
Local Temporal Reasoning

Eric Koskinen ∗ †

New York University

Tachio Terauchi ‡

Japan Advanced Institute of Science and Technology

Abstract
We present the first method for reasoning about temporal logic
properties of higher-order, infinite-data programs. By distinguish-
ing between the finite traces and infinite traces in the specification,
we obtain rules that permit us to reason about the temporal behavior
of program parts via a type-and-effect system, which is then able
to compose these facts together to prove the overall target property
of the program. The type system alone is strong enough to derive
many temporal safety properties using refinement types and tem-
poral effects. We also show how existing techniques can be used
as oracles to provide liveness information (e.g. termination) about
program parts and that the type-and-effect system can combine this
information with temporal safety information to derive nontrivial
temporal properties. Our work has application toward verification
of higher-order software, as well as modular strategies for procedu-
ral programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Model checking; Correct-
ness proofs; Reliability; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs;
F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Program analysis; F.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs—Type structure

General Terms Algorithms, Languages, Theory, Verification

Keywords Higher-order programs, formal verification, temporal
logic, program analysis, model checking

1. Introduction
Programming languages that use higher-order functionality
(e.g. Java, C#, F#, Haskell, Ocaml, Perl, Python, Ruby) have be-
come commonplace. Higher-order language features such as map,
grep, Google’s Map/Reduce, are used widely and applauded for
their simplicity and modularity.

∗ Supported in part by the CMACS NSF Expeditions in Computing award
0926166.
† Supported in part by the Japan Society for the Promotion of Science
(JSPS).
‡ Supported in part by MEXT Kakenhi 26330082 and 25280023.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright © 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603138

Meanwhile, in the past couple of decades, algorithms and tools
have emerged that have enabled automatic verification of some
industrial software systems. Symbolic analysis techniques such
as abstraction refinement [7] and interpolation [23] have given
rise to interprocedural program analysis tools for safety [2, 5],
while termination argument refinement [24] has led to tools for
liveness [8, 13]. Further research has led to tools and algorithms
for verifying properties expressed in temporal logic: more elaborate
specifications that combine safety and liveness [1, 4, 9–12].

The verification techniques discussed thus far have been mostly
limited to imperative first-order software and cannot be applied to
higher-order programming languages. In recent years, researchers
have developed some techniques for verifying higher-order pro-
grams. Some showed how to verifying temporal properties of
higher-order programs when the domain of data is finite (i.e.
boolean). Others have also developed methods of verifying purely
safety properties [16, 19, 25, 28] or purely termination [20, 21] of
higher-order programs with infinite data (e.g. integers) . Despite
the efforts discussed above, at present there are no methods for
verifying safety/liveness properties (i.e. temporal logic formulae)
of programs written in higher-order languages.

We present the first technique for verifying temporal logic prop-
erties of higher-order, infinite-data programs. The crux of our work
is to decompose the problem, not only by dividing the program up
into individual expressions via a type-and-effect system, but also,
for every expression, to track the behavior of finite traces separate
from the behavior of infinite traces. Our type rules permit verifi-
cation oracles (including the type system itself) to reason about
the conditional safety and liveness (i.e. temporal) behavior of pro-
gram parts, and compose these facts together to prove the overall
target property of the program. Moreover, we show that existing
tools can be used as oracles to introduce liveness proofs into the
type system’s effects. While it is a commonly held belief that type
systems cannot be used for liveness properties, we show how they
can, nonetheless, be used to carry some liveness information and
soundly combine reasoning about program parts together to prove
overall safety and liveness.

By way of an example, consider a function application e v,
where we are attempting to prove an overall temporal property
“tick U boom,” which means that some event tick will occur
repeatedly until the event boom occurs, and boom is inevitable.
With the type-and-effect system described in this paper we can, for
example, reason about the safety behavior

Γ ⊢ e ∶ τ
boom
ÐÐ→ τ ′ & tick*

that is due to the reduction of e (repeating event tick) and the latent
behavior (event boom) that arises when e is applied to a value v ∶ τ ,
and then separately reason about the termination of (the reduction
of) e via an oracle:

Γ ⊢ e v ∶ τ ′ & terminates

We are using shorthand in these judgments’ effects, whereas for-
mally our type system distinguishes the behavior of finite traces
from the behavior of infinite traces. The type-and-effect system in
this paper combines all of this information together via refinement
types, and temporal connectives (intersection, union, concatena-
tion) to obtain an overall goal judgment

Γ ⊢ e v ∶ τ ′ & tick U boom

while carefully accounting for possibly divergent evaluations. Our
formalism permits oracles of arbitrary temporal expressive power.
Our use of termination in the example above is a special case.

Contributions. To our knowledge, this work marks the first
method for reasoning about temporal logic properties of higher-
order programs that have infinite data. The above is a limited ex-
ample. We believe our work provides the theoretical foundation
toward several areas of practical significance. To this end, we have
devised general rules so there are many instantiations and applica-
tions of them, including:

1. Instantiation to a wide variety of specification logics. We are
able to support any logic that is closed under intersection,
union, and composition (over finite and infinite traces) such
as Büchi specifications. We sometimes use LTL as a shorthand
for Büchi [15].

2. Instantiation to arbitrary type environments. Often the type sys-
tem alone is strong enough to derive safety properties. For ex-
ample, when using refinement types in the absence of a termi-
nation oracle, our rules can be thought of as a novel extension
to dependent types, where temporal behaviors are carried as ef-
fects.

3. Instantiation of oracles to any fragment of program expressions
or any subset of the specification logic.

4. Instantiation to a modular reasoning system for temporal be-
haviors of first-order procedural programs.

We have devised our methodology to be based on local reasoning,
employing a type system. This stands in contrast to many exist-
ing verification works for higher-order programs that operate by
extracting a transition system and then performing standard model
checking techniques. Such existing techniques suffer from the in-
ability to refine the abstraction during the verification process and,
moreover, require input programs to be given in CPS form.

Limitations. It is a commonly held belief that (ordinary) type
systems cannot be used to derive liveness properties. In this pa-
per, we do not allow the type system to derive (non-trivial) live-
ness properties by itself. However, when liveness information is
introduced by an oracle (e.g. a termination oracle), our type sys-
tem is able to soundly combine this liveness information with
safety/liveness information from other oracles or the type system it-
self. To maintain soundness, we also have to be careful when typing
recursive functions, as we will discuss in the next section. Finally,
note that the temporal behavior of a program is directly related to
its evaluation order. For the purposes of this paper, we assume a
strict evaluation order.

Organization. We first give a high-level description of our
methodology in Section 2. After preliminaries in Section 3, we
present our type and effect system in Section 4. We prove type
soundness (Theorem 4.1). We then examine a variety of examples,
discussed in Section 5, that span a range of temporal behaviors,
compositions and oracle power. We conclude with a discussion of
related work in Section 6.

2. Overview
Consider the following higher-order program, written in an ML-
like syntax:

Example 1. 1 let rec zoom = ev[zoom]; zoom ()

2 and shrink f = ev[shrink];
3 if (f () = 0) then
4 zoom ()
5 else
6 shrink (λ . (f ()) - 1)
7 and main() = ev[main];
8 let t = *pos in
9 shrink (λ . t)

For the moment, think of the boxed expressions as skip. The func-
tion zoom calls it self recursively, looping forever. Next, shrink is
a recursive function and it takes, as an argument, a function f from
unit to int. If applying f returns 0, zoom is called. Otherwise,
shrink is called recursively with a new partially-defined argument.
Finally, main initiates with the expression shrink (λ . t) where t
is bound to a nondeterministically chosen positive integer (denoted
*pos).

For this example, we may want to prove the Linear Temporal
Logic (LTL) property: Φ = main ∧ X(shrink U zoom). (We
are abusing notation here and using LTL as shorthand for a Büchi
specification over finite and infinite executions, but we will discuss
that shortly.) This property consists of the temporal operators X
and U as well as atomic propositions that are events, denoted in
the event font. Events are emitted by the ev[event] expression. For
simplicity, in the above example we correlate events with function
calls, indicating that the function with the corresponding name has
been called (this correlation is also a suitable definition of events in
the context of practical examples). The property Φ specifies that the
main function will be called first (event main) and then in the next
step, the shrink function will be called (event shrink) repeatedly
Until zoom is called (event zoom). U is the strong until operator,
which specifies that its second argument must hold after finitely
many steps.

Intuitively, we know that Φ holds of the above example. The
property Φ is a trace-based property and specifies that every (termi-
nating or nonterminating) execution of this program must generate
event sequences of the form:

main, (shrink)∗, zoom, ...

where there are finitely many instances of shrink. The property
holds because, when shrink is called with a function that returns
a positive integer, shrink will eventually call zoom.

Proving that this property holds of this program is challeng-
ing. There are several obstacles: First it consists of both safety
and liveness aspects, in the form of reachability and termination.
Second, there is nondeterministic input. Third, the state space is
infinite. Finally, this is a higher-order program. There are several
recent related works, but all of them have restrictions that make
them unsuitable to this example. Some works are restricted to finite
data [18], others can reason over infinite data but are restricted to
safety [28] or termination [20] properties, and still others can rea-
son about infinite-state systems but are restricted to first-order input
programs [10].

Compositional reasoning. The key idea of this paper is to de-
compose the problem of verifying that the entire program satisfies
Φ into pieces in two ways. The first decomposition is not surpris-
ing: we divide the program up into its individual expressions so that
we can determine which events arise from a given expression. For
example, the behavior of a function application e v is determined
by separately considering the behavior of the value v as it is re-

duced, the behavior of the function expression e as it is reduced
and, finally, the latent behavior that arises when e is applied to v.

