

TM-LPSAT: Encoding Temporal Metric Planning

in Continuous Time

by

Ji-Ae Shin

A dissertation submitted in partial fulfillment

of the requirement for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 2004

 Ernest Davis

@ Ji-Ae Shin

All Rights Reserved, 2004

 iii

Dedication

To my parents and my brother Young-Woo

 iv

Acknowledgements

First of all, I would like to thank Professor Ernest Davis for making this happen.

I would like to thank the readers from my thesis committee: Professor Ernest

Davis put me under the SAT-based planning; Professor Drew McDermott at Yale

provided valuable suggestions and comments for the reorganization of my thesis, on

which the final version is mostly based. I am also glad to have had Professor Alan

Siegel and Professor Benjamin Goldberg in my thesis committee.

Special thanks should go to Steven Wolfman and Professor Daniel Weld at the

University of Washington for making their LPSAT program available for my research. I

would particularly like to thank Steve for always giving me prompt responses and

helpful comments to questions on the LPSAT. In addition, I would like to thank Dr.

Jonathan Amsterdam for whose classes I was a teaching assistant and through which

I learnt all aspects of teaching.

Lastly, I would not have been able to make it through all those years without

support from my family and friends, particularly my niece Jin-A, Chan-Sook Lim at

USC for listening to me during times of great stress and being my systems consultant,

Dr. Julian O’Rear for encouraging me to complete my degree, and my best friends

from KAIST and ETRI.

 v

Abstract

In any domain with change, the dimension of time is inherently involved. Whether the

domain should be modeled in discrete time or continuous time depends on aspects of

the domain to be modeled. Many complex real-world domains involve continuous time,

resources, metric quantities and concurrent actions. Planning in such domains must

necessarily go beyond simple discrete models of time and change.

 In this thesis, we show how the SAT-based planning framework can be

extended to generate plans of concurrent asynchronous actions that may depend on

or make change piecewise linear metric constraints in continuous time.

In the SAT-based planning framework, a planning problem is formulated as a

satisfiability problem of a set of propositional constraints (axioms) such that any model

of the axioms corresponds to a valid plan. There are two parameters to a SAT-based

planning system: an encoding scheme for representing plans of bounded length and a

propositional SAT solver to search for a model. The LPSAT architecture is composed

of a SAT solver integrated with a linear arithmetic constraint solver in order to deal

with metric aspects of domains.

We present encoding schemes for temporal models of continuous time defined

in PDDL+: (i) Durative actions with discrete and/or continuous changes; (ii) Real-time

temporal model with exogenous events and autonomous processes capturing

continuous changes. The encoding represents, in a CNF formula over arithmetic

constraints and propositional fluents, time-stamped parallel plans possibly with

concurrent continuous and/or discrete changes. In addition, we present encoding

schemes for multi-capacity resources, partitioned interval resources, and metric

 vi

quantities which are represented as intervals. An interval type can be used as a

parameter to action as well as a fluent type.

Based on the LPSAT engine, the TM-LPSAT temporal metric planner has

been implemented: Given a PDDL+ representation of a planning problem, the

compiler of TM-LPSAT translates it in a CNF formula, which is fed into the LPSAT

engine to find a solution corresponding to a plan for the planning problem. We also

have experimented on our temporal metric encodings with other decision procedure,

MathSAT, which deals with propositional combinations of linear constraints and

Boolean variables. The results show that in terms of searching time the SAT-based

approach to temporal metric planning can be comparable to other planning

approaches and there is plenty of room to push further the limits of the SAT-based

approach.

 vii

Table of Contents

 Dedication iii

 Acknowledgements iv

Abstract v

List of Figures xi

List of Tables xii

List of Appendices xiii

Chapter 1 Introduction 1

 1.1 Problem Statement 1

 1.2 SAT-Based Propositional Planning 4

 1.3 SAT-Based Metric Planning 6

 1.4 SAT-Based Temporal Metric Planning: TM-LPSAT 9

 1.5 Organization of Thesis 12

Chapter 2 PDDL+ (Planning Domain Definition Language) 14

2.1 Numeric-Valued Fluents 14

2.2 Temporal Models of Continuous Time 15

2.2.1 Representation of Continuous Change 15

 2.2.1.1 Discretised Durative Actions (Level 3) 16

 2.2.1.2 Continuous Durative Actions (Level 4) 19

 2.2.1.3 Autonomous Processes (Level 5) 21

2.2.2 Concurrent Plans 23

2.2.3 Divided Instant Problem 25

2.3 Plan Metrics 25

 viii

Chapter 3 Previous and Related Work

27 3.1 Domain-Independent Planning Systems Dealing with Continuous Time 28

 3.1.1 Planning Systems Dealing with Durative Actions 28

 3.1.2 Planning Systems Dealing with Continuous Changes 31

3.2 Formalisms for Modeling Continuous and Discrete Changes 32

 3.2.1 Hybrid System 32

 3.2.2 Qualitative Reasoning 34

 3.2.3 Logical Formalism 35

Chapter 4 Encoding Temporal Metric Planning in Continuous Time 37

 4.1 Preliminaries 38

 4.1.1 Adaptation of PDDL+ 38

 4.1.2 Encoding Scheme 40

4.2 Representation of Time and Fluents 42

 4.2.1 Model of Time 42

 4.2.2 Representation of Fluents 43

 4.2.3 Axioms on Numeric-Valued Fluents 44

 4.3 Representation of Temporal Model of Durative Actions (Levels 3 & 4) 47

 4.3.1 Syntax and Semantics 47

 4.3.2 Representation of Initial State and Goal State 49

 4.3.3 Representation of Durative Actions 49

 4.3.4 Frame Axioms 55

 4.3.5 Mutual Exclusivity 56

 4.4 Representation of Temporal Model of Real-Time (Level 5) 57

 4.4.1 Syntax and Semantics 57

 ix

 4.4.2 Representation of Initial State and Goal State 58

 4.4.3 Representation of Operators 59

 4.4.3.1 Representation of Events 59

 4.4.3.2 Representation of Actions 61

 4.4.3.3 Representation of Processes 61

 4.4.4 Frame Axioms 64

 4.4.5 Mutual Exclusivity 64

4.5 Extensions for Metric Quantities 65

4.5.1 Representation of Multi-Capacity Resources 69

4.5.2 Representation of Interval Type 74

 4.5.2.1 Representation of Partitioned Interval Resources 76

Chapter 5 Implementation of TM-LPSAT 81

 5.1 LCNF Compiler 81

 5.2 LPSAT Engine 82

Chapter 6 Experiments 85

6.1 SAT-Based Arithmetic Constraint Solvers: LPSAT and MathSAT 85

6.2 Test Results and Discussion 88

 6.2.1 Metric Planning 90

 6.2.2 Temporal Planning 92

 6.2.3 Temporal Planning with Continuous Changes 94

Chapter 7 Extensions of TM-LPSAT 96

 7.1 Possible Extensions 96

 7.2 Optimization of Encoding 100

 7.3 Optimization of LPSAT Engine 103

 x

Chapter 8 Conclusion 106

Appendices 111

Bibliography 132

 xi

List of Figures

Figure 1: Architecture of the SAT-Based Planning Framework 5

Figure 2: Architecture of the LPSAT Planning Framework 7

Figure 3: Architecture of the TM-LPSAT Planning Framework 10

 xii

List of Tables

Table 1: Performances of Metric Planning with IPC3 Numeric Category 91

Table 2: Heuristics in MathSAT: Metric Planning with IPC3 Numeric Category 91

Table 3: Performances of Temporal Planning with IPC3 Simple Time Category 92

Table 4: Heuristics in MathSAT: Temporal Planning with IPC3 Simple Time Category

 93

Table 5: Performances of Temporal Planning with Continuous Changes: Bathtub

 Domain 94

Table 6: Heuristics in MathSAT: Bathtub Domain 95

 13

List of Appendices

Appendix A: Notations 111

A.1 Sets 111

A.2 Predicates 112

A.3 Functions 112

Appendix B: Time-Labeling Convention 114

Appendix C: Encoding Temporal Model of Durative Actions 115

C.1 Bathtub Domain in Level 4 115

C.2 Encoding in Meta-Level 117

C.3 Conditional Effect 121

Appendix D: Encoding Real-Time Temporal Model 122

D.1 Bathtub Domain in Level 5 122

D.2 Encoding in Meta-Level 123

Appendix E: Encoding Interval-Valued Fluents 125

Appendix F: Non-Interference Rules in PDDL+ 130

 1

Chapter 1 Introduction

Automated Planning is the identification of sequences of actions which will achieve

specified goals from specified initial conditions.

 First of all, we identify the class of domains that we are trying to solve and give

an overview of the SAT-based planning framework our planner is based on and the

TM-LPSAT temporal metric planner.

1.1 Problem Statement

Many complex domains in the real world involve continuous and metric time, metric

resources, metric quantities, and concurrent actions. Here are two sample domains of

the class we are trying to model and to generate plans for:

Bathtub Domain

More than one bathtub is in a bathroom. Each bathtub has more than one tap. The hot

water taps are distinguished from the cold water taps. Each tap has a different flow

rate. The process of filling a bathtub by a water tap is by turning it on. The process of

draining a bathtub is triggered by pulling out the drain plug. It is also possible to add a

certain amount of bath oil before the water in the bathtub reaches a certain level.

When the bathtub overflows, the floor becomes wet, triggering a signal that alarms the

plan executor if the planner is not in the bathroom.

 2

A planning problem from this domain could be to generate a sequence of

actions that would maintain the water temperature of the bathtub within a certain

range (by adjusting the ratio of hot and cold water flowing from the taps).

The domain has the following characteristics:

• The water level of the bathtub is a continuously changing quantity over time,

as long as a tap is on or draining occurs.

• Cumulative operations on the water level of the bathtub are possible: the

“filling” process by multiple taps as well as the “draining” process.

• The planner can choose “turn-on-a-tap”, “turn-off-a-tap”, “plug-in”, “plug-out” or

“add-bath-oil.”

• The planner cannot control the “filling” process that happens as a result of

turning on a tap; this continues as long as the tap is on. Likewise, the planner

cannot control the “draining” process that happens as a result of plugging out;

this continues as long as the plug remains off.

• “Overflow” of water in the bathtub is triggered by the conditions occurring in the

bathtub, not by choice of the planner.

Satellite Observation Domain

This is a simplified satellite observation scheduling domain of the Space Project at

NASA. More than one satellite in orbit is available for observation. Each satellite is

equipped with various pieces of observation equipment. The observations requested

require particular instruments at certain times, and involve slewing the satellite to align

 3

the instrument with the target. This takes varying amounts of time depending on the

current position of the satellite. Instruments to be used must be powered on and

warmed up for some time, and then calibrated. Thus, the use of instruments

consumes fuel. The data observed is recorded in the on-board storage, which has

limited capacity. Each observation will last either until a requested amount of data is

collected or for a fixed duration. A satellite can communicate with any given ground

station, as long as the station is within the orbit of the satellite. Communication with

the ground station is expensive. During the down-linking, the station can download the

data stored, which can occur simultaneously with collection of data by the satellite.

 A possible planning problem may be scheduling the order of observation

requests such that the amount of data collected is maximized1 and the time taken to

do so is minimized.

The domain has the following characteristics:

• The “angle” of the satellite is a metric quantity.

• The “on-board-storage” is a metric resource on which “collecting” activity and

“downloading” activity can interplay continuously.

• The “observation” or “down-linking” activity has a duration which is determined

by either the amount of collected data or the given time limit.

Planning in such domains must necessarily go beyond simple discrete models of time

and change. However, the classical planning framework is founded on the assumption

that time is atomic (discrete steps). A natural question is how to extend the classical

 4

planning framework so as to reason about temporal and metric aspects of the

dynamically changing world. Specifically, it was claimed that the SAT-based planning

framework to continuous time would not be feasible2 [Smith00-b] [LongFox00].

In this thesis, we attempt to extend the SAT-based planning framework to deal

with metric resources and quantities in continuous time and to show that the SAT-

based planning framework is feasible for representing and reasoning in continuous

time.

1.2 SAT-Based Propositional Planning

Historically, in the early 1970s, planning was cast as a first-order deductive theorem-

proving [Green69]. A planning problem could be formulated with axioms about actions

stating that (i) the effects of an action are implied by the occurrence of the action

when its preconditions hold, and (ii) frame axioms describing the propositions an

action does not affect. The planning process could then be viewed as finding a

deductive proof of a statement asserting that the initial conditions together with a

sequence of actions imply the goal conditions.

 However, this approach failed to scale up to realistically sized problems. Until

the early 1990s, the idea of Planning as Propositional Satisfiability was not even

considered to be applicable to planning in practice. Through experiments with

SATPLAN in which new SAT algorithms (GSAT [Kautz92], WSAT [Selman94]) based

on local searches were used as SAT solvers, Kautz and Selman [Kautz92] [Kautz96]

1 The TM-LPSAT cannot optimize plans; this may be turned around by specifying the limits in
the goal state.

 5

showed that (i) a general propositional theorem prover outperforms traditional

planning systems such as UCPOP [Penberthy92] and Nonlin[McAllester91], (ii) the

propositional theorem proving scales much better than the first-order theorem proving,

and (iii) different axiomatizations (encoding schemes) can have vastly different

computational properties.

Figure 1: Architecture of the SAT-Based Planning Framework

The idea of planning as a propositional satisfiability is to reduce a planning

problem to a propositional satisfiability problem. A planning problem is formulated as a

set of axioms (action axioms, frame axioms, and exclusion axioms) with the property

that any model of the axioms corresponds to a valid plan. The planning process is to

2 Further discussion and our resolution to this issue are presented in Chapter 8.

Compiler
(encoder)

satisfying
model

Plan

mapping
Increment plan length

If unsatisfiable

Domain Desc
Init State
Goal State
N (plan leng)

CNF
Simplifier

(polynomial
inference)

Solver

(SAT engine/s)

Decoder

CNF

 6

find a model of the set of axioms, which corresponds to a correct plan for the original

planning problem.

Thus, there are two parameters to SAT-based planning systems: an encoding scheme for
representing plans and a SAT solver to search for models. Although there is room to optimize
state-of-the-art SAT solvers specifically for planning domains [Giunchiglia98] [Mali02-b], a
general SAT solver works well for planning domains. The key issue in implementing planning
as satisfiability is how to encode the set of constraints.

Programs for solving propositional satisfiability have become increasingly

powerful over the last decade [Malik02] [Zhang02] [Gent99]. Consequently, SAT

solvers are being used as the basis for an ever-increasing array of applications of

many different kinds [Armando02]. The SAT-based planning is one such highly

successful application. The performances of the best SAT-based planners, such as

SATPLAN [Kautz96], BlackBox [KautzSelman99] and MEDIC [Ernst97], were shown

to be competitive to Graphplan-based planners or better, and both outperform partial

order based planners. The main disadvantage of this approach is that the encoding

size can be large, because all possible propositions and actions are represented

explicitly for each step. Otimization techniques3 to reduce the size of encoding as well

as dufferent encoding methods have been extenstively explored.

1.3 SAT-Based Metric Planning

Generally, a logic-based framework needs some other tool to cope with metric

aspects of the world in an efficient as well as an intuitive way. Very recently, state-of-

the-art SAT solvers have been successfully integrated with domain-specific

procedures so that they overcome the limit in expressiveness of propositional logic.

3 Optimization techniques are overviewed in Section 7.2 and Section 7.3.

 7

Figure 2: Architecture of the LPSAT Planning Framework

In the LPSAT framework, a SAT solver and an arithmetic constraints solver are

integrated into one framework by extending a DPLL-based4 SAT solver slightly, in

such a way that the SAT solver treats each arithmetic constraint as a Boolean variable

(called a trigger) and tests whether the generated truth assignment is satisfiable. A

truth assignment satisfying all clauses propositionally can be a model for the input

formulas only if the arithmetic constraints whose triggers are set to true are consistent.

Thus, in the propositional reasoning part, heuristics and optimization techniques

developed for SAT solvers can be applied. Considering that the computational time

requirements of the integrated engine are dominated by the time requirements of the

4 Incomplete (Stochastic or Randomized) solvers also would be possible for domains in which
completeness is unnecessary: The ILP-PLAN [KautzWalser00] uses an integer local search
algorithm (a variant of WSAT) for metric planning.

Satisfiability
Solver

Linear
Constraints

Solver

 new or evoked linear constraints

 inconsistency info, real variable values

LPSAT Engine

LCNFPlanning Domain &
Problem

Solution
Decoder

Plan

Compiler

 8

arithmetic constraint solver, optimization techniques 5 for reducing calls to the

constraint are essential to improve the performance of the engine.

 Those decision procedures have been used in various contexts requiring

expressiveness beyond propositional logic, including metric planning [Wolfman00],

verification of hybrid systems [Audemard03], reasoning in modal and description

logics [Giunchiglia00], temporal reasoning [Armando99], and formal verification of

timed systems [Audemard02-a].

 Wolfman and Weld developed the LPSAT engine [Wolfman99] [Wolfman00]

that is used in our TM-LPSAT and applied it to metric planning in discrete time. The

encoding scheme of discrete changes on numeric-valued fluents adopted in TM-

LPSAT is similar6 to their encoding. They also experimented on their metric encoding

with known heuristics of systematic SAT solvers, such as learning, back-jumping and

random restarts. Their encoding is based on the assumptions that all actions are

atomic (in contrast with durative) and all changes in numeric quantities are discrete at

each step.

Example: The encoding of ‘turn-to-target’ operation in Satellite Domain by the LPSAT

 Turn(?target)
 Precondition: Pointing(?direction)
 fuel ≥ angle(?direction,?target) * ConsumptionRate
 Effect: ¬pointing(?direction)
 Pointing(?target)
 fuel -= angle(?direction,?target) * ConsumptionRate

where, ?direction is the direction the satellite is pointing to now, ?target is the direction
the satellite is moved to point to.

5 Optimization techniques further discussed in Section 7.3.
6 In LPSAT planner, in order to reduce calls to the LP solver, among the linear constraints
generated to represent direct influence, those that are in conflict are encoded to be avoided in
truth assignment by making them exclusive-OR. However, to preserve completeness in TM-
LPSAT, we did not adapt this technique. See Axioms (3), (4) and the footnote in Section 4.2.3.

 9

The encoding generated by the LPSAT is like:

 Turn(T7,i) ⇒ Pointing(T1,i) ∧ Constraint1(i)
 ∧ ¬Pointing(T1,i+1) ∧ Pointing(T7,i+1) ∧ Constraint2(i+1)
 Constraint1(i) ⇒ fuel(i) ≥ angle(T1,T7) * ConsumptionRate
 Constraint2(i+1) ⇒ fuel(i+1) = fuel(i) - angle(T1,T7) * ConsumptionRate

where, T7 for ?target, T1 for ?direction; Turn(T7,i) a Boolean variable representing
that Turn(T7) is active or not at step I; Pointing(T1,i) a Boolean variable representing
Pointing(T1) at step i is true or false; Constraint1(i), Constraint2(i+1) the triggers
(Boolean variables) for the corresponding constraints.

The first axiom on Turn(T7,i) is solved by SAT engine. The axioms on constraints are

solved by LP constraints solver when the corresponding triggers are true in the truth

assignment made by the SAT solver.

1.4 SAT-Based Temporal Metric Planning: TM-LPSAT

The TM-LPSAT is a SAT-based temporal metric planner. It generates plans that

contain concurrent asynchronous actions that may depends on arithmetic constraints

and cause either discrete or continuous changes in numeric-valued fluents.

The TM-LPSAT compiler accepts a description of a domain and a problem in

an extended version7 of PDDL+, and translates it into a CNF formula (called LCNF)

over Boolean variables and linear arithmetic constraints. The models of the CNF

formula correspond to plans of bounded length for the given planning problem.

PDDL+ is the latest extension of McDermott’s original PDDL (Planning Domain

Description Language) [McDermott98] [McDermott00] developed for the International

7 The details of the extension are discussed in Section 4.1.1.

 10

Planning Competition. PDDL+ supports metric temporal domains. Three temporal

models of continuous time are supported:

• Discretised durative actions in which all changes can occur only at the end

points of the actions: continuous change is abstracted at end points, and so

the value accessible by other action while the action occurs is not guaranteed

to be correct.

• Continuous durative actions in which continuous changes can occur over the

period of the actions

• The real-time temporal model that contains autonomous processes capturing

continuous changes, exogenous events, and instantaneous actions

Figure 3: Architecture of the TM-LPSAT Planning Framework

“RelSat”

Satisfiability
Solver

“Cassowary”

Linear
Constraints

Solver

 new or evoked linear
constraints

inconsistency info,
real variable values

LCNF

Planning
Domain &
Problem

Extended PDDL+

SolutionDecoder

LPSAT [Wolfman&Weld]

Plan

Compiler

 11

We have developed encoding schemes for temporal metric plans from a

planning problem described in an extended version of PDDL+. Specifically, our

encodings include the following features:

• The temporal metric models supported in PDDL+ with the restrictions that all

continuous changes are piecewise linear and that arithmetic constraints in the

precondition are linear

• The ADL subset of PDDL+, accommodating such features as typing, negative

preconditions, disjunctive preconditions, equality, quantified preconditions, and

conditional effects

• Intervals as a fluent type, supported with Allen’s 13 interval relations and

operations for updating the interval values

• A real-valued or interval-valued parameter to action

• Sharable, reusable resources: Multi-capacity resources (e.g. identical

machines in a factory; number of web designers), partitioned interval

resources of which concurrent “uses” mean disjoint subintervals (e.g. main

memory space allocated to concurrent processes in OS using variable-size

partitions)

However, the plan metric among PDDL+ features cannot be dealt with in the TM-

LPSAT.

The output of the compiler is fed into the LPSAT engine by Wolfman and Weld

[Wolfman99] to generate a plan for the original planning problem.

 12

As far as we know, there is neither any other domain-independent SAT-based

temporal planning system that can reason with durative actions nor any other SAT-

based temporal metric planning systems that can reason about continuous changes.

1.5 Organization of Thesis

Chapter 2 gives an overview of PDDL+ adopted as a domain specification language in

TM-LPSAT. The three temporal models of continuous time supported in PDDL+ are

overviewed in terms of syntax, informal semantics, and expressiveness.

Chapter 3 surveys the previous work in temporal metric planning systems that

deal with durative actions or continuous changes, and gives a brief overview of

formalisms developed in other areas for representing and reasoning about discrete

and continuous changes, including hybrid real-time systems, qualitative processes,

and logical formalisms.

Chapter 4 presents our encodings of temporal, metric planning for the three

temporal models as defined in PDDL+, and also encoding schemes of multi-capacity

resources, partitioned interval resources, and metric quantities of interval fluent type.

Chapter 5 describes the implementation of TM-LPSAT temporal metric

planner: the LCNF compiler and its integration with Wolfman and Weld’s LPSAT

engine.

Chapter 6 presents the experimental results of our encodings with different

decision procedure, MathSAT along with the LPSAT. The decision procedure finds

solutions to propositional combinations over Boolean variables and linear arithmetic

constraints.

 13

Chapter 7 describes possible directions of extending TM-LPSAT. In particular,

techniques of optimizing the encoding sizes as well as the engine are discussed

further.

Chapter 8 discusses the contribution of our work and the limitations of the TM-

LPSAT in terms of our encodings, as well as the approach itself.

Appendices include notational conventions, time-labeling convention, encoding

of sample domains and non-interference rules of PDDL+.

 14

Chapter 2 PDDL+ (Planning Domain Definition Language)

PDDL+ [FoxLong01] [FoxLong03] [FoxLong02-b] is the latest8 extension of PDDL,

that was intended to support temporal and metric domains. It is a declarative planning

domain specification language that is based on McDermott’s original PDDL

[McDermott98] [McDermott00] and his maxim “physics, not advice”.

PDDL+ is comprised of five levels: Level 1 contains the propositional and ADL

levels of McDermott’s PDDL; Level 2 adds features for numeric variables; Levels 3

and 4 contain durative actions [FoxLong02-b] [FoxLong03]; and Level 5 contains

processes and exogenous events to represent real-time continuous and discrete

domains [FoxLong01]. Levels 1 to 4 are collectively called PDDL2.1, officially

approved by the IPC9 committee. Level 5 is a proposal10 by Fox and Long on a real-

time temporal model that has not been approved by the committee.

The main features extended in PDDL+ include numeric-valued fluents, three

temporal models of continuous time, and plan metrics. These features are reviewed in

this section.

2.1 Numeric-Valued Fluents

8 The newer release is PDDL2.2 [IPC04] for the upcoming 4th International Planning
Competition.
9 It stands for “International Planning Competition.”
10 [McDermott03-a] is an alternative proposal for the temporal model of autonomous processes,
whose semantics are based on continuous branching time.

