
Responsive Thinwire Visualization of
Large Geographic Datasets

by

Kenneth Been

A dissertation submitted in partial ful�llment
of the requirements for the degree of

Doctor of Philosophy
Department of Computer Science

New York University
September 2002

Approved:
Chee Yap

c Kenneth Been
All Rights Reserved, 2002

Acknowledgments

A special thank you goes to my advisor, Chee Yap, who has been a wonderful
guide and collaborator. I hope to continue working with him, on this and other
projects.

Thanks also to the other members of my thesis committee, Richard Cole,
Dennis Shasha, Arthur Goldberg and Denis Zorin. Their comments and critiques
pushed the dissertation toward its �nal form.

Thanks to Alan Siegel and Richard Cole for inviting me to work with them
on legislative redistricting, which was my �rst exposure to TIGER data.

Thanks to Zilin Du, Yan Koyfman and Josh Harmon, who contributed code
and insight to the project.

Thanks to Kia Makki and Niki Pissinou, who convinced me to go for a Ph.D.
in the �rst place.

And �nally, thank you to my family and near-family, especially Ruth and
Irwin Been and Mary Lynn Miller, for all their loving support and wisdom.

iii

iv

Abstract

This thesis describes a web-based, responsive, zooming and panning visual-
ization system for a full-featured geographic description of the United States.
Current web-based map servers provide, from a visualization standpoint, little
more than one static image per page, with hyperlinks for navigation; continuous
zooming and panning requires locally stored data. Our primary contribution is a
multi-threaded, scalable and responsive client-server architecture that responds
to user requests as naturally and quickly as possible, regardless of network band-
width reliability. This architecture can be generalized for use in other applica-
tions, including non-geographic ones. To this we add a scalable and exible user
interface for navigation of multi-scale geographic data, with intuitive zooming and
panning, pop-up feature labels, and a user controlled tree-hierarchy of windows.
We build software tools and algorithms for translating the U.S. Census Bureau's
TIGER data into a format designed for speedy database retrieval and network
delivery, and for generalizing the data into multiple levels of detail. Because of
anomalies in the TIGER data, this processing requires some human intervention.

v

vi

Contents

Acknowledgments iii

Abstract v

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Thesis Overview . 8
1.3 Terminology . 9

2 Runtime System Architecture 13
2.1 Introduction and Prior Work . 13

2.1.1 Hypertext Transfer Protocol 13
2.1.2 Walkthrough Applications 15
2.1.3 Remote Databases . 16
2.1.4 Foveated Image Visualization 17
2.1.5 The Petra-Flow Framework 18

2.2 Design Constraints . 18
2.2.1 Constraints Related to Problem De�nition 19
2.2.2 Simplifying Constraints . 19
2.2.3 Atomicity Constraints . 20
2.2.4 Java Related Constraint 21

2.3 Thread Architecture . 21
2.3.1 Data Flow . 23
2.3.2 Command Flow . 25
2.3.3 Note on the Event Handler Thread 28

vii

2.3.4 Thread Behaviors . 29
2.3.5 Discussion . 33

2.4 The Priority Queues . 34
2.4.1 The Basic Priority Queue 36
2.4.2 The Renderer Priority Queue 38
2.4.3 The Response Sender Priority Queue 39
2.4.4 Data Provider Priority Queue 43

2.5 Responsiveness . 43
2.5.1 Theoretical Arguments for System Responsiveness 44
2.5.2 Experimental Testing of System Responsiveness 46

2.6 Cache Consistency . 50
2.6.1 Some Flawed Approaches 50
2.6.2 A Correct Approach . 53
2.6.3 Proof of Correctness . 53

2.7 Discard Policy . 56
2.8 Searching the Cache . 58

2.8.1 Requirements . 59
2.8.2 The R-tree . 60
2.8.3 The QR-tree . 61
2.8.4 The QR-tree and Concurrent Access 64
2.8.5 Tree of Trees . 66

3 Preprocessing the Dataset 69
3.1 Related Work . 69
3.2 The TIGER Data . 71

3.2.1 Overview . 71
3.2.2 File Organization . 72
3.2.3 Anomalies . 74

3.3 Merging the Raw Data . 82
3.4 Database Schema . 84

3.4.1 Goals . 84
3.4.2 The Schema . 85
3.4.3 The Intermediate Database 86

3.5 Processing the TIGER Files . 89
3.5.1 Goals and Obstacles . 89
3.5.2 Deducing the Polygon Containment Hierarchy 90
3.5.3 Processing the County Borders 93
3.5.4 Temporary Data . 94

viii

3.5.5 Protocol for Producing S-Level 0 95
3.6 Generalization and Building the LOD Hierarchy 96

3.6.1 Manual Generalization . 97
3.6.2 Automatic Generalization 98
3.6.3 Grouping the Counties . 99
3.6.4 Protocol for Producing S-Level i, i > 0 102

3.7 Producing the Blobs . 103

4 Visualization Interface 105
4.1 Related Work . 105

4.1.1 Multi-Scale Navigation . 105
4.1.2 Labeling . 106

4.2 Our Windowing User Interface . 108
4.2.1 Anatomy of a Window . 108
4.2.2 Relationships Between Windows 113
4.2.3 Global Options . 114

5 Conclusions and Future Work 117
5.1 Performance Improvements . 118
5.2 Visualization Interface . 120
5.3 Other Versions . 121

5.3.1 HTTP Tunneling . 121
5.3.2 Cell Phones and PDAs . 122
5.3.3 Responsive Client-Server Kernel 123

5.4 Dataset . 123

Appendix 125

Bibliography 128

ix

x

List of Figures

2.1 Runtime System Data Flow Diagram 23
2.2 Runtime System Command Flow Diagram 25
2.3 The Basic Priority Queue . 36
2.4 A Heap on the Renderer Priority Queue 40
2.5 The Response Sender Priority Queue 41
2.6 Polygon rendering time vs. number of points in polygon and de-

scendants . 49
2.7 Sample LOD to Window Relationship 57
2.8 Sample Preserve Ranges . 58
2.9 QR-tree Node with Children . 61

3.1 TIGER Data Diagram . 73
3.2 Statue of Liberty National Monument 75
3.3 Prince William County, Virginia. Contains a hole, islands inside

the hole, and a strip dividing the hole. 77
3.4 Manassas Park, Virginia. Fits inside the upper right portion of

the hole in Prince William, straddling the strip across that hole. . 78
3.5 Manassas, Virginia. Fits inside the hole in Prince William, and

the hole in the middle of Manassas can just barely be seen. 79
3.6 Closeup of the islands in the middle of Prince William County,

Virginia. 80
3.7 Closeup of Manassas, Virginia. The hole in the middle, and the

two outlines next ot it, match the two islands in Prince William
County. 81

3.8 Before and After Merging . 83
3.9 Cluster and Family Diagram . 91
3.10 Maryland, Area Acquiring Algorithms 1 (left) and 2 100
3.11 Maryland, Area Acquiring Algorithms 3 (left) and 4 100
3.12 Maryland, Area Acquiring Algorithms 5 (left) and 6 101

xi

3.13 Line Simpli�cation Anomalies: (a) child polygon outside its par-
ent, (b) line crossing itself. 103

4.1 User Session 1 . 109
4.2 User Session 2 . 110
4.3 User Session 3 . 111
4.4 Client with Place Editor . 116

5.1 Client-Server Kernel . 123

xii

List of Tables

2.1 Times in seconds between clicking the �rst jump button and sys-
tem coming to rest, as measured by human with a stopwatch. . . 48

3.1 Blob Database Statistics . 86
3.2 Numbers of geographic objects in intermediate database, after

merging, at each S-Level . 88
3.3 Database Sizes, in Mb . 88
3.4 Generalization Characteristics of Each S-Level 98

xiii

xiv

Chapter 1

Introduction

1.1 Background and Motivation

In the mid 1980s Silicon Graphics Inc. introduced workstations with sophisti-
cated graphics hardware for between $40,000 and $100,000; in the late 1990s
advanced graphics capabilities became available on most common PCs. Card,
Mackinlay and Shneiderman [9] identi�ed these two moments as the beginning
and ending points of the \foundational period" for visualization research. \The
path is now clear", they say, \for information visualization to be used in mass
market products." ([9] p. xiii) The original motivation for the current research
was to bring the bene�ts of quality visualization to a particular \mass market"
activity: browsing road maps on the Internet.

In [9], visualization is de�ned as \the use of computer-supported, interactive,
visual representations of data to amplify cognition", where cognition is de�ned
as \the acquisition or use of knowledge". Visualization is roughly divided into
scienti�c visualization and information visualization. Scienti�c visualization [56]
is concerned with data that is based in physical reality. Examples include the vi-
sualization of uid ow through a pipe, or the structure of a molecule. Such data
usually has a natural geometric representation. Information visualization, on the
other hand, is concerned with abstract data that is not physically based and not
inherently geometrical, such as �nancial data or collections of documents. In this
case, there is the challenge of designing a clear and meaningful spatial represen-
tation for the non-spatial abstractions; a problem that does not arise in scienti�c
visualization. The geographic data that is the concern of this thesis falls largely
into the scienti�c visualization category, since the objects are mapped from the
surface of the earth, but it also contains abstract semantic data, such as feature

1

names (\Hudson River") and feature types (\Primary Highway With Limited
Access") that is not inherently geometrical, giving the problem some aspects
of information visualization. We are primarily concerned with those aspects of
visualization that are common to both scienti�c and information visualization:
producing quality interactive visual representations of data. The quote given
above, about information visualization being used in mass market products, cer-
tainly applies just as well to scienti�c and geographic visualization.

The most obscure part of the visualization de�nition above is probably the
phrase \amplify cognition". Interestingly, visualization is sometimes referred to
as \externalization" (in [90], for example), the idea being that a visual represen-
tation of some piece of knowledge is placed in the external world (external to the
mind), where it can be used more easily. Consider the problem of multiplying
two numbers of two or more digits each. Most of us �nd it easiest to perform the
multiplication using a pencil and paper, rather than doing it in our heads. The
reason is not that the task involves any particularly diÆcult sub-tasks|in one
common method learned by many schoolchildren the only sub-tasks required are
the multiplication of two single-digit numbers and the addition of two single-digit
numbers. The problem, rather, is that our short-term memories are not good at
saving the partial results until such time as they are needed. The pencil and pa-
per augment our cognitive abilities speci�cally by increasing the capacity of our
short-term memories. Notice that the pencil and paper example �ts our de�ni-
tion of visualization in every respect except that it is not \computer-supported".
Clearly, computers provide us with many more opportunities to amplify cogni-
tion.

There has been much interest in recent years in geographic visualization, or
geovisualization, and even virtual reality interfaces to geographic data. This
includes the ViRGIS system of Pajarola, et al. [65, 67, 64, 63, 87], and the Geo-
VISTA project directed by MacEachren [52, 85, 53, 86]. These projects strive
to let the user smoothly navigate around a visual representation of a given geo-
graphic region. The smooth navigation is in service of the ultimate goal, which
is still to amplify cognition: MacEachren says that geovisualization \is about the
use of visual geospatial displays to explore data and through that exploration
to generate hypotheses, develop problem solutions, and construct knowledge"
[52]. (By \explore" he does not mean exclusively navigation, but it is certainly
one of the methods of exploration. Other explorations might include interactive
queries of a database for population data, etc.) A related problem to geovisu-
alization is the one of architectural walkthroughs; see the work of Funkhouser,
et al. [32, 31, 29, 33, 30]. The primary di�erences between geovisualization and

2

walkthrough are that (1) the walkthrough data is 3D, as opposed to the 2D or
2.5D geographic data, and (2) the walkthrough data is usually assumed to be
purely geometric. The existence of abstract, non-geometric aspects of geographic
data explain the paradoxical situation where the 2D problem is harder than the
equivalent 3D problem. Nonetheless, the visualization goals in geovisualization
and walkthroughs are similar in many ways.

Consider, for a moment, implementation. There is an assumption, whether
explicit or implicit, in the geovisualization and walkthrough literature, that the
visualization is composed of a sequence of frames|a model taken from �lm and
video. For performance, then, they seek to guarantee a minimum frame rate.
Funkhouser [29] explicitly targets a frame rate of ten frames per second. What
this means is that there is another assumption, whether explicit or implicit, of a
minimum bandwidth separating the data from the rendering engine. When data
is stored locally, this would normally be the transfer rate between secondary
memory and main memory. But even when the data must be retrieved from
across a network, such as in the work on remote walkthroughs by Schmalstieg
[78, 77, 79, 43], Teler and Lischinski [88], and Zach and Karner [107], a minimum
bandwidth is assumed, though it is allowed to be much lower than in walkthrough
of locally stored data.

In this thesis we are concerned with the visualization of data that is stored
across a thinwire, a term that we use to describe bandwidth that is not only
low but also unpredictable|it might drop to zero temporarily, if the network
becomes disconnected. Forman [26, 27] describes such a bandwidth as \variable
and volatile". In a thinwire setting, we cannot assume a minimum bandwidth.
Normally we think of the thinwire as the Internet, and in today's world, in which
many people connect to the Internet with cell phones and PDAs over wireless
networks, network connections are as volatile as ever [28]. Techniques developed
for walkthroughs, such as multiresolution modeling [41], progressive transmission
[44, 79, 66, 72], prefetching [36, 46, 47, 19, 15, 68], caching [68, 15], visibility
culling [89, 107], and others [18, 54], are not suÆcient in a thinwire environment,
though they may still be useful. In this environment, we need to consider respon-
siveness; but before discussing responsiveness in detail, we �rst consider some
general issues of interactivity and visualization.

Card, et al. [9], discuss the question, \How fast does interaction have to be?"
They delineate three levels of interaction: the 0.1 second level, the 1 second level,
and the 10 second level. Two events that occur within 0.1 second of each other
\fuse into a single percept". This is the speed that is necessary for the perception
of cause and e�ect relationships|if a button on screen changes state within 0.1

3

second after being clicked, then we perceive that the click caused the change of
state. (Note that perceiving a relationship is more immediate than guessing or
deducing one.) The illusion of animation breaks down if each frame lasts more
than 0.1 second|recall Funkhouser's target frame rate of ten frames per second.
The 1 second level is the pace of human dialogue, the time for an unprepared
response.

If a speaker pauses for more than about a second, the listener feels
compelled to say \uh-huh" or nod to assure the speaker the listener's
end of the communication channel is intact. If the speaker cannot
think of what to say for more than about a second, the speaker will
say \ah" or otherwise indicate that his or her end of the channel is
still working. [9]

The 10 second level, which is really a range of 5{30 seconds, represents the time
needed for a \minimal unit of cognitive work". Examples include selecting and
modifying a small section of text on the screen, or making a routine move in chess
(not one that requires lengthy study of the board).

This has implications for our geographic visualization system. Since we are
in a thinwire environment, we do not have the option of giving the user all the
data they need at a rate that is high enough for a useful animation or video-like
display. However, the primary thesis of this dissertation is that we can still build
a system that will provide the user with a high quality visualization experience.
What must be the nature of such a system? First, if it is possible that a response
will take more than a second, there should be some indicator on the display
that lets the user know that the system is working on the response, and will be
answering it shortly. This is equivalent to a speaker saying \ah" when having
to pause for more than a second to think about what to say. Second, consider
another human dialogue analogy. Suppose A asks B a question, but before B
�nishes answering, A interrupts with a di�erent, more urgent question. Assuming
A asks the second question politely, B will normally go ahead and answer the
second question �rst, and then maybe return to answering the �rst question,
if the information is still relevant. Similarly, our visualization system, which
assumes that all users are polite, should always give highest priority to answering
the most recent requests. Third, whenever the user makes an input action with
the mouse, we must ensure that the action is recognized and acknowledged as
soon as possible. The user should ideally perceive the acknowledgment within 0.1
seconds of making the action, and this should be the case no matter how busy
the system is with handling previous input actions. (In earlier versions of our

4

system we found that even delays in acknowledging mouse drags of as little as
half second or so were quite disorienting.) These last two issues lead us to the
question of responsiveness.

As Forman [27] points out, \scaling applications to �t resource constraints
is an old problem". If an application is scaled to a fast system, by providing
capabilities that a fast system can handle, it will not have good response times
on slower systems; if it is scaled to a slower system, providing limited capabilities,
it will not be used to its full potential on faster systems. \Traditionally," he says,
\programmers have managed this balance, often unawares, by static sizing: they
scale the amount of processing their application requires based on its response
time on a speci�c platform, typically their own."

The obvious incremental improvement to static sizing is dynamic sizing, in
which applications are written to be able to adjust their service levels to match
the current environment [27, 26]. This is the idea behind \quality of service"
negotiation, in which a client and server undergo a negotiation protocol to decide
what level of service can be supported [14, 71]. The problem with this, as Forman
notes [27], is that it requires

(1) applications capable of multiple service levels, (2) a predictive
model of the response time/workload at each service level, (3) a mech-
anism to sense the current resources of the environment for selecting
a service level, (4) optionally, the capability to make resource reserva-
tions, which may have to be revoked later, (5) the capability to moni-
tor an ongoing operation to detect early that it will not meet its objec-
tive due to either changes in the environmental resources/reservations
or errors in the performance model, and (6) a mechanism to cancel
and renegotiate an operation at a di�erent service level, preferably
not throwing away work that has already been accomplished.

Furthermore, dynamic sizing breaks down when bandwidth is highly volatile,
because the bandwidth measurement might already be out of date by the time
the service request is made. What we really need are systems that function in
volatile and unpredictable resource environments, such as thinwire connections.
We characterize such systems as responsive.

In this thesis, responsiveness refers to an intrinsic property of an application
itself, not of the application's performance under a particular condition (see also
[105]). An application that gives good response times under high bandwidth
conditions would only be considered responsive if it had the capability built in
to also give good response times during low bandwidth times. Of course, if

5

bandwidth temporarily drops to zero we do not expect the system to generate new
data, but it should at least not freeze, and should continue to provide whatever
useful responses that it can. In that case the responses themselves would not be
as good, but the point is that the system should \feel" responsive, even when not
every request can immediately be satis�ed. Responsiveness implies the ability
to be exible and accommodate the user's whims and mind changes, so that the
most recent request should take priority over older unsatis�ed requests. Forman
[26, 27] identi�ed four principal techniques, or primitive elements, for providing
responsiveness in a volatile resource environment:

Incremental results and feedback before completion Users make new
requests based on partial responses to old requests.

Concurrency Multiple tasks operate asynchronously, so that one slow task
does not hold up all the rest.

Dynamic prioritization Outstanding tasks can have their priorities changed
based on more recent user actions.

Cancellation Outstanding tasks may be canceled if they are made unnecessary
or irrelevant by more recent user actions.

Notice that three of these primitives can be directly mapped into our human dia-
logue analogy: feedback before completion corresponds to a listener interrupting
with a new question before a previous answer is �nished, dynamic prioritization
corresponds to a speaker accepting the (polite) interruption and answering the
most recent question �rst, and cancellation corresponds to the speaker dropping
the response to an old question if newer questions have made it no longer rele-
vant. The system that will be described in chapter 2 makes use of each of these
techniques in a way that is specially tailored to thinwire geographic visualization.

One last issue that must be faced by any large scale geographic visualization
project is the largeness of datasets. Since secondary storage devices are now
available that are larger than most geographic datasets, the physical size of the
dataset is not itself an issue, but it is indirectly an issue because (1) we must
devise storage and indexing schemes that allow queries to be performed quickly,
and (2) we must provide a visualization interface that allows a user to navigate
data at a very large range of scales|in other words, be able to see details, without
losing context.

In their system for spatial data management on the Netherlands Cadastre,
van Oosterom and Lemmen [99] are working with a database of 50 GB (and

6

growing). They use techniques and data structures developed in [93, 102, 100,
76, 94, 96, 97, 95, 98] for storing and manipulating data at a very large range of
scales in a single dataset, using an object-relational DBMS. However, that system
does not include the zooming/panning visualization interface that we seek. Our
dataset is more modest, but our visualization goals have higher performance
requirements. The raw data that we download from the US Census Bureau
requires 3.8 GB of disk space, although after preprocessing it only requires 1.2
GB in the database. In both of those formats the data is compressed. While
this may not be large in an absolute sense, it is large for a thinwire geographic
visualization system. By comparison, the system described in [85] saw signi�cant
performance deterioration when the United States was viewed at only the county
level; the walkthrough system of Shou, et al. [81], for a \very large virtual
environment", required only 200 MB of disk storage.

Equally important, our data is conceptually large: from an overview of the en-
tire contiguous continental United States (48 states plus the District of Columbia),
down to street level detail. In discussing the overview + detail interface, in which
one window shows an overview of the data while a second shows details of one
small portion of it, Card, et al. [9], point out that \typical zoom factors in papers
on overview + detail strategies are 5{15", but intermediate views can be intro-
duced \to support zoom factors of 100 or 1000". Our data set requires a zoom
factor of almost 10,000 from one extreme to the other.

To handle this large zoom factor, we need a level of detail, or LOD, hierarchy,
so that the amount of details shown can be adjusted to the current zoom level.
When we are zoomed out the screen would be much too crowded if all of the
details were shown. This introduces the problem of map generalization, which is
the creation of a coarse map out of a detailed map. There are several primitive
methods used in generalization; the two that we use are object deletion, in which
small or unimportant objects are removed from the map, and line simpli�cation,
in which the number of points used to describe a polygonal line is reduced. Other
methods that we do not use include replacing a graphical representation with a
symbol, and replacing a polygon with a line or point, as might be done with a
river or pond, respectively. In cartography, generalization tends to be a highly
subjective operation [104], which distinguishes it from the walkthrough domain,
where the purely geometric data can often be generalized automatically.

7

1.2 Thesis Overview

The contributions of this work are as follows. We have designed a client-server
system that is highly responsive in a thinwire setting; the primary components
of this system as relates to responsiveness are a multi-threaded architecture and
a sophisticated form of priority queue. We have developed data processing tech-
niques that allow us to transform raw geographic data into an optimized format
that allows fast query performance at runtime. We have designed a exible, scal-
able user interface that allows a user to navigate through an extremely large data
space|one having a maximum zoom factor of almost 10,000|without losing
context or \getting lost". We have combined all of these techniques together to
successfully build a responsive thinwire visualization system for the contiguous
continental United States (48 states plus the District of Columbia). As far as we
know, this is the �rst web-based visualization system to provide smooth zooming
and panning for anywhere near such a large dataset and high zoom factor, and
the �rst web based visualization of any size and any kind to incorporate such a
high degree of responsiveness. As of this writing, a demo is available on the web
[61].

Chapter 2 covers the techniques used in the runtime system to make the sys-
tem responsive|a multi-threaded client-server architecture, a sophisticated form
of priority queue, and others. We argue that under some reasonable simplifying
assumptions the system is in some sense maximally responsive. We also prove
the correctness of our data exchange and cache consistency protocols, which is
not obvious because of the reordering and canceling of tasks.

Chapter 3 describes how the data is preprocessed into a format that can meet
the performance demands of the runtime system. This is a more diÆcult problem
than it may seem, owing primarily to the many irregularities that are found in
the raw data. Such diÆculty is not unusual; similar problems were encountered
by Funkhouser [33] and Kernighan and Van Wyk [45] in processing architectural
data. In addition to translating the data, chapter 3 also covers generalization.
We have experimented with doing manual generalization, to produce high quality
maps, but because of the high amount of labor needed for manual generalization,
we have instead developed a largely automatic process.

Chapter 4 describes our visualization interface, which provides intuitive and
convenient tools both for data exploration and keeping relevant information vis-
ible as context for the exploration. We employ a novel system of multiple linked
windows, which gives the users great exibility for navigation, and is also scalable
enough to easily handle our large zoom factors.

8

1.3 Terminology

For convenient access, we list here, in alphabetical order, a number of terms that
are used in various parts of the thesis, and give brief descriptions.

blob A list of objects, that have compressed into a byte array. The name comes
from the database notion of binary large object, although in the database
the blobs are stored as simple byte arrays|we do not use PostgreSQL's
large object interface. The blobs are created in the preprocessing phase,
and never changed.

blob id Each blob is given a unique id number during the preprocessing step.
These are used by the server to avoid sending duplicate information to the
client.

cache The temporary store of geographic objects in memory on the client side.

cache copy This isn't really a copy; it is a temporary store, in memory on the
server, of the blob ids of the blobs whose contents are currently in the cache.

child polygon In the polygon containment hierarchy, a polygon that is con-
tained within another parent polygon.

data/commands Later, in the description of how information and ows through
the system, we will distinguish between the ow of data and the ow of com-
mands. This is done mainly for clarity of explanation, and the distinction
is somewhat arbitrary. Both data and commands are encapsulated in tasks.
As \data", we count tasks that are directly involved in passing the content
(what the user wants to see) from the server side database to the client
side windows. This includes objects, blobs, blob ids, packages, ranges (as
requests), and mouse events. As \command", we count tasks that are for a
higher level control of system behavior; for example, the add-window com-
mand is passed through the system to inform all threads that the user has
added a new window. The full list of commands will be given in section
2.2.

database The permanent store of geographic objects on the server side.

LOD Level of detail. This is a somewhat general term; we also de�ne and use
the more speci�c terms pLOD and S-Level.

9

MBR Minimum bounding rectangle.

merging In the preprocessing phase, combining two or more objects into one.
See section 3.3.

object A geographic feature: polygon, line or landmark.

package Like a blob, a package is a list of objects. Packages di�er from blobs
in that the objects are not compressed; the objects are stored in a queue
rather than an array; and packages are created at runtime on the client
side, out of objects that are pulled out from the cache because their ranges
intersect a range request.

parent polygon In the polygon containment hierarchy, a polygon that has an-
other child polygon completely inside it (i.e., the parent polygon has a
\hole").

pLOD Pixel level of detail. This is a kind of scale, mapping real world coordi-
nates to screen coordinates, in meters per pixel.

polygon containment hierarchy In the data, some polygons are contained
within others, forming a hierarchy of parent/child relationships|a forest.
This information needs to be available when the polygons are rendered to
the screen, so that they will be rendered in the proper order (parent �rst).

preserve range When the cache and cache copy are pruned, all elements that
do not intersect with the preserve range are removed.

priority queue We create several instances of a sophisticated form of priority
queue to perform two functions: (1) coordinate inter-thread communica-
tion, and (2) order the tasks according to priority. Several of the threads
get their input tasks from priority queues. Of those that don't, two get
their tasks from the network (or thinwire), and one, the GUI event handler
thread, gets its input tasks from a simple queue. The event handler and
its input queue are part of the Java runtime environment, so we do not
have the option to replace them with a di�erent queuing approach. When
there is no possibility of confusion, we sometimes refer to a priority queue
as simply \queue".

prune To keep the cache from getting too big, the client will occasionally initiate
the prune process, by which items that are deemed to be superuous are
removed from the cache and the cache copy.

10

range A rectangular range of latitude/longitude coordinates. Ranges are used
for specifying requests for data, and for describing the \location" of a ge-
ometric feature. Also sometimes referred to as bounding box or minimum
bounding rectangle (MBR).

request A request is a pair, (range; level), that is sent to the server, indicating
that the client wants to receive all objects that intersect the given range,
at the given level of detail. Also sometimes referred to as range request.

response The response that the server returns for a range request may include
zero or more blobs, and should not include any blob that the client already
has received (and not removed from its cache).

query The query that the server sends to the database in response to a range
request. Takes the form \select all blobs from the given level of detail whose
ranges intersect the query range and whose blob ids are not in a given set".

