-

wise continuity across the interface is enforced by a Lagrange multiplier matrix B.

This methodology is very similar to that used in Section 2.7, where a saddle point

formulation for the mortar finite element method has been introduced.

Therefore, the FETI method can be applied without any algorithmic changes

for a mortar finite element discretization of Ω, using the nonoverlapping partition

{Ωi}i=1:N introduced for the mortar element in Section 2.2. To keep the pre-

sentation clear, we assume each subregion Ωi has diam(Ωi) of order H and has

diameter of the mesh size of order h. The matrix S is again a block–diagonal

matrix diagN
i=1S

(i), where the local Schur complement matrices S(i) are obtained

from the finite element discretizations on individual subregions. As in the case of

conforming finite elements, we have to solve the problem

Su + B′λ = f,
Bu = 0.

We note that, in contrast to the conforming finite element case, the matrices S (i)

can now be built from different discretizations on different subregions Ωi. Also,

the matrix B should enforce mortar conditions across the interface, instead of

pointwise continuity.

The dual problem is obtained as in Section 5.2.1. It results in solving

PFλ = Pd, (5.14)

with a PCG method, with the initial approximation λ0 given by (5.12) and with

all the search direction in V . The price we pay for the inherent flexibility of the

mortar finite elements is related to the fact that the matrix B is more complicated

in the mortar case, compared to that of the classical FETI method with conforming

finite elements.

The matrix B has one block, Bγ, for each nonmortar side γ. Using the matrix

formulation of the mortar conditions (2.3) and (2.4), we let Mγ and Nγ be the
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matrices which multiply the nonmortar and mortar nodal values in the mortar

conditions across γ, respectively. Then Bγ consists of the columns of Mγ and −Nγ

for the nodes of γ and those on the mortars opposite γ, and has zero columns

corresponding to all the other nodes.

We note that all the mortar conditions are associated with the interior nodes on

the nonmortar sides. Therefore, the problem of choosing the crosspoints constraints

which existed for conforming elements does not exist in the mortar case.

In our numerical experiments, we have implemented three different precon-

ditioners suggested in the FETI literature for the dual problem (5.14). In Sec-

tions 5.3.1–5.3.3. we present each of them briefly.

5.3.1 The Dirichlet Preconditioner

A possible preconditioner for the dual problem (5.14) is the Dirichlet preconditioner

(5.13) which performs very well for conforming finite elements,

PM = PBSB′.

5.3.2 A Block-diagonal Preconditioner

In [79, 80], Lacour suggested another preconditioner designed specifically for a

mortar version of the FETI algorithm, and which does not have counterpart in the

conforming case.

Let diagBγB
′
γ be the block–diagonal matrix which has a block BγB

′
γ of size

equal the number of interior nodes on γ for each nonmortar γ. We note that

diagBγB
′
γ is the block–diagonal part of the matrix BB ′. The non-zero entries

of BγB
′
γ which do not belong to the diagonal blocks are of two types. Some

correspond to Lagrange multipliers associated to the first and last interior points

of the nonmortars. Others occur because there are nodal basis functions associated

to points on the mortar sides, the support of which intersects more than one

nonmortar. However, there are relatively few such non-zero entries.

The preconditioner PM is defined as follows:

PM = P (diagBγB
′
γ)
−1BSB′(diagBγB

′
γ)
−1. (5.15)
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5.3.3 A New Preconditioner

Recently, Klawonn and Widlund [78] have discussed a FETI method for elliptic

problems with heterogeneous coefficients, discretized by conforming finite elements.

In the case of no coefficient jump, which reduces to our Poisson problem, the new

preconditioner suggested in [78] has the form

PM̂ = P (BB′)−1BSB′(BB′)−1. (5.16)

They also established the following upper bound for the condition number of their

FETI method, which is valid for all cases, including when the partition contains

crosspoints:

κ(PM̂PF ) ≤ C

(
1 + log

H

h

)2

.

The new preconditioner PM̂ also provides new insight about the connection be-

tween the FETI method and the Neumann-Neumann methods, in particular the

balancing method.

In the same paper, it is proven that the preconditioner M̂ with a minimal

number of pointwise continuity conditions at the crosspoints, and therefore of

Lagrange multipliers, results in a similar algorithm as the FETI method with

redundant Lagrange multipliers of Farhat and Rixen [109, 110]. Since the Lagrange

multipliers in the mortar case are not associated with the vertices of the subregions,

the method with redundant multipliers cannot be implemented for mortars.

The new preconditioner of Klawonn and Widlund, which depends only on the

Lagrange multiplier matrix B, can be used for the mortar FETI algorithm. We

note that the matrix BB ′ is non–singular in the mortar case, since the rank of B is

equal to the number of Lagrange multipliers. To see this, it is enough to take the

minor of B consisting of the columns corresponding to the interior nodes of the

nonmortars. This results in a block–diagonal matrix diagMγ which is non–singular,

since each block Mγ is a diagonally dominant matrix.
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5.4 Convergence Analysis of the New Precondi-

tioner for Conforming Finite Elements

In [78], Klawonn and Widlund give a convergence analysis for a FETI method with

a new preconditioner, for solving elliptic problems with heterogeneous coefficients.

In this section, we present a slightly changed version of their theory for the much

simpler case of the Poisson equation. Since the proofs presented here require only

algebra, this theory can also be applied for the FETI method with mortars, if the

matrix B is changed accordingly; see Section 5.3.

The first step is an elementary functional analysis result. Let < ·, · > be the

euclidean inner product on the Lagrange multiplier space U . From (5.7), we find

that an equivalent definition for V is V ⊂ U is V ⊥ BKerS, i.e.,

V = {v ∈ U | < v,Bθ >= 0, ∀ θ ∈ KerS}. (5.17)

Let (·, ·)V be an inner product on V , and let || · ||V be the corresponding norm on

V . We denote by V ′ be dual space of V with respect to (·, ·)V .

Lemma 5.1. Let P : U → V be the orthogonal projection onto V with respect to

< ·, · >, and let F, M̂ : U → V be linear symmetric operators on V . Assume there

exists positive constants Ci, i = 1 : 4, such that

C1||λ||
2
V ′ ≤ < Fλ, λ > ≤ C2||λ||

2
V ′ , ∀ λ ∈ V ′; (5.18)

C3||v||
2
V ≤ < M̂v, v > ≤ C4||v||

2
V , ∀ v ∈ V. (5.19)

Then

κ(PM̂PF ) ≤
C2C4

C1C3
.

Proof. This is Lemma 3.1 of Mandel and Tezaur [93], and a proof of it can be

found therein.

Choosing the appropriate norm on V is crucial. Following [78], let

||v||2V =< M̂v, v >=< SB′(BB′)−1v, B′(BB′)−1v >= |B′(BB′)−1v|2S. (5.20)
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The matrix BB′ is invertible since B has full rank, and has more columns, i.e.,

the total number of nodes on the interface, than rows, i.e., the number of interior

nodes on the nonmortar sides.

To prove that ||·||V is a norm, let v ∈ V such that ||v||V = 0. Then, from (5.20),

it follows that B′(BB′)−1v = ζ ∈ KerS. From (5.17) we obtain < v,Bζ >= 0.

Since Bζ = v we obtain that < v, v >= 0, and therefore v = 0, which proves that

|| · ||V is indeed a norm.

The next step is to show that the left inequality of (5.18) holds for C1 = 1, i.e.,

||λ||2V ′ ≤ < Fλ, λ > ∀ λ ∈ V ′.

The proof which we present here is somewhat different than that from [78], and

highlights the relationship between ||λ||2V ′ and < Fλ, λ >. We begin by deriving

an equivalent formula for < Fλ, λ >.

Lemma 5.2. Let F = BS†B′. Then,

< Fλ, λ > = sup
v∈V

< λ, v >2

infBu=0 |B′(BB′)−1v + u|2S
(5.21)

Proof. In [93], the following elementary result has been proven:

< Fλ, λ > = sup
w⊥KerS

< λ,Bw >2

|w|2S
; (5.22)

see also [78]. For completeness, we include a short proof of (5.22), as appears

in [78].

We note that S† = S−1/2S−1/2 on RangeS. Since λ ∈ V ′ means that B′λ ∈

RangeS, we obtain that S−1/2B′λ ∈ RangeS. Then, from the definition of F , we

find that

< Fλ, λ > = < S†B′λ,B′λ > = ||S−1/2B′λ||2

= sup
ŵ∈RangeS

< B′λ, S−1/2ŵ >2

< ŵ, ŵ >
= sup

w∈RangeS

< λ,Bw >2

|w|2S

= sup
w⊥KerS

< λ,Bw >2

|w|2S
.
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From (5.22), it follows easily that

< Fλ, λ > = sup
w∈W

< λ,Bw >2

|w|2S
, (5.23)

since W is an orthogonal sum of subspaces KerS and (KerS)⊥, and λ ∈ V ⊥

BKerS.

We now use (5.23) to prove (5.21). Let λ ∈ V and w ∈ W . In another step

originally used in [93], we prove the existence of z ∈ KerS such that Bw̃ ∈ V ,

where w̃ = w + z. In other words, Bw̃ = Bw +Bz ⊥ BKerS, which leads to

< Bz,Bθ > = − < Bw,Bθ > ∀ θ ∈ KerS. (5.24)

Applying the Riesz representation theorem to the quotient space KerS/(KerS ∩

KerB) with inner product < B ·, B · >, we obtain that a solution z ∈ KerS for

(5.24) exists, and satisfies ||Bz|| ≤ ||Bw||.

Let v = Bw̃ ∈ V . Since < λ,Bz >= 0, we obtain

< λ,Bw > = < λ,Bw̃ > − < λ,Bz > = < λ,Bw̃ > = < λ, v > .

Since z ∈ KerS, it follows that < Sw,w >=< Sw̃, w̃ >, and therefore

< λ,Bw >2

|w|2S
=

< λ,Bw̃ >2

|w̃|2S
.

From (5.23) we obtain that

< Fλ, λ > = sup
w̃∈W,Bw̃∈V

< λ,Bw̃ >2

|w̃|2S

= sup
v∈V

< λ, v >2

infBw̃=v |w̃|2S

= sup
v∈V

< λ, v >2

infBu=0 |B′(BB′)−1v + u|2S
.

For the last step, we used the fact that B(B ′(BB′)−1v) = v, and that therefore

w̃ −B′(BB′)−1v = u ∈ KerB,

for all w̃ ∈ W such that Bw̃ = v.
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Using the result of the previous lemma, it is easy to see that three of the four

inequalities from (5.18) and (5.19) are satisfied.

Lemma 5.3. The following bound holds,

||λ||2V ′ ≤ < Fλ, λ > ∀ λ ∈ V ′. (5.25)

Proof. By definition,

||λ||2V ′ = sup
v∈V

< λ, v >2

|B′(BB′)−1v|2S
. (5.26)

The inequality (5.25) follows from (5.21) and (5.26) if we note that

inf
Bu=0

|B′(BB′)−1v + u|2S ≤ |B′(BB′)−1v|2S.

In the next theorem, we present the only estimate needed to obtain an upper

bound for the condition number of the FETI method.