 15

In PDDL+, a numeric-valued fluent can be represented by a function applied to

arguments11. In the previous versions of PDDL, it was represented by a real-valued

variable. Considering that numeric-valued fluents are used mainly in arithmetic

computation, this functional expression form is more natural than variables (in which

all intermediate calculations must be assigned either to other variables or to local

variables). It supports arithmetic updating operations (increase, decrease, assign,

etc.) and arithmetic comparison operators (=,<,<=,>,>=) between numeric functional

expressions. The feature of local variables defined in an action definition and a

numeric parameter to action are removed in PDDL+. We will return to this issue in

Section 4.1.1.

2.2 Temporal Models of Continuous Time

A number of issues are common to any model of continuous time, whether for

planning or for reasoning: (i) representation and reasoning about continuous change,

(ii) concurrency, and (iii) the divided instant problem. In this section, we review the

temporal models supported in PDDL+ in terms of how these issues are realized.

2.2.1 Representation of Continuous Change

There are three ways to model a continuous change in PDDL+: discretised durative

actions, continuous durative actions and autonomous processes. Each model is

discussed in terms of syntactic structure, (informal) semantics and expressiveness.

11 The argument is restricted to the objects (terms) that are not numeric.

 16

2.2.1.1 Discretised Durative Actions (Level 3)

Syntax

 (:durative-action <NameOfAction>
 :parameters <ListOfArgumentsWithTypes>
 :duration <LogicalExprOnDurationVariable>
 :condition <LogicalExpr>
 :effect <LogicalExpr>
)

<ListOfArgumentsWithTypes> is a list of variables declared along with types.

<LogicalExprOnDurationVariable> is a propositional combination of numeric

constraints on the duration of the action. A numeric constraint may be inequality.

<LogicalExpr> is a propositional combination of fluents and arithmetic constraints, in

which each proposition is temporally annotated.

The modeling of temporal relationships is done by temporally annotated

conditions and effects: the temporal annotators are at start, over all, and at end. A

duration constraint can be temporally annotated either by at start (by default) or at end.

Semantics

A condition and effect annotated by at start corresponds to an instantaneous action

that occurs at the starting point of the durative action. Conditions annotated by over all

correspond to invariant conditions that are required to hold over the duration of the

action, but not at the starting or ending time point12. Conditions and effects annotated

by at end correspond to an instantaneous action that occurs at the ending point of the

durative action.

 17

Note the expressive power of representing constraints on duration: the

constraints can be (i) static (constant expression), (ii) dynamic (variable expression),

and (iii) uncertain (inequality relation). The duration inequality allows the planner to

adapt the duration accordingly in order to exploit concurrent activity.

Example 2-1: Bath Domain in Level 3

This is a durative action that fills a bathtub by turning on and off the tap without

overflowing over [?start, ?end].

 (:durative-action fillBath
 :parameters (?b – bath)
 :duration (at end (<= ?duration (/ (- (capacity ?b) (level ?b)) (flow ?b)))) (0)
 :condition (and

 (at start (plug_in ?b)) (at start (not (tap_on ?b))) (1)
 (over all (plug_in ?b)) (over all (tap_on ?b)) (2)

 (at end (tap_on ?b)) (at end (plug_in ?b))) (3)
 :effect (and

 (at start (tap_on ?b)) (4)
 (at end (not (tap_on ?b))) (5)
 (at end (increase (level ?b) (* ?duration (flow ?b)))) (6)

)

Observe that

• (0) is a constraint on the duration: it ensures that the bath never overflows by

checking, as a precondition for the updating in (6), that the quantity of water to

be added does not exceed capacity. It allows this action to be concurrent with

any other actions affecting the level of water during the period of the action.

• (1) and (4) are conditions and effects for the starting action of the durative

action “fillBath,” i.e. turn on the tap.

12 [LongFox01] explains the reasons for adopting this temporal model and compares it with
other temporal models.

 18

• (2) are invariants to hold in the interval (?start, ?end), excluding ?start

and ?end.

• (3), (5) and (6) are conditions and effects for the ending action of “fillBath,” i.e.

turning off the tap.

• Notice that in Level 3, during the period of the action, the “correct” value of the

water level cannot be accessible by other actions13 whose preconditions are

dependent on the value. On the other hand, in Level 4 it is possible since the

level of water is continuously updated. See the example in Section 2.2.1.2.

Limitations of Expressiveness

In this model, a continuous change is abstracted as a discrete change at the end

points of a durative action. The value assigned to the numeric fluent while the action is

occurring is not reliable. If some other concurrent action has a precondition that

depends on this fluent, then the action may be not considered feasible when it is

feasible or vice versa.

In terms of utilizing resources, this model adopts a conservative view:

consumption of a resource is abstracted at the starting point of the durative action;

production of a resource is abstracted at the ending point of the durative action. In

consequence, in terms of utilization of the resources, this model cannot make the

most of it. For example, a durative action DA that occurs over the time interval [T1,T2]

produces a resource r by QA at T2 (actually continuously by RateProducedByDA); a

durative action DB needs (i.e. in the precondition) the resource r by QB at T3 such that

13 An action like “add-bubble” that has a precondition that the level of water is more than half.

 19

T1 <T3 <T2 and QB <= (T3-T1) * RateProducedByDA. By taking abstraction, action DB

cannot occur at T3.

Obviously, there is a class of domains that can not be correctly modeled with

this kind of abstraction. Such an example is data down-linking and recording in the

Satellite Domain [FoxLong02-a]. Data storage in the satellite has capacity. Data can

be down-linked to the ground station “at the same time” it’s being collected. Two

actions interplay on the level of data storage. Conservative decrease of data by the

downlink action can allow actual overflow of data by the action of collection. This kind

of domain can be modeled only in the temporal models of Level 4 or Level 5.

2.2.1.2 Continuous Durative Actions (Level 4)

Syntax

In addition to the syntactic form of discretised durative actions, in Level 4 it is possible

to represent a continuous effect:

 (increase14 <NumericFluent> (* #t <ArithmeticExpr>)) or,

(increase <NumericFluent> (* <ArithmeticExpr> #t))

where, #t represents the elapsed time since the action started.

Also, instantaneous actions are allowed in Level 4.

Semantics

A continuous change statement represents the value of <NumericFluent> which is

continuously increasing/decreasing over the period of the durative action by the rate

 20

of <ArithmeticExpr>. At any point within the period, the exact value of the fluent is

accessible.

Example 2-2: Bath Domain in Level 4

(:durative-action fillBath
 :parameters (?b – bath)
 :duration ()
 :condition (and
 (at start (plug_in ?b)) (at start (not (tap_on ?b))) (1)

 (over all (plug_in ?b)) (over all (tap_on ?b)) (2)
(over all (<= (level ?b) (capacity ?b))) (2’)

(at end (tap_on ?b)) (at end (plug_in ?b))) (3)
 :effect (and

 (at start (tap_on ?b)) (4)
 (at end (not (tap_on ?b))) (5)

 (increase (level ?b) (* #t (flow ?b)))) (6’)
)

Observe that the constraint on duration, (0), in Example 2-1 is represented by (2’) and

(6’) in Level 4. Unlike Level 3, the exact value of the level is accessible to any other

concurrent action such as addBubble in Appendix 3.

Limitations of Expressiveness

In this model, the continuous change in a durative action is bound by the duration of

the action. In contrast to this, there are situations in which the period of continuous

change is determined by the environment and so is beyond the planner’s control.

Such an example is “Rover” Domain [FoxLong02-a] which models a rover’s

recharging process that is triggered as soon as it is in the sunlight. A rover cannot

make any decision on how long the recharging process continues but can only exploit

14 Likewise, decrease.

 21

the effect. Also, occurrences that are triggered by the environment cannot be

represented in Level 4.

2.2.1.3 Autonomous Processes (Level 5)

Syntax

(:process/event <NameOfAction>
 :parameters <ListOfArgumentsWithTypes>
 :precondition <LogicalExpr>
 :effect <LogicalExpr>
)

The syntactic components of Level 5 are processes15, events and instantaneous

actions. PDDL+ requires that a process has at least one continuous effect and an

event has at least one numeric constraint in the precondition.

Semantics

The preconditions of a process are triggering condition, invariant condition, and also

terminating condition. Continuous changes are captured by processes, each of which

is triggered and terminated either by actions, events, or ongoing processes. A process

triggered by actions can often be captured by a durative action with flexible duration

under the planner’s control. A process triggered by events cannot be modeled by a

durative action, whose duration the planner may not know or care about. An event,

either deterministic or nondeterministic, makes an instantaneous transition between

states of the environment, which is not a choice of the planner.

 22

Naturally the following semantic constraints are imposed:

• Preservation of continuity: The continuous change over [T1,T2] should be equal

to the sum of the change over [T1,T3] and the change over [T3,T2], for any T3,

T1 < T3 < T2.

• Triggering of an event with no slip of time: as soon as its precondition is

satisfied, the event should be triggered.

• Triggering of a process with no slip of time: like triggering of an event

• Termination of a process with no slip of time: as soon as its precondition is

violated by continuous or discrete changes, the process should be terminated.

Example 2-3: Bath Domain in Level 5

(:process bath_filling
 :parameters (?b - bath)
 :precondition (and (<= (level ?b) (capacity ?b))

(> (flow ?b) 0))
 :effect (increase (level ?b) (* #t (flow ?b)))

)

(:event flood
 :parameters (?b - bath)
 :precondition (and (>= (level ?b) (capacity ?b)) (> (flow ?b) 0)

(dry_floor ?b))
 :effect (and (wet_floor ?b) (not (dry_floor ?b))))

Observe that

• The “bath_filling” process should be triggered as soon as the level of the bath

is less than the capacity and there is inflow to the bathtub. The process should

be active until these conditions become false, either by discrete changes or

15 The process model in McDermott’s Opt [McDermott03-a] contains triggering conditions and
effects, invariants, and terminating effects. So, its syntactic structure is more like a durative
action in PDDL+.

 23

continuous changes. The process should be terminated as soon as these

conditions become false.

• As soon as the level of water exceeds its capacity, event “flood” should be

triggered.

2.2.2 Concurrent Plans

Plans with concurrent actions were not considered in the previous versions of PDDL.

Concurrency is restricted by non-interference rules of the PDDL+ in Appendix F; any

two actions violating these rule(s) cannot be run simultaneously. In particular, non-

interference rules adopted in PDDL+, an extension of mutex rules for Graphplan

[Blum97] with numeric features, include the “no moving targets rule,” which is stronger

than the commonly used “no concurrent actions can affect the parts of the state

relevant to the precondition tests of other actions in the set, regardless of whether

those effects might be harmful or not.” The reason16 for adopting the rule is to make

concurrency checking in polynomial time of the size of actions and pre- and post-

conditions.

The introduction of concurrency into the framework of actions raises the

following issues on interactions among actions being executed in parallel [Pinto00]:

• Precondition interaction problem: Depending on whether or not other actions

are performed concurrently, actions can or cannot be performed. One example

16 A good example is action A: (p V q) => r, action B: p => (¬ p ∧ s) [FoxLong03]. Handling
the case implied by this example requires checking the consequence of interleaving
preconditions and effects in all possible ways. Thus so, PDDL+ semantics defines these two
actions interfering.

 24

of such an action is that if each dancer in a closed circle takes one step to the

right, then each action is possible only if all dancers move synchronously.

• Synergistic effects: Actions that are performed concurrently produce effects

that neither action would have if performed in isolation. An example of this is,

when lifting both ends of a table simultaneously, it has the effect of raising the

table off the ground.

• Cancelled effects: Two actions cancel each other’s effects. An example of this

would be a door that is pushed and pulled at the same time with the same

force.

• Cumulative effects: More than one action makes changes concurrently on the

same fluent. An example of this is the direct influence on a numeric fluent.

• Interactions between durative actions that are overlapped, such as pulling the

door while holding a spring loaded latch open.

These issues are realized in PDDL+ in the following ways:

• Precondition interaction problem: There is no feature in PDDL+ to support

multi-agent environments.

• Synergistic effects and Cancelled effects: Precise simultaneity is outside of

the control of an executor. The interpretation of simultaneity in PDDL+ is that

an executor can execute the two actions within a fine but nonzero tolerance,

and the effects can occur [FoxLong02].

 25

• Cumulative effects: Simultaneous updates on numeric-valued fluents are

allowed, only if the operations are commutative. Asynchronous concurrency

[Brenner01] is not possible with propositional fluents.

• Interactions between durative actions executing overlapped: Interactions of

this kind can be modeled as invariants within a durative action.

2.2.3 Divided Instant Problem

The Divided Instant Problem [Vila94] is about the truth value of a propositional fluent

at the moment the state transition is happening. The solution adopted in PDDL+ is to

model an action as an instantaneous state transition whose effects are effective at the

moment of the application of the action. Thus, the state preceding the action holds

over an interval that is open on the right (i.e. not including the instant in which the

action takes place). The effect of the action holds over the interval that is closed on

the left (i.e. all real valued times equal or greater than the time the action takes place.).

2.3 Plan Metrics17

As mentioned before, PDDL+ was intended to support temporal metric domains. In

temporal metric domains, it is more likely that plan quality is judged by temporal

quality such as makespan (total time of the plan) or plan cost such as resource

consumption or cumulative action cost, rather than solely based on the length of a

17 The TM-LPSAT cannot handle the plan metric, which is an inherent difficulty with a SAT–
based approach.

 26

plan. To evaluate the quality of a plan specific to a given problem, PDDL+ supports

representation of the plan metric optionally given to the planner. The plan metric is

expressible in maximization or minimization of functional expression of numeric-

valued fluents.

 27

Chapter 3 Previous and Related Work

To our knowledge, there is no previous domain-independent planning SAT-based

system, which can reason about actions over continuous time. There are a few SAT-

based metric planners: the LPSAT metric planner [Wolfman99] [Wolfman00], and as a

variant 18 of the SAT-based approach, the ILP 19 metric planner [KautzWalser00]

[KautzWalser99] and the MILP20 metric planner [Bockmayr98] [Bockmayr99]. These

systems, however, plan in atomic time. Our encoding of numeric-valued fluents with

only discrete changes, as defined in Level 3 of PDDL+, is similar to that of LPSAT,

only differing in the definition and reasoning of time points: time points in our encoding

are metric and variable distance away, in contrast to their step-based definition of

time points.

In Section 3.1, temporal metric planning systems dealing with temporal models

of durative actions or continuous changes are reviewed and their relation to our work

is considered. In Section 3.2, we briefly give an overview of formalisms developed in

different areas for modeling dynamic worlds with continuous behaviors as well as

discrete behaviors: hybrid automata, qualitative processes, and logical formalisms.

3.1 Domain-Independent Planning Systems Dealing with Continuous Time

3.1.1 Planning Systems Dealing with Durative Actions

18 SAT-encoding can be easily converted (transformed) into encoding for 1/0 Linear
Programming; Stronger formulations of ILP problem in planning domains, rather than direct
translation of SAT encoding, have been explored [Bockmayr98] [Bockmayr99] [Dimopoulos02]
[Vossen00] in order to improve performance.
19 ILP stands for Integer Linear Programming.

 28

Generally, the expressiveness of temporal constraints that state-of-the-art temporal

planners can handle is limited: constant durations and STRIPS-style operators, hardly

handling external events and autonomous processes. There are a few temporal and

metric planners such as TP4 [HaslumGeffner01], LPG [Gerevini03] and Sapa [Do03-

b], but they can deal mostly with discrete changes within a durative action. Sapa and

LPG claim to be able to deal with continuous change “in theory”, but their scalability

and concurrency is unclear.

There are three temporal planning systems dealing with durative actions,

which are related to our work in some aspects:

Mali’s SAT-based Temporal Encoding [Mali02-a] is an extension of state-space

encoding [KautzMcAllester96] of duration 1 (i.e. discrete time) with constant integer

durations. The temporal model adopted is that used in TGP 21 [Smith99]: all

propositions are either undefined or persistent over the duration so that they should

be protected over the duration. A step is defined at each integer time. His encoding

could be mapped to the encoding in continuous time by scaling up unit time by integer

1, but it is certainly not a good idea to define a step at each unit time. The optimization

technique using plan graph used in his encoding is specific to the actions of constant

integer durations.

20 MILP stands for Mixed Integer Linear Programming.
21 The temporal model used in TGP and TP4 is called “Blackbox” model: (i) the preconditions
should be satisfied at the starting point of the action, (ii) The values of propositions in the
effects are changed sometime during the action (so, the values are “undefined”); their values
are valid only the ending point of the action, (iii) precondition whose value is not changed in the
effect should be persistent over the duration of the action.

 29

MILP Temporal Planner [DimopoulosGerevini02] is based on a novel architecture for

the temporal planning. The planning problem is encoded as two parts: (i) 0/1 integer

encoding of plan graph generated from the non-temporal aspect of the problem, and

(ii) 0/1 integer linear encoding of temporal constraints in terms of start times and

durations of actions and start times of fluents at each layer. The two encodings are

glued together via 0/1 action variables. All inequalities from both encodings are solved

using a MILP solver (Mixed Integer and Linear Programming). It plans by branch and

bound through bounded-length plans based on optimization function. Thus, the plan is

suboptimal in terms of the given objective functions, and it cannot guarantee

optimality in terms of makespan (total time of the plan), since a plan taking less time

can have more steps.

As compared to the LPSAT architecture in which the linear constraint solver

and the propositional constraint solver are separate modules, the unified encoding in

MILP has the potential to exploit the strong interactions which may lead to extensive

value propagation. Their temporal encoding is assumed to have actions of constant

real-valued durations; otherwise it becomes nonlinear.

LPGP [LongFox03] is a temporal planner based on the Graphplan framework

[Blum97], in which Level 3 of PDDL+ is adopted as a temporal model, dealing with

discretized durative actions with constant duration. The plan graph constructed is a

representation of the logical structure of a plan: each action layer corresponds to the

occurrence of interesting instantaneous activities. Thus, conceptually, each state (fact

layer) carries duration. In the graph construction phase, a durative action is

decomposed into instantaneous actions: a starting action, an ending action, and an

 30

action with invariants as preconditions. The instantaneous actions are causally linked

with artificial tokens (propositional fluents). During the plan extraction phase, linear

constraints on the durations of fact layers and durative actions included in the current

plan are constructed backward; whenever a start action is added in the current plan,

the consistency of the linear constraints is checked by LP solver, which is that the

sum of durations of fact layers between start action and end action should be equal to

duration of the durative action.

The disadvantage of this approach is that, compared to TGP22 [Smith99] or

TP4 23 [HaslumGeffner01] where the plan graph is a representation as a flow of

uniform time, it cannot guarantee optimization of makespan, since graph generation is

separated from temporal optimization. The model of time used in the plan graph is the

same as the model of time adopted in our TM-LPSAT, which entirely complies with

the semantics of PDDL+. The difference is in how the temporal constraints are

reasoned: in the TM-LPSAT, temporal constraints intertwined with metric constraints

at the time points are searched non-directionally by a SAT solver. Thus, the TM-

LPSAT does not suffer from the difficulties caused by backward search, such as

handling with a durative action whose ending action is not included in the plan, but

whose starting action needs to be included in the plan.

22 TGP, Graphplan-based temporal planner using extended mutex reasoning, can find a plan
which takes the shortest, i.e. optimal in terms of makespan.
23 TP4 heuristic-based planner finds an optimal plan in terms of makespan, using heuristic
function.

 31

3.1.2 Planning Systems Dealing with Continuous Changes

There have been planning systems that can reason about “continuous change” in

restricted contexts including Hendrix’s Processes[Hendric73], Vere’s DEVISER

[Vere83], Wilkin’s SPIE [Wilkins88], Simmon’s GORDIUS [Simmons88], Dean’s

FORBIN [Dean88], Drabble’s EXCALIBUR [Drabble93], and ZENO [Penberthy93]

[Penberthy94]. All of these are partial order planners. Compared to the other systems,

the ZENO system can handle quite expressive temporal and metric constraints,

although its handling of continuous changes is restricted to non-concurrent updates.

However, the difficulty of managing the temporal constraints involved, typical of partial

order planning, turns out to be the bottleneck in its performance. It has been reported

that the ZENO is unable to solve even the simplest metric logistics problem that the

LPSAT metric planner can do [Wolfman00], although the ZENO algorithm is complete

and sound. Compared to the ZENO, our TM-LPSAT planner can handle concurrent

continuous updates as defined in semantics of PDDL+, which include any concurrent

combination of continuous and discrete changes consistent with the “no moving

target” rule mentioned in Chapter 2. Also, autonomous process triggered by

nondeterministic exogenous events can be handled in the TM-LPSAT.

Very recently, McDermott has presented a heuristics-based planner called

Optop (actually an extension to the Optop planner) using an estimated regression

graph [McDermott03-a] [McDermott03-b]. To our knowledge, this is the only domain-

independent planner which can handle autonomous processes as well as objective

functions. It is reported that performance of the approach is not very promising at least

at this point. In the SAT-based planning framework, it would not be feasible to deal

 32

with optimality in terms of given objective functions, although there are simulated SAT

approaches or variants of SAT-encoding such as MILP which can find optimality

(optimal within the plan length) to objective functions. Certainly it is an advantage of

heuristic-based planners that they are open to be able to find global optimality.

Another characteristic of Optop is that it does not instantiate all action schemas in

advance, which makes it feasible for domains with objects dynamically created or for

domains involving numbers and other infinite sets. That is clearly a strong point over

the planning frameworks searching through all grounded actions, especially, over the

Graphplan-based planning framework. The TM-LPSAT can deal with domains

involving numbers and (a subset24 of) dynamically created objects as dealt in Section

4.5 as multi-capacity objects with variable capacity, although it is necessary to ground

all action schema at the encoding stage in the SAT-based framework.

3.2 Formalisms for Modeling Continuous and Discrete Changes

3.2.1 Hybrid System

A hybrid system [Larsen97] [Henzinger96] is a formalism for modeling a dynamical

system whose state has both a discrete component, which is updated in a sequence

of steps, and a continuous component, which evolves over continuous time. A hybrid

system is composed of a collection of hybrid automata, which communicate either by

shared variables or by synchronization on a channel. A hybrid automaton is an

extended FSM that models a discrete behavior by a FSM as well as a continuous

24 If it is not necessary to identify the objects individually.

 33

behavior by a real-valued variable. A node contains (i) activities: functions describing

continuous behaviors of real-valued variables; (ii) invariants: formulas over the values

of the variables to be in this state. A transition is labeled by (i) a precondition (guard):

a formula over the variables specifying condition for the transition to be taken; (ii) an

action: an instantaneous discrete change; (iii) a post-condition (assignment): a

discrete change to the real-valued variables possibly depends on the previous values

to the variables. The state of the hybrid automaton can change either by an

instantaneous discrete change or by time passage. Linear Hybrid Systems, in which

invariants, guards and activities are linear in time, form a subclass for which tractable

algorithms for automatic analysis, like Timed Automata (in which the only continuous

variables are clocks) are known.

The semantics of PDDL+ Level 4 & 5 (modeling of continuous and discrete

changes) [FoxLong01] is described using Hybrid Automaton. [FoxLong02-c] studies

the use of HyTech[Henzinger97], a model checking tool for hybrid systems, for

domain analysis in planning. [Audemard03] formulates bounded reachability problem

of a linear hybrid system as a satisfiability problem over propositional and linear

constraints, and solved it with MathSAT SAT solver [Audemard02-b]. However,

concurrent continuous and/or discrete changes have not dealt with in the work.

3.2.2 Qualitative Reasoning

 34

Discovering qualitative techniques for representing and reasoning about a

continuously changing world is the focus of research in qualitative physics [Forbus96].

Qualitative simulation [Kuipers01] is the construction of a set of possible behaviors

consistent with a model of dynamic systems represented by “qualitative” version of

differential equations. The following are reasoning systems based on qualitative

simulation, integrating discrete changes by actions and continuous changes by

qualitative processes.

Forbus’ Qualitative Process Theory with Actions [Forbus89] Given an initial state, a

set of actions, and a set of processes, qualitative simulator generates all possible

action sequences intertwined with all possible process evolutions, that is, entire plan

space; then, determine a sequence of actions solving the problem within the plan

space. Clearly the bottleneck in his system is combinatorial explosion.

Drabble’s EXCALIBUR [Drabble93] is a hierarchical partial-order planner that can

reason about external event, complex resources, and continuous change. Using

qualitative simulation, processes are arranged in the plan generated ignoring all

metric preconditions and effects; if the plan does not satisfy the original metric

preconditions, the plan is repaired using a variety of heuristic techniques. The

heuristic strategies used in plan repair are not presented clearly.