S-Level Simpli�cation level. A range of pLODs to which we associate a single set
of geographic objects in the database. When users zoom from one pLOD
to another within the same S-Level, they see the same objects, but at a
di�erent magni�cation; when they zoom to a pLOD in a di�erent S-Level,
they will see a di�erent set of objects.

task A task is a record that contains information that functions as an instruction
to a thread to perform some action. The task may also contain data.
Threads communicate with each other by passing tasks. We also sometimes
use the term \task" to refer to the action that a thread does, as per the
instructional information in a task record.

thinwire Normally this is the Internet; more generally, it can be any commu-
nication link between the client and server portions of the system, and is
assumed to have unreliable bandwidth. Messages sent from one entity to
another across the thinwire are assumed to arrive in �rst-in �rst-out order.

thread The system uses several long-lived, lightweight threads on both the client
and server; these are the focal points of system behavior. The client side
threads are created when the client is started, and live until the client
�nishes. When a client requests a connection with the server, a master
thread on the server side starts three new threads that are dedicated to
this client. These threads live until the client disconnects.

11

top-level polygon A polygon that has no parent in the polygon containment
hierarchy

window The user views the geographic data through a number of windows. The
windows are organized as a tree; the relationship between parent and child
windows is described in chapter 4.

12

Chapter 2

Runtime System Architecture

In broad outline, we want a system for visualizing a large geographic dataset
that does not reside on the user's computer. The user should have the capability
to open multiple windows for di�erent viewpoints on the underlying data. The
system must have zooming and panning capabilities, and has responsiveness as
a primary goal. This is a very open-ended speci�cation, seemingly allowing an
unlimited number of possible solutions. We start this chapter by looking at how
others have tackled similar problems. Then, in sections 2.2, 2.3, and 2.4 we'll
describe in detail the architecture that we have designed. Section 2.5 contains a
discussion of the responsiveness that is built in to the architecture. And the last
three sections cover the client and server side caches: how they work, and why
they remain consistent.

2.1 Introduction and Prior Work

We are interested in the general class of interactive client-server situations wherein
a user at the client end makes multiple requests and a server replies with responses
of some form. There may be zero or more responses to each request. The goal
is always responsiveness. We do not consider streaming media, because that is a
non-interactive paradigm.

2.1.1 Hypertext Transfer Protocol

HTTP, the Hypertext Transfer Protocol, is the nearly ubiquitous protocol used
for common web browsing. Under this protocol, a client requests web resources
(HTML pages, images, etc.) and the server returns the requested resources.

13

HTTP/1.0 [6] encapsulates the HTTP functionality generally in use on the web
going back to 1990, though it was never an oÆcial standard. In this version of
the protocol, each request/response transaction requires its own TCP connection.
There is no limit on how many concurrent connections a browser might have open
to a server, and the order in which responses to concurrent connections arrive
is not speci�ed. This approach made some sense in the early days of the web
when most pages were simple HTML text, but as the web matured pages became
�lled with multiple images and other resources, and the overhead of starting
a new connection for each resource request became a serious problem for both
perceived responsiveness and web traÆc [84].

As an ad hoc �x for some of these problems, many HTTP implementations
allow persistent (or \keep-alive") connections, which are not closed after a re-
quest/response transaction, so that multiple transactions can take place in se-
quence without opening a new connection. The connection opening overhead is
reduced, but parallelism between connections can also be lost, which raises the
issue of how many connections to open. The Mozilla Pipelining FAQ [62] briey
discusses this and other issues, although in the context of HTTP/1.1.

To answer some of the above problems, HTTP/1.1 was proposed as a for-
mal standard [24]. For our purposes, the relevant changes in HTTP/1.1 are that
persistent connections are now the default behavior, and \pipelining" of requests
and responses on a connection is allowed. With pipelining, multiple requests can
be sent on a connection without waiting for each response. The responses must
be returned in the same order that the requests were received in. Clients are re-
quested to not open more than two simultaneous connections to the same server.
The overhead and ineÆciency of opening, starting up, and closing TCP connec-
tions is reduced, as compared to HTTP/1.0, but without as much parallelism of
multiple connections open simultaneously. Nielsen, et al. [60] ran some tests on
HTTP/1.0, HTTP/1.1 without pipelining, and HTTP/1.1 with pipelining. The
number of simultaneous open connections was limited to six with HTTP/1.0 and
one with HTTP/1.1. They found that HTTP/1.1, with or without pipelining,
reduced the number of bytes and packets transmitted, but for response latency,
HTTP/1.0 actually outperformed HTTP/1.1 without pipelining. HTTP/1.1 with
pipelining gave the best performance for all three measures.

Some consideration was given to a more advanced protocol, called \HTTP-
NG" (for \next generation") [59]. An early draft proposal for HTTP-NG con-
tained the option for a client to cancel a request [83], but this does not seem to
have made it into the later drafts. In any case, for various reasons, including a
feeling that it was \too early" and people \were just getting used to HTTP/1.1",

14

work on HTTP-NG is no longer being carried out [103]. It appears that canceling
and reordering requests will not be part of HTTP for the foreseeable future.

2.1.2 Walkthrough Applications

Architectural walkthrough applications tend to be governed by a video-style
\frame rate" paradigm. In the approach of Funkhouser, et al. [32, 29, 33, 30],
functional operations are grouped into pipeline stages, with each stage imple-
mented by a thread. The exible implementation allows the grouping of opera-
tions into stages to be speci�ed by the user, so di�erent groupings can easily be
tested. The functional operations are User Interface (U), Visibility Determination
(V), Detail Elision (D), Rendering Operations (R), Lookahead Determination and
Cache Management (M), and Database Input/Output Operations (I). The order
of operations is predetermined, but the grouping can be speci�ed. The pipeline
begins with U and ends with R, and in between is split into two forks, VD and
MI. So example groupings of the operations on the \lower" fork are (UV)(DR)
and (UVD)(R). Each thread may run on a separate processor, but the data is
assumed to be stored locally, so there are no client-server considerations. The
threads communicate with each other using simple queues; there is no attempt to
cancel or reorder requests, and it is assumed that all requests are fully answered.
The goal, then, is to make the pipeline fast enough so that a given frame rate can
be maintained. This approach can clearly not be used when we have thinwire
considerations.

Schmalstieg and Gervautz considered the problem of walkthrough with remote
data (i.e., over a thinwire) [78, 77]. They use a system architecture that is
super�cially somewhat similar to ours. The client has a network manager, a
database manager, and a manager for rendering and the user interface; the server
has a connection manager and a database manager. User requests are captured
by the UI manager, passed to the client-side database manager which decides if
the request needs to be passed to the server (if the data is not in the local cache).
Requests that must go to the server are passed to the network manager, across the
network to the connection manager, and �nally to the database manager, which
�nds the data and sends it back along the same path to the client rendering
manager. Apparently there is no option to cancel or reorder requests, although
the connection manager on the server side contains a priority queue, whose use
is not explained.

15

2.1.3 Remote Databases

In the ViRGIS (Virtual Reality GIS) and ViRXIS (Virtual Reality based Infor-
mation Systems) projects [65, 67, 63, 87], which aim for a virtual reality interface
to a GIS or other information system, the client-server communication appears to
consist simply of queries on a remote database. The server does contain a thread
(or process) apart from the DBMS for receiving the requests and converting them
into queries, but there is no mention of it doing any \smart" managing of the
requests; it simply passes them to the DBMS. There is in general no special con-
sideration given to the slowness of the network, though they say that the system
could run on a wide-area network. (Their implementation was on a local-area
network.)

Two other projects designed architectures for eÆcient prefetching from remote
databases. In the system of Gerlhof and Kemper [36] the server has two threads
and two sockets for each client: one socket/thread for demand requests, and one
socket/thread for prefetch requests. The two types of requests are given equal
priority. The client has two sockets, a demand socket and a prefetch socket, for
connecting to the analogous socket at the server, and three threads: Application,
Prepager, Receiver. The Prepager writes prefetch requests to the prefetch socket,
and the Receiver reads the prefetched pages on the same socket. The Application
thread both writes requests and reads responses on the demand socket. Prefetch
requests can be pipelined, and the server must return the prefetch pages in the
same order that they are requested. Requests cannot be canceled. The Appli-
cation thread blocks if the page it wants to access is not available yet. In this
situation, there are two possibilities: either a prefetch request has already been
sent for that page, or not. In the �rst case the Application thread simply blocks,
and when that page comes back to the Receiver, the Receiver will unblock the Ap-
plication thread and cede control to it. In the second case the Application thread
sends a demand request, and waits for the response. While the application thread
is blocked, the system cannot respond to the user, so system responsiveness is
dependent on the quality of the prefetching technique.

In Knaa's system for prefetching from a remote database [46, 47], the client
has an App Thread, a Prefetch Thread, zero or more Support Threads, and
a Flush Thread. Each thread has one associated socket for connecting to the
server, presumably by a standard database connection. (It's not clear if each
Support Thread has its own socket, or if there is one socket for all the Support
Threads to share.) In addition to its bu�er pool, the client keeps a prefetch
list, which identi�es pages that have been prefetch requested but are not in the
bu�er pool yet (i.e., have not been received yet). The App Thread is the main

16

application thread, and has the highest priority. When it needs a page that
is not in the bu�er pool or the prefetch list, it sends a demand request to the
server, and waits for the response. The Prefetch Thread has medium priority. It
checks which objects the app thread is processing and determines which pages
should be prefetched. If more than one page should be prefetched simultaneously,
it starts one or more Support Threads, and each Support Thread requests one
prefetch page from the server. Support Threads have lowest priority. The Flush
thread ushes dirty pages to server. The server is not multi-threaded; it performs
each request sequentially. Multi-threading the server \would further improve the
whole systems performance and is part of future work". As with the Gerlhof
and Kemper approach, the App Thread blocks when it does not have a page it
needs, so system responsiveness is dependent on the quality of the prefetching
technique.

2.1.4 Foveated Image Visualization

Chang, Yap and Yen [12] designed a client-server system for visualization of
very large \multi-foveated" images using wavelet techniques. The client requests
various pieces, at various resolutions, of an underlying image that is too large to
view at full resolution all at once (and too large to �t into main memory). The
server has only one thread, and simply responds to every request in the order that
it is received. The client has three threads: network, display and manager. The
network thread handles all communication with the server: sending requests and
receiving responses. The display thread captures user input and handles display
output. The manager thread is the \brain" of the program; among other things, it
translates user input into requests for the network thread (and hence the server),
and noti�es the display thread when new data comes in from the server. There
is always at least lowest resolution data available for any part of the underlying
image, so the display thread can always supply some kind of response to the user,
no matter how slow the server or network is, a crucial property for responsiveness.
However, there is no capability for canceling or reordering requests; every request
is handled in the order that it is received, even though this might not be the user
preference.

Yap and Yen [106] later improved on the above architecture. In the improved
client, the network thread is split into two threads, one for reading and one for
writing; the display thread is split into two threads, one for user input and one for
display output; and the manager thread is eliminated, its responsibilities divided
among the four new threads. The server was not changed. This version allows

17

pipelining of requests, both at the network and at the user input stage. In other
words, multiple requests can be sent to the server without waiting for each re-
sponse, similar to pipelining under HTTP. And similar to HTTP, the server must
still respond to each request in order. At the user input stage, multiple mouse
motions might be captured, and minimally acknowledged, without the delay of
updating the requested parts of the image, thus improving perceived responsive-
ness. This architecture allows some canceling of requests, by the network writer
thread and the user input thread, if they can determine that the request is not
needed, for whatever reason. There is still no reordering of requests, and every
request that gets sent to the server is handled fully.

2.1.5 The Petra-Flow Framework

Petra-Flow [26] is a general framework for providing responsive behavior in the
face of variable and volatile resource and service availability|precisely the en-
vironment we have with thinwire visualization. In this framework, a thread is
spawned for each task, and the tasks are related to each other by a dynamic
dependence graph. Task priorities are explicitly changed using the operating
system facilities for setting thread priorities, and implicitly changed when the
dependence graph changes. The dependence graph is changed when the user
invokes a new task, or an old task completes. If a user action causes a task to
become obselete|e.g., in a web browser, requesting a new page before the old
page is �nished loading|then whole branches of the dependence graph may be-
come obsolete, and tasks on those branches will be canceled. All of these task
coordination activities assume that the tasks are executing locally. Therefore, in
a client-server situation, the Petra-Flow framework is limited to responsiveness
on the client, and the server is seen as merely an unreliable resource. The re-
sponsive visualization architecture described in later in this chapter, while less
general than Petra-Flow, is in another way more global, in that it incorporates
the server and thinwire (i.e., the volatile resource) as part of the system, rather
than external to it.

2.2 Design Constraints

Later in this chapter we will discuss the speci�c strategies and data structures
that we have developed to ensure that the system operates correctly and with a
high level of responsiveness. This section covers some of the many other aspects
of the overall system design, aspects that may not themselves require elaborate

18

explanation or justi�cation, but that still should be noted because they give con-
text for the descriptions to come later. Our goal has been to formalize these
aspects into a set of constraints that can be used later to prove certain properties
of system performance. For example, we would ideally like to formalize a de�ni-
tion of responsiveness, and then prove that within certain constraints, the system
is maximally responsive. This e�ort has not been entirely successful; nonetheless,
we list below the constraints that we have identi�ed, and in section 2.5 we provide
an informal argument for the responsiveness of the system architecture.

2.2.1 Constraints Related to Problem De�nition

These constraints are required, in the sense that if they were relaxed, we would
be dealing with a di�erent problem.

Constraint 1 User and data are separated by a thinwire.

The network connection is slow and unreliable; we cannot assume any minimum
bandwidth.

Constraint 2 The size of the dataset is very large.

Speci�cally, it is too large to �t in main memory, and too large to be downloaded
over the thinwire all at once (because it would take too long). An immediate
implication is that data must be provided to the client dynamically, during the
visualization session, rather than statically before the session begins. Another
implication is that if the client keeps a local cache of data that it has downloaded
(and it probably should), then the cache must be limited in size, and provision
must be made for data to be removed from the cache.

Constraint 3 The user can browse the data using multiple windows, and re-
quest priority is determined primarily by which window the request is for and
secondarily by the request's priority among requests from that window.

This seems reasonable, although other approaches are certainly possible|data
elements might be assigned intrinsic importance values, independent of how or
where the user views them. In our system, the window that has the current
input focus has highest priority, and requests from that window are ordered by
sequence number, with the most recent being highest priority.

2.2.2 Simplifying Constraints

These constraints are not required, they just represent the approach we have
taken for now. They serve to simplify things, by reducing the parameter space
from which we take our system design.

19

Constraint 4 The user communicates through client software to a single server
computer, which controls access to the data. The client and server computers
support multi-threading, but need not have multiple processors.

In other words, no distributed databases or peer-to-peer networks. There are
three interface protocols that need to be designed: server-client, server-data,
and client-user. Roughly speaking, the server-client interface is covered in this
chapter, the server-data interface in chapter 3, and the client-user interface in
chapter 4.

Constraint 5 The server only sends data to the client if the data has been re-
quested.

No \push" semantics. Push capabilities might be bene�cial, but they would be
hard to implement with HTTP tunneling (see section 5.3).

Constraint 6 The client makes a request to the server only if the request comes
directly from the user.

No prefetching. Section 5.1 discusses prefetching as it relates to our system.

Constraint 7 All threads behave in a locally greedy manner.

If a thread has work to be done, the thread will work on a task that is available,
and not wait to see if more urgent tasks might soon become available. In our
system, many of the threads get their tasks from a priority queue that is written
to by other threads. When a thread �nishes a task, if its priority queue is not
empty, it will immediately start working on one of the tasks on it. An alternative
might be something like this: if none of the tasks on the priority queue are
important, then wait 500 msec before starting the next task, in the hope that
a more important task will arrive in that time. (Of course this would only be
bene�cial if the average task completion time were larger than 500 msec.)

Constraint 8 The number of threads is �xed, and the client makes only one
connection to the server.

We do not dynamically create threads. One method of HTTP tunneling, dis-
cussed in section 5.3, would involve dynamically creating threads.

2.2.3 Atomicity Constraints

We de�ne a coarser granularity of tasks than what would be seen from an oper-
ating system perspective, and stipulate that tasks are atomic, in the sense that
a thread that is working on a task must complete the task before starting an-
other task. These are really simplifying constraints also, but it seems helpful to
separate them into their own group.

20

Constraint 9 The granularity of the range requests is �xed.

The server makes one query to the database for each range request task; it cannot
break requests down into smaller requests, or combine them into bigger requests.
(Note, however, that each user request might be split into multiple range requests
at the client side.)

Constraint 10 Making one query to the database and retrieving zero or more
blobs in response is a single task.

In theory, a query could be interrupted by a more important request that comes
along, but for simplicity we do not allow this.

Constraint 11 Sending a single blob or other message across the network is a
single task.

A blob may not be broken down into pieces; if a high priority blob comes along
to be sent to the client, it must wait until any pending action that is writing a
blob to the network �nishes.

2.2.4 Java Related Constraint

Because we want the client to run on a variety of platforms and be easily accessible
on the Internet, we have chosen to implement it as a Java applet. This mandates
the following constraint:

Constraint 12 A single thread must handle both user input and graphical display
output.

The Java runtime environment provides the Event Handler thread for these op-
erations, and though it is technically possible for another thread to write output
to the screen, in such a case the interaction with the Event Handler thread could
lead to inconsistencies. Therefore, we do not allow it.

2.3 Thread Architecture

Every aspect of our runtime system architecture is infused with the goal of pro-
viding maximal responsiveness. Figures 2.1 and 2.2 together show a simpli�ed
view of our runtime system architecture. The large rectangles represent threads.
Most threads also have a small rectangle attached to them labeled \pq" or \q";
these represent priority queues or queues, the data structures that handle inter-
thread communication and prioritizing of tasks. Solid arrows represent data ow
(shown in �gure 2.1), and dashed arrows represent commands (shown in �gure

21

2.2). (The distinction between data and command may be somewhat arbitrary.
For instance, the ranges that are sent to the server as part of a range request
are shown as data, but they could also be considered commands.) Much of the
complexity and sophistication of this architecture, for providing responsiveness,
is encapsulated in the priority queues. Section 2.4 describes the priority queue
structure and functionality in detail. Section 2.3.4 describes the behavior of each
thread in detail. Here we look at the overview of system behavior.

Before going into detail, we give here a brief description of each thread:

GUI Event Handler Handles all mouse input and screen output.

Request Sender Sends requests from the client to the server; primary respon-
sibility is writing the thinwire from the client side.

Renderer Controls the sending of screen output tasks (i.e., object rendering
tasks) to the Event Handler. These tasks must be sent one at a time.

Searcher Pulls objects from the client side cache and sends them to the Ren-
derer.

Response Receiver Primary responsibility is reading the thinwire for the
client; reads blobs from the thinwire and sends them to the Unpacker.

Unpacker Uncompresses each blob, stores the geographic objects in the cache,
and also gives the objects to the Renderer.

Request Taker Handles reading the thinwire on the server side; simply takes
client requests and passes them on to the Data Provider.

Data Provider Manages the database and the server side cache; reads blobs
from the database, stores them in the cache, and sends them to the Re-
sponse Sender.

Response Sender Handles writing the thinwire from the server side; mainly
just takes the blobs it gets from the Data Provider and sends them to the
client.

22

p: packages
i: blob ids

o: objects

m: mouse events

b: blobs

pq

cache

Renderer

Windows
Data
Provider

pq
r: ranges

DB

cache
copy

GUI
Event
Handler

q

Mouse

pq

Searcher

pq

Unpacker
pq

pq

Response
Sender

Response
Receiver

Request
Sender

Request
Taker

ClientServer

Thinwire

r

o m

o

p

p

o

b

r

r

r

b

b

i

o

o

o

b

b

r

Figure 2.1: Runtime System Data Flow Diagram

2.3.1 Data Flow

The ow of data through the system is shown in �gure 2.1. This diagram illus-
trates the normal activity of the system, which is retrieving geographic objects
from the server and displaying them in response to user requests. Consider the
sequence of events that follow from the user making a movement of the mouse,
either for a pan or a zoom event:

1. The GUI Event Handler, upon receiving the mouse event, immediately
makes some update to the screen, so that the user can see that the input
was received and recognized by the system. The screen update will be either
to translate the on-screen image (for a pan) or display a scaled version of
the parent window's on-screen image (for a zoom or jump). This action is
not represented in the diagram.

2. The Event Handler converts the pan or zoom event into one or more ranges
and each range is sent in task form to the Searcher and the Request Sender
threads. These two paths continue concurrently. Consider the path to the
Searcher thread �rst; since that path does not go across the thinwire, it will
likely complete sooner.

23

3. Upon receiving the range request task the Searcher pulls out from the cache
all objects that intersect the range and puts those onto the Render schedule,
in the form of a package (to be described in section 2.4).

4. The Renderer thread pulls out each object individually from the package
and sends it back to the Event Handler.

5. The Event Handler displays each object to the window.

6. Returning to the second path that the range request takes, the Request
Sender will simply write the request to the thinwire.

7. The Request Taker reads the range request from the thinwire and passes
it, in task form, to the Data Provider.

8. The Data Provider �rst retrieves from the cache copy all blob ids for blobs
that intersect the range and that the client already has, then it queries the
database for any blob that intersects the range request and that is not in
that set of blob ids.

9. The blobs retrieved from the database are added to the server side cache
and passed to the Response Sender.

10. The Response Sender writes the blobs to the thinwire.

11. The Response Receiver reads the blobs from the thinwire and passes them
to the Unpacker.

12. The Unpacker thread uncompresses each blob, producing individual objects.
Each object is stored in the cache and put into a package, and the package
is sent to the Renderer.

13. The Renderer sends each object from the package to the Event Handler.

14. The Event Handler displays each object that it receives.

For clarity, one dataow path has been left out of the diagram. When the
system shows feature labels, the Event Handler thread will directly search the
cache to �nd what feature labels are near the current mouse position. This
has implications for concurrent access to the cache data structures, as will be
discussed in section 2.8.4. It also introduces a small quirk in the system: on
occasion, the Event Handler will retrieve and display a feature label for an object

24

nm
ar

Renderer
pq

cache

Windows
Data
Provider

pq

qp

DB

cache
copy

GUI
Event
Handler

q

Mouse

pq

Searcher

pq

Unpacker
pq

pq

Response
Sender

Response
Receiver

Request
Sender

Request
Taker

ClientServer

Thinwire

a: add−win
c: clear(i)

q: quit

qnmar

qmcar

qnmcar

ma

qmc
ar

p

p

qpnmar

ma

qpc
mar

p
n: new−view(i)
m: move−to−front(i)
R: flush−and−remove(i)
r: remove−win(i)

p: prune
P: flush−and−prune

qPR

qPR

qPR

qPR

Figure 2.2: Runtime System Command Flow Diagram

before it has rendered the object itself. However, the Unpacker thread puts all
new objects onto the Render Schedule as well as into the cache, so any object
whose label is being displayed is at least on schedule to be rendered shortly. In
practice we have not found this quirk to be problematic.

2.3.2 Command Flow

The command ow diagram, �gure 2.2, includes three di�erent command forms,
but does not explicitly distinguish among them. A command may be a mouse
event, such as a menu item selection or a button push; a task that is placed on
a priority queue; or an operation that is executed on a priority queue, the cache,
or the cache copy. Operations on priority queues change their internal structure,
and possibly remove tasks from the queue. As an example, when the user pushes
a button to close a window, that mouse event is put onto the Event Handler's
queue, and in �gure 2.2 this is represented by the label \r" on the arrow from
the mouse to the queue. The Event Handler then (among other things) puts
a remove-win task onto the Request Sender's priority queue and executes the
remove-win operation on that priority queue to make internal changes reecting
the removal of the window. In �gure 2.2, both of these command forms are

25

represented by the single \r" label on the arrow from the Event Handler to the
Request Sender's priority queue.

What follows is a list of commands, each with a description of its purpose,
what forms it takes, and how it ows through the system. More details about
the behavior and internal structure of the priority queues is in section 2.4; more
about the mouse events is in chapter 4.

quit The quit command is initiated by a menu item selection event being
passed from the mouse to the Event Handler. From there, it is converted
into a task that travels throughout the system to all threads. All threads
cease execution upon receiving a quit task; some threads �rst pass the quit
task on to another thread (or three other threads, in the case of the Event
Handler). The quit task is sent directly from the Event Handler to the
Searcher, Renderer, and Request Sender threads; the Response Receiver
and Unpacker threads have to wait until the task comes back from the
server side. This delay is not strictly necessary, it just ensures that the
socket connection will be cleanly closed by both sides. If for some reason
the quit command never comes back, the Response Receiver and Unpacker
threads will timeout and exit.

add-win To open a new window, the user initiates the add-win command
with a mouse click, which event is caught by the Event Handler. The result
that we want is to have every priority queue in the system execute the
add-win operation, which will update its internal structures to account for
the new window. The Event Handler may directly execute the add-win
operation on the priority queues on the client side. For the priority queues
on the server side, the Event Handler must send an add-win task to the
Request Sender, which passes it across the thinwire to the Request Taker,
and the Request Taker can then directly execute the add-win operation on
the priority queues on the server side.

remove-win(i) and ush-and-remove(i) To close the i-th window, the user
clicks the close icon on that window, and the mouse event, which we call
remove-win(i), is sent to the Event Handler. At this point, the remove-win
command takes a somewhat di�erent path from the add-win command, be-
cause of the necessity of maintaining consistency between the cache and
the cache copy. The Event Handler executes update operations on three
of the priority queues on the client side|all but the Unpacker's priority
queue. One result of these internal updates to the priority queues is that

26

all pending tasks for the closed window are discarded. The Event Han-
dler also sends a remove-win task to the Request Sender, which forwards
the task to the server's Request Taker. The Request Taker executes the
remove-win(i) operation on the Data Provider's priority queue, discarding
any pending tasks for that window, and puts a remove-win task onto the
queue. When the Data Provider receives the remove-win task, it executes a
ush-and-remove(i) operation on the Response Sender's priority queue, and
puts a ush-and-remove(i) task onto that queue. The e�ect of the ush-and-
remove(i) operation is to fully process|not discard|all pending tasks for
the i-th window and then update the queue internal structure to reect the
removal of the window. The ush-and-remove(i) task is passed across the
thinwire to the Response Receiver, which executes the ush-and-remove(i)
operation on the Unpacker's priority queue.

move-to-front(i) The system is designed to give highest priority to actions
that are for the window that currently has the input focus|usually the
window that was clicked on most recently. Information about the relative
priorities of the windows is stored in the priority queues. When the user
clicks on a window, we want to execute the move-to-front(i) operation on
each of the priority queues in the system, indicating that the window that
clicked on should now be at the front of the window priority list. The
move-to-front(i) command moves through the system in exactly the same
way as the add-win command: priority queues on the client side can be
updated immediately by the Event Handler, but a task must be sent across
the thinwire to the Request Taker before the priority queues on the server
side can be updated.

new-view(i) and clear(i) In the case of this command, we have given di�er-
ent names to the di�erent forms: new-view(i) stands for both the mouse
event and the task, while clear(i) represents the associated priority queue
operation. When the user does a zoom or a jump to a new location, the
system redraws the entire window; therefore, many of the outstanding tasks
for that window can be discarded, subject to the constraint of maintaining
cache consistency. The pattern is similar to that for remove-win(i). When
the Event Handler catches the associated mouse event, it executes clear(i)
on three of the client side priority queues|all but the Unpacker's queue.
clear(i) causes all tasks for the i-th window to be discarded from the priority
queue. A new-view(i) task is sent to the Request Sender, and then across
the thinwire to the Request Taker, at which point the clear(i) operation is

27

called on the Data Provider's priority queue. The priority queues for the
Response Sender and the Unpacker are never a�ected, because any data
that has already been sent from the Data Provider, and therefore noted in
the server's cache copy, must complete its journey into the client side cache.

prune and ush-and-prune The prune command is the only one that does
not originate with a mouse event. The Unpacker keeps track of the number
of points downloaded (i.e., line endpoints and shape points), and after every
N points, where N is a startup parameter, it initiates a prune command
by putting a prune task onto the Request Sender's priority queue. From
there the task is passed to the Request Taker, which puts it onto the Data
Provider's queue. When the Data Provider gets the prune task, it �rst
executes the prune operation on the cache copy. At this point we need
to be careful, because in order to maintain cache consistency, any blobs
that are noted in the cache copy before the prune operation on the server
side must also be stored in the cache before the prune operation on the
client side, and any blobs after the prune on the server must also be after
the prune on the client. What we want, therefore, is to fully process all
pending tasks on the Response Sender queue and then immediately process
the prune task, and the same thing on the Unpacker queue. This is what
the ush-and-prune command does. So the Data Provider next executes
the ush-and-prune operation on the Response Sender priority queue, and
the Response Sender sends a ush-and-prune message across the thinwire
back to the client, whereupon the Response Receiver executes the ush-and-
prune operation on the Unpacker priority queue. Finally, upon receiving
the prune task the Unpacker executes the prune operation on the cache.
The necessity for this indirection (Why not just have the Unpacker prune
the cache to begin with?) is explained in section 2.6.

