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A DOMAIN DECOMPOSITION DISCRETIZATION

OF PARABOLIC PROBLEMS

MAKSYMILIAN DRYJA∗AND XUEMIN TU†

Abstract. In recent years, domain decomposition methods have attracted much attention due to
their successful application to many elliptic and parabolic problems. Domain decomposition methods
treat problems based on a domain substructuring, which is attractive for parallel computation, due
to the independence among the subdomains. In principle, domain decomposition methods may
be applied to the system resulting from a standard discretization of the parabolic problems or,
directly, be carried out through a direct discretization of parabolic problems. In this paper, a direct
domain decomposition method is introduced to discretize the parabolic problems. The stability and
convergence of this algorithm are analyzed, and an O(τ + h) error bound is provided.
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1. Introduction. Domain decomposition methods are becoming popular algo-
rithms for the numerical solutions of partial differential equations (PDEs) such as
parabolic problems. Several strategies can be applied to obtain such algorithms.
Among them, a first approach uses the standard discretization of parabolic problems
(e.g., the backward Euler, Crank Nicolson), followed by applying domain decomposi-
tion methods to the resulting systems, as an iterative method as for elliptic problems
(for references, see [1], [5] and literature therein). In contrast, a second approach
is based on the discretization of the parabolic problems which leads to a domain
decomposition algorithm as a direct method (for references, see [3], [6] and the liter-
ature therein). These strategies have proved, theoretically and practically, to be very
effective for parallel computation.

In this paper, a domain decomposition method is introduced for parabolic prob-
lems based on the second approach. For a second order parabolic equation in (0, T )×
Ω, where Ω is a polygonal region in two dimensional space, we consider an approxi-
mation of an initial-boundary value problem. This problem is directly discretized by
a finite difference method with respect to the time variable t and by a finite element
method with respect to the spatial variables x = (x1, x2), leading to a direct domain
decomposition method. Such a special discretization of the original problem results
in a well-suited algorithm for parallel computation. The algorithm discussed can be
viewed as a domain decomposition analog of the well known ADI methods for finite
difference approximation of parabolic problems, see [2]. Here we prove that the re-
sulting discrete problem approximates the original problem, and that this algorithm
is stable and convergent with an error bound O(τ + h) in an appropriate norm. The
error bound obtained for the method is the same as for the backward Euler scheme.
To the best of our knowledge, this is the best error estimate known in the literature
for this type of discretization.

The method discussed has previously been described in brief in [3]. A theorem
formulated there (without proof) gives an error bound O(τ1/2 +h) provided that τ is
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proportional to h. Here, we improve our estimate by using refined tools.
The rest of the paper is organized as follows. In Section 2, the original problem

and its special discretization are described. Section 3 is devoted to an analysis of the
stability of the discrete problem. In Section 4, we prove that the method is convergent
with an O(τ + h) error bound. Finally, some computational results are presented in
Section 5.

2. The continuous and discrete problems. We consider a parabolic problem
of the form: find u ∈ L2((0, T ); H1

0 (Ω)) ∩ C0((0, T ); L2(Ω)) such that

(
∂u

∂t
, v)L2(Ω) + a(u, v) = (f, v)L2(Ω), v ∈ H1

0 (Ω), a.e. t ∈ (0, T )(2.1)

(u, v)L2(Ω) = (u0, v)L2(Ω), v ∈ L2(Ω)(2.2)

where

a(u, v) = (∇u,∇v)L2(Ω)

and Ω is a polygonal region in R2. We assume that f ∈ L2((0, T ); L2(Ω)) and u0 ∈
H1

0 (Ω). The problem (2.1) has a unique solution and is stable, see for example [4].
We solve the problem (2.1) using a finite difference method and finite element

method for the t and x variables, respectively. The interval [0, T ] is partitioned
uniformly, tn = nτ, n = 0, · · · , N, Nτ = T . A triangulation of Ω is constructed as
follows: first Ω is divided into triangular or quadrilateral substructures Ωi with a
diameter Hi, where i = 1, · · · , I ; a coarse triangulation is formed with a parameter

H = maxiHi. We then divide each Ωi into triangles e
(j)
i with a diameter hi. The

resulting triangulation is conforming across ∂Ωi, and is called the fine triangulation
with a parameter h = maxihi. We assume that the coarse and the fine triangulations
are shape regular in the sense common to finite element theory. Let V h(Ω) be the
space of continuous, piecewise linear functions on the fine triangulation which vanish
on ∂Ω.