Farquhar’s Qualitative Process Compiler [Farquhar94] extends Qualitative Process

Theory and is implemented in QSIM. A physical world is represented by a set of

model fragments, each of which captures some aspects of the domain by providing

knowledge of both algebraic and logical nature. The definition of a model fragment

 35

contains a set of participants, the relations which must hold in order to instantiate the

fragment and consequences. Given the entities involved, their relationships and initial

conditions, the compiler instantiates proper model fragments. It then does qualitative

simulation on the domain. In case the predicted behavior extends across the

boundary of applicability a fragment, a new model of the resulting situation is

dynamically constructed by considering other fragments.

3.2.3 Logical Formalisms

A number of works integrate continuously changing quantities into a logical formalism:

McDermott’s Temporal Logic [McDermott83]; Sandwell’s Features and Fluents

[Sandwell89]; Davis’ Axiomatization of Qualitative Process Theory in First-Order

Theory [Davis92]; Davis’ Modeling of Autonomous Agents in terms of continuous

control and choice [Davis94]; Reiter’s extension [Reiter96] and Pinto’s extension

[Pinto98-b] into Situation Calculus; Miller and Shanahan’s extension into Event

Calculus [Miller96-a] [Miller96-b] [Shanahan90]; Thielscher’s extension into Fluent

Calculus [Thielscher99].

In particular, the representation used in Event Calculus is similar to our SAT

encoding, although the reasoning in Event Calculus involves circumscription. To

integrate the continuous changes generally represented in algebraic equations, the

notion of trajectory is introduced into Event Calculus. A trajectory describes the

functional relationship between the value of continuously changing quantity and the

time it elapsed since it started to change. A trajectory is attached to a fluent such as

 36

“flowing” by axioms, which ensures that the trajectory is valid as long as the related

fluent to which the trajectory is attached holds.

 37

Chapter 4 Encoding Temporal Metric Planning in Continuous Time

In this section, we show encoding schemes for temporal models of continuous time as

defined in PDDL+: durative actions with discrete changes, durative actions with

continuous changes, and a real-time temporal model of processes and events. The

encoding covers the ADL subset of PDDL+, accommodating such features as

negative preconditions, disjunctive preconditions, equality, quantified preconditions,

and conditional effects. We also show, by extending numeric-valued fluents, how

multi-capacity resources and interval-valued fluents can be encoded in the SAT-based

framework.

In Section 4.1, we show the adaptations of PDDL+ made in the TM-LPSAT

and the encoding scheme adopted in our temporal encoding. The representation of

time and fluents is shown in Section 4.2. Section 4.3 presents the temporal encoding

of durative actions as defined in PDDL 2.1 Levels 3 and 4. The real-time temporal

encoding as defined in PDDL+ Level 5 is presented in Section 4.4. The encoding of

multi-capacity resources and interval-valued fluents is shown in Section 4.5.

The features of these temporal models are overviewed in Chapter 2. The

summary of syntax and semantics and additional assumptions made in the encoding

are recapitulated in the subsections, 4.3.1 for Level 3 and 4 and 4.4.1 for Level 5. The

sets, predicates and functions used in this Chapter as well as the time-labeling

convention are defined in Appendix A. Encodings of sample domains are given in

Appendix C for durative actions and Appendix D for the real-time temporal model.

 38

4.1 Preliminaries

4.1.1 Adaptation of PDDL+

Open-World Assumption vs. Closed-World Assumption

According to the document of PDDL2.1 [FoxLong02-b], Closed World Assumption is

not sustained any more: Requirement flag for assumption on world, which existed in

the earlier versions of PDDL, was removed in PDDL+. What world, then, is supposed

to be assumed? Is it up to the domain designer? Open World Assumption and Closed

World Assumption are quite different assumptions. We adopt Closed World

Assumption for the encodings presented below.

Numeric-Valued Parameter to Action

This feature has been removed with the latest updates in PDDL+. The reason for this

change, they say, is that it generates an infinite search space, which is a serious

bottleneck to planning frameworks25 based on searching feasible actions over all

grounded actions such as Graphplan [Blum97]. However, we think the domain

definition language should not be restricted by the limitation of certain frameworks.

More importantly, there are domains, like pouring flour into a bin with a measuring cup,

that can only be represented using actions with numeric-valued parameters. This

25 TM-LPSAT is one of the planning frameworks searching over all ground actions, but a
numeric-valued parameter can be dealt with a real variable in TM-LPSAT. Likewise, the same
technique can be used in Graphplan planning framework.

 39

feature26 is reinstated in TM-LPSAT. As a natural extension, we allow an interval-

valued parameter to action.

Extension of Function Types

In PDDL+, the type of a function is assumed to be numeric-valued (real number,

possibly). There are no means to declare other types or features. Thus, a natural

direction of extension is type:

• Number: { positive | negative } { integer | real } { float | fluent }

• Interval: interval { float | fluent }

Such type specifications of a numeric-valued fluent can be useful in allowing an

arithmetic constraint solver to restrict the feasible solution spaces [Borning98]27. In

particular, it is useful for reducing the size of encoding in the TM-LPSAT to distinguish

float and fluent: only a continuously changing numeric-valued fluent needs to be

encoded with two real variables28. Otherwise, a numeric-valued float is replaced by its

value.

Most numeric-valued fluents in planning contexts have capacity, with which the

use of the fluent must be checked for validity. This capacity could be constant or time-

varying. In Section 4.5, we show how multi-capacity resources (i.e. sharable, reusable

26 This feature in discrete time was employed in the LPSAT metric planner [Wolfman00]. The
same encoding can be used for durative actions in continuous time, since the parameter is like
float local to the action. However, in durative actions it is necessary that the variable
corresponding to a numeric-valued parameter needs to be time-labeled. This is so in order to
allow to be concurrent two instances of the same durative action with numeric parameters that
is started at different time points.
27 In the Cassowary arithmetic solver integrated in the LPSAT engine, all numbers are
assumed to be real. On the other hand, in the standard Simplex method, variables are
assumed to be non-negative real numbers.

 40

metric quantity with capacity) and interval-valued fluents can be encoded as

constraints in the SAT-based framework.

4.1.2 Encoding Scheme

According to the classification of encoding schemes in [Ernst97], the encoding

scheme we adopt is “regular explanatory frame representation29”. The reason why we

adopt this scheme is that (i) it has been proven empirically to perform better

[Giunchiglia98] [Ernst97], (ii) it is easier to apply general optimization techniques as

well as to adaptation to other encodings, and (iii) it supports parallelism.

To adjust the encoding scheme for continuous time as well as numeric-valued

fluents, the conventions adopted are as follows, in comparison with the encoding in

discrete time:

• Each time point is an instant over R* at which some interesting activities may

happen, where interestingness is with respect to goal achievement; a metric

value is bound to each time point; Ti is the next time point to Ti-1, and they are

a variable distance away.

• The values of all propositional fluents and (Boolean variables for) ground

actions are defined at each time point; two values30 for each numeric-valued

fluent are defined at each time point.

28 Refer the Section 4.2.2. For a numeric-valued fluent changing only discretely, one real
variable is enough for encoding.
29 It is also called “State Space Encoding”. There are other variants of state space encoding,
though.
30 In order to deal with continuous change, two variables are used to represent numeric-valued
fluents. Refer Section 4.2.2.

 41

• Generally31, the precondition of a happening at time point Ti is defined at

previous time point Ti-1, the post-condition is defined at time point Ti.

The encoding scheme consists of the following axioms, which are shown along with

examples from Block World domain:

 Move(X,Y,Z) : move X from Y to Z
 Precondition: Clear(X) ^ On(X,Y) ^ Clear(Z)
 Post-condition: Clear(Y) ^ On(X,Z) ^ ¬ Clear(Z) ^ ¬ On(X,Y)

(1) Universal Axioms

Initial state is at time point T0; goal state varies with temporal models.

(2) Action Representation

Action implies its precondition and post-condition

e.g. Move(A,B,D, Ti) => Clear(A,Ti-1) ^ On (A,B,Ti-1) ^ Clear(D,Ti-1) ^
 Clear(B,Ti) ^ On(A,D,Ti) ^ ¬ Clear(D,Ti) ^ ¬ On(A,B,Ti)

(3) Explanatory Frame Axioms

For each propositional fluent, it enumerates the set of actions that could have

occurred in order to account for a state change; it contrapositively denotes

persistency.

e.g. Clear(D, Ti-1) ∧ ¬Clear(D, Ti) => (Move(A,B,D, Ti) ∨ …∨ Move(C,Table,D, Ti))

For a numeric-valued fluent, it requires linear equations of simultaneous discrete

changes and concurrent continuous changes between two neighboring time points,

Ti-1 and Ti. Those equations are given in equations (1) and (2) of Section 4.2.2.

These explanatory axioms support parallelism and ensure that the encoding is

sound.

31 This is the case for event and action, but not for process. Refer Section 4.4.3.

 42

(4) Conflict Exclusion Axiom

In order to make any total order plan generated from the given parallel plan a

valid plan, add clauses of mutual exclusion for each pair of conflicting actions,

which is based on the interference rules defined in PDDL+. The details of the rules

are given in Section 4.3.5.

 e.g. (¬ Move(A,B,D, Ti) ∨ ¬ Move(A,D,B, Ti)) for fluent Clear(D) or Clear(B)

4.2 Representation of Time and Fluents

4.2.1 Model of Time

Time is modeled as linear and isomorphic to the real numbers.

Time points, with metric values defined over R*(nonnegative real number),

represent instants at which interesting instantaneous activities happen. A state is

defined in terms of a finite set of propositional fluents and numeric fluents in the

domain. The transition between states happens by instantaneous actions or events,

changing the values of propositional fluents or discrete changes on numeric-valued

fluents; any continuous change can go on within a state. This entirely complies with

the semantics of PDDL+ given in the elements of Hybrid Automata [FoxLong01].

Although time is continuous and an action can be scheduled to begin at any time point,

only a finite number of happenings between any two time points are allowed by the

semantics of PDDL+.

 43

Representation and reasoning of actions and changes is based on time points,

rather than on interval: the values of all fluents and ground actions are defined in

terms of time points.

4.2.2 Representation of Fluents

Propositional Fluents

The truth value of a propositional fluent pf at time point Ti is Proposition(pf,Ti).

Numeric-Valued Fluents

In order to deal with continuous changes, two variables are introduced to represent

values of each numeric-valued fluent at time point Ti:

Valuebefore(nf,Ti)

• To capture all concurrent continuous changes made on a numeric fluent nf by

durative actions or processes over the interval (Ti-1,Ti)

Valueafter(nf,Ti)

• To capture all simultaneous discrete changes made on a numeric fluent nf by

actions (events) happening at Ti

This representation32 makes possible to reason about concurrent continuous and

discrete changes, while preserving continuity on a continuously changing fluent nf.

 44

4.2.3 Axioms on Numeric-Valued Fluents

The time-labeling convention used is defined in Appendix B.

Arithmetic Constraints between Valuebefore(nf,Ti) and Valueafter(nf,Ti)

(1) Valuebefore(nf,Ti) = Valueafter(nf,Ti-1) + ∑ a RateOfChange(a,nf,Ti-1) * (Ti – Ti-1)

 = Valueafter(nf,Ti-1) + ∑ a NetContiChange(a,nf,Ti-1,Ti)

• a is either a durative action or a process; it distinguishes instances of the same

durative action (or process) at different time points to support concurrency

• If a is not active at Ti-1,

RateOfChange(a,nf,Ti-1) = NetContiChange(a,nf,Ti-1,Ti) = 0

• Let us call this equation LinearContinuousEq(nf,Ti)

(2) Valueafter(nf,Ti) = Valuebefore(nf,Ti) + ∑ a DiscreteChange(a,nf,Ti)

(2’) Valueafter(nf,Ti) = <NewValue>

• Exactly one of (2) and (2’) should be activated at each time point, which is

imposed by Axiom (6): (2) is for additive discrete changes; (2’) is for

assignment by a new value

• a is either an event or an instantaneous action including start or end actions of

durative actions; again, it distinguishes instances of the same durative action

started at different points to support concurrency

32 In the temporal encoding of Level 3, a numeric-valued fluent can be encoded with only one
real variable, since continuous change is not allowed. In the TM-LPSAT, float and fluent are
distinguished.

 45

• If a is not active at Ti-1, DiscreteChange(a,nf,Ti) = 0

• Let us call (2) LinearDiscreteEq(nf,Ti)

Discrete Change on a numeric-valued fluent via increase, decrease, or assign

statement

(increase <nf> <DiscreteChange>) at time point Ti on numeric-valued fluent nf is

encoded as follows:

(3) 33 Active(a,Ti) ⇒ [DiscreteChange(a,Tk,nf,Ti) = <DiscreteChange>[Ti-]]
(4) ¬ Active(a,Ti) ⇒ [DiscreteChange(a,Tk,nf,Ti) = 0]

• [DiscreteChange(a,nf,Ti) = <DiscreteChange>[Ti-]] is an arithmetic constraint

• (3) & (4) ensure that the discrete change made by action a is valid if the action

is active at Ti; otherwise, the change is 0.

• DiscreteChange(a,nf,Ti) is accumulated in (2)

(assign <nf> <NewValue>)Ti is encoded as follows:

(5) Active(a,Ti) ⇒ [Valueafter(nf,Ti) = <NewValue>[Ti-]]

• (5) ensures that linear constraint [Valueafter(nf,Ti) = <NewValue>[Ti-]] is

imposed, if action a is active at Ti

33 The current version of TM-LPSAT implements rather restricted formulations for (3) and (4):
 (3) Active(a,Ti) [DiscreteChange(a,nf,Ti) = <DiscreteChange >[Ti-]]
 (4) [DiscreteChange(a,nf,Ti) = <DiscreteChange >[Ti-] ⊕ [DiscreteChange(a,nf,Ti) = 0]
which reduce calls to LP solver. However, this is based on the assumption that the discrete
change by active actions is never 0.The same technique is used for formulations relating an
action (event or process) and its corresponding linear constraints.

 46

The following two axioms are to ensure that exactly one of additive discrete change

defined in (2) and discrete change by an assignment statement defined in (5) is

always active at each time point:

(6) [∧ a ∈ Set(nf) ¬ Active(a,Ti)] ⇒ LinearDiscreteEq(nf,Ti)

(7) ∀ ai ∈ Set(nf) ∀ aj ∈ Add(nf) U Set(nf) [¬ Active(ai,Ti) ∨ ¬ Active(aj,Ti)]

• (6) ensures that LinearDiscreteEq(nf,Ti) defined in (2) should be active

unless any of action with an assign statement on nf is active

• (7) ensures that any action with an assign statement on nf is mutually

exclusive with any other action with an assign statement on nf or any action

with an increase or decrease statement on nf

Continuous Change on a numeric-valued fluent nf over a period of time

(increase34 <nf> (* #t <RateOfChange>)) Ti over (Ti-1,Ti) is encoded as follows:

(8) Active(a,Ti-1) ⇒ [NetContiChange(a,nf,Ti-1,Ti) = (Ti –Ti-1) * <RateOfChange>]

(9) ¬ Active(a,Ti) ⇒ [NetContiChange(a,nf,Ti-1,Ti) = 0]

• To be the continuous change in (Ti-1,Ti) piecewise linear, <RateOfChange> is

assumed to be constant (known in a ground action)

• (8) & (9) ensures that if a (process or durative action) is active at Ti-1,

constraint [NetContiChange(a,nf,Ti-1,Ti) = (Ti –Ti-1) * <RateOfChange>]

should be imposed; otherwise, [NetContiChange(a,nf,Ti-1,Ti) = 0]

• NetContiChange(a,nf,Ti-1,Ti) is accumulated in equation (1)

34 “decrease” is analogous. In that case, <RateOfChange> should be prefixed by minus sign.

 47

4.3 Representation of Temporal Model of Durative Actions (PDDL+: Level 3 & 4)

A durative action with discrete changes (Level 3) is a special case of a durative action

with discrete and continuous changes (Level 4). The encoding for Level 4 is presented

in this section.

The encoding for Level 3 can be encoded by using only one variable for each

numeric-valued fluent at each time point, rather than Valuebefore and Valueafter, since

there is no continuous change. It can be encoded as done in discrete time with

additional constraints on time points, which are now variable distance away rather

than uniform time away.

Starting with recapitulation of syntax and semantics, axioms for initial and goal

states, axioms for actions, frame axioms and axioms for mutual exclusions are

presented in that order. The sample domain in Level 4 and its encoding are in

Appendix C. The time-labeling convention is defined in Appendix B.

4.3.1 Syntax and Semantics

The syntactic form of a durative action in Level 3 & 4 is consisted of a start action with

temporal annotator at start (setting up local conditions for the durative action), an end

action with temporal annotator at end, and invariants with temporal annotator over all.

The start and end actions are instantaneous; the invariants are held over the period of

the action duration excluding end points. No point between those two end points is

accessible; all discrete changes can happen only as effects of the start and end action.

 48

A constraint on duration of a durative action can be represented as a conjunction of

comparisons (=, <, >) of arithmetic expression and ?duration.

The continuous change of a numeric-valued fluent can be represented in Level

4, which is over the period of a durative action. The value of a numeric-valued fluent,

continuously changing, are updatable as well as accessible by other actions at any

time point over the period of the durative action. In the TM-LPSAT, it is assumed that

between any two time points, the rate of change is constant, i.e., piecewise linear.

Along with durative actions with continuous changes, Level 4 contains all types

of actions defined in Level 1, 2, and 3, including instantaneous actions and durative

actions with discrete changes.

Concurrency

More than one instance of the same action (i.e. the same durative actions started at

the different time points) can be concurrent, since each of those instances may have

different durations and another instance can start even before the instances started in

the previous time points are ended.

A durative action with a numeric- or interval-valued parameter needs to be

encoded for the parameter with a different variable in each instance, since more than

one instance can be concurrent. Consequently, this prevents the invariants to be

shared among the instances of the same action started at different time points, which

is substantial increase in complexity as length of plan increases. More on this issue

will be discussed in the encoding of the invariants.

 49

4.3.2 Representation of Initial State and Goal State

Initial State

Initial state is implemented as effects of a dummy action with non-precondition.

Time-labeling: <Initial State>[T0+]

• A propositional fluent is time-labeled by T0

• An initial assignment to a numeric-valued fluent is time-labeled by Valueafter at

T0.

Goal States

The semantics of PDDL+ requires that a durative action started in a plan should be

finished in the plan; in consequence, the goal state may be satisfied in a state before

all durative actions initiated are finished. The goal state is represented as a disjunction

of the goal at each time point, except T0.

Time-labeling at Ti: <Goal State>[Ti+]

• A propositional fluent is time-labeled by Ti

• A reference to a numeric-valued fluent is by Valueafter(nf,Ti)

4.3.3 Representation of Durative Actions

Define a durative action DA = (As,Ae,Inv), where As is the start action, Ae is the end

action, Inv is the invariant conditions. Let ?duration(DA)Ti be the duration of DA

starting at time point Ti.

 50

Axiom on time point variables

 ∀ i, 0 < i <= n [T0 = 0 Λ Ti ≥ Ti-1 + ε]

• Each time point is assumed to be distinct, not considering tolerance (i.e. each

time point has different time value over R*). More than one activity can happen

at each time point simultaneously.

• In practice, ε should be small enough not to make any change in the values

of quantities in the domain.

Axioms for Start Action and End Action

Assume that start action is at Ti and its corresponding end action is at Tj.

(1) Active(As,Ti) ⇒ <PreCondition>[Ti-] ∧ <PostCondition>[Ti+]

• A durative action activated at time point Ti implies its precondition at Ti-1

(2) Active(Ae,Tj) ⇒ <PreCondition>[Ti-] ∧ <PostCondition>[Ti+]

• For a durative action started at time point Ti, all time points after Ti should be

considered as a time point for its end action to happen.

(3)35 Active(Ae,Tj) ⇒ Active(As,Ti) ∧ [Ti + ?duration(DA)Ti = Tj]

• A causal link between the start action and its end action

(4) Active(As,Ti) ⇒ [∃ Tk Ti < Tk <= Tn Active(Ae,Tk)]

• A durative action started in a plan should be finished in the plan.

35 This axiom is based on the assumption that each time points have different time value.

 51

Note that the constraints on duration are dealt as the same way as preconditions in

start action or end action, depending on time annotator attached on them.

Axioms for Invariants (Persistent Conditions)

For a durative action which starts at Ti and ends at Tj, invariants checking is required

for all Tk Ti < Tk < Tj . In general, invariant checking36 at Tk includes

• <Invariants>[Tk-] to check continuous changes over (Tk-1,Tk)

• <Invariants>[Tk+] to check discrete changes at Tk.

In addition,

• Valueafter at starting time Ti

Two versions of encoding are distinguished, depending on (i) concurrency among the

instances of the same durative action started at different time points and (ii) numeric-

valued or interval-valued parameters to actions.

Encoding A handles the case where invariants (checking) can be shared among the

same durative actions, regardless of the starting time points. This encoding can be

used only if either (i) numeric- or interval-valued parameters are not allowed, (ii)

numeric- or interval-valued parameters is allowed, but it is not allowed for the

instances of the same ground action to be concurrent, or (iii) the invariants are not

dependent on numeric-valued or interval-valued parameters. By encoding invariants

checking at each point, the invariant conditions are checked as long as at least one of

36 Note that these are to check values for continuously changing fluents; it suffices to check
<Invariants>[Tk-] for propositional fluents. However, ADL features such as disjunctive
precondition of propositional and numeric fluents makes difficult to seperate these checks.

 52

instances of the same ground action continues at the point. The complexity of

encoding for invariants of each ground action is: where, n is number of steps

O(n) invariant checking + O(n3) Continues fluent generation

(5) Active(Ae,Tj) ⇒ [∀ Tk, Ti < Tk < Tj Continues(DA,Tk)]

• A causal link between the end action and persistency of the invariants

(5’) [∀ Tk, T1 < Tk < Tn

 Continues(DA,Tk) ⇒ <Invariants >[Tk-] ∧ <Invariants >[Tk+]]

• Whenever any instantce of the durative action continues at the time point,

 invariants checking should be activated: <Invariants >[Tk-] for checking with

continuous change, <Invariants >[Tk+] for checking with discrete change

(5’’) [∀ Tk, T1 < Tk < Tn

¬ Continues(DA,Tk-1) ∧ Continues(DA,Tk) ⇒ <Invariants >[Tk-1+]]

• At the time point where a start action is active, but no continues; discrete

change on a numeric-valued fluent is necessary to be checked at such time

points.

• Note that this axiom ensures that the invariant condition of a durative action

which is over only two time points can be checked.

Encoding B handles the case where the ground action started at each time point

should be distinguished. This is necessary to deal with invariant conditions that are

dependent on numeric-valued or interval-valued parameters. The complexity of

encoding for invariants of each ground action is

 53

∑
−

=

1

1

n

i
O(n-i-2) invariant checking + ∑

−

=

1

1

n

i
O(n-i-2) Continues fluent generation

= O(n2) invariant checking + O(n2) Continues fluent generation

(5) [∀ k i < k < n [Active(Ae,Tk+1) ∨ … ∨ Active(Ae,Tn)] ⇒ Continues(DA,Tk)]

• A causal link between the end action of durative action DA37 started at Ti and

the invariant conditions checking; Ae is causally linked with As by Axiom (3)

and (4)

(5’) [∀ k i < k < n Continues(DA,Tk) ⇒ <Invariants >[Tk-] ∧ <Invariants >[Tk+]]

• The encoding for checking invariant conditions is necessary at all time points

right after starting time point Ti+1 to Tn-1

(5’’) Active(As,Ti) ⇒ <Invariants >[Ti+]

• The checking at [Tk+] is necessary only at the start time, not any other points.

Axioms for Continuous Changes

As presented in equations (8) and (9) of Section 4.2.3,

(increase <nf> (* #t <RateOfChange>)) in an action started at Ti and ended

at Tj is encoded as:

∀ Tk, Ti < Tk <= Tj ,

(6) Active(Ae,Ti) ⇒

 [NetContiChange(DA,nf,Tk-1,Tk) = (Tk –Tk-1) * <RateOfChange>]

(6’) ¬ Active(Ae,Ti) ⇒ [NetContiChange(DA,nf,Tk-1,Tk) = 0]

37 Remember that Continues(DA,Tk) distinguishes the instances of the same durative action
started at different time points

 54

• The end action acts like the representative for the durative action

• NetContiChange(DA,nf,Tk-1,Tk) is accumulated in Valuebefore(nf,Tk)

• DA distinguishes instances of the same durative action so that the net

changes made by concurrent instances of the same durative action can be

accumulated.

Axiom on Termination with No Time Slip

When a durative action continues at a time point, it is necessary to have a constraint

to make sure that the time point is ending point of the durative action as soon as the

value of an invariant condition becomes from TRUE to FALSE. The formulation is

given in 4.4.3.3.