The second form of decomposition is that, for every expression,
we track the event behavior of finite traces separate from the event
behavior of infinite traces. That is, for an expression e we will
have two specifications: Ξ for the finite part and Π for the infinite
part. The event behavior of e is the union of these specifications.
Büchi automata provide a convenient such specification language
that can be characterized separately over finite and infinite runs.
(Büchi automata are also known to be closed under concatenation
across the two partitions [29], which we will see to be important
in Section 3.) The informed reader will note two commonly held
beliefs. First, liveness is generally not composable: one cannot, in
general, find a witness to non-liveness with a finite prefix of a trace.
Related is the second belief that per-expression reasoning, as seen
in type systems, cannot be used for liveness. However, as we will
see here, type systems can be used to carry temporal safety and
liveness specifications for expressions. This fact, combined with
our separation of finite traces from infinite traces, allows us to
soundly combine reasoning about program parts together to prove
overall safety and liveness.

Our technique is best illustrated through the running example.
After the main event fires and t is bound, we need to show that the
body of main, shrink (λ . t), satisfies shrink U zoom. In this pa-
per, we characterize the temporal behavior of program expressions
via a type-and-effect system that distinguishes between finite and
infinite event traces. Syntactically, judgments are of the form:

Γ ⊢ e ∶ τ & (Ξ,Π)

which denotes that, under a typing context Γ, we deduce that
expression e has a (refinement) type τ , that finite event traces of
e satisfy Ξ, and that infinite event traces of e satisfy Π.

Our type system permits us to decompose our reasoning about
Example 1 into separate components:

1. The latent temporal behavior arising from shrink when it is
applied to an argument:

J1 Γ ⊢ shrink ∶ (unit→ int)
shrinkW zoom
ÐÐÐÐÐÐ→ unit & ε

The above judgment J1 says that shrink is a function which
consumes a function and returns unit (i.e., “()”). shrink itself
is a function value and, as such, it generates no effects, de-
noted ε. However, when shrink is applied, the latent behavior
“shrink W zoom” occurs, indicating that event shrink occurs
until event zoom (but not that zoom will necessarily inevitably
occur). Formally, as we will discuss later in the paper, the latent
effects are also represented as a pair (Ξ,Π) of finite and infinite
traces (e.g., as finite and Büchi automaton). But, we are abbre-
viating it in LTL by encoding terminating runs as self-loops, as
is commonly done.

2. The conditions under which shrink terminates:

J2 Γ ⊢ shrink ∶ (unit→ {i ∣ i ≥ 0})
F¬shrink
ÐÐÐÐ→ unit & ε

We use refinement (dependent) types [31] to say that the ar-
gument of shrink is a function that returns an integer above 0.
In this judgment J2, the latent effect is F¬shrink, indicating
that eventually an event will occur that is not shrink. For con-
venience, we will sometimes abbreviate such termination judg-
ments as “Γ ⊢ e ∶ τ & terminates”.
Notice that in the above judgment we have used a refinement
type system to place the conditions on (the function passed
to) shrink under which shrink will terminate: that the passed
function is returning a nonnegative number.

Our type-and-effect system combines these facts (whose origins
we will next discuss) together to obtain a final judgment, using a
few rules such as function application (App), the combination rule
(Comb), and the subtyping rule (Sub):

J1 ... (λ . t) ...
⋮ App

J2 ... (λ . t) ...
⋮ App

⋮ Comb

Γ, t ∶ {i ∣ i ≥ 0} ⊢ shrink (λ . t) ∶ unit & shrink U zoom Sub

This final judgment indicates that the expression (shrink λ . t)
has unit type and will exhibit a finite sequence of shrink events,
followed by a zoom event.

Our type-and-effect system, formalized in Section 4, consists
of several other rules that combine temporal information about ex-
pressions, taking care to account for possibly divergent computa-
tion. To be able to combine rich information across different ora-
cles, we adopt and extend the refinement type system that has gar-
nered popularity in the verification of functional programs [6, 16,
19, 25, 28, 30]. There are typing rules for all the usual higher-order
features such as subtyping, intersection, etc—however, they will
now also carry the temporal effect of each (sub)expression.

In the above example, our work combined a derivation J1,
which is a safety proof with a derivation J2 which is a termination
proof. But one is inclined to wonder: where do these pieces come
from in the first place? We will now describe how these subproofs
are obtained, respectively.

Safety via the type system. We can use our type-and-effect sys-
tem to deduce that the function shrink has the latent (safety) effect
shrink W zoom. This arises as a fixpoint solution to the typing
context in the judgments over the body of shrink. Assume that we
have a typing environment Γ that already contains a judgment:

Γ(zoom) = unit
G zoom
ÐÐÐ→ unit & ε

indicating that when zoom is applied to unit an arbitrarily long
sequence of zoom events may occur. We also know that an appli-
cation of shrink will generate event shrink. (We assume that every
named function begins with a special event statement of the same
name, but this has been omitted for readability. For example, the
body of shrink in Example 1 is “ev[shrink]; if ...”).

Depending on which branch is taken in shrink, either shrink will
recur, generating event shrink or else the expression zoom () will
generate event G zoom. Since we do not know a priori whether
f () = 0 returns true or false, a valid typing context will say that
shrink f satisfies shrink∨G zoom. This disjunction of event atomic
propositions is valid, however, it only asserts the event currently
generated. If we look for a fixpoint of

α = shrink ∧ X(G zoom ∨ α)
there is a stronger solution:

Γ, zoom ∶ ... ⊢ shrink f ∶ unit & shrink W (G zoom)
Note that type systems typically do not distinguish fixpoints (e.g.
greatest versus least) and, as such, we cannot conclude anything
about the infinite traces. However, we can combine a judgement
of shrink W (G zoom) over the finite traces, with an oracle
judgement that G(shrink ∨ zoom) holds over the infinite traces,
to obtain that shrink W (G zoom) holds over all traces1.

Liveness via a termination oracle. Type systems themselves
cannot generate liveness information. However, we show how they

1 We conjecture that there is a way to organize type systems so that infinite-
trace behaviors of expressions can arise from fixpoint equations, but we
leave this to future work.

P ∶∶= P ∪ {F x̄ = e} ∣ ∅
a ∶∶∈ Σ
e ∶∶= x ∣ c ∣ F ∣ ev[a] ∣ let x= e1 in e2 ∣ xy

∣ x op y ∣ if x then e1 else e2 ∣ λx.e

Figure 1: The syntax of the simple functional language.

can be used to carry liveness (or safety) information obtained from
an outside source. This is accomplished via an oracle rule:

Θ ▸ e ∶ τ & Φ
∆,Θ ⊢ e ∶ τ & Φ

Oracle

(Note that an oracle ▸ must satisfy the Oracle property in Defini-
tion 4.1.) This rule is very general and it allows us to incorporate
information from external techniques into our type-and-effect sys-
tem. Let us look again at the body of shrink. If f is a function that,
when applied to (), returns 0, then zoom will be invoked. Other-
wise, shrink is called recursively with a partial function definition
(λ . (f ())−1). Intuitively we know that this recursive function ter-
minates provided that it is applied to a function f that, when applied
to (), returns a positive integer. In recent work [20] we describe a
technique for proving termination of higher-order programs. We
can adapt this technique to prove a temporal property (F¬shrink)
that is similar to termination, under the condition that f() is non-
negative. With this proof in hand, we can use the oracle rule to
conclude that

Γ ⊢ shrink ∶ (unit→ {i ∣ i ≥ 0})
F¬shrink
ÐÐÐÐ→ unit & ε

Of course in general, the oracle rule can be used to introduce more
elaborate temporal specifications. We will see such examples in
Section 5.

The example in this section provided a small illustration of
how our work combines temporal reasoning over separate program
pieces together to prove overall temporal properties. In Section 5
we present a variety of examples that illustrate many ways that our
work can be instantiated. In addition to verification of higher-order
programs, our work also suggests a local technique for verification
of first-order interprocedural programs that would escape previous
restrictions on the logic [1]. We now turn to a formal presentation
of our work.

3. Preliminaries
We focus on a small functional language shown in Figure 1. A pro-
gram, P , is a finite set of mutually recursive function definitions.
F x̄ = e uniquely defines a function named F with the formal pa-
rameters x̄ and the closed expression e as the body. Function names
may appear free in a function body. The notation x̄ denotes a possi-
bly empty sequence. Note that nested recursive function definitions
can be supported via λ lifting [17].

Expressions, e, comprises constants c, function names F, vari-
ables x, lambda abstractions λx.e, constant operations x op y,
function applications xy, event raises ev[a], conditional branches
if x then e2 else e3, and let expressions let x= e1 in e2. In
ev[a], a ∈ Σ is an event symbol. We assume that the set of event
symbols Σ contains a special event symbol step whose role is ex-
plained below. The constants include the boolean constants true
and false, the unit constant (), and the integer constants. The op-
erator op include boolean and integer operators such as +, −, ≤, as
well as the operator ∗int that returns a non-deterministic integer
(for simplicity, we often write ∗int for ∗int). We write fv(e) for
the free variables of e.