We will assume that there is a red-black ordering of the substructures Ωi. Thus no
two substructures of the same type share an edge. Let ΩB and ΩR denote the union
of the black and red substructures, respectively. Let Γ = ∂ΩR\∂Ω and Ω̄B = ΩB ∪Γ.

Define

(u, v)L2

h(Ω) =
∑

xk∈Ωh

wku(xk)v(xk),(2.3)

where Ωh is the set of nodal points of Ω and the wk are weights. With N (xk) the
union of the elements that share a nodal point xk, we take wk =

∑

i∈N (xk) 1/6|detBi|,
where Bi is the nonsingular matrix of the affine mapping between this element and
the reference triangle.

The problem (2.1) is approximated by the following scheme: for n = 0, · · · , N −1,
find Un+1 ∈ V h(Ω) such that, for ∀v ∈ V h(Ω),

{

(Un
t , v)L2

h(Ω) + aR((Un+1/2 + Un)/2, v) = (fn+1
R , v)L2(ΩR),

Un+1/2(x) = Un(x), x ∈ ΩB
h ,

(2.4)

{

(U
n+1/2
t , v)L2

h(Ω) + aB((Un+1 + Un+1/2)/2, v) = (fn+1
B , v)L2(ΩB),

Un+1(x) = Un+1/2(x), x ∈ ΩR
h ,

(2.5)
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and

(U0, v)L2(Ω) = (u0, v), v ∈ V h(Ω).(2.6)

Here

Un
t ≡ (Un+1/2 − Un)/τ, U

n+1/2
t ≡ (Un+1 − Un+1/2)/τ

and ΩB
h and ΩR

h are the sets of interior nodal points of ΩB and ΩR, respectively. We
have

a(u, v) = aR(u, v) + aB(u, v),

where aR(·, ·) and aB(·, ·) are the restrictions of a(·, ·) to ΩR and ΩB, respectively,
and

fn(x) ≡ f(nτ, x) = fn
R(x) + fn

B(x),

where fn
R(x) = 0 at x ∈ ΩB

h and fn
B(x) = 0 at x ∈ ΩR

h .
Let us comment on the scheme (2.4)-(2.6). We note that (2.4) and (2.5) separately

do not approximate the equation (2.1) in the standard sense. However, the sum of
the equations (2.4) and (2.5) approximates the equation (2.1) with an error O(τ + h)
for a sufficiently smooth solution u of (2.1). To see this, let us fix the level n, i.e.
tn = nτ , and set un(x) = u(nτ, x). We have

aR((un+1/2 + un)/2, v) = aR(un, v) + O(τ),

and

aB((un+1 + un+1/2)/2, v) = aB(un, v) + O(τ).

Hence aB(·, ·) + aR(·, ·) approximates a(·, ·) with an error of O(τ). The right hand
sides of (2.4)-(2.5) approximate (fn+1, v)L2(Ω) also with an error O(τ) on the nth

level. It is obvious that the approximation of ∂u/∂t by un
t and u

n+1/2
t has an error

O(τ) at interior nodal points of ΩR
h and ΩB

h . For points common to ∂ΩR
i and ∂ΩB

i ,
the same follows from the fact that at those points

un
t + u

n+1/2
t = (un+1 − un)/τ.

In the following sections, we prove the stability and convergence of the scheme
(2.4)-(2.6) in an appropriately chosen norm.

Let us briefly discuss the implementation of (2.4)-(2.6). Let Un(x) be given. We
first need to find Un+1/2(x). The values of Un+1/2(x) at the interior nodal points of
ΩB are equal to Un(x) by definition, see (2.4). There remains to compute Un+1/2(x)
at the nodal points of Ω̄R by solving (2.4). This reduces to solving a set of local
Neumann problems on Ω̄R

i which are weakly coupled by equations for the unknowns at
the substructure vertices of ΩR

i . This system can be solved by block Gauss elimination
reducing the system to a small system with the subdomain vertex unknowns only.
Knowing the vertex unknowns, the system reduces to local independent problems on
the ΩB

i . Each local problem has a unique solution. Another approach to solving the
systems which are weakly coupled at substructure vertices can be found in [5, Section
6.4] in connection with the FETI-DP algorithm. It should be pointed out that the
coupling in the system acts as a coarse space, necessary for domain decomposition
methods for elliptic discretizations to obtain an algorithm with a rate of convergence
independent of the number of substructures. To compute Un+1(x), we solve (2.5) in
the same way as (2.4) described above.
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3. Stability. In this section, we prove the stability of (2.4)-(2.6) in an appropri-
ate norm.