Conditional Effect

In an instantaneous action a at time point Ti,

(when <Antecedents> <Consequents>) is encoded as follows:

For each conjunct <Consequent-i> in <Consequents>,

 [Active(a,Ti) ∧ <Antecedents>[Ti-]] ⇒ <Consequent-i>[Ti+]

In a durative action, each conjunct in <Antecedents> and <Consequents> are labeled

by a time annotator. In particular, a conjunct in <Antecedents> may be labeled by at

start or over all when it comes in the conditional effect of an end action: the conjunct

time annotated by at start should be time-labeled as if it is a precondition38 of start

38 Refer Appendix C.3.

 55

action of the durative action; likewise, a conjunct with annotator over all should be

converted into conjunction at all time points over the period of the durative action.

4.3.4 Frame Axioms

In Level 3 & 4, frame axioms are over A, As and Ae of a durative action, which make

discrete changes: a = A ∪ As ∪ Ae.

Explanatory Frame Axioms for Propositional Fluents:

(7) [Proposition(pf,Ti-1) ∧ ¬ Proposition(pf,Ti) ⇒

∃ a∈ NegEffect(pf) Active(a,Ti)]

(8) [¬ Proposition(pf,Ti-1) ∧ Proposition(pf,Ti) ⇒

∃ a∈ PosEffect(pf) Active(a,Ti)]

Explanatory Frame Axioms for Numeric-Valued Fluents:

(9) [∀ a ∈ Set(nf) ¬ Active(a,Ti)] ⇒ LinearDiscreteEq(nf,Ti)

• LinearDiscreteEq(nf,Ti) is imposed if no action with an assign statement on

nf is active

(10) Valuebefore(nf,Ti) = Valueafter(nf,Ti-1) + ∑ ∈DAa
NetContiChange(a,nf,Ti-1,Ti)

(11) Valueafter(nf,Ti) = Valuebefore(nf,Ti) + ∑a
DiscreteChange(a,nf,Ti)

• (10) is linear equation of the sum of the previous39 value at Ti-1 and concurrent

continuous changes over (Ti-1,Ti) on a numeric-valued fluent nf.

39 Means the value before discrete changes happen at the time point.

 56

• (11) is the linear equation of simultaneous discrete changes at Ti on a

numeric-valued fluent

Fluent as a Conditional Effect in Frame Axioms

In Axiom (7), (8) and (9), if the literal happens as a conditional effect, Active(a,Ti)

should be replaced by

 [<Antecedents> ∧ Active(a,Ti)]

to ensure that if the change in the value of the fluent is to be caused by a, its

antecedents also should be true.

4.3.5 Mutual Exclusivity

The non-interference rules defined in PDDL+ are in Appendix F.

Mutex rules are checked among A, As, and Ae. Any two actions violating the non-

interference rules should be pair-wise mutual exclusive:

(12) [¬ Active(ai,Ti) ∨ ¬ Active(aj,Ti)]

Fluent as a Conditional Effect in Mutual Exclusivity

In Axiom (12), if the fluent leading to mutual exclusivity with the other action is a

conditional effect in the action, Active(a,Ti) should be replaced by

[<Antecedents> ∧ Active(a,Ti)]

This should be applied to numeric-valued fluents as well as propositional fluents.

 57

4.4 Representation of Temporal Model of Real-Time (Level 5)

Starting with recapitulation of syntax and semantics, axioms for initial and goal states,

axioms for operators (process, event, action), frame axioms and axioms for mutual

exclusions are presented in that order. The sample domain in Level 5 and its

encoding are in Appendix D. The time-labeling convention is defined in Appendix B.

4.4.1 Syntax and Semantics

There are three components for this temporal model: processes capturing continuous

changes, exogenous instantaneous events, and instantaneous actions. A process can

be triggered and terminated by discrete changes or continuous changes: discrete

changes made by atomic actions or events, continuous changes by active concurrent

processes. An event can be triggered by discrete changes or continuous changes.

Only actions are under plan executor’s choice; events and processes are autonomous.

The semantics is based on Hybrid Automata Theory [Henzinger96]: A state

carries continuous changes; discrete changes by events or actions cause state

transition instantaneously:

time points: Tk-1 Tk

states: Q1 → … → Q2(k-1) → Q2k-1 → Q2k → ... → Q2n …

Starting at the initial state Q1, Q2k-1 k = 1,2,… stand for states carrying durations (i.e Tk

- Tk-1), Q2k k = 1,2,… stand for instantaneous state changes. Processes triggered by

events or actions occurring in Q2(k-1) or ongoing processes in Q2(k-1)-1 are going on in

Q2k-1, and then are terminated or discontinued by events or actions occurring in Q2k or

 58

terminated by the violation of invariant condition caused by concurrent continuous

changes in Q2k-1.

The semantics naturally imposes the following two constraints: (i) Continuity

constraint on continuously changing quantity to be preserved. That is, the continuous

change from time T1 to T2 is the same as the sum of the change from T1 to T3, and

change from T3 to T2, for any T3 ∈ [T1,T2]. (ii) Processes and events should be

triggered with no slip of time at the moment its preconditions are satisfied, in contrast

to actions. In Section 4.4.2, we show how these constraints are handled in our

encoding.

Concurrency

Actions can be concurrent with events as long as they do not interfere according to

the non-interference rules of PDDL+. It is domain designer’s responsibility that events

that can be triggered at the same time are to be non-interfering.

The encoding given in this section is based on the assumption that two

instances of the same process cannot be concurrent.

4.4.2 Representation of Initial State and Goal State

Initial State

Initial state is represented as effects of a dummy action with non-precondition.

Time-labeling: <Initial State>[T0+]

• A propositional fluent is time-labeled by T0

 59

• An assignment to a numeric-valued fluent is time-labeled by Valueafter at T0.

Goal States

In the last step, at least one action should happen, since subsequent events will not

show up in a plan. Thus, we put constraints that (i) at least one of actions happens in

the last step (ii) the goal state is either the last step or the step right before the last

step.

Time-labeling at Ti:

• A propositional fluent is time-labeled by Ti

• A reference to a numeric-valued fluent is by Valueafter(nf,Ti)

4.4.3 Representation of Operators

Axiom on Time Points

(1) [T0 = 0] ∧ [∀ i, 0 < i <= n Ti >= Ti-1]

• The next time point is greater or equal to the current time point.

4.4.3.1 Representation of Events

Axioms on Precondition and Effect:

(2) Active(e,Ti) ⇔ <PreCondition>[Ti-]

(3) Active(e,Ti) ⇒ <PostCondition>[Ti+]

Axioms on Triggering with No Slip of Time

 60

There are two cases that an event is triggered:

• An event is triggered by discrete change(s), in which case linear arithmetic

constraints may not cross equality (i.e. the inequality is satisfied, but equality is

not.). Axiom (4) below ensures this case.

• An event is triggered by continuous changes, in which case the earliest time at

which the precondition is satisfied should be captured by using the threshold

value and continuity of linear constraints. Axiom (5) below ensures this case.

The first case :

(4) <Precondition>[Ti-1+] ⇒ [Ti = Ti-1]

• If an event is triggered by actions or events (i.e. by discrete changes), the time

value becomes the same as the previous time value. This ensures that an

event is triggered by discrete change without slip of time.

The second case:

In ADL features, the precondition of an event (or a process) can be any expression of

literals and arithmetic constraints connected by logical operators {not, or, and, imply}.

To deal with ADL features, convert the precondition into disjunctive normal form:

[C1 ∨ … ∨ Ck ∨ … ∨ Cp]

Define Ck ≡ [Pk1 ∧ … ∧ Pkm ∧ (Fk(m+1) <= dk(m+1)) ∧ … ∧ (Fk(m+n) <= dk(m+n))],

where, Pij(t) is a positive or negative literal; (Flm <= dlm) is a linear arithmetic constraint.

The earliest time that Ck can be true is the earliest time the last remaining conjunct

becomes true (all other conjunction are already true); certainly the last conjunct is one

of arithmetic constraints, not a propositional constraint, because the value of

 61

propositional fluent does not change over the interval (Ti-1, Ti). The earliest time for Ck

to become true can be found by the following axiom:

 [∧ j [∧ l Pkl[Ti-1] ∧ (Fkj[Ti-1+] > dkj) ∧ [∧ p ≠ j (Fkp[Ti-1+] > dkj) => (Fkp[Ti-] <= dkj)]

⇒ (Fkj[Ti-] >= dkj)]]

The earliest time the precondition becomes true is determined by

(5) [∧ k [∧ j

 [∧ l Pkl[Ti-1] ∧ (Fkj[Ti-1+] > dkj) ∧ [∧ p ≠ j (Fkp[Ti-1+] > dkj) => (Fkp[Ti-] <= dkj)]

 ⇒ (Fkj[Ti-] >= dkj)]]]

Note that when an event is triggered by discrete changes, Fkj[Ti-1+] = Fkj[Ti-] by Axiom

(4); Thus, the left-side of the formula above becomes false always, and the formula is

true, always.

4.4.3.2 Representation of Actions

(6) Active(a,Ti) ⇒ <PreCondition>[Ti-] ∧ <PostCondition>[Ti+]

4.4.3.3 Representation of Process

Axiom on Precondition

(7) Active(pr,Ti) ⇔ [<PreCondition>[Ti+] ∧ <PreCondition>[Ti+1-]]

• Axiom (7) ensures that pr activated at Ti is active over an interval starting at Ti.

Note that the time point when pr terminates should be a significant time point,

and the precondition holds after Ti and before Ti+1.

 62

Axiom on Triggering by Continuous Changes with No Slip of Time

The same axiom used for events can be used to make a process to get triggered at

the earliest time the precondition becomes true by continuous changes:

(8)40 [∧ k [∧ j

 [∧ l Pkl[Ti-1] ∧ (Fkj[Ti-1+] > dkj) ∧ [∧ p ≠ j (Fkp[Ti-1+] > dkj) => (Fkp[Ti-] <= dkj)]

 ⇒ (Fkj[Ti-] >= dkj)]]]

Axiom on Termination with No Slip of Time

As soon as the precondition of a process becomes false, the process should be

terminated. It suffices to ensure that this happens with continuous changes41.

Precondition of a process can be in any logical expression of literals and arithmetic

constraints connected by {not, or, and, imply}. To deal with ADL features, convert the

precondition into a conjunctive normal form:

[D1 ∧ … ∧ Dk ∧ … ∧ Dp]

Define Dk ≡ [Pk1 ∨ … ∨ Pkm ∨ (Fk(m+1) <= dk(m+1)) ∨ … ∨ (Fk(m+n) <= dk(m+n))],

where, Pij is a positive or negative literal; (Flm <= dlm) is a linear arithmetic constraint.

40 If a process is triggered by discrete changes, Fij[Ti-] = Fij[Ti+]; all antecedents are false, so
the formula is true.
41 Since it is assumed that two instances of the same process in the ground form are not
allowed to be concurrent in this encoding, at each time point, each ground process is
considered for triggering. The process triggered is either newly triggered one at the point, or
resumed one of the ongoing process since (at least) the previous time point and discontinued
by discrete changes at the point. It is unnecessary to have provision to ensure continuity of
ongoing processes.

 63

In order to make the process to be terminated as soon as the precondition (persistent

conditions) is violated by continuous changes caused by concurrent processes, the

earliest time at least one of Dk becomes false should be the next time point. The

earliest time a disjunction Dk becomes false can be captured by the following formula

(that is, the earliest time the last linear constraint remaining true, all others are already

false, is about to become false)42:

[∧ j [∧ l ¬Pkl[Ti]] ∧ (Fkj[Ti+] < dkj) ∧ [∧ p ≠ j (Fkp[Ti+] <= dkj) => (Fkp[Ti+1-] > dkj)]

⇒ (Fkj[Ti+1-] <= dkj)]]

The earliest time the precondition is about to become false can be captured by the

following formula:

(9) [∧ k [∧ j

 [∧ l ¬Pkl[Ti] ∧ (Fkj[Ti+] < dkj) ∧ [∧ p ≠ j (Fkp[Ti+] <= dkj) => (Fkp[Ti+1-] > dkj)]

 ⇒ (Fkj[Ti+1-] <= dkj)]]]

Axioms for Effects (Continuous Changes)

(increase <nf> (* #t <RateOfChange>))Ti is encoded as:

(10) Active(pr,Ti) ⇒ [NetContiChange(pr,nf,Ti,Ti+1) = (Ti+1 –Ti) * <RateOfChange >]

(11) ¬ Active(pr,Ti) ⇒ [NetContiChange(pr,nf,Ti,Ti+1) = 0]

• NetContiChange(pr,nf,Ti,Ti+1) is accumulated in the equation of

Valuebefore(nf,Ti+1) given in Section 4.2.2.

42 Recall that if any of Pij in Dk is true, Dk does not constrain the next time point.

 64

4.4.4 Frame Axioms

In Level 5, the frame axioms are over actions and events. The same frame axioms

defined in Section 4.3.4 can be applied with a = A ∪ E .

4.4.5 Mutual Exclusivity

Interference constraints (mutex rules) are checked among the actions and events that

happen in the same time point: pairwise mutex checking between any action and any

other action, and between any action and any event. It is the domain designer’s

responsibility to make sure that events happening at the same time point do not

interfere. Any conflict between an action and an event is resolved in a way that gives

priority to the event over the action. This is enforced by asserting necessary and

sufficient conditions between occurrence of event and its precondition, given in Axiom

(7).

The mutual exclusivity axioms in Section 4.3.5 can be applied to Level 5 as follows:

∀ ai ∈A aj ∈A ∪ E such that ai and aj are in mutex,

(12) [¬ Active(ai,Ti) ∨ ¬ Active(aj,Ti)]

 65

4.5 Extensions for Metric Quantities

In this section, we extend the uses of functions in PDDL+ to support metric-

quantities 43 with the capacity feature and metric quantities of interval type. The

motivation behind extending numeric-valued fluents with capacity feature is that

resources44 in planning can be usually represented with metric quantities with capacity,

but PDDL+ has limitations45 in simulating the uses of resources. The interval type is

to represent metric quantities with lower and upper limits and to allow operations

based on Allen’s interval relations [Allen83].

Among the definitions of resource [LongFox00]46 [Bedrax03] [Smith97], let us

adopt the definition given by Laborie [Laborie02]: A resource is any substance or (set

of) object(s) whose cost or available quantity (capacity) induce some constraint on the

operations that use it. Naturally, resources in planning are closely connected with time

and concurrency: the reason why resources have received little attention in the

planning community is that most early planning formalisms could not handle

43 Notice that it is not difficult to extend this encoding for resources or metric quantities defined
over R to an encoding for multi-dimensional resource or quantities over Rn [Smith97], such as
a cargo ship with capacity of weight and volume, storage space with capacity of volume,
elevator with capacity of persons and weight, or even simple geometric shapes used in user
interface design. The idea is component-wise checking of capacity and propagation, if
necessary.
44 There are proposals [Bedrax03] [McDermott03-c] to formalize a resource and to extend
PDDL with a resource “explicitly” declared as an object with rich features in a style of object
oriented programming.
45 PDD+ cannot at all represent the use of multi-capacity resources by an instantaneous action.
On the other hand, in a durative action, multi-capacity resource can be simulated by allocating
at the starting point, capacity-checking as invariants, and deallocating at the ending point. The
tricky part is that extent of invariants in a durative action of PDDL+ does not include the end
points of the action; thus, the same capacity checking should be done in the precondition of
the ending action. Then, no moving targets rule will not allow an action updating the resource
to be concurrent at the end points of the durative action. The restriction on concurrent uses at
the end points happens with representation of any type of metric resources.

 66

concurrent actions. Moreover, in the context of continuous time (e.g. durative actions),

the management of resources become more complicated.

In this section, we present encoding schemes for a class of sharable 47 ,

reusable resources48 that are used exclusively during an action, but are not affected

by the action in any other way49:

• Multi-capacity resources (discrete, sharable, reusable resources): these are

represented as a numeric-valued fluent with the capacity feature.

e.g. identical machines in a factory or number of personnel

• Partitioned interval resources (continuous, sharable, reusable resource) whose

concurrent “uses” mean disjoint subintervals: these are represented as an

interval-valued fluent with capacity feature.

e.g. main memory (RAM) allocated to concurrent processes

Also, we present an encoding scheme for a metric quantity represented in terms of

interval used as a parameter to action as well as a function type

e.g. allocation of your time in interleaved concurrency to various

activities such as emailing, latexing and web browsing, which may

be related to tasks with deadlines

46 [LongFox00] defines that being resource or not is dependent on the context it is used.
47 “Sharable” resource is allowed to be used simultaneously, within its capacity.
48 Generally, the management of sharable resource is difficult in other planning frameworks
[Smith00-b], because it involves identifying potential resource conflicts which grow
exponentially with the number of actions sharing it.
49 Notice that in this sense, in the Gripper domain, the number of balls or number of grippers
for a robot is not a sharable, reusable resource, because the effect is propagated beyond the
duration of the action (pick up, put down), although those are resource in a general sense in
planning. Other types of resource such as continuous consumable/producible resource can be
dealt with in the same way as temporal metric encodings given in Section 4.3 and 4.4, with the
explicit identifications of being resources, like “consume” or “produce” statements.

 67

 First, we review what features are supported to represent metric quantities in

PDDL+, and define their syntactic extensions to support multi-capacity resources and

intervals. In Section 4.5.1, the encoding for multi-capacity resources is presented. The

encoding of resources based on intervals (“partitioned interval resources”) is

presented in Section 4.5.2. The encoding for interval-valued fluents is given in

Appendix E.

Representation of Metric Quantities in PDDL+

In PDDL+, metric quantities are represented as parameterized functions, arithmetic

comparison operators (>,>=,<,<=,=) between functional expressions, and updating

statements (increase, decrease, assign) of the value of function. Metric quantities with

capacity such as multi-capacity resources can be represented “implicitly” through

parameterized functions and arithmetic constraints to check its capacity while they are

in use. Apart from the limitations45 resulting from these means and semantics adopted

in PDDL+, the general implicit representation of resources makes it difficult to do

reasoning about resources. Most techniques for reasoning about resources require

explicit identification of the activities using the resource.

 Numeric-valued types are not allowed as a parameter to action in PDDL+.

Extension of Function Definition with Interval Type and Features

(:functions { <Def-of-Function> {capacity: <Constant>} -- <Type-of-Funct> }+)

 <Def-of-Function> is a function definition as defined in PDDL+

<Constant> = <Number> | <Interval>

 68

<Interval> = [<Number> , <Number>]
 <Type-of-Funct> = { positive | negative } { integer | real } { float | fluent }

 | { interval } { float | fluent }

The nature of sharable, reusable resources as defined in this section is that they may

be allocated at the beginning of the action and released at the end of action. use

subsumes50 both the allocation and the release.

(use ?resource ?quantity)

• This is used as an effect in atomic or durative actions(events, processes)

• ?resource is a parameterized function of either numeric type or interval type

• ?quantity51 is an arithmetic expression of constants, variables from numeric-

valued / interval-valued parameter of action, functions which are either float or

fluent and duration variables of durative actions.

• The value of arithmetic expression for ?quantity is evaluated in terms of

allocation time, if it contains fluents

• The quantity on request can be duration-dependent (for instance, number of

web designers for a project running for a week, given available designers and

man-power-per-day?), but not time-dependent in the sense that the whole

amount should be allocated at the beginning of the action, not gradually

needed over time.

50 We turn around the limitation in simulating resources as numeric-valued fluents, that is,
freeing resources of the “no moving targets” rule.
51 All the known reasoning techniques of resources deal only with known (constant) quantities
on request!

 69

4.5.1 Representation of Multi-Capacity Resources

There are several ways to encode multi-capacity resources in the SAT-based

planning framework:

(1) The simplest way is to name objects individually; this approach, however,

generates search space with evident symmetry [Rintanen00] [FoxLong99]

[FoxLong02-e]. It works reasonably well with a small number of objects that are

known at the encoding stage.

(2) If it is unnecessary to care about the identity of each object, it can be encoded as

n-ary mutex relation at each step: ¬(A1 ∧ A2 ∧ …∧ An) in aCn ways, assuming that a is

the number of actions using a unit of the resource, and n is greater than the capacity

of the resource and less than or equal to a. aCn grows exponentially with the number

of actions involved. This can be extended to allow more than one quantity on request.

However, the fundamental assumption of this approach is that the quantities

requested and capacity should be known (constant) at the encoding stage.

(3) If the identity of each object does not matter, the objects can collectively be

encoded as a numeric-valued fluent with capacity-checking done at each time point,

rather than represented in the n-ary mutex relations. The advantages of this approach

are as follows:

• There is no more symmetry in the search space caused by uses of this

resource.

• Quantity requested or capacity does not have to be known (constant) at

encoding stage.

 70

• By allowing the capacity to be variable, it can support the dynamic creation52 of

objects of the resource type in the domains where the identity of objects does

not matter.

In this section, an encoding scheme for multi-capacity resources based on the third

approach is presented with an extension of richer expressiveness such as variable

quantity.

Example: Sharing multi-capacity resources among durative actions

A software company has some amount of software under development and a finite

number of software engineers. As usual, stages of software development are

composed of design, implementation and testing, among which obvious precedence

relations exist. Each stage has its own estimated manpower (let’s say in a day unit)

How should engineers be allocated to projects?

;; This action starts with the available engineers and will last until its own
;; manpower meets. Likewise, design and testing can be represented
(:durative-action implementation

 :parameters (?s – software ?e – real)
 :duration (= (* ?duration ?e) (manpower ?s IMPLEMENTATION))
 :condition (and (at start (designed ?s)) (at start (not (implemented ?s)))
 (overall (not (implemented ?s)))
 (at end (not (implemented ?s))))
 :effect (and (at end (implemented ?s))

(use (engineers) ?e))
)

 ;; to consider the number of engineers taking a day off
 (:durative-action OneDayOff
 :parameters ()
 :duration (= ?duration 1)
 :precondition ()
 :effect (use (engineers) 1)

)

52 The Setters Domain used in IPC3 is such an example which needs the dynamic creation of
objects.

 71

Representation of Function of Multi-capacity Resource

The function defined as a numeric type with the capacity feature is encoded with two

variables at each time point:

• Valuebefore(?resource,Ti) is the level of the resource at a time point Ti before

any discrete change is made at Ti

• Valueafter(?resource,Ti) is the level of the resource at a time point Ti after any

discrete change is made at Ti.

Additionally, capacity checking at each time point is required. This is given in (9) ~

(12) below.

Notice that if the multi-capacity resource is shared only among instantaneous

actions exclusively or among durative actions, one variable at each time point is

enough. Two variables are needed only to be shared53 among durative actions and

instantaneous actions. The encoding of multi-capacity resources presented below can

deal with sharing among any kind of actions.

In an Instantaneous Action at Ti,

Each use statement in precondition of an instantaneous action at a time point can be

encoded with two variables:

• Quantitybefore(?resource,a,Ti) is the amount allocated to the action at Ti

on ?resource.

• Quantityafter(?resource,a,Ti) is the amount released by the action at Ti

on ?resource.

 72

(use ?resource ?quantity) is encoded as follows:

(1) Active(a,Ti) [Quantitybefore(?resource,a,Ti) = ?quantity]

(2) Active(a,Ti) [Quantityafter(?resource,a,Ti) = - ?quantity]

(3) [[Quantitybefore(?resource,a,Ti) = ?quantity] ⊕

 [Quantitybefore(?resource,a,Ti) = 0]]

(4) [[Quantityafter(?resource,a,Ti) = - ?quantity] ⊕

 [Quantityafter(?resource,a,Ti) = 0]]

• (1) and (3) ensure that allocation of the resource by the use statement is valid

only when the action containing the statement is active; otherwise, the quantity

of allocation by the statement is 0.

• (2) and (4) ensure the same as above on deallocation

• Quantitybefore(?resource,a,Ti) is accumulated in (9)

• Quantityafter(?resource,a,Ti) is accumulated in (10)

Note that if the resource is shared among instantaneous actions, only one variable is

used, and the total of uses is checked at each time point (i.e. checking allocation only).

In a Durative Action over [?start,?end],

Each use statement in invariants of a durative action can be encoded with two

variables54:

• Quantityafter(?resource,As,?start), is the amount allocated to the durative action

at ?start on ?resource.

54 Notice that the difference in (1) and (5), likewise (2) and (6): “after” and “before” are switched.

 73

• Quantitybefore(?resource,Ae,?end) is the amount deallocated from the durative

action at ?end on ?resource.

(use ?resource ?quantity) is encoded as follows:

(5) Active(As,?start) [Quantityafter(?resource,As,?start) = ?quantity]

(6) Active(Ae,?end) [Quantitybefore(?resource,Ae,?end) = - ?quantity]

(7) [[Quantityafter(?resource,As,?starti) = ?quantity] ⊕

[Quantityafter(?resource,As,?start) = 0]]

(8) [[Quantitybefore(?resource,Ae,?end) = - ?quantity] ⊕

[Quantitybefore(?resource,Ae,?end) = 0]]

• As for starting action of a durative action; Ae for ending action for a durative

action

• (5) and (7) ensure that allocation of the resource by the use statement is valid

only when the starting action of the durative action containing the statement is

active; otherwise, the quantity of allocation by the statement is 0 in (9).

