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Abstract 
 

 
In any domain with change, the dimension of time is inherently involved. Whether the 

domain should be modeled in discrete time or continuous time depends on aspects of 

the domain to be modeled. Many complex real-world domains involve continuous time, 

resources, metric quantities and concurrent actions. Planning in such domains must 

necessarily go beyond simple discrete models of time and change. 

 In this thesis, we show how the SAT-based planning framework can be 

extended to generate plans of concurrent asynchronous actions that may depend on 

or make change piecewise linear metric constraints in continuous time.  

In the SAT-based planning framework, a planning problem is formulated as a 

satisfiability problem of a set of propositional constraints (axioms) such that any model 

of the axioms corresponds to a valid plan. There are two parameters to a SAT-based 

planning system: an encoding scheme for representing plans of bounded length and a 

propositional SAT solver to search for a model. The LPSAT architecture is composed 

of a SAT solver integrated with a linear arithmetic constraint solver in order to deal 

with metric aspects of domains. 

We present encoding schemes for temporal models of continuous time defined 

in PDDL+: (i) Durative actions with discrete and/or continuous changes; (ii) Real-time 

temporal model with exogenous events and autonomous processes capturing 

continuous changes. The encoding represents, in a CNF formula over arithmetic 

constraints and propositional fluents, time-stamped parallel plans possibly with 

concurrent continuous and/or discrete changes. In addition, we present encoding 

schemes for multi-capacity resources, partitioned interval resources, and metric 
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quantities which are represented as intervals.  An interval type can be used as a 

parameter to action as well as a fluent type. 

Based on the LPSAT engine, the TM-LPSAT temporal metric planner has 

been implemented: Given a PDDL+ representation of a planning problem, the 

compiler of TM-LPSAT translates it in a CNF formula, which is fed into the LPSAT 

engine to find a solution corresponding to a plan for the planning problem. We also 

have experimented on our temporal metric encodings with other decision procedure, 

MathSAT, which deals with propositional combinations of linear constraints and 

Boolean variables. The results show that in terms of searching time the SAT-based 

approach to temporal metric planning can be comparable to other planning 

approaches and there is plenty of room to push further the limits of the SAT-based 

approach. 
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Chapter 1 Introduction 

 

Automated Planning is the identification of sequences of actions which will achieve 

specified goals from specified initial conditions. 

 First of all, we identify the class of domains that we are trying to solve and give 

an overview of the SAT-based planning framework our planner is based on and the 

TM-LPSAT temporal metric planner. 

 

1.1 Problem Statement 

 

Many complex domains in the real world involve continuous and metric time, metric 

resources, metric quantities, and concurrent actions. Here are two sample domains of 

the class we are trying to model and to generate plans for: 

 

Bathtub Domain  

 
More than one bathtub is in a bathroom. Each bathtub has more than one tap. The hot 

water taps are distinguished from the cold water taps. Each tap has a different flow 

rate. The process of filling a bathtub by a water tap is by turning it on. The process of 

draining a bathtub is triggered by pulling out the drain plug. It is also possible to add a 

certain amount of bath oil before the water in the bathtub reaches a certain level. 

When the bathtub overflows, the floor becomes wet, triggering a signal that alarms the 

plan executor if the planner is not in the bathroom. 



 2

A planning problem from this domain could be to generate a sequence of 

actions that would maintain the water temperature of the bathtub within a certain 

range (by adjusting the ratio of hot and cold water flowing from the taps).   

 
The domain has the following characteristics: 

• The water level of the bathtub is a continuously changing quantity over time, 

as long as a tap is on or draining occurs. 

• Cumulative operations on the water level of the bathtub are possible: the 

“filling” process by multiple taps as well as the “draining” process.  

• The planner can choose “turn-on-a-tap”, “turn-off-a-tap”, “plug-in”, “plug-out” or 

“add-bath-oil.”  

• The planner cannot control the “filling” process that happens as a result of 

turning on a tap; this continues as long as the tap is on. Likewise, the planner 

cannot control the “draining” process that happens as a result of plugging out; 

this continues as long as the plug remains off. 

• “Overflow” of water in the bathtub is triggered by the conditions occurring in the 

bathtub, not by choice of the planner.  

 

Satellite Observation Domain 

 
This is a simplified satellite observation scheduling domain of the Space Project at 

NASA. More than one satellite in orbit is available for observation. Each satellite is 

equipped with various pieces of observation equipment. The observations requested 

require particular instruments at certain times, and involve slewing the satellite to align 
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the instrument with the target. This takes varying amounts of time depending on the 

current position of the satellite. Instruments to be used must be powered on and 

warmed up for some time, and then calibrated. Thus, the use of instruments 

consumes fuel. The data observed is recorded in the on-board storage, which has 

limited capacity. Each observation will last either until a requested amount of data is 

collected or for a fixed duration. A satellite can communicate with any given ground 

station, as long as the station is within the orbit of the satellite. Communication with 

the ground station is expensive. During the down-linking, the station can download the 

data stored, which can occur simultaneously with collection of data by the satellite. 

 A possible planning problem may be scheduling the order of observation 

requests such that the amount of data collected is maximized1 and the time taken to 

do so is minimized. 

 
The domain has the following characteristics: 

• The “angle” of the satellite is a metric quantity. 

• The “on-board-storage” is a metric resource on which “collecting” activity and 

“downloading” activity can interplay continuously. 

• The “observation” or “down-linking” activity has a duration which is determined 

by either the amount of collected data or the given time limit.  

 

Planning in such domains must necessarily go beyond simple discrete models of time 

and change. However, the classical planning framework is founded on the assumption 

that time is atomic (discrete steps). A natural question is how to extend the classical 
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planning framework so as to reason about temporal and metric aspects of the 

dynamically changing world. Specifically, it was claimed that the SAT-based planning 

framework to continuous time would not be feasible2 [Smith00-b] [LongFox00].  

In this thesis, we attempt to extend the SAT-based planning framework to deal 

with metric resources and quantities in continuous time and to show that the SAT-

based planning framework is feasible for representing and reasoning in continuous 

time.    

 

1.2 SAT-Based Propositional Planning  

 

Historically, in the early 1970s, planning was cast as a first-order deductive theorem-

proving [Green69]. A planning problem could be formulated with axioms about actions 

stating that (i) the effects of an action are implied by the occurrence of the action 

when its preconditions hold, and (ii) frame axioms describing the propositions an 

action does not affect. The planning process could then be viewed as finding a 

deductive proof of a statement asserting that the initial conditions together with a 

sequence of actions imply the goal conditions. 

 However, this approach failed to scale up to realistically sized problems. Until 

the early 1990s, the idea of Planning as Propositional Satisfiability was not even 

considered  to be applicable to planning in practice. Through experiments with 

SATPLAN in which new SAT algorithms (GSAT [Kautz92], WSAT [Selman94]) based 

on local searches were used as SAT solvers,  Kautz and Selman [Kautz92] [Kautz96] 

                                                                                                                                              
1 The TM-LPSAT cannot optimize plans; this may be turned around by specifying the limits in 
the goal state. 
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showed that (i) a general propositional theorem prover outperforms traditional 

planning systems such as UCPOP [Penberthy92] and Nonlin[McAllester91], (ii) the 

propositional theorem proving scales much better than the first-order theorem proving, 

and (iii) different axiomatizations (encoding schemes) can have vastly different 

computational properties.  

 

Figure 1: Architecture of the SAT-Based Planning Framework 

 

The idea of planning as a propositional satisfiability is to reduce a planning 

problem to a propositional satisfiability problem. A planning problem is formulated as a 

set of axioms (action axioms, frame axioms, and exclusion axioms) with the property 

that any model of the axioms corresponds to a valid plan. The planning process is to 

                                                                                                                                              
2 Further discussion and our resolution to this issue are presented in Chapter 8. 
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find a model of the set of axioms, which corresponds to a correct plan for the original 

planning problem.  

Thus, there are two parameters to SAT-based planning systems: an encoding scheme for 
representing plans and a SAT solver to search for models. Although there is room to optimize 
state-of-the-art SAT solvers specifically for planning domains [Giunchiglia98] [Mali02-b], a 
general SAT solver works well for planning domains. The key issue in implementing planning 
as satisfiability is how to encode the set of constraints. 

Programs for solving propositional satisfiability have become increasingly 

powerful over the last decade [Malik02] [Zhang02] [Gent99]. Consequently, SAT 

solvers are being used as the basis for an ever-increasing array of applications of 

many different kinds [Armando02]. The SAT-based planning is one such highly 

successful application. The performances of the best SAT-based planners, such as 

SATPLAN [Kautz96], BlackBox [KautzSelman99] and MEDIC [Ernst97], were shown 

to be competitive to Graphplan-based planners or better, and both outperform partial 

order based planners. The main disadvantage of this approach is that the encoding 

size can be large, because all possible propositions and actions are represented 

explicitly for each step. Otimization techniques3 to reduce the size of encoding as well 

as dufferent encoding methods have been extenstively explored.  

 

1.3  SAT-Based Metric Planning  

 

Generally, a logic-based framework needs some other tool to cope with metric 

aspects of the world in an efficient as well as an intuitive way. Very recently, state-of-

the-art SAT solvers have been successfully integrated with domain-specific 

procedures so that they overcome the limit in expressiveness of propositional logic.   

                                                 
3 Optimization techniques are overviewed in Section 7.2 and Section 7.3. 
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Figure 2: Architecture of the LPSAT Planning Framework 

 

In the LPSAT framework, a SAT solver and an arithmetic constraints solver are 

integrated into one framework by extending a DPLL-based4 SAT solver slightly, in 

such a way that the SAT solver treats each arithmetic constraint as a Boolean variable 

(called a trigger) and tests whether the generated truth assignment is satisfiable. A 

truth assignment satisfying all clauses propositionally can be a model for the input 

formulas only if the arithmetic constraints whose triggers are set to true are consistent. 

Thus, in the propositional reasoning part, heuristics and optimization techniques 

developed for SAT solvers can be applied. Considering that the computational time 

requirements of the integrated engine are dominated by the time requirements of the 

                                                 
4 Incomplete (Stochastic or Randomized) solvers also would be possible for domains in which 
completeness is unnecessary: The ILP-PLAN [KautzWalser00] uses an integer local search 
algorithm (a variant of WSAT) for metric planning. 
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arithmetic constraint solver, optimization techniques 5  for reducing calls to the 

constraint are essential to improve the performance of the engine.  

 Those decision procedures have been used in various contexts requiring 

expressiveness beyond propositional logic, including metric planning [Wolfman00], 

verification of hybrid systems [Audemard03], reasoning in modal and description 

logics [Giunchiglia00], temporal reasoning [Armando99], and formal verification of 

timed systems [Audemard02-a].  

 Wolfman and Weld developed the LPSAT engine [Wolfman99] [Wolfman00] 

that is used in our TM-LPSAT and applied it to metric planning in discrete time. The 

encoding scheme of discrete changes on numeric-valued fluents adopted in TM-

LPSAT is similar6 to their encoding.  They also experimented on their metric encoding 

with known heuristics of systematic SAT solvers, such as learning, back-jumping and 

random restarts. Their encoding is based on the assumptions that all actions are 

atomic (in contrast with durative) and all changes in numeric quantities are discrete at 

each step.  

 
Example: The encoding of ‘turn-to-target’ operation in Satellite Domain by the LPSAT 

 Turn(?target) 
  Precondition:  Pointing(?direction)   
    fuel ≥  angle(?direction,?target) * ConsumptionRate 
  Effect:  ¬pointing(?direction)  
    Pointing(?target) 
    fuel -= angle(?direction,?target) * ConsumptionRate 
 

where, ?direction is the direction the satellite is pointing to now, ?target is the direction 
the satellite is moved to point to. 

                                                 
5 Optimization techniques further discussed in Section 7.3.   
6 In LPSAT planner, in order to reduce calls to the LP solver, among the linear constraints 
generated to represent direct influence, those that are in conflict are encoded to be avoided in 
truth assignment by making them exclusive-OR. However, to preserve completeness in TM-
LPSAT, we did not adapt this technique. See Axioms (3), (4) and the footnote in Section 4.2.3.  
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The encoding generated by the LPSAT is like:  

 Turn(T7,i) ⇒   Pointing(T1,i) ∧  Constraint1(i) 
             ∧  ¬Pointing(T1,i+1) ∧  Pointing(T7,i+1) ∧  Constraint2(i+1)  
 Constraint1(i)  ⇒  fuel(i) ≥  angle(T1,T7) * ConsumptionRate 
 Constraint2(i+1)  ⇒  fuel(i+1) = fuel(i) - angle(T1,T7) * ConsumptionRate 
 

where, T7 for ?target, T1 for ?direction;  Turn(T7,i) a Boolean variable representing 
that Turn(T7) is active or not at step I; Pointing(T1,i) a Boolean variable representing 
Pointing(T1) at step i is true or false; Constraint1(i), Constraint2(i+1) the triggers 
(Boolean variables) for the corresponding constraints. 
 

The first axiom on Turn(T7,i) is solved by SAT engine. The axioms on constraints are 

solved by LP constraints solver when the corresponding triggers are true in the truth 

assignment made by the SAT solver. 

  

 

1.4  SAT-Based Temporal Metric Planning: TM-LPSAT 

 

The TM-LPSAT is a SAT-based temporal metric planner. It generates plans that 

contain concurrent asynchronous actions that may depends on arithmetic constraints 

and cause either discrete or continuous changes in numeric-valued fluents. 

The TM-LPSAT compiler accepts a description of a domain and a problem in 

an extended version7 of PDDL+, and translates it into a CNF formula (called LCNF) 

over Boolean variables and linear arithmetic constraints. The models of the CNF 

formula correspond to plans of bounded length for the given planning problem.  

PDDL+ is the latest extension of McDermott’s original PDDL (Planning Domain 

Description Language) [McDermott98] [McDermott00] developed for the International 

                                                 
7 The details of the extension are discussed in Section 4.1.1.   
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Planning Competition. PDDL+ supports metric temporal domains. Three temporal 

models of continuous time are supported: 

• Discretised durative actions in which all changes can occur only at the end 

points of the actions: continuous change is abstracted at end points, and so 

the value accessible by other action while the action occurs is not guaranteed 

to be correct.  

• Continuous durative actions in which continuous changes can occur over the 

period of the actions 

• The real-time temporal model that contains autonomous processes capturing 

continuous changes, exogenous events, and instantaneous actions 

 

Figure 3: Architecture of the TM-LPSAT Planning Framework 
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We have developed encoding schemes for temporal metric plans from a 

planning problem described in an extended version of PDDL+. Specifically, our 

encodings include the following features: 

• The temporal metric models supported in PDDL+ with the restrictions that all 

continuous changes are piecewise linear and that arithmetic constraints in the 

precondition are linear 

• The ADL subset of PDDL+, accommodating such features as typing, negative 

preconditions, disjunctive preconditions, equality, quantified preconditions, and 

conditional effects 

• Intervals as a fluent type, supported with Allen’s 13 interval relations and 

operations for updating the interval values    

• A real-valued or interval-valued parameter to action 

• Sharable, reusable resources: Multi-capacity resources (e.g. identical 

machines in a factory; number of web designers), partitioned interval 

resources of which concurrent “uses” mean disjoint subintervals (e.g. main 

memory space allocated to concurrent processes in OS using variable-size 

partitions) 

However, the plan metric among PDDL+ features cannot be dealt with in the TM-

LPSAT. 

The output of the compiler is fed into the LPSAT engine by Wolfman and Weld 

[Wolfman99] to generate a plan for the original planning problem.  
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As far as we know, there is neither any other domain-independent SAT-based 

temporal planning system that can reason with durative actions nor any other SAT-

based temporal metric planning systems that can reason about continuous changes.   

 

1.5  Organization of Thesis 

 

Chapter 2 gives an overview of PDDL+ adopted as a domain specification language in 

TM-LPSAT. The three temporal models of continuous time supported in PDDL+ are 

overviewed in terms of syntax, informal semantics, and expressiveness.  

Chapter 3 surveys the previous work in temporal metric planning systems that 

deal with durative actions or continuous changes, and gives a brief overview of 

formalisms developed in other areas for representing and reasoning about discrete 

and continuous changes, including hybrid real-time systems, qualitative processes, 

and logical formalisms.  

Chapter 4 presents our encodings of temporal, metric planning for the three 

temporal models as defined in PDDL+, and also encoding schemes of multi-capacity 

resources, partitioned interval resources, and metric quantities of interval fluent type.  

Chapter 5 describes the implementation of TM-LPSAT temporal metric 

planner: the LCNF compiler and its integration with Wolfman and Weld’s LPSAT 

engine. 

Chapter 6 presents the experimental results of our encodings with different 

decision procedure, MathSAT along with the LPSAT. The decision procedure finds 

solutions to propositional combinations over Boolean variables and linear arithmetic 

constraints.   
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Chapter 7 describes possible directions of extending TM-LPSAT. In particular, 

techniques of optimizing the encoding sizes as well as the engine are discussed 

further.  

Chapter 8 discusses the contribution of our work and the limitations of the TM-

LPSAT in terms of our encodings, as well as the approach itself. 

Appendices include notational conventions, time-labeling convention, encoding 

of sample domains and non-interference rules of PDDL+. 
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Chapter 2  PDDL+ (Planning Domain Definition Language) 

 

PDDL+ [FoxLong01] [FoxLong03] [FoxLong02-b] is the latest8 extension of PDDL, 

that was intended to support temporal and metric domains. It is a declarative planning 

domain specification language that is based on McDermott’s original PDDL 

[McDermott98] [McDermott00] and his maxim “physics, not advice”. 

PDDL+ is comprised of five levels: Level 1 contains the propositional and ADL 

levels of McDermott’s PDDL; Level 2 adds features for numeric variables; Levels 3 

and 4 contain durative actions [FoxLong02-b] [FoxLong03]; and Level 5 contains 

processes and exogenous events to represent real-time continuous and discrete 

domains [FoxLong01]. Levels 1 to 4 are collectively called PDDL2.1, officially 

approved by the IPC9 committee. Level 5 is a proposal10 by Fox and Long on a real-

time temporal model that has not been approved by the committee.  

The main features extended in PDDL+ include numeric-valued fluents, three 

temporal models of continuous time, and plan metrics. These features are reviewed in 

this section.  

 

2.1  Numeric-Valued Fluents 

 
                                                 
8  The newer release is PDDL2.2 [IPC04] for the upcoming 4th International Planning 
Competition. 
9 It stands for “International Planning Competition.” 
10 [McDermott03-a] is an alternative proposal for the temporal model of autonomous processes, 
whose semantics are based on continuous branching time.   
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In PDDL+, a numeric-valued fluent can be represented by a function applied to 

arguments11. In the previous versions of PDDL, it was represented by a real-valued 

variable. Considering that numeric-valued fluents are used mainly in arithmetic 

computation, this functional expression form is more natural than variables (in which 

all intermediate calculations must be assigned either to other variables or to local 

variables). It supports arithmetic updating operations (increase, decrease, assign, 

etc.) and arithmetic comparison operators (=,<,<=,>,>=) between numeric functional 

expressions. The feature of local variables defined in an action definition and a 

numeric parameter to action are removed in PDDL+. We will return to this issue in 

Section 4.1.1. 

 

2.2  Temporal Models of Continuous Time 

 

A number of issues are common to any model of continuous time, whether for 

planning or for reasoning:  (i) representation and reasoning about continuous change, 

(ii) concurrency, and (iii) the divided instant problem. In this section, we review the 

temporal models supported in PDDL+ in terms of how these issues are realized. 

 

2.2.1  Representation of Continuous Change 

 

There are three ways to model a continuous change in PDDL+: discretised durative 

actions, continuous durative actions and autonomous processes. Each model is 

discussed in terms of syntactic structure, (informal) semantics and expressiveness.   

                                                 
11 The argument is restricted to the objects (terms) that are not numeric. 
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2.2.1.1  Discretised Durative Actions (Level 3) 

Syntax 

 (:durative-action  <NameOfAction> 
  :parameters  <ListOfArgumentsWithTypes> 
  :duration  <LogicalExprOnDurationVariable> 
  :condition  <LogicalExpr> 
  :effect   <LogicalExpr> 
 ) 
 

<ListOfArgumentsWithTypes> is a list of variables declared along with types. 

<LogicalExprOnDurationVariable> is a propositional combination of numeric             

constraints on the duration of the action. A numeric constraint may be inequality. 

<LogicalExpr> is a propositional combination of fluents and arithmetic constraints, in 

which each proposition is temporally annotated. 

 
The modeling of temporal relationships is done by temporally annotated 

conditions and effects: the temporal annotators are at start, over all, and at end. A 

duration constraint can be temporally annotated either by at start (by default) or at end. 

 

Semantics 

 
A condition and effect annotated by at start corresponds to an instantaneous action 

that occurs at the starting point of the durative action. Conditions annotated by over all 

correspond to invariant conditions that are required to hold over the duration of the 

action, but not at the starting or ending time point12.  Conditions and effects annotated 

by at end correspond to an instantaneous action that occurs at the ending point of the 

durative action.  
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Note the expressive power of representing constraints on duration: the 

constraints can be (i) static (constant expression), (ii) dynamic (variable expression), 

and (iii) uncertain (inequality relation). The duration inequality allows the planner to 

adapt the duration accordingly in order to exploit concurrent activity. 

 

Example 2-1: Bath Domain in Level 3  

This is a durative action that fills a bathtub by turning on and off the tap without 

overflowing over [?start, ?end]. 

 (:durative-action  fillBath 
  :parameters (?b – bath ) 
  :duration   (at end  (<=  ?duration   (/  (- (capacity  ?b) (level  ?b)) (flow ?b))))   (0) 
  :condition (and  

      (at start  (plug_in  ?b))  (at start  (not (tap_on  ?b)))     (1) 
     (over all  (plug_in  ?b))  (over all  (tap_on  ?b))                      (2) 

             (at end (tap_on  ?b))  (at end    (plug_in ?b)))                                 (3) 
  :effect  (and  

  (at start  (tap_on ?b))                                                (4) 
          (at end  (not (tap_on ?b)))                                                                (5)
       (at end  (increase  (level ?b)  (*  ?duration  (flow ?b))))                   (6) 

  ) 
 

Observe that 

• (0) is a constraint on the duration: it ensures that the bath never overflows by 

checking, as a precondition for the updating in (6), that the quantity of water to 

be added does not exceed capacity. It allows this action to be concurrent with 

any other actions affecting the level of water during the period of the action.   

• (1) and (4) are conditions and effects for the starting action of the durative 

action “fillBath,” i.e. turn on the tap. 