Theorem 3.1. The solution of (2.4)-(2.6) satisfies the following inequality:

max
0 ≤ n ≤ N

‖ Un ‖2
L2

h
(Ω) +τ

N−1
∑

n=0

{|Un+1/2 + Un|2H1(ΩR) + |Un+1 + Un+1/2|2H1(ΩB)}(3.1)

≤ M{‖ U0 ‖2
L2(Ω) +τ

N−1
∑

n=0

(‖ fn+1
R ‖2

L2(Ω) + ‖ fn+1
B ‖2

L2(Ω))},

where M is a positive constant independent of h, H, and τ .
Proof. We take v = 2τ(Un+1/2 + Un) and v = 2τ(Un+1 + Un+1/2) in (2.4) and

(2.5), respectively. Adding the resulting equations, we obtain

2τ(Un
t , Un+1/2 + Un)L2

h
(Ω) + 2τ(U

n+1/2
t , Un+1 + Un+1/2)L2

h
(Ω)

+ τ |Un+1/2 + Un|2H1(ΩR) + τ |Un+1 + Un+1/2|2H1(ΩB)(3.2)

= 2τ(fn+1
R , Un+1/2 + Un)L2(ΩR) + 2τ(fn+1

B , Un+1 + Un)L2(ΩB).

We note that

τ(Un
t , Un+1/2 + Un)L2

h(Ω) =‖ Un+1/2 ‖2
L2

h(Ω) − ‖ Un ‖2
L2

h(Ω),

and

τ(U
n+1/2
t , Un+1 + Un+1/2)L2

h(Ω) =‖ Un+1 ‖2
L2

h(Ω) − ‖ Un+1/2 ‖2
L2

h(Ω),

where we use that

τ(Un
t , Un+1/2 + Un)L2

h(Ω) = τ(Un
t , Un+1/2 + Un)L2

h(Ω̄R)

=‖ Un+1/2 ‖2
L2

h(Ω̄R) − ‖ Un ‖2
L2

h(Ω̄R)=‖ Un+1/2 ‖2
L2

h(Ω) − ‖ Un ‖2
L2

h(Ω) .

Using these identities in (3.2) and summing the resulting equation with respect to n
from 0 to k, we obtain

(3.3)

2 ‖ Uk+1 ‖2
L2

h(Ω) +τ

k
∑

n=0

{|Un+1/2 + Un|2H1(ΩR) + |Un+1 + Un+1/2|2H1(ΩB)}

=2 ‖ U0 ‖2
L2

h
(Ω) +2τ

k
∑

n=0

{(fn+1
R , Un+1/2 + Un)L2(ΩR) + (fn+1

B , Un+1 + Un+1/2)L2(ΩB)}.

The second and third terms of the right hand side of (3.3) are estimated as follows.
We have, for any ε > 0,

2(fn+1
R , Un+1/2 + Un)L2(ΩR) ≤

1

ε
‖ fn+1

R ‖2
L2(Ω) +ε ‖ Un+1/2 + Un ‖2

L2(Ω),(3.4)

and

(3.5)

2(fn+1
B , Un+1 + Un+1/2)L2(ΩB) ≤

1

ε
‖ fn+1

B ‖2
L2(Ω) +ε ‖ Un+1 + Un+1/2 ‖2

L2(Ω) .
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We now estimate the second terms of the right hand sides of (3.4) and (3.5). We have

‖ Un+1/2 + Un ‖2
L2(Ω)(3.6)

≤ M(‖ Un+1 ‖2
L2(Ω) + ‖ Un ‖2

L2(Ω) +

I
∑

i=1

h ‖ Un+1/2 + Un ‖2
L2(∂ΩR

i )).

Note that here and below I reduces to the number of ΩR
i substructures.

We show below that

I
∑

i=1

h ‖ Un+1/2 + Un ‖2
L2(∂ΩR

i )≤ M |Un+1/2 + Un|2H1(ΩR).(3.7)

Using this in (3.6) and knowing that ‖ v ‖L2

h(Ω) is equivalent to ‖ v ‖L2(Ω) for v ∈
V h(Ω), we obtain

‖ Un+1/2 + Un ‖2
L2(Ω)(3.8)

≤ M(‖ Un+1 ‖2
L2

h(Ω) + ‖ Un ‖2
L2

h(Ω) +|Un+1/2 + Un|2H1(ΩR)).

In a similar way, we show that

‖ Un+1 + Un+1/2 ‖2
L2(Ω)(3.9)

≤ M{‖ Un+1 ‖2
L2

h(Ω) + ‖ Un ‖2
L2

h(Ω) +|Un+1 + Un+1/2|2H1(ΩB)}.