• Since that As and Ae are causally linked in a durative action representation

((6) in Section 4.3.3), (6) and (8) ensure deallocation by quantity is valid only

when the ending action is active at ?end and the starting action is active

at ?start.. Otherwise, the deallocation is 0 in (10).

• Quantitybefore(?resource,As,?start) is accumulated in (9).

• Quantityafter(?resource,Ae,?end) is accumulated in (10).

Constraints at each time point:

(9) Valuebefore (?resource, Ti) =

 74

Valueafter (?resource, Ti-1) + ∑ Quantitybefore(?resource,a,Ti)

(10) Valueafter (?resource,Ti) =

Valuebefore (?resource, Ti) + ∑ Quantityafter(?resource,a,Ti)

(11) for all Ti , 0 <= Valuebefore(?resource, Ti) <= Capacity(?resource)

(12) for all Ti , 0 <= Valueafter(?resource, Ti) <= Capacity(?resource)

• (9) accumulates all (de)allocations at the “before” value on the previous level

of the resource, and (11) checks for capacity limit. (10) and (12) do the same

for the “after” value

• Notice that this encoding can handle the cases that the resource is shared

among instantaneous actions and durative actions, as in Level 4 of PDDL+. If

an instantaneous action is concurrent with the starting action of a durative

action, and both actions are accessing the resource, the “after” value at ?start

is changed by deallocation by the instantaneous action as well as by allocation

by the durative action.

4.5.2 Representation of Interval Type

The ways “interval” is used in Knowledge Representation can generally be classified

into two categories: One is representation of uncertainty (fuzziness), in which case

reasoning usually involves Interval Arithmetic [Funge99] [OlderVellino90] [Baioletti03].

The other is representation of continuous metric quantity (e.g. a period of time or line

segment), not the range of possibility. Here we use interval to represent continuous

metric quantities with lower and upper limits.

 75

In this section we present encoding schemes for the uses of interval as (i) a

parameter to an action, (ii) a function type using operations based on Allen’s interval

relations, and (iii) shared reusable interval resources.

Representation of Interval as a Parameter55 to Action

A parameter of interval type in a ground action at time point Ti can be encoded with

two variables, Istart(?p,a,Ti) and Iend(?p,a,Ti) to represent the two end points of the

interval. This encoding can be used for both an instantaneous action (or in discrete

time) and a durative action, since the parameter acts like float within the action.

However, if concurrency among the instances of the same durative action started at

different time points is allowed, invariants checking can not be shared among the

instances. Thus, the cost of using numeric-/interval-valued parameter is high in SAT

encoding.

Representation of Function of Interval Type

A function defined as interval float can be encoded with two variables, Istart(?i) and

Iend(?i) to represent the two end points of the interval.

55 As mentioned in Section 4.1.1, we reinstated the real-valued parameter to action in the TM-
LPSAT. The idea of encoding is to introduce a real-valued variable for each numeric-valued
parameter in a ground action. No additional care for the case with durative actions in
continuous time is necessary, since the parameter is like float local to the grounded action.
However, if instances of the same ground action started at different time points are allowed to
be concurrent, they needs to be distinguished with different variables for the parameter.
Consequently, invariants checking cannot be shared among the same actions, as mentioned in
Section 4.3.3.

 76

A function defined as interval fluent can be encoded with two variables,

Istart(?i,Ti) and Iend(?i,Ti) to represent the two end points of the interval at each time

point.

Operations on Interval-valued fluents are defined based on Allen’s thirteen

interval relations [Allen83] [Davis90]. The encoding is straightforward and lengthy and

is therefore given in Appendix E.

 4.5.2.1 Representation of Partitioned Interval Resources

We define a “Partitioned Interval Resource” as a sharable, reusable continuous

resource56 with a lower and upper bounds, of which concurrent uses mean allocation

of disjoint subintervals; the allocated subinterval (i.e. position as well as quantity) to an

action is preserved during the action.

The encoding given here is based on the assumption that the interval type is

float, whose initial value is given in the function definition or problem definition.

Function defined as interval float can be encoded with two variables, Istart (?resource)

and Iend(?resource) to represent two end points of the interval.

In order to deal with interval fluent, we need to extend with operations to

change the interval boundary (increase-low, decrease-high). Also, the variables for

boundaries should be defined at each time point: Istart(?resource,Ti) and

Iend(?resource,Ti).

56 The capacity of the resource can be constant or variable. An example of this is main
memory space allocated to concurrent processes. In contrast to general sharable, reusable
continuous resource (e.g. battery) of which the use means allocation of quantity only, this is a
special class of sharable, reusable continuous resources.

 77

Note that the encoding given below is based on the assumption that the

resource is shared among either instantaneous actions or durative actions, but not a

combination of the two. To share among the actions of the two types, use “before” and

“after” values at each time point, as done with encoding for multi-capacity resource.

Example: RAM allocation to concurrent processes:

 ;; (RAM-space) : capacity [min,max] – interval float
;; In OS that uses variable length partitions, each job is allocated a consecutive
;; segment of RAM

 (:durative-action ExecuteJob
 :parameters (?p – process ?memory – real ?time – real)
 :duration (<= ?duration ?time)
 :condition (and (at start (not (active ?p)))
 (over all (active ?p))
 (at end (active ?p)))
 :effect (and (at start (active ?p)) (at end (not (active ?p)))
 (use (RAM-space) ?memory))
)

In Instantaneous Action at Ti,

Each use statement in a ground action is assigned two variables to represent the two

end points of the subinterval: UIstart (?r,a,Ti) , UIend(?r,a,Ti) .

(use ?resource ?quantity) is encoded as follows:

(1) [UIstart (?r,a,Ti) >= Istart (?r)]

(2) [UIend (?r,a,Ti) <= Iend (?r)]

(3) [UIend (?r,a,Ti) = UIstart(?r,a,Ti) = Istart (?r)]

⊕ [UIend (?r,a,Ti) - UIstart (?r,a,Ti) = ?quantity]

(4) Active(a,Ti) ⇔ [UIend (?r,a,Ti) - UIstart (?r,a,Ti) = ?quantity]

 78

• (1) and (2) ensure that the subinterval should be contained in the interval

resource

• (3) ensures that at any time point the subinterval for use is either defined as

nonempty, exclusively or zero interval by setting end points to the beginning

point of the interval resource

• (4) guarantees that a subinterval for the use is allocated only if the action

containing the statement is active at Ti

Constraints to be checked at each time point:

(5) UI∀ UI∀ ’ [UIstart (?r,Ti) >= UI’end (?r,Ti)] V [UIend (?r,Ti) <= UI’start (?r,Ti)]

• UI and UI’ are all uses in instantaneous actions at Ti

• Pairwise checking if two intervals are not overlapped

In Durative Action over [?start, ?end],

Each use statement in a grounded durative action57 is assigned two variables to

represent the two end points of the interval at each time point: UIstart (?r,da, Ti) ,

UIend(?r,da, Ti)

(use ?resource ?quantity) is encoded as follows:

(1) [UIstart (?r,da, Ti) >= Istart (?r)]

(2) [UIend (?r,da, Ti) <= Iend (?r)]

57 It does not seem that encoding the uses of interval type in durative action is attractive in
terms of size, which is the consequence of the way durative actions can be handled in SAT-

 79

(3) [UIend(?r,da, Ti) = UIstart(?r,da, Ti) = Istart (?r)] ⊕

 [UIend (?r,da, Ti) - UIstart(?r,da, Ti) = ?quantity]

(4) Active(As,?start) ⇔ [UIend(?r,da,?start) - UIstart (?r,da,?start) = ?quantity]

(5) endTjstartTj ?? pp∀ ,

 [Active(Ae, ?end) ⇔

[UIstart(?r,da,Tj) = UIstart(?r,da,Tj-1) ^ UIend(?r,da, Tj) = UIend(?r,da, Tj-1)]]

• (1) and (2) ensure that the subinterval should be contained in the interval of

the resource

• (3) ensures that at any time point the subinterval for use is either defined as

nonempty, exclusively zero interval by setting end points to the beginning point

of the interval resource

• (4) allocates a subinterval of size of ?quantity if and only if the durative action

starts.

• (5) propagates the subinterval assigned at ?start over the time points in

(?start, ?end), and the propagation is activated if and only if the durative action

is in the plan.

• Active(As,?start) and Active(Ae, ?end) are causally linked in durative

action representation ((6) in Section 4.3.3) so that (4) and (5) ensure that the

subinterval is preserved during the period of the durative action.

Constraints to be checked at each time point:

based planning. The issue, then, is how to optimize (prune) the levels each durative action
may be able to start or/and to end.

 80

(6) UI∀ UI∀ ’ ,

 [UIstart (?r,da,Ti) >= UI’end (?r,da’,Ti)] V [UIend (?r,da,Ti) <= UI’start (?r,da,Ti)]

• Pair-wise checking if two intervals are overlapped

• UI and UI’ comprise all subintervals defined in any action in any time before

the current time point, inclusively.

 81

Chapter 5 Implementation of TM-LPSAT

 Figure 3: Architecture of the TM-LPSAT Planning Framework58

5.1 LCNF Compiler

The TM-LPSAT compiler translates PDDL+ descriptions of a domain and a problem

into a CNF formula over linear (in)equalities and propositional fluents. The current

implementation of PDDL+ and our encoding schemes can deal with the ADL features,

including types, negative preconditions, disjunctive preconditions, equality, quantified-

preconditions, and conditional effects.

The objective of current implementation of the TM-LPSAT is to test the

feasibility of the LPSAT approach to temporal and metric planning in continuous time.

“RelSat”

Satisfiability
Solver

“Cassowary”

Linear
Constraints

Solver

new or evoked linear constraints

inconsistency info,
real variable values

LCNF

Planning
Domain &
Problem

Extended PDDL+

SolutionDecoder

LPSAT[Wolfman&Weld]

Plan

Compiler

 82

Except pruning of the search space in a Graphplan style, collecting the time points

feasible for goal states in the durative temporal models, and optionally Crawford’s

COMPACT59 simplifier over CNF formulas, no other optimization on compiler has

been tried.

5.2 LPSAT Engine

Between MathSAT [Sebastiani01] [Audemard02-b] and LPSAT [Wolfman00]

[Wolfman99], two LP+SAT engines which were available to us at the time of research,

we have chosen (actually, no choice) LPSAT for verification of our encodings, simply

because of the expressiveness of linear constraints that the arithmetic constraint

solver integrated into the engine can support. The MathSAT can handle only limited

forms of linear inequalities (variable multiplied by constant, difference of two variables

in constant, etc.) which are not expressive enough for most domains with continuous

changes in planning; The LPSAT accepts linear inequalities that fit better for our

purpose. MathSAT, however, is robust 60 and supports optimization techniques of

state-of-the-art.

LPSAT by Wolfman and Weld

58 This figure is the same as the figure given in page 10.
59 It includes unit propagation, subsumption and pure literal elimination.
60 The capacity of the current version, they say, are of 20K Boolean variables, 300K clauses,
1K real variables and 5K atoms.

 83

The LPSAT engine is composed of RelSAT [Bayardo97] and Cassowary [Borning98]:

RelSAT is a variant of DPLL-based systematic solver using learning and back jumping

techniques, which led the performance of systematic solvers to the level competitive

to that of stochastic solvers. Cassowary is a linear arithmetic constraint solver

developed for user interface design, which is an implementation of an incremental

variant of Simplex method. Techniques to optimize its performance through

communication between the two components are explored, such as backjumping and

learning based on minimal conflict set calculated when the constraint set is

inconsistent and splitting heuristic for triggers for constraints.

The engine works as follows: The SAT solver is responsible for generating

assignment of truth values which includes triggers (Boolean variables) for arithmetic

constraints. Once an assignment has been found satisfiable propositionally, the set of

arithmetic constraints whose triggers are true in the assignment is checked for

consistency by the LP solver. If the set is consistent, the assignment is a model for the

axioms of the given planning problem. If inconsistent, the LP solver gives calculated

information of inconsistency (minimal conflict set) back to SAT solver.

In order to integrate their LPSAT into our TM-LPSAT, a number of adjustments

had to be made to the CNF formulas generated by the TM-LPSAT compiler:

• The form of linear constraints accepted by Cassowary is equality or non-strict

inequality; strict inequality is transformed into non-strict inequality by adding

very small ε . In practice, ε needs be tuned to be small enough not to make

any change in the value of any quantity used in the given domain.

 84

In Cassowary61 imbedded in the LPSAT, all numbers are assumed to be real number unless
positive constraint is given; a function whose value is be positive needs additional constraints
on being positive at every time point.

• Negated Arithmetic Constraint: Propositional Negation vs. Mathematical

Negation

The following triggering mechanism is adopted in LPSAT: A trigger is assigned

for each positive constraint. When the trigger is set to true, the positive

constraint is added to the set of linear constraints to be checked for

consistency. When the trigger is set to false (theoretically unnecessary62), its

negated constraint is automatically true. That is, negated arithmetic constraints

in the LPSAT are interpreted propositionally63.

Propositional negation works correctly if only positive forms of a

constraint occur in the input formulas. Otherwise, if both negated forms and

positive forms occur in the formulas, as is in our encodings, negated

constraints should be interpreted as mathematical negation64. Also, to deal

with negative precondition in ADL features, mathematical negation should be

adopted.

 not (f(t) = d) is converted into ((f(t) >= d + ε) V (f(t) + ε <= d)
not (f(t) <= d) is converted into (f(t) >= d + ε)
not (f(t) < d) is converted into (f(t) >= d)
not (f(t) >= d) is converted into (f(t) + ε <= d)
not (f(t) > d) is converted into (f(t) <= d)

61 In contrast to standard Simplex method, in which variables are assumed to be non-negative
real numbers.
62 The property can be generalized such that for a constraint occurring in only positive form (or,
negative form) in the formulas, assignment to false (or true) is not necessary. It can be useful
for pruning search tree, especially in dealing with equality, which requires a disjunction of two
strict inequalities [Sebastiani01].
63 Consequently, the LPSAT cannot handle negated precondition.
64 In MathSAT, mathematical negation is adopted so that it can deal with negated constraints
in the input formulas correctly.

 85

Chapter 6 Experiments

Neither the process of compilation nor encoding is optimized 65 in the current

implementation of the TM-LPSAT compiler. Thus, rather than comparing the

performance of TM-LPSAT with the state-of-the-art planners66, we experiment on our

encodings with different SAT-based constraint solvers. For the problems of substantial

size, the total time is dominated by the time required to search for the solution. Thus,

our interest is mainly to observe whether in terms of the searching time TM-LPSAT

can be comparable to the state-of-the-art planners based on different planning

frameworks.

In Section 6.1, we give an overview of the different constraint solvers dealing

with propositional combinations of Boolean variables and linear arithmetic constraints.

In Section 6.2, we present and discuss experimental results.

6.1 SAT-Based Arithmetic Constraint Solvers: LPSAT and MathSAT

LPSAT [Wolfman99] [Wolfman00] and two versions of MathSAT were available for

testing our encodings. The detail of LPSAT was dealt in Chapter 5. We give a brief

description of the MathSAT family.

65 Refer Section 5.1 for what can be optimized.
66 Almost all domain-independent planners can handle neither planning with continuous
change nor real-time temporal planning with, which are the main features of our TM-LPSAT.

 86

MathSAT [Sebastiani01] [Audemard02-b]

Two versions of the MathSAT family are available for our testing: one, we call it

“MathSAT03”, is the version dealing with difference constraints, that is, it cannot

handle more than two variables in a linear equation and any arithmetic operation

except the difference of two variables. The other, we call it “MathSAT04”, is an

extended version of MathSAT03 dealing with any arithmetic operation except division

and more than two variables in an equation. The form of negated equalities in the

extended linear constraints is under development; specifically, back-jumping on

arithmetic constraints and learning do not work at the moment.

The architecture of MathSAT is more sophisticated than LPSAT: it is composed of five

stratifying layers:

• L0: The DPLL-based Boolean solver

It takes care of only propositional connectives; arithmetic constraints are

abstracted as propositional ones.

• L1: Elimination of equalities

It propagates equalities and clusters variables.

• L2: Minimal path with negative cycle detection

If only atoms of “Vi – Vj {>,<.>=,<=} Constant“ remain, the problem is solved by

a minimum path algorithm with cycle detection, a variant of Bellman-Ford

algorithm.

• L3: Linear Programming simplex method

• L4: Handling negated equalities

 87

A layer Li is called by Li-1 to refine a partial solution of the problem. This decomposed

architecture allows exploiting specialized efficient algorithms to deal with each layer

and as well as allowing lazy evaluation so that difficult parts of problems (such as LP

solver) are not called until it is necessary.

The MathSAT family based on a SIM SAT solver and lpsolver support the following

features:

• Dependency among variables can be utilized: only a subset of independent

variables is used at branching points.

• It supports heuristics at branching points which are proven to be effective in

DPLL-based SAT solvers [Armando02]: ten options of heuristics67.

• It supports several optimization techniques for arithmetic constraints and

Boolean formulas, such as early pruning and static learning making similar

effects as learning on the run.

• The known techniques such as back-jumping and learning on arithmetic

constraints as well as propositional variables are included in “MathSAT03”. On

the other hand, as mentioned before, only back-jumping based on conflicts

among numeric variables and learning does works for “MathSAT04” for now.

67 JWHeur (Jeroslow and Wang heuristics), 2JWHeur (2 side Jeroslow and Wang heuristics),
SatoHeur (heuristics used in Sato 3.2 solver), SatzHeur (heuristics used in Satz solver),
BoehmHeur (heuristics used in Boehm), MomsHeur (Maximum Occurrences in clause of
Minimum Size heuristics), RelsatHeur (heuristics used in Relsat 2.0), UnitieHeur (heuristics

 88

6.2 Test Results and Discussion

We have separately tested metric planning, temporal planning, and temporal metric

planning, since characteristics of constraints specific to different planning may make a

difference in performance with features of different constraint solvers. We use these

terms in the following sense: Metric planning is reasoning about discrete changes of

numeric or propositional fluents that are made by actions over discrete time. Temporal

planning is reasoning about changes of propositional fluents that are made by actions

or durative actions over real-valued time. Temporal metric planning is reasoning about

changes of propositional fluents and discrete continuous changes of numeric fluents

that are made by operators (actions, events, durative actions, or processes) over

continuous time.

Preparation of Problem Domains and Instances

For the metric planning with discrete changes and temporal planning, domains and

problems from IPC3 are used. These are originally defined as optimization problems.

However, TM-LPSAT cannot optimize plans, the problems are converted to

satisfaction problems in a way that an optimized value68 (plan quality) generated by

based on unit propagation), RndHeur (it randomly selects the next proposition to assign), and
UsrHeur (it asks the next proposition to assign to user).
68 All domains and Problems used in our testing are to minimize the given plan metric.

 89

LPG planner69 [Gerevini03], one of the best planners competed in the IPC3, is used

as a condition of the goal state.

The problem domain used for temporal metric planning is a variation of

Bathtub domain introduced in Chapter 2: there are processes of “filling with a hot tap”

and “filling with a cold tap” and a process of “draining”, which can determine the level

of the bathtub at the same time. Also it includes an event of “Flood” when the bathtub

overflows, which in turn triggers an event “AutoTurnOff a tap”. By distinguishing hot

taps and cold taps, the goal includes constraints on the range of ratio of flows from hot

taps to flows from cold taps so that the desired bath temperature is achieved. Tested

are seven problem instances varying in the number of bathtubs and the number of

(hot/cold) taps and in the constraints given in a goal.

The encoding in a CNF formula generated by the TM-LPSAT compiler is

simplified by the Crawford’s Compaction algorithm, and then the simplified CNF

formula is fed into the constraint solvers: The compaction algorithm includes unit

propagation, subsumption, and pure literal elimination.

Set-ups of SAT-based Arithmetic Constraint Solvers

The LPSAT is set-up with options of backtracking and learning.

Options on heuristics in MathSAT are used to select the best performance.

“MathSAT03” and “MathSAT04” with Relsat heuristic utilize dependency feature (only

actions and starting/ending actions of durative actions are independent.). Static

69 Since the TM-LPSAT compiler is not optimized, it would not be meaningful at this point the
performance of TM-LPSAT is compared with the performance of LPG: LPG solves these
problems used in our testing less than a couple of seconds.

 90

learning feature is turned on, which may make similar effects on learning on the run in

“MathSAT04”. Also, early pruning and lpl (LP in the last) option are turned on with

“MathSAT04”.

The temporal planning is tested with “MathSAT03” supporting mathematical

back-jumping; metric planning and temporal metric planning requiring general forms of

linear constraints are tested with “MathSAT04”.

Platform of Testing

The times are measured on Linux 1.8 GHz Pentium IV processor with 512 MB RAM.

For the algorithms with nondeterministic choice points, such as LPSAT and MathSAT

with Relsat Heuristics, searching time averaged over 20 runs is presented along with

deviation.

6.2.1 Metric Planning

Actions are defined as independent variables for “MathSAT04”.

Table 1 shows the performances of the decision procedures with our metric

encoding. The domains and problems from “Numeric Category” of IPC3 are tested.

Table 2 shows the performances of MathSAT04 with different heuristics.

The constraints of encoding generated in metric planning are either mostly in

the form Vi = Constant70 (direct influence by discrete change), or in a general form of

70 The direct influences by discrete change are constant in particular for the instances used for
tests.

 91

linear constraints. The Vi = Constant (and its complementary form Vi = 0 from the

direct influence) is dealt by static learning and equality processing routine in

“MathSAT03” so that it will not call a LP solver. On the other hand, LPSAT should get

benefits from back-jumping based on conflicts of numeric constraints. The results do

not show which feature is more effective in this kind of planning.

 (Unit:Seconds)

 Domain
 Problem

DriverLog
 #2 #3 #4

Zeno
 #2 # 3 #4

Plan Quality
No. of Time Points

 981 911 707
 10 8 8

6784 4506 19964
6 5 5

Before Compaction:
 No. of Clauses
 No. of Boolean Variables
 No. of Linear Constraints
 No. of Real Variables
After Compaction:
 No. of Clauses
 No. of Boolean Variables
 No. of Linear Constraints
 No. of Real Variables

Compaction Time

14681 9791 18351
3201 2242 3018
796 582 760
415 305 394

8729 5808 10688
1755 1256 1713
784 572 743
415 305 394

92.29 40.71 139.79

4614 8739 9534
731 1283 1403
477 845 905
227 398 428

2701 5199 5806
671 1197 1302
459 822 883
220 392 422

8.13 28.97 35.57

LPSAT
 Searching Time
 (Deviation)

149.82 29.28 296.7
125.18 17.53 139.79

1.15 16.6 3.41
0.24 9.37 0.76

MathSAT04
 Searching Time

213.14 37.59 231

0.552 2.23 5.55

Table 1. Performances of Metric Planning with IPC3 Numeric Category

Heuristics JW 2JW Sato Satz Boehm Moms Relsat Unitie

ZENO
 Problem #2
 Problem #3
 Problem #4

8.816
461.46
410.63

7.252
> 600
328.93

36.032
> 600
> 600

0.552
2.23
5.55

6.582

252.71
189.03

35.914
> 600
> 600

9.118
> 600
> 600

2.957
289

74.59
DriverLog
 Problem #2
 Problem #3
 Problem #4

> 600
> 600
> 600

> 600
> 600
> 600

> 600
> 600
> 600

> 600
164.81

231

> 600
> 600
> 600

> 600
> 600
> 600

213.14
102.65
> 600

> 600
37.59
> 600

Table 2. Heuristics in MathSAT04: Metric Planning with IPC3 Numeric Category

 92

6.2.2 Temporal Planning

Starting actions and ending actions of durative actions are defined as independent

variables for “MathSAT03”.

Table 3 shows the performances of the decision procedures with our metric

encoding. Domains and problems are from “Simple Time” category of IPC03 domains.

The additional table shows LPGP’s [LongFox03] performance for the same domains

and problems. Table 4 shows the performances of “MathSAT03” with different

heuristics.