                                                                                                                                              
12 [LongFox01] explains the reasons for adopting this temporal model and compares it with 
other temporal models. 
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• (2) are invariants to hold in the interval (?start, ?end), excluding ?start 

and ?end.  

• (3), (5) and (6) are conditions and effects for the ending action of “fillBath,” i.e. 

turning off the tap.  

• Notice that in Level 3, during the period of the action, the “correct” value of the 

water level cannot be accessible by other actions13 whose preconditions are 

dependent on the value. On the other hand, in Level 4 it is possible since the 

level of water is continuously updated. See the example in Section 2.2.1.2. 

 

Limitations of Expressiveness 

 
In this model, a continuous change is abstracted as a discrete change at the end 

points of a durative action. The value assigned to the numeric fluent while the action is 

occurring is not reliable. If some other concurrent action has a precondition that 

depends on this fluent, then the action may be not considered feasible when it is 

feasible or vice versa.  

In terms of utilizing resources, this model adopts a conservative view: 

consumption of a resource is abstracted at the starting point of the durative action; 

production of a resource is abstracted at the ending point of the durative action. In 

consequence, in terms of utilization of the resources, this model cannot make the 

most of it. For example, a durative action DA that occurs over the time interval [T1,T2] 

produces a resource r by QA at T2 (actually continuously by RateProducedByDA); a 

durative action DB needs (i.e. in the precondition) the resource r by QB at T3 such that 

                                                 
13 An action like “add-bubble” that has a precondition that the level of water is more than half. 
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T1 <T3 <T2 and QB <= (T3-T1) * RateProducedByDA. By taking abstraction, action DB 

cannot occur at T3. 

Obviously, there is a class of domains that can not be correctly modeled with 

this kind of abstraction. Such an example is data down-linking and recording in the 

Satellite Domain [FoxLong02-a]. Data storage in the satellite has capacity. Data can 

be down-linked to the ground station “at the same time” it’s being collected. Two 

actions interplay on the level of data storage. Conservative decrease of data by the 

downlink action can allow actual overflow of data by the action of collection. This kind 

of domain can be modeled only in the temporal models of Level 4 or Level 5. 

 

2.2.1.2  Continuous Durative Actions (Level 4) 

 

Syntax 

In addition to the syntactic form of discretised durative actions, in Level 4 it is possible 

to represent a continuous effect: 

  (increase14   <NumericFluent>    (*  #t  <ArithmeticExpr>))  or, 

(increase     <NumericFluent>    (*  <ArithmeticExpr>  #t ))   

where, #t represents  the elapsed time since the action started.   

Also, instantaneous actions are allowed in Level 4.  

 
Semantics 

 
A continuous change statement represents the value of <NumericFluent> which is 

continuously increasing/decreasing over the period of the durative action by the rate 
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of <ArithmeticExpr>. At any point within the period, the exact value of the fluent is 

accessible.  

 
Example 2-2: Bath Domain in Level 4 

 
(:durative-action  fillBath 
 :parameters (?b – bath ) 
 :duration   ( ) 
 :condition (and  
       (at start  (plug_in  ?b))  (at start  (not (tap_on  ?b)))          (1) 

     (over all  (plug_in  ?b))  (over all  (tap_on  ?b))                    (2) 
(over all   (<=  (level ?b) (capacity ?b)))                  (2’)                         

(at end (tap_on  ?b))  (at end    (plug_in ?b)))                                   (3) 
            :effect  (and  

      (at start  (tap_on ?b))                                   (4) 
                    (at end  (not (tap_on ?b)))                                                               (5) 

     (increase  (level ?b)  (* #t  (flow ?b))))                                            (6’) 
) 

 

Observe that the constraint on duration, (0), in Example 2-1 is represented by (2’) and 

(6’) in Level 4. Unlike Level 3, the exact value of the level is accessible to any other 

concurrent action such as addBubble in Appendix 3.  

 

Limitations of Expressiveness 

 
In this model, the continuous change in a durative action is bound by the duration of 

the action. In contrast to this, there are situations in which the period of continuous 

change is determined by the environment and so is beyond the planner’s control. 

Such an example is “Rover” Domain [FoxLong02-a] which models a rover’s 

recharging process that is triggered as soon as it is in the sunlight. A rover cannot 

make any decision on how long the recharging process continues but can only exploit 

                                                                                                                                              
14 Likewise, decrease. 
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the effect. Also, occurrences that are triggered by the environment cannot be 

represented in Level 4. 

 

2.2.1.3  Autonomous Processes  (Level 5) 

Syntax 

(:process/event  <NameOfAction> 
 :parameters  <ListOfArgumentsWithTypes> 
 :precondition  <LogicalExpr> 
 :effect   <LogicalExpr> 
 ) 

 

The syntactic components of Level 5 are processes15, events and instantaneous 

actions. PDDL+ requires that a process has at least one continuous effect and an 

event has at least one numeric constraint in the precondition.   

 

Semantics 

 
The preconditions of a process are triggering condition, invariant condition, and also 

terminating condition. Continuous changes are captured by processes, each of which 

is triggered and terminated either by actions, events, or ongoing processes. A process 

triggered by actions can often be captured by a durative action with flexible duration 

under the planner’s control. A process triggered by events cannot be modeled by a 

durative action, whose duration the planner may not know or care about. An event, 

either deterministic or nondeterministic, makes an instantaneous transition between 

states of the environment, which is not a choice of the planner. 
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Naturally the following semantic constraints are imposed: 

• Preservation of continuity: The continuous change over [T1,T2] should be equal 

to the sum of the change over [T1,T3] and the change over [T3,T2], for any T3, 

T1 < T3 < T2.  

• Triggering of an event with no slip of time: as soon as its precondition is 

satisfied, the event should be triggered. 

• Triggering of a process with no slip of time: like triggering of an event 

• Termination of a process with no slip of time: as soon as its precondition is 

violated by continuous or discrete changes, the process should be terminated. 

 
Example 2-3: Bath Domain in Level 5 

(:process   bath_filling 
   :parameters (?b - bath) 
   :precondition (and  (<= (level ?b)  (capacity ?b))    

(>  (flow ?b)  0)) 
   :effect   (increase  (level ?b)  (*  #t  (flow  ?b))) 

 ) 
 

(:event  flood 
   :parameters (?b - bath) 
   :precondition (and (>=  (level ?b)  (capacity ?b))  (>  (flow  ?b)  0)    

(dry_floor ?b)) 
   :effect  (and (wet_floor ?b)  (not  (dry_floor ?b)))) 
 

Observe that  

• The “bath_filling” process should be triggered as soon as the level of the bath 

is less than the capacity and there is inflow to the bathtub. The process should 

be active until these conditions become false, either by discrete changes or 

                                                                                                                                              
15 The process model in McDermott’s Opt [McDermott03-a] contains triggering conditions and 
effects, invariants, and terminating effects. So, its syntactic structure is more like a durative 
action in PDDL+. 
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continuous changes. The process should be terminated as soon as these 

conditions become false.  

• As soon as the level of water exceeds its capacity, event “flood” should be 

triggered. 

 

2.2.2  Concurrent Plans 

 

Plans with concurrent actions were not considered in the previous versions of PDDL. 

Concurrency is restricted by non-interference rules of the PDDL+ in Appendix F; any 

two actions violating these rule(s) cannot be run simultaneously. In particular, non-

interference rules adopted in PDDL+, an extension of mutex rules for Graphplan 

[Blum97] with numeric features, include the “no moving targets rule,” which is stronger 

than the commonly used “no concurrent actions can affect the parts of the state 

relevant to the precondition tests of other actions in the set, regardless of whether 

those effects might be harmful or not.” The reason16 for adopting the rule is to make 

concurrency checking in polynomial time of the size of actions and pre- and post-

conditions.  

The introduction of concurrency into the framework of actions raises the 

following issues on interactions among actions being executed in parallel [Pinto00]: 

• Precondition interaction problem: Depending on whether or not other actions 

are performed concurrently, actions can or cannot be performed. One example 

                                                 
16 A good example is action A: (p V q) => r, action B: p => ( ¬ p ∧  s) [FoxLong03]. Handling 
the case implied by this example requires checking the consequence of interleaving 
preconditions and effects in all possible ways. Thus so, PDDL+ semantics defines these two 
actions interfering.  
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of such an action is that if each dancer in a closed circle takes one step to the 

right, then each action is possible only if all dancers move synchronously.      

• Synergistic effects: Actions that are performed concurrently produce effects 

that neither action would have if performed in isolation. An example of this is, 

when lifting both ends of a table simultaneously, it has the effect of raising the 

table off the ground. 

• Cancelled effects: Two actions cancel each other’s effects. An example of this 

would be a door that is pushed and pulled at the same time with the same 

force. 

• Cumulative effects: More than one action makes changes concurrently on the 

same fluent. An example of this is the direct influence on a numeric fluent.  

• Interactions between durative actions that are overlapped, such as pulling the 

door while holding a spring loaded latch open.  

 

These issues are realized in PDDL+ in the following ways: 

• Precondition interaction problem: There is no feature in PDDL+ to support 

multi-agent environments.  

• Synergistic effects and Cancelled effects: Precise simultaneity is outside of 

the control of an executor. The interpretation of simultaneity in PDDL+ is that 

an executor can execute the two actions within a fine but nonzero tolerance, 

and the effects can occur [FoxLong02]. 
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• Cumulative effects: Simultaneous updates on numeric-valued fluents are 

allowed, only if the operations are commutative. Asynchronous concurrency 

[Brenner01] is not possible with propositional fluents.  

• Interactions between durative actions executing overlapped: Interactions of 

this kind can be modeled as invariants within a durative action. 

 

2.2.3  Divided Instant Problem 

 

The Divided Instant Problem [Vila94] is about the truth value of a propositional fluent 

at the moment the state transition is happening. The solution adopted in PDDL+ is to 

model an action as an instantaneous state transition whose effects are effective at the 

moment of the application of the action. Thus, the state preceding the action holds 

over an interval that is open on the right (i.e. not including the instant in which the 

action takes place). The effect of the action holds over the interval that is closed on 

the left (i.e. all real valued times equal or greater than the time the action takes place.).   

 

2.3   Plan Metrics17 

 

As mentioned before, PDDL+ was intended to support temporal metric domains. In 

temporal metric domains, it is more likely that plan quality is judged by temporal 

quality such as makespan (total time of the plan) or plan cost such as resource 

consumption or cumulative action cost, rather than solely based on the length of a 

                                                 
17 The TM-LPSAT cannot handle the plan metric, which is an inherent difficulty with a SAT–
based approach. 
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plan. To evaluate the quality of a plan specific to a given problem, PDDL+ supports 

representation of the plan metric optionally given to the planner. The plan metric is 

expressible in maximization or minimization of functional expression of numeric-

valued fluents. 
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Chapter 3  Previous and Related Work 
 
 

To our knowledge, there is no previous domain-independent planning SAT-based 

system, which can reason about actions over continuous time. There are a few SAT-

based metric planners: the LPSAT metric planner [Wolfman99] [Wolfman00], and as a 

variant 18  of the SAT-based approach, the ILP 19  metric planner [KautzWalser00] 

[KautzWalser99] and the MILP20 metric planner [Bockmayr98] [Bockmayr99]. These 

systems, however, plan in atomic time. Our encoding of numeric-valued fluents with 

only discrete changes, as defined in Level 3 of PDDL+, is similar to that of LPSAT, 

only differing in the definition and reasoning of time points: time points in our encoding 

are metric and  variable distance away, in contrast to their step-based definition of 

time points.   

In Section 3.1, temporal metric planning systems dealing with temporal models 

of durative actions or continuous changes are reviewed and their relation to our work 

is considered. In Section 3.2, we briefly give an overview of formalisms developed in 

different areas for modeling dynamic worlds with continuous behaviors as well as 

discrete behaviors: hybrid automata, qualitative processes, and logical formalisms. 

 

3.1  Domain-Independent Planning Systems Dealing with Continuous Time 

 

3.1.1 Planning Systems Dealing with Durative Actions 

                                                 
18  SAT-encoding can be easily converted (transformed) into encoding for 1/0 Linear 
Programming; Stronger formulations of ILP problem in planning domains, rather than direct 
translation of  SAT encoding, have been explored [Bockmayr98] [Bockmayr99] [Dimopoulos02] 
[Vossen00] in order to improve performance.     
19 ILP stands for Integer Linear Programming. 
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Generally, the expressiveness of temporal constraints that state-of-the-art temporal 

planners can handle is limited: constant durations and STRIPS-style operators, hardly 

handling external events and autonomous processes. There are a few temporal and 

metric planners such as TP4 [HaslumGeffner01], LPG [Gerevini03] and Sapa [Do03-

b], but they can deal mostly with discrete changes within a durative action. Sapa and 

LPG claim to be able to deal with continuous change “in theory”, but their scalability 

and concurrency is unclear.  

There are three temporal planning systems dealing with durative actions, 

which are related to our work in some aspects:  

 
Mali’s SAT-based Temporal Encoding [Mali02-a] is an extension of state-space 

encoding [KautzMcAllester96] of duration 1 (i.e. discrete time) with constant integer 

durations. The temporal model adopted is that used in TGP 21  [Smith99]: all 

propositions are either undefined or persistent over the duration so that they should 

be protected over the duration. A step is defined at each integer time. His encoding 

could be mapped to the encoding in continuous time by scaling up unit time by integer 

1, but it is certainly not a good idea to define a step at each unit time. The optimization 

technique using plan graph used in his encoding is specific to the actions of constant 

integer durations.  

 
                                                                                                                                              
20 MILP stands for Mixed Integer Linear Programming. 
21 The temporal model used in TGP and TP4 is called “Blackbox” model: (i) the preconditions 
should be satisfied at the starting point of the action, (ii) The values of propositions in the 
effects are changed sometime during the action (so, the values are “undefined”); their values 
are valid only the ending point of the action, (iii) precondition whose value is not changed in the 
effect should be persistent over the duration of the action. 
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MILP Temporal Planner [DimopoulosGerevini02] is based on a novel architecture for 

the temporal planning. The planning problem is encoded as two parts: (i) 0/1 integer 

encoding of plan graph generated from the non-temporal aspect of the problem, and 

(ii) 0/1 integer linear encoding of temporal constraints in terms of start times and 

durations of actions and start times of fluents at each layer. The two encodings are 

glued together via 0/1 action variables. All inequalities from both encodings are solved 

using a MILP solver (Mixed Integer and Linear Programming). It plans by branch and 

bound through bounded-length plans based on optimization function. Thus, the plan is 

suboptimal in terms of the given objective functions, and it cannot guarantee 

optimality in terms of makespan (total time of the plan), since a plan taking less time 

can have more steps. 

As compared to the LPSAT architecture in which the linear constraint solver 

and the propositional constraint solver are separate modules, the unified encoding in 

MILP has the potential to exploit the strong interactions which may lead to extensive 

value propagation. Their temporal encoding is assumed to have actions of constant 

real-valued durations; otherwise it becomes nonlinear.   

 
LPGP [LongFox03] is a temporal planner based on the Graphplan framework 

[Blum97], in which Level 3 of PDDL+ is adopted as a temporal model, dealing with 

discretized durative actions with constant duration. The plan graph constructed is a 

representation of the logical structure of a plan: each action layer corresponds to the 

occurrence of interesting instantaneous activities. Thus, conceptually, each state (fact 

layer) carries duration. In the graph construction phase, a durative action is 

decomposed into instantaneous actions: a starting action, an ending action, and an 
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action with invariants as preconditions. The instantaneous actions are causally linked 

with artificial tokens (propositional fluents). During the plan extraction phase, linear 

constraints on the durations of fact layers and durative actions included in the current 

plan are constructed backward; whenever a start action is added in the current plan, 

the consistency of the linear constraints is checked by LP solver, which is that the 

sum of durations of fact layers between start action and end action should be equal to 

duration of the durative action.   

The disadvantage of this approach is that, compared to TGP22 [Smith99] or 

TP4 23  [HaslumGeffner01] where the plan graph is a representation as a flow of 

uniform time, it cannot guarantee optimization of makespan, since graph generation is 

separated from temporal optimization. The model of time used in the plan graph is the 

same as the model of time adopted in our TM-LPSAT, which entirely complies with 

the semantics of PDDL+.  The difference is in how the temporal constraints are 

reasoned: in the TM-LPSAT, temporal constraints intertwined with metric constraints 

at the time points are searched non-directionally by a SAT solver. Thus, the TM-

LPSAT does not suffer from the difficulties caused by backward search, such as 

handling with a durative action whose ending action is not included in the plan, but 

whose starting action needs to be included in the plan.  

 

 

 

                                                 
22 TGP, Graphplan-based temporal planner using extended mutex reasoning, can find a plan 
which takes the shortest, i.e. optimal in terms of makespan. 
23 TP4 heuristic-based planner finds an optimal plan in terms of makespan, using heuristic 
function. 
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3.1.2  Planning Systems Dealing with Continuous Changes 

 

There have been planning systems that can reason about “continuous change” in 

restricted contexts including Hendrix’s Processes[Hendric73], Vere’s DEVISER 

[Vere83], Wilkin’s SPIE [Wilkins88], Simmon’s GORDIUS [Simmons88], Dean’s 

FORBIN [Dean88], Drabble’s EXCALIBUR [Drabble93], and ZENO [Penberthy93] 

[Penberthy94]. All of these are partial order planners. Compared to the other systems, 

the ZENO system can handle quite expressive temporal and metric constraints, 

although its handling of continuous changes is restricted to non-concurrent updates. 

However, the difficulty of managing the temporal constraints involved, typical of partial 

order planning, turns out to be the bottleneck in its performance. It has been reported 

that the ZENO is unable to solve even the simplest metric logistics problem that the 

LPSAT metric planner can do [Wolfman00], although the ZENO algorithm is complete 

and sound. Compared to the ZENO, our TM-LPSAT planner can handle concurrent 

continuous updates as defined in semantics of PDDL+, which include any concurrent 

combination of continuous and discrete changes consistent with the “no moving 

target” rule mentioned in Chapter 2. Also, autonomous process triggered by 

nondeterministic exogenous events can be handled in the TM-LPSAT.  

Very recently, McDermott has presented a heuristics-based planner called 

Optop (actually an extension to the Optop planner) using an estimated regression 

graph [McDermott03-a] [McDermott03-b]. To our knowledge, this is the only domain-

independent planner which can handle autonomous processes as well as objective 

functions. It is reported that performance of the approach is not very promising at least 

at this point. In the SAT-based planning framework, it would not be feasible to deal 
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with optimality in terms of given objective functions, although there are simulated SAT 

approaches or variants of SAT-encoding such as MILP which can find optimality 

(optimal within the plan length) to objective functions. Certainly it is an advantage of 

heuristic-based planners that they are open to be able to find global optimality.  

Another characteristic of Optop is that it does not instantiate all action schemas in 

advance, which makes it feasible for domains with objects dynamically created or for 

domains involving numbers and other infinite sets. That is clearly a strong point over 

the planning frameworks searching through all grounded actions, especially, over the 

Graphplan-based planning framework. The TM-LPSAT can deal with domains 

involving numbers and (a subset24 of) dynamically created objects as dealt in Section 

4.5 as multi-capacity objects with variable capacity, although it is necessary to ground 

all action schema at the encoding stage in the SAT-based framework. 

 

3.2  Formalisms for Modeling Continuous and Discrete Changes 

 

3.2.1  Hybrid System  

 

A hybrid system [Larsen97]  [Henzinger96] is a formalism for modeling a dynamical 

system whose state has both a discrete component, which is updated in a sequence 

of steps, and a continuous component, which evolves over continuous time. A hybrid 

system is composed of a collection of hybrid automata, which communicate either by 

shared variables or by synchronization on a channel. A hybrid automaton is an 

extended FSM that models a discrete behavior by a FSM as well as a continuous 

                                                 
24 If it is not necessary to identify the objects individually.  
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behavior by a real-valued variable. A node contains (i) activities: functions describing 

continuous behaviors of real-valued variables; (ii) invariants: formulas over the values 

of the variables to be in this state. A transition is labeled by (i) a precondition (guard): 

a formula over the variables specifying condition for the transition to be taken; (ii) an 

action: an instantaneous discrete change; (iii) a post-condition (assignment): a 

discrete change to the real-valued variables possibly depends on the previous values 

to the variables. The state of the hybrid automaton can change either by an 

instantaneous discrete change or by time passage. Linear Hybrid Systems, in which 

invariants, guards and activities are linear in time, form a subclass for which tractable 

algorithms for automatic analysis, like Timed Automata (in which the only continuous 

variables are clocks) are known.  

The semantics of PDDL+ Level 4 & 5 (modeling of continuous and discrete 

changes) [FoxLong01] is described using Hybrid Automaton.  [FoxLong02-c] studies 

the use of HyTech[Henzinger97], a model checking tool for hybrid systems, for 

domain analysis in planning. [Audemard03] formulates bounded reachability problem 

of a linear hybrid system as a satisfiability problem over propositional and linear 

constraints, and solved it with MathSAT SAT solver [Audemard02-b]. However, 

concurrent continuous and/or discrete changes have not dealt with in the work.  

 

 

 

3.2.2  Qualitative Reasoning  
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Discovering qualitative techniques for representing and reasoning about a 

continuously changing world is the focus of research in qualitative physics [Forbus96]. 

Qualitative simulation [Kuipers01] is the construction of a set of possible behaviors 

consistent with a model of dynamic systems represented by “qualitative” version of 

differential equations. The following are reasoning systems based on qualitative 

simulation, integrating discrete changes by actions and continuous changes by 

qualitative processes. 

 

Forbus’ Qualitative Process Theory with Actions [Forbus89] Given an initial state, a 

set of actions, and a set of processes, qualitative simulator generates all possible 

action sequences intertwined with all possible process evolutions, that is, entire plan 

space; then, determine a sequence of actions solving the problem within the plan 

space. Clearly the bottleneck in his system is combinatorial explosion.      

 
Drabble’s EXCALIBUR [Drabble93] is a hierarchical partial-order planner that can 

reason about external event, complex resources, and continuous change. Using 

qualitative simulation, processes are arranged in the plan generated ignoring all 

metric preconditions and effects; if the plan does not satisfy the original metric 

preconditions, the plan is repaired using a variety of heuristic techniques. The 

heuristic strategies used in plan repair are not presented clearly.  

 
Farquhar’s Qualitative Process Compiler [Farquhar94] extends Qualitative Process 

Theory and is implemented in QSIM. A physical world is represented by a set of 

model fragments, each of which captures some aspects of the domain by providing 

knowledge of both algebraic and logical nature. The definition of a model fragment 
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contains a set of participants, the relations which must hold in order to instantiate the 

fragment and consequences. Given the entities involved, their relationships and initial 

conditions, the compiler instantiates proper model fragments. It then does qualitative 

simulation on the domain. In case the predicted behavior extends across the 

boundary of applicability a fragment, a new model of the resulting situation is 

dynamically constructed by considering other fragments.  

