
Formal Verification Using Static and Dynamic Analyses

by

Aleksandr Zaks

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Departemnt of Computer Science

New York University

May, 2007

Amir Pnueli

c© Aleksandr Zaks

All Rights Reserved, 2007

Acknowledgments

Foremost, I would like to thank my advisor, professor Amir Pnueli, for his patience and

encouragement. His supervision of me was very liberal, yet I always felt more confident

when he was around, especially during my first steps. The increased confidence was

a direct result of my advisor’s deep understanding of the subject and his words of

encouragement. My collaboration with Amir was the highlight of my time spend at

NYU, and I will cherish it the most.

Furthermore, I would like to express my gratitude to the members of the ACSys

group who had to sit through many of my practice presentations. Special thanks

go to Lenore Zuck with whom I worked very closely in the beginning of my studies.

In addition, I want to single out Clark Barrett, who was instrumental in my career

development and kindly agreed to serve as a reader on my defense committee.

I have spent two wonderful summers at NEC Labs working with System LSI group.

The experience I have gained there was absolutely crucial for my understanding of

the field of formal verification. I would like to thank every member of the group for

their kind support and especially Franjo Ivancic, who was my mentor, colleague, and

friend for the last three years. I am also thankful to Aarti Gupta for her continued

support and advisement.

Besides ACSys group, there were numerous other people at NYU, who helped

iii

me to make the journey. I would like to mention Joel Spencer and Yevgeiny Dodis

with whom I have interacted on several occasions from my first steps at NYU till

graduation, when both served on my thesis committee.

iv

Abstract

One of the main challenges of formal verification is the ability to handle systems of

realistic size, which is especially exacerbated in the context of software verification.

In this dissertation, we suggest two related approaches that, while both relying on

formal method techniques, can still be applied to larger practical systems. The scala-

bility is mainly achieved by restricting the types of properties we are considering and

guarantees that are given.

Our first approach is a novel run-time monitoring framework. Unlike previous

work on this topic, we expect the properties to be specified using Property Speci-

fication Language (PSL). PSL is a newly adopted IEEE P1850 standard and is an

extension of Linear Temporal Logic (LTL). The new features include regular expres-

sions and finite trace semantics, which make the new logic very attractive for run-time

monitoring of both software and hardware designs. To facilitate the new logic we have

extended the existing algorithm for LTL tester construction to cover the PSL-specific

operators. Another novelty of our approach is the ability to use partial information

about the program that is being monitored while the existing tools only use the infor-

mation about the observed trace and the property under consideration. This allows

going beyond the focus of traditional run-time monitoring tools – error detection in

the execution trace, towards the focus of static analysis – bug detection in programs.

v

In our second approach, we employ static analysis to compute SAT-based function

summaries to detect invalid pointer accesses. To compute function summaries, we pro-

pose new techniques for improving the precision and performance in order to reduce

the false error rates. In particular, we use BDDs to represent a symbolic simulation of

functions. BDDs allow an efficient representation of path-sensitive information and

high level simplification. In addition, we use a light-weight range analysis technique

for determining lower and upper bounds for program variables, which can further

offload the work from the SAT solver. Note that while in our current implementation

the analysis happens at compile time, we can also use the function summaries as a

basis for run-time monitoring.

vi

Contents

Acknowledgments iii

Abstract v

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.2.1 PSL Testers and Optimal Monitors 5

1.2.2 Run-time Monitoring with Partially Specified Systems 7

1.2.3 Range Analysis . 9

1.2.4 Summary-Based Static Analysis for Invalid Pointer Accesses . 10

2 Preliminaries 12

2.1 Just Discrete Systems with Finite Computations 12

2.2 Accellera PSL . 15

2.2.1 Syntax . 15

vii

2.2.2 Semantics . 16

2.3 Associating a Regular Grammar with a SERE 19

2.4 Game Structures . 23

2.5 Rabin-Chain Automata . 25

2.6 F-Soft’s Software Modeling for C Programs 27

2.6.1 Labeled Transition Graphs . 27

2.6.2 Modeling of C Program Memory 29

2.6.3 Bit-accurate Model . 31

3 PSL Testers and Optimal Monitors 34

3.1 Introduction . 34

3.2 Temporal Testers . 37

3.3 LTL Testers . 39

3.3.1 A Tester for ϕ = X!b . 39

3.3.2 A Tester for ϕ = b1 U b2 . 40

3.4 Tester Composition . 40

3.5 PSL Testers . 42

3.5.1 A Tester for ϕ = 〈r〉b . 42

3.5.2 A Tester for ϕ = r . 48

3.5.3 Handling abort operator . 49

3.5.4 Complexity of the Construction 51

3.6 Using Testers for Model Checking . 51

3.7 Run-time Monitoring with Testers . 52

3.7.1 Monitoring with Testers . 53

3.7.2 Deciding Negative Determinacy 55

viii

3.7.3 Deciding Positive Determinacy 56

3.7.4 Detecting Non-Monitorable Prefixes 56

3.8 Related Work . 58

4 Run-time Monitoring with Partially Specified Systems 60

4.1 Associating Games with JDS’s . 63

4.2 Solving Games . 64

4.2.1 Converting the objective of a game expressed in PSL into universal liveness 67

4.2.2 Deterministic Büchi Specifications 68

4.3 Feasible Interface Monitoring . 71

4.4 Discussion . 74

4.5 Our Contribution and Related Work 76

5 Range Analysis 78

5.1 Constraint System Generation . 79

5.1.1 Symbolic Bounds . 80

5.1.2 Handling of Conditionals . 83

5.1.3 Objective Function . 84

5.1.4 Constraint System Decomposition 84

5.2 Analyzing a Constraint System . 86

5.2.1 From Symbolic Constraints to Linear Inequalities 86

5.2.2 From Symbolic Objective Functions to LP Objective Functions 87

5.2.3 Handling Disjunctions . 87

5.3 Bounded Range Analysis . 89

5.4 Experiments . 91

ix

5.5 Conclusions . 93

6 Static Analysis for Invalid Pointer Accesses 94

6.1 Software Modeling in F-Soft . 98

6.1.1 Pointer Validity Checking . 99

6.1.2 Context-Insensitive Pointer Updates 100

6.2 Function Summary Computation . 103

6.2.1 Functional Symbolic Simulation 103

6.2.2 Summary Computation . 109

6.3 Error Hierarchy Analysis . 112

6.3.1 Intra-procedural Error Hierarchy Analysis 113

6.3.2 Inter-procedural Error Hierarchy Analysis 114

6.4 Experimental Results . 115

6.5 Conclusions . 118

Bibliography 119

x

List of Figures

1.1 Fedora Core 5 bug report (in thousands), as of December 2006. . . . 2

1.2 Composition of transducers to form T [ϕ U ψ]. 6

2.1 A Game structure for Example 1. 24

2.2 A Rabin-chain automaton for the objective Ψ of the game in Example 1 26

2.3 Sample code and its graph representation 28

3.1 Composition of transducers to form T [ϕ U ψ]. 35

3.2 Tester construction for an arbitrary LTL formula ϕ 41

3.3 A tester for ϕ = 〈r〉b. 43

4.1 A naive algorithm for prevention maintenance 65

4.2 The composed game . 69

4.3 A feasible algorithm mon for prevention maintenance 72

4.4 Module and a possible interface for Example 6 74

5.1 A Sample Program . 84

5.2 Symbolic Constraint System . 85

6.1 A motivating program fragment . 96

xi

6.2 A program fragment . 101

6.3 Using BDDs to slice and simplify a program. 105

6.4 Computing Guards as Blobbed BDDs 105

6.5 Computing Transfer Functions as Blobbed BDDs 106

6.6 A program fragment for Example 7. 111

6.7 Lazy vs Eager Summary Instantiation 112

xii

List of Tables

2.1 Truth table for control logic . 31

5.1 MLP range analysis benchmarks . 91

5.2 Bounded range analysis benchmarks 92

6.1 Experimental Results . 115

6.2 Detailed experimental results . 117

xiii

Chapter 1

Introduction

1.1 Motivation

A study by the National Institute of Standards and Technology(NIST) in 2002 found

that software developers spend approximately 80 percent of their development costs

on identifying and correcting software defects or bugs, resulting in an estimated 59.5

billion dollars loss to the U.S. economy. Yet, according to Carnegie Mellon Uni-

versity’s CyLab Sustainable Computing Consortium, released commercial software

typically has 20 to 30 bugs for every 1,000 lines of code. Even highly critical code

such as operating system code follows a similar pattern. In Fig. 1.1, we show a bugzilla

bug report for the Fedora Core operating system, with bugs grouped by severity.

The presented statistics may explain growing interest in applying formal methods

towards software verification. While many techniques, like symbolic model checking,

have been widely and effectively applied to hardware verification, there are few suc-

cess stories when dealing with software. The main difficulty is the so-called “state

1

0

25

50

75

100

8.4

low

84.6

normal

17.3

high
0.4

urgent

Figure 1.1: Fedora Core 5 bug report (in thousands), as of December 2006.

explosion problem”. One way around the problem is to concentrate not on pro-

gram correctness, the ultimate goal of formal verification, but on other important

objectives. For example, one can use run-time monitoring to certify that a partic-

ular execution satisfies a given specification. Currently, there are many tools that

can very efficiently validate a particular trace. Generally, there is no state explosion

since the program itself is largely ignored. However, such analysis may still result

in the discovery of few bugs. By using partial information about the program itself,

we can hope to extend run-time monitoring to be effective for bug detection, while

preserving the feasibility of the technique. The ability to effectively use partial infor-

mation in run-time monitoring tools is also useful for verification of systems which

use under-specified third party (“off-the-shelf”) components. In such a case, directly

applying model checking may lead to numerous undesirable false positives and result

in a perfectly good system being declared faulty.

Many of the existing verification tools including the ones utilizing run-time mon-

itoring use Liner Temporal Logic (LTL, see [47]) to specify the desired properties.

However, recently a new, more expressive logic, called Property Specification Lan-

guage (PSL, see [1]), has been accepted as IEEE P1850 standard. PSL is a language

for the specification, verification, and testing of hardware design. However, it is also

2

well suited for run-time monitoring of both hardware and software systems. First,

it does include all features of LTL, including well-defined semantics for finite traces,

which is very important for run-time monitoring. In addition, PSL allows using reg-

ular expressions for property specification, which are very natural for both software

and hardware engineers. Thus, we would like to extend existing verification tools to

work with the new specification language.

Another approach to bug detection is static analysis techniques, which have been

successful in analyzing large programs for typical programming errors such as array

buffer overflows, use of uninitialized variables, and others. Function summaries are

often employed to enable an inter-procedural application of this technique. However,

they suffer from imprecision, often resulting in high false error rates. Recent work

[64] discussed how to use SAT-based techniques to compute predicated function sum-

maries, which helped to overcome some of the resulting imprecision and reduce the

false error rate. In particular, the work in [64] discussed precise analysis of locking

related properties of the Linux kernel. It would be highly desirable to extend the

SAT-based approach to be able to deal with more complicated bugs such as invalid

pointer accesses.

1.2 Contributions

Our first contribution is a novel run-time monitoring framework. Unlike the previ-

ously known tools, we expect the properties to be specified using PSL, which is an

extension of LTL. The new features include regular expressions and finite trace se-

mantics, which makes the new logic very attractive for run-time monitoring of both

software and hardware designs. To facilitate the extended language we have extended

3

the existing algorithm for LTL tester(transducer) construction to cover the PSL spe-

cific operators [52]. As a side result, we have showed how to create an automaton

that accepts the language defined by a given PSL formula. The resulting automa-

ton is guaranteed to have fewer states than the ones produced by currently existing

methods [14]. However, most importantly, since our construction is compositional, a

user can submit a manually optimized tester for a sub-formula, and our tool would

finish the construction for the complete formula.

Another novelty of our approach is the ability to use partial information about

the program (model) that is being monitored [4] while the existing tools only use the

information about the observed trace and the property under consideration. This

allows going beyond the focus of traditional run-time monitoring tools – error detec-

tion in the execution trace, towards the focus of static analysis – bug detection in

programs.