 (Unit:Seconds)
 Domain
 Problem

Satellite
#1

Zeno
 #1 #2 # 3

DriverLog
#1

Plan Quality
No. of Durative Actions

No. of Time Points

41
9
8

 173 599 280
 2 8 6
 4 7 6

 91
 8
 7

Before Compaction:
 No. of Clauses
 No. of Boolean Variables
 No. of Linear Constraints
 No. of Real Variables
After Compaction:
 No. of Clauses
 No. of Boolean Variables
 No. of Linear Constraints
 No. of Real Variables

Compaction Time

108310
4873
1864
428

13287
3602
1708
428

2109.93

 2060 287532 321102
 603 2706 4371
 112 975 1676
 51 283 555

 957 26121 45931
 253 1939 3368
 110 913 1592
 51 283 555

 1.67 7711.22 15026.3

62934
4498
1582
429

21743
2886
1342
449

574.59

LPSAT
 Searching Time
 (Deviation)

3.267
0.92

 0.07 1.53 27.13
 0.01 0.51 15.43

48.36
62.8

MathSAT03
 Searching Time

0.15

 0.00 0.08 0.16

0.3

Plan Quality
No. of Steps

41
9

 180 633 430
 1 6 9

91
8

LPGP
 Total Time

0.166

 2.667 5.498 13.233

0.33

Table 3. Performances of Temporal Planning from IPC3 Simple Time Category

 93

The total time consumed by LPGP [LongFox03] includes graph construction time and plan
searching time.
 The linear constraints in the temporal encoding are of either (i) Vi – Vj

{>,<.>=,<=} Constant, or (ii) Vi {>,<.>=,<=} Constant. These types of constraints are

extensively explored in the reasoning of the timed systems [Audemard02-a] and good

heuristics are known. “MathSAT03” is particularly effective in dealing with constraints

of these forms, which it solves using a variant of the Bellman-Ford algorithm, rather

than calling a LP solver as in LPSAT The results show that “MathSAT03” outperforms

in this kind of planning.

In temporal planning with durative actions, it is worthy to compare TM-LPSAT

with LPGP: The temporal encoding of TM-LPSAT is similar to Graphplan temporal

modeling adopted in LPGP. Like TM-LPSAT, consistency on temporal constraints

imposed by actions included in the plan is checked using a LP solver. The difference

is that TM-LPSAT searches for a plan non-directionally, and the LPGP searches

backward. Consequently, TM-LPSAT does not suffer from difficulty caused by

backward search, such as dealing with a durative action whose ending action is not

included in the plan, but whose starting action needs to be included in the plan.

Heuristics JW 2JW Sato Satz Boehm Moms Relsat Unitie

Satellite
Problem #1

> 300

> 300

> 300

0.15

> 300

> 300

> 300

> 300

ZENO
 Problem #1
 Problem #2
 Problem #3

0.00
0.51
1.85

0.00
0.49
1.84

0.00

18.46
> 300

0.00
0.08
0.16

0.01
0.45
1.75

0.01
18.26
>300

0.01
18.91
>300

0.01
5.25
14.71

DriverLog
Problem #1

> 300

0.36

> 300

1.34

0.3

> 300

> 300

> 300

Table 4. Heuristics in MathSAT03: Temporal Planning with IPC3 Simple Time Category

 94

6.2.3 Temporal Planning with Continuous Changes

Only actions are defined as independent variables, but events or processes are not.

 Table 5 shows performance of a variation of Bathtub domain. Table 6 shows

the performances of “MathSAT04” with different heuristics.

 (Unit:Seconds)

Problem Instances

Prob
#0

Prob
#1

Prob
#2

Prob
#3

Prob
#4

Prob
#5

Prob
#6

Size (# of Bath x # of Taps) 1 x 2 1 x 4 1 x 8 1 x 16 2 x 4 2 x 8 2 x 16
Before Compaction:
 No. of Clauses
 No. of Boolean Variables
 No. of Linear Constraints
 No. of Real Variables
After Compaction:
 No. of Clauses
 No. of Boolean Variables
 No. of Linear Constraints
 No. of Real Variables

Compaction Time:

398
273
166
68

376
242
166
68

0.11

638
373
198
84

568
316
198
84

0.26

1118
573
262
116

952
464
262
116

0.72

2078
973
390
180

1720
760
390
180

2.43

1093
658
323
129

974
543
323
129

0.73

1868
976
386
161

1586
758
386
161

2.01

3422
1616
514
225

2812
1191
514
225

6.55

LPSAT
 Searching Time
 (Deviation)

0.167
0.023

0.318
0.149

3.753
7.023

1.104
0.998

2.079
1.286

18.296
2.83

87.997
160.92

MathSAT04
 Searching Time

0.03

0.18

0.12

0.26

1.55

0.52

0.89

Table 5: Performances of Temporal Planning with Continuous Changes: Bathtub Domain

The number of steps was set to 5 for each instance; the plans for problem 4, 5 and 6 should be
parallel as much as possible to achieve a goal within 5 steps.

The patterns of linear constraints are mostly in a general form of linear

constraints of 3 variables or Vi = Constant (from direct influence by discrete change or

continuous change). Temporal metric encoding should be more constrained such that

metric constraints are intertwined with temporal constraints. Also generally the

proportion of numeric constraints and variables is larger than in any other planning.

 95

The results show at least with this domain that (i) “MathSAT04” still get

benefits from layered structure and choice of good heuristics at branching points,

compared to LPSAT, (ii) the choice of heuristic at branching point makes a big

difference in performance with “MahSAT04”. However, those results should be tested

with different domains and problems.

Heuristics JW 2JW Sato Satz Boehm Moms Relsat Unitie

Prob #0 0.09 0.03 0.05 0.2 0.12 0.06 0.682 1.19

Prob #1 0.23 0.18 125.21 0.9 0.54 124.87 0.45 0.28

Prob #2 2.36 0.12 0.15 > 600 30.79 0.17 62.037 0.2

Prob #3 85.39 0.26 0.35 > 600 > 600 0.36 > 600 0.53

Prob #4 > 600 200.11 > 600 1.55 > 600 > 600 243.7 > 600

Prob #5 > 600 1.21 0.52 > 600 > 600 0.52 > 600 > 600

Prob #6 > 600 2.58 0.9 > 600 > 600 0.89 > 600 > 600

Table 6: Heuristics and “total” time in MathSAT04: Bathtub Domain

 96

Chapter 7 Extensions of TM-LPSAT

In this Chapter, we suggest possible extensions of TM-LPSAT in continuing research

on this thesis. In Section 7.1, we list the possible directions of extensions of TM-

LPSAT. In Section 7.2, we discuss further techniques of optimizing encoding. In

Section 7.3, we present the known techniques to optimize the LPSAT engine based

on a systematic solver, particularly utilizing structure of planning domains.

7.1 Possible Extensions

Optimization of Encoding and LPSAT Engine

The optimization of encoding is the first and most necessary step in making TM-

LPSAT scalable and practical to a certain degree. We discuss these optimization

techniques further in Section 7.2.

Although it has been known that general SAT solvers work well with planning

domains, there is room to optimize a SAT solver when combined with an arithmetic

constraints solver. Also, the structure specific to planning domains can be utilized to

optimize the combined decision procedure. These optimization techniques are

discussed in Section 7.3.

 97

Adaptation to our Encoding into Planning Framework based on Plan Graph

There are (at least) two approaches to project a model of time71 into a plan graph. One72 is to
model the graph as a “uniform” flow of time so that each fact layer has fixed duration and each
action layer corresponds to an absolute time. The other73 is to model the graph to represent
the “logical” structure of plans.

The model of time adopted in TM-LPSAT naturally corresponds to the second

temporal projection: action layers are mapped to time points in our encoding and the

durations of fact layers are resolved by temporal metric constraints imposed by

actions happening at the end points of the fact layer. Thus, the adaptation of our

temporal metric encoding into the plan graph does not appear so difficult.

In addition to being utilizable for pruning74 SAT encoding75, CSP encoding76,

or MILP encoding77, the plan graph (constructed with metric temporal information and

characteristics of temporal models) opens up various search methods for plans. Apart

from the backward search78 adopted in Graphplan, these can include non-directional

searches by general SAT solvers: (i) Simulated Systematic SAT Engine in DPPlan

[Baioletti02] [Baioletti03], which simulates on a plan graph the strength of SAT solvers

(i.e. non-directional propagation and search) and the search techniques of DPLL (i.e.

if stuck with a certain value, flip it for a correct plan). Moreover, in the selection of

variables and their values, it can freely utilize heuristics specific to planning domains

71 [Coddington02] and {longFox03} deal with extensive analysis of these two temporal
projections on plan graph.
72 This temporal projection was adopted in TGP [Smith99], TP4 [HaslumGeffner01] and Sapa
[Do03-b].
73 This temporal projection is adopted in LPGP [LongFox03].
74 The current implementation of TM-LPSAT prunes search space in a Graphplan style;
however, the encoding stays in Sate-Space encoding, rather than in Graphplan encoding.
75 It’s called “Graphplan encoding” [KautzMcAllester96] and adopted in BlackBox SAT-based
planner [KautzSelman99].
76 it was adopted in GP-CSP [DoKambhampati00].
77 It was adopted in MILP planner [DimopoulosGerevini02].

 98

as well as problem domains. (ii) Simulated Stochastic SAT Solver in LPG temporal

metric planner [GereviniSerina03] [GereviniSerina03], which uses a local search on

the plan graph along with domain independent heuristics. (iii) Branch and Bound on

Plan Graph in BBG [HoffmannGeffner03], in which the search is done non-

directionally along with heuristic functions to prune the search space.

Almost all the work done in temporal metric planning, including optimization, is

based on the assumption that actions have constant durations and known numeric

resource usages. But we are chiefly interested in dealing with richer expressiveness

of temporal, metric constraints, such as uncertain durations, unknown resource

usages, numeric parameters and, eventually, continuous changes. We believe that

once our encoding is adopted on a plan graph, planning architectures searching on

the plan graph in the manner of a systematic or stochastic SAT solver (i.e. simulating

SAT engine) may be promising and robust in terms of (i) dealing with the richer

temporal, metric constraints mentioned above, (ii) overcoming SAT-based

architecture’s inability to utilize plan metric, (iii) and integrating other heuristics specific

to planning domains into the architectures. Those architectures can ultimately exploit

all benefits from Graphplan, SAT-based framework, and heuristic-based framework.

Currently we are working on mapping our temporal, metric encoding into the

plan graph.

LPSAT Engine Based on Stochastic SAT Solver

78 It is known that backward search is not an effective means for metric planning.

 99

All the known SAT-based decision engines are based on variants of the DPLL

systematic solver. As a related work, ILP-Plan metric planner [KautzWalser00] uses

integer local search based on WalkSat [Selman93] to solve mixed integer linear

programming problems in planning domains; LPG temporal metric planner

[GereviniSerina03] uses a local search similar to WalkSat on a plan graph, along with

domain-independent heuristics, which shows the best performance in IPC3 planning

competition.

Encoding Schemes

It has been proven empirically that different encoding schemes can make a big

difference in performance [Giunchiglia98] [Kautz96]. Another natural extension of TM-

LPSAT is the application of other encoding schemes. Considering that a partial order–

based approach is known to be good at handling continuous time, (lifted) causal link

encoding [KautzMcAllester96] is something worthy to explore. There are some works

[Wolfman] [Do03-a] on causal link encoding for temporal planning in semi-continuous

time, but at this point it is unclear to us whether it would be feasible to represent

concurrent continuous and/or discrete changes. Also, as mentioned above, a plan

graph extended with our encoding can be compiled into Graphplan encoding

[KautzMcAllester96] or CSP [DoKambhampati00].

Representation and Reasoning with Qualitative/Incomplete Information

 100

Reasoning with qualitative, incomplete properties and relationships among the

continuously changing quantities (parameters) is extensively explored in Qualitative

Reasoning community [Forbus84] [Weld90] [Kuipers01]. However, they have not yet

been incorporated into planning frameworks as well as planning domain definition

languages. In related work, Davis [Davis92] gives a logical analysis of Qualitative

Process Theory [Forbus84], while Miller and Shanahan [Miller96-b] speculate on

incorporating qualitative information about parameter behavior into their logical

formalism based on event calculus dealing with both continuous and discrete changes.

 7.2 Optimization of Encoding

Techniques to Reduce Encoding Size

It has been shown empirically that smaller encodings can generally be solved faster,

although a smaller encoding is not always easier to solve [Kautz96] [Ernst97].

• Different representation techniques for the same axioms to reduce encoding

size have been extensively explored [Ernst97]: factoring, operator splitting, bit

representation, etc.

• Brafman [Brafman01-a] reports that a substantial percentage (more than 50%

on average) of the clauses in SAT-encodings of planning problems (clearly

from the action representation and frame axioms, for instance) are binary

clauses. His simplification algorithm for binary clauses has proven very

beneficial, especially with systematic solvers. We tested his 2-simplifier with

 101

our encoding simplified by Crawford’s COMPACT; it shows a more than 20%

reduction in the number of clauses.

• Simplification techniques for arithmetic constraints include (i) constant folding

and expression folding as used in compilers, (ii) recognition of arithmetic

equivalence classes, (iii) and simplification algorithms for linear inequalities

connected by Boolean operators (done in the hardware/circuit verification

community [Strichman02] [Amon00]).

• The most popular technique for pruning search space is using a plan graph

built in Graphplan-style, as applied in Blackbox system (Graphplan + SAT

solver) [KautzSelman99], DPPLAN (Graphplan + simulated SAT engine)

[Baioletti02], LPGP temporal planner (Graphplan + LP solver) [LongFox03],

MILP temporal planner (Graphplan + ILP solver) [DimopoulosGerevini02],

LPG temporal metric planner (Graphplan + local search & repair) [Gerevini03],

BBG (Graphplan + branch and bound) [HoffmannGeffner03], Metric-FF

[Hoffmann03] or Sapa metric temporal planner [Kambhampati03] [Do03-b] (to

extract heuristics).

Many heuristics for a Graphplan-based framework have been explored to

prune search space. In particular, reachability (forward mutex propagation),

relevance, and inseparability (backward mutex propagation) can be utilized on

a plan graph: [Do00] and [Brafman01-b] present reachability and relevance-

based pruning techniques in a plan graph based SAT encoding.

The current implementation of TM-LPSAT prunes search space in a

Graphplan style. As shown in Chapter 6, the degree of pruned actions and

fluents varies drastically with domains and problems. Also the possible goal

 102

states can be collected while pruning. This is useful for the durative temporal

models (Level 3 & 4) in which the goal state may be in any time point because

the semantics impose all durative actions started in the plan to be finished in

the plan.

• Another technique to reduce encoding size would be to utilize domain

structure inferred from a domain analysis tool, such as TIM [FoxLong99]

[FoxLong00] or DISCOPLAN [Gerevini00]. This can be applied either on the

plan graph (to prune) or on the encoding level (to encode domain knowledge).

The MILP temporal planner [DimopoulosGerevini02] uses single-valuedness

(On(X,*Y)) and binary XOR constraints (ON(X,Y) and CLEAR(Y)) extracted by

a domain analysis tool to infer pairs of actions that cannot be concurrent. This

can be used to reduce the number of temporal constraints as well as the

number of temporal variables. Notice that this kind of mutex relation cannot be

identified by mutex rules imposed by the semantics.

Linearization Techniques

It may be possible to extend the power of TM-LPSAT by including techniques for

making originally nonlinear constraints linear.

• The information given in the initial and goal conditions could be used to reduce

an apparently nonlinear constraint into linear one by using simplification

techniques such as constant folding.

 103

• A linearization technique such as clock translation [Henzinger97]

[Henzinger98] used in hybrid systems can be applied to reduce nonlinearity

into linearity.

7.3 Optimization of LPSAT Engine

A systematic SAT solver is assumed for this section, as general SAT-based decision

procedures are based on DPLL. Optimizing a stochastic SAT solver would be a

different line of work.

Optimization of a SAT Solver Integrated with Arithmetic Constraints Solver

In the SAT-based framework integrated with an arithmetic constraint solver, the main

bottleneck in performance is the time consumed by arithmetic constraint solver

[Alessandro01] [Wolfman00]. This will probably become more true as the performance

of SAT solvers [Zhang02] improve. In order to reduce the time consumed by an

arithmetic constraint solver, the two solvers should interact. The general techniques

used in systematic solvers are as follows: (i) the SAT solver utilizes information from

the arithmetic solver on the inconsistent constraints set so that it can prune the search

tree (called back-jumping and learning from a minimal subset of inconsistent

constraints) [Wolfman00] [Castellini01]; (ii) the inconsistent arithmetic constraint sets

are identified in a preprocessing step, and then clauses are added to prevent any

combinations of those constraints from being considered active in a truth assignment.

These techniques are applied to many applications [Audemard02-b] [Audemard02-a]

 104

[Wolfman00] and have proved to be effective. However, this technique is

computationally expensive, so the justification for its use comes from greater

efficiency gain. Or, at the encoding stage, inconsistent pairs of arithmetic constraints

can be prevented from being triggered simultaneously as done in our encoding of

direct influence79.

Optimization of a General SAT Solver for Planning Domains

It is possible to exploit the structure specific to the planning domains, such as the

variable dependency that is lost by converting to CNF. The variable dependency can

be used to select variables at the branching points in order to prune the search space

(in particular, to reduce calls to arithmetic solvers).

In [Giunchiglia98], observing that the values of fluents at a certain time point

derive deterministically from the initial states and the sequence of actions performed

until that point, their planner utilized the nondeterminism in the planning domain, that

is, the choice of actions to be performed at each time point. It showed a dramatic

reduction in the search space. Similar ideas are utilized in Rintanen’s planner

[Rintanen98] [Rintanen99], DPPlan [Baioletti02] [Baioletti03] and LPG

[GereviniSerina03] [Gerevini03].

Mali [Mali02-b] extensively experimented on the effects of directional search

on SAT encodings of planning domains using Satz systematic solver [Li97], where

values are assigned to action and/or fluent variables in forward/backward directions

within/without intermittent manner. It is reported that directionality does matter in

79 See axioms (3) and (4) and the attached footnote in Section 4.2.2.

 105

solving SAT encodings of planning domains: forward and bidirectional searches

perform better than the backward search.

Worthy of investigation is how both of these observations work with metric/

temporal domains and the identification of the structure specific to temporal and/or

metric domains.

 106

Chapter 8 Conclusion

The dimension of time is inherently involved in any domain with change. Many

complex real-world domains involve continuous, metric time, resources, metric

quantities, and concurrent actions. However, until very recent years, continuous time

had not been studied by the planning community, mainly because planning

techniques have not caught up to cope with continuous time and subsequent

complications with resources and concurrency.

 We have developed a SAT-based temporal planner that can reason about

continuous and/or discrete changes. As far as we know, our TM-LPSAT is the first

SAT-based planner that can reason in continuous time.

 It was claimed that the SAT-based approach to continuous time would not be

feasible [Smith00-b] [LongFox00]: Allowing a metric quantity to be a continuous

function of time raises the possibility that there could be an infinite number of possible

actions, such as a refueling action in which the level of fuel added is a function of the

duration of the action. The way this problem is resolved in TM-LPSAT is to encode in

terms of the time points at which “interesting activities” happen, rather than every

possible action point as encoding in discrete time. It can be interpreted in such a way

that time points in TM-LPSAT are an abstraction of all possible refueling actions: If

refueling action at a certain metric time is “interesting” from the point of goal

achievement, the action at the metric time is bound to one of the time points. A time

point in TM-LPSAT is bound to the metric time value over R* (nonnegative real

numbers). Number of time points is determined by the interesting activities happening

 107

at distinct times, which are needed to achieve the goal. It is possible that more than

one activity happens at a time point, i.e. it supports parallelism.

The TM-LPSAT generates plans based on the following assumptions:

• The world is closed.

• Actions are deterministic.

• There is a single agent in the world.

• Time is isomorphic to nonnegative real numbers.

The TM-LPSAT has the following features:

• It accepts planning problems described in PDDL+ (but does not include the

plan metric feature of PDDL+).

• It generates a parallel plan that contains concurrent, asynchronous actions.

• It can reason about concurrent continuous and/or discrete changes on

numeric-valued fluents.

• Actions may depend on or make changes on piecewise linear metric

constraints.

• It can reason about durative actions that occur over extended intervals of time;

the intervals may be static (constant), dynamic (variable) or uncertain

(inequality relation).

• It can reason about continuous changes captured within durative actions.

• It can reason about autonomous processes carrying continuous changes and

external events.

• It supports a numeric-valued or interval-valued parameter to action.

 108

• It supports interval type as a fluent type. In addition to Allen’s 13 Interval

relations, extended relational operations among interval-valued fluents and

operations of updating interval-valued fluents are supported.

• It supports sharable, reusable resources: multiple-capacity resources and

interval-partitioned resources. The resource usages can be variable.

• It can deal with the ADL80 subset of PDDL+, including such features as typing,

negative preconditions, disjunctive preconditions, equality, quantified

preconditions, and conditional effects.

 We have developed encoding schemes to support these features. Based on

the LPSAT engine [Wolfman99], the TM-LPSAT temporal metric planner has been

implemented. Also we have experimented on our metric temporal encodings with the

MathSAT decision procedure solving propositional combinations over Boolean

variables and linear arithmetic constraints. The test results show that the solving times

of TM-LPSAT can be comparable to state-of-the-art planners based on other planning

frameworks. The issues are to find and utilize the structure specific to the planning

domains or problems to guide the search in decision procedures.

The TM-LPSAT has the following limitations:

• It restricts arithmetic constraints and continuous changes to be piecewise

linear. The encoding for triggering and terminating events/processes with no

time slip (also constraining as the ending point of a durative action when

invariants become FALSE from TRUE) is based on the assumptions that all

80 In the SAT-based framework like TM-LPSAT, these advanced features can be handled
without any extra complication.

 109

arithmetic constraints in the conditions are piecewise linear and that it is

restricted to non-strict equalities.

• A crucial limitation of the SAT-based approach to the temporal metric planning

is its inability to use optimization functions. In general, plan quality in temporal

metric domains is very likely to be inherently multi-dimensional, which may be

composed of a temporal quality (such as makespan) and a plan cost (such as

resource consumption or cumulative action cost). Moreover, there may be

interdependencies between different quality metrics. In the planning

architecture of a current state-of-the-art SAT solver integrated with an

arithmetic solver, it is not feasible to find an optimal plan according to plan

metrics [Wolfman99] [Smith00], even within bounded length; there may be

other truth assignments that satisfy the formula and optimize the objective

functions better.

• Another fundamental limitation of TM-LPSAT, as well as the SAT-based

approach itself, is the size of the encoding, since it needs Boolean variables

for fluents and ground actions to be defined at every time point and the size

blows up when transformed into a CNF formula. Although there is plenty of

room to optimize the encoding size as elaborated in Section 7.2, the approach

ultimately would end up with memory explosion.

 As discussed in Section 3.1, there are some planning systems that can reason

about continuous changes: the extent of concurrency and expressiveness of temporal

metric constraints that these systems can handle are very limited and the systems

scale up poorly. The current state-of-the-art domain independent temporal planners

 110

dealing with durative actions are at an early stage of development in terms of the

expressiveness they can handle (e.g., constant durations and STRIPS-style

operators). There are a few temporal and metric planners, but they can deal mostly

with discrete changes within a durative action; LPG [Gerevini03] and Sapa [Do03-b]

temporal and metric planners claim to handle continuous changes within durative

actions, but the extent of concurrency they can deal with and their scalability are

unclear.

 McDermott’s Optop planner, which deals with durative actions and

autonomous processes [McDermott03-b], is at the stage of feasibility testing for the

Estimated Regression approach, as is our planner. However, the Optop can optimize

plans and is open to deal with nonlinearity of arithmetic constraints.

 There exists neither a SAT-based temporal planner in continuous time nor a

SAT-based temporal and metric planner.

 We claim that our TM-LPSAT shows that the SAT-based framework is feasible

for planning in continuous time. Based on experiments with domains and problems

used in IPC3, we can see that in terms of the searching time the SAT-based approach

to metric temporal planning is quite comparable to other approaches and there

remains plenty of room to push the limits of the SAT-based approach.

 111

Appendix A: Notations

A.1 Sets

T A set of time points

PF A set of propositional fluents

NF A set of numeric-valued fluents

PR A set of processes

E A set of events

A A set of instantaneous actions

DA A set of durative actions

PosCond(pf) The set of actions and events with positive literal pf in

precondition

NegCond(pf) The set of actions and events with negative literal ¬ pf in

precondition

Ref(nf) The set of actions and events which refer numeric-valued fluent

nf in precondition or effect.

PosEffect(pf) The set of actions and events with positive literal pf in effect

NegEffect(pf) The set of actions and events with negative literal ¬ pf in effect

SetEffect(nf) The set of actions and events with assign statement on

numeric-valued fluent nf

AddEffect(nf) The set of actions and events with increase or decrease

statement on numeric-valued fluent nf

 112

A.2 Predicates

Active(a,Ti) (DA U A U E U PR) * T → { True, False }

• Is action (process or event) active at time point Ti?

Proposition(pf,Ti) PF * T → { True, False }

• Is a propositional proposition pf true at at time Ti?

Continues(a,Ti) (DA U PR) * T → { True, False }

• Is there any durative action (process) a continuing at time Ti? (remind that it is

possible for the same durative actions started at different time points to be

concurrent.)