 

3.2.3  Logical Formalisms   

 

A number of works integrate continuously changing quantities into a logical formalism: 

McDermott’s Temporal Logic [McDermott83]; Sandwell’s Features and Fluents 

[Sandwell89]; Davis’ Axiomatization of  Qualitative Process Theory in First-Order 

Theory [Davis92]; Davis’ Modeling of Autonomous  Agents in terms of continuous 

control and choice [Davis94]; Reiter’s extension [Reiter96] and Pinto’s extension 

[Pinto98-b] into Situation Calculus; Miller and Shanahan’s extension into Event 

Calculus [Miller96-a] [Miller96-b] [Shanahan90]; Thielscher’s extension into Fluent 

Calculus [Thielscher99].  

In particular, the representation used in Event Calculus is similar to our SAT 

encoding, although the reasoning in Event Calculus involves circumscription. To 

integrate the continuous changes generally represented in algebraic equations, the 

notion of trajectory is introduced into Event Calculus. A trajectory describes the 

functional relationship between the value of continuously changing quantity and the 

time it elapsed since it started to change. A trajectory is attached to a fluent such as 
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“flowing” by axioms, which ensures that the trajectory is valid as long as the related 

fluent to which the trajectory is attached holds.    
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Chapter 4  Encoding Temporal Metric Planning in Continuous Time 

 
In this section, we show encoding schemes for temporal models of continuous time as 

defined in PDDL+: durative actions with discrete changes, durative actions with 

continuous changes, and a real-time temporal model of processes and events. The 

encoding covers the ADL subset of PDDL+, accommodating such features as 

negative preconditions, disjunctive preconditions, equality, quantified preconditions, 

and conditional effects. We also show, by extending numeric-valued fluents, how 

multi-capacity resources and interval-valued fluents can be encoded in the SAT-based 

framework. 

In Section 4.1, we show the adaptations of PDDL+ made in the TM-LPSAT 

and the encoding scheme adopted in our temporal encoding. The representation of 

time and fluents is shown in Section 4.2. Section 4.3 presents the temporal encoding 

of durative actions as defined in PDDL 2.1 Levels 3 and 4. The real-time temporal 

encoding as defined in PDDL+ Level 5 is presented in Section 4.4. The encoding of 

multi-capacity resources and interval-valued fluents is shown in Section 4.5. 

The features of these temporal models are overviewed in Chapter 2. The 

summary of syntax and semantics and additional assumptions made in the encoding 

are recapitulated in the subsections, 4.3.1 for Level 3 and 4 and 4.4.1 for Level 5. The 

sets, predicates and functions used in this Chapter as well as the time-labeling 

convention are defined in Appendix A. Encodings of sample domains are given in 

Appendix C for durative actions and Appendix D for the real-time temporal model.  
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4.1  Preliminaries 

 

4.1.1  Adaptation of PDDL+ 

 

Open-World Assumption vs. Closed-World Assumption 

 
According to the document of PDDL2.1 [FoxLong02-b], Closed World Assumption is 

not sustained any more: Requirement flag for assumption on world, which existed in 

the earlier versions of PDDL, was removed in PDDL+. What world, then, is supposed 

to be assumed? Is it up to the domain designer? Open World Assumption and Closed 

World Assumption are quite different assumptions. We adopt Closed World 

Assumption for the encodings presented below.  

 

Numeric-Valued Parameter to Action 

 
This feature has been removed with the latest updates in PDDL+. The reason for this 

change, they say, is that it generates an infinite search space, which is a serious 

bottleneck to planning frameworks25  based on searching feasible actions over all 

grounded actions such as Graphplan [Blum97]. However, we think the domain 

definition language should not be restricted by the limitation of certain frameworks. 

More importantly, there are domains, like pouring flour into a bin with a measuring cup, 

that can only be represented using actions with numeric-valued parameters.  This 

                                                 
25 TM-LPSAT is one of the planning frameworks searching over all ground actions, but a 
numeric-valued parameter can be dealt with a real variable in TM-LPSAT.  Likewise, the same 
technique can be used in Graphplan planning framework.  
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feature26 is reinstated in TM-LPSAT. As a natural extension, we allow an interval-

valued parameter to action. 

 

Extension of Function Types  

 
In PDDL+, the type of a function is assumed to be numeric-valued (real number, 

possibly). There are no means to declare other types or features. Thus, a natural 

direction of extension is type:  

• Number: { positive | negative } { integer | real } { float | fluent } 

• Interval:  interval { float | fluent } 

Such type specifications of a numeric-valued fluent can be useful in allowing an 

arithmetic constraint solver to restrict the feasible solution spaces [Borning98]27. In 

particular, it is useful for reducing the size of encoding in the TM-LPSAT to distinguish 

float and fluent: only a continuously changing numeric-valued fluent needs to be 

encoded with two real variables28. Otherwise, a numeric-valued float is replaced by its 

value.   

Most numeric-valued fluents in planning contexts have capacity, with which the 

use of the fluent must be checked for validity. This capacity could be constant or time-

varying. In Section 4.5, we show how multi-capacity resources (i.e. sharable, reusable 

                                                 
26 This feature in discrete time was employed in the LPSAT metric planner [Wolfman00]. The 
same encoding can be used for durative actions in continuous time, since the parameter is like 
float local to the action. However, in durative actions it is necessary that the variable 
corresponding to a numeric-valued parameter needs to be time-labeled. This is so in order to 
allow to be concurrent two instances of the same durative action with numeric parameters that 
is started at different time points.   
27  In the Cassowary arithmetic solver integrated in the LPSAT engine, all numbers are 
assumed to be real. On the other hand, in the standard Simplex method, variables are 
assumed to be non-negative real numbers. 
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metric quantity with capacity) and interval-valued fluents can be encoded as 

constraints in the SAT-based framework.  

 

4.1.2  Encoding Scheme 

 

According to the classification of encoding schemes in [Ernst97], the encoding 

scheme we adopt is “regular explanatory frame representation29”. The reason why we 

adopt this scheme is that (i) it has been proven empirically to perform better 

[Giunchiglia98] [Ernst97], (ii) it is easier to apply general optimization techniques as 

well as to adaptation to other encodings, and (iii) it supports parallelism. 

To adjust the encoding scheme for continuous time as well as numeric-valued 

fluents, the conventions adopted are as follows, in comparison with the encoding in 

discrete time:  

• Each time point is an instant over R* at which some interesting activities may 

happen, where interestingness is with respect to goal achievement; a metric 

value is bound to each time point; Ti is the next time point to Ti-1, and they are 

a variable distance away. 

• The values of all propositional fluents and (Boolean variables for) ground 

actions are defined at each time point; two values30 for each numeric-valued 

fluent are defined at each time point.  

                                                                                                                                              
28 Refer the Section 4.2.2. For a numeric-valued fluent changing only discretely, one real 
variable is enough for encoding. 
29 It is also called “State Space Encoding”. There are other variants of state space encoding, 
though. 
30 In order to deal with continuous change, two variables are used to represent numeric-valued 
fluents. Refer Section 4.2.2. 
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• Generally31, the precondition of a happening at time point Ti is defined at 

previous time point Ti-1, the post-condition is defined at time point Ti. 

 

The encoding scheme consists of the following axioms, which are shown along with 

examples from Block World domain: 

 Move(X,Y,Z) :  move X from Y to Z 
  Precondition:      Clear(X)  ^ On(X,Y)  ^ Clear(Z) 
  Post-condition:    Clear(Y) ^ On(X,Z)  ^ ¬ Clear(Z)  ^ ¬ On(X,Y) 
 

(1) Universal Axioms 

Initial state is at time point T0; goal state varies with temporal models.  

(2) Action Representation 

Action implies its precondition and post-condition 

e.g. Move(A,B,D, Ti)  => Clear(A,Ti-1)  ^ On (A,B,Ti-1)  ^ Clear(D,Ti-1) ^    
      Clear(B,Ti) ^ On(A,D,Ti)  ^  ¬ Clear(D,Ti)  ^ ¬ On(A,B,Ti) 

(3) Explanatory Frame Axioms  

For each propositional fluent, it enumerates the set of actions that could have 

occurred in order to account for a state change; it contrapositively denotes 

persistency.  

e.g. Clear(D, Ti-1)  ∧ ¬Clear(D, Ti) => ( Move(A,B,D, Ti)  ∨ …∨ Move(C,Table,D, Ti )) 

For a numeric-valued fluent, it requires linear equations of simultaneous discrete 

changes and concurrent continuous changes between two neighboring time points, 

Ti-1 and Ti. Those equations are given in equations (1) and (2) of Section 4.2.2. 

These explanatory axioms support parallelism and ensure that the encoding is 

sound. 

                                                 
31 This is the case for event and action, but not for process. Refer Section 4.4.3. 
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(4) Conflict Exclusion Axiom 

In order to make any total order plan generated  from the given parallel plan a 

valid plan,  add clauses of  mutual exclusion for each pair of conflicting actions, 

which is based on the interference rules defined in PDDL+. The details of the rules 

are given in Section 4.3.5. 

 e.g. ( ¬ Move(A,B,D, Ti)  ∨  ¬ Move(A,D,B, Ti))  for fluent Clear(D) or Clear(B)  

 

4.2  Representation of Time and Fluents 

 

4.2.1  Model of Time 

 

Time is modeled as linear and isomorphic to the real numbers.  

Time points, with metric values defined over R*(nonnegative real number), 

represent instants at which interesting instantaneous activities happen. A state is 

defined in terms of a finite set of propositional fluents and numeric fluents in the 

domain. The transition between states happens by instantaneous actions or events, 

changing the values of propositional fluents or discrete changes on numeric-valued 

fluents; any continuous change can go on within a state. This entirely complies with 

the semantics of PDDL+ given in the elements of Hybrid Automata [FoxLong01]. 

Although time is continuous and an action can be scheduled to begin at any time point, 

only a finite number of happenings between any two time points are allowed by the 

semantics of PDDL+. 
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Representation and reasoning of actions and changes is based on time points, 

rather than on interval: the values of all fluents and ground actions are defined in 

terms of time points.   

 

4.2.2  Representation of Fluents 

 

Propositional Fluents 

 
The truth value of a propositional fluent pf at time point Ti is  Proposition(pf,Ti). 

 

Numeric-Valued Fluents 

 
In order to deal with continuous changes, two variables are introduced to represent 

values of each numeric-valued fluent at time point Ti: 

Valuebefore(nf,Ti)   

• To capture all concurrent continuous changes made on a numeric fluent nf by 

durative actions or processes over the interval (Ti-1,Ti)  

Valueafter(nf,Ti)  

• To capture all simultaneous discrete changes made on a numeric fluent nf by 

actions (events) happening at Ti 

This representation32  makes possible to reason about concurrent continuous and 

discrete changes, while preserving continuity on a continuously changing fluent nf. 
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4.2.3  Axioms on Numeric-Valued Fluents 

 

The time-labeling convention used is defined in Appendix B. 

 

Arithmetic Constraints between Valuebefore(nf,Ti)  and  Valueafter(nf,Ti)  

 
(1)  Valuebefore(nf,Ti)  =  Valueafter(nf,Ti-1)  +  ∑ a  RateOfChange(a,nf,Ti-1) * (Ti – Ti-1) 

                   =  Valueafter(nf,Ti-1)  +  ∑ a  NetContiChange(a,nf,Ti-1,Ti) 

• a is either a durative action or a process; it distinguishes instances of the same 

durative action (or process) at different time points to support concurrency  

• If a is not active at Ti-1,   

RateOfChange(a,nf,Ti-1)  =  NetContiChange(a,nf,Ti-1,Ti )  =  0 

• Let us call this equation LinearContinuousEq(nf,Ti) 

 
(2)  Valueafter(nf,Ti)  =  Valuebefore(nf,Ti)   +  ∑ a  DiscreteChange(a,nf,Ti)  

(2’) Valueafter(nf,Ti)  =  <NewValue>     

• Exactly one of (2) and (2’) should be activated at each time point, which is 

imposed by Axiom (6): (2) is for additive discrete changes; (2’) is for 

assignment by a new value 

• a is either an event or an instantaneous action including start or end actions of 

durative actions; again, it distinguishes instances of the same durative action 

started at different points to support concurrency 

                                                                                                                                              
32 In the temporal encoding of Level 3, a numeric-valued fluent can be encoded with only one 
real variable, since continuous change is not allowed.  In the TM-LPSAT, float and fluent are 
distinguished. 
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• If a is not active at Ti-1,  DiscreteChange(a,nf,Ti) = 0 

• Let us call (2)  LinearDiscreteEq(nf,Ti) 

 

Discrete Change on a numeric-valued fluent via increase, decrease, or assign 

statement 

 
( increase  <nf>  <DiscreteChange> ) at time point Ti on numeric-valued fluent nf is 

encoded as follows: 

 
(3) 33 Active(a,Ti)  ⇒  [ DiscreteChange(a,Tk,nf,Ti) = <DiscreteChange>[Ti-] ]  
(4)   ¬ Active(a,Ti) ⇒    [ DiscreteChange(a,Tk,nf,Ti) = 0  ] 
 

• [ DiscreteChange(a,nf,Ti) = <DiscreteChange>[Ti-] ] is an arithmetic constraint 

• (3) & (4) ensure that the discrete change made by action a is valid if the action 

is active at Ti; otherwise, the change is 0. 

• DiscreteChange(a,nf,Ti) is accumulated in (2) 

 
(assign   <nf>  <NewValue> )Ti   is encoded as follows: 

 
(5)  Active(a,Ti)  ⇒   [ Valueafter(nf,Ti)  =  <NewValue>[Ti-]  ]     

• (5) ensures that linear constraint [ Valueafter(nf,Ti)  = <NewValue>[Ti-] ] is 

imposed, if action a is active at Ti 

 
                                                 
33 The current version of TM-LPSAT implements rather restricted formulations for (3) and (4): 
    (3)  Active(a,Ti)    [ DiscreteChange(a,nf,Ti) = <DiscreteChange >[Ti-] ]   
    (4)  [ DiscreteChange(a,nf,Ti) = <DiscreteChange >[Ti- ] ⊕  [ DiscreteChange(a,nf,Ti) = 0 ] 
which reduce calls to LP solver. However, this is based on the assumption that the discrete 
change by active actions is never 0.The same technique is used for formulations relating an 
action (event or process) and its corresponding linear constraints.  
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The following two axioms are to ensure that exactly one of  additive discrete change 

defined in (2) and discrete change by an assignment statement defined in (5) is 

always active at each time point: 

(6)  [ ∧  a ∈  Set(nf)  ¬ Active(a,Ti) ]   ⇒   LinearDiscreteEq(nf,Ti)   

(7) ∀ ai ∈  Set(nf) ∀ aj ∈  Add(nf) U Set(nf)     [  ¬ Active(ai,Ti)  ∨  ¬ Active(aj,Ti)   ] 

• (6) ensures that  LinearDiscreteEq(nf,Ti)  defined in (2) should be active 

unless any of action with an assign statement on nf  is active 

• (7) ensures that any action with an assign statement on nf is mutually 

exclusive with any other action with an assign statement on nf or any action 

with an increase or decrease statement on nf 

 

Continuous Change  on a numeric-valued fluent nf  over a period of time 

 
( increase34   <nf>   (*   #t    <RateOfChange>) ) Ti   over (Ti-1,Ti) is encoded as follows: 

  
(8)  Active(a,Ti-1) ⇒  [ NetContiChange(a,nf,Ti-1,Ti) = (Ti –Ti-1)  * <RateOfChange> ] 

(9)  ¬ Active(a,Ti) ⇒   [  NetContiChange(a,nf,Ti-1,Ti) = 0 ]  

• To be the continuous change in (Ti-1,Ti) piecewise linear, <RateOfChange> is 

assumed to be constant (known in a ground action) 

• (8) & (9) ensures that if a (process or durative action) is active at Ti-1,  

constraint [ NetContiChange(a,nf,Ti-1,Ti) = (Ti –Ti-1) * <RateOfChange> ] 

should be imposed; otherwise,  [ NetContiChange(a,nf,Ti-1,Ti) = 0 ] 

• NetContiChange(a,nf,Ti-1,Ti) is accumulated in equation (1)  

                                                 
34 “decrease” is analogous. In that case, <RateOfChange> should be prefixed by minus sign. 



 47

4.3  Representation of Temporal Model of Durative Actions (PDDL+: Level 3 & 4)  

 

A durative action with discrete changes (Level 3) is a special case of a durative action 

with discrete and continuous changes (Level 4). The encoding for Level 4 is presented 

in this section. 

The encoding for Level 3 can be encoded by using only one variable for each 

numeric-valued fluent at each time point, rather than Valuebefore and Valueafter, since 

there is no continuous change. It can be encoded as done in discrete time with 

additional constraints on time points, which are now variable distance away rather 

than uniform time away.  

Starting with recapitulation of syntax and semantics, axioms for initial and goal 

states, axioms for actions, frame axioms and axioms for mutual exclusions are 

presented in that order. The sample domain in Level 4 and its encoding are in 

Appendix C. The time-labeling convention is defined in Appendix B. 

 

4.3.1  Syntax and Semantics 

 

The syntactic form of a durative action in Level 3 & 4 is consisted of a start action with 

temporal annotator at start (setting up local conditions for the durative action), an end 

action with temporal annotator at end, and invariants with temporal annotator over all. 

The start and end actions are instantaneous; the invariants are held over the period of 

the action duration excluding end points. No point between those two end points is 

accessible; all discrete changes can happen only as effects of the start and end action. 
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A constraint on duration of a durative action can be represented as a conjunction of 

comparisons (=, <, >) of arithmetic expression and ?duration.  

The continuous change of a numeric-valued fluent can be represented in Level 

4, which is over the period of a durative action. The value of a numeric-valued fluent, 

continuously changing, are updatable as well as accessible by other actions at any 

time point over the period of the durative action. In the TM-LPSAT, it is assumed that 

between any two time points, the rate of change is constant, i.e., piecewise linear. 

Along with durative actions with continuous changes, Level 4 contains all types 

of actions defined in Level 1, 2, and 3, including instantaneous actions and durative 

actions with discrete changes. 

 

Concurrency  

 
More than one instance of the same action (i.e. the same durative actions started at 

the different time points) can be concurrent, since each of those instances may have 

different durations and another instance can start even before the instances started in 

the previous time points are ended.  

A durative action with a numeric- or interval-valued parameter needs to be 

encoded for the parameter with a different variable in each instance, since more than 

one instance can be concurrent. Consequently, this prevents the invariants to be 

shared among the instances of the same action started at different time points, which 

is substantial increase in complexity as length of plan increases. More on this issue 

will be discussed in the encoding of the invariants.   
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4.3.2  Representation of Initial State and Goal State   

 

Initial State 

 
Initial state is implemented as effects of a dummy action with non-precondition. 

 
Time-labeling:  <Initial State>[T0+] 

• A propositional fluent is time-labeled by T0 

• An initial assignment to a numeric-valued fluent is time-labeled by Valueafter at 

T0. 

 

Goal States 

 
The semantics of PDDL+ requires that a durative action started in a plan should be 

finished in the plan; in consequence, the goal state may be satisfied in a state before 

all durative actions initiated are finished. The goal state is represented as a disjunction 

of the goal at each time point, except T0.  

 
Time-labeling at Ti:  <Goal State>[Ti+] 

• A propositional fluent is time-labeled by Ti 

• A reference to a numeric-valued fluent is by Valueafter(nf,Ti)  

 

4.3.3 Representation of Durative Actions 

Define a durative action DA = (As,Ae,Inv), where As is the start action, Ae is the end 

action, Inv is the invariant conditions. Let ?duration(DA)Ti  be the duration of DA 

starting at time point Ti.  
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Axiom on time point variables 

 
  ∀ i,  0 < i  <= n   [ T0  = 0   Λ  Ti  ≥   Ti-1  + ε  ]  

• Each time point is assumed to be distinct, not considering tolerance (i.e. each 

time point has different time value over R*). More than one activity can happen 

at each time point simultaneously. 

• In practice, ε  should be small enough not to make any change in the values 

of quantities in the domain. 

 

Axioms for Start Action and End Action  

 
Assume that start action is at Ti and its corresponding end action is at Tj. 

 
(1)   Active(As,Ti)   ⇒   <PreCondition>[Ti-]   ∧   <PostCondition>[Ti+]     

• A durative action activated at time point Ti implies its precondition at Ti-1 

(2)  Active(Ae,Tj)   ⇒   <PreCondition>[Ti-]  ∧   <PostCondition>[Ti+]               

• For a durative action started at time point Ti, all time points after Ti should be 

considered as a time point for its end action to happen. 

(3)35  Active(Ae,Tj)   ⇒    Active(As,Ti)   ∧    [  Ti  + ?duration(DA)Ti  =   Tj  ]  

• A causal link between the start action and its end action 

(4)  Active(As,Ti)   ⇒    [ ∃  Tk   Ti < Tk  <= Tn   Active(Ae,Tk) ]                         

• A durative action started in a plan should be finished in the plan. 

 
                                                 
35 This axiom is based on the assumption that each time points have different time value.  
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Note that the constraints on duration are dealt as the same way as preconditions in 

start action or end action, depending on time annotator attached on them.  

 
 
Axioms for Invariants (Persistent Conditions)  
 

For a durative action which starts at Ti and ends at Tj, invariants checking is required 

for all Tk  Ti < Tk < Tj .  In general, invariant checking36 at Tk includes  

• <Invariants>[Tk-]  to check  continuous changes over (Tk-1,Tk) 

• <Invariants>[Tk+] to check discrete changes at Tk.  

In addition, 

• Valueafter  at starting time Ti 

Two versions of encoding are distinguished, depending on (i) concurrency among the 

instances of the same durative action started at different time points and (ii) numeric-

valued or interval-valued parameters to actions. 