Theorem 5.1. The bound

|B′(BB′)−1v|2S ≤ C(1 + log(H/h))2 inf
Bu=0

|B′(BB′)−1v + u|2S, (5.27)

is equivalent to

|B′(BB′)−1Bw|2S ≤ C(1+log(H/h))2|w|2S, ∀ w ∈ W such that Bw ∈ V. (5.28)

If these bounds hold, then the condition number of the FETI method satisfies

κ(PM̂PF ) ≤ C(1 + log(H/h))2. (5.29)

Proof. To show that (5.27) and (5.28) are equivalent, we first assume that (5.27)

is satisfied. Let w ∈ W such that Bw = v ∈ V . Then w = B ′(BB′)−1v + uw, with

uw ∈ W and Buw = 0. It is easy to see that (5.28) follows from

|B′(BB′)−1Bw|2S = |B′(BB′)−1v|2S

≤ C inf
Bu=0

|B′(BB′)−1v + u|2S

≤ C|B′(BB′)−1v + uw|
2
S

= C(1 + log(H/h))2|w|2S.
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Reciprocally, assume that (5.28) holds. Let v ∈ V arbitrary. Let uv ∈ W

satisfy Buv = 0 and

inf
Bu=0

|B′(BB′)−1v + u|2S = |B′(BB′)−1v + uv|
2
S.

Then (5.27) follows from (5.28) for w = B ′(BB′)−1v + uv.

To prove (5.29), we use Lemma 5.1. From (5.20), it follows that the inequality

(5.19) holds for C3 = C4 = 1, and, from Lemma 5.3, we find that the left inequality

of (5.18) holds for C1 = 1.

From (5.27), and using (5.18) and (5.26), we conclude that

< Fλ, λ > ≤ C(1 + log(H/h))2||λ||2V ′ ,

Thus, the right inequality of (5.18) holds for C2 = C(1 + log(H/h))2.

Therefore, from Lemma 5.1, we obtain

κ(PM̂PF ) ≤ C(1 + log(H/h))2.

A bound of the form (5.28) was proven, for conforming finite elements, by

Klawonn and Widlund [78]. The key for their proof was that the operator I −

B′(BB′)−1B takes any function w ∈ W , not necessarily continuous, into a contin-

uous function, w−B′(BB′)−1Bw, the nodal values of which are the average of the

nodal values of v at the matching nodes. The same operator appears in the study

of the balancing method; see [78]. This led to new connections between the FETI

and the balancing methods.

For mortar finite elements, we note that w−B ′(BB′)−1Bw is a mortar function,

for any w ∈ W , not necessarily a mortar function. However, we do not have a

similar interpretation of the nodal values of w − B ′(BB′)−1Bw in terms of those

of w, as in the conforming finite element case. In addition, the operator I −

B′(BB′)−1B is no longer local, since, for the mortar case, the matrix (BB ′)−1 may

be a full matrix.
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5.5 Numerical Comparisons

In this section, we present numerical results for the FETI method for mortar finite

elements. We have tested each of the three preconditioners of Sections 5.3.1–5.3.3.

Our experiments were done in MATLAB, and for two and three dimensions.

Our interests were two–fold:

• to compare the convergence performances of the different preconditioners for

the FETI algorithms with mortars, based on the iteration counts;

• to study the differences between the FETI methods for conforming finite el-

ements using pointwise continuity conditions and mortar conditions across

the interface, being interested in the iteration counts, as well as the compu-

tational costs;

5.5.1 Experiments in 2–D

As the model problem in 2–D, we chose the Poisson equation on the unit square

Ω = [0, 1]2 with zero Dirichlet boundary conditions. The right hand was chosen

such that an exact solution of the problem was known.

The computational domain Ω was partitioned into 16, 32, 64, and 128 geo-

metrically nonconforming rectangular subregions, respectively; see Figure 5.1. On

each subregion, we considered Q1 elements of mesh size h, and, to make the com-

parisons easier, all the subregions considered had diameters of the same order, H.

For each partition, the number of nodes on each edge, H/h, has been taken to be,

on average, 4, 8, 16, and 32. Across the partition interface Γ the meshes do not

necessarily match. A saddle point formulation of the problem has been used, and

mortar conditions have been enforced across Γ.

For our tests with conforming finite elements, Ω was partitioned into 4×4, 6×6,

8× 8, and 11× 11 congruent squares, and Q1 elements were used in each square.

The meshes match across Γ, and, non-redundant pointwise continuity conditions,

or mortar conditions, are used across Γ for comparison purposes.

We report the iteration count and the flop count of the algorithms. The PCG

iteration was stopped when the residual norm had decreased by a factor of 10−7.
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Figure 5.1: Geometrically nonconforming partitions of Ω
16 subdomains 32 subdomains

64 subdomains 128 subdomains

We begin by discussing the differences between the new preconditioner M̂ , cf.

(5.16), the preconditioner M , cf. (5.15), and the Dirichlet preconditioner M , cf.

(5.13), and by presenting some implementation details.

In general, the preconditioners M̂ andM require some extra work in comparison

to M . In each iteration step, when we multiply a vector by the preconditioner, we

have to solve two systems with the matrix BB ′, and diagBγB
′
γ, respectively. The

non-zero entries outside the diagonal blocks are relatively few; see Section 5.3.2 for

details on the nature of their occurrences.

It is easy to see that diagBγB
′
γ has a band of order H/h, the number of interior

nodes on an arbitrary nonmortar. The matrix BB ′ is also banded, but in this case

the band depends on the ordering of the nodes on the interface, and it is possible

to have order 1/h. Therefore, multiplying a vector by (BB ′)−1 is potentially an

expensive operation.
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Table 5.1: Geometrically nonconforming partition, non–matching grids across the
interface : (I) = New Preconditioner, (II) = Block–diagonal Preconditioner, (III)
= Dirichlet Preconditioner, Ns = Number of Subdomains

(I) (II) (III)
Ns H/h Iter MFLOPS Iter MFLOPS Iter MFLOPS

16 4 11 9.0e–1 20 1.5e+0 108 7.4e+0
16 8 13 1.2e+1 22 1.9e+1 290 2.3e+2
16 16 14 2.2e+2 23 3.4e+2 406 5.6e+3
16 32 15 4.4e+3 24 6.8e+3 486 1.3e+5

32 4 12 2.4e+0 24 4.3e+0 223 3.7e+0
32 8 14 2.7e+1 25 4.6e+1 438 7.4e+2
32 16 15 4.9e+2 27 8.5e+2 620 1.8e+4
32 32 16 1.1e+4 27 1.9e+4 692 4.4e+5

64 4 15 7.2e+0 32 1.3e+1 487 1.9e+2
64 8 16 7.4e+1 33 1.4e+2 1071 4.3e+3
64 16 18 1.3e+3 35 2.4e+3 1725 1.1e+5
64 32 20 3.0e+4 39 5.7e+4 2130 2.9e+6

128 4 16 1.6e+1 33 2.9e+1 1107 9.0e+2
128 8 18 1.7e+2 36 3.2e+2 1413 2.0e+4
128 16 20 3.1e+3 41 6.0e+3 1761 2.5e+5
128 32 22 7.1e+4 42 1.3e+5 – –

However, the sparsity pattern of BB ′ plays a very important role. Our re-

sults show that the costs for applying (BB ′)−1 and (diagBγB
′
γ)
−1 are comparable

and relatively small compared to the costs for other operations performed during

one iteration, e.g., multipling a vector by the Schur complement, or by its pseu-

doinverse. These costs further decrease if the Cholesky factorizations of BB ′ and

diagBγB
′
γ are computed only once, and the Cholesky factors are stored. Then,

solving systems with BB ′ or diagBγB
′
γ only amounts to one back and one forward

solve. Moreover, the improvement of the iteration count offsets this extra cost

easily.

We note that we do not compute the Schur complements explicitly, nor their

pseudoinverses, but only the stiffness matrices for each subdomain.
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Figure 5.2: Geometrically nonconforming partition, non–matching grids across
the interface : (I) = New Preconditioner, (II) = Block–diagonal Preconditioner.
Upper left : H/h = 4, Upper right : H/h = 8, Lower left : H/h = 16, Lower right
: H/h = 32.
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To multiply a vector by a Schur complement matrix, we solve, in each subregion,

a Poisson problem with Dirichlet boundary conditions.

To multiply a vector by S†, we solve one Poisson problem with mixed boundary

conditions in each non–floating subregion, and with Neumann boundary conditions

in each floating subregion; see, e.g., [48]. We note that we only need to store the

interior–boundary and boundary–boundary blocks of the local stiffness matrix and

the Cholesky factor of the interior–interior block, which is symmetric and positive
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Figure 5.3: Geometrically nonconforming partition, non–matching grids across
the interface : (I) = New Preconditioner, (II) = Block–diagonal Preconditioner.
Upper left : Ns = 16, Upper right : Ns = 32, Lower left : Ns = 64, Lower right :
Ns = 128, Ns = Number of subdomains.
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definite.

To have a uniquely solvable problem on the floating subregions, we require

the solution of the local Neumann problem to be orthogonal to KerS, i.e. to the

constant functions on the subregion. In two dimensions, a simple way of enforcing

this orthogonality condition is by adding a Lagrange multiplier, and storing the

LU components of the extended stiffness matrix.

In Table 5.1, we report the iteration and flop counts for the new preconditioner
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Table 5.2: Geometrically conforming partition, Matching grids and continuity con-
straints across the interface: (I) = New Preconditioner, (III) = Dirichlet Precon-
ditioner, Ns = Number of Subdomains

(I) (III)
Ns H/h Iter MFLOPS Iter MFLOPS

16 4 7 5.9e–1 18 1.3e+0
16 8 9 7.7e+0 19 1.5e+1
16 16 10 1.6e+2 20 3.0e+2
16 32 11 3.7e+3 21 6.6e+3

36 4 9 2.3e+0 23 5.2e+0
36 8 10 2.3e+1 24 5.0e+1
36 16 11 4.2e+2 26 9.1e+2
36 32 13 1.1e+4 28 2.2e+4

64 4 9 4.6e+0 25 1.2e+1
64 8 10 4.7e+1 25 1.1e+2
64 16 11 1.0e+3 27 2.2e+3
64 32 13 2.1e+4 28 4.6e+4

121 4 9 9.7e+0 25 2.5e+1
121 8 10 8.1e+1 25 1.8e+2
121 16 11 1.4e+3 27 3.1e+3
121 32 13 5.1e+4 28 1.0e+5

M̂ , cf. (5.16), the preconditioner M , cf. (5.15), and the Dirichlet preconditioner

M , cf. (5.13). The Dirichlet preconditioner M does not yield a numerically scal-

able method and converges only in hundreds of iterations. The iteration count

appears to be linear in H/h, and the computational costs are one to two orders

of magnitude greater than for the other preconditioners. The new preconditioner

M̂ has scalability properties similar to those of M in the conforming case. When

the number of nodes on each subdomain edge (i.e. H/h) is fixed and the number

of subdomains, N , is increased, the iteration count shows only a slight growth, cf.

also Figure 5.2. When H/h is increased while the partition is kept unchanged, the

increase in the number of iterations is quite satisfactory and very similar to that of

the conforming case, cf. also Figure 5.3. Note that the number of iterations and the
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computational cost for M̂ are about half of that for M . This suggests that drop-

ping the non-zero diagonal terms of BB ′ relaxes the weak continuity conditions

for mortar finite elements more than is optimal.

As a comparison, we also present iteration counts for a geometrically conform-

ing case. The computational domain Ω is partitioned in a geometrically conforming

fashion into 16, 36, 64, and 121 squares.