A.3 Functions

RateOfChange(a,nf,Ti) (DA U PR) * NF * T → R

• Rate of change of a numeric-valued fluent nf by a durative action (process) a

at time Ti

NetContiChange(a,nf,Ti-1,Ti) (DA U PR) * NF * T * T → R

• Continuous change in a numeric-valued fluent nf made by a durative action

(process) a over the interval (Ti-1,Ti).

• Since the same durative actions but started at different time points can be

concurrent over the interval (Ti-1,Ti), a distinguishes those instantiations of the

durative action.

DiscreteChange(a,nf,Ti) (DA U A U E) * NF * T → R

• Discrete change on a numeric-valued fluent nf by an action (event) a at time Ti

 113

• a distinguishes different instantiations of the same durative action started at

different time points.

 114

Appendix B: Time-Labeling Convention

We use the following convention for labeling time-dependent terms:

<LogicalExpression>[Ti-] (read as the logical expression is time-labeled by Ti-)

• The logical expression is time-labeled with the values of fluents before the

discrete changes made at the time point Ti.

e.g. Precondition of an action or event happening at Ti

• Each propositional fluent is time-labeled by Ti-1.

• Each numeric-valued fluent is time-labeled by Valuebefore(nf,Ti).

<LogicalExpression>[Ti+] (read as the logical expression is time-labeled by Ti+)

• The logical expression is time-labeled with the values of fluents right after the

discrete changes made at the time point Ti.

e.g. Postcondition of an action or event happening at Ti

 Precondition of a process triggered by discrete changes at Ti

• Each propositional fluent is time-labeled by Ti

• Each numeric-valued fluent in the right-hand side of an arithmetic statement is

time-labeled by Valuebefore(nf,Ti).

• Each numeric-valued fluent in the left-hand side of an assignment statement or

precondition (of a process) is time-labeled by Valueafter(nf,Ti).

 115

Appendix C: Encoding Temporal Model of Durative Actions

First, we define a simplified bathtub domain and a problem in extended PDDL+ level 4,

and then, show its encoding in the meta-level notation.

C.1 Bathtub Domain

This is a simplified variation of Bathtub domain introduced in Section 1.1. There are

more than one bathtub in the bathroom; there are more than one tap, each of which

flows at its own flow rate when it is turned on. We may plan to fill the bathtub to a

certain level. Also, we may want to add some bubble while running water. Observe

that this domain shows that (i) concurrent continuous changes on the level of the

bathtub may occur by turning on multiple taps, and (ii) discrete change on the water

level of bathtub can occur while continuous changes go on the level of bathtub. Here

we model this domain in extended PDDL+ Level 4 (using ADL features) and show a

problem.

Problem definition:

 (:problem A-Problem-Simplified-Bathtub
 :objects (HOT – tap COLD – tap MYBATH – bath)
 :init (plug_in MYBATH)
 (level MYBATH 0)
 :goal (and (bubble_added MYBATH)
 (> (level MYBATH) (/ (capacity MYBATH) 2))
 (<= (level MYBATH) (* 0.75 (capacity MYBATH))
)
)

 116

Domain definition:

 (:domain Simplified-Bathtub
 :requirements (:types :durative-actions :adl)
 :types (bath tab)
 :predicates ((tap_on ?b – bath ?t – tap)
 (plug_in ?b – bath)

 (bubble_added ?b – bath)
)

 :fluents ((level ?b – bath) - fluent
 (hot-flows ?b – bath) - fluent
 (cold-flows ?b – bath) – fluent

 (flow ?b – bath ?t – tap) - float
 (capacity ?b – bath) – float
)

(:durative-action fillBath
 :parameters (?b – bath ?t - tab)
 :duration ()
 :condition (and (at start (plug_in ?b)) (at start (not (tap_on ?b ?t)))
 (over all (<= (level ?b) (capacity ?b)))

(at end (tap_on ?b ?t)) (at end (plug_in ?b)))
:effect (and (at start (tap_on ?b ?t))

 (at end (not (tap_on ?b ?t)))
 (increase (level ?b) (* #t (flow ?b ?t))))
)

(:action addBubble
 :parameters (?b – bath)
 :precondition (and (not (bubble_added ?b))

(exists (?t – tab) (tap_on ?b ?t))
(<= (level ?b) (/ (capacity ?b) 2)))

 :effect (and (bubble_added ?b)
(increase (level ?b) (/ (capacity ?b) 30))

)

(:action turnOn
 :parameters (?b –bath ?t –tab)
 :precondition (not (tap_on ?b ?t))
 :effect (tap_on ?b ?t)
)

(:action turnOff
 :parameters (?b –bath ?t –tab)
 :precondition (tap_on ?b ?t)
 :effect (not (tap_on ?b ?t))
)

 117

C.2 Encoding in Meta-Level

Notations (with examples):

• A ground durative action parameterized with starting time point and ending time point:
fillBath(BATH0,HOT,Ti,Tj)

Or, a ground action parameterized by starting time point

fillBath(BATH0,HOT,Ti)
• A starting/ending action of a ground durative action parameterized by the starting time

point Ti:

As(fillBath(BATH0,HOT,Ti)), Ae(fillBath(BATH0,HOT,Ti))

• A ground instantaneous action is active at a given time point or not:

Active(Ae(fillBath(BATH0,HOT,Ti)),Tj)

• Each ground propositional fluent is parameterized by the time point, meaning that it is

true or false at the time point:

tap_on(BATH0,HOT,Ti)

• Each numeric-valued fluent is represented as follows:

Valuebefore(level(BATH0),Tj)), Valueafter(level(BATH0),Tj)),

• Each numeric-valued float is represented as follows:

Value(flow(BATH0,HOT))

• The duration of a ground durative action is represented as follows:

Value(duration(fillBath(BATH0,HOT,Ti)))

• At least one instance of the ground durative action is active at the time point:

Continues(fillBath(BATH0,HOT), Tk)

• A direct influence (continuous change) on a numeric-valued fluent by a ground

durative action started at Ti and ended in Tj over the interval [Tk-1,Tk]:

NetContiChange(fillBath(BATH0,HOT,Ti,Tj), level(BATH0),Tk-1,Tk)

• A discrete change on a numeric-valued fluent by a instantaneous action

DiscreteChange(addBubble(BATH0,Tk), level(BATH0),Tk)

 118

Representation of Durative Actions:

(1) Active(As(fillBath(BATH0,HOT,Ti)),Ti) ⇒

 plug_in(BATH0,Ti-1) ∧ ¬ tap_on(BATH0,HOT,Ti-1) ∧ tap_on(BATH0,HOT,Ti)

(2) Active(Ae(fillBath(BATH0,HOT,Ti)),Tj) ⇒

tap_on(BATH0,HOT,Tj-1) ∧ plug_in(BATH0,HOT,Tj-1) ∧ ¬ tap_on(BATH0,HOT,Tj)

(3) Active(Ae(fillBath(BATH0,HOT,Ti)),Tj) ⇒ Active(As(fillBath(BATH0,HOT,Ti)),Ti)

 ∧ [Ti + Value(duration(fillBath(BATH0,HOT,Ti))) = Tj]

(4) Active(As(fillBath(BATH0,HOT,Ti)),Ti) ⇒

 [Active(Ae(fillBath(BATH0,HOT,Ti)),Ti+1) ∨ … ∨ Active(Ae(fillBath(BATH0,HOT,Ti)),Tn)]

(5) Active(Ae(fillBath(BATH0,HOT,Ti)), Tj) ⇒

[∀ Tk Ti < Tk < Tj Continues(fillBath(BATH0,HOT), Tk)]

(6) Continues(fillBath(BATH0,HOT), Tk) ⇒

 [Valuebefore(level(BATH0),Tk) <= Value(capacity(BATH0))] ∧

[Valueafter(level(BATH0),Tk) <= Value(capacity(BATH0))]

(7) ¬ Continues(fillBath(BATH0,HOT), Tk-1) ∧ Continues(fillBath(BATH0,HOT), Tk) ⇒

 [Valueafter(level(BATH0),Tk-1) <= Value(capacity(BATH0))] ∧

(8) ∀ Tk, Ti < Tk <= Tj ,

 Active(As(fillBath(BATH0,HOT,Ti)),Ti) ⇒

 [NetContiChange(fillBath(BATH0,HOT,Ti),level(BATH0),Tk-1,Tk) =

(Tk –Tk-1) * Value(flow(BATH0,HOT))]

¬ Active(As(fillBath(BATH0,HOT,Ti)),Ti) ⇒

 [NetContiChange(fillBath(BATH0,HOT,Ti),level(BATH0),Tk-1,Tk) = 0]

 119

Representation of Constraints on Duration

The “fillBath(BATH0,HOT)” action in the Bathtub domain defined in Example2-1, starts at Ti

and ends at Tj has follwing constraint on its duration:

(:duration (at end (<= ?duration (/ (- (capacity ?b) (level ?b)) (flow ?b ?t))))

is encoded as

Active(Ae(fillBath(BATH0,HOT,Ti)), Tj) ⇒

[Value(duration(fillBath(BATH0,HOT,Ti))) <=

 (Value(BATH0) – Valuebefore(level(BATH0),Tj)) / Value(flow(BATH0,HOT))]

Note that in this case the constraint is time-annotated by “at end”, which means that the

constraint should be held at the ending time point of the action. Likewise, if it is time-annotated

by “at start”, the activation of its starting action implies the constraint at the starting point.

Frame Axioms:

Propositional Fluents:

 ¬ tap_on(BATH0,HOT,Ti-1) ∧ tap_on(BATH0,HOT,Ti) ⇒

 Active(As(fillBath(BATH0,HOT,Ti)),Ti)

Numeric-Valued Fluents: “level” of the Bathtub at T3,

Valuebefore(level(BATH0),T3) = Valueafter(level(BATH0),T2) +

NetContiChange(fillBath (BATH0,HOT,T1,T3), level(BATH0),T2,T3) +

NetContiChange(fillBath(BATH0,HOT,T2,T3), level(BATH0),T2,T3) +

NetContiChange(fillBath(BATH0,COLD,T1,T3),level(BATH0),T2,T3)+

 NetContiChange(fillBath(BATH0,COLD,T2,T3), level(BATH0),T2,T3)

Valueafter(level(BATH0),T3) = Valuebefore(level(BATH0),T3) +

 DiscreteChange(addBubble(BATH0,T3), level(BATH0),T3)

 120

Mutual Exclusivity:

Propositional Fluents:

 for “tap_on(BATH0,HOT)”,

 [turnOn(BATH0,HOT,Ti) ∨ tapOff(BATH0,HOT,Ti)] ∧

[¬ turnOn(BATH0,HOT,Ti) ∨ ¬ tapOff(BATH0,HOT,Ti)]

Numeric-Valued Fluents:

 for the “fillBath” ,a discretized durative action defined in Example 2-1 and “addBubble” ,

[¬ Active(Ae(fillBath(BATH0,HOT,Ti)),Tj) ∨ ¬ Active(addBubble(BATH0),Tj)]

By rule 3 (no moving target rule for numeric-valued fluents), “fillBath” can not finish at

time Tj at which “addBubble” occurs, since the ending action of “fillBath” refers

(updates) the value of the level and “addBubble” updates (refers) the value.

 121

C.3 Conditional Effect

This is “Match” domain [FoxLong03], burning a match to make a location light before
picking up an object in the location.

(:durative-action burnMatch

 :parameters (?m – match ?l – location)

 :duration (and (< ?duration 5) (> ?duration 0))

 :condition (and (at start (have ?m)) (at start (at ?l)))

 :effect (and (when (at start (dark ?l))

 (and (at start (not (dark ?l))) (at start (light ?l))))

 (at start (not (have ?m)))

 (at start (burning ?m))

 (at end (not (burning ?m)))

 (when (at start (dark ?l))

 (and (at end (not (light ?l))) (at end (dark ?l))))

)

 (:action pickUp

 :parameters (?l – location ?o – object)

 :precondition (and (at ?l) (onFloor ?o ?l) (light ?l))

 :effect (and (not (onFloor ?o ?l)) (have ?o))

)

Encoding:

(when (at start (dark ?l)) (and (at end (not (light ?l))) (at end (dark ?l)))) in “burnMatch” action

over an interval [Ti,Tj] is encoded as

 Active(Ae(burnMatch(MATCH0,BASEMENT0,Ti)),Tj) ⇒

 [dark(BASEMENT0,Ti-1) => ¬ light(BASEMENT0,Tj) ∧ dark(BASEMENT0,Tj)]

 122

Appendix D: Encoding Real-Time Temporal Model

D.1 Bathtub Domain

This is the PDDL+ Level 5 version corresponding to the Bathtub domain as defined in

Appendix C.

Domain Definition:

(:action tapOn
 :parameters (?b – bath ?t – tab)
 :precondition (and (plug_in ?b) (not (tap_on ?b ?t)))
 :effect (tap_on ?b ?t)
)

(:process fillBath
 :parameters (?b – bath ?t - tab)
 :precondition (and (tap_on ?b ?t) (<= (level ?b) (capacity ?b))
 :effect (increase (level ?b) (* #t (flow ?b ?t)))
)

(:event flood
 :parameters (?b - bath)
 :precondition (and (exists (?t – tap) (tap_on ?b ?t))

(>= (level ?b) (capacity ?b))
(dry_floor ?b))

 :effect (not (dry_floor ?b))
)

(:action addBubble
 :parameters (?b – bath)
 :precondition (and (not (bubble_added ?b))

(exists (?t – tab) (tap_on ?b ?t))
(<= (level ?b) (/ (capacity ?b) 2))

 :effect (and (bubble_added ?b)
(increase (level ?b) (/ (capacity ?b) 30))

)

Assume that BATH0 is an object of bath type; HOT and COLD are objects of tap type.

 123

D.2 Encoding in Meta-Level

(The same notational conventions are used as defined in Appendix 3.1.)

(1) Axioms for “flood” event,

 Active(flood(BATH0),Ti) ⇔

[tap_on(BATH0,HOT,Ti-1) ∨ tap_on(BATH0,COLD,Ti-1)] ∧

[Valuebefore(level(BATH0),Ti) >= Value(capacity(BATH0))] ∧

dry_floor(BATH0,Ti-1)

 Active(flood(BATH0),Ti) ⇒ ¬ dry_floor(BATH0,Ti)

(2) Axioms for “addBubble” action,

 Active(addBubble(BATH0),Ti) ⇒

[¬ bubble_added(BATH0,Ti-1)] ∧

[tap_on(BATH0,HOT,Ti-1) ∨ tap_on(BATH0,COLD,Ti-1)] ∧

 [Valuebefore(level(BATH0),Ti) <= Value(capacity(BATH0)) / 2] ∧

[bubble_added(BATH0,Ti)]

 Active(addBubble(BATH0),Ti) ⇒

[DiscreteChange(addBubble(BATH0,Ti),level(BATH0),Ti) =

Value(capacity(BATH0)) / 30]

 ¬ Active(addBubble(BATH0),Ti) ⇒

[DiscreteChange(addBubble(BATH0,Ti),level(BATH0),Ti) = 0]

(3) Axioms for “fillBath” process,

Active(fillBath(BATH0,HOT),Ti) ⇔

[tap_on(BATH0,HOT,Ti-1) ∧

 [Valueafter(level(BATH0), Ti) <= Value(capacity(BATH0))]]

 ∧

[tap_on(BATH0,HOT,Ti) ∧

 [Valuebefore(level(BATH0), Ti) <= Value(capacity(BATH0))]]

 124

Active(fillBath(BATH0,HOT),Ti) ⇒

 [NetContiChange(fillBath(BATH0,HOT,Ti),level(BATH0),Ti,Ti+1) =

 (Ti+1 –Ti) * Value(flow(BATH0,HOT))]

¬ Active(fillBath(BATH0,HOT),Ti) ⇒

 [NetContiChange(fillBath(BATH0,HOT,Ti),level(BATH0),Ti,Ti+1) = 0]

(4) The axiom for Triggering “flood” event with no time slip:

[tap_on(BATH0,HOT,Ti-1) ∧ dry_floor(BATH0,Ti-1) ∧

 Valueafter(level(BATH0),Ti-1) > Value(capacity(BATH0))]

⇒ [Valuebefore(level(BATH0),Ti) >= Value(capacity(BATH0))]

[tap_on(BATH0,COLD,Ti-1) ∧ dry_floor(BATH0,Ti-1) ∧

[Valueafter(level(BATH0),Ti-1) > Value(capacity(BATH0))]

⇒ [Valuebefore(level(BATH0),Ti) >= Value(capacity(BATH0))]

 (5) The axiom for terminating “fillBath” process with no time slip:

 [Valueafter(level(BATH0), Ti) < Value(capacity(BATH0))] ⇒

 [Valuebefore(level(BATH0), Ti+1) <= Value(capacity(BATH0))]

 125

Appendix E: Encoding Interval-Valued Fluents

We define operations on interval-valued fluents and present how the operations can

be encoded in LCNF forms.

Operations with Intervals [Davis90] [Allen83]

To reason with intervals, we extend PDDL+ with the following operations among

intervals and points:

<IntervalUpdateStmt> = (set-I <FunctionOfIntervalType> <IntervalExpr>)

• Assign evaluated <IntervalExpr> to <FunctionOfIntervalType>

<IntervalExpr> = <Interval> |

 (<CompositonOp> <IntervalExpr> <IntervalExpr>)
<Interval> = <FunctionOfIntervalType> | <ConstantInterval>

<CompositonOp> = overlap_of | join

(overlap_of I J) ≡ { [Kstart, Kend] = K | KxJIx ∈∩∈∀ }

if I is overlapped with J, or contained in J, or vice versa

 undefined otherwise

 (join I J) ≡ { [Kstart, Kend] = K | KxJIx ∈∪∈∀ }

if I is contained in J or overlaps or meets with J, or vice versa

 undefined otherwise

<IIRelationExpr> = (<RelationOp> <IntervalExpr> <IntervalExpr>)
<IIRelationOp> = before | meets | overlaps | starts | during | finishes |

equal | after | meet_by | overlapped_by | started_by |

contained_by | finished_by | contained

• <IIRelationOp> is Allen’s 13 possible order relations between a pair of

intervals, except “contained”

• “contained” is “equal”, “starts”, “during”, or “finishes”

 126

<PIRelationExpr> = (<PIRelationOp> <Number> <IntervalExpr>)
<PIRelationOp> = before-pi | after-pi | contained-pi

<Number> = <ConstNumber> | <FunctionOfNumericlType>

Encoding of Interval Relations and Operations

First of all, we need to define the identity of interval, Empty Interval (EI), which will be

used to represent undefined interval value in linear constraints:

 EI ≡ [Istart(EI) = Iend(EI) = Max],

where, Max is the maximum number representable

All undefined variables generated during evaluation of interval expression or operation

is equal to this empty interval.

The translation of interval relations defined above into linear constraints in

terms of end points of intervals (and points) is quite straightforward [Davis90], with

additional care that I or J can be empty interval:

(before I J) is encoded as

[[Iend < Jstart] ∧ ¬ [Iend = Max] ∧ ¬ [Jstart = Max]]

(meets I J) is encoded as

[[Iend = Jstart] ∧ ¬ [Iend = Max] ∧ ¬ [Jstart = Max]]

 (overlaps I J) is encoded as

[[Istart < Jstart] ∧ [Jstart < Iend] ∧ [Iend < Jend]]

 (starts I J) is encoded as [[Istart = Jstart] ∧ [Iend < Jend]]

 (equals I J)81 is encoded as

[[Istart = Jstart] ∧ [Iend = Jend] ∧ ¬ [Iend = Max] ∧ ¬ [Jstart = Max]]

 (during I J) is encoded as

 [[Jstart < Istart] ∧ [Istart < Iend] ∧ [Iend < Jend]]

 (finishes I J) is encoded as [[Jstart < Istart] ∧ [Iend = Jend]]

 127

Interval Composition Operations

Note that I or J can be empty interval.

(overlap_of I J) = TI ≡

 [[Istart(I,Ti) >= Iend(J,Ti)] ∨ [Istart(J,Ti) >= Iend(I,Ti)] ⇔

 [Istart(TI,Ti) = Max] ∧ [Iend(TI,Ti) = Max]]

 ∧ [[Istart(I,Ti) >= Istart(J,Ti)] ⇔ [Istart(TI,Ti) = Istart(I,Ti)]]

∧ [[Istart(J,Ti) > Istart(I,Ti)] ⇔ [Istart(TI,Ti) = Istart(J,Ti)]]

 ∧ [[Iend(I,Ti) <= Iend(J,Ti)] ⇔ [Iend(TI,Ti) = Iend(I,Ti)]]

∧ [[Iend(J,Ti) < Iend(I,Ti)] ⇔ [Istart(TI,Ti) = Istart(J,Ti)]]

• The 1st conjunct ensures that if I is before or after J, it returns EI(Empty

Interval).

• The 2nd and 3rd conjuncts ensure that the maximum of Istart(I,Ti) and Istart(J,Ti)

is Istart(TI,Ti).

• The 4th and 5th conjuncts ensure that the minimum of Iend(I,Ti) and Iend(J,Ti) is

Iend(TI,Ti).

(join I J) = TI ≡

 [[[Istart(I,Ti) > Iend(J,Ti)] ∧ ¬ [Istart(I,Ti) = Max]] ∨

[[Istart(J,Ti) > Iend(I,Ti)] ∧ ¬ [Istart(J,Ti) = Max]] ⇔

[Istart(TI,Ti) = Max] ∧ [Iend(TI,Ti) = Max]]

 ∧ [[Istart(I,Ti) = Max ∧ Iend(I,Ti) = Max] ⇔

 [Istart(TI,Ti) = Istart(J,Ti)] ∧ [Iend(TI,Ti) = Iend(J,Ti)]]

∧ [[Istart(J,Ti) = Max ∧ Iend(J,Ti) = Max] ⇔

 [Istart(TI,Ti) = Istart(I,Ti)] ∧ [Iend(TI,Ti) = Iend(I,Ti)]]

∧ [[Istart(J,Ti) < Istart(I,Ti)] ⇔ [Istart(TI,Ti) = Istart(J,Ti)]]

 ∧ [[Istart(I,Ti) <= Istart(J,Ti)] ⇔ [Istart(TI,Ti) = Istart(I,Ti)]]

81 The equality of two interval variables with empty value (EI) is defined as false.

 128

∧ [[Istart(J,Ti) < Istart(I,Ti)] ⇔ [Istart(TI,Ti) = Istart(J,Ti)]]

 ∧ [[Iend(I,Ti) >= Iend(J,Ti)] ⇔ [Iend(TI,Ti) = Iend(I,Ti)]]

∧ [[Iend(J,Ti) > Iend(I,Ti)] ⇔ [Istart(TI,Ti) = Istart(J,Ti)]]

• The 1st conjunct ensures that if I and J are not empty intervals and I is before

or after J, it returns EI(Empty Interval).

• The 2nd conjunct ensure that if I is empty interval, TI = J.

• The 3rd conjunct ensure that if J is empty interval, TI = I.

• The 4th and 5th conjuncts ensure that the minimum of Istart(I,Ti) and Istart(J,Ti) is

Istart(TI,Ti).

• The 6th and 7th conjuncts ensure that the maximum of Iend(I,Ti) and Iend(J,Ti) is

Iend(TI,Ti).

Interval Expression: each interval operation introduces an interval variable, on which

next operation is applied. For instance,

 (join (overlap_of I1 I2) (overlap_of I3 I4))

In this interval expression, 3 new intervals are introduced to translate it: the interval,

TI1, generated by (overlap_of I1 I2), the interval, TI2, generated by (overlap_of I3 I4),

and the interval, TI3, generated by (join TI1 TI2). Using the new variables, overlap_of

and join are encoded as above. It returns TI3.

Interval Update Operation

(set-I ?IF ?IE) is encoded as

Active(a,Ti) ⇔ [Istart(?IF,Ti) = Istart(?IE,Ti)] ∧ [Iend(IE,Ti) = Iend(IE,Ti)]

 129

[)(?')(? IFSetEffectaIFSetEffecta ∈∀∈∀ ¬ Active(a,Ti) ∨ ¬ Active(a’,Ti)]

• The set operations on the same interval fluent at the same time should be

mutually exclusive.