In our second contribution, we employ static analysis to compute SAT-based func-

tion summaries to detect invalid pointer accesses [69]. We propose new techniques

for improving the precision and performance in order to reduce the false-error rates.

In particular, we use BDDs to represent a symbolic simulation of functions. BDDs

allow an efficient representation of path-sensitive information and high-level simpli-

fication. In addition, we use a light-weight range analysis technique for determining

lower and upper bounds for program variables [2], which can further offload the work

from the SAT solver. Note that while in our current implementation the analysis hap-

pens at compile time, we can also use the function summaries as a basis for run-time

monitoring.

4

Thus, the contribution of this thesis can be summarized under the following head-

ings:

1. PSL Testers and Optimal Monitors.

2. Run-time Monitoring with Partially Specified Systems.

3. Range Analysis.

4. Summary-Based Static Analysis for Invalid Pointer Accesses.

In the following subsections, we will elaborate on each of these results.

1.2.1 PSL Testers and Optimal Monitors

A compositional approach to the construction of automata corresponding to LTL

formulas was introduced in [42], which was based on the notion of a temporal tester

[40]. A tester for an LTL formula ϕ can be viewed as a transducer that keeps

observing a state sequence σ and, at every position j ≥ 0, outputs a boolean value

which equals 1 iff (σ, j) |= ϕ (i.e., the suffix of σ starting from position j satisfies ϕ)

. While acceptors, such as Büchi automata [10], do not compose, transducers do. In

Fig. 1.2, we show how transducers for the formulas ϕ, ψ, and p U q can be composed

into a transducer for the formula ϕ U ψ.

There are several important advantages to the use of temporal testers as the basis for

the construction of automata for temporal formulas:

• The construction is compositional. Therefore, it is sufficient to specify testers for

the basic temporal formulas: X!p and p U q, where p and q are assertions (state

formulas). Here X! and U are PSL versions of the Next and Until operators, see

5

T [p U q]

p

q

T [ϕ]

T [ψ]

Figure 1.2: Composition of transducers to form T [ϕ U ψ].

Chapter 2, Section 2.2. Testers for more complex LTL formulas can be derived

by composition as in Fig. 1.2. .

• The testers for the basic formulas are naturally symbolic. Thus, a general tester,

which is a synchronous parallel composition (automata product) of symbolic

modules can also be easily represented symbolically.

• As will be shown in Chapter 3, Section 3.6 and Section 3.7, the basic processes

of model checking and run-time monitoring can be performed directly on the

symbolic representation of the testers. There is no need for determinization or

reduction to explicit state representation.

In Chapter 3, we generalize the temporal tester approach to the more expressive

language PSL, recently introduced as a new standard logic for specifying hardware

properties [1]. Due to compositionality, it is only necessary to provide the construction

of testers for the basic operators introduced by PSL.

6

In addition, in Chapter 3, Section 3.7 we show how to construct an optimal sym-

bolic run-time monitor. By optimality, we mean that the monitor extracts as much

information as possible from the observed trace. In particular, an optimal moni-

tor stops as soon as it can be deduced that the specification is violated or satisfied,

regardless of the possible continuations of the observed trace.

1.2.2 Run-time Monitoring with Partially Specified Systems

There are two main sources of partially specified models. First, it is commonplace,

that large software systems utilize third-party components. Recently the concept of

Software as a Service (SaaS) is becoming more popular, where there is even a greater

separation between internal parts of a system and external components. Due to the

proprietary and engineering considerations in such a situation we may not always

have a complete specification (i.e., all implementation details) of all parts comprising

our system. Second, we may intentionally over-approximate our system and use the

resulting abstraction to increase the precision of the run-time monitor. Our hope is

that we may discover more bugs while avoiding the state explosion problem associated

with model checking [5] complete, fully specified, models.

As we have discussed above, out of consideration for proprietary information, or

in order to simplify presentation, we should be able to deal effectively with under-

specified models. In this dissertation, we group all under-specified components of our

system and refer to it as an interface (environment). The rest of the system is called

a module.

We consider the problem of a module interacting with an external interface (en-

vironment) where the interaction is expected to satisfy some system specification Φ.

7

While we have the full implementation details of the module, we are only given a par-

tial external specification for the interface. The interface specification being partial

(incomplete) means that the interface displays only a strict subset of the behaviors

allowed by the interface specification so that directly applying model checking may

result in false positives.

Based on the assumption that interface specifications are incomplete, we address

the question of whether we can tighten the interface specification into a strategy,

consistent with the given partial specification, that will guarantee that all possible

interactions resulting from possible behaviors of the module will satisfy the system

specification Φ. We refer to such a tighter specification as a Φ-guaranteeing specifi-

cation. Rather than verifying whether the interface, which is often an off-the-shelf

component, satisfies the tighter specification, the paper proposes a construction of a

run-time monitor which continuously checks the existence of a Φ-guaranteeing inter-

face. When no suitable strategy exists a monitor generates an alert indicating that

there is a bug in the system.

We view the module and the external interface as players in a 2-player game. The

interface has a winning strategy if it can guarantee that no matter what the module

does, the overall specification Φ is met. The problem of incomplete specifications is

resolved by allowing the interface to follow any strategy consistent with the interface

specification. Our approach essentially combines traditional run-time monitoring and

static analysis. This allows going beyond the focus of traditional run-time monitoring

tools – error detection in the execution trace, towards the focus of the static analysis

– bug detection in the programs.

In Chapter 4, we show how to construct and solve a game between the module

8

and the interface where the solution represents the set of winning strategies for the

interface. During the monitoring phase, we simply check that the monitor follows one

of these strategies.

1.2.3 Range Analysis

Model checking [5] is a prominent verification technique which has been used suc-

cessfully in practice to verify complex circuit designs and communication protocols.

However, model checking suffers from the state explosion problem, i.e. the number

of states to explore grows exponentially with the number of state elements. This

problem is further exacerbated in the context of software verification, where variables

are typically modeled as multi-bit state vectors and arrays are common.

In Chapter 5, we directly address this problem by bounding the number of bits

needed to represent program variables. We statically determine possible ranges for

values of variables in programs and use this information to extract smaller verification

models. The use of this information greatly improves the performance of back-end

model checking or static analysis techniques, based on use of BDDs or SAT solvers.

Our main method is based on the framework suggested in [55] which formulates

a system of symbolic inequality constraints. It then reduces the constraint system

to an LP problem, which is analyzed by an LP (Linear Programming) solver. The

solution to the LP problem provides symbolic bounds for the values of all integer

variables. This includes variables that are de-sugared by preprocessing steps into in-

teger variables as described in Chapter 2, Section 2.6, in particular, pointer variables

and integer (or pointer) elements of composite structures. In addition to the frame-

work presented in [55], we have incorporated various contributions. In particular, we

9

perform the analysis for constraint systems that can contain both disjunctions and

conjunctions of linear inequalities, instead of just conjunctions. Furthermore, our

particular modeling framework allows us to make certain simplifying assumptions

that translate to a more efficient computation of tight bounds on variables. We use

a publicly available Mixed Linear Programming (MLP) solver to solve the generated

constraint systems.

Our second approach called bounded range analysis was introduced for bounded

depth analyses as is done in Bounded Model Checking (BMC) [8]. Both methods

have been implemented in the F-Soft verification platform [33].

1.2.4 Summary-Based Static Analysis for Invalid Pointer Ac-

cesses

Predicate abstraction [44] is a very useful technique for software verification. The

general idea of predicate abstraction is that instead of tracking the values of the

program variables exactly we only track the effect of program statements on a set

of boolean predicates over program variables. One of the optimizations to predicate

abstraction is based on the observation that there is no need to have a uniform set

of predicates for all program locations. Instead, we can use a predicate localization

technique [35] to reduce the overall number of tracked predicates. We can develop this

idea even further and actually give up working with individual locations altogether.

One possible extension is to treat a function body as a monolithic object and compute

the effect of the whole function on a given set of predicates as has also been proposed

in [65]. By doing so, we may significantly improve the precision of the abstraction

compared to [44] since we do not have to limit our attention to a given set of predicates

10

when processing a function. In addition, when we project the transition relation of a

whole function onto the set of predicates to compute a so-called function summary ,

we expect the final result to be compact. The intuitive justification for this claim is

based on a good programming practice which requires a function to represent a unit

of work and have a well-defined, concise interface.

To compute function summaries, we propose many new techniques for improving

the precision and performance in order to reduce the false error rates. We use BDDs

to represent symbolic simulations of functions. BDDs allow an efficient representa-

tion of path-sensitive information. We propose an effective BDD variable ordering

to capture the program structure, thus, avoiding a BDD size explosion as well as ex-

pensive variable reordering operations. When computing a function summary using

SAT-based enumeration, we use an inter-procedural predicate clustering technique

to improve the performance and scalability. We use other static analysis techniques

such as program slicing to simplify and reduce a given model. To improve the overall

scalability for pointer validity checking, we add context-insensitive pointer updates

into caller functions to summarize the indirect effect of pointer manipulations inside a

called function on aliased pointer variables. We also perform an error hierarchy analy-

sis to limit the number of warnings presented to the user. We have implemented these

techniques in the software analysis tool F-Soft, and present experimental evidence

for the efficacy of the approach.

11

Chapter 2

Preliminaries

2.1 Just Discrete Systems with Finite Computa-

tions

We take a just discrete system (JDS), which is a variant of a fair transition system

[47], as our computational model. Under this model, a system D : 〈V, W, Θ, R,J , F 〉
consists of the following components:

• V : A finite set of system variables . A state of the system D provides a type-

consistent interpretation of the system variables V . For a state s and a variable

v ∈ V , we denote the value assigned to v by the state s by s[v]. Let S denote

the set of all states over V . We assume that S is finite.

• W ⊆ V : A subset of owned variables which only the system itself can modify.

All other variables can also be modified by the environment. By default, we

assume our system is closed and W = V , in which case we omit the specification

of W .

12

• Θ: The initial condition. This is an assertion (state formula) characterizing the

initial states. A state is defined to be initial if it satisfies Θ.

• R(V, V ′): The transition relation, which is an assertion that relates the values

of the variables in V interpreted by a state s to the values of the variables V ′

in an R-successor state s′.

• J : A set of justice (weak fairness) requirements. Each justice requirement

is an assertion. An infinite computation must include infinitely many states

satisfying the assertion.

• F : The termination condition, which is an assertion specifying the set of final

states. Each finite computation must end in a final state. We sometimes omit

F to indicate that we do not allow finite computations.

For a subset of variables U ⊆ V , we introduce the abbreviation pres(U) =
∧

u∈U(u′ = u), specifying a transition in which all the variables in U preserve their

values. If our system is open that is W 6= V , we define an extended transition relation

R∗ = R ∨ pres(W) that allows, in addition to R-steps, also environment steps. Such

steps are allowed to change all variables arbitrarily, as long as they preserve the values

of all owned variables.

An open computation of a JDSD is a non-empty sequence of states σ : s0, s1, s2, ...,

satisfying the requirements:

• Initiality : s0 is initial.

• Consecution: For each i ∈ [0, |σ|), where |σ| denotes the length of σ, the state

si+1 is a R-successor of state si. That is, 〈si, si+1〉 ∈ R∗(V, V ′) where, for each

v ∈ V , we interpret v as si[v] and v′ as si+1[v].

13

• Justice: If σ is infinite, then for every J ∈ J , σ contains infinitely many

occurrences of J-states (i.e., states satisfying the assertion J).

• Termination: If σ = s0, s1, s2, ..., sk (i.e., σ is finite), then sk must satisfy F .

Note that sometime we only consider infinite computations, in which case F = ∅,
and we omit the component from a JDS description.

From now on, we will refer to an open computation simply as a “computation”. A

sequence of states σ : s0, s1, s2, ... that satisfies all conditions for being a computation

except initiality is called an uninitialized computation. A sequence of states σ :

s0, s1, s2, ... that only satisfies consecution is called an uninitialized run.