Table 5.3: Geometrically conforming partition, matching grids and mortar con-
ditions across the interface : (I) = New Preconditioner, (II) = Block–diagonal
Preconditioner, (III) = Dirichlet Preconditioner, Ns = Number of Subdomains

(I) (II) (III)
Ns H/h Iter MFLOPS Iter MFLOPS Iter MFLOPS

16 4 6 5.4e–1 6 5.4e–1 6 1.0e+0
16 8 6 5.6e+0 7 6.4e+0 18 2.0e+1
16 16 6 1.1e+2 8 1.4e+2 38 6.8e+2
16 32 7 2.6e+3 8 2.9e+3 47 1.7e+4

36 4 8 2.1e+0 9 2.3e+0 14 5.6e+0
36 8 8 1.9e+1 10 2.3e+1 33 9.1e+1
36 16 9 3.6e+2 10 3.9e+2 49 2.0e+3
36 32 11 9.5e+3 12 1.0e+4 56 5.3e+4

64 4 8 4.4e+0 10 5.2e+0 20 1.5e+1
64 8 9 4.4e+1 11 5.2e+1 25 1.1e+2
64 16 11 1.0e+3 11 1.0e+3 52 5.2e+3
64 32 12 1.9e+4 13 2.1e+4 61 1.1e+5

121 4 10 1.1e+1 13 1.4e+1 48 5.9e+1
121 8 11 8.9e+1 13 1.0e+2 78 6.5e+2
121 16 12 1.5e+3 15 1.8e+3 116 1.4e+4
121 32 14 5.4e+4 17 6.4e+4 121 4.2e+5

Across the interface Γ, we can use pointwise continuity conditions, as in the

classical FETI method, and the preconditioners M̂ and M , or we can use mortar

conditions and the preconditioners M̂ and M .

When pointwise continuity is enforced, the new preconditioner M̂ converges in

less than half the number of iterations required for the Dirichlet preconditioner.
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In this case, BB′ is very close to twice the identity matrix, and therefore almost

no extra work is required when a system with the matrix BB ′ is solved. This

observation is supported by a comparison of the flop counts; cf. Table 5.2. Also,

the vector matrix multiplication by B ′(BB′)−1B is very easy to compute, since it

is close to an operator from the balancing algorithm; see Section 5.4. The PCG

algorithm with the new preconditioner can be written such that only the product

of a vector by B ′(BB′)−1B and not by (BB′)−1 needs to be computed.

When mortar conditions are used, computing the matrix B is simple for match-

ing nodes, in particular no computations of integrals resulting from the mortar

conditions are necessary. From Table 5.3, it is easy to see that M̂ and M behave

similarly in terms of computational costs per iteration and iteration counts, which

are just slightly higher for the block diagonal preconditioner M . However, the

Dirichlet preconditioner M performs, once again, poorly, when mortar conditions

are used across the interface, and does not seem to yield a scalable method.

We finally note that there is little difference in terms of iteration count and

computational costs between the use of the new preconditioner M̂ when continuity

constraints or mortar conditions are used; cf. Table 5.2 and Table 5.3.

5.5.2 Experiments in 3–D

As the model problem in 3–D, we choose the Poisson equation on the unit cube

Ω = [0, 1]3 with zero Dirichlet boundary conditions. The right hand side is chosen

such that the exact solution is known.

The computational domain Ω has been partitioned into 8, 16, and 32 noncon-

forming parallelipipeds, respectively; see Figure 5.5 and Figure 5.6, at the end of

this section, for the 8 subdomains partition of Ω, and the corresponding choice of

the nonmortar faces. We chose these partitions such that in each case there exist

floating subdomains, i.e., interior subdomains.

The subdomains have diameter of order H, and Q1 elements of mesh size h

are used in each subdomain. The number of nodes on each edge is, on average,

4, 8, and 16. Across the partition interface Γ the meshes do not match, and

mortar conditions for three dimensional elements are enforced by using a Lagrange
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multipliers matrix; see Section 2.3.

We report the iteration count and the flop count of the algorithms. The PCG

iteration was stopped when the residual norm had decreased by a factor of 10−7.

Table 5.4: Geometrically nonconforming partition, non–matching grids across the
interface, 3–D: (I) = New Preconditioner, (II) = Block–diagonal Preconditioner,
(III) = Dirichlet Preconditioner, Ns = Number of Subdomains

(I) (II) (III)
Ns H/h Iter MFLOPS Iter MFLOPS Iter MFLOPS

8 4 12 1.7e+0 37 4.6e+0 797 9.8e+1
8 8 15 4.0e+1 40 9.1e+1 11104 2.4e+4
8 16 18 1.2e+3 45 3.0e+3 – –

16 4 14 5.5e+0 42 1.2e+1 2978 8.0e+2
16 8 17 1.1e+2 45 2.2e+2 – –
16 16 20 3.0e+3 56 7.4e+3 – –

32 4 17 2.1e+1 52 3.2e+7 4751 2.8e+3
32 8 19 4.0e+2 64 6.5e+2 – –

We tested the performance of the three preconditioners for mortars, the new

preconditioner M̂ , cf. (5.16), the preconditioner M , cf. (5.15), and the Dirichlet

preconditioner M , cf. (5.13); cf. Table 5.4.

We do not compute the Schur complements explicitly, but only store those

components of the stiffness matrices which are relevant for the multiplication of

a vector by the Schur complement matrix and by the pseudoinverse of the Schur

complement. In the mortar case, the stiffness matrices for each subdomain may

be different, unless there are repeated subdomains. Therefore, in the three dimen-

sional case, the memory requirements when implementing mortar finite element

methods are significant. However, a similar situation also occurs for the conforming

finite element case, if the partition of the computational domain into subdomains

is unstructured and if there are few repeated subdomains.

As in the 2–D case, the Dirichlet preconditioner M does not yield a numerically

scalable method, requiring hundreds or thousands of iterations to converge.
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Figure 5.4: Non–zero entries of BB ′. Left: 3–D partition, 16 subdomains, 8 nodes
on subdomain edge. Right: 2–D partition, 16 subdomains, 8 nodes on subdomain
edge.

The new preconditioner M̂ seems to be numerically scalable. The number

of iterations grows slowly when the number of nodes on each subdomain edge is

increased, for a fixed number of subdomains. A similar behavior is noticed when

the number of nodes in each subdomain if fixed, and the number of subdomains is

increased.

Using the preconditioner M results into a method which converges in about

three times as many iterations than when M̂ is used. We recall that, in the 2–D

case, the number of iterations for the method with M was only about twice as large

as that for M̂ . This result is due to the fact that, in the three dimensional case,

there are many nodes, e.g., the nodes on the wire baskets of the subdomains, which

influence several nonmortar conditions. Therefore, the block diagonal structure of

BB′ is no longer as dominant, and many non–zero entries of BB ′ need to be

dropped; cf. Figure 5.4.

However, the flop count for the algorithm with M is not three times larger

than the flop count for the algorithm with M̂ . This suggests that the costs of

applying (BB′)−1 are significant in the three dimensional case. In Table 5.5, we

present the costs of applying (BB ′)−1 twice during an iteration step, relative to
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Table 5.5: Relative complexity study of one iteration step for the new precondi-
tioner

MFLOPS MFLOPS per
Ns H/h due to BB′ iteration Ratio

(A) (B) (A)/(B)

8 4 3.2e–2 1.5e–1 .22
8 8 5.9e–1 2.7e+0 .22
8 16 6.8e+0 6.9e+1 .10

16 4 1.3e–1 3.9e–1 .34
16 8 2.1e+0 6.6e+0 .32
16 16 2.2e+1 1.5e+2 .15

32 4 6.9e–1 1.3e+0 .55
32 8 1.1e+1 2.1e+1 .55

the total flop count for one iteration step. As expected, this cost is significant, but

it decreases when the number of nodes on the edges of the subdomains increases,

since, in that case, the costs of multiplying a vector by the Schur complement and

the pseudoinverse of the Schur complement grow faster than the cost of applying

(BB′)−1.
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Figure 5.5: Partition of the unit cube, 8 subdomains
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Figure 5.6: Nonmortar faces for the partition the unit cube, 8 subdomains
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Chapter 6

A Balancing Algorithm for
Mortar Finite Elements

6.1 Introduction

The balancing method is a hybrid nonoverlapping Schwarz domain decomposition

method from the Neumann-Neumann family; see Section 3.3.2. It is easy to im-

plement, and uses a natural coarse space of minimal dimension which allows for

an unstructured partition of the computational domain. The condition numbers

of the resulting algorithms depends only polylogarithmically on the number of

degrees of freedom in each subregion.

The balancing method was introduced by Mandel and Brezina [89, 90, 91] for

elliptic problems, and was extended to mixed finite elements by Cowsar, Mandel,

and Wheeler [42].

The Neumann-Neumann algorithms have been analyzed by Dryja and Widlund

[50, 132]; see also [53] for a general study which includes the three dimensional case.

Several Neumann-Neumann algorithms for mortars have also been suggested; see,

e.g. Dryja [46], Le Tallec [84], and Le Tallec, Sassi, and Vidrascu [85].

In this chapter, we propose an algorithm which can be regarded as the extension

of the balancing method for the case when mortar finite elements are used to

discretize H1(Ω). As in the classical case, every local space is associated with

a subregion from the partition of the computational domain. The values of the

mortar function on a nonmortar side depend on, but are not equal to, its values on
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the mortar sides opposite the nonmortar. To account for this dependence, we chose

to work with local spaces defined on extended subregions, instead of using local

spaces and local solvers defined on each subregion. In this regard, our algorithm

is different from the classical Neumann-Neumann methods.

For each subregion Ωi, the extended region Ω̃i is the union of Ωi and all the

neighboring subregions of Ωi which have a mortar side opposite ∂Ωi. We note that,

in our local solvers, we consider only the nodes on the mortars opposite ∂Ωi, in

addition to the nodes on ∂Ωi. Therefore, the dimensions of our local problem solved

on an extended subregion is at most a fixed multiple (depending on the relative

mesh size of the neighboring subregions) of the dimension of the corresponding

local problem solved on the individual subregion.

A basis for the coarse space is given by counting functions associated with each

local space. The same construction exists in the classical balancing algorithm.

Our algorithm is based on a a similar philosophy to the method suggested by

Dryja [46], since for both algorithms the Schwarz framework is used to study their

convergence properties. There are major differences between the two algorithms,

since our goal was to obtain an algorithm for mortar finite elements which is close

to the classical balancing algorithm for conforming finite elements. In the method

of Dryja, the local spaces are associated with pairs of opposite nonmortar and

mortar sides. Also, a basis for the coarse space is given by the mortar functions

which are equal to one at all the genuine degrees of freedom associated with a

subregion.

For our algorithm, we obtain an upper bound for the condition number of the

form C(1 + log(H/h))4, which is valid for both the geometrically conforming and

nonconforming cases. The same bound is valid, in the geometrically nonconforming

case, for Dryja’s algorithm, as well as for other algorithms, e.g., the iterative

substructuring method of Achdou, Maday, and Widlund [3], in the geometrically

nonconforming case. We note that, in the geometrically conforming case, which,

in some sense, is closer to the conforming finite element case, an upper bound

of the form C(1 + log(H/h))2 for the condition number has been established for

both algorithms mentioned before. Our algorithm has been designed to be applied

in the nonconforming case, and therefore we are satisfied with the quasi–optimal
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bound obtained for that case.

The rest of the chapter is structured as follows. In the next section, we present

the balancing algorithm for conforming finite elements, and, in Section 6.3, we

modify it to obtain an algorithm for mortar finite elements. After we prove several

technical results in Section 6.4, we use the abstract Schwarz theory in Section 6.5

to obtain a condition number estimate for our algorithm in the geometrically con-

forming case. InSection 6.6, we conclude the chapter, and our thesis, by extending

the result to the geometrically nonconforming case.