Γ ⊢s c ∶ sty(c)

Γ ⊢s x ∶ B1 Γ ⊢s y ∶ B2

sty(op) = B1 → B2 → B3

Γ ⊢s x op y ∶ B3

Γ ⊢s F ∶ Γ(F) Γ ⊢s x ∶ Γ(x)

Γ, x∶s ⊢s e ∶ s′

Γ ⊢s λx.e ∶ s→ s′ Γ ⊢s ev[a] ∶ unit

Γ ⊢s e1 ∶ s Γ, x∶s ⊢s e2 ∶ s′

Γ ⊢s let x= e1 in e2 ∶ s′

Γ ⊢s x ∶ s→ s′ Γ ⊢s y ∶ s
Γ ⊢s xy ∶ s′

Γ ⊢s x ∶ bool Γ ⊢s e1 ∶ s Γ ⊢s e2 ∶ s
Γ ⊢s if x then e1 else e2 ∶ s

∀F x̄ = e ∈ P.Γ ⊢s λx̄.e ∶ Γ(F)
Γ ⊢s ⋆

Figure 2: Simple type system type checking rules.

For simplicity, we restrict branch conditions, operator argu-
ments and the expressions in function applications to variables. But
note that a non-variable form can be encoded by using let (e.g.
e1 e2 can be encoded as let x= e1 in let y = e2 in xy). For con-
venience, we use the non-variable forms when the encoding is clear
from the context.

As usual, applications associate to the left so that e0 e1 e2 =
(e0 e1) e2. We write e1; e2 for let x= e1 in e2 such that x ∉
fv(e2). Without loss of generality, we assume that bound variables
are distinct. We say that an expression is closed if it contains no
free variables.

We assume that the program is simply typed. For an expression
e in the program, write sty(e) for its simple type. A simple type, s,
is defined by the following grammar.

B ∶∶= int ∣ bool ∣ unit
s ∶∶= B ∣ s1 → s2

Figure 2 defines the simple typing judgement ⊢s. A program P is
simply typed if Γ ⊢s ⋆. (The program is implicit and is omitted in
the type judgement rules.)

3.1 Semantics
We define the call-by-value semantics of the language via big-
step evaluation rules. We define terminating evaluation by the
usual inductive rules (⇓P), and define non-terminating runs by co-
inductive rules (⇑P), following the previous work on co-inductive
big-step [14, 22]. Non-terminating runs need be provided as well as
the usual terminating ones because we are concerned with possibly
infinite sequences of events generated by the program.

The terminating judgement e ⇓P v & $ expresses that the
expression e evaluates to the value v producing the finite sequence
of events $ ∈ Σ∗. A value is either a constant or a closed λx.e
(i.e., fv(e) ⊆ {x}). The non-terminating judgement e ⇑P � & π
expresses that e diverges and produces the infinite sequence of
events π ∈ Σω . Because of non-determinism, an expression can
have multiple terminating and non-terminating evaluations. We

TERMINATING RUNS

e[v/x] ⇓P v′ &$

(λx.e) v ⇓P v′ & step ⋅$
st-App

JopK(c1, c2) = c
c1 op c2 ⇓P c& ε

st-Op
v ⇓P v& ε

st-Val

F x̄ = e ∈ P
F ⇓P λx̄.e& ε

st-Fun
ev[a] ⇓P () & a st-Ev

e1 ⇓P v&$1 e2[v/x] ⇓P v′ &$2

let x= e1 in e2 ⇓P v′ &$1 ⋅$2
st-Let

e1 ⇓P v&$

if true then e1 else e2 ⇓P v&$
st-If1

e2 ⇓P v&$

if false then e1 else e2 ⇓P v&$
st-If2

NON-TERMINATING RUNS

e[v/x] ⇑P �& π

(λx.e) v ⇑P �& step ⋅ π
snt-App

e1 ⇑P �& π

let x= e1 in e2 ⇑P �& π
snt-Let1

e1 ⇓P v,$ e2[v/x] ⇑P �& π

let x= e1 in e2 ⇑P �&$ ⋅ π snt-Let2

e1 ⇑P �& π

if true then e1 else e2 ⇑P �& π
snt-If1

e2 ⇑P �& π

if false then e1 else e2 ⇑P �& π
snt-If2

Figure 3: Semantics of the simple functional language

denote concatenation of finite event sequences $1 and $2 by
$1 ⋅ $2, and the concatenation of an finite event sequence $ to
an infinite event sequence π by $ ⋅ π.

Figure 3 shows the evaluation rules. We describe the key rules.
The rule st-Ev evaluates ev[a] to a unit value, producing the event
a. The rule st-App evaluates a function application (λx.e) v. The
rule handles the case where the function call (i.e,. the evaluation
of e[v/x]) terminates. The special event step is used to prevent
hidden computation. The rule snt-App is similar to st-App, but for
the case the call diverges. In st-Op, JopK denotes the semantics of
the operator op. For example, J+K(i, j) = i+ j for any i, j ∈ Z, and
J∗intK(i, j) = k for any i, j, k ∈ Z.

Remark: Hidden Computation. In temporal verification of
first-order as well as higher-order programs there is some degree
of engineering choice that needs to be made as to what constitutes
a subsequent state. Related is the choice of the atomic proposi-
tion language and what aspect of the state are represented by that
language. Imagine, for example, the imperative program: “x:=1;
increment(x); x:=-1;” The property F(x < 0) holds unless,
of course, increment(x) diverges. It depends greatly on what
is defined to be (i) the “state” of the program automaton and (ii)

Ξ ∶∶⊆ Σ∗

Π ∶∶⊆ Σω

Φ ∶∶= (Ξ,Π)
B ∶∶= int ∣ bool ∣ unit

τ, σ ∶∶= {u∶B ∣ θ} ∣ x∶σ ΦÐ→ τ

Figure 4: Type syntax

the process of computing the subsequent such state. Trouble arises
when it is possible for ii to execute infinitely many steps.

We think that this is an important point and so, in this paper, we
have given a semantics for the λ-calculus that ensures that there
are no infinite, invisible computations. We do this by inserting
step events, as described above. We argue that future temporal
verification techniques and tools for both first- and higher-order
should be developed with this in mind. In the context of first-order
programs, a state is typically defined to be the valuation of all
program variables. This precludes the observation that there can
be infinite computation over registers. We urge future semantics
for first-order programs to incorporate a strategy similar to ours in
order to ensure there is no hidden computation. There is, however,
a caveat: user specifications may be impacted. A specification such
as Fp holds regardless of how many step events occur before p. A
specification such as Gpmust be written with the possibility of step
events in mind. In most cases, the intention of a Gp specification is
really G(step ∨ p). ◻

Returning to the language semantics, the rule snt-App is also
used to evaluate function applications:

e[v/x] ⇑P �& π

(λx.e) v ⇑P �& step ⋅ π
snt-App

This rule handles the case when the function call diverges (i.e., the
evaluation of e[v/x] diverges).

Example 2. Let P be the following four-function program:

F g = ev[a];if ∗int then g 0 else F (H g)
G x = ev[b]; 1
H g x = ev[c]; g x
I () = FG;FG

Let â = step ⋅ a, b̂ = step ⋅ b, and ĉ = step ⋅ c. Let A be the regular
language â∗ ⋅ ĉ∗ ⋅ b̂. Then, I () ⇓P v,$ if and only if $ ∈ Ξ and
v = 1, and I () ⇑P �, π if and only if π ∈ Π where

Ξ = {$ ⋅$′ ∣$ ∈ A ∪ {ε} ∧$′ ∈ A}
Π = {�,$ ⋅ âω ∣$ ∈ A ∪ {ε}}

We often omit the program P from the definitions when the
program is clear from the context. For example, we simply write ⇓
and ⇑ instead of ⇓P and ⇑P .

4. Type System
We now formalize the type and effect system. Intuitively, our type
and effect system is an orchestrating language that glues together
information from the temporal property verifier oracles (termina-
tion checker, safety checker, etc.). As we described in Section 2, in
order to be able to communicate rich information across the differ-
ent oracles, we adopt and extend the refinement (dependent) type
system that has garnered recent popularity [6, 16, 19, 25, 28, 30].

Figure 4 defines the syntax of types. Per previous work on
refinement type systems, types include refinement base types
{u∶B ∣ θ} that refines the base-type B by the refinement predicate
θ which is a formula in some first-order logic theory on base-type

(Ξ1,Π1) ∪ (Ξ2,Π2) = (Ξ1 ∪Ξ2,Π1 ∪Π2)
(Ξ1,Π1) ∩ (Ξ2,Π2) = (Ξ1 ∩Ξ2,Π1 ∩Π2)
(Ξ1,Π1) ⋅ (Ξ2,Π2) = (Ξ1 ⋅Ξ2,Π1 ∪ (Ξ1 ⋅Π2))
(Ξ1,Π1) ⊆ (Ξ2,Π2) ⇔ Ξ1 ⊆ Ξ2 ∧Π1 ⊆ Π2

Figure 5: Trace set operations.

u ∉ fv(JΓKbase) ⊧ JΓKbase ∧ θ1 ⇒ θ2

Γ ⊢ {u∶B ∣ θ1} ≤ {u∶B ∣ θ2}

Γ ⊢ σ2 ≤ σ1 Γ, x ∶ σ2 ⊢ τ1 ≤ τ2 Φ1 ⊆ Φ2

Γ ⊢ x∶σ1
Φ1Ð→ τ1 ≤ x∶σ2

Φ2Ð→ τ2

Figure 8: Subtyping rules.

variables. We sometimes abbreviate {u∶B ∣ θ} as B when θ is a
tautology (e.g., {u∶B ∣ ⊺} = B). Intuitively, {u∶B ∣ θ} denotes the
type of some value u of the base type B satisfying the formula θ.

The type x ∶ σ ΦÐ→ τ is a dependent function type, consisting
of the argument type σ and the return type τ and the latent effect
Φ. We extend the dependent function type from previous work by
adding trace sets as a latent effect. Intuitively, x ∶ σ ΦÐ→ τ denotes
the type of a function that returns a value of the type τ[y/x] and
generates the events represented by the effect Φ when applied to an
argument y of the type σ. As usual, → associates to the right. The
system is parametrized by the class of trace sets that are usable as
the effects.