Given two JDS’s D1 and D2, the systems are compatible if their sets of owned

variables are disjoint. If the systems are compatible, their asynchronous parallel com-

position, D1‖D2, is the JDS whose sets of variables, owned variables, and justice are

the unions of the corresponding sets in the two systems, whose initial and termination

conditions are the conjunctions of the corresponding assertions, and whose transition

relation is the disjunction of the two transition relations. Thus, a step in an execution

of the composed system is a step of system D1 or a step of system D2.

Similarly, for two systems D1 and D2, we define the synchronous parallel composi-

tion, denoted byD1 ||| D2, as the JDS whose sets of variables and justice requirements

are the unions of the corresponding sets in the two systems, whose initial and ter-

mination conditions are the conjunctions of the corresponding assertions, and whose

transition relation is defined as the conjunction of the two transition relations. Thus,

a step in an execution of the composed system is a joint step of the systems D1 and

D2.

14

Some of our examples are given in SPL (Simple Programming Language), which

is used to represent concurrent programs (e.g., [47, 9]). Every SPL program can be

compiled into a JDS in a straightforward manner. In particular, every statement in

an SPL program contributes a disjunct to the transition relation. For example, the

assignment statement “`0 : x := y + 1; `1 : ” contributes to the transition relation, in

the JDS that describes the program, the disjunct: at−`0 ∧ at′−`1 ∧ x′ = y + 1 ∧
pres(V \{x, π}). The predicates at−`0 and at′−`1 stand, respectively, for the assertions

π = 0 and π′ = 1, where π is the control variable denoting the current location within

the process to which the statement belongs (program counter).

2.2 Accellera PSL

In this section, we are going to follow [22] and formally define the logic PSL. How-

ever, we only consider a subset of PSL. We omit the discussions of OBE (Optional

Branching Extension) formulas that are based on CTL. The branching formulas can

be handled similar to [42], which describes how to combine LTL testers and CTL∗

branching operators. Regarding run-time monitoring, which together with model

checking is the primary motivation for our work, branching formulas are not appli-

cable at all. In addition, we only consider unclocked formulas. This is not a severe

limitation since clocks do not add any expressive power to PSL [22].

2.2.1 Syntax

The logic Accellera PSL is defined with respect to a non-empty set of atomic propo-

sitions P . Let B be the set of boolean expressions over P . We assume that the

15

expressions true and false belong to B.

Definition 1 (Sequential Extended Regular Expressions (SEREs)) .

• Every boolean expression b ∈ B is a SERE.

• If r, r1, and r2 are SEREs, then the following are SEREs:

• {r} • r1 ; r2 • r1 : r2 • r1 | r2

• [∗0] • r1 && r2 • r[∗]

Definition 2 (Formulas of the Foundation Language (FL formulas)) .

• If r is a SERE, then both r and r! are FL formulas.

• If ϕ and ψ are FL formulas, r is a SERE, and b is a boolean expression, then

the following are FL formulas:

• (ϕ) • ¬ϕ • ϕ ∧ ψ • 〈r〉ϕ
• X!ϕ • [ϕ U ψ] • ϕ abort b • r 7→ ϕ

Definition 3 (Accellera PSL Formulas) .

• Every FL formula is an Accellera PSL formula.

2.2.2 Semantics

The semantics of FL is defined with respect to finite and infinite words over Σ =

2P ∪ {>,⊥}. We denote a letter from Σ by l and an empty, finite, or infinite word

from Σ by u, v, or w (possibly with subscripts). We denote the length of word v as |v|.
An empty word v = ε has length 0, a finite word v = (l0l1l2 . . . lk) has length k+1, and

an infinite word has length ω. We use i, j, and k to denote non-negative integers. We

16

denote the ith letter of v by vi−1 (since counting of letters starts at zero). We denote by

vi.. the suffix of v starting at vi. That is, for every i <|v|, vi.. = vivi+1 · · · v|v| or vi.. =

vivi+1 · · · if |v|= ω. We denote by vi..j the finite sequence of letters starting from vi

and ending in vj . That is, for j ≥ i, vi..j = vivi+1 · · · vj and for j < i, vi..j = ε. We

use lω to denote an infinite-length word, each letter of which is l.

We use v̄ to denote the word obtained by replacing every > with a ⊥ and vice

versa. We call v̄ the complement of v.

The semantics of FL formulas over words is defined inductively, using as the base

case the semantics of boolean expressions over letters in Σ. The semantics of a boolean

expression is assumed to be given as a relation ‖= ⊆ Σ×B relating letters in Σ with

boolean expressions in B. If (l, b) ∈ ‖=, we say that the letter l satisfies the boolean

expression b and denote it by l ‖= b. We assume the two special letters > and ⊥
behave as follows: for every boolean expression b, > ‖= b and⊥ ‖6= b. We assume that,

otherwise, the boolean relation ‖= behaves in the usual manner. In particular, that

for every letter l ∈ 2P , atomic proposition p ∈ P and boolean expressions b, b1, b2 ∈
B, (i) l ‖= p iff p ∈ l, (ii) l ‖= ¬b iff l ‖6= b, and (iii) l ‖= true and l ‖6= false.

Finally, we assume that for every letter l ∈ Σ, l ‖= b1 ∧ b2 iff l ‖= b1 and l ‖= b2.

Semantics of SEREs

SEREs are interpreted over finite words from the alphabet Σ. The notation v |≡ r,

where r is a SERE and v a finite word means that v tightly models r. The semantics

of unclocked SEREs are defined as follows, where b denotes a boolean expression, and

r, r1, and r2 denote unclocked SEREs.

• v |≡ {r} ⇐⇒ v |≡ r

17

• v |≡ b ⇐⇒|v|= 1 ∧ v0 ‖= b

• v |≡ r1 ; r2 ⇐⇒ ∃v1, v2 s.t. v = v1v2, v1 |≡ r1 and v2 |≡ r2

• v |≡ r1 : r2 ⇐⇒ ∃v1, v2, and l s.t. v = v1lv2, v1l |≡ r1 and lv2 |≡ r2

• v |≡ r1 | r2 ⇐⇒ v |≡ r1 or v |≡ r2

• v |≡ r1 && r2 ⇐⇒ v |≡ r1 and v |≡ r2

• v |≡ [∗0] ⇐⇒ v = ε

• v |≡ r[∗] ⇐⇒ v = ε or ∃v1, v2 s.t. v1 6= ε, v = v1v2 and v1 |≡ r and v2 |≡ r[∗]

Semantics of FL

Let v be a finite or infinite word over Σ, b be a boolean expression, r be a SERE, and

ϕ, ψ be FL formulas. We use ² to define the semantics of FL formulas. If v ² ϕ we

say that v models (or satisfies) ϕ.

• v ² (ϕ) ⇐⇒ v ² ϕ

• v ² ¬ϕ ⇐⇒ v̄ 2 ϕ

• v ² ϕ ∧ ψ ⇐⇒ v ² ϕ and v ² ψ

• v ² b! ⇐⇒|v|> 0 and v0 ‖= b

• v ² b ⇐⇒|v|= 0 or v0 ‖= b

• v ² r! ⇐⇒ ∃j <|v| s.t. v0..j |≡ r

• v ² r ⇐⇒ ∀j <|v|, v0..j>ω ² r!

18

• v ² X!ϕ ⇐⇒|v|> 1 and v1.. ² ϕ

• v ² [ϕ U ψ] ⇐⇒ ∃k <|v| s.t. vk.. ² ψ, and ∀j < k, vj.. ² ϕ

• v ² ϕ abort b ⇐⇒ v ² ϕ or ∃j <|v| s.t. vj ‖= b and v0..j−1>ω ² ϕ

• v ² 〈r〉ϕ ⇐⇒ ∃j <|v| s.t. v̄0..j |≡ r, vj.. ² ϕ

• v ² r 7→ ϕ ⇐⇒ ∀j <|v| v̄0..j |≡ r, vj.. ² ϕ

Standard LTL operators such as 1 and 0 can be easily derived from U operator.

2.3 Associating a Regular Grammar with a SERE

Following [29], a grammar G = 〈V , T ,P ,S〉 consists of the following components:

• V : A finite set of variables .

• T : A finite set of terminals . We assume that V and T are disjoint. In our

framework, T consists of boolean expressions and a special terminal ε.

• P : A finite set of productions . We only consider right-linear grammars, so all

productions are of the form V → aW or V → a, where a is a terminal, and V

and W are variables.

• S: A special variable called a start symbol .

We say a grammar G is associated with a SERE r if, intuitively, they both define

the same language. For example, we associate the following grammar G with SERE

r = (a1b1)[∗] && (a2b2)[∗]

19

V1 → ε | (a1 ∧ a2)V2

V2 → (b1 ∧ b2)V1

Formally, let b be a boolean expression, r′, r, r1, r2 be SEREs, and G ′,G,G1,G2 the

corresponding grammars. Our algorithm is recursive and we assume that G, G1, and

G2 have already been properly constructed. Our goal is to build G ′ = 〈V ′, T ′,P ′,S ′〉
for the SERE r′.

• r′ = b

− V ′ = {V }

− T ′ = {b}

− P ′ = {V → b}

− S ′ = V

• r′ = r1 ; r2

− V ′ = V1 ∪ V2

− T ′ = T1 ∪ T2

− P ′ =

{V → aW | V → aW ∈ P1} ∪
{V → aS2 | V → a ∈ P1, a 6= ε} ∪
{V → aS2 | V → aW ∈ P1,W → ε ∈ P1} ∪
P2

− S ′ = S1

• r′ = r1 : r2

20

− V ′ = V1 ∪ V2

− T ′ = T1 ∪ T2

− P ′ =

{V → aW | V → aW ∈ P1} ∪
{V → a ∧ b | V → a ∈ P1,S2 → b ∈ P2} ∪
{V → (a ∧ b)W | V → a ∈ P1,S2 → bW ∈ P2} ∪
P2

where a ∧ b =





ε, if a = b = ε

a, if b = ε

b, if a = ε

a ∧ b, otherwise

− S ′ = S1

• r′ = r1 | r2

− V ′ = {S ′} ∪ V1 ∪ V2

− T ′ = T1 ∪ T2

− P ′ =

{S ′ → aW | S1 → aW ∈ P1} ∪
{S ′ → aW | S2 → aW ∈ P1} ∪
P1 ∪
P2

− S ′ = S ′

• r′ = r1 && r2

− V ′ = V1 × V2

21

− T ′ = T1 ∪ T2

− P ′ =
{(V,X) → a ∧ b(W,Y) | V → aW ∈ P1, X → bY ∈ P2} ∪
{(V,X) → a ∧ b | V → a ∈ P1, X → b ∈ P2}

− S ′ = (S1,S2)

• r′ = [∗0]

− V ′ = {V }

− T ′ = {b}

− P ′ = {V → ε}

− S ′ = V

• r′ = r[∗]

− V ′ = V

− T ′ = T

− P ′ =
{S → ε} ∪
{V → aS | V → a ∈ P , a 6= ε} ∪
{V → aS | V → aW ∈ P ,W → ε ∈ P}

− S ′ = S

Theorem 1 For every SERE r of length n, there exists an associated grammar G
with the number of productions O(2n). If we restrict SERE’s to the three traditional

operators: concatenation (;), union (|), and Kleene closure ([∗]), the number of

productions becomes linear in the size of r.

22

2.4 Game Structures

Following [18], we define a (two-player) game G = (S, A, Γ1, Γ2, δ) to consist of:

• A set S of states;

• A finite set A of actions ;

• Action assignment functions Γ1, Γ2 : S → 2A \ {∅} that define, for each state, a

non-empty set of actions available to player-1 and player-2 respectively;

• A transition function δ : S ×A×A → S mapping each state s and each pair of

actions (a1, a2) ∈ Γ1(s)× Γ2(s) to a successor state δ(s, a1, a2);

From each state, the players simultaneously choose their actions. The two actions

define the next state of the system.