 

Encoding A handles the case where invariants (checking) can be shared among the 

same durative actions, regardless of the starting time points. This encoding can be 

used only if either (i) numeric- or interval-valued parameters are not allowed, (ii) 

numeric- or interval-valued parameters is allowed, but it is not allowed for the 

instances of the same ground action to be concurrent, or (iii) the invariants are not 

dependent on numeric-valued or interval-valued parameters. By encoding invariants 

checking at each point, the invariant conditions are checked as long as at least one of 

                                                 
36 Note that these are to check values for continuously changing fluents; it suffices to check 
<Invariants>[Tk-]  for propositional fluents. However, ADL features such as  disjunctive 
precondition of propositional and numeric fluents makes difficult to seperate these checks. 
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instances of the same ground action continues at the point. The complexity of 

encoding for invariants of each ground action is: where, n is number of steps 

O(n) invariant checking + O(n3) Continues fluent generation 

 

(5)  Active(Ae,Tj)  ⇒    [ ∀ Tk,  Ti  <  Tk  <  Tj      Continues(DA,Tk)  ]         

• A causal link between the end action and persistency of the invariants 

(5’)  [ ∀ Tk,  T1  <  Tk  <  Tn   

          Continues(DA,Tk)  ⇒   <Invariants >[Tk-] ∧  <Invariants >[Tk+] ] 

• Whenever any instantce of the durative action continues at the time point, 

      invariants checking should be activated: <Invariants >[Tk-] for  checking with 

continuous change,  <Invariants >[Tk+]  for checking with discrete change 

(5’’)  [ ∀ Tk,  T1  <  Tk  <  Tn     

¬ Continues(DA,Tk-1)  ∧  Continues(DA,Tk)  ⇒  <Invariants >[Tk-1+]  ] 

•  At the time point where a start action is active, but no continues; discrete 

change on a numeric-valued fluent is necessary to be checked at such time 

points.  

• Note that this axiom ensures that the invariant condition of a durative action 

which is over only two time points can be checked.  

 

Encoding B handles the case where the ground action started at each time point 

should be distinguished. This is necessary to deal with invariant conditions that are 

dependent on numeric-valued or interval-valued parameters. The complexity of 

encoding for invariants of each ground action is  
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= O(n2) invariant checking + O(n2) Continues fluent generation 

 
(5)  [ ∀ k  i < k < n  [ Active(Ae,Tk+1) ∨  … ∨  Active(Ae,Tn) ] ⇒  Continues(DA,Tk)  ] 

• A causal link between the end action of durative action DA37 started at Ti and 

the invariant conditions checking; Ae is causally linked with As by Axiom (3) 

and (4)  

(5’)  [ ∀ k  i < k < n  Continues(DA,Tk)  ⇒   <Invariants >[Tk- ]  ∧  <Invariants >[Tk+ ]  ] 

• The encoding for checking invariant conditions is necessary at all time points 

right after starting time point Ti+1 to Tn-1 

(5’’) Active(As,Ti)   ⇒  <Invariants >[Ti+ ]     

• The checking at [Tk+] is necessary only at the start time, not any other points. 

 

Axioms for Continuous Changes  

 
As presented in equations (8) and (9) of Section 4.2.3, 

( increase   <nf>   (*   #t    <RateOfChange>) )  in an action started at  Ti  and ended 

at Tj is encoded as: 

  

∀ Tk,  Ti  <  Tk  <=  Tj , 
  
(6) Active(Ae,Ti) ⇒    

      [ NetContiChange(DA,nf,Tk-1,Tk) = (Tk –Tk-1) *  <RateOfChange>  ]        

(6’)  ¬ Active(Ae,Ti) ⇒   [  NetContiChange(DA,nf,Tk-1,Tk) = 0  ] 

                                                 
37 Remember that Continues(DA,Tk) distinguishes the instances of the same durative action 
started at different time points 
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• The end action acts like the representative for the durative action 

• NetContiChange(DA,nf,Tk-1,Tk) is accumulated in Valuebefore(nf,Tk)   

• DA distinguishes instances of the same durative action so that the net 

changes made by concurrent instances of the same durative action can be 

accumulated. 

 

Axiom on Termination with No Time Slip 

When a durative action continues at a time point, it is necessary to have a constraint 

to make sure that the time point is ending point of the durative action as soon as the 

value of an invariant condition becomes from TRUE to FALSE.  The formulation is 

given in 4.4.3.3. 

 

Conditional Effect 

 
In an instantaneous action a at time point Ti, 
 

(when  <Antecedents>  <Consequents>)  is encoded as follows:    

For each conjunct <Consequent-i>  in <Consequents>, 

     [ Active(a,Ti)   ∧   <Antecedents>[Ti- ]  ] ⇒   <Consequent-i>[Ti+ ]     

 
In a durative action, each conjunct in <Antecedents> and <Consequents> are labeled 

by a time annotator. In particular, a conjunct in <Antecedents> may be labeled by at 

start or over all when it comes in the conditional effect of an end action: the conjunct 

time annotated by at start should be time-labeled as if it is a precondition38 of start 

                                                 
38 Refer Appendix C.3. 
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action of the durative action; likewise, a conjunct with annotator over all should be 

converted into conjunction at all time points over the period of the durative action.   

 

4.3.4  Frame Axioms 

 

In Level 3 & 4, frame axioms are over A, As and Ae of a durative action, which make 

discrete changes: a = A ∪  As ∪  Ae. 

Explanatory Frame Axioms for Propositional Fluents: 

 
(7)  [  Proposition(pf,Ti-1)  ∧  ¬ Proposition(pf,Ti)  ⇒   

∃ a∈ NegEffect(pf)  Active(a,Ti)  ]       

(8)  [ ¬ Proposition(pf,Ti-1)  ∧   Proposition(pf,Ti)  ⇒   

∃ a∈ PosEffect(pf)  Active(a,Ti)  ]           

 
  
Explanatory Frame Axioms for Numeric-Valued Fluents: 

 
(9)  [ ∀ a ∈  Set(nf)  ¬ Active(a,Ti)  ]   ⇒   LinearDiscreteEq(nf,Ti)                     

• LinearDiscreteEq(nf,Ti) is imposed if no action with an assign statement on 

nf is active 

(10) Valuebefore(nf,Ti)  = Valueafter(nf,Ti-1)  +  ∑ ∈DAa
NetContiChange(a,nf,Ti-1,Ti)  

(11) Valueafter(nf,Ti)  =  Valuebefore(nf,Ti)   +  ∑a
DiscreteChange(a,nf,Ti) 

• (10) is linear equation of the sum of the previous39 value at Ti-1 and concurrent 

continuous changes over (Ti-1,Ti) on a numeric-valued fluent nf.  

                                                 
39 Means the value before discrete changes happen at the time point. 
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• (11) is  the linear equation of simultaneous discrete changes at Ti on a 

numeric-valued fluent 

 

Fluent as a Conditional Effect in Frame Axioms 

 
In Axiom (7), (8) and (9), if the literal happens as a conditional effect, Active(a,Ti) 

should be replaced by  

  [  <Antecedents>  ∧   Active(a,Ti)  ]  

to ensure that if the change in the value of the fluent is to be caused by a, its 

antecedents also should be true. 

 

4.3.5  Mutual Exclusivity 

 
The non-interference rules defined in PDDL+ are in Appendix F. 

Mutex rules are checked among A, As, and Ae. Any two actions violating the non-

interference rules should be pair-wise mutual exclusive: 

(12)  [ ¬ Active(ai,Ti)  ∨   ¬ Active(aj,Ti) ]        

 

Fluent as a Conditional Effect in Mutual Exclusivity 

 
In Axiom (12), if the fluent leading to mutual exclusivity with the other action is a 

conditional effect in the action, Active(a,Ti) should be replaced by   

[  <Antecedents>  ∧   Active(a,Ti)   ] 

This should be applied to numeric-valued fluents as well as propositional fluents.  
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4.4  Representation of Temporal Model of Real-Time (Level 5 ) 

 

Starting with recapitulation of syntax and semantics, axioms for initial and goal states, 

axioms for operators (process, event, action), frame axioms and axioms for mutual 

exclusions are presented in that order. The sample domain in Level 5 and its 

encoding are in Appendix D. The time-labeling convention is defined in Appendix B. 

   

4.4.1 Syntax and Semantics 

 

There are three components for this temporal model: processes capturing continuous 

changes, exogenous instantaneous events, and instantaneous actions. A process can 

be triggered and terminated by discrete changes or continuous changes: discrete 

changes made by atomic actions or events, continuous changes by active concurrent 

processes.  An event can be triggered by discrete changes or continuous changes. 

Only actions are under plan executor’s choice; events and processes are autonomous.  

The semantics is based on Hybrid Automata Theory [Henzinger96]: A state 

carries continuous changes; discrete changes by events or actions cause state 

transition instantaneously:  

time points:          Tk-1              Tk                   

states:          Q1    →     …   →         Q2(k-1)    →         Q2k-1 →        Q2k        →      ...    →     Q2n  … 

Starting at the initial state Q1, Q2k-1 k = 1,2,… stand for states carrying durations (i.e Tk 

- Tk-1),  Q2k k = 1,2,… stand for instantaneous state changes. Processes triggered by 

events or actions occurring in Q2(k-1) or ongoing processes in Q2(k-1)-1 are going on in 

Q2k-1, and  then are terminated or discontinued by events or actions occurring in Q2k or 
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terminated by the violation of invariant condition caused by concurrent continuous 

changes in Q2k-1.  

The semantics naturally imposes the following two constraints: (i) Continuity 

constraint on continuously changing quantity to be preserved. That is, the continuous 

change from time T1 to T2 is the same as the sum of the change from T1 to T3, and 

change from T3 to T2, for any T3  ∈  [T1,T2]. (ii) Processes and events should be 

triggered with no slip of time at the moment its preconditions are satisfied, in contrast 

to actions. In Section 4.4.2, we show how these constraints are handled in our 

encoding.  

 
Concurrency 

 
Actions can be concurrent with events as long as they do not interfere according to 

the non-interference rules of PDDL+. It is domain designer’s responsibility that events 

that can be triggered at the same time are to be non-interfering.  

The encoding given in this section is based on the assumption that two 

instances of the same process cannot be concurrent.  

 

4.4.2  Representation of Initial State and Goal State 

 

Initial State 

Initial state is represented as effects of a dummy action with non-precondition. 

Time-labeling: <Initial State>[T0+]     

• A propositional fluent is time-labeled by T0 
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• An assignment to a numeric-valued fluent is time-labeled by Valueafter at T0. 

 

Goal States 

 
In the last step, at least one action should happen, since subsequent events will not 

show up in a plan. Thus, we put constraints that (i) at least one of actions happens in 

the last step (ii) the goal state is either the last step or the step right before the last 

step.   

Time-labeling at Ti:     

• A propositional fluent is time-labeled by Ti 

• A reference to a numeric-valued fluent is by Valueafter(nf,Ti)  

 

4.4.3  Representation of Operators 

 

Axiom on Time Points  

 
(1)  [ T0  = 0  ]  ∧   [ ∀ i,  0 <  i  <= n   Ti  >=  Ti-1  ] 

• The next time point is greater or equal to the current time point.  

 

4.4.3.1  Representation of Events  

 
Axioms on Precondition and Effect: 

 
(2)  Active(e,Ti)  ⇔   <PreCondition>[Ti-]     

(3)  Active(e,Ti)  ⇒   <PostCondition>[Ti+]    

Axioms on Triggering with No Slip of Time 
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There are two cases that an event is triggered: 

• An event is triggered by discrete change(s), in which case linear arithmetic 

constraints may not cross equality (i.e. the inequality is satisfied, but equality is 

not.). Axiom (4) below ensures this case. 

• An event is triggered by continuous changes, in which case the earliest time at 

which the precondition is satisfied should be captured by using the threshold 

value and continuity of linear constraints. Axiom (5) below ensures this case. 

 
The first case : 

(4)  <Precondition>[Ti-1+]  ⇒   [ Ti  =  Ti-1 ]    

• If an event is triggered by actions or events (i.e. by discrete changes), the time 

value becomes the same as the previous time value. This ensures that an 

event is triggered by discrete change without slip of time. 

 
The second case: 

In ADL features, the precondition of an event (or a process) can be any expression of 

literals and arithmetic constraints connected by logical operators {not, or, and, imply}. 

To deal with ADL features, convert the precondition into disjunctive normal form: 

[ C1 ∨ … ∨  Ck ∨ … ∨  Cp ]   

Define Ck ≡  [ Pk1 ∧ … ∧ Pkm  ∧   (Fk(m+1) <= dk(m+1)) ∧ … ∧  ( Fk(m+n)  <= dk(m+n) ) ],   

where,  Pij(t) is a positive or negative literal; (Flm <= dlm) is a linear arithmetic constraint. 

 
The earliest time that Ck can be true is the earliest time the last remaining conjunct 

becomes true (all other conjunction are already true); certainly the last conjunct is one 

of arithmetic constraints, not a propositional constraint, because the value of 
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propositional fluent does not change over  the interval (Ti-1, Ti). The earliest time for Ck 

to become true can be found by the following axiom:   

   [ ∧  j [ ∧ l  Pkl[Ti-1]  ∧  (Fkj[Ti-1+] > dkj) ∧  [ ∧  p ≠ j  (Fkp[Ti-1+] > dkj) => (Fkp[Ti-] <= dkj)  ] 

⇒  (Fkj[Ti-] >= dkj) ] ] 

 
The earliest time the precondition becomes true is determined by  

(5)  [ ∧ k  [ ∧  j   

          [ ∧ l  Pkl[Ti-1] ∧  (Fkj[Ti-1+] > dkj) ∧  [ ∧  p ≠ j (Fkp[Ti-1+] > dkj) => (Fkp[Ti-] <= dkj)  ] 

         ⇒  (Fkj[Ti-] >= dkj) ] ] ]  

Note that when an event is triggered by discrete changes, Fkj[Ti-1+] = Fkj[Ti-] by Axiom 

(4); Thus, the left-side of the formula above becomes false always, and the formula is 

true, always.  

 

4.4.3.2  Representation of Actions  

 

(6)  Active(a,Ti)   ⇒  <PreCondition>[Ti-]  ∧   <PostCondition>[Ti+] 

 

4.4.3.3  Representation of Process   

 

Axiom on Precondition 

 
(7)  Active(pr,Ti)   ⇔    [ <PreCondition>[Ti+]   ∧   <PreCondition>[Ti+1-]  ] 

• Axiom (7) ensures that pr activated at Ti is active over an interval starting at Ti. 

Note that the time point when pr terminates should be a significant time point, 

and  the  precondition holds after Ti and before Ti+1.  
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Axiom on Triggering by Continuous Changes with No Slip of Time  

 
The same axiom used for events can be used to make a process to get triggered at 

the earliest time the precondition becomes true by continuous changes: 

(8)40  [ ∧ k  [ ∧  j   

          [ ∧ l  Pkl[Ti-1] ∧  (Fkj[Ti-1+] > dkj) ∧  [ ∧  p ≠ j (Fkp[Ti-1+] > dkj) => (Fkp[Ti-] <= dkj)  ] 

        ⇒  (Fkj[Ti-] >= dkj) ] ] ]  

 

Axiom on Termination with No Slip of Time  

 
As soon as the precondition of a process becomes false, the process should be 

terminated. It suffices to ensure that this happens with continuous changes41.  

 
Precondition of a process can be in any logical expression of literals and arithmetic 

constraints connected by {not, or, and, imply}. To deal with ADL features, convert the 

precondition into a conjunctive normal form: 

[ D1 ∧ … ∧  Dk ∧ … ∧  Dp ]   

Define Dk ≡  [ Pk1 ∨ … ∨ Pkm  ∨   (Fk(m+1) <= dk(m+1)) ∨ … ∨  ( Fk(m+n)  <= dk(m+n) ) ],  

where, Pij is a positive or negative literal; (Flm <= dlm) is a linear arithmetic constraint. 

 
                                                 
40 If a process is triggered by discrete changes, Fij[Ti-] = Fij[Ti+]; all antecedents are false, so 
the formula is true.  
41 Since it is assumed that two instances of the same process in the ground form are not 
allowed to be concurrent in this encoding, at each time point, each ground process is 
considered for triggering. The process triggered is either newly triggered one at the point, or 
resumed one of the ongoing process since (at least) the previous time point and discontinued 
by discrete changes at the point. It is unnecessary to have provision to ensure continuity of 
ongoing processes.    
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In order to make the process to be terminated as soon as the precondition (persistent 

conditions) is violated by continuous changes caused by concurrent processes, the 

earliest time at least one of Dk becomes false should be the next time point. The 

earliest time a disjunction Dk becomes false can be captured by the following formula 

(that is, the earliest time the last linear constraint remaining true, all others are already 

false, is about to become false)42: 

[ ∧  j  [ ∧ l ¬Pkl[Ti] ] ∧   (Fkj[Ti+] < dkj) ∧  [ ∧  p ≠ j (Fkp[Ti+] <= dkj) => (Fkp[Ti+1-] > dkj)  ]  

⇒  (Fkj[Ti+1-] <= dkj)  ] ] 

 
The earliest time the precondition is about to become false can be captured by the 

following formula: 

(9)  [ ∧ k  [ ∧  j   

       [ ∧ l ¬Pkl[Ti] ∧  (Fkj[Ti+] < dkj) ∧  [ ∧  p ≠ j (Fkp[Ti+] <= dkj) => (Fkp[Ti+1-] > dkj) ]  

      ⇒  (Fkj[Ti+1-] <= dkj) ] ] ]  

 

Axioms for Effects (Continuous Changes) 

 
(increase  <nf>   (*   #t    <RateOfChange>) )Ti  is encoded as: 

(10) Active(pr,Ti) ⇒  [ NetContiChange(pr,nf,Ti,Ti+1) = (Ti+1 –Ti) * <RateOfChange >] 

(11) ¬ Active(pr,Ti) ⇒  [ NetContiChange(pr,nf,Ti,Ti+1) = 0 ] 

• NetContiChange(pr,nf,Ti,Ti+1) is accumulated in the equation of       

Valuebefore(nf,Ti+1) given in Section 4.2.2. 

 

                                                 
42 Recall that if any of Pij in Dk is true, Dk does not constrain the next time point.   
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4.4.4  Frame Axioms 

 

In Level 5, the frame axioms are over actions and events. The same frame axioms 

defined in Section 4.3.4 can be applied with  a = A ∪  E . 

 

4.4.5  Mutual Exclusivity 

 

Interference constraints (mutex rules) are checked among the actions and events that 

happen in the same time point: pairwise mutex checking between any action and any 

other action, and between any action and any event. It is the domain designer’s 

responsibility to make sure that events happening at the same time point do not 

interfere. Any conflict between an action and an event is resolved in a way that gives 

priority to the event over the action. This is enforced by asserting necessary and 

sufficient conditions between occurrence of event and its precondition, given in Axiom 

(7). 

 
The mutual exclusivity axioms in Section 4.3.5 can be applied to Level 5 as follows: 

∀  ai ∈A   aj ∈A ∪  E   such that ai  and aj are in mutex,  

(12) [ ¬ Active(ai,Ti)  ∨   ¬ Active(aj,Ti)  ]  
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4.5  Extensions for Metric Quantities 

 

In this section, we extend the uses of functions in PDDL+ to support metric-

quantities 43  with the capacity feature and metric quantities of interval type. The 

motivation behind extending numeric-valued fluents with capacity feature is that 

resources44 in planning can be usually represented with metric quantities with capacity, 

but PDDL+ has limitations45  in simulating the uses of resources.  The interval type is 

to represent metric quantities with lower and upper limits and to allow operations 

based on Allen’s interval relations [Allen83]. 

Among the definitions of resource [LongFox00]46 [Bedrax03] [Smith97], let us 

adopt the definition given by Laborie [Laborie02]: A resource is any substance or (set 

of) object(s) whose cost or available quantity (capacity) induce some constraint on the 

operations that use it. Naturally, resources in planning are closely connected with time 

and concurrency: the reason why resources have received little attention in the 

planning community is that most early planning formalisms could not handle 

                                                 
43 Notice that it is not difficult to extend this encoding for resources or metric quantities defined 
over R to an encoding for multi-dimensional resource or quantities over Rn [Smith97], such as 
a cargo ship with capacity of weight and volume, storage space with capacity of volume, 
elevator with capacity of persons and weight, or even simple geometric shapes used in user 
interface design.  The idea is component-wise checking of capacity and propagation, if 
necessary. 
44 There are proposals [Bedrax03] [McDermott03-c] to formalize a resource and to extend 
PDDL with a resource “explicitly” declared as an object with rich features in a style of object 
oriented programming.  
45 PDD+ cannot at all represent the use of multi-capacity resources by an instantaneous action. 
On the other hand, in a durative action, multi-capacity resource can be simulated by allocating 
at the starting point, capacity-checking as invariants, and deallocating at the ending point. The 
tricky part is that extent of invariants in a durative action of PDDL+ does not include the end 
points of the action; thus, the same capacity checking should be done in the precondition of 
the ending action. Then, no moving targets rule will not allow an action updating the resource 
to be concurrent at the end points of the durative action. The restriction on concurrent uses at 
the end points happens with representation of any type of metric resources. 
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concurrent actions. Moreover, in the context of continuous time (e.g. durative actions), 

the management of resources become more complicated.  

In this section, we present encoding schemes for a class of sharable 47 , 

reusable resources48 that are used exclusively during an action, but are not affected 

by the action in any other way49:  

• Multi-capacity resources (discrete, sharable, reusable resources): these are 

represented as a numeric-valued fluent with the capacity feature. 

e.g. identical machines in a factory or number of personnel 

• Partitioned interval resources (continuous, sharable, reusable resource) whose 

concurrent “uses” mean disjoint subintervals: these are represented as an 

interval-valued fluent with capacity feature. 

e.g. main memory (RAM) allocated to concurrent processes  

Also, we present an encoding scheme for a metric quantity represented in terms of 

interval used as a parameter to action as well as a function type  

e.g. allocation of your time in interleaved concurrency to various   

activities such as emailing, latexing and web browsing, which may 

be related to tasks with deadlines  

                                                                                                                                              
46 [LongFox00] defines that being resource or not is dependent on the context it is used.  
47 “Sharable” resource is allowed to be used simultaneously, within its capacity.  
48 Generally, the management of sharable resource is difficult in other planning frameworks 
[Smith00-b], because it involves identifying potential resource conflicts which grow 
exponentially with the number of actions sharing it.   
49 Notice that in this sense, in the Gripper domain, the number of balls or number of grippers 
for a robot is not a sharable, reusable resource, because the effect is propagated beyond the 
duration of the action (pick up, put down), although those are resource in a general sense in 
planning.  Other types of resource such as continuous consumable/producible resource can be 
dealt with in the same way as temporal metric encodings given in Section 4.3 and 4.4, with the 
explicit identifications of being resources, like “consume” or “produce” statements. 
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 First, we review what features are supported to represent metric quantities in 

PDDL+, and define their syntactic extensions to support multi-capacity resources and 

intervals. In Section 4.5.1, the encoding for multi-capacity resources is presented. The 

encoding of resources based on intervals (“partitioned interval resources”) is 

presented in Section 4.5.2. The encoding for interval-valued fluents is given in 

Appendix E.  