An effect is a pair comprising a set of finite traces Ξ (the
terminating part) and a set of infinite traces Π (the non-terminating
part). We define operations on effects component-wise as shown in
Figure 5. Here, Ξ1 ⋅ Ξ2 denotes the concatenation of the traces in
Ξ1 to those in Ξ2 and is defined {$1 ⋅$2 ∣$1 ∈ Ξ1 ∧$2 ∈ Ξ2}.
Similarly, a concatenation of a set of finite traces Ξ to a set of
infinite traces Π is defined as Ξ ⋅Π = {$ ⋅ π ∣$ ∈ Ξ ∧ π ∈ Π}.

The type system may be used by instantiating the effects with
any class of trace sets that are closed under the operations. In the
examples in this paper, we use a pair of finite state automaton and
Büchi automaton (i.e., regular and ω-regular trace sets) which have
the required closure property [29]. We use LTL as a shorthand for
trace sets by interpreting a finite trace as the infinite trace that self-
loops at the last event (e.g., � = ∅, ⊺ = Σ∗, and aUb = a∗ ⋅ b ⋅Σ∗,
for finite traces).

The type {x∶B ∣ θ} binds x in θ. Likewise, x ∶ σ ΦÐ→ τ binds
x in τ (but not in σ). That is, fv({x∶B ∣ θ}) = fv(θ) ∖ {x}, and
fv(x∶σ ΦÐ→ τ) = fv(σ) ∪ (fv(τ) ∖ {x}). Types are equivalent up
to renaming of bound variables. We say that a type is closed if it
contains no free variables.

4.1 Type Environment
A type environment Γ is a sequence of variable binding x ∶ τ ,
function name binding F ∶ τ , and a FOL formula θ. The formulas
θ are used to express the branch conditions (cf. [25, 28]). We often
treat Γ as a set and write x ∶ τ ∈ Γ, θ ∈ Γ, etc. to access its elements.
We write dom(Γ) for the variables and function names that are
bound in Γ, that is, dom(Γ) = {κ ∣ κ ∶ τ ∈ Γ}. (Here, κ ranges
over variables and function names.) We assume that the (base-type)
variables appearing free in the types and the formulas in Γ are in
dom(Γ), that is, (⋃θ∈Γ fv(θ) ∪⋃κ∶τ∈Γ fv(τ)) ⊆ dom(Γ).

JΓKbase is the FOL formula denoting the assumptions about the
base-type variables in Γ, and is defined as follows.

JεKbase = ⊺
JΓ, x∶{u∶B ∣ θ}Kbase = JΓKbase ∧ θ[x/u]

JΓ, θKbase = JΓKbase ∧ θ
JΓ, x∶τKbase = JΓKbase τ not refinement base type

We use the meta variable ∆ for type environment containing
only the function names, and Θ for the type environment containing
only the variables (both base-type and function-type variables) and
the formulas. Note that any type environment Γ can be split into the
function name part and the variable part so that Γ = ∆,Θ.

4.2 Variable-to-value Substitution
We use the meta variable ρ to denote substitutions from variables
to values (ρ does not map function names). (Recall that values are
closed.) We define ρ(e), ρ(θ), and ρ(τ) in the obvious way. We
define ρ(Γ) to be the environment with each θ ∈ Γ replaced by
ρ(θ) and each κ ∶ τ ∈ Γ replaced by κ ∶ ρ(τ). We let ρ↾base
denote the restriction of ρ to base type variables, and ρ↾fn denote
the restriction of ρ to function type variables. Note that, because the
formulas and the types only have base-type variables, substitution
over the formulas can be restricted to base-type variables (i.e.,
ρ(θ) = ρ↾base(θ) and ρ(τ) = ρ↾base(τ)).

4.3 Semantics of Type and Effect
We define the semantics of type and effect for the purpose of
defining the notion of valid oracles that can be used in the type
system and for formalizing the soundness of the type system. In-
formally, the type and effect semantics JΘ ⊢ τ & ΦKP is the set
of expressions of the program P whose evaluation causes (finite
and infinite) sequences of events in Φ, and if terminates, results
in a value of the type τ , when the free variables in the expres-
sion are substituted the values of the types Θ. Figure 6 formally
defines JΘ ⊢ τ & ΦKP . Here, ρ ⊧P Θ denotes that 1.) dom(ρ) =
dom(Θ), 2.) ⊧ ρ↾base(JΘKbase), and 3.) ∀x ∈ dom(ρ↾fn).ρ(x) ∈
Jρ(Θ(x))KP .

Note that the definition uses the auxiliary notion JτK which
represents the set of values of the type. As with the evaluation
relations, we omit the subscript P and write JΘ ⊢ τ & ΦK, JτK, and
ρ ⊧ Θ when the program is clear from the context.

4.4 Oracle
We formalize oracle as follows.

Definition 4.1 (Oracle). An oracle ▸P is a 4-ary relation that
satisfies Θ ▸P e ∶ τ & Φ⇒ e ∈ JΘ ⊢ τ & ΦKP , for any expression
e of P .

That is, an oracle is simply defined to be an entity that derives
semantically correct judgements for the program’s expressions. In
fact, by the type soundness theorem (Theorem 4.1), our type system
itself is a valid oracle. As before, we write Θ ▸ e ∶ τ & Φ for
Θ ▸P e ∶ τ & Φ when P is clear from the context.

4.5 Typing Rules
Figure 7 shows the typing rules. A typing judgement for expres-
sions is of the form Γ ⊢ e ∶ τ&Φ expressing that the under the envi-
ronment Γ, e has type τ with the effect Φ. We write Γ ⊢ e ∶ τ when
there exists some Φ such that Γ ⊢ e ∶ τ & Φ. The type judgements
are implicitly parameterized by the program being typed (used in
the rule Program, and in Oracle for Θ ▸ e ∶ τ & Φ).

We implicitly assert that a type assigned to an expression con-
forms to the expression’s simple type. More formally, the simple-
type shape of τ is the simple type stsh(τ) defined such that
stsh(x∶σ ΦÐ→ τ) = stsh(σ) → stsh(τ), and stsh({u∶B ∣ θ}) = B.

e ∈ JΘ ⊢ τ & (Ξ,Π)KP ⇔ ∀ρ.ρ ⊧P Θ⇒
(∀v,$.ρ(e) ⇓P v&$⇒ v ∈ Jρ(τ)KP ∧$ ∈ Ξ)
∧(∀π.ρ(e) ⇑P �& π⇒ π ∈ Π)

c ∈ J{u∶B ∣ θ}KP ⇔ c ∈ B∧ ⊧ θ[c/u]
λx.e ∈ Jx∶τ ΦÐ→ σKP ⇔ e ∈ Jx∶τ ⊢ σ& ΦKP

Figure 6: Semantics of type and effect.

Θ ▸ e ∶ τ & Φ
∆,Θ ⊢ e ∶ τ & Φ

Oracle
Γ ⊢ e ∶ τ & Φ1 Γ ⊢ e ∶ τ & Φ2

Γ ⊢ e ∶ τ & Φ1 ∩Φ2
Comb

Γ ⊢ e ∶ τ1 & Φ1 Γ ⊢ τ1 ≤ τ2 Φ1 ⊆ Φ2

Γ ⊢ e ∶ τ2 & Φ2
Sub

c ∈ B
Γ ⊢ c ∶ {u∶B ∣ u = c} & ({ε},∅) Const

sty(x) = B
Γ ⊢ x ∶ {u∶B ∣ u = x} & ({ε},∅) VaB

sty(x) ∈→
Γ ⊢ x ∶ Γ(x) & ({ε},∅) VaF

Γ ⊢ F ∶ er(Γ(F)) & ({ε},∅) Fun
Γ ⊢ x ∶ τ1 Γ ⊢ y ∶ τ2 ty(op) = x1 ∶τ1

Φ1Ð→ x2 ∶τ2
Φ2Ð→ τ3

Γ ⊢ x op y ∶ τ3[x/x1][y/x2] & ({ε},∅)
Op

Γ, x ∶ τ1 ⊢ e ∶ τ2 & Φ

Γ ⊢ λx.e ∶ x∶τ1
ΦÐ→ τ2 & ({ε},∅)

Lam Γ ⊢ x ∶ z ∶τ1
ΦÐ→ τ2 Γ ⊢ y ∶ τ1

Γ ⊢ xy ∶ τ2[y/z] & ({step},∅) ⋅Φ
App

Γ, x = true ⊢ e1 ∶ τ & Φ1 Γ, x = false ⊢ e2 ∶ τ & Φ2

Γ ⊢ if x then e1 else e2 ∶ τ & Φ1 ∪Φ2
If

Γ ⊢ e ∶ τ & Φ ⊧ JΓKbase ⇒ �
Γ ⊢ e ∶ τ & (∅,∅) Unreach

Γ ⊢ e1 ∶ τ1 & Φ1

Γ, x ∶ τ1 ⊢ e2 ∶ τ2 & Φ2

Γ ⊢ let x= e1 in e2 ∶ τ2 & Φ1 ⋅Φ2
Let

Γ ⊢ ev[a] ∶ unit & ({a},∅) Event
∀F x̄ = e ∈ P.Γ ⊢ λx̄.e ∶ Γ(F)

Γ ⊢ ⋆ Program

Figure 7: Typing rules.

Then, we assert that any type τ assigned to e in a type derivation
satisfies sty(e) = stsh(τ).

