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Abstract

Given an n by n nonsingular matrix A and an n-vector v, we con-
sider the spaces of the form AKy(A,v), k= 1,...,n, where K;(A,v)is
the k** Krylov space, equal to span{v, Av, ..., A¥~1v}. We character-
ize the set of matrices B that, with the given vector v, generate the
same spaces; i.e., those matrices B for which BK(B,v) = AK(A,v),
forall K = 1,...,n. It is shown that any such sequence of spaces can
be generated by a unitary matrix. If zero is outside the field of values
of A, then there is a Hermitian positive definite matrix that generates
the same spaces, and, moreover, if A is close to Hermitian then there
is a nearby Hermitian matrix that generates the same spaces. It is
also shown that any such sequence of spaces can be generated by a
matrix having any desired eigenvalues.

Implications about the convergence rate of the GMRES method
are discussed. A new proof is given that if zero is outside the field
of values of A, then convergence of the GMRES algorithm is strictly
monotonic. It is shown that if A is close to Hermitian, then the
eigenvalues of A essentially determine the behavior of the GMRES
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iteration but that, in general, eigenvalue information alone is never
sufficient to ensure rapid convergence of the GMRES algorithm.

1 Introduction
Most iterative methods for solving a linear system

Az = b (1)

start with an initial guess x° for the solution and, at each step k, generate
an approximate solution z* from the linear variety

2® + span{r®, Ar°, ..., AF10Y, (2)
where r® = b — Az° is the initial residual. Several of these methods — e.g.,
(full) GMRES' [14], ORTHOMIN [19], and ORTHODIR [20] — choose the

approximation z* to minimize the Euclidean norm of the residual r* = b —

Az*. A question of considerable interest is how accurate an approximation

z* can be obtained from this linear variety.

k

The residual vector r® is the vector of smallest 2-norm in the linear

variety

O + span{Ar°, ..., A¥r°}. (3)

It follows that r* can be written in the form

Pk = Pu(A)°, (4)

where P, is the k" degree polynomial with value one at the origin that
minimizes ||px(A4)r°|| over the set Py of all k¥ degree polynomials p; with
pe(0) = 1.

A simple bound on the size of the residual can be derived as follows. If
we assume that the matrix A has a complete set of eigenvectors Z, so that
A can be written in the form A = ZAZ™!, where A = diag(\1, ..., \,) is the

k

diagonal matrix of eigenvalues, then r* can be written in the form

!Throughout this paper we will refer to the GMRES algorithm, but since we always
assume exact arithmetic, our statements will apply equally well to any mathematically
equivalent formulation.



r* = ZPy(N)Z7°. (5)

For any other k** degree polynomial pyePy, we have

Il < 1Zpu(A)Z275°) < w(2) max [pe(Ao)] |7, (6)

1=1,...,n

where k(Z) = || Z|| ||Z7"]| is the condition number of Z and || - || here, and
elsewhere, denotes the 2-norm for vectors and the corresponding spectral
norm for matrices. The bound in (6) is minimized by taking p; to be the k"
degree minimax polynomial on the discrete set of eigenvalues {\y,...; A},
and (6) can be written in the form

I ]

< k(Z) min max [pr(\;)]- (7)

Il PRePy i=Lyn

The columns of the matrix Z can be normalized arbitrarily in order to
make r(Z) as small as possible. Throughout this paper, however, we will
assume that the columns of Z have norm 1. This scaling usually gives a
near optimal value for x(2).

If the matrix A is normal, then x(Z) is one, and it was recently shown
in several different ways [7,8,9] that this bound is sharp; i.e., that for each
k, there is an initial vector r? (depending on k) for which equality holds in
(7). In many cases of interest, however, the matrix A is not normal and
the factor x(Z) in (7) may be quite large. (See, for instance, [13] for some
interesting physical examples.) In such cases, the bound (7) may be a large
overestimate of the actual residual.

To deal with such problems, Trefethen has introduced bounds based
on the e-pseudo-eigenvalues of the matrix [16]. There are two equivalent
definitions of the e-pseudo-spectrum of a matrix A:

Definition 1. The e-pseudo-spectrum of A, denoted A.(A4), is the set of
points z € C such that ||(z] — A)7!|| > L.

Definition 2. The e-pseudo-spectrum of A is the set of points z ¢ C which
are eigenvalues of some matrix A + E with |E|| <e.



For any analytic function f, it is known [2, p. 560] that f(A) can be
written in the form

1 -1
F(4) = o [T = 47 f()d, ®)
where I' is any simple closed curve or union of simple closed curves con-
taining the spectrum of A. Taking norms on both sides and replacing the
norm of the integral by the length £(I') of the curve times the maximum

norm of the integrand factors gives

A4 < 5 £() max (] — 4)7 max | £(:)]. (9)

Note that the inequality (9) will be close to an equality if and only if the
integrand in (8) is nearly constant in norm over the curve I and cancellation
does not cause the norm of the integral to be much smaller than the length
of the curve times the norm of the integrand.