Substituting (3.8) and (3.9) into (3.4) and (3.5) and the resulting inequalities into
(3.3), we obtain

(2 − 2Mε) ‖ Uk+1 ‖2
L2

h(Ω) +τ

k
∑

n=0

(1 − Mε){|Un+1/2 + Un|2H1(ΩR) + |Un+1 + Un+1/2|2H1(ΩB)}

≤ M{‖ U0 ‖2
L2

h(Ω) +τ
k
∑

n=0

(‖ Un ‖2
L2

h(Ω) + ‖ fn+1
R ‖2

L2(Ω) + ‖ fn+1
B ‖2

L2(Ω))}.

Choosing ε ≤ (2M)−1 and applying the Gronwall inequality, we obtain (3.1).
There remains to prove (3.7). Let z ≡ Un+1/2 + Un and let IHz be the lin-

ear and bilinear interpolant of z on triangular and quadrilateral substructures {Ωi},
respectively, by using values at the substructure vertices. We have

I
∑

i=1

h ‖ z ‖2
L2(∂ΩR

i )≤ 2

I
∑

i=1

h(‖ z − IHz ‖2
L2(∂ΩR

i ) + ‖ IHz ‖2
L2(∂ΩR

i )).(3.10)

Using a simple trace theorem and a discrete Sobolev inequality, see [5, Remark 4.13],
we obtain

‖ z − IHz ‖2
L2(∂ΩR

i )≤ MHi(1 + log
H

h
)|z|2H1(ΩR

i ),(3.11)

where Hi is the diameter of ΩR
i . The second term of (3.10) is estimated as

I
∑

i=1

‖ IHz ‖2
L2(∂ΩR

i ) ≤ M

(

I
∑

i=1

Hi(|IHz|2H1(ΩR
i ) +

1

H2
i

‖ IHz ‖2
L2(ΩR

i ))

)

≤ MH−1|IHz|2H1(Ω) ≤
M

H
(1 + log

H

h
)|z|2H1(ΩR).(3.12)
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We have used first the Friedrichs inequality on Ω, since z = 0 on ∂Ω, and then the
discrete Sobolev inequality. Substituting (3.11) and (3.12) into (3.10), we obtain

I
∑

i=1

h ‖ z ‖2
L2(∂ΩR

i )≤ M
h

H
(1 + log

H

h
)|z|2H1(ΩR).

From this, (3.7) follows since h
H (1 + log H

h ) is bounded.
In a similar way, we prove

I
∑

i=1

h ‖ Un+1 + Un+1/2 ‖2
L2(∂ΩB

i )≤ M
h

H
(1 + log

H

h
)|Un+1 + Un+1/2|2H1(ΩB).

This is needed to prove (3.9).

4. Convergence. In this section, we prove the convergence of the discrete prob-
lem (2.4)-(2.6) to the original problem (2.1). We first prove the following two lemmas.

Lemma 4.1. Let ΩN
i be a subdomain ΩR

i or ΩB
i , let ΩN

i be convex, and let v be
harmonic on ΩN

i . Then,

‖ v ‖H−1/2(∂ΩN
i )≤ C ‖ v ‖L2(ΩN

i ),(4.1)

where C independent of h and Hi.
Proof. We first prove (4.1) for D = ΩN

i with a diameter on the order of one. By
definition

‖ v ‖H−1/2(∂D)= sup
g∈H1/2(∂D)

(v, g)L2(∂D)

‖ g ‖H1/2(∂D)

.(4.2)

Let w ∈ H2(D) ∩ H1
0 (D) be the solution of the problem:

∆2w = 0 in D, w = 0 and
∂w

∂n
= g on ∂D.

It is known that

‖ w ‖H2(D)≤ M ‖ g ‖H1/2(∂D) .

In addition,

∫

D

(−∆w)vdx =

∫

D

∇w∇vdx +

∫

∂D

∂w

∂n
vds =

∫

∂D

gvds,

since v is harmonic. Thus,

|
∫

∂D

gvds| ≤‖ w ‖H2(D)‖ v ‖L2(D)≤ M ‖ g ‖H1/2(∂D)‖ v ‖L2(D) .

Using this in (4.2), we obtain

‖ v ‖H−1/2(∂D)≤ M ‖ v ‖L2(D) .