We describe each rule. Oracle allows information derived by
an external oracle to be used in the typing derivation. For example,
consider the function below.

f0 x = ev[a];if x = 0 then () else f0 (x − 1)
A termination verifier for functional programs [20] may be used as
an oracle to derive ▸ f0 ∶ τf0 & (∅,∅) where

τf0 = x∶{u∶int ∣ u ≥ 0} (Σ∗,∅)ÐÐÐÐ→ unit

With this, Oracle can derive that f0 ∶ τf0 ⊢ f0 ∶ τf0 & (∅,∅).
Note that τf0 states that, given a non-negative integer argument, f0
has no non-terminating event traces (i.e., it terminates), but may
have arbitrary terminating event traces (i.e., the termination oracle
says nothing beyond the fact that the function terminates on non-
negative inputs).

Comb combines information from multiple derivations. While
innocuous, the rule is essential for incorporating the facts derived
by an oracle or combining the facts from multiple oracles. For
example, as we show below, App and Sub can be used to derive
that

f0 ∶τf0, x∶{u∶int ∣ u ≥ 0} ⊢ f0 x ∶ unit & (Σ∗,∅)
in the example above. That is, the call to f0 with a non-negative
integer argument terminates. Then, a safety oracle may be used to
derive via Oracle (alternatively, the type system can derive such a
safety judgement by itself):

f0 ∶τf0, x∶{u∶int ∣ u ≥ 0} ⊢ f0 x ∶ unit & ({step, a}∗,Σω)

er({u∶B ∣ θ}) = {u∶B ∣ θ}
er(x∶σ (Ξ,Π)ÐÐÐ→ τ) = x∶σ (Ξ,Σω)ÐÐÐÐ→ er(τ)

Figure 9: er(τ).

which says that the function call only generates either step or a
event, if it terminates. Note that this judgement gives no informa-
tion about the non-termination behavior. Then, Comb may com-
bine the two judgements to derive:

f0 ∶τf0, x∶{u∶int ∣ u ≥ 0} ⊢ f0 x ∶ unit & ({step, a}∗,∅)
which says that the function call only generates terminating event
traces consisting of step and a.

Sub is the subsumption rule for subtypes and sub-effects. The
subtyping rules are defined in Figure 8. The rule is an extension of
the one used in the previous work on refinement type systems [6,
16, 19, 25, 28, 30] with the usual rule for sub-effecting that allow a
larger effect to be used in place of a smaller effect.

Const, VaB, and VaF for typing constants and variables are
straightforward extension of those from the previous work on re-
finement type systems. Here, → denotes the set of function-type
simple types. Looking up a variable generates no non-terminating
effects (i.e., ∅) because the operation is guaranteed to terminate,
whereas it generates an empty terminating event sequence (i.e.,
{ε}).

Fun looks up the type of a recursive function name in the type
environment. The rule is similar to VaF, except that the type in
the conclusion is er(Γ(F)) instead of Γ(F). Informally, er(τ)

“erases” the non-terminating parts of the top-level effects of τ by
replacing them with Σω . This prevents the type system from de-
riving non-trivial facts about non-terminating runs by itself (i.e.,
without the help of an oracle), and is needed to ensure the type
system’s soundness. For example, suppose er(Γ(F)) in the con-
clusion of Fun was replaced by Γ(F). Then, for the program
{. . . , loop x = loopx}, we would be able to derive Γ ⊢ ⋆ where

Γ(loop) = x∶int (Σ∗,∅)ÐÐÐÐ→ unit, which says that a call to loop gen-
erates no infinite event traces, that is, it terminates. This is obvi-
ously incorrect as any call to loop diverges. The erasure prevents
such unsound non-termination effects from occurring. We formally
define er(τ) in Figure 9.

Op types constant operator applications. Here, ty(op) is the
sound constant operator type of op. Formally, a sound constant
operator type of op is defined to be a closed type of the form

x1 ∶B1
({ε},∅)ÐÐÐÐ→ x1 ∶B2

({ε},∅)ÐÐÐÐ→ {u∶B3 ∣ θ}
that satisfy the following:

● op is a binary operator from the arguments of the type B1 and
B2 to the return value of the type B3.

● For constants c1 and c2 of the type B1 and B2 and c3 =
JopK(c1, c2), ⊧ θ[c1/x1][c2/x2][c3/u].

For example, x ∶ int ({ε},∅)ÐÐÐÐ→ y ∶int ({ε},∅)ÐÐÐÐ→ {u∶int ∣ u = x + y}
is a sound type for the integer addition operator +

Lam types function definitions, and App types function appli-
cations. The rules are extensions of the ones in the previous work
on refinement type systems with the usual type-and-effect approach
of recording and discharging the latent effect. As remarked in Sec-
tion 3, the step event guard is used to prevent non-productive non-
terminating runs.

If types conditional branches. Per previous work on refinement
type systems, each branch is typed with the assumption about the
branch condition added to the type environment (i.e., x = true
and x = false). Unreach allows the type system to derive that e
generates no effects in an unreachable context (i.e., when JΓKbase
is unsatisfiable).

Let types let bindings. Note that the effect Φ1 of e1 is appended
to the effect Φ2 of e2. Event types event raising operations and is
self-explanatory. Continuing the function f0 example from above,
we may use Let and Event to derive that

f0 ∶τf0, x∶{u∶int ∣ u ≥ 0} ⊢ f0 x;ev[b] ∶ unit & (Ξ0,∅)
where Ξ0 = {step, a}∗ ⋅ {b}. That is, f0 x;ev[b] only generates
finite sequences of step and a that end in b, which is the property
(step ∨ a)Ub in LTL.

Finally, Program types the program P (implicit in the rules)
by asserting that each of the recursive functions have types of their
fixpoints. We state the soundness of the type system.

Theorem 4.1 (Soundness). Suppose ∆ ⊢ ⋆, dom(Θ) = fv(e), and
∆,Θ ⊢ e ∶ τ & Φ. Then, e ∈ JΘ ⊢ τ & ΦK

Proof. Please see Appendix A. ◻

The following is immediate from Oracle, and states that the
type system is complete relative to the oracle.

Theorem 4.2 (Relative Completeness). Suppose Θ ▸ e ∶ τ & Φ.
Then, ∆,Θ ⊢ e ∶ τ & Φ.

We note that, without Oracle, the type system cannot prove
non-trivial liveness properties (i.e., properties about non-terminating
runs) in presence of recursive functions. For example, let P =
{H y = if y ≤ 0 then () else H (y − 1)} and suppose that we

would like to prove that the call to H with any integer argu-
ment terminates. The property can be expressed as the type

τH = x∶int
(Σ∗,∅)ÐÐÐÐ→ unit, and we try to derive that H ∶ τH ⊢ ⋆.

But, this cannot be done without Oracle because any occurrence
of H in the derivation will have its type’s top-most non-terminating
effect “erased”. (Trivially, soundness holds even if the Oracle rule
is removed from the type system.)

5. Examples
In this section we illustrate how our technique operates through a
variety of instantiations on examples. Note there are no existing
techniques to prove that the following properties hold over their
respective programs. For illustrative purposes, some examples are
first order however, of course, the power of our technique is that it
applies to higher order programs. In this section we have made all
events explicit.

In the REDUCE example in Figure 10, we rely on a termination
oracle to tell us that explore terminates when it’s given a certain
type of R:

Γ,R ∶ {i ∶ int ∣ true}
(step+,�)
ÐÐÐÐ→ {j ∶ int ∣ j < i}

⊢ explore x R ∶ unit & (⊺,�)
We also obtain safety information from the type system:

Γ,R ∶ {i ∶ int ∣ true}
(step+,�)
ÐÐÐÐ→ {j ∶ int ∣ j < i}

⊢ explore x R ∶ unit & ((explore ∣ step)∗ ⋅ done,⊺)
Via the Sub rule, we can rewrite the combination (Comb) of these
two rules and conclude that the body of main has effect F(done).
Note that the termination oracle here need only be used to show that
explore is not called infinitely often (whole program termination
reasoning is not needed).

The RUMBLE example illustrates modular reasoning. Here we
again use a termination oracle to tell us that rumble terminates re-
gardless of input, but we use it to refine the safety information dif-
ferently. Our type system can conclude that the innermost applica-
tion in main has (finitely many) step events:

Γ ⊢ rumble b a ∶ ...& ((step ∣ rumble)+,⊺)
We use the Comb rule to combine this with information from the
termination oracle to obtain

Γ ⊢ rumble b a ∶ ...& ((step ∣ rumble)+,�).
(We have omitted the refinement typing, which is not relevant here.)
We then use the App, Oracle and Comb rules again to obtain

Γ ⊢ rumble a (rumble b a) ∶ ...& ((step ∣ rumble)+,�).
Finally, we consider the application of print to obtain

Γ ⊢ main... ∶ ...& ((step ∣ rumble)+ ⋅ print,�)
which entails F(print). A benefit of our type system is illustrated
here: information from an oracle can be reused.

EVENTUALLY GLOBALLY demonstrates nesting of G within F.
To prove this example, we combine a few facts:

1. A termination oracle tells us that bar terminates.
2. We can indicate that bar always returns a non-positive number

with the dependent typing:

Γ ⊢ bar ∶ int
((bar∣step)+,⊺)
ÐÐÐÐÐÐÐ→ {j ∶ int ∣ j ≤ 0} & ...