Assume we are given a game G as above. For i ∈ {1, 2}, a player-i strategy is a

function ξi : S+ → A that maps every nonempty finite sequence s̄ ∈ S+ to a single

action that is consistent with Γ, (i.e., for every s̄ ∈ S∗ and s ∈ S, ξi(s̄; s) ∈ Γi(s)).

The set of strategies for player-i is denoted by Ξi.

Given a game structure G, a run r of G is a nonempty, possibly infinite, se-

quence s0(a
1
0, a

2
0)s1(a

1
1, a

2
1)s2 . . . of alternating states and action pairs such that, for

every j ≥ 0 and i ∈ {1, 2}, ai
j ∈ Γi(sj) and sj+1 = δ(sj, a

1
j , a

2
j). For a run

r : s0(a
1
0, a

2
0)s1(a

1
1, a

2
1)s2 . . ., we refer to the state sequence σ(r) : s0, s1, s2, . . . as

the history induced by r. Given a pair of strategies ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2 and a state

s ∈ S, the outcome of the strategies from s, Rξ1,ξ2(s), is a run that starts in s and

whose actions are consistent with the strategies.

Let h : s0, s1, . . . , sk=s be a finite history and Ψ a linear temporal logic formula

over S. History h is said to be a winning history for player-i, i ∈ {1, 2}, with respect

23

to objective Ψ in G if player-i has a strategy ξi ∈ Ξi such that for all strategies

ξ3−i ∈ Ξ3−i, h · σ(Rξ1,ξ2(s)) |= Ψ. A suitable strategy ξi is a winning player-i strategy

for Ψ from h in G. In case a winning history h consists of the single state s, we refer

to s as a player-i winning state.

Example 1 Let S = {s0, s1, s2, s3, s4, s5} and A = {a, b, c}. Let Γ1, Γ2, and δ be

defined as follows:

Γ1(s0) = {c}; Γ2(s0) = {a, b}; δ(s0, c, a) = s1; δ(s0, c, b) = s2;

Γ1(s3) = {a, b}; Γ2(s3) = {c}; δ(s3, a, c) = s4; δ(s3, b, c) = s5.

For a state s ∈ {s1, s2, s4, s5}, Γ1(s) = Γ2(s) = c. For j ∈ {1, 2}, δ(sj, c, c) = s3, and

for j ∈ {4, 5}, δ(sj, c, c) = sj. The corresponding game structure is shown in Fig. 2.1.

Note that player-2 fully controls the transitions out of s0. Whenever the game is at

s0, player-2 decides whether the next state will be s1 or s2. In a similar way, player-1

controls the exits out of s3.

〈b, c〉

s1

s2

s3

s4

s5

s0

〈c, a〉 〈c, c〉

〈c, c〉

〈c, c〉

〈c, c〉〈c, b〉

〈a, c〉

Figure 2.1: A Game structure for Example 1.

The objective of the game is defined as:

Ψ = 0((s1 =⇒ X!s3 ∧X!X!s4) ∧ (s2 =⇒ X!s3 ∧X!X!s5)).

24

The objective requires that any visit to s1 should be immediately followed by a sub-

sequent visit to s3, which in turn should be immediately followed by a visit to s4, and

similarly, s2 should be followed by visits to s3 and then to s5.

In this game, states {s3, s4, s5} are winning for both players for Ψ. This is because

no path from any of these states leads to either s1 or s2. The other states – s0, s1, and

s2 – are winning only for player-1 which, starting at any of these states, has a strategy

that guarantees Ψ. Note that the winning strategy starting at s0 depends, when we

reach s3, on the path leading to s3, that is, on whether the previous state is s1 or s2.

Examples of winning non-singleton histories are h : s0, s1, s3 and h′ : s0, s2, s3, which

are winning for player-1.

2.5 Rabin-Chain Automata

Assume a JDS M = (V, W, Θ, ρ,J). We refer to the interpretations of V (i.e.,

elements of S) as computation states . A deterministic total Rabin-chain automaton

of index k over a set of computation states S is a tuple R = (Q, q0, ∆, c) where:

• Q is a finite set of automaton states ;

• q0 ∈ Q is the initial state;

• ∆ : Q× S → Q is a transition function;

• c : Q → {0, . . . , 2k − 1} is a coloring function.

A run of R over an infinite computation σ : s0, s1, s2, . . . , is an infinite sequence

q0, q1, q2, . . . where q0 is the initial automaton state and, for every i ≥ 0, ∆(qi, si) =

qi+1. We say that q0, q1, q2, . . . is the run induced by the computation σ. The run

25

q0, q1, . . . is accepting if the maximal color that appears infinitely many times in the

color sequence c(q0), c(q1), . . . is even. A computation σ is accepted by the automaton

R if the run induced by σ is accepting. The (ω-) language of R, denoted by L(R),

is the set of computations accepted by R. We say that the automaton R accepts the

temporal formula ϕ if L(R) is exactly the set of computations satisfying ϕ.

Example 2 In Fig. 2.2, we present a Rabin-chain Automaton for the PSL formula

Ψ = 0((s1 =⇒ X!s3 ∧X!X!s4) ∧ (s2 =⇒ X!s3 ∧X!X!s5)).

s3

q0

q1

q2

s1

s2

s0, s3, s4, s5 q3

s5

s4

q4

qr

s3

Figure 2.2: A Rabin-chain automaton for the objective Ψ of the game in Example 1

The automaton has the set of states Q = {q0, q1, q2, q3, q4, qr}. We connect automaton

state qi to qj by an edge labeled by s to represent the transition function entry

∆(qi, s) = qj. To simplify the presentation, we do not explicitly label the dashed

edges which connect states to the special rejecting state qr. By convention, the dashed

edges are implicitly assumed to be labeled by S-states that do not label other edges

departing from the same automaton state. Finally, the coloring function c is given

by

c(q0) = c(q1) = c(q2) = c(q3) = c(q4) = 0, c(qr) = 1.

26

2.6 F-Soft’s Software Modeling for C Programs

Symbolic model checkers (both SAT- and BDD-based) work on a symbolic transition

relation of a finite state system, typically represented in terms of a vector of binary-

valued latches and a Boolean next-state function (or relation) for each latch. In this

section, we briefly describe an approach for translating a given C program, including

all high-level C constructs such as arrays, pointers, dynamic memory, and control

flow, into a Boolean model.

2.6.1 Labeled Transition Graphs

We begin with full-fledged C and apply a series of source-to-source transformations

into smaller subsets of C, until program state is represented as a collection of simple

scalar variables and each program step is represented as a set of parallel assignments

to these variables.

Formally, the transformations produce a labeled transition graph (LTG) of the

program. A LTG G is a 5-tuple 〈B, E, X, δ, θ〉, where

• B = {b0, . . . , bn} is a finite nonempty set of basic blocks, where b0 is the initial

block.

• E ⊆ B × B is the set of edges. If (bi, bj) ∈ E, we say bi is a predecessor of bj,

and bj is a successor of bi.

• X is a finite set of variables that consists of actual source variables and auxiliary

variables added for modeling and property monitoring.

• δ : B → 2A is a labeling function that labels each basic block with a set

of parallel assignments taken from A. We denote a type-consistent valuation

27

of all variables in X by ~x, and the set of all type-consistent valuations by

X . Let the set of allowed C-expressions be denoted by Σ. Then, the parallel

assignments in each basic block can be written as Y←e1, . . . , en, where Y =

(y1, . . . , yn), {y1, . . . , yn} ⊆ X and {e1, . . . , en} ⊆ Σ.

• θ : E → C is a labeling function that labels each edge with a condition from

the set C. Given a basic block bi, let Bi ⊂ B be the set of all successors of bi.

Then
∨

b∈Bi
θ(bi, b) ≡ 1.

int foo(int s){

int t=s+2;

if (t>6)

t -= 3 ;

else

t--;

return t;

}

void bar(){

int x=3;

int y=x-3;

while (x<=4){

y++ ;

x = foo(x);

}

y = foo(y);

} foo

to foo
passing

parameter

updating
return
values

bar

y++;

t := l+2;

t−−;

t−=3;

l := x;
rtr := 0;

l := y;
rtr := 1;

y := t;

x := 3;
y:=3−3;

5

6 7

3

0

1 2

4

8

9
10

t > 6

t <= 6

x <= 4

rtr

!rtr

x > 4

x := t;

Figure 2.3: Sample code and its graph representation

As a running example, Figure 2.3 shows a LTG G obtained from the C program

on the left side. Each rectangle is a basic block with an associated unique number

showing its index. i.e., B = {b0, . . . , b10}. The assignments inside each basic block are

28

obtained by applying labeling function δ. Note that a basic block can be empty(e.g.

δ(b1) ≡ ∅). The edges are labeled by conditional expressions; e.g. θ(b1, b2) ≡ x ≤ 4. In

case a edge is not labeled by any condition, the default condition is true.The example

pictorially shows how non-recursive function calls are included in the control flow of

the calling function. A preprocessing analysis determines that function foo is not

called in any recursive manner. The two return points are recorded by an encoding

that passes a unique return location as a special parameter using the variable rtr.

2.6.2 Modeling of C Program Memory

One of the biggest difficulties in modeling C programs, lies in modeling indirect mem-

ory accesses via pointers, such as x = ∗(p + i) or ∗(q + j) = y. This includes array

accesses, since A[e] is equivalent to ∗(A + e). We replace all indirect accesses in the

C program with expressions involving only direct variable accesses by introducing

appropriate multiplexing expressions.

Modeling the heap and stack. The C language specification does not bound

heap or stack size, but our focus is on generating a bounded model only. Therefore,

we model the heap as a finite array, adding a simple implementation of malloc()

that returns pointers into this array. We also add a bounded depth stack as another

global array, in order to handle bounded recursion, if required, along with code to

save and restore local state for recursive functions only.

Modeling pointers. We build an internal memory representation of the program

by assigning to each variable a unique number representing its memory address. Vari-

ables that are adjacent in C program memory are given consecutive memory addresses

29

in our model; this facilitates the modeling of pointer arithmetic. Pointers are mod-

eled as integers: pointer variable p points to simple variable x by storing the integer

memory address assigned to x. We perform a points-to analysis [27] to determine,

for each indirect memory access, the set of variables that may be accessed (called

the points-to set). If we determine that pointer p can point to variables a, b, . . . , z

at a given program location, we can rewrite a pointer read ∗(p + i) as a conditional

multiplexing expression of the form ((p+ i) == &a?a : ((p+ i) == &b?b : . . .)) where

&a, &b, . . . are the numeric memory addresses we assigned to the variables a, b, . . .

respectively.

Inferred variables. We adopt an approach used in a hardware synthesis frame-

work [58] by introducing additional variables when pointers are declared. For example,

the declaration int **p; creates three variables vp, v
′
p, v

′′
p , where vp stands for p, v′p

for *p, and v′′p for **p. In addition, a reference in the C code, such as &a, also leads to

an additional variable – in this case the variable ′va. In our modeling framework we

may thus have several copies of the same value although they all represent the same

location. Although this modeling approach may increase the number of variables

when compared to the usual heap model, it can lead to analysis savings. This is due

to the fact that the number of live variables can often be substantially reduced when

a variable is read through a pointer dereference, because a pointer variable can point

only to one location at a time, even though its points-to set may be large.

Inferred assignments. In this modeling framework additional assignments have

to be inferred due to aliasing and newly introduced variables. We distinguish between

two types of additional assignments, namely assignments due to aliasing and implied

assignments. Assignments based on aliasing are due to the fact that multiple copies

30

c1 c2 · · · cn c′1 c′2 · · · c′n guard

v1
1 v1

2 · · · v1
n v1′

1 v1′
2 · · · v1′

n k1

v2
1 v2

2 · · · v2
n v2′

1 v2′
2 · · · v2′

n k2

· · · · · · · · · · · · · · ·
vm

1 vm
2 · · · vm

n vm′
1 vm′

2 · · · vm′
n km

Table 2.1: Truth table for control logic

of the same location may exist. Implied assignments are due to the fact that we

explicitly model the values of the pointed to locations for pointer variables.