A reasonable set of curves to consider, then, are the curves I'. on which
the resolvent (zI — A)™" has constant norm 1/¢; i.e., the boundaries of the
e-pseudo-spectra of A. In this case, the bound (9) becomes

L(T.
) s 421 (10)

AN <

Taking the function f to be the polynomial piePy for which this bound is
minimal gives the following bound on the residual in (4):

I _ £(T) .
< . 11
10 S 2re in mpx [pu(2)l (11)

While, for properly chosen values of €, the bound (11) sometimes gives
a much better estimate than (7) of the actual size of the residual, there are
other cases in which even the bound (11) is a large overestimate, for any
value of e. Consider, for example, a matrix A of the form ZAZ ™!, where



1 VI—6 0 ... 0 20

0 V5§ 0 .. 0 10
Z=10 1 ... 0], 6<<1, A= 5

0 0 0 1 1

(12)
A has two large, well-separated eigenvalues, 20 and 10, corresponding to
an ill-conditioned block in Z. The remaining eigenvalues are uniformly dis-
tributed in the interval [1,5]. The condition number of Z is approximately
2/V/6.

Fig. la shows the e-pseudo-spectra of such a matrix A, of order 19
and with § = 1078, for e = 107® and 10~*. (Note that the scales on the
horizontal and vertical axes in the figure are different. The pseudo-spectral
regions are approximately circular.) Note that the factor % in (11) is on
the order of 2-10? for these values of €, and a low degree polynomial p; could
not be small enough on these curves to make the bound (11) reasonable;
i.e., less than 1 for £ << 19. For larger values of € (¢ >~ 1072), the e-
pseudo-spectrum contains the origin, and then the bound (11) cannot be
useful because p(0) = 1.

Yet for this problem the GMRES iteration will behave almost as it would
if applied to the diagonal matrix A. It will annihilate the top 2 by 2 block
quickly, just as it would annihilate the two large eigenvalues 20 and 10 of
A quickly, and then converge as if it were working with a diagonal matrix
whose eigenvalues lie between 1 and 5. Fig. 1b shows the convergence of the
GMRES method applied to a linear system with coefficient matrix A (solid
line) and to one with coefficient matrix A (dashed line), with a random
initial residual. The + marks in Fig. 1b show a sharp upper bound on
the residual at each step. This was computed using an optimization code
(fminu in MATLAB [11]) to find, for each k, an initial residual r° for which
|l7%1|/||7°|| was as large as possible. These bounds were checked in the
following way. Taking the initial vector r°, with [|r°|| = 1, returned by
the optimization routine, we computed the GMRES polynomial Py(A) in
(4). If || Py(A)]| is equal to ||r*||, then this must be a sharp upper bound,
since it is attainable and since, for any other initial residual 7°, we have



I751] < [|[Pu(A)]] ||7°]|. Although it often required carefully chosen initial
guesses to enable the optimization code to find the worst initial residual,
the bounds plotted in Fig. 1b were all proven correct in this way. The
bound (11) based on the e-pseudo-spectra and the bound (7) based on the
condition number of the eigenvector matrix are both much larger than the
sharp bound pictured in Fig. 1b.

It should also be noted that if A is reduced to Schur form, then the
Frobenius norm of the strict upper triangle of the Schur form is also quite
large — in this case about 10°. Thus, the matrix A is far from normal in all
of the usual senses, and yet the GMRES iteration converges very well.

The problem of deriving a sharp bound on the convergence rate of the
GMRES method, in terms of eigenvalues or pseudo-eigenvalues or other
simple properties of the matrix, appears to be a difficult one. In this paper,
we take a different approach to this problem. While it does not yet achieve
the ultimate goal of giving a sharp or nearly sharp bound for all cases, it
does yield certain insights into the behavior of the GMRES method when
applied to linear systems with non-normal coefficient matrices. We relate
the behavior of the method applied to a non-normal matrix to its behavior
when applied to certain normal matrices. Since the convergence rate of
the method applied to normal matrices is determined by the eigenvalues
of the matrix, if the eigenvalues of the normal matrix could be related to
some properties of the original matrix, then (7) would give a bound on the
convergence rate, in terms of these properties.

Unfortunately, it is only in special cases that we are able to relate the
eigenvalues of the normal matrix to meaningful properties of the original
matrix. It is shown that any behavior that can be seen with the GMRES
method can be seen with the method applied to a unitary matrix. While
certain properties of the original matrix — e.g., positive definiteness — ap-
pear to guarantee large gaps in the spectrum of this unitary matrix, we
have not been able to prove this. It is shown that if zero is outside the
field of values of the original matrix A, then the GMRES method behaves
just as it would for a certain Hermitian positive definite matrix. If A is
close to Hermitian, then the GMRES method behaves just as it would for
a Hermitian matrix whose eigenvalues are close to those of A. In this case,
then, the eigenvalues of A essentially determine the behavior of the GM-
RES algorithm. In general, however, eigenvalue information alone cannot



be sufficient to ensure fast convergence of the GMRES algorithm. Any
behavior that can be seen with the method can be seen with the method
applied to a matrix having eny nonzero eigenvalues.