2.3.3 Note on the Event Handler Thread

The queue that the Event Handler uses for its input is part of the Java runtime
environment, and so we do not have the ability to replace it or modify it; we can
only add tasks for the Event Handler thread onto it. Since the Event Handler
gets both display tasks and mouse input tasks from the same queue, we need to
be careful about how we use that queue. If we have a large number of objects
to render, and we put them all onto the queue, then any new mouse event that
occurs will have to wait until all of the objects have been rendered before it can
be handled. This is obviously bad for responsiveness. Fortunately, Java provides

28

the option of putting a task onto the queue and blocking until that task has been
completed. Using this option, we can guarantee that only one render-feature task
will be on the queue at a time, so any new mouse event can be handled quickly. In
general, any task that the Event Handler performs should be as quick as possible,
for responsiveness; thus, in our system we try to o�oad as much work as possible
from the Event Handler onto the other threads.

2.3.4 Thread Behaviors

This section repeats much of the information in sections 2.1 and 2.2, but this time
looking at it from the perspective of each thread, rather than the perspective
of the data or commands. Much of the logic for responsiveness, particularly
the prioritizing of tasks, is encapsulated in the priority queues, so the thread
behaviors tend to be quite simple. (The one exception is the Event Handler
thread.) In the following, the action of each thread is listed with the input that
triggers the action. The input comes from a queue or priority queue, the network,
or the mouse. The threads are discussed in the order that they might be traversed
by following the path of actions resulting from a single mouse event.

Event Handler Thread

The Event Handler thread is provided by the Java runtime environment to handle
all input and output that goes through the graphical user interface. It gets its
tasks from a queue that is also provided by the runtime environment. The GUI
automatically puts mouse input events onto the queue, and other parts of the
system are also allowed to put events, in particular display output events, onto
the queue.

Several of the actions listed below make use of the update-view subroutine,
which redraws the window contents from scratch. It includes these steps:

1. call the clear(i) operation on the Searcher and Renderer priority queues;

2. add a new-view(i) task to the Request Sender priority queue; and

3. form range request tasks for nine equal sized rectangular parts of the screen,
giving highest priority to the center rectangle and lowest to the corners, and
put those tasks onto the Searcher and Request Sender priority queues.

Here are the input tasks and events, and their associated actions:

29

� mouse drag(dx,dy): translate the current screen image by (dx; dy), form
range request tasks for the newly opened rectangles in the x and y direc-
tions, and put those tasks onto the Searcher and Request Sender priority
queues.

� zoom: replace the current screen image with a scaled version of itself, and
call update-view.

� jump: replace the current screen image with a scaled version of the appropri-
ate rectangle from the parent window's screen image, and call update-view.

� add-win: create a new window in the GUI, initially showing a scaled version
of the appropriate rectangle from the parent window's screen image; call
the add-win operation on all client side priority queues; send an add-win
task to the Request Sender thread; and call update-view.

� remove-win: close the window; call the remove-win operation on the priority
queues for the Request Sender, Searcher, and Renderer; and send a remove-
win task to the Request Sender.

� change input focus window: call the move-to-front operation on all priority
queues on the client side, and send a move-to-front task to the Request
Sender.

� geographic object: render the object to the screen.

� quit: put a quit task onto the priority queues for the Searcher, the Renderer,
and the Request Sender. The Event Handler thread is controlled by the
Java runtime environment, so we don't need to explicitly stop it.

Searcher Thread

The Searcher is responsible for pulling objects out of the cache. It gets its tasks
from its priority queue.

� range request: search the cache for all polygons, polylines and landmarks
that intersect the range, package them up into a queue with the polygons
�rst, and add the package to the Renderer's priority queue.

� quit: exit.

30

Renderer Thread

The Renderer is responsible for getting objects displayed on the screen. \Ren-
derer" is a bit of a misnomer, because the actual screen rendering is done by
the Event Handler thread. (This is required, or at least highly recommended,
by the Java runtime environment.) But the Renderer prepares each object for
rendering, and controls the ow of display tasks to the Event Handler. It gets its
tasks from its priority queue.

� geographic object (polygon, polyline or landmark): prepare the object for
rendering, by scaling or translating its coordinates, if necessary; add a
geographic object task to the Event Handler's queue; and block (wait) until
the rendering has been completed by the Event Handler thread.

� quit: exit.

Request Sender Thread

The Request Sender is responsible for writing the thinwire. It gets its tasks from
its priority queue.

� range-request, new-view(i), add-win(i), remove-win(i), move-to-front(i),
prune: simply pass the input task across the thinwire to the server's Request
Taker.

� quit: exit.

Request Taker Thread

The Request Taker's primary responsibility is to read from the thinwire; it also
executes some operations that are to trivial to require a separate thread. It gets
its input from the thinwire.

� range-request, prune: send the task to the Data Provider's priority queue.

� new-view(i): call the clear(i) operation on the Data Provider's priority
queue.

� add-win, move-to-front(i): execute the add-win or move-to-front(i) opera-
tion on both server side priority queues;

31

� remove-win(i): execute the remove-win(i) operation on the Data Provider's
priority queue, and add a remove-win(i) task to that queue.

� quit: put the quit task onto Data Provider's priority queue, and exit.

Data Provider Thread

The Data Provider's main responsibilities are in searching the database and man-
aging the cache copy. It gets its tasks from its priority queue.

� range request: search the cache copy for blob ids of blobs that intersect this
range and that have already been sent, query the database for any other
blobs that intersect this range, put the blob ids for these new blobs into
the local cache, and put a blob task for each new blob onto the Response
Sender's priority queue.

� prune: prune the cache copy (see sections 2.6 and 2.7 for details about
the pruning process), execute the ush operation on the Response Sender
priority queue, and add the prune task to that queue.

� remove-win(i): execute the ush-and-remove(i) operation on the Response
Sender priority queue, and put the remove-win(i) task onto that queue.

� quit: put the quit task onto the Response Sender priority queue.

Response Sender Thread

The Response Sender is responsible for writing to the thinwire. It gets its tasks
from its priority queue.

� blob: write the blob to the thinwire.

� remove-win(i): send the remove-win(i) task across the thinwire to the Re-
sponse Receiver.

� prune: send the prune task across the thinwire to the Response Receiver.

� quit: send the quit task across the thinwire to the Response Receiver, close
the socket connection, and exit.

32

Response Receiver Thread

The Response Receiver is responsible for reading the thinwire. It gets its tasks
from the thinwire.

� blob: read the blob from the thinwire and send it to the Unpacker thread.

� prune: execute the ush operation on the Unpacker priority queue, and add
the prune task to that queue.

� remove-win(i): execute the ush-and-remove(i) operation on the Unpacker
priority queue.

� quit: add a quit task to the Unpacker priority queue, close the socket con-
nection and exit.

Unpacker Thread

The Unpacker's main responsibility is to unpack objects from the blobs and send
those objects to the cache and the Renderer. It gets its tasks from its priority
queue.

� blob: uncompress the blob and pull out individual geographic features; store
those features in the cache; package them up into a queue, with the polygons
�rst; add the package to the Renderer priority queue; note the number of
points that have been downloaded, and if necessary initiate a pruning by
adding a prune request to the Request Sender priority queue.

� prune: prune the cache, as described in section 2.7.

� quit: exit.

2.3.5 Discussion

An attempt has been made to assign tasks to threads in such a way that each
thread spends most of its active time (i.e., time when it is not blocked, waiting
for a task) in a single activity that can be done concurrently with other threads'
activities. For example, on the server side the main activities for the three threads
are reading from the thinwire, querying the database, and writing to the thinwire,
respectively. The concurrency between threads is usually pipelined concurrency
as, for example, when the Data Provider is working on one range request while

33

the Request Taker is reading the next one from the thinwire. Full concurrency
happens when both the Request Sender and the Searcher are working on the
same range request.

One thing to notice is that the Request Taker and the Response Receiver
are simple threads that exist mainly to make the thinwire seem transparent to
the rest of the system. In other words, if there were no thinwire|if the client
and server were on the same machine|then the Request Sender would directly
access the priority queues for the Data Provider and the Response Sender, and
the Response Sender would directly access the priority queue for the Unpacker.
But the thinwire imposes the restriction that all messages passing between the
client and the server, in either direction, must be handled in �rst-in �rst-out
order. The Request Taker and Response Receiver threads allow these messages
to be reordered according to our priority queue order, as far as the rest of the
system is concerned.

It might seem at �rst glance that this architecture contains more threads
than are necessary. For example, why not eliminate the Response Sender and
have the Data Provider write the blobs directly to the network? The answer
is twofold. First, the priority queue that comes with the Response Sender is
itself an important element for system responsiveness. Without that priority
queue, the blobs that are retrieved from the database would have to be sent
across the thinwire in �rst-come �rst-served order. But the thinwire is assumed
to be relatively slow as compared to other parts of the system, especially for
transmitting blobs, which are larger than other system messages. Therefore, if
requests come in bunches, which is expected, and writing blobs to the thinwire is
a bottleneck, then if the blobs cannot be reordered, it will happen quite frequently
that higher priority blobs will wait while lower priority blobs are sent �rst.

The second reason is that having separate threads allows for more parallelism.
Since the thinwire is slow, or may even go down temporarily, we expect that the
Response Sender will spend a signi�cant amount of time waiting in a blocked
state. During that time the Data Provider thread can continue searching the
database and getting blobs ready for transmission (assuming, of course, that
multiple requests are waiting on the Data Provider queue).

2.4 The Priority Queues

The priority queues are an essential component of the responsive system ar-
chitecture, providing two primary functions: inter-thread communication and
task scheduling. Priority queue public methods are declared with the Java key-

34

word synchronized, which means that if one thread is executing a synchronized
method for an object then no other thread may execute a synchronized method for
that object. So the priority queues implement a form of the producer-consumer
problem, with the low level synchronization provided by the Java runtime envi-
ronment. The prioritization requirements are these:

1. Most tasks, such as range requests, are associated with a particular window.
These tasks are thus partitioned into priority classes, one per window. If
priority class i has higher current priority than priority class j, then all
tasks in class i have higher priority than all tasks in class j.

2. The relative priorities of the priority classes is changed dynamically by
\move-to-front" operations. When a user sets the input focus to a window,
the priority class associated with that window is moved to the front of the
priority list, and all other priority classes maintain their previous ordering.

3. Within a priority class, tasks are prioritized according to a sequence num-
ber, where higher sequence numbers are given higher priority. Tasks are
not in general added to the schedule in sequence number order. (If task T1
has a higher sequence number than task T2, it means that T1 is generated
by a user request that is \not less recent" than the request that generated
T2. Usually it means \more recent", but in some cases multiple tasks are
generated at the same time but assigned di�erent sequence numbers to ac-
commodate other priority considerations. In particular, when a user zooms
or jumps to a new location, the screen is split into nine rectangles, and
the middle rectangle is given the highest sequence number, the corners the
lowest, etc.)

4. Some tasks, such as quit and prune are not associated with a window.
These are called \global" tasks, and have higher priority than all other
tasks. Global tasks should be serviced in FIFO order.

The remainder of this section describes the structure and behavior of the
priority queues in detail. Section 2.4.1 describes the basic behavior, which is used
by the Request Sender, Searcher, and Unpacker priority queues. The Renderer,
Data Provider, and Response Sender each need priority queues with additional
functionality. The remaining three subsections cover each of those queues|why
the basic priority queue is insuÆcient, and what the additional features are.

35

heaps

i j k

i j k

j i k

globalQueue

heapMap

front

priorityClassMap

priorityClassList

Figure 2.3: The Basic Priority Queue

2.4.1 The Basic Priority Queue

Figure 2.3 shows the internal structure of the basic priority queue. Each priority
queue includes the following data structures:

� globalQueue: an ordinary queue, for the global tasks.

� Several heaps, one for each priority class. Each heap stores the tasks for
that priority class, heap-ordered by sequence number.

� priorityClassList: a move-to-front list, implemented as a doubly linked
list, where each node stores a priority class id.

� priorityClassMap: a hash table mapping priority class ids to nodes in the
move-to-front list, so that move-to-front can be accomplished in constant
time.

� heapMap: a hash table mapping priority class ids to heaps, so that addTask
can be accomplished in time that is independent of the number of priority
classes.

Following is a list of the priority queue supported operations. Each of these is
executed as an atomic operation, so only one of these operations can be performed
on the priority queue at a time. Therefore, it is important that these operations

36

be as fast as possible. In the following, let n be the number of priority classes,
and let m be the size of the largest heap at any given time.

� addPriorityClass(id): add a new priority class to the front of the move-
to-front list, giving it the highest priority. Called when the user adds a new
window. Requires constant time.

� removePriorityClass(id): remove a priority class from the move-to-front
list, and remove all tasks associated with it. Called when the user deletes
a window. Requires constant time.

� moveToFront(id): move the given priority class to the front of the list.
Called when the user clicks on a window, giving it the input focus. Since
the list is implemented as a linked list, and the node that we want to move
can be found in constant time with a hash table, requires constant time.

� getNextTask(): return the highest priority task, and remove it from the
schedule. If the global task queue is non-empty, then return the front task
on that queue, else start searching through the heaps, in priority class
order, and return the top task on the �rst non-empty heap. Requires time
O(n+ logm)

� addTask(priorityClassId, sequenceNumber, task): add the given task
to the appropriate heap, with the given sequence number. Requires time
O(logm)

� addGlobalTask(task): add a task to the global task queue. Requires
constant time.

� clear(priorityClassId): clear the heap associated with the given prior-
ity class id. Called when a user does a new-view operation, such as zoom
or jump to a new location. Requires constant time.

� flushToGlobalAndRemove(priorityClassId): move all tasks for a given
priority class to the global task queue, in heap order, and then remove the
priority class. This is the ush-and-remove(i) command mentioned above.
Requires time O(m logm).

� flushToGlobalAndAdd(task): move all tasks for all priority classes to the
global task queue, in order of priority (i.e., �rst consider the priority class,
then the priority within the class), and then add the given task to the (back

37

of the) global task queue. This is used for the ush-and-prune operation.
Since it is an atomic operation, and since tasks on the global queue take
precedence over those on the heaps, the prune is guaranteed to be processed
after any previously added tasks and before any tasks that will be added
in the future. Requires time O(nm logm)

Under normal operation there will be no global tasks, and a thread that
executes getNextTask() will get the highest priority task for the window with the
current focus, which is the ideal for responsiveness. The flushToGlobalAndAdd

and flushToGlobalAndRemove methods cause a temporary suspension of the
normal prioritizing, but since these operations are relatively rare we accept this
occasional reduction in responsiveness. And for the same reason we can accept
the relatively long running time of these two operations.

The next sections describe three situations where the basic priority queue
needs to be extended with additional functionality.

2.4.2 The Renderer Priority Queue

The sequence numbers that we use to prioritize tasks within a priority class are
associated with user requests|zooms, pans, etc.|and normally there is one task
per sequence number. Even if a single user request is divided into multiple range
requests, each range request is given a unique sequence number and associated
with a single task. But when it comes to the Renderer, the association of one
range request to one task and one task to one sequence number must break down
because of the interaction of the following considerations:

1. For display, we should send only one geographic object at a time to the
Event Handler (recall the discussion from section 2.3.3 about how it is
important to send only fast tasks to the Event Handler, and only one at a
time).

2. Each user request results in the need to display multiple geographic objects.

3. At the time that the sequence numbers are assigned, when the user makes
the request, we do not know how many objects are going to need to be
displayed for this request, either from the cache or from the server.

4. Among the objects associated with a single request, there are restrictions
on the order in which the objects must be displayed. The data will be
discussed more fully in chapter 3, but in summary a polyline that is within

38

a polygon must be drawn after the polygon, or else it would be covered up
when the polygon is drawn. Similarly for landmarks or smaller polygons
that are within the main polygon.

5. In a priority queue, if two tasks are in the same priority class and have the
same sequence number then the order in which they will be processed is
unspeci�ed.

So the dilemma is this: if the Searcher and Unpacker (the two threads that write
the Renderer queue) put individual objects onto the queue as separate tasks, each
with the same sequence number (the one associated with the request that they
come from), then the objects might be displayed in the wrong order, but if they
package all the objects together into one task then that task would be too long
for the Event Handler and would have a negative impact on responsiveness. We
cannot assign individual sequence numbers to each object, because at the time
that this would need to happen, when the request is made, we would not know
how many sequence numbers to \reserve", but we cannot disassociate the object
sequence numbers from the request that picked them because then we would lose
the prioritization based on user actions.

Our solution to this dilemma is to add functionality to the priority queue that
allows a \package" of tasks to be treated as a unit within the priority queue, but
to allow an individual task to be removed from the package when getNextTask()

is called. Figure 2.4 shows what a single heap would look like on this priority
queue. Each heap node contains a simple queue, and each node on that queue is
a task. The getNextTask method removes the �rst task from the queue that is
at the top of the heap, but does not remove that top heap node unless its queue
is empty. It is acceptable for a heap node at the top to be moved down the tree
when a higher priority heap node is added, even if it (the node previously at the
top) has had some of its tasks removed. The only restriction is that tasks within
a heap node are removed in order; they do not need to be removed in sequence.

With this solution, all of the above considerations are satis�ed: only one
geographic object is sent to the Event Handler at a time, the objects are sent in
the correct order, and each of these objects is correctly prioritized according to
its request's sequence number.

2.4.3 The Response Sender Priority Queue

There is a di�erent problem with the Response Sender priority queue that also
results from the interaction of a number of considerations. Consider the following:

39

...
Figure 2.4: A Heap on the Renderer Priority Queue

1. A single blob will in general intersect multiple range requests.

2. Once the Data Provider has sent a blob to the Response Sender, it will not
send that same blob again (assuming the blob has not been pruned form
the cache in the interim).

3. It is possible for a task to remain on a priority queue while any number of
higher priority tasks come and go.

Now suppose the Data Provider thread gets a range request R1 that intersects
blob B, which is sent to the Response Sender. Before B is removed from the
Response Sender queue, the Data Provider thread gets a new range request, R2,
that also intersects B and that has higher priority than R1. Since the Data
Provider has already sent B, it will not be included in the response for R2. The
priority of B has e�ectively been limited to the priority of R1. If several more
range requests come along with even higher priorities and also intersecting B,
then B will sit on the queue while responses that should include B pass it by. B's
\demotion" to a lower priority than the user wants becomes even more egregious.
For responsiveness, B should really be promoted to the highest priority of any
range request that intersects it. The extended functionality of the Response
Sender priority queue allows this to happen.

When blob B intersects both range requests R1 and R2, there are two possi-
bilities: either R1 and R2 are in the same priority class, or they are not. In the
�rst case, we want to associate B with whichever request has the higher priority.
In the second case, the situation is not so clear, because the relative priorities of
R1 and R2 may change whenever the user gives input focus to a di�erent window.
Therefore, in the second case, we associate B with both requests in the priority
queue, but make sure that it only gets sent to the client once. The rest of this
section describes the necessary changes to the priority queue.

40

heaps

i j k

i j k

j i k

globalQueue

heapMap

front

priorityClassMap

priorityClassList

x y z
idNodeMap

... ...

Figure 2.5: The Response Sender Priority Queue

41

Figure 2.5 shows the priority queue with one more data structure, idNodeMap,
which maps each blob id to a list of heap nodes that contain (a reference to) that
blob. (To avoid clutter, the �gure only shows the full structure for the blob with id
x.) To take this new data structure into account, we must rede�ne addTask() and
getNextTask(), and de�ne a new method, upgrade(id, priorityClassId).

� addTask(): the only change is that for each blob added we must add an
entry to idNodeMap, which is a constant time addition.

� getNextTask(): if the task is a blob task, the additional work is to iterate
through the list of heap nodes associated with the blob and invalidate the
blob in that node (essentially, set it to NULL), and to remove the blob's
entry from idNodeMap. (Of course the blob is not invalidated in the current
task that we are processing.) Since there can be at most n nodes in the list,
and removing an entry from a hash table takes constant time, the time for
getNextTask is still O(n+ logm).

� upgrade(id, priorityClassId): look for the blob id in idNodeMap. If
it is not there, then do nothing (the blob has already been sent to the
client). If it is there, then get the list of heap nodes associated with the
blob and see if the blob is already in the appropriate heap (the one with
the right priorityClassId). If so, update the node's priority in that heap,
and \bubble" it up to its proper place in the heap. If not, add the blob
to the appropriate heap, and add a reference to this new heap node in the
list of nodes for the blob in idNodeMap. There are at most n nodes in the
list, and adding to a heap takes O(logm) time, so the time for upgrade is
O(n+ logm).

To account for this special behavior of the Response Sender queue, we must
modify the Data Provider's behavior, as speci�ed in section 2.3.4. When receiving
a range request, and after searching the cache copy for blob ids of blobs that
have already been sent to the Response Sender, it must execute the upgrade(id)
operation on the Response Sender queue for each of those blob ids.

It is possible that the upgrade functionality would also bene�t the Response
Receiver queue. We have not implemented this functionality because (1) it would
require an extra message to be sent across the thinwire, and (2) we assume that
the thinwire is the primary performance bottleneck, which means that once a
blob has made it across the thinwire, it is likely to be processed quickly on
the client side, relative to the time needed to send a single message across the

42

thinwire. Testing would be required to decide if this is a valid assumption; section
5.1 discusses the diÆcult issues in setting up a reliable testing infrastructure for
responsive thinwire systems.

2.4.4 Data Provider Priority Queue

For most purposes, the client does not need to keep track of which responses are
for which requests, or even if a request was responded to at all; it can simply send
requests and display whatever data it receives. If the only blobs that intersect
a particular range request are ones that the client already has, then as far as
displaying correct maps, the server shouldn't need to respond to that request
at all. But it is very helpful for the user to know whether or not the client is
currently waiting for data from the server. In other words, \Is nothing new being
drawn to the screen because the system is stalled, or because there is nothing left
to draw in this region?" To answer this question, the client program includes a
small \light" on the display that is on whenever there are outstanding requests
at the server. But in order for this to work we do need to get a response to every
request, even if the response has no content.

In �gure 2.2, the Request Taker executes a clear(i) operation on the Data
Provider queue when it receives a new-view(i) command. This is not exactly
correct, because if range requests were cleared out of the Data Provider queue,
those requests would never be responded to. Instead, the Request Taker sets a
bit ag in every range request in the i-th heap to indicate that the request is
no longer valid. When the Data Provider pulls that request o� of the queue, it
will simply send an empty response back to the client. The priority queue must,
therefore, provide an additional operator, invalidate(i), which invalidates each
task in heap(i). This operation takes O(m) time.

2.5 Responsiveness

The system architecture is designed for responsiveness in several ways: (1) The
Renderer only puts one task onto the Event Handler queue at a time, and only
one geographic object is rendered in each task, so that the event handler never
has to be excessively delayed in giving the immediate acknowledgment|the 0.1
second level of interaction|to a user input. (2) The priority queues are designed
to give highest priority to tasks for the window with input focus, and to the
most recent among all the tasks for a window. (We have to assume that the
window with input focus is the one that the user is most interested in.) (3) The

43

concurrency that results from separating responsibilities into separate threads,
so that most threads have only one primary responsibility, ensures that, as much
as possible, slow tasks do not hold up fast tasks, and low priority tasks do not
hold up high priority tasks.

Now we would like to evaluate these techniques, to get some idea of how
good the responsiveness of the system is. First, in section 2.5.1, we make some
theoretical arguments based on our knowledge of how the system works, and then
in section 2.5.2 we describe some rudimentary experimental testing.

2.5.1 Theoretical Arguments for System Responsiveness

We would like to be able to say that the system is optimally responsive, but this
is clearly not possible|there are so many alternative design possibilities that we
cannot be certain that the design we have chosen is the best. It would be nice to
say that the Event Handler always gives an acknowledgment to user input within
0.1 seconds, but we can't say that either because it might take longer than that
for it to �nish rendering an object that it is working on when the request arrives.
We would like to say that no high priority task ever has to wait for a low priority
task, but that also isn't true because, among other things, a thread might be
working on a lower priority task when the high priority task arrives. Instead, we
settle for the following two claims, which are highly quali�ed, but which still shed
some light on how the system works, and why it is responsive.

Claim 1 When the user makes a mouse input, the initial system acknowledgment
of receipt of the input cannot be delayed by any more than (1) the rendering of
a single geographic object; and (2) the acknowledgment of any previous mouse
inputs that have yet to be acknowledged, which does not involve handling any
geographic objects.

Justi�cation: The Renderer thread is coded so that once it has put an object onto
the Event Handler queue for rendering, it will not put another object onto the
queue until the rendering of the �rst object is �nished. So no more than a single
geographic object rendering task can be ahead of any given mouse input task on
the Event Handler queue. Since the Renderer and the mouse are the only players
that put tasks onto the Event Handler queue, the only additional tasks that a
mouse input will have to wait for are previous mouse inputs. But the only things
the Event Handler does in response to a mouse input are direct manipulations
of the screen and putting tasks onto priority queues, none of which involves the
handling of any geographic objects.

44

In fact, it should be extremely rare for a mouse input to have to wait for
previous mouse inputs. The user would have to make multiple mouse actions
in rapid succession, and even then the Event Handler would probably not get
backed up, because it is designed to handle mouse events quickly.

In the next claim we look at how much a task is delayed by other tasks. There
are two types of delay that, for the purposes of this claim, we consider necessary
delays. (1) When a task arrives to the priority queue of a thread, that thread
might be currently performing another task, such as writing the network. In our
system, waiting until the thread is done with that task is considered a necessary
delay. (See the atomicity constraints in section 2.2.3. (2) The time that it takes
to add a task to a priority queue is a necessary delay. This time is logarithmic
in the number of tasks that are already on the particular heap that the task will
be added to within the queue. Of course these delays are not strictly necessary
in an absolute sense, since it is possible to imagine an architecture in which they
would not occur, but in our architecture they are unavoidable, and considering
them to be necessary helps to illuminate the workings of the architecture, which
is the purpose of these claims.

Claim 2 In the absence of prune commands, the blobs associated with a range
request will arrive to the client without being delayed any more than is necessary,
as de�ned above.