 

Representation of Metric Quantities in PDDL+ 

 
In PDDL+, metric quantities are represented as parameterized functions, arithmetic 

comparison operators (>,>=,<,<=,=) between functional expressions, and updating 

statements (increase, decrease, assign) of the value of function. Metric quantities with 

capacity such as multi-capacity resources can be represented “implicitly” through 

parameterized functions and arithmetic constraints to check its capacity while they are 

in use. Apart from the limitations45 resulting from these means and semantics adopted 

in PDDL+, the general implicit representation of resources makes it difficult to do 

reasoning about resources. Most techniques for reasoning about resources require 

explicit identification of the activities using the resource.   

 Numeric-valued types are not allowed as a parameter to action in PDDL+. 

  

Extension of  Function Definition with Interval Type and Features  

 
(:functions  { <Def-of-Function>  {capacity: <Constant>}  -- <Type-of-Funct>  }+  ) 

            <Def-of-Function>  is a function definition as defined in PDDL+ 

<Constant>           =    <Number> |  <Interval> 
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<Interval>              =    [ <Number> ,  <Number> ]   
            <Type-of-Funct>   =    { positive | negative } { integer | real } { float | fluent }  

 |   { interval } { float | fluent } 

 
The nature of sharable, reusable resources as defined in this section is that they may 

be allocated at the beginning of the action and released at the end of action. use 

subsumes50 both the allocation and the release.  

(use    ?resource   ?quantity  )     

• This is used as an effect in atomic or durative actions(events, processes) 

• ?resource is a parameterized function of either numeric type or interval type 

• ?quantity51 is an arithmetic expression of constants, variables from numeric-

valued / interval-valued parameter of action, functions which are either float or 

fluent and duration variables of durative actions.  

• The value of arithmetic expression for ?quantity is evaluated in terms of 

allocation time, if it contains fluents   

• The quantity on request can be duration-dependent (for instance, number of 

web designers for a project running for a week, given available designers and 

man-power-per-day?), but not time-dependent in the sense that the whole 

amount should be allocated at the beginning of the action, not gradually 

needed over time. 

 

 

                                                 
50 We turn around the limitation in simulating resources as numeric-valued fluents, that is, 
freeing resources of the “no moving targets” rule.  
51 All the known reasoning techniques of resources deal only with known (constant) quantities 
on request! 
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4.5.1  Representation of Multi-Capacity Resources 

 

There are several ways to encode multi-capacity resources in the SAT-based 

planning framework: 

(1) The simplest way is to name objects individually; this approach, however, 

generates search space with evident symmetry [Rintanen00] [FoxLong99] 

[FoxLong02-e]. It works reasonably well with a small number of objects that are 

known at the encoding stage. 

(2) If it is unnecessary to care about the identity of each object, it can be encoded as 

n-ary mutex relation at each step:  ¬(A1 ∧ A2 ∧ …∧ An) in aCn ways, assuming that a is 

the number of actions using a unit of the resource, and n is greater than the capacity 

of the resource and  less than or equal to a.  aCn grows exponentially with the number 

of actions involved. This can be extended to allow more than one quantity on request. 

However, the fundamental assumption of this approach is that the quantities 

requested and capacity should be known (constant) at the encoding stage. 

(3) If the identity of each object does not matter, the objects can collectively be 

encoded as a numeric-valued fluent with capacity-checking done at each time point, 

rather than represented in the n-ary mutex relations. The advantages of this approach 

are as follows: 

• There is no more symmetry in the search space caused by uses of this 

resource. 

• Quantity requested or capacity does not have to be known (constant) at 

encoding stage. 



 70

• By allowing the capacity to be variable, it can support the dynamic creation52 of 

objects of the resource type in the domains where the identity of objects does 

not matter.   

In this section, an encoding scheme for multi-capacity resources based on the third 

approach is presented with an extension of richer expressiveness such as variable 

quantity.  

 
Example: Sharing multi-capacity resources among durative actions 

A software company has some amount of software under development and a finite 

number of software engineers. As usual, stages of software development are 

composed of design, implementation and testing, among which obvious precedence 

relations exist. Each stage has its own estimated manpower (let’s say in a day unit)  

How should engineers be allocated to projects? 

;; This action starts with the available engineers and will last until its own  
;; manpower meets. Likewise, design and testing can be represented 
(:durative-action  implementation 

  :parameters (?s – software ?e – real) 
  :duration (=  (* ?duration ?e)  (manpower ?s IMPLEMENTATION))     
  :condition (and  (at start (designed ?s))  (at start (not (implemented ?s))) 
    (overall (not (implemented ?s))) 
    (at end (not (implemented ?s))))  
  :effect  (and  (at end (implemented ?s)) 

(use (engineers) ?e)) 
 ) 

 ;; to consider the number of engineers taking a day off 
 (:durative-action  OneDayOff 
  :parameters () 
  :duration (= ?duration 1) 
  :precondition () 
  :effect  (use (engineers) 1) 

) 
 

                                                 
52 The Setters Domain used in IPC3 is such an example which needs the dynamic creation of 
objects. 
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Representation of Function of Multi-capacity Resource 

 
The function defined as a numeric type with the capacity feature is encoded with two 

variables at each time point: 

• Valuebefore(?resource,Ti) is the level of the resource at a time point Ti before 

any discrete change is made at Ti 

• Valueafter(?resource,Ti) is the level of the resource at a time point Ti after any 

discrete change is made at Ti.   

Additionally, capacity checking at each time point is required. This is given in (9) ~ 

(12) below.  

Notice that if the multi-capacity resource is shared only among instantaneous 

actions exclusively or among durative actions, one variable at each time point is 

enough. Two variables are needed only to be shared53 among durative actions and 

instantaneous actions. The encoding of multi-capacity resources presented below can 

deal with sharing among any kind of actions. 

 

In an Instantaneous Action at Ti, 

 
Each use statement in precondition of an instantaneous action at a time point can be 

encoded with two variables: 

• Quantitybefore(?resource,a,Ti) is the amount allocated to the action at Ti 

on ?resource. 

•  Quantityafter(?resource,a,Ti)  is the amount released by the action at Ti 

on ?resource. 
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(use   ?resource  ?quantity) is encoded as follows: 

  
(1)  Active(a,Ti)    [ Quantitybefore(?resource,a,Ti)  =   ?quantity ]           

(2)  Active(a,Ti)    [ Quantityafter(?resource,a,Ti)   =  - ?quantity ]           

(3)  [ [ Quantitybefore(?resource,a,Ti)  =   ?quantity ]  ⊕   

 [ Quantitybefore(?resource,a,Ti)  = 0] ]   

(4)  [ [ Quantityafter(?resource,a,Ti)  =   - ?quantity ]  ⊕   

   [ Quantityafter(?resource,a,Ti)  = 0] ]    

• (1) and (3) ensure that allocation of the resource by the use statement is valid 

only when the action containing the statement is active; otherwise, the quantity 

of allocation by the statement is 0. 

• (2) and (4) ensure the same as above on deallocation 

• Quantitybefore(?resource,a,Ti)  is accumulated in (9) 

• Quantityafter(?resource,a,Ti)  is accumulated in (10) 

Note that if the resource is shared among instantaneous actions, only one variable is 

used, and the total of uses is checked at each time point (i.e. checking allocation only). 

 
In a Durative Action over  [?start,?end], 

Each use statement in invariants of a durative action can be encoded with two 

variables54: 

• Quantityafter(?resource,As,?start), is the amount allocated to the durative action 

at ?start on ?resource. 

                                                                                                                                              
 
54 Notice that the difference in (1) and (5), likewise (2) and (6): “after” and “before” are switched. 
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• Quantitybefore(?resource,Ae,?end) is the amount deallocated from the durative 

action at ?end on ?resource. 

 
(use    ?resource    ?quantity) is encoded as follows: 

(5)  Active(As,?start)    [ Quantityafter(?resource,As,?start)  =   ?quantity ]  

(6)  Active(Ae,?end)    [ Quantitybefore(?resource,Ae,?end)   =  - ?quantity ]  

(7)  [  [Quantityafter(?resource,As,?starti) =  ?quantity]  ⊕   

[Quantityafter(?resource,As,?start) = 0] ]   

(8)  [ [Quantitybefore(?resource,Ae,?end) = - ?quantity] ⊕   

[Quantitybefore(?resource,Ae,?end) = 0] ]  

• As for starting action of a durative action; Ae for ending action for a durative 

action 

• (5) and (7) ensure that allocation of the resource by the use statement is valid 

only when the starting action of the durative action containing the statement is 

active; otherwise, the quantity of allocation by the statement is 0 in (9).  

• Since that As and Ae are causally linked in a durative action representation 

((6) in Section 4.3.3), (6) and (8) ensure deallocation by quantity is valid only 

when the ending action is active at ?end and the starting action is active 

at ?start.. Otherwise, the deallocation is 0 in (10). 

• Quantitybefore(?resource,As,?start) is accumulated in (9). 

• Quantityafter(?resource,Ae,?end) is accumulated in (10). 

 

Constraints at each time point: 

(9)   Valuebefore (?resource, Ti )  =   
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Valueafter (?resource, Ti-1) + ∑ Quantitybefore(?resource,a,Ti)  

(10) Valueafter (?resource,Ti )  =   

Valuebefore (?resource, Ti )  + ∑ Quantityafter(?resource,a,Ti)   

(11)  for all Ti ,   0  <=  Valuebefore(?resource, Ti)  <=  Capacity(?resource)  

(12)  for all Ti ,   0  <=  Valueafter(?resource, Ti)  <=  Capacity(?resource)        

• (9) accumulates all (de)allocations at the “before” value on the previous level 

of the resource, and (11) checks for capacity limit. (10) and (12) do the same 

for the “after” value 

• Notice that this encoding can handle the cases that the resource is shared 

among instantaneous actions and durative actions, as in Level 4 of PDDL+. If 

an instantaneous action is concurrent with the starting action of a durative 

action, and both actions are accessing the resource, the “after” value at ?start 

is changed by deallocation by the instantaneous action as well as by allocation 

by the durative action. 

 

4.5.2  Representation of Interval Type 

 

The ways “interval” is used in Knowledge Representation can generally be classified 

into two categories: One is representation of uncertainty (fuzziness), in which case 

reasoning usually involves Interval Arithmetic [Funge99] [OlderVellino90] [Baioletti03]. 

The other is representation of continuous metric quantity (e.g. a period of time or line 

segment), not the range of possibility. Here we use interval to represent continuous 

metric quantities with lower and upper limits.  
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In this section we present encoding schemes for the uses of interval as (i) a 

parameter to an action, (ii) a function type using operations based on Allen’s interval 

relations, and (iii) shared reusable interval resources.   

 

Representation of Interval as a Parameter55 to Action 

 
A parameter of interval type in a ground action at time point Ti can be encoded with 

two variables,  Istart(?p,a,Ti) and Iend(?p,a,Ti)  to represent the two end points of the 

interval. This encoding can be used for both an instantaneous action (or in discrete 

time) and a durative action, since the parameter acts like float within the action. 

However, if concurrency among the instances of the same durative action started at 

different time points is allowed, invariants checking can not be shared among the 

instances. Thus, the cost of using numeric-/interval-valued parameter is high in SAT 

encoding. 

 
Representation of Function of Interval Type  

 
A function defined as interval float can be encoded with two variables, Istart(?i) and 

Iend(?i)  to represent the two end points of the interval.  

                                                 
55 As mentioned in Section 4.1.1, we reinstated the real-valued parameter to action in the TM-
LPSAT. The idea of encoding is to introduce a real-valued variable for each numeric-valued 
parameter in a ground action. No additional care for the case with durative actions in 
continuous time is necessary, since the parameter is like float local to the grounded action. 
However, if instances of the same ground action started at different time points are allowed to 
be concurrent, they needs to be distinguished with different variables for the parameter. 
Consequently, invariants checking cannot be shared among the same actions, as mentioned in 
Section 4.3.3. 
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A function defined as interval fluent can be encoded with two variables, 

Istart(?i,Ti) and Iend(?i,Ti)  to represent the two end points of the interval at each time 

point. 

Operations on Interval-valued fluents are defined based on Allen’s thirteen 

interval relations [Allen83] [Davis90]. The encoding is straightforward and lengthy and 

is therefore given in Appendix E.  

  

 4.5.2.1  Representation of Partitioned Interval Resources 

 

We define a “Partitioned Interval Resource” as a sharable, reusable continuous 

resource56 with a lower and upper bounds, of which concurrent uses mean allocation 

of disjoint subintervals; the allocated subinterval (i.e. position as well as quantity) to an 

action is preserved during the action.  

The encoding given here is based on the assumption that the interval type is 

float, whose initial value is given in the function definition or problem definition. 

Function defined as interval float can be encoded with two variables, Istart (?resource) 

and Iend(?resource)  to represent two end points of the interval. 

In order to deal with interval fluent, we need to extend with operations to 

change the interval boundary (increase-low, decrease-high). Also, the variables for 

boundaries should be defined at each time point: Istart(?resource,Ti) and 

Iend(?resource,Ti).   

                                                 
56 The capacity of the resource can be constant or variable. An example of this is main 
memory space allocated to concurrent processes. In contrast to general sharable, reusable 
continuous resource (e.g. battery) of which the use means allocation of quantity only, this is a 
special class of sharable, reusable continuous resources.    
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Note that the encoding given below is based on the assumption that the 

resource is shared among either instantaneous actions or durative actions, but not a 

combination of the two. To share among the actions of the two types, use “before” and 

“after” values at each time point, as done with encoding for multi-capacity resource.  

 
Example: RAM allocation to concurrent processes: 

 ;; (RAM-space)  : capacity [min,max] – interval float 
;; In OS that uses variable length partitions, each job is allocated a consecutive  
;; segment of RAM 

 (:durative-action ExecuteJob 
  :parameters (?p – process  ?memory – real ?time – real) 
  :duration (<= ?duration ?time) 
  :condition (and (at start (not (active ?p))) 
    (over all (active ?p)) 
    (at end (active ?p)))   
  :effect  (and (at start (active ?p))  (at end (not (active ?p))) 
    (use (RAM-space)  ?memory)) 
 ) 
 

 
In Instantaneous Action at Ti, 

 
Each use statement in a ground action is assigned two variables to represent the two 

end points of the subinterval: UIstart (?r,a,Ti) , UIend(?r,a,Ti) . 

(use  ?resource  ?quantity) is encoded as follows:     

(1)  [ UIstart (?r,a,Ti)   >=  Istart (?r) ]                           

(2)  [ UIend (?r,a,Ti)    <=   Iend (?r) ]       

(3)  [ UIend (?r,a,Ti) = UIstart(?r,a,Ti) =  Istart (?r) ]    

⊕   [ UIend (?r,a,Ti)  -  UIstart (?r,a,Ti)  = ?quantity ] 

(4)  Active(a,Ti)   ⇔   [ UIend (?r,a,Ti)  -  UIstart (?r,a,Ti)  = ?quantity ]                      
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• (1) and (2) ensure that the subinterval should be contained in the interval 

resource  

• (3) ensures that at any time point the subinterval for use is either defined as 

nonempty, exclusively or zero interval by setting end points to the beginning 

point of the interval resource    

• (4) guarantees that a subinterval for the use is allocated only if the action 

containing the statement is active at Ti 

 

Constraints to be checked at each time point: 

 
(5)  UI∀  UI∀ ’   [ UIstart (?r,Ti)  >= UI’end (?r,Ti) ]  V  [ UIend (?r,Ti)  <= UI’start (?r,Ti)  ]      

• UI and UI’ are all uses in instantaneous actions at Ti   

• Pairwise checking if two intervals are not overlapped 

 

In Durative Action over [?start, ?end], 

Each use statement in a grounded durative action57 is assigned two variables to 

represent the two end points of the interval at each time point: UIstart (?r,da, Ti) , 

UIend(?r,da, Ti)  

 
(use  ?resource ?quantity) is encoded as follows:     

(1)  [ UIstart (?r,da, Ti)  >=  Istart (?r) ]          

(2)  [ UIend (?r,da, Ti)   <=  Iend (?r) ]        

                                                 
57 It does not seem that encoding the uses of interval type in durative action is attractive in 
terms of size, which is the consequence of the way durative actions can be handled in SAT-
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(3)  [ UIend(?r,da, Ti) = UIstart(?r,da, Ti) = Istart (?r)  ]  ⊕    

           [ UIend (?r,da, Ti)  -  UIstart(?r,da, Ti)   = ?quantity ]  

(4)  Active(As,?start)   ⇔   [ UIend(?r,da,?start)  - UIstart (?r,da,?start)  = ?quantity ]         

(5)  endTjstartTj ?? pp∀ ,  

  [ Active(Ae, ?end)  ⇔   

[UIstart(?r,da,Tj)  = UIstart(?r,da,Tj-1)  ^  UIend(?r,da, Tj)  = UIend(?r,da, Tj-1 ) ] ] 

• (1) and (2) ensure that the subinterval should be contained in the interval of 

the resource  

• (3) ensures that at any time point the subinterval for use is either defined as 

nonempty, exclusively zero interval by setting end points to the beginning point 

of the interval  resource 

• (4) allocates a subinterval of size of ?quantity if and only if the durative action 

starts.  

• (5) propagates the subinterval assigned at ?start over the time points in 

(?start, ?end), and the propagation is activated if and only if the durative action 

is in the plan.  

• Active(As,?start)   and  Active(Ae, ?end)   are causally linked  in durative 

action representation ((6) in Section 4.3.3)  so that (4) and (5) ensure that the 

subinterval is preserved during the period of the durative action. 

 

Constraints to be checked at each time point: 

 
                                                                                                                                              
based planning. The issue, then, is how to optimize (prune) the levels each durative action 
may be able to start or/and to end. 
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(6) UI∀  UI∀ ’  ,  

      [ UIstart (?r,da,Ti)   >=  UI’end (?r,da’,Ti) ]  V  [ UIend (?r,da,Ti)   <=  UI’start (?r,da,Ti) ]     

• Pair-wise checking if two intervals are overlapped 

• UI and UI’ comprise all subintervals defined in any action in any time before 

the current time point, inclusively.   
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Chapter 5  Implementation of TM-LPSAT  
 
 

 
 
 

   Figure 3:  Architecture of the TM-LPSAT Planning Framework58  
 
 

5.1  LCNF Compiler  

 

The TM-LPSAT compiler translates PDDL+ descriptions of a domain and a problem 

into a CNF formula over linear (in)equalities and propositional fluents. The current 

implementation of PDDL+ and our encoding schemes can deal with the ADL features, 

including types, negative preconditions, disjunctive preconditions, equality, quantified-

preconditions, and conditional effects.  

The objective of current implementation of the TM-LPSAT is to test the 

feasibility of the LPSAT approach to temporal and metric planning in continuous time. 
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Except pruning of the search space in a Graphplan style, collecting the time points 

feasible for goal states in the durative temporal models, and optionally Crawford’s 

COMPACT59 simplifier over CNF formulas, no other optimization on compiler has 

been tried. 

 

5.2  LPSAT Engine 

 

Between MathSAT [Sebastiani01] [Audemard02-b] and LPSAT [Wolfman00] 

[Wolfman99], two LP+SAT engines which were available to us at the time of research, 

we have chosen (actually, no choice) LPSAT for verification of our encodings, simply 

because of the expressiveness of linear constraints that the arithmetic constraint 

solver integrated into the engine can support. The MathSAT can handle only limited 

forms of linear inequalities (variable multiplied by constant, difference of two variables 

in constant, etc.) which are not expressive enough for most domains with continuous 

changes in planning; The LPSAT accepts linear inequalities that fit better for our 

purpose. MathSAT, however, is robust 60  and supports optimization techniques of 

state-of-the-art. 

 

LPSAT by Wolfman and Weld 

 
                                                                                                                                              
58 This figure is the same as the figure given in page 10. 
59 It includes unit propagation, subsumption and pure literal elimination.  
60 The capacity of the current version, they say, are of 20K Boolean variables, 300K clauses, 
1K real variables and 5K atoms. 
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The LPSAT engine is composed of  RelSAT [Bayardo97] and Cassowary [Borning98]: 

RelSAT is a variant of DPLL-based systematic solver using learning and back jumping 

techniques, which led the performance of systematic solvers to the level competitive 

to that of stochastic solvers. Cassowary is a linear arithmetic constraint solver 

developed for user interface design, which is an implementation of an incremental 

variant of Simplex method. Techniques to optimize its performance through 

communication between the two components are explored, such as backjumping and 

learning based on minimal conflict set calculated when the constraint set is 

inconsistent and splitting heuristic for triggers for constraints.  

The engine works as follows: The SAT solver is responsible for generating 

assignment of truth values which includes triggers (Boolean variables) for arithmetic 

constraints. Once an assignment has been found satisfiable propositionally, the set of 

arithmetic constraints whose triggers are true in the assignment is checked for 

consistency by the LP solver. If the set is consistent, the assignment is a model for the 

axioms of the given planning problem. If inconsistent, the LP solver gives calculated 

information of inconsistency (minimal conflict set) back to SAT solver.  

In order to integrate their LPSAT into our TM-LPSAT, a number of adjustments 

had to be made to the CNF formulas generated by the TM-LPSAT compiler: 

• The form of linear constraints accepted by Cassowary is equality or non-strict 

inequality; strict inequality is transformed into non-strict inequality by adding 

very small ε . In practice, ε  needs be tuned to be small enough not to make 

any change in the value of any quantity used in the given domain. 
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In Cassowary61 imbedded in the LPSAT, all numbers are assumed to be real number unless 
positive constraint is given; a function whose value is be positive needs additional constraints 
on being positive at every time point. 

• Negated Arithmetic Constraint: Propositional Negation vs. Mathematical 

Negation 

The following triggering mechanism is adopted in LPSAT: A trigger is assigned 

for each positive constraint. When the trigger is set to true, the positive 

constraint is added to the set of linear constraints to be checked for 

consistency. When the trigger is set to false (theoretically unnecessary62), its 

negated constraint is automatically true. That is, negated arithmetic constraints 

in the LPSAT are interpreted propositionally63.  