Throughout this paper, capital letters will denote matrices which, unless
otherwise stated, are assumed to be complex. A superscript * will denote
the Hermitian transpose. The space spanned by a set of vectors {v!,...,v*}
will be denoted [v!, ..., v*], and the set of vectors of the form v plus a linear
combination of {v!,...,v*} will be denoted v + [v!,...;v¥]. The symbol || - ||
will always denote the 2-norm of a vector or matrix and || - ||z will denote
the Frobenius norm of a matrix.

In section 2 we characterize those matrices B = B(r?) for which the
GMRES method, with initial residual r°, generates the same residual vec-
tors at each step as the GMRES method applied to a linear system with
coefficient matrix A and initial residual r°. Letting K;(A4,r?) denote the
Krylov space [r?, Ar°, ..., A*='70], we know that the residual ¥ is the small-
est vector of the form

9+ AI{]C(A,TO). (13)

If the spaces BRy(B,r°) are the same as the spaces AK.(A,r?), for all
k=1,...,n, then the GMRES method applied to B will generate the same
residual vectors at each step as the method applied to A. For lack of
a better name, we refer to these spaces as Krylov residual spaces, which
should not be confused with the Krylov spaces K;(A,r°) and Ki(B,r°).
The Krylov spaces K(A,r°) and Ki(A+ oI, r?), where « is any scalar, are
the same for all k, but the GMRES method behaves very differently when
applied to A and to A+ «al! Note also that it is not required that individual
vectors, Ar®, ..., A*r® and Br?, ..., B*r? be equal, only that the spaces they
span be the same; i.e., Br® must be a scalar multiple of Ar°, B?r® must
be a linear combination of A%r° and Ar°, etc. Note further that if r* is
written in the form (4), r¥ = P (A)r® = Pk(B)ro, then the polynomials Py
and Py, will be different. Thus, this approach cannot be used to analyze
eigenvalue approximations generated by the algorithm, since these will be

very different for A and for B. In section 3, we consider normal matrices

0

B for which the Krylov residual spaces, with a given initial vector r°,

are
the same as those of a given matrix A. In section 4, we show that any



sequence of Krylov residual spaces can be generated by a matrix having any
nonzero eigenvalues. Section 5 gives conclusions and discusses remaining
open questions and possible applications of this technique of analysis.

2 DMatrices that Generate the Same Krylov
Residual Spaces

Given an n by n nonsingular matrix A and an n-vector v, we wish to
characterize the matrices B = B(v) for which the spaces

AI(}C(A,T'O) = [Aro, ...,Akro] and fo’k(B,ro) = [Bro, ...,Bkro] (14)

are the same, for all k¥ = 1,...,n. Throughout this paper, we will assume
that the vectors Av, ..., A™v are linearly independent. If they are not, how-
ever, or if one wishes to consider conditions in which only, say, the first m
of these spaces are the same, then the characterizations given here can be
modified accordingly. The class of matrices B for which the first m such
spaces are the same will, of course, include the class discussed in this paper.

Let w!,...,w" be an orthonormal basis for [Av, ..., A*v], and let W be

1 n

the matrix with orthonormal columns w',...,w"”. Then it is well-known
that the unitary matrix W satisfies

AW = WH, (15)

where H is an unreduced upper Hessenberg matrix. The following theorem
characterizes all matrices B = B(v) that generate the same Krylov residual
spaces (14) with the vector v.

Theorem 1. Using the above notation, let B be of the form

B = WRHW", (16)

where R is any nonsingular upper triangular matrix. Then

BEKi(B,v) = AKi(A,v), k=1,..,n, (17)



and, conversely, any matrix B that satisfies (17) is of the form (16).

Proof: Suppose the order one Krylov residual spaces are the same; i.e.,

Bv = cAv (18)

for some nonzero scalar ¢. The higher order spaces BK(B,v) and AK(A,v),
k > 1, will be the same if B satisfies

BW = WH (19)

for some unreduced upper Hessenberg matrix H. To see that this is so,
assume that BK;_1(B,v) = AK;_1(A4,v). The (k—1)* column of equation
(19) can be written as

k
k-1 2: i 17
Bw = w’ Hj7k_1.
i=1

k

It follows that Bw*~!, and hence B*v, is a linear combination of w!, ..., w*,

and since the coefficient of w* is nonzero, B*v is independent of [w?, ..., w*™!] =
[Bv, ..., B*¥"1v]. Thus the order k spaces are the same and the proof is by
induction. Conversely, it is clear that (18) and (19) are necessary conditions
in order for (17) to be satisfied.

Taking B to be of the form B = WHW?™*, then, the condition (18)
becomes, upon multiplying each side by W*,

HW*v = c¢W*Av. (20)
But W*Awv is just a constant times e;, the first unit vector,
W*Av = ceq,
and W*v satisfies
W = WA Av = W(WH'W*)Av = ¢H 'e;.
Therefore (20) can be written as

HH e, = cey. (21)



Clearly, if H is of the form RH, where R is a nonsingular upper trian-
gular matrix, then H is an unreduced upper Hessenberg matrix satisfying
(21). Conversely, if H is an unreduced upper Hessenberg matrix satisfying
(21), and if we write H in the form X H, then the first column of X must be
a scalar multiple of e;. But the requirement that X H be upper Hessenberg
then implies that the elements below the diagonal in subsequent columns
of X are also zero, and the requirement that X H be unreduced implies
that the diagonal elements of X are nonzero. Thus, the only matrices B

satisfying (17) are of the form B = WHW?*, where H=RH. O

The characterization of Theorem 1 will prove useful in later sections, where
we consider normal or near normal matrices of the form RH, for various
nonsingular upper triangular matrices R.