6.2 The Classical Balancing Method

Following Widlund [133], we present the original balancing method of Mandel and

Brezina [89], and use abstract Schwarz theory of Section 3.2 to derive a condition

number estimate for it. To keep the presentation simple, our model problem will

be Poisson’s equation with mixed boundary conditions on the boundary of Ω, a

bounded polygonal domain in R2; cf. (5.1).

On Ω, we consider P1 or Q1 finite elements with mesh size h. The finite element

mesh is partitioned along mesh lines into N non–overlapping subregions Ωi, i =

1 : N . A subdomain Ωi is floating if ∂Ωi ∩ ∂ΩD = ∅, and non–floating otherwise.

The variational formulation of the problem is given by (1.6); see Section 1.3. As

in the FETI method, see Section 5.2, the unknowns interior to the subregions are

eliminated, and a Schur complement formulation of the problem is obtained. The

reduced system is a Schur complement system, and will be solved in the space Ṽ

of piecewise harmonic functions on the subregions Ωi.

Let wΓ be a piecewise linear function on Γ, the interface of the partition of Ω,

and let H(wΓ) ∈ Ṽ be the discrete harmonic extension of wΓ. Let a : Ṽ × Ṽ → R

be the inner product on Ṽ , given by

a(wΓ, wΓ) = a(H(wΓ),H(wΓ)), = |H(wΓ)|2H1(Ω).
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6.2.1 The coarse space and the local spaces

An important role in the balancing algorithm is played by the counting functions

associated with the boundary nodes of each subregion. In the classical algorithm,

they indicate to how many boundaries of subregions a node on the interface be-

longs. Let νi : Γ → R, be the counting function corresponding to Ωi defined as

follows: νi is a piecewise linear function with nodal values given by

νi(x) =





number of sets ∂Ωj with x ∈ ∂Ωj if x ∈ ∂Ωi;
0, if x /∈ ∂Ωi;
1, if x ∈ ∂Ωi ∩ ∂ΩD.

Let ν†i be the pseudo inverse of νi, i.e., ν†i is a piecewise linear function on Γ, with

nodal values

ν†i (x) =

{
1/νi(x), if νi(x) 6= 0;

0, else.

We note that ν†i form a partition of unity, i.e., their sum equals one at each node

of Γ ∪ ∂Ω.

The coarse space V0 has minimal dimension, i.e., has only one degree of freedom

in each subregion. For each floating subregion Ωi, the harmonic extension of ν†i ,

H(ν†i ), is a basis function for Ṽ0. For a non-floating subregion Ωj, we set the

values of ν†j at the nodal points of ∂Ωj ∩ ∂ΩD to zero. Then, the basis function

corresponding to Ωj is the harmonic extension of ν†j .

The bilinear form a0 is exact, i.e., a0(·, ·) = a(·, ·), and therefore the coarse

space solver T0 is a projection. To emphasize this, we write P0 = T0, and note that

a(P0u, v0) = a(u, v0), ∀ v0 ∈ V0.

In particular, a(P0u, ν
†
i ) = a(u, ν†i ), and therefore,

a((I − P0)u, ν
†
i ) = 0, ∀ u ∈ Ṽ . (6.1)

Each local space Vi, i = 1 : N , is associated with a subregion Ωi, and is

embedded in Ṽ , i.e., Vi ⊂ Ṽ . Thus Vi consists of piecewise harmonic functions

which vanish at all the interface nodes on Γ \ ∂Ωi. Let Ĩh be the interpolation
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operator onto the piecewise linear finite element space Ṽ , which preserves the

nodal values. The bilinear form ãi(·, ·) is given by

ãi(vi, wi) = aΩi
(H(Ĩh(νivi)),H(Ĩh(νiwi))). (6.2)

The projection-like operator Ti is defined by

ãi(Tiu, vi) = a(u, vi), ∀ vi ∈ Vi. (6.3)

Since H(νiν
†
i ) is equal to 1 on any floating subregion Ωi, it follows that

ãi(Ti(u), ν
†
i ) =

∫

Ωi

∇H(Ĩh(νiTi(u))) · ∇H(νiν
†
i ) dx = 0.

Therefore, (6.3) is solvable if u satisfies

a(u, ν†i ) = 0, (6.4)

for every ν†i corresponding to a floating subregion. Such functions are called bal-

anced functions. Then, from (6.1), we can conclude that any function in Range(I−

P0) is balanced.

Moreover, if Ωi is a floating subregion, the local problem (6.3) corresponds to

a pure Neumann problem, which is not uniquely solvable. We make the solution

unique by requiring Tiu to be orthogonal to the null space of ãi, i.e.,
∫

Ωi

H(Ĩh(νiTi(u))) dx = 0. (6.5)

6.2.2 Condition number estimate

The balancing method is a hybrid method, combining features of the additive and

multiplicative Schwarz methods. It can be regarded as an additive Schwarz method

on the local spaces, after the coarse space component has been projected out. The

preconditioned operator is

Tbal = P0 + (I − P0)(T1 + . . .+ TN)(I − P0), (6.6)

and the error propagation operator is

(I − P0)(I −
N∑

i=1

Ti)(I − P0).
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Since the balancing method is a hybrid method, we expect its condition number

to be smaller than that of the pure additive Schwarz algorithm, corresponding to

the Neumann-Neumann operator

TN−N = P0 + T1 + . . .+ TN , (6.7)

and larger than that of the multiplicative algorithm. We note that a Neumann-

Neumann algorithm with the spaces and the approximate solvers considered here

does not converge.

An important observation is that the convergence analysis for the balancing

operator Tbal can be obtained from the analysis of the additive operator TN−N ,

which can be done in the additive Schwarz framework; cf. Section 3.2. This result

appears in Mandel and Brezina [89], and will be presented here for the sake of

completeness.

Lemma 6.1. If the coarse space operator P0 is a projection, then the condition

number of the balancing operator Tbal is bounded from above by the condition num-

ber of the additive Schwarz operator TN−N restricted to the space Range(I − P0).

Proof. Since P0 is a projection, a(w,w) = a(P0w, P0w) + a((I − P0)w, (I − P0)w),

and, from (6.6), it follows that

a(Tbalw,w) = a(P0w,w) + a((I − P0)(T1 + . . .+ TN)(I − P0)w,w)

= a(P0w,w) + a((T1 + . . .+ TN )(I − P0)w, (I − P0)w)

= a(P0w, P0w) + a((P0 + T1 + . . .+ TN)(I − P0)w, (I − P0)w)

= a(P0w, P0w) + a(TN−N (I − P0)w, (I − P0)w).

If λmin(TN−N) ≤ 1 ≤ λmax(TN−N) are the smallest and the largest eigenvalues of

TN−N restricted to Range(I − P0), then

a(Tbalw,w) ≤ a(P0w, P0w) + λmax(TN−N)a((I − P0)w, (I − P0)w)

≤ λmax(TN−N)a(w,w).

A similar inequality holds for λmin(TN−N), and we conclude that

κ(Tbal) ≤ κ(TN−N ).
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We now return to the analysis of TN−N . Let u ∈ Ṽ , and let ui ∈ Vi be the local

space components of u, given by

ui = H(Ih(ν
†
i u)). (6.8)

Since ν†i form a partition of unity, we obtain

N∑

i=1

ui = H(Ih(
(∑

i

ν†i

)
u)) = H(Ih(u)) = u, (6.9)

since u is a piecewise harmonic function.

From the definition of the approximate bilinear forms, (6.2), we find

ãi(ui, ui) = |H(Ĩh(νiν
†
i u))|

2
H1(Ωi)

= |u|2H1(Ωi)
,

and therefore
N∑

i=1

ãi(ui, ui) = |u|2H1(Ω). (6.10)

Then, from (6.9) and (6.10), we find that Assumption 1 of the abstract Schwarz

theory is satisfied for C0 = 1. We note that, a coarse space component does not

exist in the decomposition of u. This will change in the mortar case; see (6.55).

A routine proof using a coloring argument shows that ρ(ε), the spectral radius

of Assumption 2, is uniformly bounded by a constant independent of the number

of subregions, i.e., ρ(ε) ≤ C.

In Section 3.2.1, we have noted, following Widlund [133], that it is enough

to prove the inequality from Assumption 3 only for the functions from Range(Ti),

instead of for every local function in vi. This observation is crucial for the balancing

method, as well as for our mortar balancing algorithm. We conclude this section

with the proof of the existence of a constant C such that

a(ui, ui) ≤ C(1 + log(H/h))2ãi(ui, ui), ∀ ui ∈ Range(Ti), ∀i = 1 : N. (6.11)

This proofs follows the same steps as in Widlund [133].

Once (6.11) is proven, then Assumption 3 is established, with a parameter ω

of order C(1 + log(H/h))2. From Theorem 3.1, it results that

κ(TN−N ) ≤ C(1 + log(H/h))2,
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Figure 6.1: Neighboring subregions, conforming finite element case

and, from Lemma 6.1, we obtain that

κ(Tbal) ≤ C(1 + log(H/h))2.

We return to proving (6.11). Let ui ∈ Range(Ti). From (6.2), it follows that

(6.11) is equivalent to

a(ui, ui) ≤ C(1 + log(H/h))2|H(Ĩh(νivi))|
2
H1(Ω). (6.12)

We note that the support of ui consists of the union of Ωi and its neighbors. We

only discuss the case when Ωi and its neighbor have one side in common. The

case when Ωi and one of its neighbors have one vertex in common can be treated

similarly.

For clarity, we introduce notations similar to those we will use in the mortar

case; see Figure 6.1. Let Ω1
i be a neighboring subregion of Ωi, and let γi,1 be a

side of Ω1
i opposite to the side ζi,1 of Ωi. Let A and D be the end points of ζi,1.
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Then νi(A) = νi(D) = 4, and νi is equal to 2 at all the interior nodes on ζi,1. Let

Ĩh(νiui)A be the function which is equal to νiui at A and vanishes at all the other

nodes. The function Ĩh(νiui)D is defined similarly.

It is easy to see that

ui |γi,1
=

Ĩh(νiui) |ζi,1

2
−

Ĩh(νiui)A + Ĩh(νiui)D

4
.

We note that ui vanishes at all the nodes of ∂Ω1
i outside γi,1 and is harmonic on

Ω1
i . From Theorem 1.5 it follows that

|ui|
2
H1(Ω1

i ) = |ui|
2
H1/2(∂Ω1

i )

≤ C
(
|Ĩh(νiui) |ζi,1

|2H1/2(∂Ωi)
+ |Ĩh(νiui)A|

2
H1/2(∂Ω1

i )

+|Ĩh(νiui)D|
2
H1/2(∂Ω1

i )

)

≤ C(1 + log(H/h))2
(
|H(Ĩh(νiui))|

2
H1(Ωi)

+
||H(Ĩh(νiui))||

2
L2(Ωi)

H2

)
.

Similar estimates can be derived on all the neighboring subregions of Ωi, as well

as on Ωi. Summing all these estimates, we find

a(ui, ui) ≤ C(1+ log(H/h))2
(
|H(Ih(νiui))|

2
H1(Ωi)

+
||H(Ih(νiui))||

2
L2(Ωi)

H2

)
. (6.13)

Since ui ∈ Range(Ti), we find, from (6.5), that
∫

Ωi

H(Ih(νiui)) dx = 0, ∀ ui ∈ Range(Ti).