This is also valid for an ΩN
i of diameter Hi by a scaling argument.
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Lemma 4.2. Let u ∈ H2(Ω) ∩ H1
0 (Ω) and v ∈ V h(Ω). Given any ε > 0, there

exists a constant M , independent of h, such that

|(u, v)L2(Ω) − (u, v)L2

h(Ω)| ≤ Mh2 ‖ u ‖2
H2(Ω) +ε ‖ v ‖2

L2

h(Ω) .(4.3)

Proof. Let û be the piecewise linear interpolant of u in the finite element space
V h(Ω). We have

|(u, v)L2(Ω) − (u, v)L2

h
(Ω)| ≤ |(u − û, v)L2(Ω)| + |(û, v)L2(Ω) − (u, v)L2

h
(Ω)|.(4.4)

The first term in the right hand side of (4.4) can be estimated by an interpolation
theorem:

|(u − û, v)L2(Ω)| ≤ M‖u − û‖L2(Ω)‖v‖L2(Ω) ≤ Mh2‖u‖H2(Ω)‖v‖L2

h(Ω),(4.5)

where we use that ‖v‖L2(Ω) is equivalent to ‖v‖L2

h(Ω) for v ∈ V h(Ω).

We now prove an estimate for the second term in the right hand side of (4.4). Let
ul = u(xl). Since, u ∈ H2(Ω) and û is the piecewise linear interpolant, we have:

∑

xi∈Ωh,xj∈N (xi)

(ui − uj)
2 =

∑

xi∈Ωh,xj∈N (xi)

(ûi − ûj)
2 ≤ C|û|2H1(Ω).(4.6)

Let us consider an element e. Denote by B the nonsingular matrix of the affine
mapping between e and the reference triangle. The mass matrix of this triangle is

M = |detB|





1/12 1/24 1/24
1/24 1/12 1/24
1/24 1/24 1/12



 .

Therefore,

(û, v)L2(e) = (u1, u2, u3)M(v1, v2, v3)
T = |detB|(1/12

∑

i=1,2,3

uivi+1/24
∑

i,j=1,2,3;i6=j

uivj).

We sum over all the elements and remark that (u, v)L2

h(Ω) = (û, v)L2

h(Ω). By (2.3) and

(4.6), we obtain:

|(û, v)L2(Ω) − (û, v)L2

h(Ω)|
≤ Mh2

∑

xi∈Ωh,xj∈N (xi)

(ui − uj)vi

≤ Mh2

√

√

√

√

√





∑

xi∈Ωh,xj∈N (xi)

(ui − uj)2





(

∑

xi∈Ωh

v2
i

)

≤ Mh|û|H1(Ω)‖v‖L2

h
(Ω)

≤ Mh‖u‖H2(Ω)‖v‖L2

h(Ω).(4.7)

Substituting (4.5) and (4.7) into (4.4)and using the ε inequality, we obtain (4.3).
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Theorem 4.3. Let (∂u/∂t) ∈ L2((0, T ), H2(Ω)) and (∂f/∂t) ∈ L2((0, T ), L2(Ω)).
Then there exists a constant M , independent of h, H, and τ , such that

max
0 ≤ n ≤ N

‖ zn ‖2
L2

h(Ω) +τ

(

N−1
∑

n=0

{|zn+1/2 + zn|2H1(ΩR)

(4.8)

+|zn+1 + zn+1/2|2H1(ΩB)}
)

≤ M(τ2 + h2),

where zn = u(nτ, x) − Un(x), zn+1/2 = u((n + 1)τ, x) − Un+1/2(x), and u and
(Un+1/2, Un+1) are the solutions of (2.1) and (2.4)-(2.6), respectively.

Proof. Let

vn = Un − Wn, vn+1 = Un+1 − Wn+1, vn+1/2 = Un+1/2 − Wn+1,

where Wn is an interpolant of u(nτ, x) in the finite element space V h(Ω). Let

z̃n = u(nτ, x) − Wn(x), Wn
t̃ = (Wn+1 − Wn)/τ.

We first substitute Un = vn+Wn, Un+1 = vn+1+Wn+1 and Un+1/2 = vn+1/2+Wn+1

into (2.4) and (2.5). In the resulting equations, we then set v = 2τ(vn+1/2 + vn) and
v = 2τ(vn+1 + vn+1/2), respectively, as in the proof of Theorem 3.1. The equations
obtained are of the form























2τ(vn
t , vn+1/2 + vn)L2

h(Ω) + τ |vn+1/2 + vn|2H1(ΩR) =

2τ{(fn+1
R , vn+1/2 + vn)L2(ΩR) − 2(Wn

t̃
, vn+1/2 + vn)L2

h(Ω)}
−τ(∇(Wn+1 + Wn),∇(vn+1/2 + vn))L2(ΩR),

vn+1/2 = vn − τWn
t̃

, x ∈ ΩB
h ,

(4.9)

and


























2τ(v
n+1/2
t , vn+1 + vn+1/2)L2

h(Ω) + τ |vn+1 + vn+1/2|2H1(ΩB) =

2τ{(fn+1
B , vn+1 + vn+1/2)L2(ΩB)

−(∇Wn+1,∇(vn+1 + vn+1/2))L2(ΩB)},

vn+1 = vn+1/2, x ∈ ΩR
h .