There are many equivalent ways to characterize the matrices B that
generate the same Krylov residual spaces. We give two such characteriza-
tions which will prove useful in later sections. The following theorem can
be derived from Theorem 1, but it is just as easy to prove it directly, which
we do below.

Theorem 2. Suppose B is of the form

B =WRHW* (22)

where R is any nonsingular upper triangular matrix and

0. .0 1/ <v,w™ >
1 L=<t >/ <o, >
H= (23)
0. .1 —<ov,w!'>/<vw">
Then
BEK(B,v) = AKi(A,v), k=1,..n, (24)

and, conversely, any matrix B that satisfies (24) is of the form (22, 23).

10



Proof: Let V4 be the matrix with columns (Av, ..., A"v). The condition
(24) is equivalent to

ViR, = B(v,w',...,w"™"), (25)

for some nonsingular upper triangular matrix R;. To see that this is so,
note that (25) implies that Bv is a nonzero multiple of Av (and hence of
w'), that Bw' (and hence B*v) is a linear combination of A%v and Av, with
the coefficient of A%v being nonzero, etc. We can also write V4 = W Ry, for
some nonsingular upper triangular matrix R,, and

<v,wl> 1 0 . 0
<v,w?> 0 1 .
B(v,w',...,w"™") = BW . . . (26)
. . 1
<v,w"> 0 . . 0

Substituting these expressions into (25) and solving for B gives
B=WRHW™,

where R = R;R, and H is the inverse of the matrix in (26). It is easy

to check that this is the matrix H defined in (23). Since, by assump-

tion, the vectors Awv,..., A"v are linearly independent, it is also the case

that v, Av, ..., A" 1v are linearly independent and hence that < v, w™ > is

nonzero. Thus, the matrix H is well-defined and the theorem is proved.
O

This theorem will be used later to show that any sequence of Krylov residual
spaces can be generated by a matrix having any nonzero eigenvalues.
Another characterization of this class of matrices is given in the following
theorem. Let £(X) denote the lower triangle (including diagonal) of a
matrix X, and let /j(X) denote the strict lower triangle of X. The following
theorem characterizes the matrices X for which HX is upper triangular.

Theorem 3. If H is an n by n nonsingular unreduced upper Hessenberg
matrix, then H X is upper triangular if and only if the elements of the lower
triangle of X satisfy

11



1 & . . .
Xi—l,j = — ZHikaj7 z:n,n—l,...,]—l—l, ] = 1,...,n, (27)
1,0—1 f—y
where the bottom row of elements X,;, j = 1,...,n is arbitrary. These

equations are satisfied by any matrix X whose lower triangle is of the form

L(X)=L(H")D, D diagonal, (28)

and if L(H™!') has no zero columns, then all solutions to (27) are of the

form (28).

Proof: The condition that HX be upper triangular means that the elements
of the lower triangle of X must satisfy

k=i—1

Since H;;_; is nonzero for all i, we can solve these equations for X;_, ;,
i=mn,n—1,...,5+1, in terms of X,,;, to obtain (27). If the elements X,;
are taken to be of the form d]-H;jl, for some scalars d;, then, since H™'D
also satisfies equations (29) when D = diag(dy,...,d,), the lower triangle
of X must be equal to the lower triangle of H~'D. Moreover, all solutions
are of this form unless H~! has a zero element in its last row, and, in this
case, the equations (29) imply that all elements of that column of L(H ™)
must be zero. O

According to Theorem 3, matrices H of the form RH, as described
in Theorem 1, are essentially those matrices whose inverses have lower
triangles of the form L£(H~')D. The strict upper triangle of the inverse of
such a matrix is arbitrary. In a later section we will consider the Hermitian
matrix obtained by taking the strict upper triangle to be the Hermitian
transpose of the strict lower triangle.

12



3 Decompositions of the Form H = RN

For a given matrix A and vector v, let W and H be defined as in the previous
section. In light of Theorem 1, it will be instructive to consider matrices H
of the form RH, for some upper triangular matrices R; for if we then define
the matrix B to be WHW?™, then the Krylov residual spaces generated
by B with initial vector v will be the same as those generated by A with
initial vector v. Since the GMRES algorithm minimizes the 2-norm of the
residual vector over the linear variety consisting of the initial residual plus
the Krylov residual space, it follows that if the GMRES method is applied
to a linear system Az = b, with initial residual b — Az° = v, then it will
generate the same residual vectors at each step as the GMRES method
applied to a linear system By = f, with initial residual f — By® = v. We
will express this by writing

GMRES(A,v) = GMRES(B,v). (30)

If, for each vector v, we can find a matrix B of the given form, for which
we can analyze the behavior of the GMRES method applied to B, then we
can also analyze the behavior of the GMRES method applied to A. Since
the behavior of the GMRES method for normal matrices is well-understood
in terms of the eigenvalues of the matrix (cf. equation (7)), it is desirable to
find an upper triangular matrix R such that RH is normal, or, equivalently,
to write H in the form H = RN, where R is upper triangular (the inverse of
the upper triangular matrix in Theorem 1) and N is normal. Alternatively,
using Theorem 3, we will look for normal matrices N such that the lower
triangle of N~! is equal to the product of the lower triangle of H~! and a
diagonal matrix.