Then, from the Poincaré inequality (see Theorem 1.3), it follows that

||H(Ih(νiui))||
2
L2(Ωi)

≤ CH2|H(Ih(νiui))|
2
H1(Ωi)

, (6.14)

and the estimate (6.12) results from (6.13) and (6.14).

6.3 The Balancing Algorithm for Mortars

In this section, we modify the classical balancing method for conforming finite ele-

ments, discussed in Section 6.2, to obtain an algorithm for mortar finite elements.
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To make our presentation clear, we first discuss the geometrically conforming case;

we will extend our results to the geometrically nonconforming case in Section 6.6.

Our results can also be extended, using the same methods, to any second order

self-adjoint elliptic problems with mixed boundary conditions, and to the three

dimensional case.

Following Section 2.2, we introduce a mortar finite element V h on Ω corre-

sponding to the nonoverlapping partition {Ωi}i=1:N . The variational formulation

of our Poisson problem is

aΓ(uh, vh) = fΓ(vh), ∀ vh ∈ V
h,

which has to be solved for uh ∈ V h; see Section 2.5 for the definitions of aΓ(·, ·)

and fΓ(·). For simplicity, we assume that all subregions Ωi are rectangular.

After that we have eliminated the unknowns in the interior of the subregions, a

Schur complement problem results. The variational formulation of this Schur prob-

lem was not discussed in Section 2.5, and is different than that of the conforming

case; see Section 6.2. Therefore, we give further details.

Let S(i) be the Schur complement matrix corresponding to Ωi, and let S be the

block diagonal Schur complement matrix; see Section 5.2. The reduced system is

a Schur complement system,

sΓ(uΓ, vΓ) = f̃Γ(vΓ), ∀ vΓ ∈ V
h
Γ . (6.15)

We want to solve (6.15) for uΓ ∈ V h
Γ , the restriction of uh to the interface. Here,

sΓ(uΓ, vΓ) = vT
ΓSuΓ, and f̃Γ(vΓ) is obtained from fΓ(vh), after eliminating the

interior unknowns.

Let V be the space of piecewise discrete harmonic functions, associated with

the partition of Ω. If wΓ ∈ V
h
Γ , then H(wΓ) ∈ V is constructed as follows. In each

subregion Ωi, let Hi(w) be the harmonic extension of wΓ |∂Ωi
, with respect to the

H1-seminorm. The restriction of H(wΓ) to Ωi is denoted by Hi(w). It is easy to

see that

sΓ(wΓ, wΓ) = aΓ(H(wΓ),H(wΓ)), ∀ wΓ ∈ V
h
Γ , ∀ H(wΓ) ∈ V, (6.16)
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and that the discrete harmonic extension minimizes the energy of a function for

given values on the interface,

aΓ(H(wΓ),H(wΓ)) = min
w∈V h,w|Γ=vΓ

aΓ(w,w).

The major difference between the classical balancing method and our algorithm

for mortars is related to the extended subregions, which replace the individual

subregions in the definition of the local bilinear forms ãi(·, ·). In Section 6.5, we

will show that defining ãi(·, ·) only on Ωi does not lead to a proof of the convergence

of the algorithm.

We are looking for a solution in V h
Γ of the Schur complement system (6.15).

From the norm equivalence (6.16), it follows that we can study the convergence

properties of the balancing algorithm for piecewise discrete harmonic functions

from V , instead of mortar functions restricted to the interface. Therefore, from

now on we work in the space V , with inner product a(·, ·) = aΓ(·, ·).

The counting functions are different than in the conforming finite element case,

due to the use of the extended subregions.

For each subregion Ωi, let ζi,j, j = 1 : q(i), be the mortar sides of Ωi, and ζ ′i,j,

j = 1 : q′(i), be the mortars opposite ∂Ωi. Note that, since we are in the geo-

metrically conforming case, opposite a nonmortar there exists exactly one mortar.

Let Ni be the set of the corner nodes of Ωi, the interior nodes of ∪jζi,j, and all the

nodes of ∪jζ
′

i,j.

Let Ω̃i be the extended subregion corresponding to Ωi, defined as follows: Let

Ω
′

i,j be the neighboring subregion of Ωi such that ζ
′

i,j is the side of Ω
′

i,j. Then, Ω̃i

is the union of Ωi and all the subregions Ω
′

i,j, with j = 1 : q
′

(i).

Let νi : Γ → R be the counting function corresponding to Ωi. By definition, νi

is a mortar function, piecewise linear on all the mortars, and takes the following

values at the genuine degrees of freedom:

νi(x) =





number of N ′
js such that x ∈ Nj, if x ∈ Ni;

0, if x /∈ Ni;
1, if x ∈ ∂Ωi ∩ ∂ΩD.

In the geometrically conforming case, the value of νi at every interior node of the

mortar sides where νi does not vanish is equal to 2, and Range(νi) ⊆ {1, 2, 3, 4}.
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Let ν†i be the pseudo inverse of νi, i.e., ν†i is a mortar function, piecewise linear

on mortars, with nodal values

ν†i (x) =

{
1/νi(x), if νi(x) 6= 0;

0, else.

As in the conforming case, ν†i , as well as H(ν†i ), form a partition of unity:

N∑

i=1

ν†i = 1;

N∑

i=1

H(ν†i ) = 1. (6.17)

The coarse space V0 is defined as in the conforming case, using the new counting

functions. Let Ih be the nodal basis interpolation onto V . A basis function for V0

corresponding to a floating subregion Ωi is H(ν†i ). For a nonfloating subregion Ωj,

we set ν†j equal to zero at all the nodes of ∂ΩD and H(ν†j ) is a basis function for

V0.

The bilinear form a0 is exact, i.e., a0(·, ·) = a(·, ·), which means that T0 = P0

is a projection.

Each local space Vi, i = 1 : N , is associated with one subregion Ωi from

the partitioning of Ω, is embedded in V , i.e., Vi ⊂ V , and consists of piecewise

harmonic functions which vanish at all the genuine degrees of freedom of Γ \ Ni.

On Vi, we define approximate bilinear forms ãi(·, ·) using the extended subregion

Ω̃i as follows:

ãi(vi, wi) = a �

Ωi
(H(Ih(νivi)),H(Ih(νiwi))) (6.18)

=
∑

Ωj⊂
�

Ωi

∫

Ωj

∇H(Ih(νivi)) · ∇H(Ih(νiwi)) dx.

The projection-like operator Ti is defined by

ãi(Tiu, vi) = a(u, vi), ∀ vi ∈ Vi. (6.19)

If the extended subregion Ω̃i contains more than one subregion, then any function

in Vi vanishes at ∂Ω̃i \ ∂Ωi. Thus, (6.19) is well–posed since it becomes a Poisson

problem on Ω̃i with intrinsic Dirichlet boundary conditions on ∂Ω̃i \ ∂Ωi.
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Figure 6.2: Local spaces

If Ω̃i = Ωi, then all the sides of Ωi are mortars; cf. Figure 6.2, upper left picture.

In this case, as in the conforming case, we have to work with balanced functions;

cf. (6.4). Once again, every function from Range(I − P0) is a balanced function,

and we require Tiu to be orthogonal to the null space of ãi,

∫

Ωi

H(Ih(νiTi(u))) dx = 0, (6.20)

in order for the solution of (6.19) to be unique.

The balancing algorithm for mortars corresponds to the same preconditioned

operator,

Tbal = P0 + (I − P0)(T1 + . . .+ TN)(I − P0).

We note that Lemma 6.1 also holds for the mortar balancing algorithm. There-

fore, the analysis of our algorithm will follow the same steps as that of the classical

algorithm, and requires an upper bound for κ(TN−N ). This bound will be obtained
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Figure 6.3: Extended subregion Ω̃i = Ωi ∪ Ωi+1

using the abstract Schwarz theory, by establishing the validity of Assumptions 1

and 3 from Section 3.2.1, for TN−N restricted to Range(I − P0); see Section 6.5.

6.4 Technical tools

In this section, we prove two results which will be used in Section 6.5 for the analysis

of the case when the extended subregion Ω̃i contains more than one subregion, i.e.,

Ωi has at least one nonmortar side.

Our proofs do not depend on the number of nonmortar sides of Ωi. To keep

the presentation simple, we assume that Ωi has exactly one nonmortar side, γi,i+1;

cf. Figure 6.3. Then, Ω̃i = Ωi∪Ωi+1. Since we are in the geometrically conforming

case, νi is equal to 2 at all the interior nodes on the mortar sides ζi,1, ζi,2, ζi,3, and

ζi,i+1. Also, νi(A) = νi(D) = 3, νi(B) = νi(C) = 2, and νi(E), νi(F ) ∈ {2, 3},

depending on whether or not a mortar and a nonmortar meet at E an F . In
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order to present both cases, we assume that γi+1,4, the side of Ωi+1 opposite Ω4
i ,

is a mortar, and that ζi+1,5, the side of Ωi+1 opposite Ω5
i , is a nonmortar. Then,

νi(E) = 3 and νi(F ) = 2. From (6.18), it results that

ãi(ui, ui) = |H(Ih(νiui))|
2
H1(Ωi)

+ |H(Ih(νiui))|
2
H1(Ωi+1), ∀ ui ∈ Vi. (6.21)

Let u ∈ V be a piecewise harmonic mortar function, and let ui = u | �

Ωi
. Let

vi = Ih(νiui) ∈ Vi, and let [vi]γi,i+1
= vi |ζi,i+1

−vi |γi,i+1
be the jump of vi across

γi,i+1. From (6.21), we find

ãi(ui, ui) = |vi|
2
H1(Ωi)

+ |vi|
2
H1(Ωi+1). (6.22)

In the next lemma, we eliminate the jump of vi by extending vi into Ωi+1, in

such a way that the energy of the extension is only increased by a constant factor.

We use the same construction as in Section 4.3.2, where we have also eliminated

the jump of a mortar function in order to estimate the L2 norm of its jump across

a nonmortar side.

Lemma 6.2. Let χi ∈ H
1(Ωi+1) satisfy

χi |ζi,i+1
= −[vi]γi,i+1

; χi |ζi,i+1
= 0; |χi|

2
H1(Ωi+1)

≤ Cãi(ui, ui). (6.23)

Let uext ∈ H
1(Ω̃i) be the extension of vi given by

uext =

{
vi on Ωi;

vi + χi on Ωi+1.

Then,

|uext|
2
H1(

�

Ωi)
≤ C ãi(ui, ui); (6.24)

||uext||
2
L2(

�

Ωi)
≤ CH2 ãi(ui, ui), (6.25)

where C is a constant that does not depend on Ωi.

Proof. To obtain a uniform C, the constant in (6.23) must have the same property.

The extension of the jump of vi on Ωi+1 is done on the reference unit square, and

(6.23) is obtained by classical extension and trace theorems for Sobolev spaces; cf.

[96]. The details of the construction have been provided in the proof of Lemma 4.7.
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An extension χi of [vi]γi,i+1
can be obtained such that

|χi|H1(Ωi+1) ≤ C||[vi]γi,i+1
||H1/2(ζi,i+1). (6.26)

Since vi is a mortar function, its average on γi,i+1 and ζi,i+1 is the same. Let

vi =
1∫

γi,i+1
vidx

∫

γi,i+1

viψidx =
1∫

ζi,i+1
vidx

∫

ζi,i+1

viψidx. (6.27)

From (6.26) and (6.27), and using the trace Theorem 1.2 and the Friedrichs’ in-

equality, see Theorem 1.4, we obtain

|χi|H1(Ωi+1) ≤ C||vi − vi||H1/2(γi,i+1) + ||vi − vi||H1/2(ζi,i+1)

≤ C||vi − vi||H1(Ωi) + ||vi − vi||H1(Ωi+1)

≤ C|vi|H1(Ωi) + |vi|H1(Ωi+1)

= Cãi(ui, ui).