 130

Appendix F: Non-Interference Rules in PDDL+

Define the sets [FoxLong03] :

GPre(a) the set of ground atoms that appear in the precondition

Add(a) the set of ground atoms that are asserted as positive literals in the

post-condition

Del(a) the set of ground atoms that are asserted as negative literals in the

post-condition

L(a) the set of ground functions that appear as lvalue in a

R(a) the set of ground functions that appear as rvalue in a

L*(a) the set of ground functions that appear as lvalue in an additive

assignment in a

Non-Interference Rules in PDDL+

Rule 1: GPre(a) ∩ (Add(b) U Del(b)) = GPre(b) ∩ (Add(a) U Del(a))) = φ

• No moving targets rule for propositional fluent

Rule 2: Add(a) ∩ Del(b) = Add(b) ∩ Del(a) = φ

Rule 3: L(a) ∩ R(b) = R(a) ∩ L(b) = φ

• No moving targets rule for numeric-valued fluents

Rule 4: L(a) ∩ L(b) ⊆ L*(a) ∩ L*(b)

 131

• It means concurrent actions can only update the same numeric-valued fluents

if they both do so by additive assignment effects

• An action with assign and all other actions with assign, increase or decrease

are in mutex relation

 132

Bibliography

[Armando02] Armando, A., Castellini, C., Giunchiglia, E., Giunchiglia, F., and

Tacchella, A.. SAT-Based Decision Procedures for Automated Reasoning: a Unifying

Perspective, Journal of Automated Reasoning, Vol. 28, no. 2, 2002.

[Allen83] Allen J. F. Maintaining Knowledge about Temporal Intervals, CACM,

26(11):832-843, 1983.

[Allen94] Allen, J., and Ferguson, G., Actions and Events in Interval Temporal Logic,

Journal of Logic and Computation, Special Issue on Actions and Processes, 1994.

[Alur93] Alur, R., Courcoubetis, C., Henzinger, T., and Ho, P-H., Hybrid Automata:

An Algorithmic Approach to the Specification and Verification of Hybrid Systems,

Hybrid Systems, Lecture Notes in Computer Science 736, Springer-Verlag, 1993.

[Amon00] Amon, T., Simplifying Formulas of Linear Inequalities with Boolean

Connectives, Southern Utah University CS Technical Report 03292000, 2000.

[Armando99] Armando, A., Castellini, C., and Giunchiglia, E., SAT-based procedures

for temporal reasoning, In lecture notes in Computer Science, Volume 1809, 1999.

[Audemard02-a] Audemard, G., Cimatti, A., Kornilowicz., A, and Sebastiani, R.,

Bounded Model Checking for Timed Systems, Proceedings of 22nd Joint International

Conference on Formal Techniques for Networked and Distributed Systems(FORTE02),

2002.

[Audemard02-b] Audemard, G., Bertoli, P., Cimatti, A., Kornilowicz, A., and Sebastiani,

R., A SAT Based Approach for Solving Formulas over Boolean and Linear

 133

Mathematical Propositions, Proceedings of 18th International Conference of

Automated Deduction, CADE'02, 2002.

[Audemard03] Audemard, G., Bozzano, M., Cimatti, A., and Sebastiani, R., Verifying

Industrial Hybrid Systems with MathSAT, Workshop on Pragmatics of Decision

Procedures in Automated Reasoning - Affiliated to CADE19, 2003.

[Baioletti02] Baioletti, M, Marcugini, S., and Milani, A. DPPLAN: an Algorithm for Fast

Solutions Extraction from a Planning Graph. AIPS, 2000.

[Baioletti03] Baioletti, Milani, A., and Poggioni, V. Planning with Fuzzy Resources.

Italian AI conference, 2003.

[Bayardo97] Bayardo, R., and Schrag, R., Using CSP Look-Back Techniques to

Solve Real-World SAT Instances, Proceedings of National Conferences on Artificial

Intelligence, 1997.

[Bedrax03] Bedrax-Weiss, T., McGann, C., and Ramakrishnan, S., Formalizing

Resources for Planning, Workshop on PDDL, ICAPS ’03, 2003.

[Blum97] Blum, A. and Furst, M. Fast Planning through Planning Graph Analysis,

Artificial Intelligence 90, 1997.

[Bockmayr98] Bockmayr, A., and Dimopouos, Y., Mixed Integer Programming

Models for Planning Problems, Workshop on Constraint Problem Reformulation in

Constraints Programming ‘98, 1998.

[Bockmayr99] Bockmayr, A., and Dimopouos, Y., Interger Progams and Valid

Ineqaulities for Planning Problems, ?, 1999.

[Borning98] Borning, A., and Badros, G., The Cassowary Linear Arithmetic

Constraint Solving Algorithm: Interface and Implementation, Technical Report UW-

CSE-98-06-04, 1998.

 134

[Brafman01-a] Brafman, R., A Simplifier for Propositional Formulas with Many binary

Clauses, Proceedings of International Joint Conference on Artificial Intelligence, 2001.

[Brafman01-b] Brafman, R., On Reachability, Relevance, and Resolution in the

Planning as Satisfiability Approach, Journal of Artificial Intelligence Research 14, 2001.

[Brenner01] Brenner, M., A Formal Model for Planning with Time and Resources in

Concurrent Domains, Proceedings of International Joint Conference of Artificial

Intelligence, 2001.

[Castellini01] Castellini, C., Giunchiglia, E., and Tachella, A., Improvements to SAT-

based Conformant Planning, Proceedings of European Conference on Planning, 2001.

[Chittaro02] Chittaro, L, Montanari, A., Temporal Representation and Reasoning in

Artificial Intelligence: Issues and Approaches, Baltzer Journals, July 2002.

[Coddington02] Coddington, A., Fox, M., Long, D., Handling Durative Actions in

Classical Planning Frameworks, Proceedings of the AIPS 2002 workshop on Planning

for Temporal Domains, 2002.

[Davis62] Davis., M., Longermann, G., and Loveland, D., A machine program for

theorem proving, Journal of the ACM, 5(7), 1962.

[Davis90] Davis, E. Representations of Common Sense Knowledge, Morgan

Kaufmann, 1990.

[Davis92] Davis, E. Axiomatizing Qualitative Process Theory, KR ’92, 1992.

[Davis94] Davis, E. Branching Continuous Time and the Semantics of Continuous

Action, AIPS ’94, 1994.

[Dean88] Dean, T., Firby, J., and Miller, D., hierarchical Planning involving deadlines,

travel times and Resources, Computational Intelligence, 4(4), 1988.

 135

[Dechter91] Dechter R., I. Meiri, and J. Pearl, Temporal Constraints Networks, AI,

49:61-95, 1991.

[DimopoulosGerevini02] Dimopoulos, Y., and Gerevini, A., Temporal Planning through

Mixed Integer Programming: A Preliminary Report, Proceedings of 8th Conf. on

Principle and Practice of Constraint Programming (CP 2002), 2002.

[Do00] Do, M.B., Srivastava, B., and Kambhampati, S. Investigating the Effect of

Relevance and Reachibility Consytraint on SAT Encoding of Planning,?,2000(?)

[Do03-a] Do, M.B., and Kambhampati, S., Improving the Temporal Flexibility of

Position Constrained Metric Temporal Plans, ICAPS ’03, 2003.

[Do03-b] Do, M.B., and Kambhampati, S., Sapa: A Scalable Multi-Objective Metric

Temporal Planner, Journal of Artificial Intelligence Research, To appear, 2003.

[DoKambhampati00] Do, M.G. and Kambhampati, S. Solving Planning-Graph by

Compliing it into CSP. AIPS, 2000.

[Drabble93] Drabble, B., EXCALIBUR: A Program for Planning and Reasoning with

Processes, Artificial Intelligence, 1993.

[Ernst97] Ernst, M., Millstein, T., and Weld, D., Automatic SAT-Compilation of

Plannning Problems, Proceedings of International Joint Conference Artificial

Intelligence, 1997.

[Farquhar94] Farquhar, A., A Qualitative Physics Complier, Proceedings of 12th AAAI,

1994.

[Forbus89] Forbus., K., Introducing Actions into Qualitative Simulation, Proceedings

of International Joint Conference of Artificial Intelligence, 1989.

[Forbus96] Forbus, K., Qualitative Reasoning, In A.B. Tucker, editor, The Computer

Science and Engineering Handbook, 715--733. CRC Press, 1996.

 136

[FoxLong99] Fox, M., and Long, D., The Detection and Exploitation of Symmetry in

Planning Domains, Proceedings of the 15th International Joint Conference on AI

(IJCAI), Morgan Kaufmann, 1999.

[FoxLong00] Fox, M., and Long, D., Utilizing Automatically Inferred Invariants in

Graph Construction and Search, AIPS ’00, 2000.

[FoxLong01] Fox, M., Long, D., PDDL+ level 5: An Extension to PDDL2.1 for

Modelling Planning Domains with Continuous Time-dependent Effects, Unpublished

manuscript, 2001.

[FoxLong02-a] Fox, M., and Long, D, PDDL+ : Modelling Continuous Time-

dependent Effects, Proceedings of the 3rd International NASA Workshop on Planning

and Scheduling for Space, 2002.

[FoxLong02-b] Fox, M., Long, D., PDDL2.1 : An Extension to PDDL for Expressing

Temporal Planning Domains, International Planning Competition , 2002.

[FoxLong02-c] Fox, M., Long, D., The 3rd International Planning Competition:

Temporal and Metric Planning, Fifth International Conference on AI Planning and

Scheduling, 2002.

[FoxLong02-d] Fox, M., Long, D., Bradley, B., and McKinna, J., Using Model

Checking for Pre-Planning Anaysis, Proceedings of the 3rd International NASA

Workshop on Planning and Scheduling for Space, 2002.

[FoxLong02-e] Fox, M., and Long, D., Extending the Exploitation of Symmetry

Analysis in Planning, Fifth International Conference on AI Planning and Scheduling,

2002.

[FoxLong03] Fox, M., Long, D., PDDL2.1 : An Extension to PDDL for Expressing

Temporal Planning Domains, Journal of Artificial Intelligence Research 20, 2003.

 137

[Frank03] Frank, M., Golden, K., and Jonsson, A., The Loyal Opposition Comments

on Plan Domain Description Languages, Workshop on PDDL, ICAPS ’03, 2003.

[Funge99] Funge, J., Representing Knowledge within the Situation Calculus using

Interval-valued Epitemic Fluents, Journal of Reliable Computing, 1(5), 1999.

[Garrido02] Garrido, A., Fox, M., and Long, D., A Temporal Planning System for

Durative Actions of PDDL2.1, Proceedings of European Conference on Artificial

Intelligence, 2002.

[Gent99] Gent, I., and Walsh, T., The Search for Satisfaction, Internal Report, Dept.

of Computer Science, University of Strathclyde, 1999.

[Gerevini00] Gerevini, A., and Schubert, L.K., Discovering State Constraints in

DISCOPLAN: Some New Results, Proceedings of the Seventeenth National

Conference on Artificial Intelligence, 2000.

[Gerevini03] Gerevini, A., Saetti, A. and Serina, I., Planning through Stochastic Local

Search and Temporal Action Graphs, to appear in Jounal of Artificiall Intelligence

Research (JAIR), 2003.

[GereviniSerina03] Gerevini, A., Saetti, A. and Serina, I., Planning as Propositional

CSP: From Walksat to Local Search Techniques for Action Graphs . Constraints, 8,

2003.

[Ghallab00] Ghallab, M., Planning and Scheduling with Time and Resources,

PLANET Summer School, 2000.

[Ghallab94] Ghallab, M. and Laruelle, H., Representation and Control in IxTeT, a

Temporal Planner, Proceedings of 2nd International Conference of AI Planning

Systems, 1994.

 138

[Giunchiglia00] Giunchiglia, E., Planning as satisfiability with expressive action

language: Concurrency, constraints, and nondeterminism, 7th International Conference

on Principles of Knowledge Representation and Reasoning (KR ’00), 2000.

[Giunchiglia98] Giunchiglia, E., Massarotto, A., and Sebastiani, R., Act, and the

Rest Will Follow: Exploiting Determinism in Planning as Satisfiability, AAAI'98, 1998.

[Giunchiglia00] Giunchiglia, E., Giunchiglia, F., and Tacchella, A., SAT-based

Decision Procedures for Classical Modal Logics, Journal of Automated Reasoning,

2000.

[Gomes98] Gomes, C.P., Selman, B., and Kautz, B, Boosting combinatorial search

through randomization, Proceedings of 15th National Conference on Artificial

Intelligence, 1998.

[Green69] Green, C., Application of Theorem Proving to Problem Solving,

Proceedings of IJCAI-69, 1969.

[HaslumGeffner01] Haslum, P., and Geffner, H., Heuristic Planning with Time and

Resources, Proceedings of International Joint Conference on Artificial Intelligence,

2001.

[Hendrix73] Hendrix, G., Modeling Simultaneous Actions and Continuous Changes,

Artificial Intelligence, 4:145-180, 1973.

[Henzinger96] Henzinger, T., The Theory of Hybrid Automata, Proceedings of the

11th Annual Symposium on Logic in Computer Science(LICS), 278-292, IEEE

Computer Society Press, 1996.

[Henzinger97] Henzinger, T., Ho, P., and Wong-Toi, H., HYTECH: a model checker

for hybrid systems, International Journal of STTT 1:110-122, 1997.

 139

[Henzinger98] Henzinger, T., Ho, P., and Wong-Toi, H., Algorithmic Analysis of

Nonlinear Hybrid Systems, IEEE Transactions on Automatic Control, 1998.

[HoffmannGeffner03] Hoffmann, J. and Geffner, H. Branching Matters: Alternative

Branching in Graphplan. ICAPS, 2003.

[IPC3] International Planning Competition 2002 web site:

http://planning.cis.strath.ac.uk/competition/

[IPC4] International Planning Competition 2004 web site:

http://www.informatik.uni-freiburg.de/~hoffmann/ipc-4/

[Hoffmann03] Hoffmann, J., The Metric-FF Planning System: Translating “Ignoring

Delete Lists” to Numerical State Variables, to appear in Jounal of Artificiall Intelligence

Research (JAIR), 2003.

[Kambhampati03] Kambhampati, S., 1001 ways to skin a planning graph for heuristic

fun and profit. ICAPS ’03 Invited Talk., 2003.

[Kautz00] Kautz, H., and Walser, J., Interger Optimization Models of AI Planning

Problems, Knowledge Engineering Review, 15(1), 2000.

[Kautz92] Kautz, H., and Selman, B., Planning as Satisfiability, Proceedings of the

10th European Conference on Artificial Intelligence, 1992.

[KautzMcAllester96] Kautz, H., McAllester, D., and Selman, B., Encoding plans in

Propositional Logic, Proceedings of Knowledge Representation and Reasoning, 1996

[Kautz96] Kautz, H., and Selman, Pushing the Envelope: Planning, Propositional

Logic and Stochastic Seach, Proceedings of the 13th National Conference on Artificial

Intelligence, 1996.

[KautzSelman99] Kautz, H., and Selman, Unifying SAT-based and Graph-based

Planning, Proc. 16th Intl. Joint Conf. on AI (IJCAI'99),, 1999.

 140

[KautzWalser00] Kautz, H., and Walser, J., Integer Optimization Models of AI

Planning Problems, Knowledge Engineering Review, 15(1), 2000.

[KautzWalser99] Kautz, H., and Walser, J., State-space Planning by Integer

Optimization, Proceedings of the 16th National Conference on Artificial Intelligence

(AAAI-99), 1999.

[Koehler98] Koehler, J., Planning under Resource Constraints, ECAI-98, 1998.

[Kuipers01] Kuipers, B., Qualitative Simulation, ?, 2001.

[Laborie02] Laborie, P., Planning with resources, PLANET Summer school, 2002.

[Laborie95] Laborie, P. and Ghallab, M., Planning with sharable resource constraints,

Proceedings of 14th International Joint Conference on AI, 1995.

[Larsen97] Larsen, K., Steffen, B., and Weise, C., Continuous Modeling of Real-

Time and Hybrid Systems: from concepts to tools, Special Section on Timed and

Hybrid Systems, International Journal of STTT 1, 64-85, 1997.

[Li97] Li, C.M., and Anbulagan, Heuristics based on Unit propagation for satisfiability

problems, in Proceedings of International Joint Conference on Artificial Intelligence,

1997.

[LongFox00] Long, D, Fox, M., Sebastia, L., Coddington, A., An examination of

resources in planning, UK Planning and Scheduling SIG Workshop, December 2000.

[LongFox01] Long, D, Fox, M., Encoding Temporal Planning Domains and Validating

Temporal Plans, UK Planning and Scheduling SIG, Edinburgh, 2001.

[LongFox02] Long, D, Fox, M., Bridging the Modeling Gap: Examining the

Expressiveness of Planning Domain Description Language, Proceedings of the 3rd

International NASA Workshop on Planning and Scheduling for Space, 2002.

 141

[LongFox03] Long, D., and Fox, M., Exploiting a Graphplan Framework in Temporal

Planning, International Conference on Automated Planning Systems, 2003.

[Malik02] Malik, S., The quest for Efficient Boolean Satisfiability Solvers, Invited talk at

CAV-CADE , 2002.

[Mali02-a] Mali, A., Encoding Temporal Planning as CSP, Proceedings of IEEE

International Conference on Tools with Artificial Intelligence (ICTAI), 2002.

[Mali02-b] Mali, A., DSatz: A Directional SAT Solver for Planning, ?, 2002.

[Mali02-c] Mali, A., On the Hybrid Propositional Encodings of Planning,

Computational Intelligence Journal, Vol. 18, No. 3 2002.

[McAllester91] McAllester, D., and Rosenbiltt, D., Systematic Nonlinear Planning,

Proceedings of 9th National Conference on Artificial Intelligence, 1991.

[McDermott00] McDermott, D., The 1998 AI Planning Systems Competition, AI

Magazine 21(2), 2000.

[McDermott03-a] McDermott, D., The Formal Semantics of Processes in PDDL,

Workshop on PDDL, ICAPS ’03, 2003.

[McDermott03-b] McDermott, D., Reasoning about Autonomous Processes in an

Estimated-Regression Planner, ICAPS’03, 2003.

[McDermott03-c] McDermott, D., OPT Manual Version 1.5, 2003.

[McDermott03-d] McDermott, D., Commentary PDDL2.1 – The Art of the Possible?

Commentary on Fox and Long, Journal of Artificial Intelligence Research, 20, 2003.

[McDermott83] McDermott, D., A Temporal Logic for Reasoning about Processes

and Plans, Cognitive Science, 1983.

 142

[McDermott98] McDermott, D., and the AIPS ’98 Plannning Competition Committee,

PDDL – the Planning Domain Definition Language, URL:

www.cs.yale.edu/homes/dvm, 1998.

[Miller96-a] Miller, R., A Case Study in Reasoning about Actions and Continuous

Change, Proceedings of ECAI, 1996.

[Miller96-b] Miller, R. and Shanahan, M., Reasoning about Discontinuities in the

Event Calculus, Proceedings of KR ’96, 1996.

[Nelson79] Nelson, G. and Oppen, D. Simplification by cooperating decision

procedures. ACM Transaction on Programming Languages and Systems, 1(2):245-57,

1979.

[Nguyen02] Nguyen, X., Kambhampati, S. and Nigenda, R.S. , Panning Graph as the

Basis for deriving Heuristics for Plan Synthesis by State Space and CSP search,

Artificial Intelligence 135, 2002.

[OlderVellino90] Older, W, and Vellino, A., Extending Prolog with Constraint

Arithmetic on Real, In Proceedings of IEEE Canadian conference on Electrical and

Computer Engineering, 1990.

[Penberthy92] Penberthy, J., and Weld, D., UCPOP: a sound, complete, partial

order planner for ADL, Proceedings of 3rd International Conference on Principles of

Knowledge Representation and Reasoning, 1992.

[Penberthy93] Penberthy, J., Planning with Continuous Change, Ph.D. dissertation

93-12-01, Deprt. of Computer and Engineering, U. of Washingtopn, 1993.

[Penberthy94] Penberthy, J., and Weld, D., Temporal Planning with Continuous

Change, Proceedings of 12th National Conference on Artificial Intelligence, 1994.

 143

[Pinto98-a] Pinto, J., Concurrency and Action Interaction, Principles of Knowledge

Representation and Reasoning: Proceedings of the Sixth International Conference

(KR'98), 1998.

[Pinto98-b] Pinto, J., Integrating Discrete and Continuous Change in a Logical

Framework, Computational Intelligence, 1998.

[Reiter01] Reiter, R. Knowledge in Action,: Logical Foundations for Describing and

Implementing Dynamic Systems, MIT Press, 2001.

[Reiter96] Reiter, R., Natural Actions, Concurrency and Continuous Time in Situation

Calculus, Proceedings of KR ’96, 2-13, Morgan Kauffman, 1996.

[Rintanen00] Rintanen, J., Lecture Notes on Introduction to Automated Planning,

2000.

[Rintanen98] Rintanen, J., A Planning Algorithm not based on Directional Search,

Principles of Knowledge Representation and Reasoning: Proceedings of the Sixth

International Conference (KR '98), 1998.

[Rintanen99] Rintanen, J., and Jungholt, H., Numeric State Variables in Constraint-

Based Planning, Recent Advances in AI Planning: 5th European Conference on

Planning, ECP'99, 1999.

[Russell03] Russell, S., Norvig, P., Artificial Intelligence: A Modern Approach, the

second edition, Prentice Hall, 2003.

[Sandwell89] Sandwell, E., Combining Logic and Differential Equations for Describing

Real-World Systems, Proceedings of KR ’89, Morgan Kauffman, 1989.

[SchwalbVila98] Schwalb E., and L. Vila, Temporal Constraints: a survey, Special

issue on Spatial and Temporal Reasoning, Constraints, 3(2-3), 1998.

 144

[Sebastiani01] Sebastiani, R., Integrating SAT Solvers with Math Reasoners:

Foundations and Basic Algorithms, Technical Report 0111-22, ITC-IRST, 2001.

[Selman93] Selman, B., Kautz, H., and Cohen, B., Local Search Strategies for

Satisfiability Testing. Cliques, Coloring, and Satisfiability: Second DIMACS

Implementation Challenges, 1993.

[Selman94] Selman, B., Kautz, H., and Cohen, B., Noise Strategies for Improving

Local Search, Proceedings of 10th National Conference on Artificial Intelligence, 1994.

 [Shanahan90] Shanahan, M., Representing Continuous Change in the Event

Calculus, Proceedings of ECAI, 1990.

[ShinDavis04] Shin, J. and Davis, E. Continuous Time in a SAT-based Planner.

Proceedings of 20th National Conference on Artificial Intelligence, 2004.

[Simmons88] Simmons, R., Combining Associations and Causal Reasoning to Solve

Interpretation and Planning Problems, AI-TR-1048, MIT AI Lab, 1988.

[Smith03] Smith, D., The Mystery Talks, PLANET summer school. 2003.

[Smith00-a] Smith, D., Coping with Time and Continuous Quantities, slides of invited

talk in AIPS ‘00, 2000.

[Smith00-b] Smith, D., Frank, J., and Jonsson, A., Bridging the Gap between

Planning and Scheduling, Knowledge Engineering Review, 15(1), 2000.

[Smith97] Smith, S.F., and Becker, M., An Ontology fro Constructing Scheduling

Systems, AAAI Symposium on Ontological Engineering, 1997.

[Smith99] Smith, D. and Weld, D., Temporal Planning with Mutual Exclusion

Reasoning, International Joint Conference on Artificial Intelligence, 1999.

[Strichman02] Strichman, O., Optimizations in Decision Procedures for Propositional

Linear Inequalities Technical report (CMU-CS-02-133), 2002.

 145

[Thielscher99] Thielscher, M., Fluent Calculus Planning with Continuous Change,

ETAI, 1999, URL: http://www.ep.liu.se/ea/cis/1999/011

[Vere83] Vere, S., Planning in Time: Windows and Durations for Activities and Goals,

Pattern Analysis and Machine Intelligence 5, 1983.

[Vila94] Vila L., A Survey on Temporal Reasoning in Artificial Intelligence, Artificial

Intelligence, 7(1):4-28, 1994.

[Vossen00] Vossen, T., Ball, M., Lotem, A., and Nau, D., Applying Integer

Programming to AI Planning, Knowledge Engineering Review, 15(1), 2000.

[Weld90] Weld, D., and Kleer, J., (ed) Qualitative Reasoning about Physical Systems,

1990.

[Weld94] Weld, D., An Introduction to Least Commitment Planning, AI Magazine,

Summer/Fall, 1994

[Weld99] Weld, D., Recent Advances in AI Planning, AI Magazine 15(4), 27-61,

1999.

[Wilkins88] Wilkins, D., Practical Planning: Extending the Classical AI planning

Paradigm, Morgan Kaufman, 1988.

[Wolfman] Wolfman, S., unpublished manuscript.

[Wolfman00] Wolfman, S., and Weld, D., Combining Linear Programming and

Satisfiability Solving for Resource Planning, Knowledge Engineering Review, 15(1),

2000.

[Wolfman99] Wolfman, S., and Weld, D., The LPSAT Engine and its application to

Resource Planning, International Joint Conference of Artificial Intelligence, 1999.

 146

[Zhang02] Zhang, L., and Malik, S., The Quest for Efficient Boolean Satisfiability

Solvers, Proceedings of 8th International Conference on Computer Aided

Deduction(CADE 2002), 2002.