There are many decompositions of this form, a few of which will be
described in this section. If such a decomposition could be found for which
the eigenvalues of N could be related to eigenvalues or pseudo-eigenvalues
or other simple properties of the matrix A, then the convergence rate of
the GMRES method applied to A could be explained in terms of these
properties. In general, we have not been able to find such a decomposition,
but in special cases this can be done.

13



3.1 Equivalent Unitary Matrices

Any upper Hessenberg matrix H can be written in the form

H = RO, (31)

where R is upper triangular and @ is unitary (and also upper Hessenberg).
Thus, any behavior that can be seen with the GMRES algorithm applied
to any matrix can be seen with the GMRES algorithm applied to a unitary
matrix! Which unitary matrix will depend on the initial residual as well
as the matrix, but for any matrix A and any initial residual r°, if W is the
matrix whose columns are the orthonormal basis vectors generated by n
steps of GMRES(A,r°) and if H is the upper Hessenberg matrix generated
after n steps of GMRES(A,r°), and if H = RQ is the RQ-decomposition
of H, then

GMRES(A,r°) = GMRES(WQW*,r°). (32)

We have not been able to establish any interesting relationships between
the eigenvalues of the unitary matrix B = WQW™ and special properties
of A, although it appears that such relationships exist, at least in certain
cases. Fig. 2a shows the eigenvalues of the unitary matrix B obtained from
a GMRES computation with a random 19 by 19 matrix A and a random
initial residual. Note that the eigenvalues are fairly uniformly distributed
around the unit circle. The solid line in Fig. 2b shows the convergence
of the GMRES algorithm, applied to either A or B, with this same initial
residual, while the dotted line in the figure shows the convergence of the
GMRES algorithm applied to B with a different random initial residual,
uncorrelated with B. Note that the GMRES algorithm behaves similarly,
when applied to either A or B, with an arbitrary initial vector, indicating
that the typical behavior of the algorithm applied to B is similar to that of
the algorithm applied to A. In both cases, we see slow convergence, which
is characteristic of the GMRES algorithm applied to a random matrix or
to a unitary matrix with eigenvalues all around the unit circle.

Also shown in Fig. 2b are sharp upper bounds for the residual at each
step of the GMRES algorithm applied to A (4) and to B (x). These were

computed numerically and then proven correct, as described earlier. (The

14



initial vector r° for which [|r*||/[|r°| is maximal was computed using an
optimization code or other technique, and then it was determined that
71| = | P(A)] - ||7°||, where Py is the GMRES polynomial.) It is inter-
esting to note that the computed sharp bound for A is 1.0000 for steps 1
through 18 — indicating that there is an initial residual for which the GM-
RES algorithm applied to A makes no progress at all until step n = 19!
This is frequently observed to be the case for random matrices. Had we
used this initial residual for our first experiment, the equivalent unitary ma-
trix WQW™ would have had its eigenvalues uniformly distributed around
the unit circle. This can be seen from the characterization of Theorem 2.
In this case, < 1%, w’/ >iszerofor j =1,...,n—1and | <% w" > | = |7,
which we can assume without loss of generality is 1. Then the matrix H
defined in Theorem 2 is the equivalent unitary matrix (which is unique
up to multiplication by a unitary diagonal matrix), and this unitary shift
matrix has its eigenvalues uniformly distributed about the unit circle.

In contrast, Fig. 3a shows the eigenvalues of the unitary matrix B ob-
tained from a GMRES computation with a diagonal matrix A = diag(1,1.5,2, ..., 10),
again using a random initial residual. Note the large gaps in the spectrum
of this unitary matrix. The solid line in Fig. 3b shows the convergence
of the GMRES algorithm, applied to either A or B, with this same ini-
tial residual, while the dotted line in the figure shows the convergence of
the GMRES algorithm applied to B with a different random initial resid-
ual, uncorrelated with B. Again, the GMRES algorithm behaves similarly,
when applied to either A or B, with an arbitrary initial vector. Now the
convergence is faster, which is characteristic of the GMRES algorithm ap-
plied to either a well-conditioned symmetric positive definite matrix or a
unitary matrix with large gaps in its spectrum.

Also shown in Fig. 3b are sharp upper bounds for the residual at each
step of the GMRES algorithm applied to A (+) and to B (x). Again, the
sharp bounds for A and B are similar, and each is not much worse than
the typical behavior of the algorithm for that matrix.