2.6.3 Bit-accurate Model

We define a state of a program to be a tuple (b, ~x), consisting of a location b ∈ B

representing the basic block, and a type-consistent valuation of data variables ~x ∈ X ,

where out-of-scope variables at b are assigned the undefined value. We consider the

initial state of the program to be an initial location bs, where each variable in X can

take any value that is type-consistent with its specification.

In order to construct a Boolean model of a LTG G, we devide G into two subgraphs

GC and GD, where GC captures the control logic and GD captures the data logic.

Control Logic Given a LTG G = 〈B, E, X, δ, θ, 〉, we define a control logic sub-

graph GC = 〈B,E, X, θ〉. A program counter variable pc is introduced to monitor

progress in GC . If N denotes the number of basic blocks in a GC , we can use 2dlog Ne
bits to express the program counter. Let c1, c2, · · · cn denote the current state pro-

gram counter bits, and c′1, c
′
2, · · · c′n denote the next state program counter bits where

n = dlog Ne.
An edge Eij = (bi, bj) is enabled if and only if pc = i ∧ θ(bi, bj) = true. Once

31

Eij is enabled, the next value for pc is j. i.e., pc′ = j. GC is encoded in Ta-

ble 2.1, where the first n columns show the bit values of current state pc variables,

the next n columns show the bit values of next state pc variables, and the last column

shows the bit value of the guarding condition. The jth table line represents an edge

(vj
1v

j
2 · · · vj

n → vj′
1 vj′

2 · · · vj′
n) in the control flow graph with guard kj, where vj

i ∈ {0, 1}
is an assignment to ci and vj′

i ∈ {0, 1} is an assignment to c′i. Based on the truth

table, we build the next state logic for each program counter bit as:

c′i =
∨

j:vj′
i =1

(kj ∧
∧

p:vj
p=1

cp ∧
∧

p:vj
p=0

¬cp)

Finally, the next state control logic for GC is:

pc′ ≡
n∧

i=1

c′i

Data Logic A data logic subgraph of G is defined as GD = 〈B, X, δ〉. Assume

a variable xi ∈ X is assigned in blocks bij(1 ≤ j ≤ k) by expression exprij and not

assigned in bij(k < j ≤ n), the next state data logic for xi is

x′i = (
∨k

j=1(pc = index(bij)) ∧ exprij)∨
(
∨n

j=k+1(pc = index(bij)) ∧ xi),

where index(b) returns the index value of block b. The next state control logic for

GD is:

X ′ ≡
∧

xi∈X

x′i

In order to obtain the binary logic for each variable assignment x′ = expr, we

32

build a combinational circuit for expr. For example, to handle an expression of type

expr1&expr2 (bitwise AND), we first build circuits for the sub-expressions expr1 and

expr2. Let vectors vec1 and vec2 be the outputs of these circuits. The final result

has the same bit-width as vec1 and vec2, and each result bit is the output of an AND

gate with two inputs being the corresponding bits in vec1 and vec2. To handle an

expression of type expr1+expr2, we create an n-bit adder. For the case of a relational

expression the result has only one bit.

33

Chapter 3

PSL Testers and Optimal Monitors

3.1 Introduction

An automaton can serve as a backbone for both run-time monitoring and model

checking. Indeed, the classical way of model checking an LTL property ϕ over a finite-

state system S, represented by the automaton M
S
, is based on the construction of an

ω-automaton A¬ϕ that accepts all sequences that violate the property ϕ. Having both

the system and its specification represented by automata, we may form the product

automaton M
S
× A¬ϕ and check that it accepts the empty language, implying that

there exists no computation of S which refutes ϕ [62].

Usually, the automaton A¬ϕ is a non-deterministic Büchi automaton, which is

constructed using an explicit-state representation. In order to employ it in a sym-

bolic (BDD-based) model checker, it is necessary to encode the automaton by the

introduction of auxiliary variables. Another drawback of the normal (tableau-based)

construction is that it is not compositional. That is, having constructed automata

Aϕ and Aψ for LTL formulas ϕ and ψ, there is no simple recipe for constructing the

34

automaton for a compound formula which combines ϕ and ψ, such as ϕ U ψ.

A compositional approach to the construction of automata corresponding to LTL

formulas was introduced in [42], which was based on the notion of a temporal tester

[40]. A tester for an LTL formula ϕ can be viewed as a transducer that keeps

observing a state sequence σ and, at every position j ≥ 0, outputs a boolean value

which equals 1 iff (σ, j) |= ϕ. While acceptors, such as the Büchi automaton Aϕ, do

not compose, transducers do. In Fig. 3.1, we show how transducers for the formulas

ϕ, ψ, and p U q can be composed into a transducer for the formula ϕ U ψ.

T [p U q]

p

q

T [ϕ]

T [ψ]

Figure 3.1: Composition of transducers to form T [ϕ U ψ].

There are several important advantages to the use of temporal testers as the basis for

the construction of automata for temporal formulas:

• The construction is compositional. Therefore, it is sufficient to specify testers for

the basic temporal formulas: X!p and p U q, where p and q are assertions (state

formulas). Testers for more complex formulas can be derived by composition as

in Fig. 3.1 .

35

• The testers for the basic formulas are naturally symbolic. Thus, a general tester,

which is a synchronous parallel composition (automata product) of symbolic

modules can also be easily represented symbolically.

• As will be shown in Chapter 3, Section 3.6 and Section 3.7, the basic processes

of model checking and run-time monitoring can be performed directly on the

symbolic representation of the testers. There is no need for determinization or

reduction to explicit state representation.

In spite of these advantages, the complexity of constructing a transducer (temporal

tester) for an arbitrary LTL formula is not worse than that of the lower-functional

acceptor. In its symbolic representation, the size of a tester is linear in the size of the

formula. This implies that the worst-case state complexity is exponential.

In this chapter, we generalize the temporal tester approach to the more expressive

logic PSL, recently introduced as a new standard logic for specifying hardware prop-

erties [1]. Due to compositionality, it is only necessary to provide the construction of

testers for the basic operators introduced by PSL.

In addition, in Section 3.7 we show how to construct an optimal symbolic run-time

monitor. By optimality, we mean that the monitor extracts as much information as

possible from the observed trace. In particular, an optimal monitor stops as soon

as it can be deduced that the specification is violated or satisfied, regardless of the

possible continuations of the observed trace.

36

3.2 Temporal Testers

One of the main problems in constructing a Büchi automaton for a PSL formula (or

for that matter any ω-regular language) is that the conventional construction is not

compositional. In particular, given Büchi automata Aϕ and Aψ for formulas ϕ and ψ,

it is not trivial to build an automaton for ϕ U ψ. Compositionality is an important

consideration, especially in the context of PSL. It is expected that specifications are

written in a modular way, and PSL has several language constructs to facilitate that.

For example, any property can be given a name, and a more complex property can

be built by simply using a named sub-property instead of an atomic proposition.

One way to achieve compositionality with Büchi automata is to use alternation

[11]. Nothing special is required from the Büchi automata to be composed in such

manner, but the presence of universal branching in the resulting automaton is un-

desirable. Though most model checkers can deal with existential non-determinism

directly and efficiently, universal branching is usually preprocessed at exponential

cost.

Our approach is based on the observation that while there is very little room to

maneuver during the merging step of two Büchi automata, the construction process

of the sub-components is wide open for a change. In particular, we suggest that

each sub-component assumes the responsibility of being easily composed with other

parts. The hope is that, by requiring individual parts to be more structured than the

traditional Büchi automata, we can significantly simplify the composition process.

Recall that the main property of Büchi automata (as well as any other automata)

is to correctly identify a language membership of a given sequence of letters, starting

from the very first letter. It turns out that for composition it is also very useful to

37

know whether a word is in the language starting from an arbitrary position i. We

refer to this new class of objects as testers . Essentially, testers are transducers that

at each step output whether the suffix of the input sequence is in the language. Of

course, the suffix is not known by the time the decision has to be made, so the testers

are inherently non-deterministic.

Formally, a tester for a PSL formula ϕ is a JDS Tϕ, which has a distinguished

boolean variable xϕ, such that:

• Soundness: For every computation σ : s0, s1, s2, ... of Tϕ , si[xϕ] = 1 iff σi.. |= ϕ

• Completeness: For every sequence of states σ′ : s′0, s
′
1, s

′
2, ..., there is a match-

ing computation σ : s0, s1, s2, ... such that for each i, si and s′i agree on the

interpretation of ϕ-variables.

Discussion of Completeness. Intuitively, the second condition requires that a tester

must be able to correctly interpret xϕ for an arbitrary input sequence. Otherwise,

we may essentially allow an automaton that for some input sequences outputs ”I

do not know”. For example, a JDS that has no computations trivially satisfies the

soundness condition, but cannot produce a proper output even for a single input se-

quence. To satisfy the completeness condition one has to ensure that the tester is not

over-constrained, and it is possible to non-deterministically guess the correct values

of xϕ.

38

3.3 LTL Testers

We are going to continue the presentation of testers by considering two very important

PSL operators, namely X!(next) and U(until). First, we show how to build testers

for two basic formulas X!b and b1 U b2, where b, b1, and b2 are boolean expressions.

Then, we demonstrate high compositionality of the testers by easily extending the

result to cover full LTL. Note that our construction for LTL operators is very similar

to the one presented in [40].

3.3.1 A Tester for ϕ = X!b

Let Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 be the tester we wish to construct. The components of

Tϕ are defined as follows:

T (X!b) :





Vϕ : P ∪ {xϕ}, P is a set of propositions used to constructB

Θϕ : 1

Rϕ(V, V ′) : xϕ = b′

Jϕ : ∅
Fϕ : ¬xϕ

It almost immediately follows from the construction that T (X!b) is indeed a good

tester for X!b. The soundness of the T (X!b) is guaranteed by the transition relation

with the exception that we still have a freedom to incorrectly interpret xϕ at the very

last state. This case is handled separately by insisting that every final state must

interpret xϕ as false. The completeness follows from the fact that we do not restrict

P variables, in any way, by the transition relation, and we can always interpret xϕ

properly, by either matching b′ or setting it to false in the last state.

39

3.3.2 A Tester for ϕ = b1 U b2

The components of Tϕ are defined as follows:

T (b1 U b2) :





Vϕ : P ∪ {xϕ}
Θϕ : 1

Rϕ(V, V ′) : xϕ = b2 ∨ (b1 ∧ x′ϕ)

Jϕ : b2 ∨ ¬xϕ

Fϕ : xϕ = b2

Unlike the previous tester, T (b1 U b2) has a non-empty justice set. A technical reason

is that the transition relation allows xϕ to be continuously set to true without having

a single state that actually satisfies b2. The situation is ruled out by the justice

requirement. Another way to look at the problem is that Rϕ represents an expansion

formula for the U(strong until) operator, namely b1 U b2 ⇐⇒ b2 ∨ (b1 ∧X![b1 U b2]).

In general, starting with an expansion formula is a good first step when building a

tester. However, the expansion formula alone is usually not sufficient for a proper

tester. Indeed, consider the operator W(weak until), defined as b1 W b2 ≡ ¬(true U

¬b1) ∨ b1 U b2, which has exactly the same expansion formula, namely b1 W b2 ⇐⇒
b2 ∨ (b1 ∧X![b1 W b2]). We use justice to differentiate between the two operators.

3.4 Tester Composition

In Fig. 3.2, we present a recursive algorithm that builds a tester for an arbitrary

LTL formula ϕ. In Example 3, we illustrate the algorithm by applying the tester

construction for the formula ϕ = true U
(
X![b1 U b2] ∨ (b3 U [b1 U b2])

)
.

Example 3 Tester Construction for ϕ = true U
(
X![b1 U b2] ∨ (b3 U [b1 U b2])

)

40

• Base Case: If ϕ is a basic formula (i.e., ϕ = X!b or ϕ = b1 U b2), use
construction from Section 3.3. For a trivial case, when the formula ϕ does
not contain any temporal operators, we can use a tester for false U ϕ.