(4.10)

Adding these equations, we have, cf. (3.3),

2(‖ vn+1 ‖2
L2

h(Ω) − ‖ vn ‖2
L2

h(Ω)) + τ{|vn+1/2 + vn|2H1(ΩR) +

|vn+1 + vn+1/2|2H1(ΩB)} = τ{2(fn+1
R , vn+1/2 + vn)L2(ΩR) +

2(fn+1
B , vn+1 + vn+1/2)L2(ΩB) − (∇(Wn+1 + Wn),∇(vn+1/2 + vn))L2(ΩR)(4.11)

−2(Wn
t̃ , vn+1/2 + vn)L2

h(Ω) − 2(∇Wn+1,∇(vn+1 + vn+1/2)L2(ΩB)}.

We note that for un(x) ≡ u(nτ, x), where u(t, x) is the solution of (2.1), it holds that

2(un
t̃ , vn+1/2 + vn)L2(Ω) + (∇(un+1 + un),∇(vn+1/2 + vn))L2(Ω)

= 2(fn+1, vn+1/2 + vn)L2(Ω) + (̺(τ), vn+1/2 + vn)L2(Ω),(4.12)
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with ̺(τ) = O(τ). Let the left hand side of (4.11) be denoted by J(vn+1, vn). Using
(4.12) in (4.11) and doing simple manipulations, we obtain

J(vn+1, vn) = τ{2τ(fn+1
B , vn

t̃ )L2(ΩB) + 2(z̃n
t̃ , vn+1/2 + vn)L2

h
(Ω)

+(∇(z̃n+1 + z̃n),∇(vn+1/2 + vn))L2(ΩR)

+2(∇z̃n+1,∇(vn+1 + vn+1/2))L2(ΩB) − τ(∇un
t̃ ,∇(vn+1 + vn+1/2))L2(ΩB)(4.13)

−τ(∇(un+1 + un),∇vn
t̃ )L2(ΩB) − (̺(τ), vn+1/2 + vn)L2(Ω)

+(2(un
t̃ , vn+1/2 + vn)L2(Ω) − 2(un

t̃ , vn+1/2 + vn)L2

h(Ω))}.

We now estimate each term of the right hand side of (4.13). We obtain

2τ2
k−1
∑

n=0

(fn+1
B , vn

t̃ )L2(ΩB)

= 2τ{(fk
B, vk)L2(ΩB) − (f0

B, v0)L2(ΩB)} − 2τ2
k−1
∑

n=0

(fn
B,t̃, v

n)L2(ΩB)}

≤ ε ‖ vk ‖2
L2(Ω) +M{τ2 ‖ fk

B ‖2
L2(Ω) +τ2 ‖ f0

B ‖2
L2(Ω) + ‖ v0 ‖2

L2(Ω)

+τ

k−1
∑

n=0

(τ2 ‖ fn
Bt̃ ‖2

L2(Ω) + ‖ vn ‖2
L2(Ω))}.

Using a Sobolev inequality, we have

2τ2
k−1
∑

n=0

(fn+1
B , vn

t̃ )L2(Ω) ≤ ε ‖ vk ‖2
L2(Ω) +M{‖ v0 ‖2

L2(Ω) +

+τ

k−1
∑

n=0

‖ vn ‖2
L2(Ω) +τ

N−1
∑

n=0

τ2(‖ fn
B,t̃ ‖2

L2(Ω) + ‖ fn
B ‖2

L2(Ω))}.(4.14)

The second term of (4.13) is estimated as

2(z̃n
t̃ , vn+1/2 + vn)L2

h
(Ω) ≤ ε ‖ vn+1/2 + vn ‖2

L2

h(Ω) +
1

ε
‖ z̃n

t ‖2
L2

h(Ω) .