By construction, uext is continuous across γi,i+1. Since uext is also piecewise

H1, it follows from Lemma 1.1 that uext ∈ H1(Ω̃i). Then, (6.24) follows from

(6.22) and (6.23). To obtain (6.25), we apply Friedrichs’ inequality to uext on the

extended subregion Ω̃i, and use (6.24) and the fact that uext vanishes on ζi+1,

|uext|
2
L2(

�

Ωi)
≤ CH2

(
|uext|

2
H1(

�

Ωi)
+

1

H2

∣∣∣
∫

ζi+1

uextdx
∣∣∣
2 )

= CH2|uext|
2
H1(

�

Ωi)
≤ CH2ãi(ui, ui).

The next lemma will be used in Section 6.5 to establish Assumption 1 for TN−N .

Lemma 6.3. Let u ∈ V and denote the Lebesgue measure by µ. Let αi be the

average of u over Ωi, i.e.,

αi =
1

µ(Ωi)

∫

Ωi

u dx. (6.28)

Then

||u− αi||
2
L2(

�

Ωi)
≤ CH2|u|2

H1(
�

Ωi)
, (6.29)

and therefore

|(u− αi) |ζi,i+1
|2H1/2(Ωi+1) ≤ C(1 + log(H/h))2|u|2

H1(
�

Ωi)
. (6.30)
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Proof. From Friedrichs’ inequality, see Theorem 1.4, it follows that

1

H2
||u− αi||

2
L2(Ωi+1) ≤ C

(
|u|2H1(Ωi+1) +

1

H2

∣∣∣
∫

ζi,i+1

(u− αi) dσ
∣∣∣
2 )

= C
(
|u|2H1(Ωi+1) +

1

H2

∣∣∣
∫

δi,i+1

(u− αi) dσ
∣∣∣
2 )

. (6.31)

The last equality results from the mortar conditions, since u has the same aver-

age over ζi,i+1 and δi,i+1, which are opposite mortar and nonmortar sides. From

Schwarz’s inequality,

1

H2

∣∣∣
∫

δi,i+1

(u− αi) dσ
∣∣∣
2

≤
C

H

∫

δi,i+1

(u− αi)
2 dσ ≤

C

H
||u− αi||

2
L2(∂Ωi)

. (6.32)

Using a trace inequality, we obtain

1

H
||u− αi||

2
L2(∂Ωi)

≤ C
(
|u|2H1(Ωi)

+
1

H2
||u− αi||

2
L2(Ωi)

)
, (6.33)

and therefore, from (6.32) and (6.33),

1

H2

∣∣∣
∫

δi,i+1

(u− αi) dσ
∣∣∣
2

≤ C
(
|u|2H1(Ωi)

+
1

H2
||u− αi||

2
L2(Ωi)

)
. (6.34)

From (6.28) it follows that u− αi has a zero average over Ωi. Then, from the

Poincaré inequality (see Theorem 1.3), we obtain

||u− αi||
2
L2(Ωi)

≤ CH2|u|2H1(Ωi)
, (6.35)

From (6.34) and (6.35) it follows that

1

H2

∣∣∣
∫

δi,i+1

u− αi dσ
∣∣∣
2

≤ C|u|2H1(Ωi)
. (6.36)

Then, we use (6.36) and (6.31) to conclude that

1

H2
||u− αi||

2
L2(Ωi+1) ≤ C

(
|u|2H1(Ωi+1)

+ |u|2H1(Ωi)

)
= C|u|2

H1(
�

Ωi)
, (6.37)

From (6.37) and (6.35), it is easy to see that (6.29) holds:

||u− αi||
2
L2(

�

Ωi)
= ||u− αi||

2
L2(Ωi)

+ ||u− αi||
2
L2(Ωi+1) ≤ CH2|u|2

H1(
�

Ωi)
.
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From Theorem 1.5, we obtain

|(u− αi) |ζi,i+1
|2H1/2(Ωi+1) ≤ C(1 + log(H/h))2

(
|u|2H1(Ωi+1) +

||u− αi||
2
L2(Ωi+1)

H2

)
.

(6.38)

Thus, (6.30) follows immediately from (6.29) and (6.38).

6.5 Condition number estimate for the balancing

algorithm

In this section, we prove an upper bound for κ(Tbal), the condition number of our

mortar balancing algorithm, by using the result of Lemma 6.1.

We begin by establishing Assumption 3 for TN−N restricted to Range(I − P0).

Lemma 6.4. There exists a constant C not depending on the local spaces, such

that

a(ui, ui) ≤ C(1 + log(H/h))2ãi(ui, ui), ∀ ui ∈ Range(Ti), ∀i = 1 : N. (6.39)

Proof. The support of a function in Vi can be the union of Ωi and all its neighboring

subregions. Thus, the main difficulty in proving (6.39) comes from the fact that

a(ui, ui) is computed on a larger domain than ãi(ui, ui), which is only computed

over the extended subregion Ω̃i; cf. Figure 6.2.

In the proof of (6.39), we discuss separately two cases, which require different

tools in their analysis.

Case 1. If the extended subregion Ω̃i consists only of Ωi, i.e., if all the sides of Ωi

are mortars, then, from (6.18), it follows that

ãi(ui, ui) = |H(Ih(νiui))|
2
H1(Ωi)

. (6.40)

In this case, the proof of (6.39) is similar to that of the conforming case, see

Section 6.2.2. The extra complications due to the mortar spaces are dealt with by

using the stability properties of the mortar projection from Theorem 2.1.

Let Ω1
i be one of the neighboring subregions of Ωi, and let γi,1 be the nonmortar

side of Ω1
i opposite the mortar side ζi,1 of Ωi. Since ui ∈ Vi, it is easy to see that
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ui vanishes at all the nodes of ∂Ω1
i except at the interior nodes of γi,1. Therefore,

using the fact that ui is harmonic on Ω1
i , we obtain

|ui|
2
H1(Ω1

i ) = |ui|
2
H1/2(∂Ω1

i ). (6.41)

Let πγ be the mortar projection corresponding to γi,1 with values 0 at the end

points of γi,1. Then,

ui |γi,1
= πγ(ui |ζi,1

). (6.42)

Let ui,A be the function which is equal to ui at A and vanishes at all the other

nodes, and let ui,int be the function which is equal to ui at the interior nodes of

ζi,1 and vanishes at all the other nodes. We define ui,D, Ih(νiui)A, Ih(νiui)int, and

Ih(νiui)D in a similar way. We note that νi(A) = νi(D) = 3 and νi is equal to 2 at

all the interior nodes of ζi,1. Thus,

ui,A =
Ih(νiui)A

3
; ui,D =

Ih(νiui)D

3
; ui,int =

Ih(νiui)int

2
.

It is easy to see that

ui |ζi,1
= ui,A + ui,int + ui,D,

and, from (6.42),

ui |γi,1
= πγ(ui,A) + πγ(ui,int) + πγ(ui,D)

=
πγ(Ih(νiui)A)

3
+
πγ(Ih(νiui)int)

2
+
πγ(Ih(νiui)D)

3
.

Then, from Theorem 2.1 and Theorem 1.5, it follows that

|ui|
2
H1/2(∂Ω1

i ) ≤ C
(
||πγ(Ih(νiui)A)||2

H
1/2

00 (γi,1)
+ ||πγ(Ih(νiui)int)||

2

H
1/2

00 (γi,1)

+||πγ(Ih(νiui)D)||2
H

1/2

00 (γi,1)

)

≤ C
(
||Ih(νiui)A||

2
H1/2(∂Ωi)

+ ||Ih(νiui)int||
2
H1/2(∂Ωi)

+||Ih(νiui)D||
2
H1/2(∂Ωi)

)

≤ C(1 + log(H/h))2
(
|H(Ih(νiui))|

2
H1(Ωi)

+
||H(Ih(νiui))||

2
L2(Ωi)

H2

)
.
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Using (6.41) and the last inequality, we obtain an estimate for the energy of ui

on a neighboring subregion of Ωi in terms of the energy of H(Ih(νiui)) on Ωi, i.e.,

|ui|
2
H1(Ω1

i ) ≤ C(1 + log(H/h))2
(
|H(Ih(νiui))|

2
H1(Ωi)

+
||H(Ih(νiui))||

2
L2(Ωi)

H2

)
. (6.43)

Similar bounds can be obtained for the H1 seminorm of ui on all the other neigh-

boring subregions of Ωi.

On ∂Ωi, we note that νi is equal to 2 at all the nodes except for the corners,

where it equals 3. Therefore,

ui |Ωi
=

Ih(νiui)

2
−

Ih(νiui)A + . . .+ Ih(νiui)D

6
.

Since ui is discretely harmonic on Ωi, we can use Theorem 1.5 to obtain

|ui|
2
H1(Ωi)

= |ui|
2
H1/2(∂Ωi)

(6.44)

≤ C
(
|Ih(νiui)|

2
H1/2(∂Ωi)

+ |Ih(νiui)A|
2
H1/2(∂Ωi)

+ |Ih(νiui)D|
2
H1/2(∂Ωi)

)

≤ C(1 + log(H/h))2
(
|H(Ih(νiui))|

2
H1(Ωi)

+
||H(Ih(νiui))||

2
L2(Ωi)

H2

)
.

We note that

a(ui, ui) = |ui|
2
H1(Ωi)

+
4∑

j=1

|uj|
2
H1(Ωj

i )

From (6.43) and (6.44), it follows that

a(ui, ui) ≤ C(1+ log(H/h))2
(
|H(Ih(νiui))|

2
H1(Ωi)

+
||H(Ih(νiui))||

2
L2(Ωi)

H2

)
. (6.45)

We need to prove (6.39) only for ui ∈ Range(Ti). In Section 6.3, we concluded

that, if Ω̃i = Ωi, we have to require

∫

Ωi

H(Ih(νiTi(u))) dx = 0;

cf. (6.20). Therefore,

∫

Ωi

H(Ih(νiui)) dx = 0, ∀ ui ∈ Range(Ti).
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Then, from the Poincaré inequality (see Theorem 1.3), we obtain

||H(Ih(νiui))||
2
L2(Ωi)

≤ CH2|H(Ih(νiui))|
2
H1(Ωi)

. (6.46)

Finally, from (6.40), (6.45) and (6.46), we find

a(ui, ui) ≤ C(1 + log(H/h))2|H(Ih(νiui))|
2
H1(Ωi)

= C(1 + log(H/h))2ãi(ui, ui).

Case 2. We now assume that the extended subregion Ω̃i contains more than one

subregion. For simplicity, we make the same assumption as in Section 6.4, i.e., we

assume that Ωi has exactly one nonmortar side; cf. Figure 6.3 and the notations

therein. From (6.18), it follows that

ãi(ui, ui) = |H(Ih(νiui))|
2
H1(Ωi)

+ |H(Ih(νiui))|
2
H1(Ωi+1). (6.47)

We are going to rely on the construction of uext ∈ H1(Ω̃i) from Lemma 6.2.

We recall that

uext = H(Ih(νiui)) in Ωi. (6.48)

We also need the estimates of the L2 norm and H1 seminorm of uext in terms of

ãi(ui, ui), which were established in Lemma 6.2; see (6.24) and (6.25).