3. The type-and-effect system can conclude, with the help of a
nontermination oracle that foo x does not terminate when x ≤ 0
and that its infinite behavior will be (foo ∣ step)ω which is a
fixpoint of α = foo ∧Xα:
Γ, x ∶ {j ∶ int ∣ j ≤ 0} ⊢ foo x ∶ ...& (�, (foo ∣ step)ω)

REDUCE RUMBLE EVENTUALLY GLOBAL ALTERNATE INEVITABILITY

let rec done =
ev[done]

and reduce x R =
if x ≤ 0 then x

else R x

let rec explore x R =
ev[explore] ;
let y = reduce x R in
if y ≤ 0 then done ()
else explore y R

let main() =
let t = * in
explore t (λx. x - 2)

let rec print int x =
ev[print] ; ...

and rumble x y =
ev[rumble] ;
if x < y then
if * then

rumble (x+1) y
else rumble x (y-1)

else x

let main() =
let a = * in
let b = * in
print (rumble a

(rumble b a))

let rec halt =
ev[halt]

and bar x = ev[bar] ;
if x > 0 then bar (x-2)
else x

and foo x = ev[foo] ;
if (x ≤ 0) then foo x
else halt ()

let main () =
let t = * in

if * then foo 0
else foo (bar t)

let app f x i = f x (λ t. t - i)
let ha1 = ev[ha1]
let ha2 = ev[ha2]
let rec walk x f = ev[walk] ;
if x = 0 then x else walk (f x) f
and run x f = ev[run] ;
if x = 0 then x
else run (f (f x)) f
and life x =
if * then
ev[p];
if x<0 then ha1 (app walk x 1)
else ha2 (app run x 1)

else life x
let main() = life *

Φ = F(done) Φ = F(print) Φ = FG(foo ∨ step) Ξ = G(p⇒ X(walkUha1 ∨ runUha2))

Figure 10: Example programs and corresponding properties (abbreviated in LTL).

We combine all of this information together to show that the foo
call sites in main satisfy F(G(foo ∨ step)).

For ALTERNATE INEVITABILITY, ultimately we need to show
that the finite traces of life x satisfies G(p ⇒ X(walkUha1 ∨
runUha2)). We elide detail related to step events. We begin with
the inner if/else in life. In the then branch, app applies the function
walk on argument x and on a function that subtracts by one. An
oracle can show that this terminates:

Γ ⊢ walk ∶
x ∶ intÐ→ f ∶ (i ∶ intÐ→ {j ∶ int ∣ j < i}) (⊺,�)ÐÐÐ→ int

Similar for run. Combining this information with a safety judgment
that walk generates walk∗, and using the App rule to append the
ha1 event, we have summarized the effects of the then branch. We
do the same for the else branch, and then with the semi-colon rule,
we obtain (p ⇒ X(walkUha1 ∨ runUha2)) for the then branch
of the outer if/else expression. The else branch is another call to life
x, so we look for a fixpoint to

α = α ∨ (p ⇒ X(walkUha1 ∨ runUha2))

One solution is G(p ⇒ X(walkUha1 ∨ runUha2)). Something
critical here was that we had complete knowledge of all instances
where p was generated. Because our type-and-effect system can
maintain precise descriptions of the event traces, we can build this
up syntactically over the body of life.

6. Related work
To the best of our knowledge, our work is the first technique that
is able to prove temporal properties of higher-order, infinite-data
programs. In Sections 1 and 2 we summarized previous efforts that
are restricted in one way or another (e.g. only finite-data, safety-
only, termination-only, or works that are restricted to first-order
programs). We now discuss some other related works.

In our work we strive to achieve exogenous verification in that
we are attempting to verify an overall external behavior of a pro-
gram, as opposed to endogenous verification (e.g. Floyd/Hoare
Logic), which is more directly connected to system internals such
as program location. However, we use an endogenous type-and-
effect system, combined with generalizing composed effects. In
their work, Barringer et al. [3] extend temporal logic with a com-
position operator. Their work, however, is geared toward compo-
sitional user-provided (endogenous) specifications rather than our

goal of proving an overall (exogenous) specification, by composing
together pieces of reasoning.

We are not the first to suggest a type-and-effect system for ver-
ifying temporal properties. Skalka et al. [26, 27] describe a type-
and-effect system where event traces are effects, similar to our
system. However, unlike our system, they use the type-and-effect
system only to infer an over-approximation of the program’s ac-
tual event traces, which is then checked against the target temporal
property by an external model checker.2 Their approach precludes
the possibility of verifying non-trivial liveness properties, because a
type-and-effect system alone is inherently “safety”, and having an
up-front type-and-effect abstraction can result in losing the infor-
mation needed for liveness reasoning. By contrast, our type-and-
effect system allows the use of temporal property verifiers inside
the type derivation as oracles, enabling compositional verification
of non-trivial temporal properties.

A different approach to using a type system for temporal prop-
erty verification has been proposed by Kobayashi and Ong [18]. In
their approach, the type system is used internally to define a parity
game (i.e. a “move” in the game is defined as a typability relation),
and the verification problem is reduced to the problem of finding
a winning strategy to the game. Our approach is conceptually the
dual of theirs, and allows verifiers to be used as oracles inside the
type system. Also, unlike our approach, their approach is limited to
the verification of finite data programs (given in CPS), and it may
be difficult to extend the approach to infinite data programs.

7. Conclusion
We have introduced the first technique that enables us to verify tem-
poral properties of higher-order, infinite-data programs. Our type-
and-effect system accomplishes this by decomposing the program,
not only into expressions, but also based on the behavior of each
expression’s finite versus infinite event behaviors. The type system
itself is strong enough to derive temporal safety properties which
can be combined with liveness information from oracles. We be-
lieve this work will serve as a theoretical foundation toward auto-
matic verification of not only higher-order programs, but also pro-
vides a new route to more compositional verification of first-order
programs.

2 For this reason, they use BPA as the concrete model of effects, whereas
we keep the effect representation intentionally abstract.

References
[1] ALUR, R., AND CHAUDHURI, S. Temporal reasoning for procedural

programs. In Proceedings of the 11th International Conference on Ver-
ification, Model Checking, and Abstract Interpretation (VMCAI’10)
(2010), vol. 5944, pp. 45–60.

[2] BALL, T., AND RAJAMANI, S. K. Automatically validating tempo-
ral safety properties of interfaces. In Proceedings of the 8th Interna-
tional SPIN Workshop on Model Checking Software (2001), vol. 2057,
pp. 103–122.

[3] BARRINGER, H., KUIPER, R., AND PNUELI, A. Now you may
compose temporal logic specifications. In Proceedings of the 16th
Annual ACM Symposium on Theory of Computing (STOC ’84) (1984),
pp. 51–63.

[4] BEYENE, T., POPEEA, C., AND RYBALCHENKO, A. Solving existen-
tially quantified horn clauses. In Proceedings of the 25th International
Conference on Computer Aided Verification (CAV’11) (2013).

[5] BEYER, D., HENZINGER, T. A., JHALA, R., AND MAJUMDAR, R.
The software model checker blast. STTT 9, 5-6 (2007), 505–525.

[6] BHARGAVAN, K., FOURNET, C., AND GORDON, A. D. Modular
verification of security protocol code by typing. In The 37th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’10) (2010), pp. 445–456.

[7] CLARKE, E. M., GRUMBERG, O., JHA, S., LU, Y., AND VEITH,
H. Counterexample-guided abstraction refinement. In Proceedings
of the 12th International Conference on Computer Aided Verification
(CAV’00) (2000), vol. 1855, pp. 154–169.

[8] COOK, B., GOTSMAN, A., PODELSKI, A., RYBALCHENKO, A.,
AND VARDI, M. Y. Proving that programs eventually do something
good. In Proceedings of the 34th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL’07) (2007),
pp. 265–276.

[9] COOK, B., AND KOSKINEN, E. Making prophecies with decision
predicates. In Proceedings of the 38th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL’11) (2011),
ACM, pp. 399–410.

[10] COOK, B., AND KOSKINEN, E. Reasoning about nondeterminism
in programs. In Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’13)
(2013), ACM.

[11] COOK, B., KOSKINEN, E., AND VARDI, M. Temporal verification as
a program analysis task [extended version]. Formal Methods in System
Design (2012).

[12] COOK, B., KOSKINEN, E., AND VARDI, M. Y. Temporal property
verification as a program analysis task. In Proceedings of the 23rd
International Conference on Computer Aided Verification (CAV’11)
(2011), vol. 6806, pp. 333–348.

[13] COOK, B., PODELSKI, A., AND RYBALCHENKO, A. Termination
proofs for systems code. In Proceedings of the ACM SIGPLAN 2006
Conference on Programming Language Design and Implementation
(PLDI’06) (2006), pp. 415–426.

[14] COUSOT, P., AND COUSOT, R. Inductive definitions, semantics
and abstract interpretation. In Proceedings of the 19th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (1992), R. Sethi, Ed., ACM Press, pp. 83–94.

[15] GASTIN, P., AND ODDOUX, D. Fast LTL to Büchi automata trans-
lation. In Proceedings of the 15th International Conference on Com-
puter Aided Verification (CAV’01) (2001), pp. 53–65.

[16] JHALA, R., MAJUMDAR, R., AND RYBALCHENKO, A. HMC: Veri-
fying functional programs using abstract interpreters. In Proceedings
of the 23rd International Conference on Computer Aided Verification
(CAV’11) (2011).

[17] JOHNSSON, T. Lambda lifting: Transforming programs to recursive
equations. In FPCA (1985), pp. 190–203.

[18] KOBAYASHI, N., AND ONG, C.-H. L. A type system equivalent
to the modal mu-calculus model checking of higher-order recursion
schemes. In Proceedings of the 24th Annual IEEE Symposium on
Logic in Computer Science (LICS’09) (2009), pp. 179–188.