Justi�cation: For blobs that are already at the client, we are done, so consider
the path that a request takes to the server and its response blobs take back
to the client. From the Event Handler, where the request is initiated, to the
Data Provider, the task associated with the request passes through two priority
queues and two threads. At the Request Sender priority queue, the structure of
the queue guarantees that the new task will jump in front of any lower priority
task on the queue, so the only delays could be to wait while the Request Sender
�nishes a previous task, and to wait while the task is being added to the priority
queue, which are both necessary delays. Similarly for the Data Provider queue.
The Request Sender and Request Taker simply forward the task along the path
before going on to the next task. At the Data Provider thread there are two
possibilities for any blob that is required: either the required blob has already
been sent on to the Response Sender, or it has not. If not, the blob is pulled from
the database and put on the Response Sender queue with the current request
priority, and the same argument as for the other two queues applies to this one.
If the blob has already been sent on, then it may be on the Response Sender
queue as part of a task that has lower priority. In this case the Data Provider
will execute the upgrade command, so the blob will then have the higher priority,

45

and again the same argument applies.
Note that there are two signi�cant quali�cations that limit the impact of this

claim.

1. It only applies \in the absence of prune commands", because of the com-
mand flushAndPrune, which executes outside the normal prioritization
rules. This is required for maintaining cache consistency (see section 2.6).
Since we assume that pruning is a relatively rare event, this should not have
a signi�cant impact on perceived responsiveness.

2. The responsiveness is only guaranteed up to the point that the data arrives
at the client; it does not extend to unpacking the data and displaying it.
The reason is that we do not execute the upgrade command on tasks that
are on the Unpacker priority queue, so it is possible that a blob could
languish on that queue with a lower priority than it should have, if higher
priority requests come by that would have included it. As discussed above,
we expect that the thinwire is the performance bottleneck in the system,
so that once a blob arrives at the client it should be processed relatively
quickly, as compared to the time that would be needed to send an upgrade

message across the thinwire.

Notice that the delay for adding a task to a queue should be quite small, since
the dependence is logarithmic, and the addTask operation is performed in mem-
ory, whereas each thread along the path from the client to the server and back is
primarily occupied with I/O: the Request Sender and Response Sender write the
thinwire, and the Data Provider reads the database. If there are tasks previously
on a particular priority queue, then it is likely that the thread associated with
that queue will be occupied with an I/O operation during the addTask operation
(which is performed by a di�erent thread). Since I/O operations are quite slow
as compared to in-memory operations, it is likely that the thread will even be
blocked, which means that the addTask operation often happens in parallel with
the �rst class of necessary delay, waiting for a thread to �nish with an old task.

2.5.2 Experimental Testing of System Responsiveness

We would like to be able to test the responsiveness under di�erent conditions and
di�erent system design choices. In some cases, the advantages of a design change
are obvious, the best example being the move from a database that stored indi-
vidual objects to one that stored pre-compressed blobs (which will be described

46

further in chapter 3). The improvement in performance was easily visible to the
naked eye. In other cases the advantages are less clear.

We have implemented a testing procedure that works as follows. The client
is �rst run in a special mode, called gui-trace mode, in which it records every
mouse event, along with a timestamp, and stores this information in a trace �le.
Then the client can be run in run-trace mode, in which it reads the trace �le and
triggers the stored mouse inputs, at the appropriate time intervals. The idea is
to record a user session, and then re-run that same session under a variety of
conditions, comparing the performance.

Unfortunately, there is a problem with this approach. Because of unpre-
dictable network speeds and unpredictable timing among the threads and between
the client and server, along with the reordering and cancellation of requests, two
runs of the same trace are not even guaranteed to include the same events, much
less the same events in the same order. For example, in one trace, the client sends
nine range requests to the server, and after the server has responded to four of
them the user jumps to a new location, and the client sends a new-view command,
which causes the server to ignore the last �ve requests. But in a second run of
the trace, the client may be slower, and the new-view command doesn't get to
the server until after all nine requests have been satis�ed.

We could accept the fact that di�erent runs will have di�erent events, and
perform enough runs of the experiment so that the computed average performance
is statistically signi�cant, but the problem runs deeper than that: we don't have
a clear idea of what we want to measure! The goal is responsiveness. If we have
the client send some requests to the server, and then measure how long we have
to wait until the system is at rest again, then it might seem that shorter wait
times are better, but we are not getting an idea of how the system performs while
in ux, which is essential. What we really want is to have the right data being
transferred at the right time, but it is not at all clear how to measure this.

In lieu of a rigorous, automated testing method, we have performed some very
simple tests by hand that demonstrate the e�ects of request cancellation. The
results are shown in table 2.1. The basic test is to click on a button to jump
to a new location, and use a stopwatch to time how long it takes from clicking
the button until all the data has been downloaded from the server. (The user
interface provides a visual indicator for when no more data is being downloaded.)
At least three trials were done for each test, and the average taken. The �rst �ve
lines in the table show the results of this test for �ve di�erent cities. Then we
tried combinations of cities, as seen in the last four lines of the table. In this case
each button is clicked in quick succession, and after the last button we wait until

47

measured sum % saved
New York 2.8 sec - -
Boston 3.1 sec - -
Washington, DC 2.5 sec - -
San Francisco 2.3 sec - -
Philadelphia 3.3 sec - -
Bos., NY 5.14 sec 5.9 sec 12.7%
DC, Bos., NY 6.2 sec 8.4 sec 25.9%
SF, DC, Bos., NY 8.1 sec 10.7 sec 24.4%
Phil., SF, DC, Bos., NY 9.6 sec 14.0 sec 31.3%

Table 2.1: Times in seconds between clicking the �rst jump button and system
coming to rest, as measured by human with a stopwatch.

all data has been downloaded. Timing starts when the �rst button is clicked.
The �rst column shows the measured times. For the multiple-click tests, the
second column shows the sum of the times for constituent cities, which is what
we would expect if the each city's data were allowed to download to completion
before retrieving the next city, and the last column shows the percent time that
is saved by not waiting|presumably from the cancellation of requests.

There is also the issue of measuring the aspects of responsiveness that are
unique to the client side. One important measurement would be the amount
of time between a mouse event being delivered to the client by the underlying
graphical system, and that event being handled by our client program. (We
have no control over how fast the underlying graphical system is.) Recalling
the discussion of interaction times from chapter 1, we want this time to always
be less than 0.1 sec. Setting up such a test is a matter for future work. In
the meantime, we have measured the time to render a single polygon, which we
know from claim 1 is an important factor determining the speed of the initial
response to user input. Figure 2.6 plots the rendering time for a polygon and
all of its descendant polygons in milliseconds against the number of points on
the borders of the polygons rendered. While performance certainly drops for
very large polygons, it seems from this limited testing that once a polygon is
below about 1000 points it doesn't do much good to make it lower (by doing less
merging|see section 3.3), and it would do harm if more polygons needed to be
rendered.

48

Figure 2.6: Polygon rendering time vs. number of points in polygon and descen-
dants

49

2.6 Cache Consistency

As the client makes requests for data, and the server provides the data, the cache
and cache copy will grow in size. So long as this is all that happens (and so long
as neither the client nor the server runs out of memory), it is fairly easy to see
that the system functions properly: every blob that is requested �rst has its id
stored in the cache copy, then gets sent across the thinwire to the client, and
then is stored in the cache and displayed on the screen. The order in which blobs
are stored in the cache copy may not be the same as the order in which they are
stored in the cache, but that is �ne|every blob will eventually get to the client
cache. (Actually, that is assuming the number of requests is �nite. Without that
assumption, a blob might get stuck on the Response Sender or Unpacker priority
queue forever, while an in�nite number of higher priority blobs pass it by.) But in
order to not run out of memory, data must eventually be removed from the cache
and its copy, and this is where we must be careful so as to make sure the system
performs correctly. In this section we �rst give some examples of how things can
go wrong, then give a correct solution, and �nally prove the correctness of that
solution.

2.6.1 Some Flawed Approaches

In the following, let b represent a blob, let C represent the set of blobs in the
cache, let C 0 represent the set of blobs in the cache copy, and let S represent the
set of blobs in the database that overlap the current screen|i.e., those that have
data that should be shown on the screen. When the system is at rest, we should
have C = C 0 and S � C

One naive approach is to have the client decide which blobs to discard, drop
them from the cache, and then send a list of blob ids to the server so the server
can drop them from the cache copy. Unfortunately, this introduces a consistency
problem. Consider the following sequence of events:

1. Start: b 2 C, b 2 C 0, and b 62 S.

2. The Unpacker removes blob b from the cache. Now b 62 C, b 2 C 0, and
b 62 S.

3. The user moves the current view to area R, which includes b. Now b 62 C,
b 2 C 0, and b 2 S.

50

4. The Searcher asks for objects in R from the cache, to send to the Renderer,
but b is not found because it was just removed.

5. The Request Sender sends range request R to the server, but the server
does not send b back, because it is in the cache copy.

6. The Unpacker sends a \remove b" command to the Request Sender, which
forwards it to the server, and the server removes b from the cache copy.
Now b 62 C, b 62 C 0, and b 2 S.

This is an inconsistency, even though client and server agree on the cache contents,
because if there are no more requests the system will come to rest, and we do
not have S � C. The client displays any new data in R that subsequently arrive
from the server, but since this does not include objects from b, the objects in
b will never get displayed. If another request for an area R0 that contains b is
subsequently made, then b will be sent, but there is no guarantee this later request
will happen, and certainly not before the user becomes confused.

Another consistency problem to watch out for happens if, instead of having
the client send a list of blob ids to the server for pruning, the server maintains in
the cache copy a replica of the data structure in the cache, and then the client
and server execute the same discard protocol on the replicated data structure. So
the client executes the discard protocol on the cache, and then sends a message to
the server instructing it to execute the protocol on the cache copy. Now consider
this sequence of events:

1. Start: b 62 C and b 62 C 0.

2. The client requests from the server area R, which includes object b.

3. The client prunes area R0 from the cache, which would cover b, except
that the client hasn't downloaded b yet. The client then sends a prune R0

message to the server.

4. The Data Provider puts b into the cache copy, and passes it on to the
Response Sender. Now b 62 C and b 2 C 0.

5. The Data Provider receives the prune message and removes b from the cache
copy. Now b 62 C and b 62 C 0.

6. The client receives b and stores it in the cache. Now b 2 C and b 62 C 0.

51

At this point the system can come to rest while the client has blob b, but the
server thinks it doesn't. The next time the client requests an area that includes
b, a duplicate will be sent.

These two problems can be solved by having the server discard objects �rst.
The client is in a better position to decide when the pruning needs to happen,
and what regions to discard, so it still makes those decisions �rst, but it delays
doing the actual cache pruning until after it has noti�ed the server of its decisions
and the server has done the pruning. However, this protocol is not quite correct
because or task prioritization. If the prune has a high priority, the following
problem arises when the prune command \passes by" a blob on the way to the
client:

1. Start: b 62 C and b 62 C 0.

2. The Data Provider adds blob b to the cache copy, and puts it onto the
Response Sender queue. Now b 62 C and b 2 C 0.

3. The Data Provider prunes region R, which includes b, from the cache copy,
and puts the prune command onto the Response Sender queue. Now b 62 C
and b 62 C 0.

4. The Response Sender processes the prune command �rst, because it has
high priority, sending it to the client, where blobs in R are pruned from the
cache. This would include b, but the client hasn't received it yet.

5. The Response Sender sends b to the client, where it is added to the cache.
Now b 2 C and b 62 C 0.

At this point the system can come to rest while the client has blob b, but the
server thinks it doesn't.

If the prune has low priority, we have an analogous situation, where the prune
is passed by a blob:

1. Start: b 62 C and b 62 C 0.

2. The Data Provider prunes region R from the cache copy, and sends the
prune command on to the Response Sender. Region R would include b, if
it were in C 0.

3. The Data Provider adds b to the cache copy, and sends it on to the Response
Sender. Now b 62 C and b 2 C 0.

52

4. The Response Sender handles b before the prune, because it is higher pri-
ority, and sends it to the client, where it is added to the cache. Now b 2 C
and b 2 C 0.

5. The Response Sender sends the prune command to the client, and the client
removes b from the cache. Now b 62 C and b 2 C 0.

Now if the system comes to rest, the server thinks the client has b, but it doesn't.

2.6.2 A Correct Approach

So what we really want is that the prune command will neither pass any blob
nor be passed by any blob on the way from the Data Provider to the Unpacker.
This is precisely the functionality provided by the ushAndPrune command. So
here, �nally, is the working protocol:

1. The client chooses a region R for pruning, and sends a prune(R) command
to the server.

2. The Data Provider removes all blobs in R from the cache copy.

3. The Data Provider calls ushAndPrune(R) on the Response Sender queue.

4. The Response Sender sends all blobs already on its queue to the client, and
then sends the prune(R) command to the client, before sending any new
blobs that come after the prune(R) command.

5. When receiving the prune(R) command, the Response Receiver executes
ushAndPrune(R) on the Unpacker queue.

6. The Unpacker puts all blobs that came before the prune(R) command into
the cache, then removes all blobs in R from the cache.

2.6.3 Proof of Correctness

Before proving the correctness of this protocol, we must de�ne what it means to
be \correct". Informally, what we really want to say is that if the server should
send a blob to the client, then it does, and if it shouldn't, it doesn't. But because
the system is usually in ux, with blobs and prune commands in transition, it's
not clear how to formalize this. We can't say that the contents of the cache
and its copy are always the same, and we can't say that the same blobs get put

53

in and taken out in the same order. Instead, what we show below is that (1)
for every request that arrives at the Data Provider without being canceled, all
blobs that intersect the request range will at some time in the future all be in
the cache together at the same time, and (2) the Unpacker never receives a blob
that duplicates one already in the cache. These two results are represented by
theorems 1 and 2 below.

First, we make some de�nitions. Let prunei be the i-th prune command
initiated by the Unpacker, and let prunei(x) represent the action of removing
blob x from either the cache or the cache copy as part of the prunei operation.
(It will be clear from the context whether it is cache or cache copy.) Let addi(x)
be the i-th time that x is added to the cache copy, the associated message for this
event that is then passed to the client, and the action of adding x to the cache
that is precipitated by that message. Let opi refer to either prunei or addi. Before
getting to the theorems, we establish some intermediate results in the following
lemmas.

Lemma 1 Every opi that occurs at the Data Provider also occurs (later) at the
Unpacker, assuming the number of user requests is �nite.

Proof: Whenever the Data Provider executes a prunei or addi operation, it puts
the associated command onto the Response Sender queue. Since there are no
clear commands executed on either the Response Sender queue or the Unpacker
queue, the command will not be deleted before arriving at the Unpacker. Since
the number of user requests is �nite, the command cannot be in�nitely delayed
on a priority queue by being passed up repeatedly by more important tasks.
Therefore, it will eventually get to the Unpacker.

Lemma 2 Every opi that occurs at the Unpacker also occurred (earlier) at the
Data Provider.

Proof: The Unpacker only executes add and prune operations that come from the
Response Receiver, the Response Receiver only sends commands that it receives
from the Response Sender, and the Response Sender only sends commands that
it receives from the Data Provider. (Note that the Unpacker initiating a prune
command is not the same as executing the prune command. Initiating the prune
command does not involve changing the contents of the cache.)

Lemma 3 At the Data Provider, prunei precedes prunej, for i < j

Proof: At every priority queue, the prune command is placed onto its global
queue, which is an ordinary �rst-in �rst-out queue. Since prunei will be �rst-in
to the Request Sender queue, it will also be �rst-out to the Request Sender itself,
�rst across the thinwire to the Request Taker, �rst-in to the Data Provider queue,
and �rst-out to the Data Provider itself.

54

Lemma 4 prunei precedes opj at the Data Provider i� prunei precedes opj at
the Unpacker.

Proof: First, note that lemmas 1 and 2 guarantee that the set of operations at
the two locations are the same, so the lemma statement is well de�ned. The
lemma then follows from the de�nition of the ushAndPrune operation. When
the Data Provider processes the prunei command, it executes the ushAndPrune
operation on the Response Sender queue, which means that a task opj on the
Response Sender queue is processed by the Response Sender before prunei i�
opj preceded prunei at the Data Provider. The Response Sender's behavior is
to simply send messages across the thinwire to the Response Receiver, therefore
the Response Receiver will in turn receive opj before prunei i� opj preceded
prunei at the Data Provider. But for every task that the Response Receiver
gets, it either puts it onto the Unpacker queue, or executes ushAndPrune on
the Unpacker queue; therefore, when the Response Receiver processes prunei, it
will execute the ushAndPrune operation on the Unpacker queue, which means
that the Unpacker also will receive opj before prunei i� opj preceded prunei at
the Data Provider.

Lemma 5 At the Unpacker, prunei precedes prunej, for i < j

Proof: This follows from lemmas 3 and 4.
Let Ci be the set of blobs that the Data Provider adds to the cache copy before

prunei, and after prunei�1 if i > 1; let C 0

i be the set of blobs that the Unpacker
adds to the cache before prunei, and after prunei�1 if i > 1; let Pi be the set
of blobs that the Data Provider removes from the cache copy as part of prunei;
let P 0

i be the set of blobs that the Unpacker removes from the cache as part of
the prunei operation; let Si be the set of blobs in the cache copy immediately
after prunei, or the empty set if i = 0; and let S 0

i be the set of blobs in the cache
immediately after prunei, or the empty set if i = 0. Then we have the following
two lemmas.

Lemma 6 For i � 1, Ci = C 0

i and Pi = P 0

i .

Proof: Lemma 3 implies that the sets Ci are well de�ned. Lemma 5 implies that
the sets C 0

i are well de�ned. Ci = C 0

i then follows from lemma 4. Pi = P 0

i can
then be proved by induction. Since C1 = C 0

1, the cache and the cache copy are
in the same state when the �rst prune operation is performed on each. Since the
prune operation performs the same algorithm on each, and they are both in the
same state, the same blobs will be removed, and P1 = P 0

1. Now suppose that
Pi = P 0

i for every i < j. Since we also know that for all i, Ci = C 0

i, the same
argument shows that Pj = P 0

j.

55

Lemma 7 For i � 1, Si = S 0

i.

Proof: By induction. We know that S0 = S 0

0 = ;. Suppose Si = S 0

i. Since
Ci+1 = C 0

i+1 and Pi+1 = P 0

i+1 by lemma 6, it must be that Si+1 = S 0

i+1.
The following two theorems establish the correctness of the cache consistency

protocols. What they are essentially saying, in less formal language, is that if the
server should send a blob, it does, and if it shouldn't, it doesn't.

Theorem 1 Let B = fb1; b2; :::; bng be the set of blobs in the database that inter-
sect the range R for a given range request. If the user makes only a �nite number
of requests, then for every range request R that arrives at the Data Provider,
some time later there will be a time when all b 2 B will be in the cache, and that
time will be before the next prune, if there is one.

Proof: Consider any arbitrary b 2 B. At the time that R arrives to the Data
Provider, b is either in the cache copy, or not. Case 1: b is not in the cache copy.
In this case, add(b) will be executed on the cache copy, and by lemma 1, add(b)
will later be executed by the Unpacker. By lemma 4, that will happen before
the next prune, if there is one. Case 2: b is in the cache copy. Here we have two
sub-cases, depending on whether there has been a prune operation since add(b)
was performed last by the Data Provider. Case 2.1: There has been a prune.
Let prunei be the last prune before R arrived at the Data Provider. Since clearly
b 2 Si, lemma 7 guarantees that it will be in the cache after prunei, and will be
there at least until the next prune, if there is one. Case 2.2: There has not been
a prune. Then, by lemma 4, add(b) will be performed by the Unpacker, before
the next prune, if there is one. Since we have considered every case, every b 2 B
will be together in the cache, and before the next prune, if there is one.

Theorem 2 At the point that the Unpacker receives add(b), b is not in the cache.

Proof: By lemma 2, the Data Provider previously executed the add(b) command,
and by lemma 4 it must have been after prunei, the most recent prune command
at the Unpacker. Since b cannot have been in the cache copy before the Data
Provider executed the add(b) command, b was not in Si, and by lemma 7, b was
not in S 0

i. Since there can be only one add(b) command between any two prunes,
b cannot have been added after prunei and before this add(b), so b was not in the
cache when the Unpacker received the add(b) command.

2.7 Discard Policy

It remains to decide what the pruning algorithm will be. In other words, which
blobs will be removed from the cache and cache copy in any given prune. Some

56

3 2 156 47 0LOD:

Windows:

Figure 2.7: Sample LOD to Window Relationship

obvious possibilities are least recently used (LRU); �rst-in �rst-out (FIFO); and
a strategy based on geography, in which data elements that lie in a discard range,
or outside a preserve range, or outside multiple preserve ranges, are pruned.

The problem with FIFO is that if users pan around the map and then return
to where they began, the data they are currently viewing might be deleted. One
problem with LRU is that only the client knows the usage history, not the server,
making it diÆcult for the client and server to implement the same algorithm.
Probably the client would have to enumerate a list of the objects that it wants
discarded and send those to the server, a performance hit that we would like to
avoid. Also, it is not clear what the de�nition of \recently used" would be. If
some objects are currently shown in a window, but those objects have not been
searched for recently, and that window has not had the input focus recently, then
are those objects \recently used"?

So a geographical approach seems best. (Matos, et al. [55], and Chim, et al.
[15], come to the same conclusion.) We de�ne at least one preserve range for each
level of detail (LOD) based on the windows that are currently open. Figure 2.7
demonstrates a sample session in which four windows are open: the root window,
at LOD 7, two windows at LOD 4, and one at LOD 0. If a level has windows
open, we take the range currently showing in each window and expand it by a
factor of two in each direction to produce the preserve ranges for that level. If
there are no windows currently showing at a given level, then we use windows
from nearby LODs as the starting point. There are three possibilities for the
current level: (1) the only windows are at lower levels, (2) there are windows at
higher and lower levels, and (3) the only windows are at higher levels.

For situation (1), we look for the nearest lower level for which there are

57

preserve ranges

window

5 4 3LOD:

scaled rangescaled range

Figure 2.8: Sample Preserve Ranges

windows, and start with the ranges being shown in those windows. Similarly,
for situation (3) we look for the nearest higher level that has windows, and use
those ranges. For situation (2), we start by looking for the nearest level in either
direction that has windows, and use the ranges for those windows. If there is a
tie, then we use the windows from the lower level. This gives the center points
of the preserve ranges that we are creating, but we still need to compute the
range sizes. We start with the size of the range for the window that was used
to determine the center point, and scale that range up to the \middle" range for
the current level. The resolutions go up exponentially, so to de�ne the \middle"
scale for a level of detail we use the following:

S = Smin � e0:5 log(Smax=Smin)

where Smin and Smax are the minimum and maximum scales, respectively, for the
LOD. So if we are looking for a preserve range for LOD i, suppose the nearest
window is w, in LOD j, with scale Sw. Let Rw be the preserve range of w, and
let Si be the middle scale for LOD i. Then the preserve range for LOD i will be
Rw scaled up (or down) from Sw to Si. Figure 2.8 shows a sample for one of the
windows in LOD 4 from �gure 2.7.

2.8 Searching the Cache

In this section we look at the data structure that is used to store data in the
cache, and also in the cache copy.

58

2.8.1 Requirements

The data cache structure needs to support three operations:

1. �nd all data elements that intersect a given range,

2. add a new data element, and

3. remove all elements that do not intersect a given range.

The data structure will also be subject to concurrent accesses from di�erent
threads, but there are restrictions in the system architecture that limit the
amount of concurrency that we need to worry about. On the server, only one
thread, the Data Provider, reads and writes the cache, so there is no concurrency
problem. On the client, the Unpacker writes the cache (both insert and delete),
and two threads read it, the Searcher and the Event Handler. (Recall that the
data ow transition from the cache directly to the Event Handler is not shown
in �gure 2.1.) Furthermore, since deletion is relatively rare we are willing to just
lock the whole tree for deletion. Therefore, we only need to worry about one
adder operating on the tree concurrently with multiple searchers.

We do not need full serializability. Consider the following sequence of events,
in which it appears to the Searcher that geographic feature A is inserted before
B, but for the Event Handler it appears that B is inserted before A:

1. The Searcher iterates partway into the cache.

2. The Unpacker adds geographic feature A to the portion of the cache that
the Searcher has already scanned.

3. The Event Handler iterates completely through the cache, returning A.

4. The Unpacker adds geographic feature B to the cache.

5. The Searcher completes its iteration, returning B, but not A.

To see why this is not a problem, notice that the purpose of the Searcher is to
send objects to the Renderer. But when the Unpacker unpacks an object, it both
puts that object into the cache and sends it to the Renderer, which means that A
will be sent to the Renderer, just as if the Searcher had found it. So the overall
e�ect is equivalent to a history where the Event Handler does its search after A
is added to the cache, and the Searcher does its search after both objects have
been added to the cache|a serial sequence of events. More generally, any object

59

that is added to the cache concurrently to a search by the Searcher will seem
to have been found by the Searcher, and so if there is also a concurrent search
by the Event Handler, the system as a whole will always see an equivalent serial
history in which the Searcher's transaction was after the Event Handler's.

The requirements, therefore, are fairly relaxed. Mainly we just don't want
the structure to become inconsistent, or to have objects disappear temporarily
(or permanently). Ideally, we would like each thread to never lock more than one
tree node at a time.

2.8.2 The R-tree

Many database systems, including PostgreSQL, use the R-tree [37] for geometric
indexes. It shares many of the features of the B-tree that make it suitable for
database applications, including the ability to match node size to disk page size.
Unlike the B-tree, however, the R-tree stores 2-D geometric data, which does not
have an ordering. Each node is associated with an MBR, and the MBRs for the
children of a node can overlap. Searching is done using the MBRs, which means
that in a search, multiple children of a node might need to be searched. Thus, the
R-tree cannot guarantee logarithmic searching, but in practice the performance
has been found to be good.

In both the B-tree and the R-tree an update at a leaf may cause further
updates all the way up to the root, which makes it diÆcult to provide a high
level of concurrency. The B-tree \with links" data structure [7] mostly solves
this problem, by allowing the insertion or deletion algorithm to only lock one
node at a time, but it depends on a linear ordering of the data elements, which
does not exist with R-trees. (For full serializability, a searcher needs to hold read
locks on all leaves that it reads until the end of the transaction. But as mentioned
above, we don't need full serializability.) Kornacker and Banks [48] found a way
to get around this problem, but their solution still requires lock-coupling: a child
node must stay write-locked until a write-lock is obtained on its parent. For
database applications in which I/O operations are the primary concern, the lock-
coupling \should make little di�erence to the achievable degree of concurrency",
because the parent node is likely to be in main memory, and so \no locks are
held during I/O operations".

60

Figure 2.9: QR-tree Node with Children

2.8.3 The QR-tree

Since our cache is all in memory, we do not need the aspects of the R-tree that
make it suitable for disk I/O, and we want to avoid lock coupling. We have used
circumstances unique to our system, including knowledge of limited concurrency
requirements and knowledge of the minimum bounding rectangle of the entire
data set ahead of time, to design a custom data structure. We call it the QR-
tree, since it incorporates some aspects of the R-tree and some aspects of the
Quad Tree [25, 73, 74].

Each node in a QR-tree has associated with it a minimum bounding rectangle,
or MBR, and a region, which is also an axis-parallel rectangle. The region is
�xed at the time the node is constructed, whereas the MBR is updated every
time a data element is added to the subtree. The region for the root of the tree
is the MBR for the entire data set, which we are assuming is known ahead of
time. (If all elements of the data set were added to the tree, the region and the
MBR associated with the root node would be identical.) Each node has four
children, and the regions of the children are the northeast, southeast, southwest,
and northwest quadrants of the parent's region. Figure 2.9 shows a node and its
children. The regions are represented by solid lines, and the MBRs by dashed
lines. Notice that the parent's MBR is the bounding rectangle of each of the
child MBRs, and that the northeast child is empty, even though the parent's
MBR intersects with it. Also notice that sibling MBRs may overlap, but their
regions do not. The purpose of the regions is to give some added intelligence to
the node addition algorithm, so that overlap between a node's subtrees can be
minimized.