• Induction Step: Let ψ be an innermost basic sub-formula of ϕ, then
Tϕ = Tϕ[ψ/xψ] ||| Tψ, where ϕ[ψ/xψ] denotes the formula ϕ in which
each occurrence of the sub-formula ψ is replaced with xψ.

Figure 3.2: Tester construction for an arbitrary LTL formula ϕ

We start by identifying b1 U b2 to be the innermost basic sub-formula and building

the corresponding tester, Tb1Ub2 . Assume that z is the output variable of the tester

Tb1Ub2 . Let α = ϕ[b1 U b2/z]; after the substitution α = true U
(
X!z∨(b3 U z)

)
. Note

that we performed the substitution twice, but there is no need for two testers, which

can result in significant savings. We proceed in similar fashion and build two more

testers TX!z and Tb3Uz with the output variables x and y. After the substitutions,

we obtain β = true U [x ∨ y]. Since x ∨ y is just a boolean expression, the formula

satisfies the condition of the base case, and we can finish the construction with one

more step. The final result can be expressed as:

Tϕ = Tβ ||| TX!z ||| Tb3Uz ||| Tb1Ub2 .

Though we have assumed ϕ is an LTL formula, the algorithm is applicable for PSL

as well. The only extension necessary is the ability to deal with additional basic

formulas.

41

3.5 PSL Testers

As we have mentioned before, to handle the full PSL it is enough to handle all the

basic PSL formulas. More complicated formulas can be handled via tester composi-

tion according to the algorithm in Fig. 3.2. There are only two additional basic PSL

formulas that we need to consider, namely ϕ = 〈r〉b and ϕ = r, where r is a SERE

and b is a boolean expression. All other PSL temporal operators can be expressed

using those two and the LTL operators, X! and U . For example, r! ≡ 〈r〉true, and

r 7→ ϕ ≡ ¬(〈r〉¬ϕ). The abort operator is a little bit more complicated, and we

present a set of rewriting rules in Section 3.5.3.

3.5.1 A Tester for ϕ = 〈r〉b

Let Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 be the tester we wish to construct. Assume that xϕ is

the output variable. Let G = 〈V , T ,P ,S〉 be a grammar associated with r. Without

the loss of generality, we assume G has variables V1, . . . , Vn with V1 being the start

symbol. In addition, each variable Vi, has derivations of the form:

Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

where α1, . . . , αm, β1, . . . , βn are boolean expressions. The case that variable Vi does

not have a particular derivation Vi → βjVj or Vi → αk, is covered by having βj = false,

and similarly, αk = false. Note that by insisting on this specific form, which does not

allow ε productions, we can not express whether an empty string is in the language.

However, since, by definition of 〈〉 operator, a prefix that satisfies r must be non-

empty, we do not need to consider this. The tester Tϕ is given by:

42

T (〈r〉b) :





Vϕ : P ∪ {xϕ} ∪ {X1, . . . , Xn, Y1, . . . , Yn}
Θϕ : 1

Rϕ(V, V ′) : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to Rϕ the conjunct
Xi = (α1 ∧ b) ∨ · · · ∨ (αm ∧ b) ∨ (β1 ∧X ′

1) ∨ · · · ∨ (βn ∧X ′
n)

and the conjunct
Yi → (α1 ∧ b) ∨ · · · ∨ (αm ∧ b) ∨ (β1 ∧ Y ′

1) ∨ · · · ∨ (βn ∧ Y ′
n)

the output variable is constrained by the conjunct
xϕ = X1

Jϕ : {¬Y1 ∧ · · · ∧ ¬Yn, X1 = Y1 ∧ · · · ∧Xn = Yn}
Fϕ : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to F the conjunct
Xi = (α1 ∧ b) ∨ · · · ∨ (αm ∧ b)

Figure 3.3: A tester for ϕ = 〈r〉b.

Example 4 A Tester for ϕ = 〈{pq}[∗]〉b.

To illustrate the construction, consider formula 〈{pq}[∗]〉b. Following the algorithm

for grammar construction given in Chapter 2, Section 2.3 and removing ε productions,

the associated right-linear grammar for the SERE {pq}[∗] is given by

V1 → pV2

V2 → q | qV1

Consequently, a tester for 〈{pq}[∗]〉b is given by

43

T (〈{pq}[∗]〉b) :





Vϕ : P ∪ {xϕ} ∪ {X1, X2, Y1, Y2}
Θϕ : 1

Rϕ(V, V ′) :




(X1 = (p ∧X ′
2)) ∧

(X2 = (q ∧ b) ∨ (q ∧X ′
1)) ∧

(Y1 → (p ∧ Y ′
2)) ∧

(Y2 → (q ∧ b) ∨ (q ∧ Y ′
1)) ∧

xϕ = X1




Jϕ : {¬Y1 ∧ ¬Y2, X1 = Y1 ∧X2 = Y2}
Fϕ : (X1 = false) ∧ (X2 = q ∧ b)

The variables {X1, . . . , Xn, Y1, . . . , Yn} are expected to check that the rest of the

sequence from now on has a prefix satisfying the SERE r. Thus, the subsequence

sj, . . . , sk, . . . ² 〈r〉b iff there exists a generation sequence V j = V1, V
j+1, . . . , V k,

such that for each i, j ≤ i < k, there exists a grammar rule V i → βV i+1, where

si ‖= β, V k → α, and sk ‖= (α ∧ b).

The generation sequence is represented in a run of the tester by a sequence of

true valuations for the variables Zj = Z1, Z
j+1, . . . , Zk where Zi ∈ {X i, Y i} for each

i ∈ [j..k]. An important element in this checking is to make sure that any such

generation sequence is finite. This is accomplished through the double representation

of each Vi by Xi and Yi. The justice requirement (X1 = Y1) ∧ · · · ∧ (Xn = Yn)

guarantees that any true Xi is eventually copied into Yi. The justice requirement

¬Y1 ∧ · · · ∧ ¬Yn guarantees that all true Yi’s are eventually falsified. Together, they

guarantee that there exists no infinite generation sequence. The double representation

approach was first introduced in [50].

Theorem 2 The JDS T (〈r〉b) in Fig. 3.3 is a proper tester for the formula ϕ = 〈r〉b.

44

A proof is presented below.

First, lets remind ourselves the semantic definition of the formula ϕ.

σ ² 〈r〉b ⇐⇒ ∃j <|σ| s.t. σ̄0..j |≡ r, σj ‖= b.

Since computations of a tester do not contain >,⊥ states the bar can be removed, so

that the definition is simplified into

σ ² 〈r〉b ⇐⇒ ∃j <|σ| s.t. σ0..j |≡ r, σj ‖= b.

Soundness:

If σ : s0, s1, s2, ..., is a computation of Tϕ then for every i <|σ|, si[xϕ] = 1 iff σi.. |= ϕ.

σi.. |= ϕ ⇒ si[xϕ] direction.

Let si be a state such that σi.. |= ϕ, but xϕ is incorrectly interpreted as false. Since

σi.. |= ϕ, let sj be a state such that σi..j |≡ r ∧ sj ‖= b. In addition, there must be a

derivation sequence V i = V1, V
i+1, . . . , V j such that:

• for each k ∈ [i, j), there is a derivation rule V k → βkV k+1 such that sk ‖= βk.

• there is a derivation rule V j → α such that si ‖= α

Let X i = X1 = xϕ, X i+1, . . . , Xj be the evaluation of X variables that correspond to

V i = V1, V
i+1, . . . , V j. Since si[xϕ] is assumed to be false (i.e., X i is false), according

to the transition relation and the existence of the derivation sequence, it must be the

case that the variable X i+1 that corresponds to V i+1 must also be set to false. We

can continue applying the transition relation to conclude that the variable Xj is false.

45

However, this contradicts to the transition relation (or termination condition if sj is

the very last state) since si ‖= α ∧ b.

si[xϕ] ⇒ σi.. |= ϕ direction.

Let si be a state such that σi.. 2 ϕ, but we is incorrectly interpreted as true. Note

that si cannot be the last state of the computation; otherwise, we immediately reach

a contradiction due to the termination condition. To proceed from si to si+1 we must

obey transition relation. In particular, there must an X-variable, set to true. We

will refer to this variable as X i+1 since we are taking about state si+1. Following

an alpha-based disjunct is not option due to the assumption that σi.. 2 ϕ, and

applying an alpha-based disjunction would imply a successful derivation in one step.

Continuously applying the above reasoning we get an infinite sequence X i = X1 =

xϕ, X i+1, X i+2, . . . where the mentioned Y variables are interpreted as true by the

corresponding states According to the second justice requirement that must be a

position j such that Xj = Y j where both Y j and Xj represent the same non-terminal

V .

We can now apply the same reasoning for Y j as we did for X i, since for true

valuations of Y variables the transition relation is the same as for X. Therefore, we

have obtained an infinite sequence Y j = Xj, Y i+1, Y i+2, . . ., where the mentioned Y

variables are interpreted as true. This trivially contradicts the first justice require-

ment.

Completeness:

For every sequence of states σ̃ : s̃0, s̃1, s̃2, ...,, there is a matching computation σ :

s0, s1, s2, ... such that for each k, sk and s̃k agree on the interpretation of ϕ-variables.

46

Below is a constructive proof that shows how to build a σ from σ̃.

• A state sk interprets Xi as true iff σk.. |= 〈Vi〉b. By 〈Vi〉 we mean a regular

expression with a Vi being a starting symbol. Using this new notation, we can

express our original formula ϕ = 〈r〉b as ϕ = 〈V1〉b;

• All Y variables are interpreted as false by the initial state s0;

• If all Y variables are interpreted as false by a state sk, we copy values of X

variables into the corresponding Y variables (i.e., sk+1 interprets Yi the same

way as Xi);

• If a state sk interprets Yi as true, and there is no applicable α-based rule to

satisfy the transition relation, we use a β rule and choose Yj such that 〈Vj〉b has

a shortest derivation starting from the state sk+1. Note that an appropriate Yj

must exist since Yi set to true by a state sk implies that σk.. |= 〈Vi〉b. This fact

can be easily proven by induction on the length of σ;

• Unless Yi is forced to be true by the above rules, it is always interpreted as false.

It is easy to see that the above rules guarantee that σ obeys the transition relation.

The termination condition is ensured by the first rule. The justice is also obvious

as long as we can show that infinitely often all Y variables become false. Let Nk be

number of steps of the longest shortest derivation sequence among al Y variables set

to true at a state sk. Clearly, after one step Nk+1 < Nk. When N becomes 0 all Y

variables are false.

47

3.5.2 A Tester for ϕ = r

We start the construction exactly the same way as we did for ϕ = 〈r〉b, in Section 3.5.1.

Let Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 be the tester we wish to construct. Assume that xϕ is

the output variable. Let G = 〈V , T ,P ,S〉 be a grammar associated with r.

The tester Tϕ is given by:

T (r) :





Vϕ : P ∪ {xϕ} ∪ {X1, . . . , Xn, Y1, . . . , Yn}
Θϕ : 1

Rϕ(V, V ′) : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to Rϕ the conjunct

Xi = α1 ∨ · · · ∨ αm ∨ (β1 ∧X ′
1) ∨ · · · ∨ (βn ∧X ′

n)

and the conjunct

α1 ∨ · · · ∨ αm ∨ (β1 ∧ Y ′
1) ∨ · · · ∨ (βn ∧ Y ′

n) → Yi

the output variable is constrained by the conjunct

xϕ = X1

Jϕ : {Y1 ∧ · · · ∧ Yn, X1 = Y1 ∧ · · · ∧Xn = Yn}
Fϕ : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to F the conjunct

Xi = α1 ∨ · · · ∨ αm ∨ β1 ∨ · · · ∨ βn

The variables {X1, . . . , Xn, Y1, . . . , Yn} are expected to check that the rest of the

sequence from now on has a prefix that does not violate SERE r. We follow a similar

approach as for the tester ϕ = 〈r〉b. However, now we are more concerned with false

values of the variables X1 . . . Xn. The duality comes from the fact that, now, we are

trying to prevent postponing the violation of the formula r forever.