[19] KOBAYASHI, N., SATO, R., AND UNNO, H. Predicate abstraction
and cegar for higher-order model checking. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’11) (2011), pp. 222–233.

[20] KUWAHARA, T., TERAUCHI, T., UNNO, H., AND KOBAYASHI, N.
Automatic termination verification for higher-order functional pro-
grams. In Proceedings of the 22nd European Symposium on Program-
ming (ESOP’14) (2014), vol. 7792, pp. 1–20.

[21] LEDESMA-GARZA, R., AND RYBALCHENKO, A. Binary reachability
analysis of higher order functional programs. In Proceedings of the
19th International Symposium on Static Analysis (SAS’12) (2012),
vol. 7460, pp. 388–404.

[22] LEROY, X., AND GRALL, H. Coinductive big-step operational se-
mantics. Inf. Comput. 207, 2 (2009), 284–304.

[23] MCMILLAN, K. L. Lazy abstraction with interpolants. In CAV’06
(2006), T. Ball and R. B. Jones, Eds., vol. 4144, pp. 123–136.

[24] PODELSKI, A., AND RYBALCHENKO, A. A complete method for the
synthesis of linear ranking functions. In Proceedings of the 5th In-
ternational Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’04) (2004), vol. 2937, Springer, pp. 239–251.

[25] RONDON, P. M., KAWAGUCHI, M., AND JHALA, R. Liquid types.
In Proceedings of the ACM SIGPLAN 2008 Conference on Program-
ming Language Design and Implementation (PLDI’08) (2008), ACM,
pp. 159–169.

[26] SKALKA, C., AND SMITH, S. F. History effects and verification.
In Proceedings of Programming Languages and Systems: Second
Asian Symposium, (APLAS 2004) (2004), W.-N. Chin, Ed., vol. 3302,
Springer, pp. 107–128.

[27] SKALKA, C., SMITH, S. F., AND HORN, D. V. Types and trace
effects of higher order programs. J. Funct. Program. 18, 2 (2008),
179–249.

[28] TERAUCHI, T. Dependent types from counterexamples. In Proceed-
ings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’10) (2010), ACM, pp. 119–130.

[29] THOMAS, W. Handbook of theoretical computer science (vol. b). MIT
Press, Cambridge, MA, USA, 1990, ch. Automata on Infinite Objects,
pp. 133–191.

[30] UNNO, H., TERAUCHI, T., AND KOBAYASHI, N. Automating rel-
atively complete verification of higher-order functional programs. In
Proceedings of the 40th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL’13) (2013), pp. 75–86.

[31] XI, H., AND PFENNING, F. Dependent types in practical program-
ming. In Proceedings of the 26th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL’99) (1999),
pp. 214–227.

A. Proof of Theorem 4.1
We add to the type system an “the-all-knowing oracle” rule that can
derive arbitrary semantically true judgements:

e ∈ JΘ ⊢ τ & ΦK
∆,Θ ⊢ e ∶ τ & Φ

All

We state a few lemmas regarding subtyping.

Lemma A.1 (≤ Transitivity). Suppose Γ ⊢ τ1 ≤ τ2 and Γ ⊢ τ2 ≤
τ3. Then, Γ ⊢ τ1 ≤ τ3.

Lemma A.2 (≤ Substitution). Suppose ∆,Θ ⊢ τ ≤ σ, and ρ ⊧ Θ.
Then, ∆ ⊢ ρ(τ) ≤ ρ(σ).

Lemma A.3. Suppose Γ, x ∶ τ ⊢ σ′ ≤ σ and Γ ⊢ τ ′ ≤ τ . Then,
Γ, x∶τ ′ ⊢ σ′ ≤ σ.

Lemma A.4. Suppose Γ, x ∶τ ⊢ e ∶ τ & Φ and Γ ⊢ τ ′ ≤ τ . Then,
Γ, x∶τ ′ ⊢ e ∶ τ & Φ.

Lemma A.5 (≤ Semantic Correspondence I). Suppose ∆,Θ ⊢ τ ≤
τ ′ and ρ ⊧ Θ. Then, Jρ(τ)K ⊆ Jρ(τ ′)K.

Proof. We prove by induction on the structure of τ .

Case τ = {u∶B ∣ θ}
By Lemma A.2, ∆ ⊢ ρ(τ) ≤ ρ(τ ′). By Lemma A.1 and
inspection of the subtyping rules, it must be the case that τ ′ =
{u∶B ∣ θ′} and ⊧ ρ(θ)⇒ ρ(θ′). Therefore, Jρ(τ)K ⊆ Jρ(τ ′)K.

Case τ = x∶σ1
ΦÐ→ σ2

By Lemma A.2, ∆ ⊢ ρ(τ) ≤ ρ(τ ′). By Lemma A.1 and
inspection of the subtyping rules, it must be the case that τ ′ = x∶
σ′1

Φ′

Ð→ σ′2, ∆ ⊢ ρ(σ′1) ≤ ρ(σ1), ∆, x∶ρ(σ′1) ⊢ ρ(σ2) ≤ ρ(σ′2),
and Φ ⊆ Φ′.
Let λx.e ∈ Jρ(τ)K. By definition, e ∈ Jx∶ρ(σ1) ⊢ ρ(σ2) & ΦK.
It suffices to show that e ∈ Jx∶ρ(σ′1) ⊢ ρ(σ′2) & Φ′K (because
then λx.e ∈ Jρ(τ ′)K). Suppose v ∈ Jρ(σ′1)K. Then, by induction
hypothesis, v ∈ Jρ(σ1)K. Therefore, if e[v/x] ⇓ v′ & $ then
v′ ∈ Jρ(σ2)[v/x]K. By induction hypothesis, the latter implies
that v′ ∈ Jρ(σ′2)[v/x]K. Therefore, because Φ ⊆ Φ′, it follows
that e ∈ Jx∶ρ(σ′1) ⊢ ρ(σ′2) & Φ′K.

◻

Lemma A.6 (≤ Semantic Correspondence II). Suppose ∆,Θ ⊢
τ ≤ τ ′ and Φ ⊆ Φ′. Then, JΘ ⊢ τ & ΦK ⊆ JΘ ⊢ τ ′ & Φ′K.

Proof. Suppose ρ ⊧ Θ, ρ(e) ⇓ v & $, and v ∈ Jρ(τ)K. Then, by
Lemma A.5, v ∈ Jρ(τ ′)K. Therefore, the statement follows. ◻

Lemma A.7 (Substitution). Suppose ∆,Θ ⊢ e ∶ τ & Φ and ρ ⊧ Θ.
Then, ∆ ⊢ ρ(e) ∶ ρ(τ) & Φ.

Proof. By induction on the derivation of ∆,Θ ⊢ e ∶ τ & Φ. ◻

Lemma A.8 (Preservation). Suppose

● ∆ ⊢ ⋆,
● ∆ ⊢ e ∶ τ & (Ξ,Π),
● e is closed, and
● e ⇓ v&$

Then, ∆ ⊢ v ∶ τ and $ ∈ Ξ

Proof. By induction on the derivation of e ⇓ v&$. ◻

Lemma A.9 (Soundness Part I : Erasure). Suppose

(1) ∆ ⊢ ⋆,
(2) dom(Θ) = fv(e), and

(3) ∆,Θ ⊢ e ∶ τ & (Ξ,Π)
Then, e ∈ JΘ ⊢ er(τ) & (Ξ,Σω)K.

Proof. First, note that the statement is equivalent to the following.

(a) Suppose (1), (2), (3), ρ ⊧ Θ, and ρ(e) ⇓ v &$. Then, $ ∈ Ξ
and v ∈ Jρ(er(τ))K.

By Lemma A.7, ∆ ⊢ ρ(e) ∶ ρ(τ)&(Ξ,Π), and so by Lemma A.8,
∆ ⊢ v ∶ ρ(τ) and$ ∈ Ξ. Therefore, (a) is implied by the following.

(b) Suppose (1), ρ ⊧ Θ, and ∆ ⊢ v ∶ ρ(τ). Then, v ∈ Jρ(er(τ))K.

We prove (b) by induction on the structure of τ .

Case τ = {u∶B ∣ θ}
We have that ρ(er(τ)) = ρ(τ) = {u∶B ∣ ρ(θ)}. By the def-
inition of values, v = c for some constant c. Then, by Const,
Sub, and Lemma A.1 and the definition of sound constant type,
⊧ u = c⇒ ρ(θ). Therefore, c ∈ Jρ(θ)K.

Case τ = x∶σ′ (Ξ
′,Π′)ÐÐÐÐ→ τ ′

We have that ρ(er(τ)) = x∶ρ(σ′) (Ξ
′,Σω)ÐÐÐÐ→ ρ(er(τ ′)). It must

be case that v = λx.e′ for some e′ and x. By inspection of the
typing rules, either All, Oracle, or Lam must have been applied
at v.
Case All or Oracle

By Sub and Lemma A.1, it must be the case that v ∈
Jε ⊢ τ ′ & ΦK such that ∆ ⊢ τ ′ ≤ ρ(τ).
We have that v ∈ Jτ ′K. Therefore, by Lemma A.5, v ∈
Jρ(τ)K. It is easy to see that ∆ ⊢ ρ(τ) ≤ ρ(er(τ)).
Therefore, by Lemma A.5 again, v ∈ Jρ(er(τ))K.