First, consider the QR-tree search, add, and delete operations without any
consideration to concurrency.

61

QR-tree Search

Searching a QR-tree for objects in a given range is the same as searching an
R-tree: at an internal node, if the node's MBR intersects the search range, we
search each of the node's children; at a leaf, simply compare the data element to
the search range.

QR-tree Addition

When adding a data element to an internal node, we pick the child whose region
contains the center of the MBR of the new data element, and add the data
element to that child. If that child is empty, we create a new leaf. When adding
to a leaf, we replace the leaf with an internal node, and add the original leaf data
and the new data element into the newly created internal node. The MBR of a
node is expanded to include the MBRs of any added data elements. This way,
the

In the case of adding to a leaf, if the original leaf data and the new data
element have MBRs that are centered on the same point, then we have an in�nite
recursion, where the original data element is added to child i of the newly created
internal node, creating a new leaf, and the new data element is also added to child
i, which is now a leaf, so the process repeats. To prevent this problem, we need
to force an end to the recursion by forcing the elements into separate children.
This means that one of them will be in a child whose region does not contain its
MBR's center point. Our approach is to end the recursion when the node that
the elements will be added to has a region that does not completely contain the
MBR of either data element. That way, both data elements can be added to a
node with a region that at least overlaps the element's MBR. But now we have a
new problem: consider the case where we add a new data element to a leaf which
has an element whose center point is not within the region. After converting the
leaf to an internal node, when we go back to add the old and new data elements,
if we use the standard method of choosing the child whose region contains the
center of the data element's MBR, we will be stuck, because no child contains
the center of the old data element's MBR; the parent doesn't even contain it.
Therefore, in this special case we use a di�erent criteria for choosing a child: pick
the child for which the area of the bounding rectangle of the union of the region
and the data element is smallest.

62

QR-tree Deletion

For this project, we want to delete all data elements outside a particular range,
called the \preserve range". The protocol is fairly simple; this executes at each
node, starting with the root:

� if I am a leaf

{ if my MBR is intersects the preserve range, do nothing;

{ else set myself to the empty tree;

� else (I am an internal node)

{ if my MBR is within the preserve range, do nothing;

{ else if my MBR does not overlap the preserve range, set myself to the
empty tree

{ else

� for each of my children

� if the child's MBR is within the preserve range, do nothing;

� else if the child's MBR does not intersect the preserve range,
remove it;

� else recurse on the child;

� recompute my MBR as the minimum bounding rectangle of each
remaining child's MBR;

If we want to return a list of the objects that have been deleted, we only need to
iterate over each deleted subtree.

QR-tree Experiments

We have done some crude experimentation with the QR-tree, comparing it to a
similar class of trees in which nodes have only MBRs, and not regions. Searching
on these other trees is the same as with the QR-tree, but for adding a new element
to an internal node, we must now decide which child gets the new element using
only the MBRs of the children and of the new element. Frequently the new
element will only partially overlap the MBRs of any existing child, so we have a
choice between adding the new element to a subtree that is empty (essentially,
creating a new child), or adding to a subtree that already has elements. We tried
three di�erent add algorithms, giving three variants. The �rst variant favors

63

creating new children, and thus tends to produce a short, wide tree; the second
variant favors adding to subtrees that already have elements, and thus tends to
produce tall, narrow trees; and the third variant is in the middle. Note that since
there is overlap among a node's subtrees, short and wide is not a priori better.
A number of elements were inserted into each tree, and then a number of queries
were performed, and the number of nodes traversed in each query was measured.
Of course we expect that a query that returns more nodes in its result set will
traverse more nodes in the search, so we divided the number of nodes traversed by
the number of nodes returned. For number of nodes traversed per node returned,
we found that the QR-tree averaged 4.2, the wide variant averaged 7.1, the middle
variant 8.6, and the narrow variant 12.0. This seems to indicate that associating
a region with each node does improve performance. More extensive testing is
needed, and comparisons with the R-tree would also be interesting.

2.8.4 The QR-tree and Concurrent Access

We have a method by which adders and searchers never have to lock more
than one node of a QR-tree at a time. Our solution uses two atomic oper-
ations, which operate on a single node of a QR-tree: getDataIfLeaf() and
setChildren(children). The getDataIfLeaf() method returns the stored
data element if the node is a leaf, and returns a null pointer if the node is not
a leaf. The setChildren(children) method sets the node's children pointer
to the given children pointer (a pointer to an array of node pointers), and sets
a ag indicating that this node is now an internal node. Both of these opera-
tions are extremely fast, so the overhead in providing synchronization and the
amount of time that each thread spends in a blocked state on a QR-tree are quite
small. Given these two atomic operations, we can now describe the search and
add algorithms.

The search method should return a subset of the data elements in the tree,
containing elements that match a given criteria (typically, intersecting a search
range). It starts by �nding the �rst leaf in a depth �rst search. Now, we would
like to just inspect the data element at that leaf, and if it meets the criteria, add
it to the return list. But there is a problem: in between the time that we discover
the leaf and the time that we retrieve its data element, an adder may have turned
the node into an internal node. So we execute the getDataIfLeaf() method.
If it returns a data element, the element is checked and possibly returned; if it
returns null, we continue with the depth �rst search until we �nd the next leaf. In
this second case, the �rst subtree searched will be the one rooted at this internal

64

node that was previously a leaf. As long as there are not an in�nite number of
add operations, the search will eventually �nd the data element again, in its new
leaf, and add it to the return list. After �nding a data element at leaf node n,
checking it against the search criteria and either returning it or not, when we
start searching for the next leaf, we start from n as if it is still a leaf, even if it is
not. In other words, if it has in the meantime been turned into an internal node
by an adder, we will not search the newly created subtree. This is necessary for
correctness, as will be explained below.

The add procedure is the same at every node. First, the node's MBR is
expanded (if necessary) to cover the bounding rectangle of the new data element.
Then we have three possibilities:

1. The node is empty.

Set its data pointer to point to the new data element, and set a ag to
indicate that the node is now a leaf.

2. The node is an internal node.

First compute, according to the four sub-regions of this node, which child
should take the new data element. If that child pointer is currently null,
simply set it to point to a new leaf. Otherwise recursively add the new data
element to that child node.

3. The node is a leaf.

In the normal case, we want to convert the node to an internal node, and
add the new data element, as well as the original leaf element, back into that
newly created internal node. But because of concurrency considerations,
we have to be careful how it is done. First, create children, an array of
child pointers, and set the appropriate element to point to a new leaf node
for the original data. Then call setChildren(children) on the original
leaf node, to atomically turn it into an internal node with the original data
element in a child node. Finally, recursively add the new data element to
this node, which is now an internal node.

In the case when we need to stop the recursive descent, as described in the
part on addition in section 2.8.3, the di�erence is that instead of waiting
until after setChildren() is called to add the new data element, we choose
an index in children for the new data element right after choosing for the
original data element, with the restriction that they cannot go into the same
child. Then a new leaf node is also created for the new data element, two

65

child pointers in children are set, and �nally the setChildren() method
is called. Now both data elements are in the tree, so we do not need another
recursive add.

Notice that, right up until the moment that the adder calls the atomic opera-
tion setChildren(), the adder has made no change to the tree that would be vis-
ible to any searcher, other than expanding the MBRs. After the setChildren()
operation, the adder makes no other changes to the tree.

There are a couple of interesting situations. After an adder has updated the
MBR of an internal node, but hasn't added the new data element to the subtree
yet, a searcher that would return the new data element might traverse the subtree,
even if no other data elements intersect its search range, but it will not �nd the
new data element. The e�ect will be as if the search completed before the add
happened. The only disadvantage is that the searcher might do some extra work
in traversing a subtree unnecessarily.

After a searcher has retrieved the data element from a leaf, but before the
next leaf in the traversal has been found, an adder may turn the leaf into an
internal node, pushing the original leaf data down into a new subtree. If the
search traversal continued down into the new subtree, the original data element
would be returned a second time, which is clearly a mistake. This is why, as
mentioned above, the searcher will continue the traversal as if this node is still
a leaf, ignoring the children it now has. Then it's just as if the add operation
happened after the search.

Of course the QR-tree is not general purpose, because its correctness is limited
to the speci�c situations discussed above. Nonetheless, for our purposes, it has
some advantages over the R-tree with links:

1. There is no lock-coupling.

2. A searcher almost never locks an internal node. (The only exception is
when the searcher �nds a leaf, but an adder turns the leaf into an internal
node before the searcher gets the lock on it.)

3. An adder never needs to lock more than one node.

4. It is simpler to implement.

2.8.5 Tree of Trees

Because the data is packaged in blobs in the database and in the server cache
copy, we will want to prune the cache in blob chunks, rather than in chunks of

66

individual objects. This requires a slight change in the discard policy: instead of
deleting objects that do not intersect any of the preserve ranges, we must delete
all objects that come from a blob that does not intersect any of the preserve ranges.
Searching, however, must be done at the object level, so we need a structure that
makes access easy for both blob granularity and object granularity. Our solution
is to use a tree of trees. The main tree is a regular QR-tree with each leaf node
associated with a blob. The data of each leaf node is then a QR-tree of the lines
(or polygons or landmarks) that came in that blob.

For adding, when the client starts unpacking a blob, it starts three new QR-
trees, for landmarks, lines and polygons. Each of these (initially empty) trees is
added to the main tree for its data type. While that blob is active, each object
unpacked is added to the appropriate inner QR-tree, and thus automatically to
the appropriate main tree.

For searching, we simply need to change the search method on the main
QR-tree so that when it gets to a leaf, instead of simply returning that leaf, it
implements the search method on the (ordinary) QR-tree that is stored at that
leaf.

67

68

Chapter 3

Preprocessing the Dataset

The most time-consuming aspects of this project have been the relatively mun-
dane ones that involve preparing the dataset: interpreting the raw data format,
translating the data into a more convenient format for the runtime system, uni-
fying the county-based multi-�le data into a single dataset, �nding and handling
various anomalies and mistakes in the raw data, and generalizing the data into
multiple levels of detail. This is consistent with other researcher's experiences.
In Funkhouser's architectural walkthrough project [33] it took almost as much
time to construct the model, including converting 2.5D architectural models into
a 3D representation suitable for rendering and creating multi-resolution models
for various pieces of furniture, as it did to develop algorithms to visualize it.
Kernighan and Van Wyk [45] gave detailed descriptions of the highly ad hoc
heuristics they had to develop for converting AutoCAD DXF �les into a more
convenient geometrical format.

3.1 Related Work

In the architectural walkthrough system of Funkhouser, et al. [32, 29, 33], data is
stored in segments, where each segment is \a variable-sized contiguous group of
bytes in a display database �le that can be read and released as a unit" [32]. They
do not use a general purpose DBMS. I/O and memory allocation are for segments,
not individual objects. Segments for all objects incident on a cell (e.g., a room)
are stored contiguously in the �le, and segments are grouped together using
visibility information. Border objects used in more than one cell are duplicated,
once for each cell. Within a cell, each object can be described at multiple levels
of detail, and object descriptions are grouped by level-of-detail (LOD). Discrete

69

LODs are set during the preprocessing phase, and chosen dynamically at runtime.
All LODs for a cell are in the same segment. They use a \one-level modeling
hierarchy", which means that objects cannot reference other objects (i.e., no
object containment hierarchy). A variant of the k-D tree is used to make the
spatial subdivision to divide the data into cells, but no index is used at runtime
for data access. Instead, there are data pointers from segment to segment based
on relationships such as adjacent, incident, visible, etc., and runtime traversal is
based on these.

In Schmalstieg's network-based walkthroughs [78, 77, 79, 43], \The database
of the server is a at collection of objects. Each object is composed of a geometry
representation (trunk plus LODs), and a matrix de�ning the object's position and
orientation." [77] As with Funkhouser's system, there is no index on the server;
object pointers are traversed. Therefore neither of these systems are well suited
to support sudden jumps to a distant viewport, as is necessary in our system.

Moving to GIS oriented projects, van Oosterom, et al. [94, 95, 96, 101, 100,
97], developed a sophisticated combination of data structures that have been
implemented, most impressively, in a spatial data management system for the
Netherlands Cadastre [99]. This is a database of more than 50 GB containing
spatial and topographic data along with information about real estate parcel
ownership and transactions, with histories. These new data structures and tech-
niques allow all levels of detail for the geographic data to be stored in a single
data structure, avoiding redundancy and its \related drawbacks: possible incon-
sistency and increased memory usage" [100], but still indexable by an R-Tree
style approach. Two key components of map generalization, feature selection
and line simpli�cation, are done on-the-y. This ambitious goal was achieved
by the use of three new data structures: the BLG-tree, the Reactive-tree, and
the GAP-tree. The BLG-tree (for \Binary Line Generalization") is used for on-
the-y polyline simpli�cation. It encapsulates the simpli�cation that would be
obtained using the Douglas-Peucker algorithm [22], so that the simpli�cation with
any error bound can be quickly pulled out from the tree without re-executing the
algorithm. The Reactive-tree provides two essential functions: spatial indexing
and on-the-y feature selection. It provides spatial indexing in a similar way to
the R-tree. However, each object is assigned an importance, and less important
objects are never stored at higher levels than more important ones. (Unlike the
R-tree, leaves can occur at any level of the tree.) Selection is accomplished by
only descending the tree far enough to get objects whose importance is above a
particular threshold. Each polyline is represented in its leaf node by a BLG-tree.
The GAP-tree (for \Generalized Area Partitioning") is an auxiliary structure

70

that is used to decide how to �ll the \holes" that are left when an area feature
is not selected. These data structures were implemented as extensions to Post-
gres. So in the end, all of the geographic data is stored in one table, with the
Reactive-tree as the index, and every query must specify a range, an importance
threshold, and a line simpli�cation error bound.

The ViRGIS system [65, 63, 67, 87], is a virtual reality interface to a GIS,
or a kind of GIS walkthrough. All data is stored in an extended ObjectStore
OODBMS. The data includes terrain and texture in addition to geometric objects.
The objects are indexed by an R-tree; how it handles multiple LODs is not
explained. Terrain data is in one multiresolution quadtree. Texture is managed
by a tiling scheme and indexed by a hashing structure, with di�erent LODs in
di�erent databases.

3.2 The TIGER Data

The dataset we use is the TIGER data, a vector-based geographic description
of the United States that is freely available from the US Census Bureau [92].
(TIGER stands for Topologically Integrated Geographic Encoding and Refer-
encing.) A full description of the format can be found in the TIGER technical
documentation [91]. Here we only consider those aspects that are important for
this project.

3.2.1 Overview

The focal point of the TIGER data is the complete chain, which is really a
polygonal line. In what follows, we refer to complete chains as simply \lines".
Each line has two endpoints and zero or more shape points in between. In �gure
3.1, lines L4, L5, and L10 have shape points, and the rest have only endpoints.
The two endpoints of L10 have identical coordinates, so L10 forms a loop. The
shape points always have degree 2, so when two or more lines meet at a point, that
point must be an endpoint for each of the lines. An endpoint that is shared by
multiple lines, or that is the endpoint at both ends of a single line, is duplicated
in the dataset. Each line has a feature code and a feature name. The feature
code is three characters long, and de�nes what type of feature it is|road, river,
etc. For example, \A11" is the code for \primary road with limited access or
interstate highway, unseparated". The feature name is up to 30 characters long,
and gives a human-readable description, such as \Madison Ave" or \I-95". The

71

feature name may be empty, as is the case for many \non-visible" lines, such as
municipal or political boundaries.

The lines connect so as to divide the plane into polygons. The entire surface
area of the United States is covered by polygons, and polygons can overlap only
if one polygon is completely contained within another. (In that case we can think
of the outer polygon as having a hole.) In �gure 3.1 there are four polygons, and
polygon P4 is completely contained within polygon P3. A boolean ag for each
polygon indicates whether the polygon maps to land or water. Most polylines
serve as the common boundary of two polygons, but those that are on the outer
boundary of the entire dataset serve as the boundary of only one polygon, and
some polylines that lie within a polygon do not serve as any polygon boundary.
In �gure 3.1, line L9 does not serve as a polygon boundary.

The TIGER data also delineates special or notable places called landmarks.
The landmarks are divided into two classes: point landmarks and area landmarks.
Figure 3.1 contains one point landmark, in polygon P3. As with the lines, each
landmark has a feature code and feature name, and the name may be empty.
Each point feature is associated with an independent point that is not coincident
with any endpoint or shape point. Each area landmark is associated with one
or more polygons, but not all polygons are associated with a landmark. In our
system, however, all polygons are treated equally; those that are not landmarks
are assigned a generic feature code and an empty name. Since area landmark
properties are incorporated into the polygons themselves, we do not need to refer
explicitly to area landmarks, and so for simplicity we refer to point landmarks as
simply \landmarks".

3.2.2 File Organization

The data comes in the form of more than 3000 \zip" archive �les|one for each
county or county level entity. (In Louisiana, the counties are called \parishes".
In Virginia, there are many towns that are independent entities, not part of any
county. These are treated like counties in the TIGER data, and we use the word
\county" to mean any of these.) A zip archive contains as many as 17 �les.
Each �le contains a distinct record type, and each record type is given a single
character alphanumeric code. We are interested in only six of the record types.

Record type 1 (lines) There is one record of type 1 for every line. This
record contains a unique id, feature code, feature name, and coordinates of
the endpoints, along with many other �elds that we do not use.

72

endpoint

shape point

point landmark

P1

P2

P3

P4

L1 L2

L3

L4

L7

L6

L5

L8
L9

L10
L11

L12

Figure 3.1: TIGER Data Diagram

73

Record type 2 (shape points) There can be zero or more type 2 records for
each line. These contain the shape points, at most ten per record, along
with the line id that matches the type 1 record and an index number. For
example, if a line has 36 shape points, there will be 4 type 2 records with
that line id, having index numbers 1, 2, 3, and 4. The �rst three will have
ten shape points, and the fourth will have six shape points.

Record type 7 (landmarks) Each type 7 record describes a point or area
landmark, including a landmark id, feature code, feature name, and latitude
and longitude coordinates if it is a point landmark.

Record type 8 (polygon/landmark links) Type 8 records map area land-
marks to polygons. Each record contains the landmark id and the polygon
id.

Record type I (line/polygon links) Type I records link polylines to poly-
gons. There is one record for each polyline. Each record contains the line
id and the polygon ids for the right and left sides.

Record type S (polygon descriptions) A type S record for each polygon
contains many �elds describing the polygon. We only use one boolean ag,
which tells whether or not the polygon represents a water feature (lake,
river, etc.).

Lines that form a border between two counties will appear in both counties,
but possibly with a di�erent line id. Whether they have the same line id or not,
the two representations for a county border line must have the same endpoints
and the same shape points. (As will be described in section 3.2.3, we have found
two cases where this requirement was violated, but these are errors in the dataset
that should be corrected in later versions.) The records for county border lines
do not indicate the identity of the neighboring county. Section 3.5.5 describes
how we recover this information.

3.2.3 Anomalies

The normal case is that within each county, the set of lines partitions the plane
into simple polygons, and the union of these polygons makes a simple polygon
for the whole county. There are some anomalies, however, that make the prepro-
cessing diÆcult. The images in this section are screenshots of our data selection
tool, which is described in section 3.6.1.

74

Figure 3.2: Statue of Liberty National Monument

75

Not all counties are connected, and the counties that are connected might
have holes. For example, New York County, New York (Manhattan) has three
pieces: the main island, the Statue of Liberty, and part of Ellis island. Both the
Statue of Liberty and the New York part of Ellis Island are surrounded by land
or water that is in Hudson County, New Jersey. Figure 3.2 shows the lower part
of Manhattan, and the two islands, which are both part of the Statue of Liberty
National Monument. In some cases, an entire county is surrounded by another
county, or even surrounded by a single polygon within another county. The
nesting can go deeper: in one case, the town of Manassas, Virginia is contained
within Prince William County, Virginia, and a separate piece of Prince William
County is in turn contained within Manassas.

Figures 3.3 to 3.7 cover this situation in Prince William County, which illus-
trates many of the anomalies we have to deal with. Figure 3.3 shows the part of
Prince William County with the hole. The hole is broken up in the middle by
three \islands", and in the upper right by a strip of land that goes across the hole.
(The three islands look like one island in �gure 3.3; �gure 3.6 has a close up of
the islands.) Figure 3.4 shows Manassas Park, which has two pieces that occupy
the upper right portion of the hole in Prince William, straddling the strip of land
that crosses the hole. Figure 3.5 shows Manassas, which occupies the rest of the
hole in Prince William. Manassas itself has holes to accommodate the islands in
Prince William, but they are diÆcult to see in �gure 3.5. Figures 3.6 and 3.7
show closeups of the islands in Prince William and their holes in Manassas. Note
that there are three islands, but at �rst glance �gure 3.7 only appears to have one
hole, which �ts the island on the right. The reason has to do with the way that
the data selection tool, from which these screenshots were taken, shows holes. It
will show the hole as the background color, white, if the hole is occupied by a
polygon that is not contained within another polygon, which we call a top-level
polygon. If a hole is completely within a single polygon, then the hole is only
shown as an outline. In �gure 3.7, the outline for the two leftmost islands in
�gure 3.6 can be seen in the larger polygon to the left of the more visible hole.

This example clearly shows that there is no containment hierarchy for coun-
ties. Also note that we cannot determine that a county is contained inside another
county by merely looking at its immediate surroundings: both Manassas and
Manassas Park are adjacent to two other counties, which under a naive approach
would not suggest that they are inside a hole.

Note: the Census Bureau releases new versions of the TIGER data fairly
regularly, and to avoid topological errors and other inconsistencies when unifying
the multi-county data it is important to use the same version for all the counties.

76

Figure 3.3: Prince William County, Virginia. Contains a hole, islands inside the
hole, and a strip dividing the hole.

77

Figure 3.4: Manassas Park, Virginia. Fits inside the upper right portion of the
hole in Prince William, straddling the strip across that hole.

78

Figure 3.5: Manassas, Virginia. Fits inside the hole in Prince William, and the
hole in the middle of Manassas can just barely be seen.

79

Figure 3.6: Closeup of the islands in the middle of Prince William County, Vir-
ginia.

80

Figure 3.7: Closeup of Manassas, Virginia. The hole in the middle, and the two
outlines next ot it, match the two islands in Prince William County.

81

For this project, we decided to standardize on the Redistricting Census 2000
TIGER/Line �les, which is not the most recent version, but it is the \oÆcial"
version that was submitted to the states for redistricting purposes. We have
discovered two errors in this version that as of this writing were not documented
on their \errata" page (though the Bureau has been has been noti�ed of the
errors). For the record, we list them here.

1. On the border between Clermont County, Ohio and Warren County, Ohio,
the line with id 118457848 in Clermont is represented by two lines in War-
ren, with ids 159041118 and 159041119. Line 118457848 should be split to
match the two lines in Warren.

2. On the border between Clay County, Missouri and Jackson County, Mis-
souri, the single line 89768904 in Clay should be split twice to match the
three lines 91515084, 91515090, and 91414091 in Jackson.

3.3 Merging the Raw Data

Because of the restriction that shape points can belong to only one polyline, the
TIGER data is forced to have a large amount of duplication that we don't need for
this project. In an urban setting like New York, for example, every rectangular
Manhattan block must be a polygon, and each side of the blob must be a line. At
a typical street corner, the point representing that corner will have to be listed
in the data four times|as an endpoint of each of the four lines that are incident
upon it. Each line in turn is referenced as the side of two polygons (though the
line description itself is not duplicated). For this project we merge adjacent lines
and polygons to produce a set with fewer but larger objects. This signi�cantly
reduces the size of the dataset. The left side of �gure 3.8 shows the typical
situation at a street corner. The four endpoints within the dashed rectangle all
have the exact same coordinates, but they are shown separately for clarity. On
the right side of the �gure, the four lines have been merged down to two, reducing
four endpoints to two shape points. When two polygons are merged, any lines
that serve as a common boundary between them become internal to the new
merged polygon.

Our merging method is to merge polygons �rst, and then merge lines based on
the new set of polygons. In our simplest unrestricted approach, any two adjacent
polygons in a county that have the same feature code and feature name are
merged. Then, two lines that are incident on the same point and that have the

82

endpoint

shape point

mergedoriginal

Figure 3.8: Before and After Merging

same two polygons on either side can be merged. In this case left and right don't
matter. As an example, consider again �gure 3.1. Suppose that polygons P1 and
P2 have been merged into a new polygon, called P5, and now we are testing to
see if lines L8 and L5 can be merged. If the point where the two lines meet is the
start point for both points, then L8 has P3 on the left side and P5 on the right
side; L5 has P3 on the right side and P5 on the left side. Regardless of whether
P3 and P5 have the same feature code and feature name, lines L8 and L5 can be
merged. L4 and L9 cannot be merged, because L4 has P5 on either side, and L9

has P3 on either side.

Notice that after the merging step, no line can intersect more than one poly-
gon, unless it is a common border between two polygons, and every polygon is
either a top-level polygon, or the child of one other polygon. Since landmarks have
zero extent, they trivially must intersect only one top-level polygon. Therefore
the features can be partitioned according to their association with a particu-
lar top-level polygon, with the border lines being associated with two top-level
polygons. This partition is used in the database schema, as described in section
3.4.2.

Also note that polygons that are top-level in the raw data may become chil-
dren after merging. In fact, after the merging step, most polygons are children,
although most of the surface area is covered by the larger top-level polygons.

Unrestricted merging tends to produce merged polygons that are quite large|
in many cases the size of the entire county. Since at runtime we will be down-
loading information at the granularity of the merged top-level polygons, having
very big polygons means that more data than is necessary will be downloaded;

83

counties can be much larger, in the projected viewing space, than the size of
a typical window. So we want to strike a balance between two extremes: no
merging leaves too much duplication in place, while too much merging makes
the polygons too big. Our compromise is to impose a restriction on the polygon
merging which says that the merged polygon cannot be longer in either direction
than the equivalent of 300 pixels at the highest scale for the given LOD. Then the
polygon merging criterion becomes that two adjacent polygons can be merged if
they have the same feature code and feature name, and if the resulting merged
polygon would not violate the 300 pixel rule.

3.4 Database Schema

3.4.1 Goals

The primary concern, as far as the data format, is that runtime performance
should be as good as we can make it. By \performance", we mean that the
server should be able to pull the requested data out of the database and send it
across the network as quickly as possible. Network bandwidth is assumed to be
scarce, so we do not want to send too much more information than is needed,
although a little more than is speci�cally requested may improve performance by
serving as a de facto prefetch. Since network bandwidth may be low, compressing
and uncompressing data is assumed to be faster than sending uncompressed data.
Since today's hard drives are large relative to the amount of data that we need to
store in practice, disk space is not a major direct factor, but, all else being equal,
database performance is better when less disk space is used, so it is an indirect
factor.

We are only secondarily concerned with preprocessing speed. We assume that
the database is created once and is thereafter read-only, so we do not need to
accommodate dynamic updates. In reality, geographic databases do need to be
updated as new roads are built, errors are discovered, etc., but these events are
infrequent enough that it would suÆce to, for example, build a new database once
a week, and then simply switch the runtime system over to the new database and
remove the old one (or archive it). Preprocessing performance is a concern only
in so far as we want the database to be buildable in no more than a few days;
improvements beyond that are certainly desirable, but they should not come at
the expense of runtime performance.

At runtime, the client will be making requests for all data within a particular
geometric range and at a particular scale. Though not required, it is allowable

84

to partition the in�nite number of scales into a �nite number of discrete levels of
detail (LODs). The amount of duplicate information that needs to be sent to the
client should be minimized. The schema must include information that allows
the server to track in the cache copy which data elements the client currently
has, and execute the pruning algorithm.