48

3.5.3 Handling abort operator

To handle abort , we rewrite a given formula to a semantically equivalent one not

containing the abort operator. Let ϕ be a given formula. Without loss of generality,

assume that ϕ = ψ abort b, where ψ is abort-free. An arbitrary formula can be

processed by starting with an inner-most abort and removing them one by one.

For convenience, let precedes be the dual of abort such that φ precedes b ≡
¬(¬φ abort b). Let f and g denote arbitrary PSL formulas; b, b1, and b2 denote

boolean expressions; r denote a SERE. Let rb be a SERE such that the formula

φ = rb is equivalent to φ = r abort b. A simple algorithm to construct rb, given r, is

presented at the end of this section. We use the following equivalencies to rewrite ϕ:

• b1 abort b2 ≡ b1 ∨ b2

• (¬f) abort b ≡ ¬(f precedes b)

• (f ∧ g) abort b ≡ (f abort b) ∧ (g abort b)

• (X!f) abort b ≡ b ∨X!(f abort b)

• (f U g) abort b ≡ (f abort b) U (g abort b)

• (〈r〉f) abort b ≡ 〈rb〉(f abort b)

• r abort b ≡ rb

49

• b1 precedes b2 ≡ b1 ∧ ¬b2

• (¬f) precedes b ≡ ¬(f abort b)

• (f ∧ g) precedes b ≡ (f precedes b) ∧ (g precedes b)

• (X!f) precedes b ≡ ¬b ∧X!(f precedes b)

• (f U g) precedes b ≡ (f precedes b) U (g precedes b)

• (〈r〉f) precedes b ≡ 〈r && ¬b[∗]〉(f precedes b)

• r precedes b ≡ r && ¬b[∗]
Note that the size of the resulting formula is linear in the size of the original. In

addition, while && is usually a very expensive operator, it is benign in our case since

a grammar for ¬b[∗] has only one non-terminal, and can be completely eliminated

from the rewriting rules.

Below are some addition equivalence rules that may be useful when deling with

PSL formulas.

• (f ∨ g) abort b ≡ (f ∨ b) ∧ (g abort b)

• (f ∨ g) precedes b ≡ (f ∨ b) ∧ (g abort b)

• (f W g) abort b ≡ (f abort b) W (g abort b)

• (f W g) precedes b ≡ (f precedes b) W (g abort b)

We conclude the discussion of the abort operator by elaborating on the con-

struction of rb. Let G be a grammar associated with r. Our goal is to construct

G ′ = 〈V ′, T ′,P ′,S ′〉 - a grammar associated with rb.

• V ′ = V ∪ {Vf}

50

• T ′ = T ∪ {b}

• P ′ = P ∪ {Vf → trueVf , Vf → ε} ∪ {Vi → bVf | Vi ∈ V}

• S ′ = S

3.5.4 Complexity of the Construction

Theorem 3 For every PSL formula ϕ of length n, there exists a tester with O(2n)

variables. If we restrict SERE’s to three traditional operators: concatenation (;),

union (|), and Kleene closure ([∗]), the number of variables is linear in the size of

ϕ.

To justify the result, we can just count the fresh variables introduced at each step

of the tester construction. There is only linear number of sub-formulas, so there is a

linear number of output variables. The only other variables introduced are the ones

that are used to handle SERE’s. According to Theorem 1, the associated grammars

contain at most O(2n) non-terminals (O(n) - for the restricted case). We conclude

by observing that testers for the formulas ϕ = 〈r〉b and ϕ = r introduce exactly two

variables, Xi and Yi, for each non-terminal Vi.

3.6 Using Testers for Model Checking

One of the main advantages of our construction is that all the steps, as well as the

final result – the tester itself, can be represented symbolically. That is particularly

handy if one is to use symbolic model checking [5]. Assume that the formula under

consideration is ϕ, and Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 is the corresponding tester. Let

JDS D represent the system we wish to model check.

51

We are going to use traditional automata theoretic approach based on synchronous

composition, as in [5]. We perform the following steps:

• Compose D with Tϕ to obtain D ||| Tϕ.

• Check if D ||| Tϕ has a (fair) computation, such that s0[xϕ] = 0. D ||| Tϕ has

such a computation iff D does not satisfy ϕ.

As you can see, a tester can be used anywhere instead of an automaton. Indeed,

we can always obtain an automaton from a tester by restricting the initial state to

interpret xϕ as true.

3.7 Run-time Monitoring with Testers

The problem of run-time monitoring can be described as follows. Assume a reactive

system D and a PSL formula ϕ, which formalizes a property that D should satisfy.

In order to test the conjecture that D satisfies ϕ, we construct a program M , to which

we refer as a monitor , that observes individual behaviors of D. Behaviors of D are

fed to the monitor state by state. After observing the finite sequence σ : s0, . . . , sk

for some k ≥ 0, we expect the monitor to be able to answer a subset of the following

questions:

1. Does σ satisfy the formula ϕ?

2. Is ϕ negatively determined by σ? That is, is it the case that σ · η 6|= ϕ for all

finite or infinite completions η.

3. Is ϕ positively determined by σ? That is, is it the case that σ · η |= ϕ for all

finite or infinite completions η?

52

4. Is ϕ σ−monitorable? That is, is it the case that there exists a finite η such that

ϕ is positively or negatively determined by σ · η. If D is expected to run forever

then it is useless to continue monitoring after observing σ such that ϕ is not

σ−monitorable.

Solving the above questions leads to a creation of an optimal monitor - a monitor

that extracts as much information as possible from the observation σ. In particular,

an optimal monitor detects a violation of the property as early as possible. Of course,

a monitor can do better if we supply it with some implementation details of the

system D, which may allow to deduce a violation even earlier [53]. In the extreme

case, when a monitor knows everything about D the monitoring problem is reduced

to model checking.

3.7.1 Monitoring with Testers

Let D : 〈P, Θ, R,J , F 〉 be a reactive system with observable variables P , and let ϕ

be a PSL formula over P , which validity with respect to D we wish to test. Assume

that Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 is the tester for ϕ, where the variables Vϕ = P ∪A are

partitioned into the variables of D and additional auxiliary variables A. Let xϕ be

the distinguished output variable of the tester T .

For an assertion (state formula) α, we define the Rϕ-predecessor and Rϕ-successor

of α by

Rϕ 1 α = ∃V ′
ϕ : Rϕ(Vϕ, V ′

ϕ) ∧ α′ and α 1 Rϕ = unprime(∃Vϕ :

Rϕ(Vϕ, V ′
ϕ) ∧ α),

where unprime simply replaces all next state variables with current state variable.

53

Remember that the transition relation Rϕ has two copies of each variable, one repre-

senting a current state and the other copy (a primed one) the next state.

Let σ : s0, s1, . . . , sk be a finite observation produced by system D. That is, a sequence

of evaluations of the variables P . We define the symbolic monitoring trace M =

α0, α1, . . . , αk as the sequence of assertions given by

α0 = Θϕ ∧ xϕ ∧ (P=s0), and αi+1 = (αi 1 Rϕ) ∧ (P=si+1) for all i < k,

where P = s stands for
∧
v∈P

v = s[v].

Essentially, αi represents a ”current” state of the monitor, which is more precisely

just a set of states of the tester Tϕ. Whenever, the system makes a step from si to si+1,

a monitor takes the corresponding step from αi to αi+1 according to the transition

relation Rϕ and the interpretation of the propositions by the state si+1. The whole

process can be described as, on the fly, synchronous, composition of the system and

the tester, in which the later is determinized using classical subset construction. Note

that we only need to worry about the existential non-determinism, A similar approach,

but for alternating automata was also used for a so called breadth-first traversal in

[24]. The monitoring sequence can be used to answer the first of the monitoring

questions as stated by the following claim:

Claim 1 (Finitary satisfaction) For a PSL formula ϕ, the finite sequence σ :

s0, s1, . . . , sk satisfies ϕ, i.e., σ ² ϕ, iff the formula αk ∧ Fϕ is satisfiable.

The correctness of the claim results from the following observations. The tester

Tϕ can be interpreted as a non-deterministic automaton for acceptance of sequences

satisfying ϕ if we insist that xϕ is true in the initial state. Furthermore, the assertion

αk represents all the automaton (tester) states which can be reached after reading the

54

input σ. If any such evaluation is consistent with the assertion Fϕ, which represents

the set of final states, then this points to an accepting run of the automaton.

3.7.2 Deciding Negative Determinacy

Claim 1 has settled the first monitoring task. Next we consider one of the remaining

tasks. Namely, we show how to decide whether, for a given σ, σ ·η 6|= ϕ for all infinite

or finite completions η.

In order to do this, we have to perform some offline calculations as a preparation.

We generalize the notion of a single-step predecessor to an eventual predecessor by

defining

R∗
ϕ

1 α = α ∨Rϕ 1 α ∨Rϕ 1(Rϕ 1 α) ∨ · · ·

Consider the fix-point expression presented in Equation (3.1).

feas = [µX : (Rϕ 1 X) ∨ Fϕ]
∨

[νY : Rϕ 1 Y ∧
∧
J∈J

R∗
ϕ

1(Y ∧ Jϕ)] (3.1)

The first expression captures all the states that have a path to a final state. The

second expression captures a maximal set of tester states Y such that every non-final

state s ∈ Y has an Y -successor and, for every justice requirement J , s has a Y -path

leading to some Y -state which also satisfies J . The following can be proven:

Claim 2 (Feasible states) The set feas characterizes the set of all states which

originate an uninitialized computation.

Assuming that we have precomputed the assertion feas , the following claim tells

us how to decide whether a finite observation σ is sufficient in order to negatively

determine ϕ:

55

Claim 3 (Negative Determinacy) The PSL formula ϕ is negatively determined

by the finite observation σ = s0, s1, . . . , sk iff αk ∧ feas is unsatisfiable.

The claim is justified by the observation that αk∧ feas being unsatisfiable means that

there is no way to complete the finite observation σ into a finite or infinite observation

which will satisfy ϕ.

3.7.3 Deciding Positive Determinacy

In order to decide positive determinacy, we need to monitor the incoming observations

not only by assertion sequences which attempt to validate ϕ but also by an assertion

sequence which attempts to refute ϕ. Consequently, we define the negative symbolic

monitoring trace M− = β0, β1, . . . , βk by

β0 = Θϕ ∧ ¬xϕ ∧ (P=s0), and βi+1 = (βi 1 Rϕ) ∧ (P=si+1) for all i < k

Claim 4 (Positive Determinacy) The PSL formula ϕ is positively determined by

the finite observation σ = s0, s1, . . . , sk iff βk ∧ feas is unsatisfiable.

3.7.4 Detecting Non-Monitorable Prefixes

Unfortunately, not all properties can be effectively monitored. Consider a property

01 p, which is not σ-monitorable for any σ prefix. No useful information can be

gained after observing a finite prefix if the property only depends on the things that

must happen infinitely often. A good monitor should be able to detect such situations

and alert the user. Next, we show how to decide whether ϕ is σ-monitorable, for a

given σ.

56

Let M = α0, α1, . . . , αk and M− = β0, β1, . . . , βk be the positive and negative

symbolic monitoring traces that correspond to σ. Let Γ represent a set of assertions.

We define the Rϕ-successor and eventual Rϕ-successor of Γ by

Γ1Rϕ = {(γ 1 Rϕ) ∧ (P = s) | γ ∈ Γ, s is some state of the system D}

and

Γ1R∗
ϕ = Γ ∨Rϕ 1Γ ∨Rϕ 1(Rϕ 1Γ) ∨ · · ·

Claim 5 (Monitorability) A PSL formula ϕ is σ−monitorable, where σ = s0, . . . , sk,

iff there exists an assertion γ such that either γ ∈ (αk 1R∗
ϕ) or γ ∈ (βk 1R∗

ϕ), and

(γ ∧ feas) is unsatisfiable.