Using that ‖vn+1/2 + vn‖L2(Ω) is equivalent to ‖vn+1/2 + vn‖L2

h
(Ω), we know that the

first term of the right hand side of this expression has already been estimated, see
(3.8), while the second one is estimated by an interpolation theorem. Considering
these terms, we obtain

2τ(z̃n
t , vn+1/2 + vn)L2

h(Ω) ≤ Mετ{‖ vn+1 ‖2
L2

h(Ω)

+ ‖ vn ‖2
L2

h
(Ω) +|vn+1/2 + vn|2H1(ΩR)} + Mτh4|un

t̃ |2H2(Ω).(4.15)

The third and fourth terms of (4.13) are estimated as

τ(∇(z̃n+1 + z̃n),∇(vn+1/2 + vn))L2(ΩR)

≤ τε ‖ ∇(vn+1/2 + vn) ‖2
L2(ΩR) +Mτh2|un + un+1|2H2(ΩR)(4.16)

and

2τ(∇z̃n+1,∇(vn+1 + vn+1/2))L2(ΩB)

≤ τε ‖ ∇(vn+1 + vn+1/2) ‖2
L2(ΩB) +Mτh2|un+1|2H1(ΩB).(4.17)
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The fifth term of (4.13) is estimated as

τ2(∇un
t̃ ,∇(vn+1 + vn+1/2))L2(ΩB)

≤ τ3

4ε
‖ ∇un

t̃ ‖2
L2(Ω) +ετ ‖ ∇(vn+1 + vn+1/2) ‖2

L2(ΩB) .(4.18)

The sixth term of (4.13) is estimated as follows. Setting gn+1 = un+1 + un, we
have

−τ2
k−1
∑

n=0

(∇gn+1,∇vn
t̃ )L2(ΩB) = τ(∇gk,∇vk)L2(ΩB)

−τ(∇g0,∇v0)L2(ΩB) + τ2
k−1
∑

n=0

(∇gn
t̃ ,∇vn)L2(ΩB).(4.19)

We have

τ(∇gk,∇vk)L2(ΩB) = −τ(∆gk, vk)L2(ΩB) +

I
∑

i=1

τ(
∂

∂n
gk, vk)L2(∂ΩB

i ).(4.20)

Using Lemma 4.1, we have

τ(
∂

∂n
∇gk, vk)L2(∂ΩB

i ) ≤ τ | ∂

∂n
gk|H1/2(∂ΩB

i )|vk|H−1/2(∂ΩB
i )

≤ Mτ2|gk|2H2(ΩB
i ) + ε|vk|2L2(ΩB

i ).

We have also used that vk can be represented as vk = Piv
k + Hiv

k where Hiv
k is

discrete harmonic on ΩB
i with the value vk on ∂ΩB

i and Pi is the H1
0 (Ωi) projection.

Using this estimate in (4.20), we obtain

τ(∇gk,∇vk)L2(ΩB) ≤ Mτ2|gk|2H2(ΩB) + ε ‖ vk ‖2
L2(ΩB) .(4.21)

The second and third terms of right hand side of (4.19) are estimated in the same
way. Using these estimates in (4.19), we obtain

τ2
k−1
∑

n=0

(∇gn+1,∇vn
t̃ )L2(Ω) ≤ ε(‖ vk ‖2

L2(ΩB) + ‖ v0 ‖2
L2(ΩB))

+ M{τ
k−1
∑

n=0

(τ2|gn
t̃ |2H2(ΩB)+ ‖ vn ‖2

L2(ΩB))}.(4.22)

The seventh term of (4.13) is estimated using (3.8) and (4.12). Recall that ̺(τ)
is defined in (4.12). We have

τ(̺(τ), vn+1/2 + vn)L2(Ω) ≤ Mτε{‖ vn+1 ‖2
L2

h(Ω) + ‖ vn ‖2
L2

h(Ω)

+|vn+1/2 + vn|2H1(ΩR)} + Mτ3 ‖ un
t̃ ‖2

H2(Ω) .(4.23)

We estimate the last term of (4.13) by using Lemma 4.2. From Lemma 4.2, we
have

|(2(un
t̃ , vn+1/2 + vn)L2(Ω) − 2(un

t̃ , vn+1/2 + vn)L2

h
(Ω))|(4.24)

≤Mh2 ‖ un
t̃ ‖2

H2(Ω) +ε ‖ vn+1/2 + vn ‖2
L2

h
(Ω) .
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Table 5.1

u = et
× sin(πx) × sin(πy)

k I h L2 error Lk
2/Lk+1

2

1 4 1/8 8.9594× 10−2 —
2 16 1/16 3.7832× 10−2 2.3682
3 64 1/32 1.4373× 10−2 2.6321
4 256 1/64 5.2540× 10−3 2.7356

Using that ‖v‖L2(Ω) is equivalent to ‖v‖L2

h(Ω) for v ∈ Vh(Ω) and (3.8), we obtain

‖ vn+1/2 + vn ‖2
L2

h(Ω)(4.25)

≤M
(

‖ vn+1 ‖2
L2

h(Ω) + ‖ vn ‖2
L2

h(Ω) +|vn+1/2 + vn|2H1(ΩR)

)

.