3.4.2 The Schema

In our database schema, we use eight prede�ned LODs. All data for a given LOD
is stored in a single table, and each LOD is queried separately from the others.
Hence, there is some duplication of data across LODs, but the performance of
a query on one LOD is not a�ected by the data in another. This is important
when we consider that in the �nal database, Level 0, which has the highest level
of detail, requires more than 1 GB for the table, and about 91 Mb for the index,
while the remaining seven LODs combined require just 62 Mb for the tables and
11 Mb for the indexes. Levels 2 through 7 require under 19 Mb for the tables
and 3.4 Mb for the indexes. Level 3, for example, requires about 4 Mb for the
table and less than 1 Mb for the index. Clearly a range query on the Level 3
table is going to be much faster than one on the Level 0 table. Since much of
the navigation in a user session will typically be done at levels 1 through 7, the
performance is quite a bit better than could be had with all LODs in a single
table.

The data in each LOD is organized around the polygon containment hier-
archy. Recall from section 3.3 that after merging the features are partitioned
according to which top-level polygon they intersect with, assuming that border
lines are duplicated and associated with two top-level polygons. For storage in
the database, every feature|line, landmark or polygon|that intersects a given
top-level polygon is listed and compressed into a byte array, or blob. It is these
blobs that are stored in the database. There are eight tables, one for each LOD:
mapblobs0, mapblobs1, ..., mapblobs7. Each record in each table has three �elds:
the blob; a database-wide unique integer blob id; and the blob's bounding box,
which is the MBR of the top level polygon associated with the blob. An R-tree
index is created on the bounding box column.

Table 3.1 shows the number of blobs and the average size of each blob, at each
S-Level. Table 3.2 lists the number of geographic objects of each type at each
level in the intermediate database, which will be described in the next section.
This gives a rough idea of how many objects are in each blob, but it isn't exact
because most top-level polygon border lines are duplicated in the blobs. We are

85

num blobs avg. size (bytes)
S-Level 0 1,356,216 1,442
S-Level 1 115,596 1,946
S-Level 2 35,592 1,174
S-Level 3 10,987 760
S-Level 4 2,238 482
S-Level 5 385 419
S-Level 6 74 499
S-Level 7 1 8,782

Table 3.1: Blob Database Statistics

also interested in how much overlap there is among the blob bounding boxes,
because it gives a good idea of how many blobs will be returned per query. As
an estimate of this, we summed the areas of the blob bounding boxes at S-Level
0, and it came to 4,860,538 square miles. The true area for the dataset should
be 2,962,081 square miles, which means our computed value is 64% over. If we
assign all of this increase to overlap, ignoring the fact that blob bounding boxes
on the edge of the geography reach out into the ocean, then it suggests that the
average number of blobs returned by a query should be about 1.64 at S-Level
0. At the higher levels such a computation becomes less meaningful because the
edge e�ects become much greater.

Within a blob, each line is represented as line id, feature code, feature name,
number of points, coordinates for each point, and a boolean ag indicating
whether the line is a state border. Each landmark is represented as landmark id,
feature code, feature name, and point coordinates. Each polygon is represented
as polygon id, parent polygon id, feature name, number of border lines, integer
array with the line id of each border line, boolean array with the orientation (for-
ward/backward) of each border line, boolean ag indicating whether the polygon
is water, and boolean ag indicating whether the polygon is a park. The polygons
do not store an explicit feature code; instead the class of a polygon is deduced
from whether it is water, whether it is a park, and whether it has a name.

3.4.3 The Intermediate Database

With the database schema described in section 3.4.2, the server never needs to
concern itself with individual geographic features; the blobs are pre-packaged,
compressed, and ready to go. It must store in the cache copy only blob ids and

86

bounding boxes, and cache pruning is done at blob granularity. In an earlier
version of the system, we used a di�erent schema which was not based on blobs.
Since that schema is still used by the preprocessor as an intermediate stage in
the creation of the �nal database, it is described in detail here.

This schema has \permanent" tables that are needed by the runtime system,
and \temporary" tables that are used only during preprocessing and can then be
discarded. Furthermore, the permanent tables contain some temporary �elds that
are only used during preprocessing. This section only covers the permanent �elds
of the permanent tables; the temporary tables and temporary �elds are discussed
in section 3.5.5. There are eight permanent tables each for lines and polygons,
associated with the eight S-Levels. The tables are called lines0, lines1, ...,
lines7, and polygons0, polygons1, ..., polygons7. In theory we could also
have eight tables for landmarks, but in our current system we only use landmarks
at S-Level 0, so we only need one table for landmarks, called landmarks. Each
of these tables has an R-tree index on its range �eld (see below). We also have
one table, called db_summary, that has only one record with only one �eld: the
bounding box of the entire dataset. Table 3.2 shows how many lines, polygons,
and landmarks are in the database at each level (after merging).

Each record in the linesx table corresponds to one line, after merging. It has
eight permanent �elds: (1) the line id, (2) the feature code, (3) the feature name,
(4) a boolean ag for whether the line serves as polygon border, (5) a boolean
ag for whether the line is a state border, (6) the number of points (endpoints
and shape points are not distinguished in the database), (7) an array of point
coordinates, and (8) a range. For a line that is not a polygon border line, the
range is the bounding box of the line. For polygon border lines, the range is the
minimum bounding box of the union of the polygons that the line borders. The
reasoning behind this is that at runtime, when the client sends a range request, it
is possible that a polygon will intersect the request range, but a line on its border
will not. But if a polygon is sent to the client, it can only be reconstructed by
the client if all of its borders are also sent. So the range for each border line is
expanded so that it will be sent to the client as part of any response that includes
polygon that it borders.

Each record in the polygonsx table corresponds to one polygon, either top-
level or child, after merging. It has eight permanent �elds: (1) the polygon id;
(2) the id of its parent; (3) the feature name; (4) an array of line ids for the
border lines, in order; (5) an array of boolean values, for whether each line is
oriented forward or backward; (6) a boolean value for whether the polygon is a
water feature; (7) a boolean value for whether the polygon is a park; (8) a range

87

num lines num polygons num landmarks
S-Level 0 21,531,051 1,834,576 241,192
S-Level 1 3,005,328 582,269 0
S-Level 2 378,792 109,873 0
S-Level 3 81,425 25,946 0
S-Level 4 11,996 4,271 0
S-Level 5 2,614 635 0
S-Level 6 871 117 0
S-Level 7 416 20 0

Table 3.2: Numbers of geographic objects in intermediate database, after merg-
ing, at each S-Level

total tables indexes
�nal database, 300 pixel merge limit 1,243 1,141 102
intermediate database, 300 pixel merge limit 8,492 6,616 1,877
intermediate database, unlimited merge 5,757 4,468 1,289

Table 3.3: Database Sizes, in Mb

representing the polygon's MBR.

Each record in the landmarks table corresponds to one landmark. It has four
permanent �elds: (1) the landmark id, (2) the feature code, (3) the feature name,
(4) a range. Of course the range of a landmark is degenerate, covering only a
single point. The only reason this �eld is a range type instead of a point type is
that PostgreSQL does not currently support R-tree indexes on point data.

The superiority of the �nal database can be seen in the size of the two
databases. Table 3.3 compares sizes for three databases: the �nal database,
which uses the schema with the blobs, and is based on a polygon merging limit
of 300 pixels; an intermediate database, also with a polygon merging limit of 300
pixels; and an intermediate database with no polygon merging limit. All values
are in Mb. The total size is also split into size for tables and indexes; values
might not add up because of rounding. Comparing the �nal database to the
intermediate one with the same merge limit, the �nal database is only 14.6% as
big, and the indexes are only 5.4% as big. Between these two databases, a given
query should return an amount of data that is about the same percentage of the
whole dataset, and in that case the number of pages read from the tables for a
query should depend linearly on the size of the tables. For searching the index,

88

the relation between number of pages read and size of database is not so clear|
we would normally expect a logarithmic relationship for a tree-based structure,
but a search in an R-tree frequently needs to search more than one subtree from
any given internal node. In any case, smaller indexes will in general mean fewer
pages read. So the �nal database should give much superior performance to the
intermediate one, and some very preliminary and informal testing has borne this
out.

3.5 Processing the TIGER Files

The preprocessor has three distinct phases. In the �rst phase, the raw TIGER
data is converted to a more convenient and space eÆcient internal format and
stored in the database in (mostly) full detail, uncompressed and not packaged into
blobs. In the second phase, which is executed multiple times, the higher, more
generalized and simpli�ed LODs are successively generated, each from the LOD
below it. In the third phase, the now-complete database is packaged into pre-
compressed blobs and stored in a second database that will be used at runtime.
This section describes the protocol that we have developed for the �rst phase,
and the other two phases are described in the next two sections.

3.5.1 Goals and Obstacles

The raw TIGER data that we get is unsuitable for use in the runtime system
for several reasons. Most obviously, it is spread out over many thousands of
text �les, with no indexing. Multiple �les have to be read just to get the full
description of a single feature. We do not use many of the descriptive data �elds.
Each county is treated separately, making it diÆcult to recognize cross-county
features, which is especially necessary when we generalize for the higher LODs.
There is duplication far in excess of what we need, as discussed in section 3.3.

In this �rst phase of preprocessing, therefore, we want to convert the data
into a format that can more conveniently be used by the runtime system, and
that can be used by the preprocessor as a base for building the LOD hierarchy.
More speci�cally, our goals include the following:

1. Eliminate the duplication of county border lines, and unify the multi-county
data into a single dataset.

2. Eliminate much of the duplication within a county by merging together
adjacent polygons and polylines.

89

3. Deduce the polygon containment hierarchy, which is necessary for runtime
display, and make it consistent across counties.

4. Save various pieces of information that will be needed later when building
the LOD hierarchy: for polygons, the county that it came from; for lines,
counties for the left and right sides and polygon ids for the left and right
sides; for landmarks, the county that it came from.

5. Keep the number of disk accesses low enough so that the preprocessing
doesn't take more than a few days.

All of this must take into account that in general no more than one county
may �t into main memory at a time. The actual protocol for doing this is given in
section 3.5.5, but we look in detail at the two main issues that make the process
diÆcult: deducing the polygon containment hierarchy, and processing the county
border lines.

3.5.2 Deducing the Polygon Containment Hierarchy

Much of the complexity of the process is involved in deducing the polygon contain-
ment hierarchy, while dealing with the anomalies that were described in section
3.2.3; speci�cally, in determining the parent for each polygon in the case where
the polygon and its parent are in di�erent counties. We cannot know ahead of
time which county will be processed �rst, the one with the parent or the one with
the child. And in the case of Prince William County and Manassas, Virginia,
one county can have both parent and child polygons with respect to the other
county.

To help deal with these anomalies, de�ne a cluster as a connected set of
polygons having the same parent, and a family as a connected set of clusters
having the same parent. (The parent of a cluster is the parent of each of its
polygons.) The clusters are maximally connected within each county|i.e., within
a county, two clusters that have the same parent cannot be adjacent. Therefore,
two clusters in the same family will always be in di�erent counties. Two clusters
from di�erent counties but with the same parent will only be in the same family
if they are adjacent|they need not be. So, a single parent polygon may be
associated with multiple families, a single family may have multiple clusters, and
a single cluster may have multiple polygons. Consider �gure 3.9. Counties, A,
B, and C each have all their polygons in a single cluster, numbered 1, 2, and 3,
respectively. Clusters 1, 2, and 3 the same parent, polygon P1, and are therefore

90

= county border

= polygon border

(X, i, j) = (county, cluster, family)

Pi = polygon

(A, 1, 1)

(B, 2, 1)

(C, 3, 1)

P1

P2

(D, 4, 4)

(D, 5, 5)

(D, 6, 6)

Figure 3.9: Cluster and Family Diagram

in the same family, numbered 1. (The family number is always the same as the
number of one of the clusters in the family.) County D has three clusters. Cluster
4 contains polygons P1 and P2; this cluster is in family 4. (The parent of the
polygons in cluster 4 is not indicated, and is not important for this discussion.)
Each of clusters 5 and 6 has one polygon, is in its own family, and has parent P2.
Now we need a way to compute the clusters and families, without ever having
more than one county in memory at a time.

Below we'll see that we can partition the polygons in the current county into
three classes: (1) those whose parent is known to be a polygon in another county,
(2) those whose parent is known to be a polygon in this county, and (3) those that
are county level, which means that they are assumed to be top-level, until proven
otherwise. For example, if Manassas is processed before Prince William, then
while processing Manassas its county level polygons are assumed to be top-level.
But when Prince William is processed, we'll �nd out that Manassas is actually
inside a large merged polygon in Prince William. Another example is Manhattan
(see �gure 3.2). If Manhattan is processed before Hudson County, New Jersey,
then it will have three county-level clusters, but if Hudson County is processed

91

�rst, then Manhattan will have one county-level cluster, and two clusters that
are known to have parents in a di�erent county. (In either case it may also have
clusters that are inside a polygon within Manhattan.)

For now suppose that this partitioning has been made for the current county.
Within each class, polygon adjacencies are traced to compute the clusters, and
each cluster falls into one of the three classes. Each cluster is initially assigned
to a family with the same id number as the cluster; later the clusters will be
grouped together into families using standard union-�nd techniques (see [20], or
many other books on algorithms). At this point we know the parents for polygons
in the �rst two classes. We don't know the parents for polygons in the county-
level clusters, but we do know that all polygons in a given county-level cluster
must have the same parent. What we do is temporarily set their parent �elds to
null, meaning that they are top-level, but also note in the database what cluster
they belong to, and we also keep a mapping of clusters to families. That way if
we later discover that this family has a parent, then we'll know which polygons
to update.

Computing the three classes, as well as recognizing clusters in class (1), those
that have a parent in another county, all comes down to being able to recognize
polygon holes. A polygon that is inside the hole of a polygon in another county
is in class (1); a polygon that is inside the hole of another polygon in the current
county is in class (2); all other polygons are in class (3). Furthermore, if a polygon
in this county has a hole, and the lines on the border of the hole have a null �eld
for the polygon id on the other side, meaning that the polygon on the other
side is not in this county, then that information must be saved properly in the
database so that when the counties that are inside the hole are later processed,
their polygons will be properly recognized as being in class (1) at that time.

Recognizing the holes is part of the process of constructing the polygons from
information in the lines. Each line stores the polygon id on its right and left sides.
A null polygon id on one side indicates that the line is on the county border. To
construct a polygon, we �rst gather together all lines that have that polygon on
one or the other side, and then group the lines into loops by matching endpoints.
A polygon without holes will have only one loop. The loop whose MBR contains
all the other loop MBRs must be the outer boundary of the polygon; any other
loop is a hole. Lines in an inner loop are called hole borders. Polygons from the
current county that are on inside of a hole border can be put into class (2). If
a polygon on the inside of a hole border is from a county that was previously
processed, then it would have previously been assumed to be in a top-level cluster,
but now we know that it is not top-level, so we must note in the database that

92

the parent for its cluster is the current polygon (the one with the hole). If a
polygon on the inside of a hole border is in a county that has not been processed
yet, then we must store this hole border in the database in such a way that when
that other county is processed in the future, this hole border will be found and
polygons in that other county can be properly placed into class (1).

Consider again �gure 3.9. Suppose the counties are processed in the order A,
B, C, D, and suppose that each county has only one cluster. After A is processed,
cluster 1 is county level. After B is processed, cluster 2 is also county level, and
it will be noted that it borders cluster 1, and it will be put into the same family
with cluster 1. Cluster 3 in county C will similarly be put into the same family
with clusters 1 and 2. When D is processed, its raw TIGER polygons are merged
into a single polygon P, and within P there are hole borders that border polygons
in clusters 1 and 3, so it will be known at that time that the family that those
polygons belong to has parent P. The necessity of the clusters can be seen from
the fact that not all polygons in counties A and C (clusters 1 and 3) share a
border with P, which means that it is not suÆcient to merely update the parent
of polygons that share a border with the hole. The necessity of families can be
seen from the fact that no polygon in cluster 2 shares a border with P, so that
it is insuÆcient to merely update the parent of clusters that share a border with
the hole. By using clusters and families, all polygons can be properly associated
with their parents. The cluster and family information is stored in the database
at the end of processing each county, so all this can be done with only having
one county in main memory at a time. (Or, more accurately, one county, plus
the cluster and family data, plus a small amount of information describing what
we have previously discovered about polygons and clusters that border polygons
in this county.)

3.5.3 Processing the County Borders

The second major diÆculty in preprocessing is in dealing with the county border
lines. We want to keep only one copy of each line, but a line on the border of two
counties has a copy in each of them. We also want to merge the lines, but recall
from section 3.3 that the decision on whether two lines can be merged depends
on the polygons on either side of them. For county border lines, we can only
know the polygons on both sides when processing the second county. This also
indirectly a�ects the processing of border polygons, since these polygons don't
know how many lines make up their borders until the border lines have been
merged.

93

Our solution uses some temporary tables used only during the preprocessing
phase. When a county border line is �rst encountered, it is stored in a temporary
�le in its raw, unmerged state. When the bordering county is subsequently pro-
cessed, the border lines that were previously stored are matched with ones from
the current border, and then the merging can be performed, since the polygons
on both sides of the lines are now known. Finally the merged lines are stored in
the permanent lines table. For border polygons, we go ahead and merge them,
but store them only in the temporary table. Once all of a border polygon's lines
have been merged, by virtue of all the bordering counties being processed, the
polygon can be moved into the permanent polygons table, with the new set of
merged lines as its borders. Other temporary tables that aid with this process
are described in the next section.

The full protocol for processing the TIGER data and producing the S-Level
0 database is in section 3.5.5, but �rst the temporary tables are described in the
next section.

3.5.4 Temporary Data

It was already mentioned in section 3.5.1 that some extra �elds are temporarily
needed during the preprocessing phase for building the LOD hierarchy. These
are the county for polygons, the left and right counties and left and right side
polygons for lines, and the county for landmarks. Here we list the temporary
tables that are needed during the processing of a particular LOD, to unify the
data across counties.

blines Temporary storage for the unmerged lines that lie on a county border.
Lines go into here when the �rst county that they border is processed, and
go out when the second county they border is processed. At that point, they
can be merged and put into lines0. In blines, each line has a boolean
ag indicating whether the line is a hole border, and the cluster number for
the polygon that it borders in that �rst county.

bpolygons Any polygon that currently has one of its border lines in blines

instead of lines0 is in here. Once all of its border lines have been merged
and put into lines0, the polygon can be moved into polygons0. This table
contains all the normal polygon �elds except for the list of border line ids;
that information is kept in sides.

sides A record for each line on the boundary of any polygon that is in bpolygons

will be in here. Contains �elds for the polygon id and line id, the index

94

number of this line in a traversal of the lines around the polygon's boundary
(arbitrary starting point), and a boolean ag for whether the line is for-
ward oriented. When it comes time to move a polygon from bpolygons to
polygons0, the polygon's border lines can then be recovered from sides.
The purpose of this is to make it easy to modify the border line lists of
the polygons in bpolygons. When two lines from blines are merged, the
merged line will have the line id of one of the constituent lines; the record
for the other line need only be deleted from this table, and no changes
directly made to the polygon in bpolygons.

cluster family A mapping of clusters to families, with a unique index on the
cluster �eld.

family parent Mapping of families to the polygon id of the parent, with a
unique index on the family �eld.

county line count Mapping of county numbers to the number of lines from
that county currently in blines. When the line count goes to zero, all
polygons from that county in bpolygons can be moved to polygons0.

3.5.5 Protocol for Producing S-Level 0

The process of producing S-Level 0 starts by executing the following operations
on each county:

1. Read the raw TIGER data from the zip �le.

2. Match the border lines in this county with border lines from previous coun-
ties in blines, removing the matched lines from blines, and noting which
lines are hole borders and the adjacent cluster numbers.

3. Retrieve relevant information from cluster_family, family_parent and
county_line_count.

4. Compute the polygon and line merge sets, generate the merged line objects,
and update sides to reect the merged border lines.

5. Generate the polygon objects, �nding holes and computing new cluster and
family information, as described in section 3.5.2.

95

6. Store lines in lines0 or blines, polygons in polygons0 or bpolygons,
landmarks in landmarks, and add records for the new border polygon sides
in sides. Compute the area for each polygon using a triangulation/line
sweep algorithm [57].

7. Update cluster_family, family_parent and county_line_count tables.
If any county's line count has dropped to zero, then all polygons from that
county are moved from bpolygons to polygons0, and its tuples in sides

and county_line_count are deleted.

After all counties have been processed as above, we are left with the outer
border lines in blines, and their adjacent polygons in bpolygons. Because these
will not be bordering any other counties, they must be processed a separate way,
the major di�erence being that adjoining lines can be merged if they agree in the
polygon on only one side (the other side has no polygon). Here is the method:

1. Select all lines from blines and merge them, using just the polygon id on
one side to determine which can be merged, and update sides to reect
the merged lines.

2. Store the merged lines in lines0.

3. Move all polygons from bpolygons to polygons0.

4. Store the bounding box of all the lines into db_summary.

Finally, we are ready to �nalize the parent �elds in polygons0, using in-
formation from cluster_family and family_parent. Recall that polygons in
county level clusters have their parent �elds set to null, indicating that they are
top-level, but some of them are later discovered not to be top-level after process-
ing more counties. The correct parents for these polygons is embedded in the
cluster_family and family_parent tables. Each polygon record contains the
polygon's cluster number, the family is then found from the cluster_family,
and the parent is found from the family_parent table.

3.6 Generalization and Building the LOD Hier-

archy

Generalization of geographic data is, as Weibel says, \... a complex process
with ill-de�ned objectives, involving a good deal of subjective decisions" [104].

96

Nonetheless, we have a mostly automatic approach that gives adequate results
for our purposes. This process involves three parts: choosing the range of scales
to associate with each LOD, choosing the set of features to include in each level,
and extending the line and polygon combining across county borders, to �nd
more opportunities for duplication elimination and simpli�cation.

For choosing the scales to associate with each LOD, we use the pixel size
as the reference unit of length, rather than the inch or centimeter, since the
applet may display on screens with di�erent resolution. Let pixel level of detail,
pLOD, be the number of meters per pixel. We currently use eight hand-chosen
pLOD's, 0; 14; 75; 200; 700; 2500; 7500, and 22000 as the breaking points for levels
of detail. This de�nes eight simpli�cation levels or S-Level for short: S-Level
0 corresponds to pLOD's [0; 14), S-Level 1 corresponds to pLOD's [14; 75), ...
S-Level 8 corresponds to pLOD's [22000;1).

3.6.1 Manual Generalization

The TIGER system gives some information about feature type that can be used
for automatic feature selection when generalizing the data. For example, dis-
tinctions are made between major highways, secondary roads, local roads, etc.
However, in some cases the distinctions are rather crude. For example, in New
York, 42nd Street and Thompson Street are given the code A41, meaning local
road, but anyone who has even visited New York (or who has some familiar-
ity with Broadway musicals) knows that 42nd Street is a much more important
street than Thompson Street. In order to incorporate this kind of knowledge
into our system, we have developed a tool, pictured in �gures 3.2 through 3.7,
for manually choosing features to include in a level of detail. The checkboxes
at the right are for selecting/deselecting classes of features. Individual features
can be selected with mouse clicks. The user can also simplify the lines, using the
Douglas-Peucker algorithm [22], and �lter polygons by area.

Although we were able to produce good generalizations with this tool, it
turned out to be too labor intensive. It requires individually generalizing more
than 3000 counties at seven LODs; plus, it requires knowledge about which streets
are important in each of the counties. Therefore, we decided that for this re-
search project we would sacri�ce some map quality and use a mostly automatic
approach. The only part done by hand is to specify, for each level, the classes
of features that will be included, the area of the minimum size of a polygon to
keep, and the error bound for line simpli�cation. Table 3.4 shows the choices for
each level. The minimum polygon size for each S-Level is equivalent to 20 square

97

S-Level line features min polygon error bound

0
state borders and all visible
lines

0 m2 0 m

1

state borders, major
highways, primary and
secondary roads, railroads,
perennial water

3,920 m2 28 m

2
state borders and major
highways

112,500 m2 75 m

3
state borders and major
highways

800,000 m2 300 m

4 state borders 9.8 km2 1.4 km
5 state borders 125 km2 5 km
6 state borders 1,125 km2 15 km
7 state borders 9,680 km2 44 km

Table 3.4: Generalization Characteristics of Each S-Level

pixels at the lowest pLOD for that S-Level. The line simpli�cation error bound
is between one and two times the minimum pLOD for the S-Level. Once these
decisions have been made the preprocessor can run without human intervention.
42nd Street, alas, is not included in our S-Level 1 map for New York.

3.6.2 Automatic Generalization

Given the S-Level generalization speci�cations from the previous section, the pre-
processor produces the LOD automatically, assuming that the next lowest LOD
has already been produced. Polylines are chosen by their feature code, poly-
gons are chosen by size, and polylines are simpli�ed using the Douglas-Puecker
algorithm [22].

When a polygon is dropped because of being too small for a given S-Level,
its area is acquired by an adjacent polygon, and it is not clear how to choose
which adjacent polygon. Our initial naive algorithm was to give top priority to
adjacent polygons with the same name and code, second priority to polygons with
just the same code, and all others third priority. Ties were broken by choosing
the polygon with the largest area. This method led to some strange e�ects at the
higher LODs; for example, water that was clearly the Missouri River was labeled
Mississippi River.

This situation was discussed in [97], where it was proposed that a \collapse

98

function" be based on each polygon's \weight-factor" or importance (e.g., area),
its type compatibility with the polygon being dropped, and the length of the
border between them. We have experimented with several functions of the form
f = (f1; f2; f3), where f = f1 if the polygons do not share a name or code, f = f2
if they share name or code but not both, and f = f3 if they share both. Let A be
the area of the candidate acquiring polygon, and b be the length of the common
border between it and the polygon being dropped. Then the functions are as
follows:

1. f = (b; 1:5b; 2b)

2. f = (b; 2b; 3b)

3. f = (b; 3b; 5b)

4. f = (b; 2b; 4b)

5. f = (b2=A; 2b2=A; 3b2=A)

6. f = (b2=A; 2b2=A; 4b2=A)

The idea of using b2=A was originally suggested, in a di�erent context, by Alan
Siegel.

Figures 3.10 through 3.12 show the results of each function as applied to the
state of Maryland, at S-Level 4. The last two functions, which take into account
area as well as border length, are much better at preserving the complicated
shoreline of Chesapeake Bay, which is the dark area in the middle. We ended up
using the last one, and this avoided the problem with the Missouri and Mississippi
rivers that we had with our naive solution.

3.6.3 Grouping the Counties

At S-Levels higher than 0, we are not dealing with the full detail, so more than
one county can �t into memory. We also would like to be able to merge lines
and polygons across county borders|the more counties we can process at once,
the more opportunity there will be for duplication elimination and simpli�cation.
But we also want the group of counties that are processed together to be \nicely
shaped"; since we limit the size of the MBR of a polygon, a snakelike shape of
counties will not give as eÆcient a polygon merging as a square or circle, for
example. So we want to partition the counties into groups that are connected,
nicely shaped, and have no more than some given amount of data, so that they

99

Figure 3.10: Maryland, Area Acquiring Algorithms 1 (left) and 2

Figure 3.11: Maryland, Area Acquiring Algorithms 3 (left) and 4

100

Figure 3.12: Maryland, Area Acquiring Algorithms 5 (left) and 6

will �t into memory. We estimate by the \amount of data" by the total number
of endpoints and shape points in all the lines at full detail.

Our solution is to use a simple heuristic that produces nicely shaped groups
that obey the size limit, but that might not be connected, and then to modify
the grouping by hand to get connectivity. The heuristic is this: pick the axis
along which the dataset is \longer", sort the counties along that axis by their
range centers, and split the set into two roughly equal sized pieces, where size
is number of points at level 0. Recurse until the group contains less than the
maximum number of points. When computing the higher levels of detail, use the
groups at the next lower level as the \counties".