Although it seems surprising at first, it is perhaps not totally unexpected
that any behavior that can be seen with the GMRES method can be seen
with the method applied to a unitary matrix. It is known that the worst
possible behavior — no progress at all until step n — can occur with a unitary
shift matrix [1,12], (this will be discussed further in section 4), and, of

15



course, the best possible behavior — convergence in one step — occurs with
the identity. We have shown that any convergence behavior between these
two extremes can also occur with a unitary matrix.

3.2 Equivalent Hermitian Positive Definite Matrices

If zero is outside the field of values of A, then zero will also be outside
the field of values of H = W*AW. In this case, H can be factored in the
form H = UL, where U and L are nonsingular upper and lower triangular
maftrices, respectively. This decomposition can also be written in the form

H = (UL™™)(L"L), (33)

where the first factor U L™* is upper triangular and the second is Hermitian
positive definite (and also tridiagonal). Thus, in this case, the GMRES
method applied to A behaves just as it does when applied to a certain
Hermitian positive definite matrix!

GMRES(A,r°) = GMRES(WL*LW™*,r°). (34)
Since B = WL*LW?™ is positive definite, the GMRES algorithm con-

verges strictly monotonically. This gives a new proof of the known fact
that if zero is outside the field of values of A, then the GMRES method
converges strictly monotonically. (See [3] or [4] for a different proof.)

If, in addition to having its field of values separated from the origin, the
matrix A is close to Hermitian, then H = W* AW will be close to Hermitian,
and one might expect that if the matrices U and L in (33) are scaled
properly, then the Hermitian matrix L*L would be close to H = U L. In this
case the eigenvalues of L*L would be close to either eigenvalues or singular
values of A, indicating that either of these quantities would essentially
determine the convergence rate of the GMRES algorithm. We will not go
through a formal perturbation analysis here (for such an analysis, see [15]),
but make only the following simple observation about the condition number
k of the matrix L*L:

k(L*L) < k(L*UY) - k(H) (35)
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Any conditions on A that would ensure that, for any unitarily similar
upper Hessenberg matrix, the properly scaled factors of the UL decompo-
sition satisfy x(L*U~!') < k(H), would ensure that the condition number
of B = WL*LW~ is less than that of A*A. If the eigenvalues of A*A are
fairly uniformly distributed throughout the interval, this would then imply
that the GMRES algorithm applied to A converges in fewer iterations than
the algorithm applied to the normal equations A*A (though, of course, the
comparison of total work would depend on the number of steps taken and
the cost of applying A and A*). Unfortunately, we do not know of simple
and interesting conditions on the matrix A that guarantee this property.

One can derive rough bounds on the size of the U and L factors sep-
arately, based on the distance from the field of values of A to the origin.
Similar bounds on the size of U™! and L™! can be expressed in terms of
the distance from the field of values of A™! to the origin. If both of these
distances are fairly large, then we believe that the typical or worst-case
behavior of the GMRES algorithm applied to L*L will be similar to that
of the algorithm applied to A. This is in contrast to the case in which
the field of values of A contains the origin. For such problems, it may still
be possible to factor the matrix H in the form (33) but now the matrix
L*L may be arbitrarily ill-conditioned. In such cases, the typical behavior
of the GMRES algorithm applied to L*L may be much worse than that
of the method applied to A, even though the behavior is identical for the
particular initial vector r° used in generating L*L.

As an example, we considered the matrix of Lenferink and Spijker [10].
This is a non-normal tridiagonal matrix of the form

tridiag[ 1/(¢ +1), =3 +2i, ¢+ 1], 1=1,...,n.

It is strongly diagonally dominant and its field of values is well-separated
from the origin [17]. Rather than using a random initial vector this time,
for each step k, we determined an initial residual r° that gave rise to the
largest possible residual at step k. This was done using an optimization
code, as described previously. For each of these initial vectors, we then
computed the Hessenberg matrix H and the factorization (33), where U
and L were scaled to have the same diagonal elements. The goal was to
determine how ill-conditioned L*L is for these "worst-case” initial vectors.
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We used a matrix A of order n = 16. The condition number of A was 10.6.
The condition number of L*L ranged from 15.6 to 27.3 — greater than that
of A, but less than that of A*A.

Fig. 4 shows the residual bound

-1

(Gl + Dy (50)
k+1 VE—1

based on the most ill-conditioned matrix L*L , with x = 27.3 (solid line).

This is also a bound on the convergence rate of the GMRES method applied

to A. The dashed line in Fig. 4 shows the sharp error bound, which was

computed numerically. Note the similarity between the two, at least in the

early steps of the computation. This suggests that if a reasonable bound on
the condition number of L*L could be established a priori, then (36) would
give a realistic bound on the convergence rate of the GMRES algorithm
applied to A.