Therefore, the last term can be estimated as

τ |(2(un
t̃ , vn+1/2 + vn)L2(Ω) − 2(un

t̃ , vn+1/2 + vn)L2

h(Ω))|(4.26)

≤ Mτ
(

h2 ‖ un
t̃ ‖2

H2(Ω) +ε(‖ vn+1 ‖2
L2

h(Ω) + ‖ vn ‖2
L2

h(Ω) +|vn+1/2 + vn|2H1(ΩR))
)

.

We now sum (4.13) over n from 0 to k−1 and then use the estimates above. This
gives

(2 − 3ε − 2Mετ) ‖ vk ‖2
L2

h(Ω) +(1 − 3Mε)τ
k−1
∑

n=0

(|vn+1/2 + vn|2H1(ΩR)

+ |vn+1 + vn+1/2|2H1(ΩB)) ≤ M{‖ v0 ‖2
L2

h(Ω)

+ τ

N−1
∑

n=0

τ2(‖ fn+1
B ‖2

L2(Ω) + ‖ fn
Bt̃ ‖2

L2(Ω)) + τ

k−1
∑

n=0

‖ vn ‖2
L2

h(Ω)(4.27)

+ τ

k−1
∑

n=0

(τ2 + h2)(‖ un
t̃ ‖2

H2(Ω) + ‖ un+1 ‖2
H2(Ω) + ‖ un ‖2

H2(Ω))}.

Choosing a sufficiently small ε > 0 and using the Gronwall inequality, and the as-
sumption on u(t, x) and f(t, x), we obtain

‖ vk ‖2
L2(Ω) +τ

k−1
∑

n=0

{|vn+1/2 + vn|2H1(ΩR) + |vn+1 + vn+1/2|2H1(ΩB)} ≤ M(τ2 + h2).

From this (4.8) follows by using the triangle inequality and an interpolation theorem.

5. Computational results. We have applied the algorithm to the model prob-
lem (2.1) and (2.2), where we take Ω = [0, 1]2 and the time interval is [0, 0.1], i.e., T =
0.1. We decompose the unit square into I1/2 × I1/2 subdomains with the sidelength
H = 1/I1/2 and the time interval into N subintervals with the length τ = ∆t = 0.1/N .
(2.1) and (2.2), in each subdomain, is discretized by conforming piecewise linear ele-
ments with a mesh diameter h. We have carried out two different sets of experiments to
test the convergence of the algorithm. In the first, we take the right hand side function
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Table 5.2

u = t × x × (1 − x) × y × (1 − y)

k I h L2 error Lk
2/Lk+1

2

1 4 1/8 5.9089× 10−4 —
2 16 1/16 2.2110× 10−4 2.6724
3 64 1/32 7.9217× 10−5 2.7911
4 256 1/64 2.8229× 10−5 2.8062

Table 5.3

u = et
× sin(πx) × sin(πy)

k I h L2 error Lk
2/Lk+1

2

1 8 1/8 4.4601× 10−2 —
2 16 1/16 3.7832× 10−2 1.1789
3 32 1/32 2.8777× 10−2 1.3147
4 64 1/64 2.1034× 10−2 1.3681
5 128 1/128 1.5110× 10−2 1.3920

f = et×sin(πx1)×sin(πx2)×(1+2π2) and the initial data u0 = sin(πx1)×sin(πx2).
The exact solution to (2.1) and (2.2) is u = et×sin(πx1)×sin(πx2). Fixing I1/2 = 4,
we have 16 subdomains. We increased N and decreased h such that ∆t is proportional
to h2. The results are given in Table 5.1. In a second set of the experiments, we chose
f = x1 × (1 − x1) × x2 × (1 − x2) + 2 × t × x2 × (1 − x2) + 2 × t × x1 × (1 − x1)
and u0 = 0. The exact solution is u = t × x1 × (1 − x1) × x2 × (1 − x2). We varied
∆t and h as in the first set. The results are given in Table 5.2. These experiments
show that our algorithm is stable and has a rate of convergence of O(τ + h). We
note that that we have to choose ∆t proportional to h2 in order to get this rate of
convergence. We also give the results by choosing ∆t proportional to h in Table 5.3
and 5.4, respectively. Comparing the results in Tables 5.3 and 5.4 with those in Tables
5.1 and 5.2, respectively, reveals that the rates of convergence in Tables 5.3 and 5.4
are slower than those in 5.3 and 5.4. Nevertheless, convergence can be obtained in
both cases. Limited by our computer, we cannot treat larger problems to test the
rate of convergence when we take ∆t proportional to h. It seems that we will obtain
the rate of convergence at least

√
2.
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