Propositional negation works correctly if only positive forms of a 

constraint occur in the input formulas. Otherwise, if both negated forms and 

positive forms occur in the formulas, as is in our encodings, negated 

constraints should be interpreted as mathematical negation64. Also, to deal 

with negative precondition in ADL features, mathematical negation should be 

adopted. 

  not ( f(t) = d )  is converted into  ( (f(t) >= d + ε )  V  ( f(t) + ε  <= d ) 
not ( f(t) <= d ) is converted into  ( f(t) >= d + ε )     
not ( f(t) < d )   is converted into  ( f(t) >= d ) 
not ( f(t) >= d )  is converted into  ( f(t) + ε  <= d )  
not ( f(t) > d )  is converted into  ( f(t) <= d ) 

                                                 
61  In contrast to standard Simplex method, in which variables are assumed to be non-negative 
real numbers. 
62 The property can be generalized such that for a constraint occurring in only positive form (or, 
negative form) in the formulas, assignment to false (or true) is not necessary.   It can be useful 
for pruning search tree, especially in dealing with equality, which requires a disjunction of two 
strict inequalities [Sebastiani01].  
63 Consequently, the LPSAT cannot handle negated precondition.  
64 In MathSAT, mathematical negation is adopted so that it can deal with negated constraints 
in the input formulas correctly.  
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Chapter 6   Experiments 
 

 

Neither the process of compilation nor encoding is optimized 65  in the current 

implementation of the TM-LPSAT compiler. Thus, rather than comparing the 

performance of TM-LPSAT with the state-of-the-art planners66, we experiment on our 

encodings with different SAT-based constraint solvers. For the problems of substantial 

size, the total time is dominated by the time required to search for the solution. Thus, 

our interest is mainly to observe whether in terms of the searching time TM-LPSAT 

can be comparable to the state-of-the-art planners based on different planning 

frameworks. 

In Section 6.1, we give an overview of the different constraint solvers dealing 

with propositional combinations of Boolean variables and linear arithmetic constraints. 

In Section 6.2, we present and discuss experimental results.  

 

 

6.1  SAT-Based Arithmetic Constraint Solvers: LPSAT and MathSAT  

 
 
LPSAT [Wolfman99] [Wolfman00] and two versions of MathSAT were available for 

testing our encodings. The detail of LPSAT was dealt in Chapter 5. We give a brief 

description of the MathSAT family. 

  
                                                 
65 Refer Section 5.1 for what can be optimized. 
66  Almost all domain-independent planners can handle neither planning with continuous 
change nor real-time temporal planning with, which are the main features of our TM-LPSAT. 
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MathSAT [Sebastiani01] [Audemard02-b] 

 
Two versions of the MathSAT family are available for our testing: one, we call it 

“MathSAT03”, is the version dealing with difference constraints, that is, it cannot 

handle more than two variables in a linear equation and any arithmetic operation 

except the difference of two variables. The other, we call it “MathSAT04”, is an 

extended version of MathSAT03 dealing with any arithmetic operation except division 

and more than two variables in an equation. The form of negated equalities in the 

extended linear constraints is under development; specifically, back-jumping on 

arithmetic constraints and learning do not work at the moment. 

 
The architecture of MathSAT is more sophisticated than LPSAT: it is composed of five 

stratifying layers: 

• L0: The DPLL-based Boolean solver  

It takes care of only propositional connectives; arithmetic constraints are    

abstracted as propositional ones. 

• L1: Elimination of equalities  

It propagates equalities and clusters variables. 

• L2: Minimal path with negative cycle detection  

If only atoms of “Vi – Vj  {>,<.>=,<=} Constant“ remain, the problem is solved by 

a minimum path algorithm with cycle detection, a variant of Bellman-Ford 

algorithm. 

• L3: Linear Programming simplex method 

• L4: Handling negated equalities 



 87

A layer Li is called by Li-1 to refine a partial solution of the problem. This decomposed 

architecture allows exploiting specialized efficient algorithms to deal with each layer 

and as well as allowing lazy evaluation so that difficult parts of problems (such as LP 

solver) are not called until it is necessary.  

  
The MathSAT family based on a SIM SAT solver and lpsolver support the following 

features: 

• Dependency among variables can be utilized: only a subset of independent 

variables is used at branching points. 

• It supports heuristics at branching points which are proven to be effective in 

DPLL-based SAT solvers [Armando02]: ten options of heuristics67.  

• It supports several optimization techniques for arithmetic constraints and 

Boolean formulas, such as early pruning and static learning making similar 

effects as learning on the run. 

• The known techniques such as back-jumping and learning on arithmetic 

constraints as well as propositional variables are included in “MathSAT03”. On 

the other hand, as mentioned before, only back-jumping based on conflicts 

among numeric variables and learning does works for “MathSAT04” for now. 

 

 

 

                                                 
67 JWHeur (Jeroslow and Wang heuristics), 2JWHeur (2 side Jeroslow and Wang heuristics), 
SatoHeur (heuristics used in Sato 3.2 solver), SatzHeur (heuristics used in Satz solver), 
BoehmHeur (heuristics used in Boehm), MomsHeur (Maximum Occurrences in clause of 
Minimum Size heuristics), RelsatHeur (heuristics used in Relsat 2.0), UnitieHeur (heuristics 
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6.2  Test Results and Discussion 

 

We have separately tested metric planning, temporal planning, and temporal metric 

planning, since characteristics of constraints specific to different planning may make a 

difference in performance with features of different constraint solvers. We use these 

terms in the following sense: Metric planning is reasoning about discrete changes of 

numeric or propositional fluents that are made by actions over discrete time. Temporal 

planning is reasoning about changes of propositional fluents that are made by actions 

or durative actions over real-valued time. Temporal metric planning is reasoning about  

changes of propositional fluents and discrete continuous changes of numeric fluents 

that are made by operators (actions, events, durative actions, or processes) over 

continuous time. 

 

Preparation of Problem Domains and Instances 

 
For the metric planning with discrete changes and temporal planning, domains and 

problems from IPC3 are used. These are originally defined as optimization problems. 

However, TM-LPSAT cannot optimize plans, the problems are converted to 

satisfaction problems in a way that an optimized value68 (plan quality) generated by 

                                                                                                                                              
based on unit propagation), RndHeur (it randomly selects the next proposition to assign), and 
UsrHeur (it asks the next proposition to assign to user). 
68 All domains and Problems used in our testing are to minimize the given plan metric.  
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LPG planner69 [Gerevini03], one of the best planners competed in the IPC3, is used 

as a condition of the goal state.   

The problem domain used for temporal metric planning is a variation of 

Bathtub domain introduced in Chapter 2: there are processes of “filling with a hot tap” 

and “filling with a cold tap” and a process of “draining”, which can determine the level 

of the bathtub at the same time.  Also it includes an event of “Flood” when the bathtub 

overflows, which in turn triggers an event “AutoTurnOff a tap”. By distinguishing hot 

taps and cold taps, the goal includes constraints on the range of ratio of flows from hot 

taps to flows from cold taps so that the desired bath temperature is achieved. Tested 

are seven problem instances varying in the number of bathtubs and the number of 

(hot/cold) taps and in the constraints given in a goal. 

The encoding in a CNF formula generated by the TM-LPSAT compiler is 

simplified by the Crawford’s Compaction algorithm, and then the simplified CNF 

formula is fed into the constraint solvers: The compaction algorithm includes unit 

propagation, subsumption, and pure literal elimination.   

 

Set-ups of SAT-based Arithmetic Constraint Solvers 

 
The LPSAT is set-up with options of backtracking and learning.  

Options on heuristics in MathSAT are used to select the best performance. 

“MathSAT03” and “MathSAT04” with Relsat heuristic utilize dependency feature (only 

actions and starting/ending actions of durative actions are independent.). Static 

                                                 
69 Since the TM-LPSAT compiler is not optimized, it would not be meaningful at this point the 
performance of TM-LPSAT is compared with the performance of LPG: LPG solves these 
problems used in our testing less than a couple of seconds. 
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learning feature is turned on, which may make similar effects on learning on the run in 

“MathSAT04”. Also, early pruning and lpl (LP in the last) option are turned on with 

“MathSAT04”.  

The temporal planning is tested with “MathSAT03” supporting mathematical 

back-jumping; metric planning and temporal metric planning requiring general forms of 

linear constraints are tested with “MathSAT04”.  

 

Platform of Testing 

 
The times are measured on Linux 1.8 GHz Pentium IV processor with 512 MB RAM. 

For the algorithms with nondeterministic choice points, such as LPSAT and MathSAT 

with Relsat Heuristics, searching time averaged over 20 runs is presented along with 

deviation. 

 

6.2.1 Metric Planning 

 

Actions are defined as independent variables for  “MathSAT04”. 

Table 1 shows the performances of the decision procedures with our metric 

encoding. The domains and problems from “Numeric Category” of IPC3 are tested. 

Table 2 shows the performances of MathSAT04 with different heuristics. 

The constraints of encoding generated in metric planning are either mostly in 

the form Vi = Constant70 (direct influence by discrete change), or in a general form of 

                                                                                                                                              
 
70 The direct influences by discrete change are constant in particular for the instances used for 
tests. 
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linear constraints.  The Vi = Constant (and its complementary form Vi = 0 from the 

direct influence) is dealt by static learning and equality processing routine in 

“MathSAT03” so that it will not call a LP solver. On the other hand, LPSAT should get 

benefits from back-jumping based on conflicts of numeric constraints.    The results do 

not show which feature is more effective in this kind of planning.  

 
        (Unit:Seconds) 

           Domain 
           Problem  

DriverLog 
    #2           #3           #4 

Zeno 
    #2          # 3         #4 

Plan Quality 
No. of Time Points 

   981           911          707 
   10              8               8 

6784        4506      19964 
6               5             5 

Before Compaction: 
     No. of Clauses 
     No. of Boolean Variables 
     No. of Linear Constraints 
     No. of Real Variables 
After Compaction: 
     No. of Clauses 
     No. of Boolean Variables 
     No. of Linear Constraints 
     No. of Real Variables 
 
Compaction Time 

 
14681       9791        18351 
3201       2242          3018 
796         582            760 
415         305            394 

 
8729       5808        10688 
1755       1256          1713 
784         572            743 
415        305            394 

 
92.29      40.71       139.79 

 
4614         8739        9534 
731         1283        1403 
477           845          905 
227           398          428 

 
2701         5199       5806 
671         1197       1302 
459           822         883 
220           392         422 

 
8.13         28.97      35.57 

LPSAT 
      Searching Time 
      ( Deviation ) 

 
149.82       29.28         296.7 
125.18      17.53       139.79 

 
1.15           16.6       3.41 
0.24            9.37       0.76 

MathSAT04 
      Searching Time 

 
213.14       37.59         231 

 
0.552         2.23        5.55 

 
Table 1. Performances of Metric Planning with IPC3 Numeric Category 

 
 

Heuristics  JW   2JW   Sato  Satz Boehm Moms Relsat Unitie

ZENO 
 Problem #2 
 Problem #3 
 Problem #4 

 
8.816 
461.46 
410.63 

 
7.252 
> 600 
328.93

 
36.032
> 600 
> 600 

 
0.552 
2.23 
5.55 

 
6.582 

252.71
189.03 

 
35.914 
> 600 
> 600 

 
9.118 
> 600 
> 600 

 
2.957
289 

74.59
DriverLog 
 Problem #2 
 Problem #3 
 Problem #4 

 
> 600 
> 600 
> 600 

 
> 600 
> 600 
> 600 

 
> 600 
> 600 
> 600 

 
> 600 
164.81

231 

 
> 600 
> 600 
> 600 

 
> 600 
> 600 
> 600 

 
213.14 
102.65 
> 600 

 
> 600
37.59
> 600

 
Table 2. Heuristics in MathSAT04: Metric Planning with IPC3 Numeric Category 
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6.2.2 Temporal Planning 

 
Starting actions and ending actions of durative actions are defined as independent 

variables for “MathSAT03”.  

Table 3 shows the performances of the decision procedures with our metric 

encoding. Domains and problems are from “Simple Time” category of IPC03 domains. 

The additional table shows LPGP’s [LongFox03] performance for the same domains 

and problems. Table 4 shows the performances of “MathSAT03” with different 

heuristics.  

          (Unit:Seconds) 
           Domain 
           Problem  

Satellite 
#1 

Zeno 
       #1                #2               # 3          

DriverLog
#1 

Plan Quality 
No. of Durative Actions 

No. of Time Points 

41 
9 
8 

   173                 599                280 
     2                    8                    6 
     4                    7                    6 

      91 
       8 
       7 

Before Compaction: 
     No. of Clauses 
     No. of Boolean Variables 
     No. of Linear Constraints 
     No. of Real Variables 
After Compaction: 
     No. of Clauses 
     No. of Boolean Variables 
     No. of Linear Constraints 
     No. of Real Variables 
 
Compaction Time 

     
108310 
4873 
1864 
428 

 
13287 
3602 
1708 
428 

 
2109.93 

    
    2060             287532          321102         
      603               2706               4371 
    112                975                1676 
    51                  283                 555 

 
      957               26121            45931 
      253               1939              3368 
      110                913               1592 
        51                283                555 
 
      1.67           7711.22         15026.3 

  
62934 
4498 
1582 
429 

 
21743 
2886 
1342 
449 

 
574.59 

LPSAT 
      Searching Time 
        ( Deviation ) 

   
3.267 
0.92 

 
      0.07              1.53               27.13  
      0.01              0.51              15.43  

     
48.36 
62.8 

MathSAT03 
      Searching Time 

 
0.15 

 
  0.00                0.08               0.16 

 
0.3 

 
 

Plan Quality 
No. of Steps 

41 
9 

     180           633             430 
        1             6                  9 

91 
8 

LPGP 
            Total Time 

 
0.166 

              
     2.667      5.498          13.233 

 
0.33 

 
Table 3. Performances of Temporal Planning from IPC3 Simple Time Category 
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The total time consumed by LPGP [LongFox03] includes graph construction time and plan 
searching time.  
 The linear constraints in the temporal encoding are of either (i) Vi – Vj  

{>,<.>=,<=} Constant,  or (ii) Vi  {>,<.>=,<=} Constant. These types of constraints are 

extensively explored in the reasoning of the timed systems [Audemard02-a] and good 

heuristics are known. “MathSAT03” is particularly effective in dealing with constraints 

of these forms, which it solves using a variant of the Bellman-Ford algorithm, rather 

than calling a LP solver as in LPSAT The results show that “MathSAT03” outperforms 

in this kind of planning. 

In temporal planning with durative actions, it is worthy to compare TM-LPSAT 

with LPGP: The temporal encoding of TM-LPSAT is similar to Graphplan temporal 

modeling adopted in LPGP. Like TM-LPSAT, consistency on temporal constraints 

imposed by actions included in the plan is checked using a LP solver. The difference 

is that TM-LPSAT searches for a plan non-directionally, and the LPGP searches 

backward.  Consequently, TM-LPSAT does not suffer from difficulty caused by 

backward search, such as dealing with a durative action whose ending action is not 

included in the plan, but whose starting action needs to be included in the plan. 

 
 
Heuristics  JW   2JW   Sato  Satz Boehm Moms Relsat Unitie

Satellite 
Problem #1 

 
> 300 

 
> 300 

 
> 300 

 
0.15 

 
> 300 

 
> 300 

 
> 300 

 
> 300

ZENO 
 Problem #1 
 Problem #2 
 Problem #3 

 
0.00 
0.51 
1.85 

 
0.00 
0.49 
1.84 

 
0.00 

18.46 
> 300 

 
0.00 
0.08 
0.16 

 
0.01 
0.45 
1.75 

 
0.01 
18.26 
>300 

 
0.01 
18.91 
>300 

 
0.01 
5.25 
14.71

DriverLog 
Problem #1 

 
> 300 

 
0.36 

 
> 300 

 
1.34 

 
0.3 

 
> 300 

 
> 300 

 
> 300

 
Table 4. Heuristics in MathSAT03: Temporal Planning with IPC3 Simple Time Category 
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6.2.3 Temporal Planning with Continuous Changes 

 

Only actions are defined as independent variables, but events or processes are not.   

 Table 5 shows performance of a variation of Bathtub domain. Table 6 shows 

the performances of “MathSAT04” with different heuristics. 

                                           (Unit:Seconds) 
 

Problem Instances 
 

Prob 
#0 

Prob 
#1 

Prob 
#2 

Prob 
#3 

Prob 
#4 

Prob 
#5 

Prob 
#6 

Size ( # of Bath x  # of Taps) 1 x 2 1 x 4 1 x 8 1 x 16 2 x 4 2 x 8 2 x 16 
Before Compaction: 
     No. of Clauses 
     No. of Boolean Variables 
     No. of Linear Constraints 
     No. of Real Variables 
After Compaction: 
     No. of Clauses 
     No. of Boolean Variables 
     No. of Linear Constraints 
     No. of  Real Variables 
 
Compaction Time: 

 
398 
273 
166 
68 
 
376 
242 
166 
68 
 
0.11 

 
638 
373 
198 
84 
 
568 
316 
198 
84 
 
0.26 

 
1118 
573 
262 
116 
 
952 
464 
262 
116 
 
0.72 

 
2078 
973 
390 
180 
 
1720 
760 
390 
180 
 
2.43 

 
1093 
658 
323 
129 
 
974 
543 
323 
129 
 
0.73 

 
1868 
976 
386 
161 
 
1586 
758 
386 
161 
 
2.01 

 
3422 
1616 
514 
225 
 
2812 
1191 
514 
225 
 
6.55 

LPSAT 
      Searching Time 
      ( Deviation ) 

 
0.167 
0.023 

 
0.318 
0.149 

 
3.753 
7.023 

 
1.104 
0.998 

 
2.079 
1.286 

 
18.296 
2.83 

 
87.997
160.92

MathSAT04 
      Searching Time 

 
0.03 

 
0.18 

 
0.12 

 
0.26 

 
1.55 

 
0.52 

 
0.89 

 
Table 5: Performances of Temporal Planning with Continuous Changes: Bathtub Domain 

 
The number of steps was set to 5 for each instance; the plans for problem 4, 5 and 6 should be 
parallel as much as possible to achieve a goal within 5 steps. 
 
 

The patterns of linear constraints are mostly in a general form of linear 

constraints of 3 variables or Vi = Constant (from direct influence by discrete change or 

continuous change).  Temporal metric encoding should be more constrained such that 

metric constraints are intertwined with temporal constraints. Also generally the 

proportion of numeric constraints and variables is larger than in any other planning.  
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The results show at least with this domain that (i) “MathSAT04” still get 

benefits from layered structure  and choice of good heuristics at branching points, 

compared to LPSAT, (ii) the choice of heuristic at branching point makes a big 

difference in performance with “MahSAT04”. However, those results should be tested 

with different domains and problems. 

 
Heuristics JW 2JW Sato Satz Boehm Moms Relsat Unitie 

Prob #0 0.09 0.03 0.05 0.2 0.12 0.06 0.682 1.19 

Prob #1 0.23 0.18 125.21 0.9 0.54 124.87 0.45 0.28 

Prob #2 2.36 0.12 0.15 > 600 30.79 0.17 62.037 0.2 

Prob #3 85.39 0.26 0.35 > 600 > 600 0.36 > 600 0.53 

Prob #4 > 600 200.11 > 600 1.55 > 600 > 600 243.7 > 600 

Prob #5 > 600 1.21 0.52 > 600 > 600 0.52 > 600 > 600 

Prob #6 > 600 2.58 0.9 > 600 > 600 0.89 > 600 > 600 

 
Table 6: Heuristics and “total” time in MathSAT04: Bathtub Domain 
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Chapter 7  Extensions of TM-LPSAT 

 
 

In this Chapter, we suggest possible extensions of TM-LPSAT in continuing research 

on this thesis. In Section 7.1, we list the possible directions of extensions of TM-

LPSAT. In Section 7.2, we discuss further techniques of optimizing encoding. In 

Section 7.3, we present the known techniques to optimize the LPSAT engine based 

on a systematic solver, particularly utilizing structure of planning domains.   

 

7.1 Possible Extensions 

 

Optimization of Encoding and LPSAT Engine 

 
The optimization of encoding is the first and most necessary step in making TM-

LPSAT scalable and practical to a certain degree. We discuss these optimization 

techniques further in Section 7.2.  

Although it has been known that general SAT solvers work well with planning 

domains, there is room to optimize a SAT solver when combined with an arithmetic 

constraints solver. Also, the structure specific to planning domains can be utilized to 

optimize the combined decision procedure. These optimization techniques are 

discussed in Section 7.3. 
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Adaptation to our Encoding into Planning Framework based on Plan Graph 
 
There are (at least) two approaches to project a model of time71 into a plan graph. One72 is to 
model the graph as a “uniform” flow of time so that each fact layer has fixed duration and each 
action layer corresponds to an absolute time. The other73 is to model the graph to represent 
the “logical” structure of plans. 

The model of time adopted in TM-LPSAT naturally corresponds to the second 

temporal projection: action layers are mapped to time points in our encoding and the 

durations of fact layers are resolved by temporal metric constraints imposed by 

actions happening at the end points of the fact layer. Thus, the adaptation of our 

temporal metric encoding into the plan graph does not appear so difficult.  

In addition to being utilizable for pruning74 SAT encoding75,  CSP encoding76, 

or MILP encoding77, the plan graph (constructed with metric temporal information and 

characteristics of temporal models) opens up various search methods for plans. Apart 

from the backward search78 adopted in Graphplan,  these can include non-directional 

searches by general SAT solvers: (i) Simulated Systematic SAT Engine in DPPlan 

[Baioletti02] [Baioletti03], which simulates on a plan graph the strength of SAT solvers 

(i.e. non-directional propagation and search) and the search techniques of DPLL (i.e. 

if stuck with a certain value, flip it for a correct plan). Moreover, in the selection of 

variables and their values, it can freely utilize heuristics specific to planning domains 

                                                 
71  [Coddington02] and {longFox03} deal with extensive analysis of these two temporal 
projections on plan graph. 
72 This temporal projection was adopted in TGP [Smith99], TP4 [HaslumGeffner01] and Sapa 
[Do03-b]. 
73 This temporal projection is adopted in LPGP [LongFox03]. 
74  The current implementation of TM-LPSAT prunes search space in a Graphplan style; 
however, the encoding stays in Sate-Space encoding, rather than in Graphplan encoding.  
75 It’s called “Graphplan encoding” [KautzMcAllester96] and adopted in BlackBox SAT-based 
planner [KautzSelman99]. 
76 it was adopted in GP-CSP [DoKambhampati00]. 
77 It was adopted in MILP planner [DimopoulosGerevini02]. 
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as well as problem domains.  (ii) Simulated Stochastic SAT Solver in LPG temporal 

metric planner [GereviniSerina03] [GereviniSerina03], which uses a local search on 

the plan graph along with domain independent heuristics. (iii) Branch and Bound on 

Plan Graph in BBG [HoffmannGeffner03], in which the search is done non-

directionally along with heuristic functions to prune the search space. 