3.3 Equivalent Hermitian Matrices

Using the characterization of Theorem 3, for most matrices A and initial
residuals r°, it is possible to define a Hermitian (not necessarily positive
definite) matrix B such that GMRES(A,r°) = GMRES(B,r?). If the
matrix H~! of Theorem 3 has no zero columns in its lower triangle, then
let the Hermitian matrix X be defined by

X =L(H")D+(L(H)D), (37)
where D is any diagonal matrix such that £(H~')D has real diagonal el-
ements. (Recall that L(H ') denotes the lower triangle of H~! including
the diagonal, while /j(H_l) denotes the strict lower triangle of H~'. We
will also use the notation U(-) and Z/A{() to denote the upper triangle and
strict upper triangle of a matrix, respectively.) If H~! has a column of
zeros in its lower triangle, say, column j, then that column can be replaced
by any column of the form (27) provided the diagonal element X;; is real,
and then the strict upper triangle of X can be taken to be the Hermitian
transpose of the strict lower triangle. If the diagonal matrix D in (37), or,
the elements X,,; in (27) can be chosen so that the Hermitian matrix X is

18



nonsingular, then, according to Theorem 3, H can be written in the form
H = RX™! for some nonsingular upper triangular matrix R, and so we
have

GMRES(A,r°) = GMRES(WX™'W* 1°), (38)

If the matrix A™! is close to Hermitian, then H~! = W*A~'W will be
close to Hermitian, and one might expect that the Hermitian matrix X
could be chosen to be close to H™! and hence to have nearby eigenvalues.
We will quantify this statement, limiting ourselves, for simplicity, to the
case of real matrices A and real initial residuals r°.

Suppose A™! is real and close to symmetric, say,

A'=M+E

where M is symmetric and | E||r < 6. [We can take M to be the symmetric
part of A71, %(A_1 + A~T) | since this is the closest symmetric matrix to
A~1 in the Frobenius norm, and then E will be the skew-symmetric part,
1(A™' — A7) ]. Then H™' is also close to symmetric:

H'=W'MW +W'EW =M+ F

where M = WITMW is symmetric and ||F||p = |[WTEW|r < §. If we
define X using (37) with D equal to the identity, then the difference between
X and H™! is given by

~

X-H?'=L(M)+L(F)+UM)+ (L(F) —M - F = (L(F) —U(F),
and this satisfies

|X — B <X —H e < VE|Fllr < V26 (39)

Since X is symumetric, this implies that the eigenvalues of X differ from
those of H~! by no more than /26, or, equivalently, that the eigenvalues of
B™' = WXWT differ from those of A™' by no more than v/26. If we make
the additional assumption that the absolute value of the smallest eigenvalue
of H~! is greater than /26, or, equivalently,
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1 5 A7 — AT
ALV 0
then this will ensure that the matrix X is nonsingular.
With the assumption (40), then, the residual bound (7) can be replaced
by

IOl — prePe Z—1EU?=1g(li§1,\/§5)ﬂR Ipi(2)l; (41)
where B(\!,1/268) denotes the ball of radius v/26 centered at A;' and R
denotes the real numbers.

If the eigenvalues of A™! are sufficiently well-separated that the disks
B(A7!,v/26) do not overlap, then X will have exactly one eigenvalue in
each of these disks, and if the eigenvalues are ordered accordingly we can
write

||7"k|| < max min  max [pr()|- (42)
17O ™ fpint 12— 1<V2, ieR, i=1,m) PREPE =L

Py

The bounds (41) and (42) are frequently overestimates of the actual
residual, because the bound /26 on the distance from each eigenvalue of
X to that of A7! is a fairly large overestimate. Still, for matrices that are
close to symmetric but have ill-conditioned eigenvectors, the bounds (41)
and (42) may be much smaller than (7). For such problems they are often
comparable to the pseudo-spectral bound (11), for the best value of e.

4 Eigenvalue Information Alone Cannot En-
sure Fast Convergence

We have mentioned several cases in which the eigenvalues of A essentially
determine the convergence rate of the GMRES algorithm:

1. If the matrix Z of eigenvectors is well-conditioned, then the bound
(7) is nearly sharp.
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2. If, for some fairly small value of €, the length of the boundary of the
e-pseudo-spectrum is not much greater than 27e, then (11) gives a
reasonable bound on the size of the residual.

3. If A is close to Hermitian in the sense of (40), then the bound (41) or
(42) is a reasonable estimate.

In general, however, eigenvalue information alone cannot ensure fast
convergence of the GMRES algorithm. Any behavior that can be seen with
the method can be seen with the method applied to a matrix having any
nonzero eigenvalues. This is most easily seen from Theorem 2. Let C be a
companion matrix with the desired eigenvalues, say,

0 . .0 (873}
1 aq
C —
1 Qp_1

(The eigenvalues of this matrix are the roots of the polynomial 2”—2?:_5 ;2
and the constants «;, 3 = 0,...,n—1 can be chosen so that C' has the desired

eigenvalues.) Define the upper triangular matrix R in Theorem 2 by

1 0 . 0 a1+ < v,w! > ag

0 1 . as+ < v,w? > ag
R=1| . o .

0 . . 1 apq+<v,w™t>aq

0 000 < v,w" > ag

Then it is easily seen that HRis equal to €', and since the spectrum of RH
is the same as that of HR, this matrix also has the desired spectrum.