This heuristic produced groups that were nicely shaped and fairly evenly sized
(according to number of points). Unfortunately, the groups chosen were not
necessarily connected. For example, two counties in Virginia that are completely
contained inside other counties were not grouped with their surrounding counties;
Norfolk county in Massachusetts is in three pieces, and the surrounding counties
of one of the pieces were put in a di�erent group from the other Norfolk pieces and
its other adjacent counties. These problems, and others, were solved by manually
regrouping where necessary. In order to speed up this manual regrouping process,
we have listed in the appendix a set of constraints mandated by these two types
of anomalies. \Singleton constraints" deal with the situation where a county
is adjacent to only one other, so these two counties must be grouped together.
\Multiple piece constraints" deal with the situation where a county has more
than one piece, in which case each piece should border another county in the

101

group.

3.6.4 Protocol for Producing S-Level i, i > 0

Producing the higher S-Levels is in many ways similar to producing S-Level 0:
the data is processed in sections rather than all at once, the border lines and
polygon containment hierarchy must be made consistent across sections, and the
\raw" input lines and polygons must be merged. Here are the major di�erences:

� Instead of working with one county at a time, we work with one \group",
where a group is a set of counties or groups at the next lower level, as
determined by the grouping process described in section 3.6.3. Instead of
getting the input data from the TIGER �les, we get it from the next lower
level in the database, by selecting all objects from that level that come
from any of the constituents (counties or lower level groups) of the current
group.

� If any polygon is smaller than the minimum area, it is dropped, and one of
its neighboring polygons \acquires" the dropped polygon's area, according
to the algorithm in section 3.6.2.

� Lines are simpli�ed with the Douglas-Peucker algorithm [22] before being
stored in the database. The error bound to use in the algorithm is given in
table 3.4.

� The area of each raw, unmerged polygon is taken from its stored value at the
lower level, and after polygons are merged the area of the merged polygon
is the sum of the areas of the polygons that were merged into it. In other
words, the triangulation algorithm for computing area is not used. This is
because the line simpli�cation may introduce anomalies into the topology,
for example by making a polygon border cross itself, so that computing the
area directly is diÆcult.

� Another topological anomaly that the simpli�cation can introduce is that
the range for a child polygon might extend outside that for its parent. For
this reason, the value that we store as the range of a border line is not the
MBR of all its points. Instead, the range of each raw, unmerged line is
taken from its stored value at the lower level, and after merging the range
of a merged line is the MBR of the range of each of its constituent lines.

102

(a) (b)

Figure 3.13: Line Simpli�cation Anomalies: (a) child polygon outside its parent,
(b) line crossing itself.

Figure 3.13 shows two examples of the topological anomalies that can be intro-
duced by line simpli�cation. While these cause diÆculties in the preprocessing,
it is acceptable to leave them in the generalized data, since at runtime the goal
is visualization, and the error bounds are designed so that the anomalies are o�
by no more than a pixel.

3.7 Producing the Blobs

The last preprocessing step is to take the data from the temporary database, pack-
age it into blobs, compress the blobs and store them in the permanent database.
We use the grouping computed for building the LOD hierarchy, and additionally
take a default grouping for S-Level 0 in which each county is a group. The process
is the same for every S-Level; consider S-Level i. For each group, select from the
S-Level i tables in the temporary database all the landmarks, lines and polygons
in the group (group or county is a �eld in each tuple), using the R-tree index
on the range to speed the query. Then use the top-level polygons|those that
have no parent in the polygon containment hierarchy|as the basis for forming
the blobs. A top-level polygon, all its child polygons, all lines with any of those
polygons on at least one of its sides, and (almost) all landmarks that intersect
the polygon's range are all included in the blob, and the blob is compressed and
stored in the new database. Since a landmark can intersect more than one poly-
gon range, the landmark ids are stored in a hash table, and removed from the
hash table when they are included in a blob, so each landmark is only in one blob.
Blob border lines are generally duplicated, unless they border only one top-level
polygon (i.e., the lines on the outer border of the entire data set).

103

104

Chapter 4

Visualization Interface

4.1 Related Work

4.1.1 Multi-Scale Navigation

A survey and taxonomy of zooming/panning interfaces can be found in [70].
There, seven types of \image browsers" are delineated:

Detail only browser. This is a single window with panning, usually by scroll-
bars, and no zooming. This is easy to implement and common in many
programs, but it is only useful when the zoom factor is quite small.

One window with zoom and replace There is one window and upon any
zoom or pan request a new image replaces the old one. This is the method
used by MapQuest [21] and other web map servers. It has the major prob-
lem that the user is not able to see context and detail at the same time.

Single coordinated pair (detail and overview) In a typical setup a small
window has the overview and a large one the detailed view. The overview
often shows a \�eld-of-view" rectangle for the current location of the detail
view. The WebTOC (web table of contents) [58] is a version of detail and
overview where the overview is a hierarchical table of contents for a web
site, and the detail is an individual web page. Shneiderman [80] has noted
that for zoom factors greater than 30 simple overview and detail becomes
inadequate, and intermediate views are needed.

Tiled multilevel browser This extends the detail and overview to allow one
or more intermediate views between the global and detail views, in sequence.

105

Each view is linked to the next in the sequence with a �eld-of-view rectangle.

Free zoom and multiple overlap The user may \specify, move, reshape and
delete every window as they want. Any side by side comparison is possible."
There is no linking or coordination among the windows; each is independent.
This gives the user great freedom, but also requires window management,
which can be time consuming.

Bifocal view browser This is a variant of detail and overview in which the
detail is like a small magnifying glass that can be moved over the overview.
See [82].

Fisheye view The �sheye view, �rst introduced by Furnas [34], shows only
one view, but it is distorted so that the area of interest is shown at higher
magni�cation than other areas. A survey of distortion-based multi-scale
views, mostly �sheye variants, can be found in [51]. Scha�er, et al. [75],
also give a survey, and introduce a �sheye variant in which the view may
have multiple focal points.

The �sheye view is actually an example of a broader class of visualization tech-
niques called focus+context. Another approach that used distortion to mix mul-
tiple scales in a single view is the hyperbolic browser [50, 49]. In focus+context
screens [2, 1] an LCD monitor showing a high resolution focal image is em-
bedded in a wall-sized display upon which the low resolution context image is
projected|no distortion, but obviously special hardware is required. None of
these techniques is adequate for the large zoom factors (around 10,000) that we
have to deal with.

An interesting related visualization interface is used in Pad and its successor
Pad++ [69, 5, 3, 4]. This is single view, but in�nitely big with in�nite zooming.
\Portals" provide links from one part of the pad to another, which helps with
giving context. But these systems are more appropriate for visualizing collections
of disparate objects, rather than a uni�ed map.

Some of the papers referenced above have been collected in [9], with commen-
tary.

4.1.2 Labeling

Another issue that must be dealt with in visualization of geographic information
is feature labels. A brief but good survey and taxonomy of labeling techniques
can be found in [23]. Traditionally the problem in cartography has been static

106

labeling, in which label positions are pre-computed once and for all, and as many
labels as possible are shown without too much overlap. (Finding an optimal
solution is NP-hard.) Christensen, et al., [16] ran some experiments with di�erent
techniques, and found that a simulated annealing solution that they developed
gave the best results, but other solutions ran faster. Static techniques, however,
are not a good �t for interactive exploration, partly because of the computation
time, and partly because a static solution cannot possibly anticipate all of the
viewpoints that an interactive user will traverse.

The dynamic labeling techniques listed in [23] include the following:

Infotip Also known as \cursor sensitive balloon label". A label for a feature
appears when the mouse passes over the feature, and disappears when the
mouse moves away. Normally the label appears near the feature, but it
might also appear in a side window.

Temporal brushing As with infotip, a label appears when the mouse passes
over a feature, but the label remains on the screen as new labels come up.
Overlap is allowed. See [17].

All or Nothing All labels appear when the number of objects on screen is
below a given threshold. An example is the star�eld display of Ahlberg and
Shneiderman [8].

Focus+context The bifocal and �sheye browsing techniques mentioned above
can serve as the basis for labeling, where the magnifying glass (magic lens),
or magni�ed focal area, is expanded enough to make room for labels (or
might contain only labels).

Sampling In [10], the labels are spread out over time. Three labels are shown
when the display is at rest, and one when it is in motion. Every second, the
oldest label is removed, and a new one, chosen randomly, is displayed. Ob-
jects that are \close" are sampled more often than those that are \distant",
and the sampling rates are a�ected by the history of user sessions.

Excentric labels These are introduced in [23]. A circle is drawn around the
focus region, and all objects in the focus region are labeled. However, the
labels appear outside the circle, on either side, and in list form so there is
no overlap. A line or pointer connects each label to its object within the
circle.

107

4.2 Our Windowing User Interface

For multi-scale navigation, we have chosen a restricted form of the \free zoom
and multiple overlap" approach de�ned in [70]. We give the user most of the
freedoms of exible window management associated with that approach, but
combine it with several linking relationships among the windows. These links are
described in detail in section 4.2.2. The multiple views are logically organized
into a tree by the overview-detail relationship. The client starts by showing only
the root window, with the highest overview available, and the user can then
open intermediate views and detail views in any tree structure. Figures 4.1, 4.2,
and 4.3 show two sample sessions. In session 1 (�gure 4.1), the user has opened
three detailed views into the root window overview, showing the New York, Los
Angeles, and Chicago areas (windows 1, 2, and 3), at scales that are still too
zoomed out to see any roads, for example. Then the user has opened a detail
window on the New York view (window 1.1), turning the previous New York
detail window into an intermediate view. In session 2 (�gure 4.2), the user has
opened a detail view of the New York area (window 1), then a more detailed
centered on Manhattan and Queens (window 1.1), and then two detailed views
showing parts of Manhattan and Queens (windows 1.1.1 and 1.1.2). Figure 4.3
shows a session with overlapping windows.

The current dataset, in which the scale changes by a factor of almost 10,000
from overview to highest detail, can comfortably be explored in three overview-
detail steps, in addition to the root window overview.

4.2.1 Anatomy of a Window

Each window can be independently zoomed, panned, moved, resized, iconi�ed,
and maximized, with the exception of the root window, which can only be moved.
Detail windows can be closed, but intermediate view windows and the overview
root window cannot. A detail view window can be opened for any existing view
window. Here is a list of the graphical objects on each window, and what purposes
they serve:

1. The map. The largest portion of each window, this is the place for panning,
opening new detail windows, re-centering detail windows, and viewing fea-
ture labels, and it also indicates the location of each of its detail windows.

� Drag with the left mouse button to pan in the direction of the drag.

108

Figure 4.1: User Session 1

109

Figure 4.2: User Session 2

110

Figure 4.3: User Session 3

111

� Click with the right mouse button on any point of the map to open a
new detail window centered at that point.

� Click with the left mouse button on any point of the map to recenter
a detail window at that point. If this map is overview for more than
one detail window, then a popup menu will appear from which one of
the detail windows can be chosen for re-centering.

� Whenever the mouse pauses over a feature, a label with the name for
that feature will appear (assuming the feature has a name). If the
mouse is near more than one feature, then multiple labels will appear,
one per line. See, for example, window 1.1.2 in �gure 4.2; the mouse
pointer, though not visible in the picture, had paused near the corner
of 76th Street and Northern Boulevard. This labeling technique is
called \infotip", or \cursor sensitive balloon label", in the terminology
of Fekete and Plaisant [23]. In the current version only one label is
shown at a time in a given window, so any previous label disappears
when the new one pops up.

� If a map has detail views opened, then black rectangles appear that
indicate the location of each detail view. See, for example, the root
window and window 1 in �gure 4.1.

2. Iconify and Maximize icons. In the upper right corner of every window
except the root window appear icons for iconifying and maximizing the
window.

3. Close icon. In the upper right corner of any window that does not have a
detail view opened (i.e., is currently a leaf in the tree), appears an icon for
closing the window.

4. Scale display. Directly below the map is a line 100 pixels long and a distance
in meters or km, indicating the current scale of the map.

5. Zoom slider. The slider underneath the scale display is used for zooming. It
is divided into 100 ticks. The maximum scale, associated with the leftmost
tick, is the scale of the parent/overview map; the minimum scale is the
maximum of the scales of any children/details, or 250 m per 100 pixels if
there are no children.

6. Zoom buttons. On either side of the zoom slider is a zoom button|zoom out
on the left and zoom in on the right. Pressing a zoom button is equivalent to

112

jumping ten ticks on the zoom slider, or going to the minimum or maximum
scale, if the current scale is less than ten ticks from the edge.

7. Color bar. Below the zoom slider, and pointed to by it, is a color bar. Each
color represents a level-of-detail. Moving the slider within a color �eld
merely changes the size of the features displayed; moving between colors
changes the level of generalization.

8. Center parent button. On windows that are not children of the root win-
dow, the center parent button lies to the left of the zoom out button. For
example, in �gure 4.1 only window 1.1 has a center parent button; in �gure
4.2 windows 1.1, 1.1.1, and 1.1.2 all have center parent buttons. All other
windows in the two �gures are either root windows or children of a root
window. The purpose of the center parent button is to recenter the parent
window on the center point of the child window. This is helpful sometimes
when after panning the child away from the parent's previous location, we
want to move the parent to the child's current location.

9. Cross hair checkbox. To the right of the zoom in button is a checkbox.
When this is selected, horizontal and vertical lines appear across the center
of the window, which helps in pinpointing locations. In �gure 4.4, window
1 has the cross hair selected.

10. Select features drop-down menu. Below the color bar is a drop-down menu
that is initially labeled \Select Features". This menu contains a list of
all of the named features that are in or near the current window location.
(Speci�cally, all named features whose minimum bounding box intersects
the current window range.) When a feature is selected, it is highlighted
on the map by painting it a special color, and thickening it if it is a line.
Features remain highlighted until they are explicitly cleared.

11. Highlight clear button. Next to the select features drop-down menu is a
button labeled \C". Pressing this button clears all highlights that were
selected, returning the features to their normal color and lines to their
normal thickness.

4.2.2 Relationships Between Windows

Each overview is linked to its details in several ways:

113

1. Each overview shows a black rectangle around the area covered by each of
its detail views. The appropriate rectangle is automatically updated when
the detail is zoomed or panned.

2. If the overview has one detail window opened on it, then clicking the left
mouse button on a point on the overview will cause the detail window to be
re-centered on that point. If the overview has more than one detail window,
then clicking the left mouse button on a point on the overview will cause
a popup menu to appear, through which the user can choose which of the
details will become re-centered on that point.

3. The center button allows a window to recenter its overview (unless the
overview is the root window, which never changes).

4. If an overview has one detail window, then the minimum scale allowed for
the overview is equal to the current scale of the detail. If an overview has
multiple detail windows, then its minimum allowed scale is equal to the
maximum of the current scales of its detail windows. (The minimum scale
of a detail window with no detail children is 2.5 meters per pixel.)

5. The maximum scale allowed for a detail is the current scale of its overview.
(The maximum scale allowed for a window that has the root as its overview
is the scale of the root, which is 26.4 km per pixel.)

This linking of allowable scales for parent and child was originally suggested by
Zilin Du.

4.2.3 Global Options

The main applet window o�ers several features worth noting.

1. In the main menu bar, the Teleport and My Places menus both o�er a list
of places that, when selected, cause the window that currently has input
focus to jump to the given place. The Teleport menu gets its list of places
from the map server. The individual user cannot modify it, but the list is in
a plain text �le, so that we, the maintainers of the server, can easily modify
it. We plan to eventually list thousands of cities there. The My Places
menu contains places that each individual user can de�ne; these places are
stored in the user's browser cookies. Figure 4.4 shows the \Place Editor"
window, which is opened by the �rst option in the My Places menu.

114

2. The Special menu contains options for debugging that are not really meant
for the end user.

3. The Options menu contains an option for turning labels on and o�. Labels
are on by default; if they are turned o�, they will not pop up when the
mouse pauses over a feature. This menu can eventually be extended to
more user options, such as selecting/deselecting feature layers|e.g., roads,
railroads, etc.

4. The detach button causes the entire applet to be transferred out of the web
browser window and into its own applet window. That window can then
be resized as the user pleases.

5. The help button opens a window with brief instructions for using the applet.

6. To the right of the help button are several buttons, one for each window
that is currently open. Clicking a window's button causes the window to
get the input focus; become deiconi�ed, if necessary; and move to the front,
if it is currently covered by other windows.

7. At the bottom of the applet window are several counters, showing the num-
ber of bytes, points, lines, and polygons that have been downloaded so far.
The number between bytes and points represents the number of additional
bytes that would have been downloaded if the data had not been com-
pressed. This information is used largely for debugging.

8. Though it is diÆcult to see in the �gures, there are �ve letters to the left
of the bytes count: \W L U P R". These letters give the user information
about what the program is currently doing. When the program is at rest,
the letters are a shade of gray that is similar to the background, which is
why they are diÆcult to see in the �gures. The letters light up in bright red
when the program is active in various activities. Each letter is associated
with one activity:

� W indicates that the client is waiting for the server. Speci�cally, it
means that at least one request has been sent to the server that has
not been responded to yet.

� L indicates that the client is currently loading a blob from the network.

� U indicates that the client is currently unpacking a blob (i.e., uncom-
pressing it and storing its contents in the cache).

115

Figure 4.4: Client with Place Editor

� P is not currently being used; it never lights up. It may be eventually
removed from the interface.

� R indicates that a feature is currently being rendered to the screen.

Because the client is multi-threaded, it is normal for more than one letter
to be lit at once. The W light is especially useful, as it clears up any
potential uncertainty about whether or not a window is showing all the
information available at the current level-of-detail, as opposed to waiting
for more data from the server. The lights also provide a crude form of
testing. For example, in the current version the R light tends to stay on for
a signi�cant amount of time after the others have turned o�, which suggests
that the rendering is a performance bottleneck.

116

Chapter 5

Conclusions and Future Work

The feasibility of responsive visualization of a large dataset over a thinwire is
demonstrated by this research. We have developed a multi-threaded client-server
architecture for responsive visualization in a thinwire environment. In such an
environment, the network bandwidth between the user and the data (in this
case, between the client and the server) is highly volatile and unpredictable. But
even if bandwidth temporarily drops to zero, the system continues to respond
to user requests intelligently and promptly, using whatever information it has
available. The architecture is speci�cally designed for responsiveness. We have
developed a sophisticated form of priority queue, used throughout the system,
that is specially designed to match task priorities to user interest, and the system
architecture allows the propagation of priorities in order to quickly reect changes
in user behavior.

We have developed algorithms and tools for interpreting the TIGER dataset
and unifying the county-based data into a single dataset|a diÆcult process that
requires handling many anomalies and messy \real world" problems. We have
devised a mostly automatic approach to map generalization that generates rea-
sonable, though not excellent, maps. And we have preprocessed the data into a
highly eÆcient database schema.

Our system uses a exible and scalable visualization interface that uses mul-
tiple linked windows. It allows oriented viewing of a dataset that has a zoom
factor, from highest overview to highest detail, of almost 10,000. As far as we
know, this is the �rst web-based visualization system with smooth zooming and
panning for the entire continental United States, or for any equivalently large
geographic dataset.

In many ways, however, this research is really just beginning. Much of the

117

work described in this dissertation has been focused on simply producing a system
that works at all. Now that we have a system, we can start to look at improving
it, extending it, and applying it to di�erent situations. The remainder of this
chapter covers the many directions that we see where this research can go.

5.1 Performance Improvements

As was discussed in section 2.5.2, there are several diÆculties in designing mean-
ingful testing methods for this system. The development of sophisticated testing
procedures for systems like this one would be extremely bene�cial for evaluating
system designs. We are also interested in formal modeling, perhaps using the
statechart method or Harel, et al. [38, 39, 40], which might allow a more rigorous
investigation into the responsiveness of the system.

If the diÆculties with testing can be overcome, there are a number of changes
that could be made to the system that might improve performance, and whose
value could be determined by testing. Some of these possible changes are listed
below. It is unlikely that any one of these will have a dramatic e�ect, but a
combination of small improvements could be quite signi�cant.

1. On the server side, when the Data Provider gets a new request for a blob
that has already been sent to the Network Writer, it upgrades the blob's
priority in the Network Writers input queue, if the blob is still there. If
the blob has already been sent to the client, nothing happens, but perhaps
something should. The server could send an upgrade blob message to the
client, and if the blob is still on the unpacker's input queue, it can be
upgraded.

2. The current responsibilities of the Event Handler might be split into two
threads. The Event Handler would still handle the immediate response to
mouse events, such as translating the screen image, but the responsibility
of placing tasks onto the Network Writer queue and the Searcher queue
could be passed o� to another thread, thus freeing up the Event Handler
to handle mouse events that much more quickly.

3. We should be able to �nd more eÆciency in the rendering process. In
the current system, the same geographic object might be rendered multiple
times unnecessarily, if the object is contained in more than one package that
is concurrently on the Renderer priority queue. An alternative would be to
use an upgradeable priority queue, similar to the Response Sender queue,

118

and store individual objects on the queue directly, instead of packages. We
might have a function upgradeOrAdd that upgrades the priority of an object
if it is already on the queue, and adds it to the queue if it is not. To preserve
the correct ordering of polygons, polylines and landmarks, the polygons
would be given priority of requestNumber � 4, polylines requestNumber �
4�1, landmarks requestNumber�4�2, and commit requestNumber�4�3.
There is a problem with this idea that would need to be solved, though:
the whole object should be drawn, not just the portion that intersects the
bounding box of the request that it is in response to. Now suppose that one
corner of a polygon intersects a request, causing the whole polygon to be
redrawn. But a line that lies within another part of the polygon that is also
on the screen would not be considered part of the request, and therefore
would not be redrawn, so the new rendering of the polygon will overdraw
the line.

4. Use prefetching (see [36, 46, 47], for example). Some prefetching is already
implicit in the system by virtue of the fact that the bounding boxes of
the blobs that are stored on the server will frequently extend outside the
range that is requested, and so the extra data in such a blob is de facto
prefetched. The simplest way to increase prefetching is to explicitly request
data for ranges that are larger than the current window. For the purposes
of constructing requests to send to the server, we might de�ne a logical
window that is twice the width and height of the actual window, and always
centered on the same point. A more sophisticated system might predict
future requests based on the recent past: if we have been panning in a
certain direction, assume we will be panning in that direction in the future.

5. Our current (online) scheduling approach is essentially that request for
the window with current input focus have highest priority, and among re-
quests for the same window the most recent request has highest priority.
Threads execute tasks greedily based on the current state of local informa-
tion. Other, more sophisticated approaches, are possible. For example, a
long task might be delayed in the hopes that a more important shorter task
will be soon coming along. See [11] for a discussion of online scheduling
based on a similar thinwire visualization problem for large images.

6. If the server could recognize that the client has all the data needed for a
request before it makes the query to the database, we might be able to
save disk accesses on the server side. For example, the server might be

119

able to store the union of the bounding boxes of all previous requests, and
if the di�erence of the new request from that union is the empty set, the
query is unnecessary. On the other hand, since the DBMS keeps its own
in-memory cache, it could be that the DBMS is essentially already doing
this for us, since queries that duplicate the work of previous requests could
be answered from the DBMS cache, without any disk accesses. So doing it
ourselves would be unnecessary duplication of e�ort.

7. When panning, there is a tendency to put the main area of interest to the
middle of the window. But this means that the last few pans may have
resulted in requests for data at the edge of the window, and these would
have highest priority since they would be the most recent. So maybe tasks
near the current center of the window should have highest priority, instead
of those for the most recent request.

8. While we currently only use one TCP connection between the server and
the client, it is possible that performance would improve with two or more
connections, by more fully using the available thinwire bandwidth. The
change would be relatively simple to make. Referring to �gure 2.1, two (or
more) network writer threads on the server side would read blobs from the
output queue, and each would connect to a separate network reader thread
on the client side. These multiple network readers would each write to a
single unpacker queue.

9. Much of the client side computation involving location coordinates and
ranges is currently done using double precision oating point arithmetic,
but a back of the envelope calculation shows that at our lowest scale (highest
detail), 2.5 meters per pixel, the number of pixels required to stretch across
the country is small enough to �t into a 32 bit integer. So we could store the
coordinates as integers, which would save memory and probably improve
performance as well.

5.2 Visualization Interface

There are a number of improvements that can be made in usability and func-
tionality. The labeling can clearly be improved, by using \excentric" labels [23]
or label sampling [10], or perhaps by including a limited number of static labels
with the dynamic pop-up labels. We have begun to implement a rudimentary
feature search capability|a small �rst step toward enhancing the client to allow

120

the kind of analysis and planning that is found in GIS. Eventually we would like
to let the user make queries, such as \What is the population of this area?",
\Where are the nearest schools?" or \What is the address range on this block?"
This will require storing more descriptive information in the database. Once we
have a good way to store and retrieve address information, we can start to think
about route planning and, ideally, route visualization. The space-scale diagrams
of Furnas and Bederson [35] can be used for visualizing pan-zoom trajectories.
If a user wants to see the route from an address in one city to an address in
another, an animation might start at a high detail level and show the path from
the start address to the nearest highway, then zoom out and follow the highway
to the destination city, then zoom in and follow the route along city streets to
the destination address.

5.3 Other Versions

This section looks at what changes would have to be made to apply the system to
di�erent application domains or in di�erent implementation environments. Sec-
tion 5.3.1 looks at using HTTP tunneling so the client can be run from behind
�rewalls; section 5.3.2 looks at making the client work on cell phones and PDAs;
and section 5.3.3 looks at abstracting out the core of the client-server commu-
nication and turning this into a generic package that could be used by other
applications.

5.3.1 HTTP Tunneling

Most �rewalls do not allow direct socket connections, which is how we are cur-
rently doing the client-server communication. Many �rewalls only allow HTTP
requests and responses, and some only on port 80. So if we want the program to
be usable by people behind �rewalls (which includes many, if not most, people
at work) then one solution is HTTP tunneling. The idea is fairly simple: all re-
quests are packaged as HTTP requests, and all responses are packaged as HTTP
responses. On the server side, the client connection would be handled by a web
server, and the map server would be implemented within the web server using
Java servlets, CGI program, or similar technology. To make a range request, the
client would simply open a URL, and include the range as a request parameter.
Either a GET or a POST request can be used. The request is handled by a
servlet or CGI program, which queries the database and sends the proper data
back as an HTTP response.

121

But there are complications. The main problem is that in our system the
requests are not responded to in the same order that they are made. This needs
to be made to work under either HTTP/1.0 or HTTP/1.1 (with pipelining).
Under HTTP/1.0, each HTTP request requires a new connection. From the
client's perspective, reading a URL is a synchronous operation, so if we want
multiple requests to be serviced concurrently, the Request Sender will need to
spawn a new thread for each URL. This would be a simple, short-lived thread
that just stores the HTTP response in a byte array, puts that byte array (blob)
onto the Unpacker's priority queue, and exits.

On the server side, a new short-lived servlet thread would be spawned to
handle each HTTP request. Each servlet thread would put its own task onto the
Data Provider priority queue, and then go to sleep. When the Response Sender
decides that it is time for that thread to send a blob in response, it would wake
the thread up. Since there can be multiple blobs in each response, the servlet
thread would go back to sleep after sending each blob, and the Response Sender
would be responsible for telling it when it can �nally exit.

This approach might introduce a new problem for performance by starting
many concurrent threads on both the client and server. More investigation will
need to be done to see if this is a problem, and if so, whether a way can be found
to limit the number of threads without losing the prioritization of responses.