Case Lam
By Sub and Lemma A.1, it must be the case that ∆, x ∶ σ′′ ⊢
e′ ∶ τ ′′ & (Ξ′′,Π′′) where
● ∆ ⊢ ρ(σ′) ≤ σ′′
● ∆, x∶ρ(σ′) ⊢ τ ′′ ≤ ρ(τ ′)
● (Ξ′′,Π′′) ⊆ (Ξ′,Π′)

By Lemma A.4 and Sub, we have ∆, x ∶ ρ(σ′) ⊢ e′ ∶
ρ(er(τ ′)) & (Ξ′,Σω). Therefore, by induction hypothesis
(on ρ(er(τ ′))), we have that

e′ ∈ Jx∶ρ(σ′) ⊢ ρ(er(τ ′)) & (Ξ′,Σω)K
Therefore,

λx.e′ ∈ Jx∶ρ(σ′) (Ξ
′,Σω)ÐÐÐÐ→ ρ(er(τ ′))K

◻

We are now ready to prove the soundness theorem.

Theorem 4.1: Suppose

● ∆ ⊢ ⋆,
● dom(Θ) = fv(e), and
● ∆,Θ ⊢ e ∶ τ & Φ

Then, e ∈ JΘ ⊢ τ & ΦK.

Proof. We prove by induction on the derivation of ∆,Θ ⊢ e ∶ τ&Φ.

Case the last rule is Oracle
Immediate from Definition 4.1 and Oracle.

Case the last rule is Comb
It must be the case that Φ = Φ1 ∩Φ2 where

∆,Θ ⊢ e ∶ τ & Φ1 ∆,Θ ⊢ e ∶ τ & Φ2

∆,Θ ⊢ e ∶ τ & Φ1 ∩Φ2

By induction hypothesis, we have that

● e ∈ JΘ ⊢ τ & Φ1K
● e ∈ JΘ ⊢ τ & Φ2K

Therefore, e ∈ JΘ ⊢ τ & Φ1 ∩Φ2K.
Case the last rule is Sub

We have

∆,Θ ⊢ e ∶ τ ′ & Φ′ ∆,Θ ⊢ τ ′ ≤ τ Φ′ ⊆ Φ

∆,Θ ⊢ e ∶ τ & Φ

By induction hypothesis, we have that

e ∈ JΘ ⊢ τ ′ & Φ′K

Therefore, by Lemma A.6, e ∈ JΘ ⊢ τ & ΦK.
Case the last rule is Const

We have e = c and
c ∈ B

∆,Θ ⊢ c ∶ {u∶B ∣ u = c} & ({ε},∅)
Suppose ρ ⊧ Θ. Then, because c ∈ B,

ρ(c) = c ∈ J{u∶B ∣ u = c}K = Jρ({u∶B ∣ u = c})K
Therefore, by st-Val,

c ∈ JΘ ⊢ {u∶B ∣ u = c} & ({ε},∅)K
Case the last rules is VaB

We have e = x and
sty(x) = B

∆,Θ ⊢ x ∶ {u∶B ∣ u = x} & ({ε},∅)
Suppose ρ ⊧ Θ. Then, because sty(x) ∈ B, we have

ρ(x) ∈ Jρ({u∶B ∣ u = x})K
Therefore, by st-Val, we have

x ∈ JΘ ⊢ {u∶B ∣ u = x} & ({ε},∅)K
Case the last rule is VaF

We have e = x and
sty(x) ∈→

∆,Θ ⊢ x ∶ Θ(x) & ({ε},∅)
Suppose ρ ⊧ Θ. Then, because sty(x) ∈→,

ρ(x) ∈ Jρ(Θ(x))K
Therefore, by st-Val, x ∈ JΘ ⊢ Θ(x) & ({ε},∅)K.

Case the last rule is Fun
Immediate by Lemma A.9 and st-Fun.

Case the last rule is Op
We have e = x op y and

ty(op) = x1 ∶τ1
Φ1Ð→ x2 ∶τ2

Φ2Ð→ τ3
∆,Θ ⊢ x ∶ τ1 & Φ′

1 ∆,Θ ⊢ y ∶ τ2 & Φ′
2

∆,Θ ⊢ x op y ∶ τ3[x/x1][y/x2] & ({ε},∅)
By the definition of the sound constant operator type, τ1 =
{u∶B1 ∣ ⊺} and τ2 = {u∶B2 ∣ ⊺}, and τ3 = {u∶B3 ∣ θ} for some
B1, B2,B3, and θ.
Suppose ρ ⊧ Θ. By simple typing of x and y (or by induction
hypothesis), we have ρ(x) ∈ B1 and ρ(y) ∈ B2. By the
definition of sound constant operator type, if ρ(x) op ρ(y) ⇓
c& ε, then c ∈ B3 and ⊧ θ[ρ(x)/x1][ρ(y)/y2][c/u]. Because
fv(θ) ⊆ {u,x1, x2}, it follows that

c ∈ Jρ({u∶B3 ∣ θ}[x/x1][y/x2])K
Therefore, by st-Op, x op y ∈ JΘ ⊢ τ3[x/x1][y/x2] & ({ε},∅)K.

Case the last rule is Lam
We have e = λx.e′ and τ = x∶σ′ Φ′

Ð→ τ ′ such that

∆,Θ, x ∶ σ′ ⊢ e′ ∶ τ ′ & (Ξ,Π)

∆,Θ ⊢ λx.e′ ∶ x∶σ′ (Ξ,Π)ÐÐÐ→ τ ′ & ({ε},∅)
Suppose ρ ⊧ Θ and v ∈ Jρ(σ′)K. Then, ρ∪ {x↦ v} ⊧ Θ, x∶σ′.
Therefore, the following holds from the induction hypothesis
e′ ∈ JΘ, x ∶ σ′ ⊢ τ ′ & (Ξ,Π)K.
● If ρ(e′)[v/x] ⇓ v′ &$ then v′ ∈ ρ(τ ′)[v/x] and $ ∈ Ξ.
● If ρ(e′)[v/x] ⇑ �& π then π ∈ Π.

Therefore, by st-Val,

λx.e′ ∈ JΘ ⊢ x∶σ′ (Ξ,Π)ÐÐÐ→ τ ′ & ({ε},∅)K
Case the last rule is App

We have e = xy and Φ = ({step},∅) ⋅ (Ξ,Π) where

∆,Θ ⊢ x ∶ z ∶τ1
(Ξ,Π)ÐÐÐ→ τ & Φ1 ∆,Θ ⊢ y ∶ τ1 & Φ2

∆,Θ ⊢ xy ∶ τ[y/z] & ({step},∅) ⋅ (Ξ,Π)
By induction hypothesis, we have that

● x ∈ JΘ ⊢ z ∶τ1
(Ξ,Π)ÐÐÐ→ τ & Φ1K

● y ∈ JΘ ⊢ τ1 & Φ2K

Suppose ρ ⊧ Θ. Then, ρ(x) ∈ Jz ∶ρ(τ1)
(Ξ,Π)ÐÐÐ→ ρ(τ)K and

ρ(y) ∈ Jρ(τ1)K. Let ρ(x) = λz.e′. Then,

e′ ∈ Jz ∶ρ(τ1) ⊢ ρ(τ) & (Ξ,Π)K
Therefore, the following holds.
● If e′[ρ(y)/z] ⇓ v&$ then v ∈ ρ(τ)[ρ(y)/z] and $ ∈ Ξ.
● If e′[ρ(y)/z] ⇑ �& π then π ∈ Π.

Therefore, by st-App, snt-App, and the definition of trace set
concatenation, it follows that

xy ∈ JΘ ⊢ τ[y/z] & ({step},∅) ⋅Φ′K

Case the last rule is If
We have e = if x then e1 else e2 and Φ = Φ1 ∪Φ2 where

∆,Θ, x = true ⊢ e1 ∶ τ & (Ξ1,Π1)
∆,Θ, x = false ⊢ e2 ∶ τ & (Ξ2,Π2)

∆,Θ ⊢ if x then e1 else e2 ∶ τ & (Ξ1,Π1) ∪ (Ξ2,Π2)
By induction hypothesis, we have that
● e1 ∈ JΘ, x = true ⊢ τ & Φ1K
● e2 ∈ JΘ, x = false ⊢ τ & Φ2K

Suppose ρ ⊧ Θ. Then, by simple typing of x, either ρ(x) = true
or ρ(x) = false. Suppose ρ(x) = true. (The case ρ(x) = false
is analogous.) Then, ρ ⊧ Θ, x = true. Therefore, the following
holds from e1 ∈ JΘ, x = true ⊢ τ & Φ1K.
● If ρ(e1) ⇓ v&$ then v ∈ ρ(τ)[ρ(y)/z] and $ ∈ Ξ1.
● If ρ(e1) ⇑ �& π then π ∈ Ξ1.

Therefore, by st-If1, st-If2, snt-If1, and snt-If2,

if x then e1 else e2 ∈ JΘ ⊢ τ & (Ξ1,Π1) ∪ (Ξ2,Π2)K
Case the last rule is Unreach

We have

∆,Θ ⊢ e ∶ τ & Φ ⊧ J∆,ΘKbase ⇒ �
∆,Θ ⊢ e ∶ τ & (∅,∅)

It must be the case that ⊧ JΘKbase ⇒ �. Therefore, for all ρ,
¬ρ ⊧ Θ. Therefore, e ∈ JΘ ⊢ τ & (∅,∅)K holds vacuously.

Case the last rule is Let
Analogous to Lam and App.

Case the last rule is Event
We have e = ev[a] where

∆,Θ ⊢ ev[a] ∶ unit & ({a},∅)
Suppose ρ ⊧ Θ. Then, ρ(ev[a]) = ev[a] and by st-Ev,
ev[a] ⇓ () & a. Therefore, by Const and Sub, ev[a] ∈
JΘ ⊢ unit & ({a},∅)K.

◻