Almost all the work done in temporal metric planning, including optimization, is 

based on the assumption that actions have constant durations and known numeric 

resource usages. But we are chiefly interested in dealing with richer expressiveness 

of temporal, metric constraints, such as uncertain durations, unknown resource 

usages, numeric parameters and, eventually, continuous changes. We believe that 

once our encoding is adopted on a plan graph, planning architectures searching on 

the plan graph in the manner of a systematic or stochastic SAT solver (i.e. simulating 

SAT engine) may be promising and robust in terms of (i) dealing with the richer 

temporal, metric constraints mentioned above, (ii) overcoming SAT-based 

architecture’s inability to utilize plan metric, (iii) and integrating other heuristics specific 

to planning domains into the architectures.  Those architectures can ultimately exploit 

all benefits from Graphplan, SAT-based framework, and heuristic-based framework. 

Currently we are working on mapping our temporal, metric encoding into the 

plan graph.  

 

 

 

LPSAT Engine Based on Stochastic SAT Solver  

                                                                                                                                              
78 It is known that backward search is not an effective means for metric planning. 
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All the known SAT-based decision engines are based on variants of the DPLL 

systematic solver. As a related work, ILP-Plan metric planner [KautzWalser00] uses 

integer local search based on WalkSat [Selman93] to solve mixed integer linear 

programming problems in planning domains; LPG temporal metric planner 

[GereviniSerina03] uses a local search similar to WalkSat on a plan graph, along with 

domain-independent heuristics, which shows the best performance in IPC3 planning 

competition. 

 

Encoding Schemes   

 
It has been proven empirically that different encoding schemes can make a big 

difference in performance [Giunchiglia98] [Kautz96]. Another natural extension of TM-

LPSAT is the application of other encoding schemes. Considering that a partial order–

based approach is known to be good at handling continuous time, (lifted) causal link 

encoding [KautzMcAllester96] is something worthy to explore. There are some works 

[Wolfman] [Do03-a] on causal link encoding for temporal planning in semi-continuous 

time, but at this point it is unclear to us whether it would be feasible to represent 

concurrent continuous and/or discrete changes. Also, as mentioned above, a plan 

graph extended with our encoding can be compiled into Graphplan encoding 

[KautzMcAllester96] or CSP [DoKambhampati00].    

 

 

 

Representation and Reasoning with Qualitative/Incomplete Information 
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Reasoning with qualitative, incomplete properties and relationships among the 

continuously changing quantities (parameters) is extensively explored in Qualitative 

Reasoning community [Forbus84] [Weld90] [Kuipers01]. However, they have not yet 

been incorporated into planning frameworks as well as planning domain definition 

languages. In related work, Davis [Davis92] gives a logical analysis of Qualitative 

Process Theory [Forbus84], while Miller and Shanahan [Miller96-b] speculate on 

incorporating qualitative information about parameter behavior into their logical 

formalism based on event calculus dealing with both continuous and discrete changes.  

 

 7.2  Optimization of Encoding 

 

Techniques to Reduce Encoding Size 

 
It has been shown empirically that smaller encodings can generally be solved faster, 

although a smaller encoding is not always easier to solve [Kautz96] [Ernst97].  

• Different representation techniques for the same axioms to reduce encoding 

size have been extensively explored [Ernst97]: factoring, operator splitting, bit 

representation, etc.  

• Brafman [Brafman01-a] reports that a substantial percentage (more than 50% 

on average) of the clauses in SAT-encodings of planning problems (clearly 

from the action representation and frame axioms, for instance) are binary 

clauses. His simplification algorithm for binary clauses has proven very 

beneficial, especially with systematic solvers. We tested his 2-simplifier with 
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our encoding simplified by Crawford’s COMPACT; it shows a more than 20% 

reduction in the number of clauses.  

• Simplification techniques for arithmetic constraints include (i) constant folding 

and expression folding as used in compilers, (ii) recognition of arithmetic 

equivalence classes, (iii) and simplification algorithms for linear inequalities 

connected by Boolean operators (done in the hardware/circuit verification 

community [Strichman02] [Amon00]). 

• The most popular technique for pruning search space is using a plan graph 

built in Graphplan-style, as applied in Blackbox system (Graphplan + SAT 

solver) [KautzSelman99], DPPLAN (Graphplan + simulated SAT engine) 

[Baioletti02], LPGP temporal planner (Graphplan + LP solver) [LongFox03], 

MILP temporal planner (Graphplan + ILP solver) [DimopoulosGerevini02],  

LPG temporal metric planner (Graphplan + local search & repair) [Gerevini03], 

BBG (Graphplan + branch and bound) [HoffmannGeffner03],  Metric-FF 

[Hoffmann03]  or Sapa metric temporal planner [Kambhampati03] [Do03-b] (to 

extract heuristics). 

Many heuristics for a Graphplan-based framework have been explored to 

prune search space. In particular, reachability (forward mutex propagation), 

relevance, and inseparability (backward mutex propagation) can be utilized on 

a plan graph: [Do00] and [Brafman01-b] present reachability and relevance-

based pruning techniques in a plan graph based SAT encoding.  

The current implementation of TM-LPSAT prunes search space in a 

Graphplan style. As shown in Chapter 6, the degree of pruned actions and 

fluents varies drastically with domains and problems. Also the possible goal 
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states can be collected while pruning. This is useful for the durative temporal 

models (Level 3 & 4) in which the goal state may be in any time point because 

the semantics impose all durative actions started in the plan to be finished in 

the plan.     

• Another technique to reduce encoding size would be to utilize domain 

structure inferred from a domain analysis tool, such as TIM [FoxLong99] 

[FoxLong00] or DISCOPLAN [Gerevini00]. This can be applied either on the 

plan graph (to prune) or on the encoding level (to encode domain knowledge). 

The MILP temporal planner [DimopoulosGerevini02] uses single-valuedness 

(On(X,*Y)) and binary XOR constraints (ON(X,Y) and CLEAR(Y)) extracted by 

a domain analysis tool to infer pairs of actions that cannot be concurrent. This 

can be used to reduce the number of temporal constraints as well as the 

number of temporal variables. Notice that this kind of mutex relation cannot be 

identified by mutex rules imposed by the semantics. 

 

Linearization Techniques 

 
It may be possible to extend the power of TM-LPSAT by including techniques for 

making originally nonlinear constraints linear. 

• The information given in the initial and goal conditions could be used to reduce 

an apparently nonlinear constraint into linear one by using simplification 

techniques such as constant folding.  
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• A linearization technique such as clock translation [Henzinger97] 

[Henzinger98] used in hybrid systems can be applied to reduce nonlinearity 

into linearity.   

 

7.3  Optimization of LPSAT Engine 

 

A systematic SAT solver is assumed for this section, as general SAT-based decision 

procedures are based on DPLL. Optimizing a stochastic SAT solver would be a 

different line of work. 

 

Optimization of a SAT Solver Integrated with Arithmetic Constraints Solver  

 
In the SAT-based framework integrated with an arithmetic constraint solver, the main 

bottleneck in performance is the time consumed by arithmetic constraint solver 

[Alessandro01] [Wolfman00]. This will probably become more true as the performance 

of SAT solvers [Zhang02] improve. In order to reduce the time consumed by an 

arithmetic constraint solver, the two solvers should interact. The general techniques 

used in systematic solvers are as follows: (i) the SAT solver utilizes information from 

the arithmetic solver on the inconsistent constraints set so that it can prune the search 

tree (called back-jumping and learning from a minimal subset of inconsistent 

constraints) [Wolfman00] [Castellini01]; (ii) the inconsistent arithmetic constraint sets 

are identified in a preprocessing step, and then clauses are added to prevent any 

combinations of those constraints from being considered active in a truth assignment. 

These techniques are applied to many applications [Audemard02-b] [Audemard02-a] 
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[Wolfman00] and have proved to be effective. However, this technique is 

computationally expensive, so the justification for its use comes from greater 

efficiency gain. Or, at the encoding stage, inconsistent pairs of arithmetic constraints 

can be prevented from being triggered simultaneously as done in our encoding of 

direct influence79. 

 

Optimization of a General SAT Solver for Planning Domains 

 
It is possible to exploit the structure specific to the planning domains, such as the 

variable dependency that is lost by converting to CNF. The variable dependency can 

be used to select variables at the branching points in order to prune the search space 

(in particular, to reduce calls to arithmetic solvers).   

In [Giunchiglia98], observing that the values of fluents at a certain time point 

derive deterministically from the initial states and the sequence of actions performed 

until that point, their planner utilized the nondeterminism in the planning domain, that 

is, the choice of actions to be performed at each time point. It showed a dramatic 

reduction in the search space. Similar ideas are utilized in Rintanen’s planner 

[Rintanen98] [Rintanen99], DPPlan [Baioletti02] [Baioletti03] and LPG 

[GereviniSerina03] [Gerevini03].  

Mali [Mali02-b] extensively experimented on the effects of directional search 

on SAT encodings of planning domains using Satz systematic solver [Li97], where 

values are assigned to action and/or fluent variables in forward/backward directions 

within/without intermittent manner.  It is reported that directionality does matter in 

                                                 
79 See axioms (3) and (4) and the attached footnote in Section 4.2.2. 
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solving SAT encodings of planning domains: forward and bidirectional searches 

perform better than the backward search.  

Worthy of investigation is how both of these observations work with metric/ 

temporal domains and the identification of the structure specific to temporal and/or 

metric domains.   
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Chapter 8  Conclusion 
 

The dimension of time is inherently involved in any domain with change. Many 

complex real-world domains involve continuous, metric time, resources, metric 

quantities, and concurrent actions. However, until very recent years, continuous time 

had not been studied by the planning community, mainly because planning 

techniques have not caught up to cope with continuous time and subsequent 

complications with resources and concurrency.  

 We have developed a SAT-based temporal planner that can reason about 

continuous and/or discrete changes. As far as we know, our TM-LPSAT is the first 

SAT-based planner that can reason in continuous time.  

 It was claimed that the SAT-based approach to continuous time would not be 

feasible [Smith00-b] [LongFox00]: Allowing a metric quantity to be a continuous 

function of time raises the possibility that there could be an infinite number of possible 

actions, such as a refueling action in which the level of fuel added is a function of the 

duration of the action. The way this problem is resolved in TM-LPSAT is to encode in 

terms of the time points at which “interesting activities” happen, rather than every 

possible action point as encoding in discrete time. It can be interpreted in such a way 

that time points in TM-LPSAT are an abstraction of all possible refueling actions: If 

refueling action at a certain metric time is “interesting” from the point of goal 

achievement, the action at the metric time is bound to one of the time points. A time 

point in TM-LPSAT is bound to the metric time value over R* (nonnegative real 

numbers). Number of time points is determined by the interesting activities happening 
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at distinct times, which are needed to achieve the goal. It is possible that more than 

one activity happens at a time point, i.e. it supports parallelism. 

  
The TM-LPSAT generates plans based on the following assumptions: 

• The world is closed. 

• Actions are deterministic. 

• There is a single agent in the world. 

• Time is isomorphic to nonnegative real numbers. 

 
The TM-LPSAT has the following features: 

• It accepts planning problems described in PDDL+ (but does not include the 

plan metric feature of PDDL+). 

• It generates a parallel plan that contains concurrent, asynchronous actions. 

• It can reason about concurrent continuous and/or discrete changes on 

numeric-valued fluents. 

• Actions may depend on or make changes on piecewise linear metric 

constraints. 

• It can reason about durative actions that occur over extended intervals of time; 

the intervals may be static (constant), dynamic (variable) or uncertain 

(inequality relation). 

• It can reason about continuous changes captured within durative actions. 

• It can reason about autonomous processes carrying continuous changes and 

external events. 

• It supports a numeric-valued or interval-valued parameter to action. 
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• It supports interval type as a fluent type. In addition to Allen’s 13 Interval 

relations, extended relational operations among interval-valued fluents and 

operations of updating interval-valued fluents are supported.    

• It supports sharable, reusable resources: multiple-capacity resources and 

interval-partitioned resources. The resource usages can be variable.  

• It can deal with the ADL80 subset of PDDL+, including such features as typing, 

negative preconditions, disjunctive preconditions, equality, quantified 

preconditions, and conditional effects. 

 
 We have developed encoding schemes to support these features. Based on 

the LPSAT engine [Wolfman99], the TM-LPSAT temporal metric planner has been 

implemented. Also we have experimented on our metric temporal encodings with the 

MathSAT decision procedure solving propositional combinations over Boolean 

variables and linear arithmetic constraints. The test results show that the solving times 

of TM-LPSAT can be comparable to state-of-the-art planners based on other planning 

frameworks. The issues are to find and utilize the structure specific to the planning 

domains or problems to guide the search in decision procedures. 

 
The TM-LPSAT has the following limitations: 

• It restricts arithmetic constraints and continuous changes to be piecewise 

linear. The encoding for triggering and terminating events/processes with no 

time slip (also constraining as the ending point of a durative action when 

invariants become FALSE from TRUE) is based on the assumptions that all 

                                                 
80 In the SAT-based framework like TM-LPSAT, these advanced features can be handled 
without any extra complication. 
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arithmetic constraints in the conditions are piecewise linear and  that  it is 

restricted to non-strict equalities.  

• A crucial limitation of the SAT-based approach to the temporal metric planning 

is its inability to use optimization functions. In general, plan quality in temporal 

metric domains is very likely to be inherently multi-dimensional, which may be 

composed of a temporal quality (such as makespan) and a plan cost (such as 

resource consumption or cumulative action cost). Moreover, there may be 

interdependencies between different quality metrics. In the planning 

architecture of a current state-of-the-art SAT solver integrated with an 

arithmetic solver, it is not feasible to find an optimal plan according to plan 

metrics [Wolfman99] [Smith00], even within bounded length; there may be 

other truth assignments that satisfy the formula and optimize the objective 

functions better.   

• Another fundamental limitation of TM-LPSAT, as well as the SAT-based 

approach itself, is the size of the encoding, since it needs Boolean variables 

for fluents and ground actions to be defined at every time point and the size 

blows up when transformed into a CNF formula. Although there is plenty of 

room to optimize the encoding size as elaborated in Section 7.2, the approach 

ultimately would end up with memory explosion. 

 
 As discussed in Section 3.1, there are some planning systems that can reason 

about continuous changes: the extent of concurrency and expressiveness of temporal 

metric constraints that these systems can handle are very limited and the systems 

scale up poorly. The current state-of-the-art domain independent temporal planners 
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dealing with durative actions are at an early stage of development in terms of the 

expressiveness they can handle (e.g., constant durations and STRIPS-style 

operators). There are a few temporal and metric planners, but they can deal mostly 

with discrete changes within a durative action; LPG [Gerevini03] and Sapa [Do03-b] 

temporal and metric planners claim to handle continuous changes within durative 

actions, but the extent of concurrency they can deal with and their scalability are 

unclear.  

 McDermott’s Optop planner, which deals with durative actions and 

autonomous processes [McDermott03-b], is at the stage of feasibility testing for the 

Estimated Regression approach, as is our planner. However, the Optop can optimize 

plans and is open to deal with nonlinearity of arithmetic constraints. 

 There exists neither a SAT-based temporal planner in continuous time nor a 

SAT-based temporal and metric planner.  

 We claim that our TM-LPSAT shows that the SAT-based framework is feasible 

for planning in continuous time. Based on experiments with domains and problems 

used in IPC3, we can see that in terms of the searching time the SAT-based approach 

to metric temporal planning is quite comparable to other approaches and there 

remains plenty of room to push the limits of the SAT-based approach. 

 

  



 111

Appendix A: Notations 

 

A.1  Sets 

T    A set of time points 

PF    A set of propositional fluents 

NF    A set of numeric-valued fluents 

PR    A set of  processes 

E    A set of  events 

A    A set of instantaneous actions 

DA   A set of durative actions 

PosCond(pf)     The set of  actions and events with positive literal pf in 

precondition 

NegCond(pf)  The set of actions and events with negative literal ¬ pf in 

precondition 

Ref(nf)             The set of actions and events which refer numeric-valued fluent 

nf in precondition or effect. 

PosEffect(pf)     The set of  actions and events with positive literal pf in effect 

NegEffect(pf)    The set of actions and events with negative literal ¬ pf in effect 

SetEffect(nf)    The set of actions and events with assign statement on 

numeric-valued fluent nf 

AddEffect(nf)   The set of actions and events with increase or decrease 

statement on numeric-valued fluent nf 
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A.2  Predicates 

Active(a,Ti)    ( DA U  A U  E U  PR )    *  T   →   { True,  False }  

• Is action (process or event) active at time point Ti? 

Proposition(pf,Ti)  PF  * T   →   { True,  False }  

• Is a propositional proposition  pf  true at at time Ti? 

Continues(a,Ti)   ( DA U  PR ) *  T  →   { True,  False } 

• Is there any durative action (process) a continuing at time Ti? (remind that it is 

possible for the same durative actions started at different time points to be 

concurrent.) 

 
A.3  Functions 

RateOfChange(a,nf,Ti)             ( DA  U  PR )   *  NF   * T  →   R 

• Rate of change of a numeric-valued fluent nf by a durative action (process) a 

at time Ti 

NetContiChange(a,nf,Ti-1,Ti)      ( DA  U  PR )  *  NF  *  T  * T   →   R 

• Continuous change in a numeric-valued fluent nf made by a durative action 

(process) a over the interval (Ti-1,Ti). 

• Since the same durative actions but started at different time points can be 

concurrent over the interval (Ti-1,Ti), a distinguishes those instantiations of  the 

durative action.  

DiscreteChange(a,nf,Ti)   ( DA U  A U  E )  *  NF  * T  →   R 

• Discrete change on a numeric-valued fluent nf by an action (event) a at time Ti 
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• a distinguishes different instantiations of the same durative action started at 

different time points. 
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Appendix B: Time-Labeling Convention 

 

We use the following convention for labeling time-dependent terms: 

<LogicalExpression>[Ti-] (read as the logical expression is time-labeled by Ti-)  

• The logical expression is time-labeled with the values of fluents before the 

discrete changes made at the time point Ti. 

e.g. Precondition of an action or event happening at Ti 

• Each propositional fluent is time-labeled by Ti-1. 

• Each numeric-valued fluent is time-labeled by Valuebefore(nf,Ti).   

 

<LogicalExpression>[Ti+] (read as the logical expression is time-labeled by Ti+)   

• The logical expression is time-labeled with the values of fluents right after the 

discrete changes made at the time point Ti. 

e.g. Postcondition of an action or event happening at Ti 

             Precondition of a process triggered by discrete changes at Ti 

• Each propositional fluent is time-labeled by Ti 

• Each numeric-valued fluent in the right-hand side of an arithmetic statement is 

time-labeled by  Valuebefore(nf,Ti). 

• Each numeric-valued fluent in the left-hand side of an assignment statement or 

precondition (of a process) is time-labeled by Valueafter(nf,Ti). 
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Appendix C: Encoding Temporal Model of Durative Actions 

 
First, we define a simplified bathtub domain and a problem in extended PDDL+ level 4, 

and then, show its encoding in the meta-level notation. 

 
C.1  Bathtub Domain  

 
This is a simplified variation of Bathtub domain introduced in Section 1.1. There are 

more than one bathtub in the bathroom; there are more than one tap, each of which 

flows at its own flow rate when it is turned on. We may plan to fill the bathtub to a 

certain level. Also, we may want to add some bubble while running water. Observe 

that this domain shows that (i) concurrent continuous changes on the level of the 

bathtub may occur by turning on multiple taps, and (ii) discrete change on the water 

level of bathtub can occur while continuous changes go on the level of bathtub. Here 

we model this domain in extended PDDL+ Level 4 (using ADL features) and show a 

problem. 