Under HTTP/1.1, multiple requests can be pipelined onto a single connec-
tion, but the HTTP/1.1 speci�cation says that the requests are responded to in
the same order that they are sent in. To preserve our responsive prioritization
of requests, the server could send whichever blob is highest priority to whichever
request is next in order; on the client side, all blobs go onto the Unpacker prior-
ity queue, so the client doesn't need to match up a blob with the request that
generated it.

5.3.2 Cell Phones and PDAs

A version for cell phones and PDAs will require major changes to the visual-
ization interface, and to other aspects of the system also. The multiple window
capabilities will have to be abandoned; the interface reduced to a single window
with zoom and replace, and only the most necessary controls. Probably the client
will have to be revised to use integer arithmetic only (J2ME, the Java "micro edi-
tion", provides no oating point capabilities). And more generally reducing the
client side memory footprint will have to become a primary design objective. A
minimum cache size will have to be set, and the cache pruning policy redesigned.

122

pqRequest
Taker

Request
Sender

pq

Client
Application

pqResponse
Receiver

Server
Application

Response
Sender

pq

ClientServer

Thinwire

Figure 5.1: Client-Server Kernel

(Currently there is no hard limit on the size of the cache; pruning is triggered by
a certain amount of data being downloaded, and is not guaranteed to remove any
data at all.) The preprocessor will have to store smaller blobs in the database,
which will probably have a negative impact on performance.

5.3.3 Responsive Client-Server Kernel

It seems that the core of our client-server communication and task processing
can be abstracted out and used in other application domains, not just geographic
visualization. We could provide a kind of client-server \kernel", which would
provide a programming interface for client and server applications. The interface
would include methods for sending tasks, receiving tasks, changing the priority
of tasks, etc. It would leave generating and handling the tasks to the application
programs. This is similar in spirit to the Petra-Flow framework of Forman [26],
although Petra-Flow is only a client-side architecture. Figure 5.1 shows a possible
client-server kernel architecture.

5.4 Dataset

Changes in our approach to data processing and storage might lead to improve-
ments in performance and a smoother visualization experience. A relatively sim-

123

ple and straightforward change would be to index the blobs in the database using
four byte integer rather than eight byte double precision coordinates. The raw
data gives latitude and longitude coordinates to six decimal places, so there are
never more than nine signi�cant digits, which can �t in a four byte integer. This
change would reduce the size of the indexes by about half, doubling the number
of index tuples that can �t on a page, which should improve performance. But
R-tree indexing of integer coordinate ranges is not built in to PostgreSQL, so we
would have to implement that feature, either by extending PostgreSQL's R-tree,
or by using its Generalized Search Tree (GiST) [42].

The generalization process can certainly be improved, possibly by incorpo-
rating a limited amount of manual labor into the computation of LODs. We
did this in an early stage of the project, but abandoned it for fully automated
generalization because of the amount of labor needed.

A much more radical change would be to accommodate �ne-grained, virtu-
ally continuous changes in detail, rather than discrete S-Levels. The topological
information might be handled by data structures like progressive meshes and
others [44, 79, 66], and the geographical information can be handled with van
Oosterom's reactive data structures (see section 3.1). All of this will introduce
a serious performance reduction, so making a system with these changes that is
fast enough will be a challenge.

Once �ne-grained changes in detail are implemented, we can start to think
about foveation of the data/image [12, 13], or �sheye views (see section 4.1.1), in
which di�erent parts of a window or image show data at di�erent resolutions or
LODs. This might decrease the bandwidth required and increase responsiveness,
although with the high semantic content of geographic data, it's not clear how
to smoothly display multiple detail levels in the same image.

124

Appendix

Singleton Constraints:
These constraints are caused by one county being completely contained within

another, so that the two must be grouped together.

1. Winchester, VA 51840 with Frederick, VA 51069

2. Waynesbor, VA 51820 with Augusta, VA 51015

3. Staunton, VA 51790 with Augusta, VA 51015

4. Norton, VA 51720 with Wise, VA 51195

5. Martinsville, VA 51690 with Henry, VA 51089

6. Lexington, VA 51678 with Rockbridge, VA 51163

7. Harrisonburg, VA 51660 with Rockingham, VA 51165

8. Fairfax, VA 51600 with Fairfax, VA 51059

9. Emporia, VA 51595 with Greensville, VA 51081

10. Covington, VA 51580 with Alleghany, VA 51005

11. Clifton Forge, VA 51560 with Alleghany, VA 51005

12. Charlottesville, VA 51540 with Albemarle, VA 51003

13. Buena Vista, VA 51530 with Rockbridge, VA 51163

14. Bedford, VA 51515 with Bedford, VA 51019

15. Nantucket, MA 25019 with Dukes, MA 25007

125

Multiple Piece Constraints:
These constraints deal with situations where a county is composed of multiple

pieces, and because of the way that the multiple pieces are situated in and around
surrounding counties, two or more counties must be grouped together.

1. Fulton, KY 21075 with New Madrid, MO 29143

2. Dickson TN 47043 with Cheatham TN 47021

3. Loudon TN 47105 with McMinn TN 47107, Monroe TN 47123, and Roane
TN 47145

4. Tipton TN 47167 with Mississippi AR 05093

5. White TN 47185 with Van Buren TN 47175, Bledsoe TN 47007, or Cum-
berland TN 47035 (not sure which)

6. Jackson AL 01071 with Marshall AL 01095

7. Brooks GA 13027 with Lowndes GA 13185

8. Lee GA 13177 with Terrell GA 13273

9. Macon GA 13193 with Taylor GA 13269

10. Taylor GA 13269 with Schley GA 13249

11. Upson GA 13293 with Pike GA 13231

12. Hoke NC 37093 with Scotland NC 37165

13. Pickens SC 45077 with Oconee SC 45073

14. Dixie FL 12029 with Gilchrist FL 12041

15. Monroe FL 12087 has an island in the ocean, not connected

16. Fairfax VA 51059 with 51600, which is within 51059

17. Montgomery VA 51121 with Radford VA 51750

18. Prince George VA 51149 with Hopewell VA 51670

19. Prince William VA 51153 with Manassas VA 51683

126

20. Bristol VA 51520 with Washington VA 51191

21. Manassas Park VA 51685 with Prince William VA 51153

22. Chester PA 42029 with Delaware PA 42045

23. New York NY 36061 with Hudson NJ 34017

24. Washington RI 44009 has Block Island out in the ocean, not connected

25. Norfolk MA 25021 with Plymouth MA 25023 and Su�olk MA 25025

26. Caledonia VT 50005 with Grafton NH 33009

27. Los Angeles CA 06037 has two islands in the ocean, not connected

28. Santa Barbara CA 06083 has two islands in the ocean, one not connected,
one connected to a Ventura piece (see below)

29. Ventura CA 06111 has two islands in the ocean, one not connected, one
connected to a Santa Barbara piece (see below)

30. Santa Barbara CA 06083 with Ventura CA 06111 (one piece from each in
ocean but connected with each other)

31. San Francisco CA 06075 has an island in the ocean, not connected

32. Adams CO 08001 with Denver CO 08031 (Adams has two pieces in Denver)

33. Denver CO 08031 with Arapaho CO 08005 (Denver has one piece in Ara-
paho; Arapaho has ten pieces in Denver)

34. Je�erson CO 08059 with Denver CO 08031 (Je�erson has three pieces in
Denver)

35. Je�erson CO 08059 with Denver CO 08031 and Arapaho CO 08005 (Je�er-
son has two pieces between Denver and Arapaho)

36. Sandoval NM 35043 with Los Alamos NM 35028 (Sandoval has a piece
between Los Alamos and Santa Fe 35049)

37. Lac qui Parle MN 27073 with Big Stone MN 27011 (Lac qui Parle has
a piece between Big Stone and Grant SD 46051 (or maybe Roberts SD
46109))

127

38. Madison LA 22065 with Warren MS 28149 (Madison has a piece between
Warren and Tensas LA 22107)

39. St. Bernard LA 22087 has islands in the ocean, not connected (one piece)

40. St. Martin LA 22099 with Iberia LA 22045 (St. Martin has two pieces,
with Iberia in between them)

41. West Feliciana LA 22125 with Pointe Coupee LA 22077 (West Feliciana
has a piece touching Pointe Coupee, Concordia LA 22029 and Avoyelles
LA 22009)

128

Bibliography

[1] Patrick Baudisch, Nathaniel Good, Victoria Belloti, and Pamela Schraed-
ley. Keeping things in context: A comparative evaluation of focus plus
context screens, overviews, and zooming. In CHI 2002. ACM Press, 2002.

[2] Patrick Baudisch, Nathaniel Good, and Paul Stewart. Focus plus context
screens: Combining display technology with visualization techniques. In
UIST 2001. ACM Press, 2001.

[3] Benjamin B. Bederson and James D. Hollan. Pad++: A zooming graphics
interface for exploring alternate interface physics. In Proceedings UIST '94,
pages 17{26, 1994.

[4] Benjamin B. Bederson, James D. Hollan, Ken Perlin, Jonathan Meyer,
David Bacon, and George Furnas. Pad++: A zoomable graphical sketchpad
for exploring alternate interface physics. Journal of Visual Languages and
Computing, 7:3{31, 1996.

[5] Benjamin B. Bederson, Larry Stead, and James D. Hollan. Pad++: Ad-
vances in multiscale interfaces. In ACM SIGCHI '94. ACM Press, 1994.

[6] T. Berners-Lee, R. Fielding, and H. Frystyk.
HTTP/1.0 - informational RFC 1945, May 1996.
http://www.w3c.org/Protocols/rfc1945/rfc1945.

[7] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley, 1987.

[8] B. Shneiderman C. Ahlberg. Visual information seeking: Tight coupling of
dynamic query �lters with star�eld displays. In Proceedings of ACM CHI94
Conference, pages 313{317, 1994.

129

[9] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Readings in
Information Visualization: Using Vision to Think. Morgan Kaufmann,
1999.

[10] Matthew Chalmers, Robert Ingram, and Christoph Pfranger. Adding im-
ageability features to information displays. In Proc. ACM Symposium on
User Interface Software and Technology (UIST96), pages 33{39, 1996.

[11] Ee-Chien Chang and Chee Yap. Competitive online scheduling with level
of service. Journal of Scheduling, October 2000. Special Issue on Online
Algorithms. Also: in Proc. 7th Ann. Intl. Computing and Combinatorics
Conf. (COCOON), August 20-23, 2001, Guilin, China.

[12] Ee-Chien Chang, Chee Yap, and Ting-jen Yen. Realtime visualization of
large images over a thinwire. In IEEE Visualization '97 (Late Breaking Hot
Topics), pages 45{48, 1997. See also CD proceedings of conference.

[13] Ee-Chien Chang and Chee K. Yap. A wavelet approach to foveating images.
ACM Symp. on Computational Geometry, 13:397{399, 1997.

[14] T.-W. Chen, P. Krzyzanowski, M. R. Lyu, C. Sreenan, and J. A. Trotter.
Renegotiable quality of service|a new scheme for fault tolerance in wireless
networks. In Proceedings FTCS-27, pages 21{30, 1997.

[15] Jimmy H. P. Chim, Rynson W. H. Lau, Antonio Si, Hong Va Leong, Danny
To, Mark Green, and Miu Ling Lam. Multi-resolution model transmission
in distributed virtual environments. In Proceedings of ACM Symposium on
Virtual Reality Software and Technology, pages 25{34, November 1998.

[16] Jon Christensen, Joe Marks, and Stuart Shieber. An empirical study of
algorithms for point-feature label placement. Transactions on Graphics,
14(3), July 1995.

[17] William Cleveland. Visualizing Data. Hobart Press, 1993.

[18] Daneil Cohen-Or. Model-based view-extrapolation for interactive VR web-
systems. In Computer Graphics International '97, pages 104{112, 1997.

[19] Daniel Cohen-Or and Eyal Zadicario. Visibility streaming for network-
based walkthroughs. In Graphics Interface, pages 1{7, June 1998.

130

[20] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms. MIT Press, 1990.

[21] MapQuest Corporation. Map server web site. www.mapquest.com.

[22] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature.
Canadian Cartographer, 10(2):112{122, 1973.

[23] Jean-Daniel Fekete and Catherine Plaisant. Excentric labeling: Dynamic
neighborhood labeling for data visualization. In Proceedings of CHI '99,
pages 512{519, 1999.

[24] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext transfer protocol|HTTP/1.1 draft standard
RFC 2616, June 1999. ftp://ftp.isi.edu/in-notes/rfc2616.ps.

[25] R. Finkel and J. Bentley. Quad trees: A data structure for retrieval on
composite keys. Acta Informatica, 4:1{9, 1974.

[26] George Forman. Obtaining Responsiveness in Resource-Variable Environ-
ments. PhD thesis, University of Washington, 1996.

[27] George Forman. Wanted: Programming support for ensuring responsive-
ness despite resource variability and volatility. Technical report, Hewlett-
Packard Labs, 1998.

[28] George H. Forman and John Zahorjan. The challenges of mobile computing.
IEEE Computer, 27(4):38{47, April 1994. Also in Mobility: Processes,
Computers and Agents, Addison-Wesley, 1999.

[29] Thomas A. Funkhouser. Database and Display Algorithms for Interactive
Visualization of Architectural Models. PhD thesis, UC Berkeley, 1993.

[30] Thomas A. Funkhouser. Database management for interactive display of
large architectural models. In Graphics Interface, pages 1{8, 1996.

[31] Thomas A. Funkhouser and Carlo H. S�equin. Adaptive display algorithm
for interactive frame rages during visualization of complex virtual environ-
ments. In Computer Graphics Proceedings, pages 247{254, 1993.

131

[32] Thomas A. Funkhouser, Carlo H. S�equin, and Seth J. Teller. Management
of large amounts of data in interactive building walkthroughs. In Com-
puter Graphics (1992 SIGGRAPH Symposium on Interactive 3D Graphics),
pages 11{20, 1992.

[33] Thomas A. Funkhouser, Seth J. Teller, Carlo H. S�equin, and Delnaz Khor-
ramabadi. The UC Berkeley system for interactive visualization of large
architectural models. Presence, 5(1), January 1996.

[34] George W. Furnas. Generalized �sheye views. In Human Factors in Com-
puting Systems CHI '86 Conference Proceedings, pages 16{23, 1986.

[35] George W. Furnas and Benjamin B. Bederson. Space-scale diagrams: Un-
derstanding multiscale interfaces. In CHI '95 Proceedings. ACM Press,
1995.

[36] Carsten A. Gerlhof and Alfons Kemper. A multi-threaded architecture for
prefetching in object bases. Lecture Notes in Computer Science, 779:351{
364, 1994.

[37] Antonin Guttman. R-trees: A dynamic index structure for spatial search-
ing. In Beatrice Yormark, editor, SIGMOD'84, Proceedings of Annual Meet-
ing, Boston, Massachusetts , June 18-21, 1984, pages 47{57. ACM Press,
1984.

[38] David Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8:231{274, 1987.

[39] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi,
Rivi Sherman, Aharon Shtull-Trauring, and Mark Trakhtenbrot. State-
mate: A working environment for the development of complex reactive
systems. In IEEE Transactions on Software Engineering, volume 16, pages
403{414, 1990.

[40] David Harel and Michal Politi. Modeling Reactive Systems with Statecharts:
The Statemate Approach. McGraw-Hill, 1998.

[41] Paul S. Heckbert and Michael Garland. Multiresolution modeling for fast
rendering. In Graphics Interface '94, pages 43{50, 1994.

132

[42] Joseph M. Hellerstein, Je�ery F. Naughton, and Avi Pfe�er. Generalized
search trees for database systems. In Proceedings 21st International Con-
ference on Very Large Data Bases, pages 562{573, 1995.

[43] Gerd Hesina and Dieter Schmalstieg. A network architecture for remote
rendering. In Proceedings of 2nd International Workshop on Distributed
Interactive Simulation and Real Time Applicatioins (DIS-RT '98), pages
88{91, 1998.

[44] Hugues Hoppe. Progressive meshes. In Computer Graphics (ACM SIG-
GRAPH 1996 Proceedings), pages 99{108, 1996.

[45] Brian Kernighan and Christopher Van Wyk. Extracting geometric infor-
mation from architectural drawings. In WACG: 1st Workshop on Ap-
plied Computational Geometry: Towards Geometric Engineering, WACG.
LNCS, 1996.

[46] Nils Knaa. Speed up your database client with adaptable multithreaded
prefetching. In Proceedings of the Sixth IEEE International Symposium on
High Performance Distributed Computing, pages 102{111, 1997.

[47] Nils Knaa. An adaptable multithreaded prefetching technique for client-
server ojbect bases. Cluster Computing, 1(1):27{37, 1998.

[48] Marcel Kornacker and Douglas Banks. High-concurrency locking in r-trees.
In The VLDB Journal, pages 134{145, 1995.

[49] J. Lamping and R. Rao. The hyperbolic browser: A focus + context tech-
nique for visualizing large hierarchies. Journal of Visual Languages and
Computing, 7(1):33{55, 1996.

[50] John Lamping, Ramama Rao, and Peter Pirolli. A focus+context technique
based on hyperbolic geometry for visualizing large hierarchies. In CHI '95
Proceedings. ACM Press, 1995.

[51] Y. K. Leung and M. D. Apperley. A review and taxonomy of distortion-
oriented presentation techniques. ACM Transactions on Computer-Human
Interaction, 1(2):126{160, 1994.

[52] Alan M. MacEachren. An evolving cognitive-semiotic approach to ge-
ographic visualization and knowledge construction. Information Design
Journal, 10(1):26{36, 2001. Special issue on Jacques Bertin's theories.

133

[53] Alan M. MacEachren, Robert Edsall, Daniel Haug, Ryan Baxter, George
Otto, Raymon Masters, Sven Fuhrmann, and Liujian Qian. Virtual environ-
ments for geographic visualization: Potential and challenges. In Proceedings
of the ACM Workshop on New Paradigms in Information Visualization and
Manipulation, pages 35{40, 1999.

[54] Yair Mann and Daniel Cohen-Or. Selective pixel transmission for navigating
in remote virtual environments. Computer Graphics Forum, 16(3):201{206,
September 1997.

[55] Andr�e Matos, Jonas Gomes, and Luiz Velho. Cache management for real
time visualization of 2d data sets. In SIBGRAPI '98, 1998.

[56] B.H. McCormick, T.A. DeFanti, and M.D. Brown. Visualization in scienti�c
computing. ACM Computer Graphics (special issue), 21(6), 1987.

[57] Kurt Mehlhorn. Datastructures and Algorithms 3: Multi-Dimensional
Searching and Computational Geometry. Springer-Verlag, 1984.

[58] David A. Nation, Catherine Plaisant, Gary Marchionini, and Anita Kom-
lodi. Visualizing websites using a hierarchical table of contents browser:
WebTOC. In Proceedings 3rd Conference on Human Factors and the Web,
1997.

[59] H. Frystyk Nielsen, Mike Spreitzer, Bill Janssen, and Jim Gettys. HTTP-
NG overview, INTERNET-DRAFT, November 1998. work in progress.

[60] Henrik Frystyk Nielsen, James Gettys, Anselm Baird-Smith, Eric
Prud'hommeaux, H_akon Wium Lie, and Chris Lilley. Network performance
e�ects of HTTP/1.1, CSS1, and PNG. Computer Communication Review,
27(4), October 1997.

[61] NYU Active Visualization Project. Map server demo.
cs.nyu.edu/visual/home/demos/tigerDemo/.

[62] The Mozilla Organization. HTTP/1.1 pipelining faq, September 2001.
www.mozilla.org/projects/netlib/http/pipelining-faq.html.

[63] Renato Pajarola. Access to Large Scale Terrain and Image Databases in
Geoinformation Systems. PhD thesis, ETH Z�urich, 1998. Dissertation No.
12729.

134

[64] Renato Pajarola. Large scale terrain visualization using the restricted
quadtree triangulation. In Proc. IEEE Visualization '98, pages 19{26 and
515, 1998.

[65] Renato Pajarola, Thomas Ohler, Peter Stucki, Kornel Szabo, and Peter
Widmayer. The alps at your �ngertips: Virtual reality and geoinformation
systems. In Proceedings 14th International Conference on Data Engineer-
ing, ICDE '98, pages 550{557, 1998.

[66] Renato Pajarola and Jarek Rossignac. Compressed progressive meshes.
IEEE Transactions on Visualization and Computer Graphics, 6(1):79{93,
January-March 2000.

[67] Renato Pajarola and Peter Widmayer. Virtual geoexploration: Concepts
and design choices. International Journal of Computational Geometry and
Applications, 11(1):1{14, February 2001.

[68] Songju Park, Dongman Lee, Mingyu Lim, and Chansu Yu. Scalable data
management using user-gased caching and prefetching in distributed virtual
environments. In VRST 2001, pages 121{126, 2001.

[69] Ken Perlin and David Fox. Pad: An alternative approach to the computer
interface. In Proceedings 1993 ACM SIGGRAPH, pages 57{64, 1993.

[70] Catherine Plaisant, David Carr, and Ben Shneiderman. Image browsers:
Taxonomy, guidelines, and informal speci�cations. IEEE Software,
12(2):21{32, 1995.

[71] K. Rothermel, G. Dermler, and W. Fiederer. QoS negotiation and resource
reservation for distributed multimedia applications. In 1997 International
Conference on Multimedia Computing and Systems (ICMCS '97), 1997.

[72] Szymon Rusinkiewicz and Marc Levoy. Streaming QSplat: a viewer for
networked visualization of large, dense models. In Symposium on Interactive
3D Graphics, pages 63{68, 2001.

[73] Hanan Samet. Applications of Spatial Data Structures: Computer Graphics,
Image Processing, and GIS. Addison-Wesley, 1990.

[74] Hanan Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, 1990.

135

[75] Doug Scha�er, Zhengping Zuo, Saul Greenberg, Lyn Bartram, John Dill,
Shelli Dubs, and Mark Roseman. Navigating hierarchically clustered net-
works through �sheye and full-zoom methods. ACM Transactions on
Computer-Human Interaction, 3(2):162{188, June 1996.

[76] V. F. Schenkelaars. Implementation of reactive data structures for postgres.
Master's thesis, FEL-TNO Divisie 2, 1992. Tech. Rep. FEL-92-S343 (not
found yet).

[77] Dieter Schmalstieg. The Remote Rendering Pipeline: Managing Geometry
and Bandwidth in Distributed Virtual Environments. PhD thesis, Vienna
University of Technology, 1997.

[78] Dieter Schmalstieg and Michael Gervautz. Demand-driven geometry trans-
mission for distributed virtual environment. Computer Graphics Forum,
15(3):421{432, 1996.

[79] Dieter Schmalstieg and Gernot Schauer. Smooth levels of detail. In Pro-
ceedings of IEEE Virtual Reality Annual International Symposium (VRAIS
'97), pages 12{19, 1997.

[80] Ben Shneiderman. Designing the User Interface: Strategies for E�ective
Human-Computer Interaction. Addison-Wesley, third edition, 1998.

[81] Lidan Shou, Jason Chionh, Zhiyong Huang, Yixin Ruan, and Kian-Lee
Tan. Walking through a very large virtual environment in real-time. In
Proceedings of the 27th VLDB Conference, 2001.

[82] R. Spence and M. D. Apperley. Data base navigation: An oÆce environ-
ment for the professional. Behavior and Information Technology, 1(1):43{
54, 1982.

[83] Simon Spero. Next generation hypertext transport protocol, March 1995.
work in progress.

[84] Simon E. Spero. Analysis of HTTP performance problems, July 1994.
http://www.w3.org/Protocols/HTTP/1.0/HTTPPerformance.html.

[85] Erik B. Steiner, Alan M. MacEachren, and Diansheng Guo. Developing and
assessing light-weight data-driven exploratory geovisualizatoin tools for the
web. In 20th International Cartographic Conference Proceedings, 2001.

136

[86] sven Fuhrmann and Alan M. MacEachren. Navigation in desktop geovirtual
environments: Usability assessment. In 20th International Cartographic
Conference Proceedings, 2001.

[87] Kornel Szabo, Peter Stucki, Patrick Aschwanden, Thomas Ohler, Renato
Pajarola, and Peter Widmayer. A virtual reality based system environment
for intuitive walk-throughs and exploration of large-scale tourist informa-
tion. In Proc. of the Enter95 Conference, pages 10{15, 1995.

[88] Eyal Teler and Dani Lischinski. Streaming of complex 3D scenes for remote
walkthroughs. Computer Graphics Forum, 20(3), 2001.

[89] Seth J. Teller and Carlo H. S�equin. Visibility preprocessing for interactive
walkthroughs. Computer Graphics, 25(4):61{69, July 1991. Proceedings of
SIGGRAPH'91.

[90] Lisa Tweedie. Characterizing interactive externalizations. In CHI '97, 1997.
Also in Readings in Information Visualization: Using Vision to Think,
Card, et al., editors, Morgan Kaufmann, 1999.

[91] U.S. Census Bureau, Washington, DC. Census 2000 TIGER/Line Files
Technical Documentation, 2000. www.census.gov.

[92] DC U.S. Census Bureau Washington, 2000. Census 2000 TIGER/Line Files
[machine-readable data �les].

[93] P. van Oosterom and T. Vijlbrief. The spatial location code. In Proceedings
of International Symposium on Spatial Data Handling, 1996.

[94] Peter van Oosterom. A reactive data structure for geographic information
systems. In Auto-Carto 9 Proceedings, pages 665{674, 1989.

[95] Peter van Oosterom. Reactive Data Structures for Geographic Information
Systems. PhD thesis, Leiden University, 1990.

[96] Peter van Oosterom. The reactive-tree: A storage structure for a seamless,
scaleless geographic database. In Proceedings Auto-Carto 10, pages 393{
407, 1991.

[97] Peter van Oosterom. The GAP-tree: An approach to 'on-the-y' map
generalization of an area partitioning. In J. C. Mueller, J. P. Lagrange, and
R. Weibel, editors, GIS and Generalization: Methodology and Practice,
chapter 9, pages 120{132. Tayler & Francis, London, 1995.

137

[98] Peter van Oosterom and Christiaan H. J. Lemmen. EÆcient access to a
very large spatial database. In Joint European Conference and Exhibition
on Geographical Information, JEC96, 1996.

[99] Peter van Oosterom and Chrit Lemmen. Spatial data-management on a
very large cadastral database. Computers, Environment and Urban Sys-
tems, 25(4-5):509{528, 2001.

[100] Peter van Oosterom and Vincent Schenkelaars. The development of an
interactive multi-scale GIS. International Journal of Geographical Infor-
mation Systems, 9(5):489{507, 1995.

[101] Petrus van Oosterom. Reactive Data Structures for Geographic Information
Systems. Oxford University Press, 1993.

[102] Tom Vijlbrief and Peter van Oosterom. The GEO++ system: An extensible
GIS. In Proceedings 5th International Symposium on Spatial Data Handling,
pages 40{50, 1992.

[103] W3C. Final HTTP-NG activity statement, 2001.
http://www.w3.org/Protocols/HTTP-NG/Activity.html.

[104] Robert Weibel. Generalization of spatial data. Course Notes for the CISM
Advanced School on Algorithmic Foundations of Geographical Information
Systems, September 1996.

[105] Chee Yap, Kenneth Been, and Zilin Du. Responsive thinwire visualiza-
tion: Application to large geographic datasets. In Proc. SPIE Vol. 4665,
Visualization and Data Analysis 2002, pages 1{12. 2002.

[106] Chee Yap and Ting-jen Yen. Design and instrumentation of a thinwire
visualization system, 2000. unpublished manuscript.

[107] Christopher Zach and Konrad Karner. Prefetching policies for remote walk-
throughs. In WSCG 2002, 2002.

138