As an example, let us consider matrices that give rise to the worst
possible behavior — no progress at all until step n — when the initial residual
is the first unit vector e;. The following unitary shift matrix was given in
([1]) and ([12]) to illustrate this phenomenon:
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010 0

0 01 0
A =

000 ... 1

1 00 ... 0

It is clear that the initial residual e¢; = (1,0,...,0)% is already orthogonal
to the space [Aey, ..., A" 'e;], and so the residual is not changed until step
n. The Hessenberg matrix H and the unitary matrix W generated by the
GMRES algorithm with this initial vector are

0 0 01 0 0 01

10 0 0 0 0 10
T - 01 0 0 oW =

e 01 0 0

00 .. 10 10 0 0

According to Theorem 1, the class of matrices that generate the same
Krylov residual spaces as A (with initial vector e;) consists of all matrices
of the form W RHW™, where R is any nonsingular upper triangular matrix;
i.e., all nonsingular matrices of the form

0 = 0 ... 0
0 « « ... 0
* ok *
* ok *

where the *’s can be any values.
This class includes, for example, all companion matrices:
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0 1 0
0 0 0 1
—Cyg —C1 —C3 ... —Cp_1

The eigenvalues of this matrix are the roots of the polynomial z™ + E?:_& c;jzd.
The constants ¢;, 7 = 0,...,n — 1, can be chosen to make this matrix have
any desired eigenvalues, say, all 1’s. It follows that the worst-case behav-
ior of the GMRES algorithm (i.e., no progress until step n) can occur for
a matrix having what one might have expected to be the best possible
eigenvalues!

5 Conclusions, Open Questions, and Possi-
ble Applications

We have pointed out several cases in which the eigenvalues of the matrix
A essentially determine the behavior of the GMRES algorithm. We have
shown, in general, however, that this is not the case. The same behavior
can be seen for a matrix having any given eigenvalues.

We have introduced a technique for analyzing the behavior of the GM-
RES algorithm applied to non-normal matrices by defining an equivalence
class containing normal matrices — the class of matrices that, with a given
initial residual, produce the same GMRES residuals at every step. In this
regard, we have raised more questions than we have answered. We have
shown that there is always an equivalent unitary matrix. We have demon-
strated numerically that certain properties of the eigenvalues of this unitary
maftrix are related to special properties of A, but we have not proved such
a relationship. We have shown that if zero is outside the field of values of A
then there is an equivalent Hermitian positive definite matrix, but we have
not been able to bound the condition number of this Hermitian positive
definite matrix in terms of simple properties of A.
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Our analysis still has not explained the behavior of the first example
given in Section 1 — a matrix A of the form ZAZ™!, where Z and A are
defined by (12). There we claimed that the eigenvalues of this matrix
essentially determine the convergence of the GMRES iteration. Yet, for
certain initial residuals, there can be no normal matrix in A’s equivalence
class whose eigenvalues are close to those of A. This is because the field of
values of A contains the origin. It follows that there is an initial vector for
which the GMRES iteration makes no progress at step one. Any normal
matrix with this behavior must have eigenvalues on both sides of the origin,
and so its spectrum cannot be close to the positive spectrum of A. Using
several different random initial residuals and also the initial residuals that
give rise to the largest possible residuals at steps one and two, we computed
the equivalent unitary matrix WQW?™ defined by (31) and the equivalent
Hermitian matrix WX 'W* defined by (37) (with D = I). In all cases,
there were large gaps in the spectrum of the unitary matrix, similar to those
shown in Fig. 3a. The equivalent Hermitian matrix had one large negative
eigenvalue (which probably was not computed accurately due to rounding
errors) and the remaining eigenvalues were close to those of A — all but one
were in the interval [1,5] and the remaining one was less than 20. This
indicates that for this problem as well, there are normal matrices in A’s
equivalence class for which the typical behavior of the GMRES algorithm
is similar to that for A. It remains an open question how to show a priori
that this is the case. Another possible approach is to consider near-normal
matrices in the equivalence class — matrices with well-conditioned (but not
unitary) eigenvector matrices. There may be a near-normal matrix in A’s
equivalence class whose eigenvalues are all close to those of A.

The equivalence class we have defined consists of matrices for which the
residuals at each step of the GMRES algorithm are identical. In practice,
one seldom runs a GMRES computation for a full n steps. Instead, one
runs for some fixed number of steps, say, m << n, and then restarts. The
class of matrices that generate the same residuals at steps 1 through m
is broader than the class we have considered. Investigation of this larger
class may lead to results about the convergence of the restarted GMRES
iteration.

This technique of analysis — equating the behavior of the algorithm ap-
plied to a given problem to its behavior when applied to some other problem
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that is better understood — may prove useful for analyzing other iterative
methods as well. The biconjugate gradient [5] and QMR [6] iterations are
examples, and work along these lines has begun.

Finally, we would like to note that the results of Section 4 are somewhat
discouraging, as far as Krylov space iterative methods are concerned. It is
disappointing that one can determine, just from the sparsity pattern of a
matrix, that every Krylov space method will converge poorly (or diverge)!
(And, of course, this same behavior would be observed for any matrix
unitarily similar to one with a bad sparsity pattern.) This suggests that it
is important to consider methods that choose approximate solutions from
outside the Krylov space. An example is the GMRESR method of van
der Vorst and Vuik [18]. Further research along these lines would seem an
important next step.
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