As before, on Ω1
i , we obtain that

ui |γi,1
=

πγ(Ih(νiui)A)

3
+

πγ(Ih(νiui)int)

2
+

πγ(Ih(νiui)D)

3
.

We use (6.48) and the stability properties of the mortar projection from Theo-

rem 2.1 to obtain

|ui|
2
H1(Ω1

i ) = |ui|
2
H1/2(Ω1

i )

≤ C
(
||Ih(νiui)A||

2
H1/2(∂Ωi)

+ ||Ih(νiui)||
2
H1/2(∂Ωi)

+ ||Ih(νiui)D||
2
H1/2(∂Ωi)

)

= C
(
||uext,A||

2
H1/2(∂Ωi)

+ ||uext||
2
H1/2(∂Ωi)

+ ||uext,D||
2
H1/2(∂Ωi)

)
.

Then, from Theorem 1.5,

|ui|
2
H1(Ω1

i ) ≤ C
(
|uext|

2
H1((Ωi)

+
||uext||

2
L2(Ωi)

H2

)

≤ C
(
|uext|

2
H1(

�

Ωi)
+
||uext||

2
L2(

�

Ωi)

H2

)
.
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Using the estimates (6.24) and (6.25), we conclude that

|ui|
2
H1(Ω1

i ) ≤ C(1 + log(H/h))2 ãi(ui, ui). (6.49)

Estimates similar to (6.49) can also be derived for the energy of ui on Ω2
i and Ω3

i .

On Ωi+1, we note that ui is equal to the mortar projection of ui,F at the interior

nodes of γi+1,4, the nonmortar side adjacent to the vertex F , i.e.,

ui |γi+1,4
= πγ(ui,F ).

Also, ui vanishes on ζi+1,5, since all the nodes on the mortar side ζi+1,5 are genuine

degrees of freedom which do not belong to Ni. Then,

ui |∂Ωi+1
= ui,F + πγ(ui,F ) + ui |ζi,i+1

+ ui,E.

Using the values of νi at the boundary nodes of Ωi+1, we obtain that

ui |∂Ωi+1
=

Ih(νiui)F

2
+
πγ(Ih(νiui)F

2
+
Ih(νiui) |ζi,i+1

2
+
Ih(νiui)E

3
.

From Theorem 2.1, we obtain that

||πγ(Ih(νiui)F ||
2

H
1/2

00 (γi+1,4)
≤ C||Ih(νiui)F ||

2
H1/2(∂Ωi+1),

and therefore, from Theorem 1.5,

|ui|
2
H1(Ωi+1)

= |ui|
2
H1/2(∂Ωi+1)

≤ C
(
||Ih(νiui)F ||

2
H1/2(∂Ωi+1) + ||Ih(νiui)||

2

H
1/2

00 (ζi,i+1)

+||Ih(νiui)E||
2
H1/2(∂Ωi+1)

)

≤ C(1 + log(H/h))2
(
|H(Ih(νiui))|

2
H1(Ωi+1) +

||H(Ih(νiui))||
2
L2(Ωi+1)

H2

)
.

Since νi, and therefore H(Ih(νiui)) vanish on ζi+1, it follows from Friedrichs’ in-

equality (see Theorem 1.4) that

||H(Ih(νiui))||
2
L2(Ωi+1)

≤ C|H(Ih(νiui))|
2
H1(Ωi+1)

. (6.50)

Thus,

|ui|
2
H1(Ωi+1)

≤ C(1 + log(H/h))2|H(Ih(νiui))|
2
H1(Ωi+1),
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and, from (6.47), we conclude that

|ui|
2
H1(Ωi+1) ≤ C(1 + log(H/h))2ãi(ui, ui). (6.51)

We note that ui vanishes on Ω4
i , and that it is equal to the mortar projection

of ui,E on the nonmortar side of Ω5
i opposite ζi+1,5. Using the same arguments as

before, it is easy to see that

|ui|
2
H1(Ω5

i ) ≤ C||Ih(νiui)E||
2
H1/2(∂Ωi+1)

≤ C(1 + log(H/h))2
(
|H(Ih(νiui))|

2
H1(Ωi+1) +

||H(Ih(νiui))||
2
L2(Ωi+1)

H2

)
.

≤ C(1 + log(H/h))2|H(Ih(νiui))|
2
H1(Ωi+1),

and therefore, from (6.50),

|ui|
2
H1(Ω5

i ) ≤ C(1 + log(H/h))2ãi(ui, ui). (6.52)

The last step of the proof of this case consists of estimating the H1 seminorm

of ui on Ωi. We will use the fact that Ih(νiui) is equal to twice ui at almost all

the genuine degrees of freedom. More precisely, let πγ be the mortar projection

corresponding to γi,i+1 which vanishes at the end points of γi,i+1. Then, on ∂Ωi,

ui = ui,A + . . .+ ui,D + ui |ζi,1
+ . . .+ ui |ζi,3

+πγ(ui,B) + πγ(ui,C) + πγ(ui,E) + πγ(ui,F ) + πγ(ui |ζi,i+1
).

Using once again the nodal values of νi, the construction of uext, and (6.48), it

follows that

ui =
uext,A + uext,D

3
+
uext |ζi,1

+ . . . + uext |ζi,3

2
+

uext,B + uext,C

2

+
πγ(uext,B) + πγ(uext,C)

2
+

πγ(Ih(νiui)E)

3
+

πγ(Ih(νiui)F )

2

+
πγ(Ih(νiui) |ζi,i+1

)

2
.

From Theorem 2.1, it results that

||πγ(uext,B)||2
H

1/2

00 (γi,i+1)
≤ ||uext,B||

2
H1/2(∂Ωi)

||πγ(Ih(νiui)E)||2
H

1/2

00 (γi,i+1)
≤ ||Ih(νiui)E||

2
H1/2(∂Ωi+1)

||πγ(Ih(νiui) |ζi,i+1
)||2

H
1/2

00 (γi,i+1)
≤ ||Ih(νiui) |ζi,i+1

||2
H

1/2

00 (ζi,i+1)
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Therefore,

|ui|
2
H1(Ωi)

= |ui|
2
H1/2(∂Ωi)

≤ C
(
||uext,A||

2
H1/2(∂Ωi)

+ . . . + ||uext,D||
2
H1/2(∂Ωi)

+ ||uext |ζi,1
||2

H
1/2

00 (ζi,1)
+ . . .+ ||uext |ζi,3

||2
H

1/2

00 (ζi,i+1)

+ ||Ih(νiui)E||
2
H1/2(∂Ωi+1) + ||Ih(νiui)F ||

2
H1/2(∂Ωi+1)

+ ||Ih(νiui) |ζi,i+1
)||2

H
1/2

00 (γi,i+1)

)

From Theorem 1.5, we obtain

|ui|
2
H1(Ωi)

≤ C(1 + log(H/h))2
(
|uext|

2
H1(Ωi)

+
1

H2
||uext||

2
L2(Ωi)

)

+C(1 + log(H/h))2
(
|H(Ih(νiui))|

2
H1(Ωi+1)

+
||H(Ih(νiui))||

2
L2(Ωi+1)

H2

)
.

Finally, from (6.24) and (6.25), and from (6.50) and (6.47), we obtain

|ui|
2
H1(Ωi)

≤ C(1 + log(H/h))2 ãi(ui, ui). (6.53)

Summing up the energy estimates for ui on all the neighboring subregions of

Ωi, i.e., (6.49), (6.51), (6.52), and (6.53), we obtain

a(ui, ui) ≤ C(1 + log(H/h))2 ãi(ui, ui).

We now establish Assumption 1 for TN−N . An important ingredient is Lemma

6.3.

Lemma 6.5. For every u ∈ V there exist u0 ∈ V0 and ui ∈ Vi, i = 1 : N , such

that u = u0 +
∑N

i=1 ui and

a(u0, u0) +

N∑

i=1

ãi(ui, ui) ≤ C(1 + log(H/h))2a(u, u). (6.54)

Proof. For simplicity, we assume once again that we are in the case when Ωi has

exactly one nonmortar side; cf. Figure 6.3 and the notations therein.
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Let αi be the weighted averages of u over Ωi, given by (6.28). Let u0, the coarse

space component in the splitting of u, be given by

u0 =
N∑

i=1

αiH(ν†i ), (6.55)

where H(ν†i ) are the basis functions of the coarse space V0. The local space com-

ponents are given by

ui = H(Ih(ν
†
i (u− αi))). (6.56)

Since ν†i form a partition of unity, see (6.17), it is easy to see that

N∑

i=1

ui =

N∑

i=1

H(Ih(ν
†
i u))−

N∑

i=1

αiH(Ih(ν
†
i ) = u− u0,

and therefore u = u0 +
∑N

i=1 ui.

To estimate ãi(ui, ui), we use (6.21) and (6.56), and obtain

ãi(ui, ui) = |H(Ih(νiν
†
i (u− αi)))|

2
H1(Ωi)

+ |H(Ih(νiν
†
i (u− αi)))|

2
H1(Ωi+1)

= |Ih(νiν
†
i (u− αi))|

2
H1/2(∂Ωi)

+ |Ih(νiν
†
i (u− αi))|

2
H1/2(∂Ωi+1). (6.57)

From the definition of νi we obtain that νiν
†
i (u − αi) is equal to u − αi at all

the nodes of Ni, and vanishes at all other nodes representing genuine degrees of

freedom. Thus

νiν
†
i (u− αi) = u− αi, on (

3⋃

j=1

ζi,j) ∪ ζi,i+1.

Since u ∈ V is a mortar function, Ih(νiν
†
i (u−αi)) = u−αi on ∂Ωi. Then, from

the trace Theorem 1.2 and Lemma 6.3, it follows that

|Ih(νiν
†
i (u− αi))|

2
H1/2(∂Ωi)

= |u− αi|
2
H1/2(∂Ωi)

≤ C
(
|u|2H1(Ωi)

+
1

H2
||u− αi||

2
L2(Ωi)

)

≤ C|u|2
H1(

�

Ωi)
. (6.58)
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If both sides of Ωi+1 adjacent to ζi,i+1 are mortar sides, then νiν
†
i (u−αi) vanishes

at all the nodes of ∂Ωi+1 \ ζi,i+1, and therefore

||Ih(νiν
†
i (u− αi))||

2
H1/2(∂Ωi+1) = ||(u− αi) |ζi,i+1

||2H1/2(∂Ωi+1) (6.59)

We now assume there exists at least one nonmortar side of Ωi+1 adjacent to

ζi,i+1. Let γi+1,4, adjacent to the vertex F and opposite ∂Ω4
i be that side. As

before, let (u− αi)F be the function which is equal to u− αi at F and vanishes at

all the other nodes on ∂Ωi+1. The restriction of Ih(νiν
†
i (u− αi)) to the interior of

γi+1,4 is the mortar projection of (u− αi)F , i.e.,

Ih(νiν
†
i (u− αi)) |γi+1,4

= πγ((u− αi)F ),

where πγ is the mortar projection on γi+1,4 with values 0 at the end points of γi+1,4.

From the stability properties of the mortar projection, see Theorem 2.1, it follows

that

||Ih(νiν
†
i (u− αi))||

2

H
1/2

00 (γi+1,4)
≤ C||(u− αi)F ||

2
H1/2(∂Ωi+1). (6.60)

From (1.3), it results that

||(u− αi)F ||
2
H1/2(∂Ωi+1) ≤ C||(u− αi) |ζi,i+1

||2H1/2(∂Ωi+1), (6.61)

and therefore, from (6.60) and (6.61),

||Ih(νiν
†
i (u− αi))||

2

H
1/2

00 (γi+1,4)
≤ C||(u− αi) |ζi,i+1

||2H1/2(∂Ωi+1). (6.62)

A similar bound would result if the side of Ωi+1 adjacent to ζi,i+1 at the vertex E

is a nonmortar.