 
Problem definition: 

 
 (:problem  A-Problem-Simplified-Bathtub 
  :objects  (HOT – tap  COLD – tap  MYBATH – bath) 
              :init   (plug_in  MYBATH) 
    (level MYBATH 0) 
  :goal   (and     (bubble_added  MYBATH) 
    (>  (level MYBATH)   (/ (capacity MYBATH) 2 )) 
                (<= (level MYBATH)  (* 0.75 (capacity MYBATH)) 
   ) 
 ) 
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Domain definition: 

 
 (:domain   Simplified-Bathtub 
  :requirements  (:types  :durative-actions  :adl) 
  :types   (bath  tab) 
  :predicates  (  (tap_on  ?b – bath  ?t – tap) 
            (plug_in  ?b – bath) 

       (bubble_added ?b – bath)   
) 

             :fluents   (  (level  ?b – bath)  - fluent  
       (hot-flows  ?b – bath) - fluent 
       (cold-flows  ?b – bath) – fluent   

       (flow  ?b – bath  ?t – tap)  - float 
       (capacity ?b – bath) – float  
             ) 

      
(:durative-action  fillBath 
 :parameters  (?b – bath  ?t - tab) 
 :duration    ( ) 
 :condition (and (at start  (plug_in  ?b))  (at start  (not (tap_on  ?b ?t))) 
           (over all   (<=  (level ?b)  (capacity ?b)))             

(at end    (tap_on  ?b ?t))   (at end    (plug_in ?b))) 
:effect  (and (at start  (tap_on ?b ?t))                           

   (at end  (not (tap_on ?b ?t)))                                     
  (increase  (level ?b)  (* #t  (flow ?b ?t) ))) 
) 
 
(:action   addBubble 
 :parameters  (?b – bath) 
 :precondition    (and  (not (bubble_added ?b)) 

(exists (?t – tab)  (tap_on ?b ?t))   
(<=  (level ?b)  (/ (capacity ?b) 2)))       

 :effect       (and (bubble_added ?b) 
(increase  (level ?b)  (/  (capacity ?b) 30))  

        
 ) 
 
(:action   turnOn 
 :parameters  (?b –bath   ?t –tab) 
 :precondition  (not (tap_on ?b ?t)) 
 :effect   (tap_on ?b ?t) 
 ) 
 
(:action   turnOff 
 :parameters  (?b –bath   ?t –tab) 
 :precondition  (tap_on ?b ?t) 
 :effect   (not (tap_on ?b ?t)) 
 ) 
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C.2  Encoding in Meta-Level 
 

Notations (with examples): 

• A ground durative action parameterized with starting time point and ending time  point: 
fillBath(BATH0,HOT,Ti,Tj) 

Or, a ground action parameterized by starting time point 

fillBath(BATH0,HOT,Ti)    
• A starting/ending action of a ground durative action parameterized by the starting time 

point Ti: 

As(fillBath(BATH0,HOT,Ti)),  Ae(fillBath(BATH0,HOT,Ti)) 

• A ground instantaneous action is active at a given time point or not: 

Active(Ae(fillBath(BATH0,HOT,Ti)),Tj) 

• Each ground propositional fluent is parameterized by the time point, meaning that it is 

true or false at the time point: 

tap_on(BATH0,HOT,Ti) 

• Each numeric-valued fluent is represented as follows: 

Valuebefore(level(BATH0),Tj)),  Valueafter(level(BATH0),Tj)),  

• Each numeric-valued float is represented as follows: 

Value(flow(BATH0,HOT)) 

• The duration of a ground durative action is represented as follows: 

Value(duration(fillBath(BATH0,HOT,Ti))) 

• At least one instance of the ground durative action is active at the time point: 

Continues(fillBath(BATH0,HOT), Tk)   

• A direct influence (continuous change) on a numeric-valued fluent by a ground 

durative action started at Ti and ended in Tj over the interval [Tk-1,Tk]: 

NetContiChange(fillBath(BATH0,HOT,Ti,Tj), level(BATH0),Tk-1,Tk) 

• A discrete change on a numeric-valued fluent by a instantaneous action 

DiscreteChange(addBubble(BATH0,Tk), level(BATH0),Tk) 
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Representation of Durative Actions: 

 
(1) Active(As(fillBath(BATH0,HOT,Ti)),Ti) ⇒   

    plug_in(BATH0,Ti-1)  ∧  ¬ tap_on(BATH0,HOT,Ti-1)  ∧  tap_on(BATH0,HOT,Ti) 

 
(2)  Active(Ae(fillBath(BATH0,HOT,Ti)),Tj) ⇒   

tap_on(BATH0,HOT,Tj-1) ∧   plug_in(BATH0,HOT,Tj-1) ∧ ¬ tap_on(BATH0,HOT,Tj)     

 
(3)  Active(Ae(fillBath(BATH0,HOT,Ti)),Tj)   ⇒   Active(As(fillBath(BATH0,HOT,Ti)),Ti)  

         ∧    [ Ti  +  Value(duration(fillBath(BATH0,HOT,Ti)))  = Tj ] 

 

(4)  Active(As(fillBath(BATH0,HOT,Ti)),Ti)  ⇒               

                  [Active(Ae(fillBath(BATH0,HOT,Ti)),Ti+1) ∨ … ∨  Active(Ae(fillBath(BATH0,HOT,Ti)),Tn)]   

 

(5)  Active(Ae(fillBath(BATH0,HOT,Ti)), Tj) ⇒   

[ ∀ Tk  Ti < Tk < Tj  Continues(fillBath(BATH0,HOT), Tk) ] 

 

(6)  Continues(fillBath(BATH0,HOT), Tk)  ⇒    

       [ Valuebefore(level(BATH0),Tk)  <=    Value(capacity(BATH0)) ]  ∧  

[ Valueafter(level(BATH0),Tk)  <=    Value(capacity(BATH0)) ]   

 

(7) ¬ Continues(fillBath(BATH0,HOT), Tk-1)  ∧  Continues(fillBath(BATH0,HOT), Tk)  ⇒    

       [ Valueafter(level(BATH0),Tk-1)  <=    Value(capacity(BATH0)) ]  ∧   

 

(8) ∀ Tk,  Ti  <  Tk  <=  Tj ,     

 Active(As(fillBath(BATH0,HOT,Ti)),Ti)  ⇒    

      [ NetContiChange(fillBath(BATH0,HOT,Ti),level(BATH0),Tk-1,Tk) =  

(Tk –Tk-1)  * Value(flow(BATH0,HOT))  ] 

¬ Active(As(fillBath(BATH0,HOT,Ti)),Ti)  ⇒    

      [ NetContiChange(fillBath(BATH0,HOT,Ti),level(BATH0),Tk-1,Tk) = 0 ] 
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Representation of Constraints on Duration 

 
The “fillBath(BATH0,HOT)” action in the Bathtub domain defined in Example2-1, starts at Ti 

and ends at Tj has follwing constraint on its duration: 

 
(:duration   (at end  (<=  ?duration   (/  (- (capacity  ?b) (level  ?b)) (flow ?b ?t))))                  

is encoded as  

Active(Ae(fillBath(BATH0,HOT,Ti)), Tj) ⇒   

[ Value(duration(fillBath(BATH0,HOT,Ti))) <=  

   (Value(BATH0) – Valuebefore(level(BATH0),Tj)) / Value(flow(BATH0,HOT))  ] 

 

Note that in this case the constraint is time-annotated by “at end”, which means that the 

constraint should be held at the ending time point of the action. Likewise, if it is time-annotated 

by “at start”, the activation of its starting action implies the constraint at the starting point.  

 

Frame Axioms: 

Propositional  Fluents:  
 

       ¬ tap_on(BATH0,HOT,Ti-1)  ∧  tap_on(BATH0,HOT,Ti)  ⇒    

            Active(As(fillBath(BATH0,HOT,Ti)),Ti)   

 

Numeric-Valued Fluents:  “level” of the Bathtub at T3, 

   
Valuebefore(level(BATH0),T3)  =  Valueafter(level(BATH0),T2)  +   

NetContiChange(fillBath (BATH0,HOT,T1,T3), level(BATH0),T2,T3)  +       

NetContiChange(fillBath(BATH0,HOT,T2,T3), level(BATH0),T2,T3)  + 

NetContiChange(fillBath(BATH0,COLD,T1,T3),level(BATH0),T2,T3)+ 

 NetContiChange(fillBath(BATH0,COLD,T2,T3), level(BATH0),T2,T3)   

 

Valueafter(level(BATH0),T3)  =  Valuebefore(level(BATH0),T3)   + 

     DiscreteChange(addBubble(BATH0,T3), level(BATH0),T3) 
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Mutual Exclusivity: 

 

Propositional Fluents:  

   for “tap_on(BATH0,HOT)”,  

 [ turnOn(BATH0,HOT,Ti)  ∨  tapOff(BATH0,HOT,Ti) ]   ∧  

[ ¬ turnOn(BATH0,HOT,Ti)  ∨  ¬ tapOff(BATH0,HOT,Ti) ]    

 

Numeric-Valued Fluents:  

   for the  “fillBath” ,a discretized durative action defined in Example 2-1 and “addBubble” , 

[ ¬ Active(Ae(fillBath(BATH0,HOT,Ti)),Tj)  ∨ ¬ Active(addBubble(BATH0),Tj) ]     

By rule 3 (no moving target rule for numeric-valued fluents), “fillBath” can not finish at 

time Tj at which “addBubble” occurs, since the ending action of “fillBath” refers 

(updates) the value of the level and “addBubble” updates (refers) the value. 

 

 

 
 
 



 121

C.3 Conditional Effect 

This is “Match” domain [FoxLong03], burning a match to make a location light before 
picking up an object in the location.   
 

(:durative-action  burnMatch 

 :parameters (?m – match  ?l – location) 

 :duration (and (< ?duration 5)  (> ?duration 0)) 

 :condition (and (at start (have ?m))  (at start (at ?l))) 

 :effect  (and (when  (at start (dark ?l))   

               (and  (at start (not (dark ?l)))  (at start (light ?l)))) 

   (at start (not (have ?m))) 

   (at start (burning ?m)) 

   (at end (not (burning ?m))) 

   (when  (at start (dark ?l)) 

               (and  (at end (not (light ?l)))  (at end (dark ?l)))) 

) 

 (:action pickUp 

  :parameters (?l – location ?o – object) 

  :precondition  (and  (at ?l)  (onFloor ?o ?l)  (light ?l)) 

  :effect  (and (not (onFloor ?o ?l))  (have ?o)) 

 )  
 

Encoding: 

 
(when  (at start (dark ?l)) (and  (at end (not (light ?l)))  (at end (dark ?l)))) in “burnMatch”  action 

over an interval [Ti,Tj] is encoded as  

 Active(Ae(burnMatch(MATCH0,BASEMENT0,Ti)),Tj)  ⇒  

    [ dark(BASEMENT0,Ti-1)   => ¬ light(BASEMENT0,Tj) ∧  dark(BASEMENT0,Tj) ]    
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Appendix D: Encoding Real-Time Temporal Model 

 

D.1  Bathtub Domain  

This is the PDDL+ Level 5 version corresponding to the Bathtub domain as defined in 

Appendix C. 

Domain Definition: 
 
 

(:action  tapOn 
 :parameters (?b – bath  ?t – tab) 
 :precondition  (and  (plug_in ?b)  (not (tap_on ?b ?t)))    
 :effect   (tap_on ?b ?t) 
) 

 
(:process  fillBath 
 :parameters (?b – bath  ?t  - tab) 
 :precondition (and  (tap_on ?b ?t)  (<= (level ?b)  (capacity ?b))    
 :effect   (increase  (level ?b)  (*  #t  (flow  ?b ?t))) 
) 
 
(:event  flood 
 :parameters (?b - bath) 
 :precondition (and (exists (?t – tap)   (tap_on ?b ?t))   

(>=  (level ?b)  (capacity ?b))    
(dry_floor ?b)) 

 :effect   (not  (dry_floor ?b)) 
) 
 
(:action  addBubble 
 :parameters (?b – bath) 
 :precondition    (and  (not  (bubble_added ?b)) 

(exists (?t – tab)  (tap_on ?b ?t))   
(<=  (level ?b)  (/ (capacity ?b) 2))       

  :effect       (and  (bubble_added ?b) 
(increase  (level ?b)  (/  (capacity ?b) 30)) 

         
) 

 

Assume that BATH0 is an object of bath type; HOT and COLD are objects of tap type. 
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D.2  Encoding in Meta-Level 

( The same notational conventions are used as defined in Appendix 3.1. ) 
 
 
(1) Axioms for “flood” event, 
 
 Active(flood(BATH0),Ti)   ⇔    

[ tap_on(BATH0,HOT,Ti-1)  ∨   tap_on(BATH0,COLD,Ti-1) ]  ∧  

[ Valuebefore(level(BATH0),Ti)    >=   Value(capacity(BATH0)) ]  ∧  

dry_floor(BATH0,Ti-1) 

 

 Active(flood(BATH0),Ti)   ⇒  ¬ dry_floor(BATH0,Ti) 
 

(2) Axioms for  “addBubble” action, 
  
       Active(addBubble(BATH0),Ti)  ⇒    

[ ¬ bubble_added(BATH0,Ti-1) ] ∧  

[ tap_on(BATH0,HOT,Ti-1)  ∨   tap_on(BATH0,COLD,Ti-1) ]  ∧  

  [ Valuebefore(level(BATH0),Ti) <= Value(capacity(BATH0)) / 2  ]  ∧  

[ bubble_added(BATH0,Ti) ]  

 

      Active(addBubble(BATH0),Ti)      ⇒   

[ DiscreteChange(addBubble(BATH0,Ti),level(BATH0),Ti) =  

Value(capacity(BATH0)) / 30 ]   

         
      ¬ Active(addBubble(BATH0),Ti)  ⇒   

[ DiscreteChange(addBubble(BATH0,Ti),level(BATH0),Ti) = 0 ] 

 
(3) Axioms for “fillBath” process, 
 

Active(fillBath(BATH0,HOT),Ti)  ⇔    

[  tap_on(BATH0,HOT,Ti-1)   ∧    

   [ Valueafter(level(BATH0), Ti)  <=  Value(capacity(BATH0)) ] ]  

     ∧  

[  tap_on(BATH0,HOT,Ti)   ∧    

   [ Valuebefore(level(BATH0), Ti)  <=  Value(capacity(BATH0)) ] ] 
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Active(fillBath(BATH0,HOT),Ti)  ⇒   

  [ NetContiChange(fillBath(BATH0,HOT,Ti),level(BATH0),Ti,Ti+1) =  

       (Ti+1 –Ti)  * Value(flow(BATH0,HOT)) ] 

 

¬ Active(fillBath(BATH0,HOT),Ti)  ⇒   

  [ NetContiChange(fillBath(BATH0,HOT,Ti),level(BATH0),Ti,Ti+1) =  0 ] 

 

(4) The axiom for Triggering “flood” event with no time slip: 

[ tap_on(BATH0,HOT,Ti-1)  ∧  dry_floor(BATH0,Ti-1) ∧  

    Valueafter(level(BATH0),Ti-1)    >   Value(capacity(BATH0)) ]  

⇒  [ Valuebefore(level(BATH0),Ti)    >=   Value(capacity(BATH0)) ] 

 

[ tap_on(BATH0,COLD,Ti-1)  ∧  dry_floor(BATH0,Ti-1)  ∧  

[ Valueafter(level(BATH0),Ti-1)    >   Value(capacity(BATH0)) ]   

⇒  [ Valuebefore(level(BATH0),Ti)    >=   Value(capacity(BATH0)) ] 

 

 (5) The axiom for terminating “fillBath” process with no time slip: 

      [ Valueafter(level(BATH0), Ti)  <  Value(capacity(BATH0)) ]  ⇒  

  [ Valuebefore(level(BATH0), Ti+1)  <=  Value(capacity(BATH0)) ]   
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Appendix E: Encoding Interval-Valued Fluents 

 

We define operations on interval-valued fluents and present how the operations can 

be encoded in LCNF forms. 

 
Operations with Intervals [Davis90] [Allen83] 

To reason with intervals, we extend PDDL+ with the following operations among 

intervals and points: 

<IntervalUpdateStmt> =  ( set-I   <FunctionOfIntervalType>  <IntervalExpr> )   

• Assign evaluated <IntervalExpr> to <FunctionOfIntervalType>   

<IntervalExpr>   =  <Interval>  |    

    ( <CompositonOp> <IntervalExpr> <IntervalExpr> ) 
<Interval>   =  <FunctionOfIntervalType>  |  <ConstantInterval> 

<CompositonOp> =   overlap_of   |   join   

(overlap_of  I  J) ≡  { [ Kstart, Kend ] = K  |  KxJIx ∈∩∈∀  }    

if  I is overlapped with J, or contained in J, or vice versa 

      undefined otherwise 

 

      (join  I  J)  ≡  { [ Kstart, Kend ] = K  |     KxJIx ∈∪∈∀  }   

if I is contained in J or overlaps or meets with J, or vice versa 

 undefined otherwise 

 

<IIRelationExpr>  =   ( <RelationOp> <IntervalExpr> <IntervalExpr> ) 
<IIRelationOp> =   before  |  meets  |  overlaps  |  starts  |  during  |  finishes  |    

equal  |  after  |  meet_by  | overlapped_by  |  started_by  |  

contained_by |  finished_by |  contained 

• <IIRelationOp> is Allen’s 13 possible order relations between a pair of 

intervals, except “contained”  

• “contained” is “equal”, “starts”, “during”, or “finishes”   
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<PIRelationExpr> =   ( <PIRelationOp>  <Number> <IntervalExpr> ) 
<PIRelationOp> =   before-pi  |   after-pi  |   contained-pi 

<Number>  =   <ConstNumber> | <FunctionOfNumericlType> 
 

Encoding of Interval Relations and Operations 

First of all, we need to define the identity of interval, Empty Interval (EI), which will be 

used to represent undefined interval value in linear constraints: 

   EI   ≡   [  Istart(EI)  =  Iend(EI)  =  Max  ],    

where, Max is the maximum number representable  

All undefined variables generated during evaluation of interval expression or operation 

is equal to this empty interval. 

The translation of interval relations defined above into linear constraints in 

terms of end points of intervals (and points) is quite straightforward [Davis90], with 

additional care that I or J can be empty interval:  

(before  I   J)     is encoded as        

[ [ Iend  <  Jstart]  ∧  ¬ [ Iend = Max ]   ∧  ¬  [ Jstart  = Max ] ] 

(meets  I   J)    is encoded as        

[ [ Iend  =  Jstart] ∧  ¬ [ Iend = Max ]   ∧  ¬  [ Jstart  = Max ] ] 

 (overlaps  I   J) is encoded as        

[ [ Istart  <  Jstart ]  ∧   [ Jstart  <  Iend ]  ∧  [ Iend  <  Jend]  ] 

 (starts  I   J)      is encoded as       [ [ Istart  =  Jstart ]  ∧  [ Iend  <  Jend]  ] 

 (equals  I   J)81  is encoded as        

[ [ Istart  =  Jstart ]  ∧  [ Iend  =  Jend]  ∧  ¬ [ Iend = Max ]   ∧  ¬  [ Jstart  = Max ]] 

 (during  I   J)    is encoded as       

 [ [ Jstart  <  Istart ]  ∧   [ Istart  <  Iend ]  ∧  [ Iend  <  Jend]  ] 

 (finishes  I   J)   is encoded as      [ [ Jstart  <  Istart ]  ∧   [ Iend  =  Jend]  ] 
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Interval Composition Operations 

Note that I or J can be empty interval. 

(overlap_of  I  J)  =  TI  ≡    

     [ [ Istart(I,Ti)  >= Iend(J,Ti) ]  ∨   [ Istart(J,Ti)  >=  Iend(I,Ti) ]   ⇔   

 [ Istart(TI,Ti)  =  Max  ] ∧   [ Iend(TI,Ti)  = Max ] ]   

 ∧    [ [ Istart(I,Ti)  >=  Istart(J,Ti) ]  ⇔   [ Istart(TI,Ti)  =  Istart(I,Ti)  ] ] 

∧    [ [ Istart(J,Ti)  >  Istart(I,Ti) ]  ⇔   [ Istart(TI,Ti)  =  Istart(J,Ti)  ] ] 

 ∧    [ [ Iend(I,Ti)  <=  Iend(J,Ti) ]  ⇔   [ Iend(TI,Ti)  =  Iend(I,Ti)  ] ] 

∧    [ [ Iend(J,Ti)  <  Iend(I,Ti) ]  ⇔   [ Istart(TI,Ti)  =  Istart(J,Ti)  ] ] 

 

• The 1st conjunct ensures that if I is before or after J, it returns EI(Empty 

Interval). 

• The 2nd and 3rd conjuncts ensure that  the maximum of Istart(I,Ti)  and Istart(J,Ti) 

is   Istart(TI,Ti).   

• The 4th and 5th conjuncts ensure that  the minimum of Iend(I,Ti)  and Iend(J,Ti) is   

Iend(TI,Ti).   

(join  I J)  =  TI  ≡    

       [ [ [ Istart(I,Ti)  > Iend(J,Ti) ] ∧  ¬ [ Istart(I,Ti)  = Max ] ] ∨   

[ [ Istart(J,Ti)  >  Iend(I,Ti) ]  ∧  ¬ [ Istart(J,Ti)  = Max ] ]   ⇔   

[ Istart(TI,Ti)  =  Max  ] ∧   [ Iend(TI,Ti)  = Max ] ]   

 ∧    [ [ Istart(I,Ti)  =  Max  ∧   Iend(I,Ti) = Max ]  ⇔   

    [ Istart(TI,Ti)  =  Istart(J,Ti) ] ∧  [ Iend(TI,Ti)  =  Iend(J,Ti) ] ] 

∧    [ [ Istart(J,Ti)  =  Max  ∧   Iend(J,Ti) = Max ]  ⇔   

    [ Istart(TI,Ti)  =  Istart(I,Ti) ] ∧  [ Iend(TI,Ti)  =  Iend(I,Ti) ] ] 

∧    [ [ Istart(J,Ti)  <  Istart(I,Ti) ]  ⇔   [ Istart(TI,Ti)  =  Istart(J,Ti)  ] ] 

 ∧    [ [ Istart(I,Ti)  <=  Istart(J,Ti) ]  ⇔   [ Istart(TI,Ti)  =  Istart(I,Ti)  ] ] 

                                                                                                                                              
81 The equality of two interval variables with empty value (EI) is defined as false. 
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∧    [ [ Istart(J,Ti)  <  Istart(I,Ti) ]  ⇔   [ Istart(TI,Ti)  =  Istart(J,Ti)  ] ] 

 ∧    [ [ Iend(I,Ti)  >=  Iend(J,Ti) ]  ⇔   [ Iend(TI,Ti)  =  Iend(I,Ti)  ] ] 

∧    [ [ Iend(J,Ti)  >  Iend(I,Ti) ]  ⇔   [ Istart(TI,Ti)  =  Istart(J,Ti)  ] ] 

 

• The 1st conjunct ensures that if I and J are not empty intervals and I is before 

or after J, it returns EI(Empty Interval). 

• The 2nd conjunct ensure that if I is empty interval, TI = J. 

• The 3rd conjunct ensure that if J is empty interval, TI = I.  

• The 4th and 5th conjuncts ensure that  the minimum of Istart(I,Ti)  and Istart(J,Ti) is   

Istart(TI,Ti).   

• The 6th and 7th conjuncts ensure that  the maximum of Iend(I,Ti)  and Iend(J,Ti) is   

Iend(TI,Ti).   

 

Interval Expression: each interval operation introduces an interval variable, on which 

next operation is applied.  For instance, 

  (join   (overlap_of  I1  I2)   (overlap_of  I3  I4)) 

In this interval expression, 3 new intervals are introduced to translate it: the interval, 

TI1, generated by  (overlap_of  I1 I2),  the interval, TI2, generated by (overlap_of  I3 I4), 

and the interval, TI3, generated by (join TI1  TI2).  Using the new variables, overlap_of 

and join are encoded as above. It returns TI3. 

 

Interval Update Operation   

(set-I   ?IF   ?IE)  is encoded as 

Active(a,Ti)    ⇔   [  Istart(?IF,Ti) =  Istart(?IE,Ti)  ]  ∧   [  Iend(IE,Ti)  =  Iend(IE,Ti)  ] 
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[ )(?')(? IFSetEffectaIFSetEffecta ∈∀∈∀ ¬ Active(a,Ti)   ∨   ¬ Active(a’,Ti)  ] 

• The set operations on the same interval fluent at the same time should be 

mutually exclusive. 
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Appendix F: Non-Interference Rules in PDDL+ 

 

Define the sets [FoxLong03] : 

GPre(a)  the set of ground atoms that appear in the precondition 

Add(a) the set of ground atoms that are asserted as positive literals in the 

post-condition 

Del(a)  the set of ground atoms that are asserted as negative literals in the 

post-condition 

L(a)  the set of ground functions that appear as lvalue in a  

R(a)  the set of ground functions that appear as rvalue in a  

L*(a)  the set of ground functions that appear as lvalue in an additive        

assignment in a  

 

 

Non-Interference Rules in PDDL+ 

 

Rule 1:  GPre(a)  ∩  ( Add(b) U Del(b) )  =  GPre(b)  ∩  ( Add(a)  U Del(a) ) ) = φ  

• No moving targets rule for propositional fluent 

Rule 2:  Add(a)  ∩  Del(b) =  Add(b)  ∩   Del(a)  = φ  

Rule 3:  L(a)  ∩  R(b)  =  R(a)  ∩   L(b)  =  φ  

• No moving targets rule for numeric-valued fluents 

Rule 4:  L(a)  ∩  L(b)  ⊆   L*(a)  ∩   L*(b) 
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• It means concurrent actions can only update the same numeric-valued fluents 

if they both do so by additive assignment effects 

• An action with assign and all other actions with assign, increase or decrease 

are in mutex relation 
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