We note that Ih(νiν
†
i (u−αi)) = u−αi on ζi,i+1. Then, using (6.62), we conclude

that

|Ih(νiν
†
i (u− αi))|

2
H1/2(∂Ωi+1) ≤ C||(u− αi) |ζi,i+1

||2H1/2(∂Ωi+1). (6.63)

From (6.59) and (6.63), it follows that, regardless of whether the sides of Ωi+1

adjacent to ζi,i+1 are mortar or nonmortar sides,

|Ih(νiν
†
i (u− αi))|

2
H1/2(∂Ωi+1)

≤ C||(u− αi) |ζi,i+1
||2H1/2(∂Ωi+1).

≤ C(1 + log(H/h))2|u|2
H1(

�

Ωi)
, (6.64)
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where the last inequality comes from Lemma 6.3.

From (6.57), (6.58), and (6.64), it follows that

ãi(ui, ui) ≤ C(1 + log(H/h))2|u|2
H1(

�

Ωi)
.

Summing over i = 1 : N , we obtain

N∑

i=1

ãi(ui, ui) ≤ C(1 + log(H/h))2
N∑

i=1

|u|2
H1(

�

Ωi)

≤ C(1 + log(H/h))2a(u, u),

where C is a constant which does not depend on the number of subregions, since

any subregion belongs to at most five extended subregions.

We have thus reduced the proof of (6.54) to obtaining a bound for the energy

of u0, i.e.,

a(u0, u0) ≤ C(1 + log(H/h))2a(u, u). (6.65)

Since u0 = u−
∑N

i=1 ui, we can use Schwarz’s inequality to estimate a(u0, u0), and

obtain

a(u0, u0) ≤ 2a(u, u) + 2
N∑

i=1

a(ui, ui). (6.66)

A proof along these lines for the conforming case appears in [53]. For the mortar

case, extra work is necessary due to the presence of the extended regions. Here,

we only give a short proof, since the details can be worked out as in the proof of

the second case of Lemma 6.4.

Since ui ∈ Vi, the support of ui is embedded in the union of Ωi and its neigh-

boring subregions. By the definition (6.56),

a(ui, ui) = |H(Ih(ν
†
i (u− αi)))|

2
H1(Ω).

Once again, we have two different cases according to whether the extended

subregion Ω̃i consists only of Ωi, or contains other subregions as well.

Case 1. If Ω̃i = Ωi, then all the sides of Ωi are mortars, and

a(ui, ui) ≤ |H(Ih(ν
†
i (u− αi)))|

2
H1(Ωi)

+

4∑

j=1

||Ih(ν
†
i (u− αi))||

2

H
1/2

00 (γi,j )
(6.67)
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On Ωi, we use the fact that u − αi = νi(ν
†
i (u − αi)), and obtain as in (6.43)

that

|H(Ih(ν
†
i (u− αi)))|

2
H1(Ωi)

≤ C(1 + log(H/h))2
(
|u− αi|

2
H1(Ωi)

+
||u− αi||

2
L2(Ωi)

H2

)

Then, from the Poincaré inequality (see Thereom 1.3), we find

|H(Ih(ν
†
i (u− αi)))|

2
H1(Ωi)

≤ C(1 + log(H/h))2|u|2H1(Ωi)
. (6.68)

On Ω1
i ,

||Ih(ν
†
i (u− αi))||

2

H
1/2

00 (γi,1)
= C||πγ(ν

†
i (u− αi))||

2

H
1/2

00 (γi,1)

≤ C||(ν†i (u− αi)) |ζi,1
||2H1/2(∂Ωi)

≤ C(1 + log(H/h))2
(
|u− αi|

2
H1(Ωi)

+
||u− αi||

2
L2(Ωi)

H2

)

≤ C(1 + log(H/h))2|u|2H1(Ωi)
. (6.69)

Similar bounds can be obtained for the other neighboring subregions of Ωi.

From (6.67), (6.68), and (6.69), we conclude that

a(ui, ui) ≤ C(1 + log(H/h))2|u|2H1(Ωi)
= C(1 + log(H/h))2|u|2

H1(
�

Ωi)
. (6.70)

Case 2. If Ω̃i contains more than one subregion, we assume once again that Ωi has

exactly one nonmortar side; cf. Figure 6.3.

We can prove once again that

a(ui, ui) = C(1 + log(H/h))2|u|2
H1(

�

Ωi)
,

by using the fact that u−αi = νi(ν
†
i (u−αi)), if we note that uext and u−αi have

similar L2 and H1 upper bounds; cf. Lemma 6.2 and Lemma 6.3.

In both cases, we conclude that an upper bound of the form (6.70) is satisfied.

When summing (6.70) for i = 1 : N , we obtain, using a simple coloring argument

as before, that

N∑

i=1

a(ui, ui) ≤ C(1 + log(H/h))2
N∑

i=1

|u|2
H1(

�

Ωi)

≤ C(1 + log(H/h))2a(u, u). (6.71)
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Finally, from (6.66) and (6.71), it results that

a(u0, u0) ≤ C(1 + log(H/h))2a(u, u).

Thus, (6.65), and therefore (6.54), are proven.

We are now able to derive an estimate for the condition number of the balancing

algorithm for mortars introduced in Section 6.3.

Theorem 6.1. The condition number of the balancing algorithm grows only poly-

logarithmically with the number of nodes in each subregion, and is independent of

the number of subregions, N . More precisely,

κ(Tbal) ≤ C(1 + log(H/h))4,

where C is a constant that does not depend on the properties of the partition.

Proof. From Lemma 6.1, we find κ(Tbal) ≤ κ(TN−N), where TN−N is the Neumann-

Neumann operator (6.7) restricted to Range(I − P0).

Since TN−N is an additive Schwarz operator, we use the abstract Schwarz theory

of Section 3.2 to obtain a bound on κ(TN−N). From Lemma 6.5, it follows that

the constant C0 from Assumption 1 satisfies

C2
0 ≤ C(1 + log(H/h))2.

Assumption 2 follows from strengthened Cauchy-Schwarz inequalities. For each

local space there is a finite fixed number of local spaces which are not orthogonal

to it. Then the inequality ρ(ε) ≤ C can be established as in [52]. Since the coarse

space solver is exact, and using Lemma 6.4 for the local spaces, the following

estimate for the parameter ω of Assumption 3 can be established,

ω ≤ C(1 + log(H/h))2.

We have now estimates for all the parameters measuring the convergence of an

additive Schwarz method. From Theorem 3.1,

κ(TN−N ) ≤ C(1 + log(H/h))4,
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and therefore, from Lemma 6.1 we obtain that

κ(Tbal) ≤ C(1 + log(H/h))4.

We conclude this section by placing Theorem 6.1 in a general context.

The condition number estimate of our balancing algorithm for mortar finite

elements has two extra logarithmic factors compared to that of the balancing

algorithm for conforming finite elements [89, 91]. In the classical algorithm, the

constant C0 of Assumption 1 is equal to 1. The splitting we have used for our

algorithm is similar to the classical one, but fails to preserve C0 = 1 because the

extended subregion are not mutually disjoint. Thus, when establishing (6.54),

we have to use Theorem 1.5 and we therefore can only prove that C0 is of order

(1 + log(H/h))2.

We now discuss a possible version of the algorithm for mortars, the purpose of

which is to make C0 = 1 in Assumption 1. Two conditions must be satisfied for C0

to equal 1: the approximate bilinear forms should be computed over Ωi instead of

Ω̃i, and the local space component ui multiplied with the counting function should

equal u on ∂Ωi. Since the values of u on the nonmortar sides of Ωi depend on its

values at the opposite mortar sides, the local space must include degrees of freedom

of the nodes of those mortars, including the vertex values. Thus, we obtain the Vi

space we have introduced.

If, instead of integrating over Ω̃i in (6.18), the definition of ãi(·, ·), we integrate

only over Ωi, the Assumption 1 is satisfied with C0 = 1. However, Assumption 3

will not hold. Consider the case from Figure 6.3. Assume there are twice as many

nodes on the mortar side ζi,i+1 than on the nonmortar side γi,i+1. Then, there

exists a mortar function vi ∈ Vi which vanishes on γi,i+1, and is nonzero on ζi,i+1.

If we set the values of vi to zero at all the other nodes of ∂Ωi, then

ãi(vi, vi) = |H(Ih(ν
†
i vi))|

2
H1(Ωi)

= 0,

while

a(vi, vi) ≥ |vi|
2
H1(Ωi+1) > 0.

Therefore Assumption 3 is not satisfied.
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6.6 The geometrically nonconforming case

The proof for the geometrically nonconforming case follows along the same lines as

for the geometrically conforming case. In this section, we show how to overcome

the technical difficulties inherent to a nonconforming partition.

The main difference between the two cases arises in Lemma 6.2, since opposite

the nonmortar side γ there might be more than one mortar side. Therefore, a sim-

ple extension of the jump which involves only one subregion is no longer possible.

A remedy can be found using the techniques introduced in Section 4.3 to estimate

the L2 norm of the jumps of mortar functions across nonmortars.

We use the notation of Section 6.4 and of Section 4.3. Let Γ(γi,i+1) be the union

of the parts of mortars opposite the nonmortar side γi,i+1. As in Section 4.3.2, we

consider a rectangle, Ωnew, opposite γi,i+1, such that Γ(γi,i+1) is a side of Ωnew. As

before, it is possible to construct a function vnew, such that vnew ∈ H1(Ωnew) and

vnew has the same average as vi on Γ(γi,i+1). From (4.45), we also obtain

|vnew|
2
H1(Ωnew) ≤

q(i)∑

j=1

|vi|
2
H1(Ωj

i )
, (6.72)

where Ωj
i , j = 1 : q(i), are the subregions opposite γ.

As in the proof of Lemma 6.2, we construct χi ∈ H
1(Ωnew), an extension of

vnew |Γ(γi,i+1) −vi |γi,i+1

from Γ(γi,i+1) to Ωnew, such that χi vanishes on the side of Ωnew opposite Γ(γi,i+1),

and

|χi|
2
H1(Ωnew) ≤ C|vi|

2
H1(Ωi)

+ |vnew|
2
H1(Ωnew). (6.73)

Then, uext ∈ H
1(Ωi ∪ Ωnew) is given by

uext =

{
vi on Ωi

vnew + χi on Ωnew.

From (6.72) and (6.73), we find

|uext|
2
H1(Ωi∪Ωnew) ≤ C

(
|vi|

2
H1(Ωi)

+ |vnew|
2
H1(Ωnew) + |χi|

2
H1(Ωnew)

)
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≤ C
(
|vi|

2
H1(Ωi)

+ |vnew|
2
H1(Ωnew)

)

≤ C
(
|vi|

2
H1(Ωi)

+

q(i)∑

j=1

|vi|
2
H1(Ωj

i )

)

= C ãi(ui, ui).

An estimate for the L2 norm of uext follows immediately from the Poincaré in-

equality (see Theorem 1.3) applied on Ωi ∪ Ωnew.

After this step, the rest of the proofs of Assumptions 1 and 3, see Lemma 6.4

and Lemma 6.5 follow as in Section 6.5, if the new function uext is used.
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Academia, Prague, 1967.

[97] Jindřich Nečas. Les méthodes directes en théorie des équations elliptiques.
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