The claim almost immediately follows from the definition of σ−monitorable prop-

erties, Claim 3, and Claim 4. Note that the algorithm can be very inefficient due to

the double-exponential complexity. One way to cope with the problem is to consider

each state in αk and βk individually. The idea is very similar to never-violate states

introduced in [16]. A state of a Büchi automaton is called never violate if, on any

input letter, there is a transition to another never-violate state. Similarly, we can

define never-satisfy states and obtain a reasonable approximation to the problem of

monitorability. Note that the complexity of this solution is exponential, which hope-

fully can be managed using BDD’s. In addition, the never-violate and never-satisfy

states can be pre-computed before the monitoring starts. However, it remains to be

seen whether the approximation works well in practice.

57

3.8 Related Work

It is very interesting to compare our approach to the one suggested in [14], which

uses alternating automata. We have already mentioned some high-level distinctions

between testers and alternating automata in Section 3.2. However, the question re-

mains about which construction is better. It turns out that both approaches yield

very similar results, assuming universal non-determinism is removed from the alter-

nating automata. Although that is a somewhat unexpected conclusion, it is not hard

to justify it.

Without going into the details of algorithm described in [14], it is enough to

mention that each state in the alternating automaton is essentially labeled with a

sub-formula. To remove universal non-determinism, we follow classical subset con-

struction. In particular, we assign a boolean variable x for each sub-formula ϕ to

represent whether the corresponding state is in the subset. One can easily verify

that x is nothing more but the output variable of the tester Tϕ and follows the same

transition relation.

To finish the partial determinization and define the final states in the new au-

tomata, the authors of [14] use the same trick with double representation as we do.

At this step, the automata obtained after the subset construction is composed with

itself via a cartesian product. This step is conceptually the same as introducing

Y variables in the tester construction. However, we only introduce the extra vari-

ables when dealing with SERE’s. For the LTL portion of the formula, the tester

construction avoids the quadratic blow out associated with the cartesian product by

essentially building a generalized Büchi with multiple acceptance sets (i.e., multiple

justice requirements). If one is to insist on a single acceptance set, our approach

58

would yield an automaton identical to the one obtained in [14]. Note that, for sym-

bolic model checking, using a generalized Büchi automaton might be more efficient

then the corresponding Büchi automaton.

While our approach may not necessarily yield a better automaton, it never per-

forms worse, and there are several significant benefits. Since model checking is

very expensive, we expect that, in practice, automata for commonly occurring sub-

properties will be hand-tuned. In such a case, it is more beneficial to work with

testers since an alternating automaton requires an exponential blow-up due to uni-

versal non-determinism that cannot be locally optimized.

Another important advantage is that PSL testers can be used anywhere instead

of LTL testers. For example, if one were to extend CTL∗ with PSL operators, our

approach combined with [42] immediately gives a model checking algorithm for the

new logic.

59

Chapter 4

Run-time Monitoring with

Partially Specified Systems

There are two main sources of partially specified models. First, it is commonplace,

that large software systems utilize third-party components. Recently the concept of

Software as a Service (SaaS) is becoming more popular, where there is even a greater

separation between internal parts of a system and external components. Due to the

proprietary and engineering considerations in such a situation we may not always have

a complete specification (i.e., all implementation details) of all parts comprising our

system. Despite being beyond our full control, “off-the-shelf” components might still

be attractive enough so that the designer of a new system may wish to use them. In

order to do so safely, the designer must be able to deal with the possibility that these

components may exhibit undesired or unanticipated behavior, which could potentially

compromise the correctness and security of the whole system. Another important

source of incomplete specifications is that we may intentionally over-approximate

parts of our system to avoid state explosion problem associated with formal methods

60

such as model checking. However, we can no longer directly apply model checking

since it may lead to highly undesirable false positives and result in a perfectly good

system being declared faulty. This problem, which is the result of under-specification,

either intentional or not, is the central focus of this chapter

As a simple example of this phenomenon, consider an interface specification that

guarantees “after input query q is received, output r = response(q) is produced.”

The designer of the interface probably meant a stronger specification, “after q is

received, nothing else is produced until r is produced.” Assume that the later version

is sufficient and necessary to ensure the correctness of the entire system consisting of

the module and the interface. Applying formal methods, like model checking, would

most likely fail since there is no algorithmic way to provide the model checker with

the proper strengthening of the interface specification. Yet, under the assumption

that interface specifications may be partial, there may exist a subset of the allowed

behaviors that guarantees correctness, and one may still use the component, provided

deviations of the interface from this “good” set of behaviors can be detected.

Assume that we are given:

• A finite-state module M , designed by our designer and accompanied by the full

details of its implementation;

• An interface specification ΦI for the external component interacting with the

module M ; and

• A goal specification Φ for the entire system which must be satisfied by the

interaction between the module and the interface.

We view the module and interface as players in a 2-player game. At any stage

61

in the computation we ask whether the interface has a strategy, consistent with its

specification ΦI , such that for any possible behavior of the module M , the behavior of

the system resulting from the interaction of the module and the interface is guaranteed

to satisfy the goal Φ. We use this successive game solving as a basis for run-time

monitoring of the system, where we raise an alarm as soon as the system reaches

a state from which the interface can no longer guarantee that the system behaves

correctly (i.e., satisfies Φ).

A naive interpretation of the above description seems to imply that we solve a

complete game after each move of either player. Such an implementation would make

the process prohibitively expensive. Instead, we restrict our attention to games in

which the winning condition is universal liveness – that is, closed under insertion

and removal of arbitrary finite prefixes. For such games, it is sufficient to solve the

game only once, and then just monitor the progress of the computation within the

game structure. The single game solving process can be performed at compile-time,

so there is very little to be done during the monitoring phase. In Section 4.2, we

show that every game can be converted to a game with a universal liveness winning

condition.

It is interesting to compare our methodology to more conventional run-time mon-

itoring approach as the one described in [7, 21] or the one found in Chapter 3, Sec-

tion 3.7. As far as we know, all the traditional run-time monitoring systems to a

large degree ignore the implementation details of the program under consideration

and concentrate on analyzing a specific behavior. Such monitoring systems work

especially well if one is mostly interested in certifying that the observed execution

trace is error-free and, possibly, collecting some statistical information. However, the

62

conventional approaches are usually unacceptable if the main goal is to find faults in

the design itself – not just in a particular computation. In contrast, in our frame-

work, in addition to the run-time information, we are trying to use all the available

implementation details. That ultimately leads to a higher precision since we monitor

not only the current trace, but considerably more. The idea is similar to the target

enlargement [67] and can become especially useful when debugging multi-threaded

applications.

The chapter is organized as follows. In Section 4.1, how to associate a game with

a given open system, its specification Φ, and the interface (environment) specification

ΦI . In Section 4.2, we show how to solve such games assuming all specifications Φ and

ΦI are expressed in PSL, and Section 4.3 describes the construction of the monitor.

In Section 4.4, we discuss various aspects of our methodology. Finally, in Section 4.5,

we present our conclusions and some possible future research directions.

4.1 Associating Games with JDS’s

Given a JDS M = (VM ,W, Θ, ρ,J) that corresponds to some SPL module, a system

specification Φ, and an interface specification ΦI , we define a game G = (S, A, Γ1, Γ2, δ)

between the module M and the interface as follows.

Let V be VM augmented with a variable turn ∈ {1, 2} that is not in VM . Let

S be the set of all V -states. The set A of G’s actions is S itself. In the game G,

player-1 (the module) can take any step that is allowed by M , non-deterministically

setting turn, thus deciding whether or not it wishes to take another step. Player-2

(the interface) can set any of the variables that are not owned by M , but it has to

let Player-1 take the next step. Formally:

63

• Γ1(s) = {s′ | 〈s, s′〉 |= ρ}

• Γ2(s) = {s′ | 〈s, s′〉 |=
(
turn′ = 1 ∧∨

v∈VM\W pres(V \ {v, turn})
)
}

• δ(s, a1, a2) = as[turn]. That is, δ selects a1 as the next state iff turn = 1 in the

current state s.

The objective of the game is defined by

Ψ = (Φ ∧ ΦI) ∨10(turn = 1) ∨∨
J∈J (10 ¬J).

Thus, the game is won by either meeting both Φ and ΦI , violating one of the justice

requirements, or preventing the interface from taking infinitely many steps. We force

the module to give up its turn infinitely many times to preserve the semantics of

interleaving.

4.2 Solving Games

Our approach to run-time monitoring is based on the observation that when the inter-

face does not have a winning strategy a violation of the specification is unpreventable.

Therefore the monitoring algorithm traces the interaction between module and inter-

face and raises an alarm at the first time it detects that the interface no longer has a

winning strategy. In Fig. 4.1, we present a naive implementation of this idea.

While the algorithm in Fig. 4.1 fully captures the spirit of our monitoring approach,

it is computationally unacceptable. This is because it implies that we have to analyze

the game each time afresh, with respect to an unbounded set of possible histories that

may arise during computation.

64

• Check whether the initial state is winning for the interface (player-2)
in game G. If it is not, then raise an alarm.

• In all subsequent steps, let h be the history observed since the be-
ginning of the computation. If h is not a winning strategy for the
interface, raise an alarm.

Figure 4.1: A naive algorithm for prevention maintenance

Note that the naive algorithm is feasible if we can partition the states of the game

into good and bad ones so that, regardless of the history of the game, the interface

can win for Ψ when the game is in a good state, and, similarly, the module can win

for ¬Ψ from a bad state. Formally, we define a state s to be good for player-i with

respect to the objective Ψ if the following holds:

Every history ending in s is winning for player-i with respect to Ψ.

We define a state s to be bad for player-i with respect to the objective Ψ if:

State s is good for player-(3−i) with respect to the objective ¬Ψ.

For example, states {s0, s1, s2, s3} of the game of Fig. 2.1 are good for player-1 (w.r.t

Ψ). These are the only states which are good for any of the players in this game.

For example, the question whether state s4 is winning depends on the path by which

we reached s4. If the path went through s1, then s4 is winning. If the path went

through s2, then s4 is not a winning state. From here on, we apply the terms good

and bad only with respect to player-2 (interface) and objective Ψ. A game G is called

partitionable if every state s is either bad or good.

In case a game G is partitionable, it is easy to construct a monitor. First, we solve

a game G by finding all good states. Note that in a partitionable game, the notions

of a good state and a winning state coincide. Therefore, we can use the algorithm

65

presented in [18] to find all player-2 winning states to solve a game. At run-time, we

just need to make sure that the game doesn’t enter a bad state and raise an alarm if

it does.

Unfortunately, it is not always the case that a state s can be identified as good or

bad.

Note that a game associated with a JDS can be easily represented as a turn based

game with a Borel winning condition, which is known to be determinate [48, 17].

Determinacy guarantees that for each particular history h either player-1 can win for

Ψ or player-2 can win for ¬Ψ, which is not true in general for the concurrent games

described in Section 2.4 [19].

Therefore, the only reason why we cannot always partition the states is that for

some states player-2 has a winning strategy for a history h, but not for some other

history h′. This was the case, as shown above, for state s4. Therefore, whenever

the game reaches s4 a monitor cannot immediately decide whether it should raise

an alarm. We can, in principle, make a right decision by taking a closer look at the

history of the game and using a variation of an algorithm that computes winning

states. However, that would call for a fresh game analysis on each visit to s4. Clearly,

that would make monitoring too expensive.

To solve the problem, we characterize the games for which it is possible to partition

the states into good and bad. A PSL formula Ω represents a universal liveness

property if the following holds:

For every σ1 ∈ Σ∗ and σ2 ∈ Σω, σ1 · σ2 |= Ω iff σ2 |= Ω.

Note that absolute liveness [3] satisfies only one direction of this definition, (i.e., if

σ2 |= Ω then σ1 ·σ2 |= Ω). The notion of universal liveness has been considered in [59]

66

under the name of fairness . Also, it should be stressed that universal liveness should

not be confused with the concept of memoryless strategies (i.e strategies such that

the choice of an action only depends on the last state of a game history). Indeed, a

winning strategy for a game with a universal liveness winning condition may require

memory and vice versa.

It can be shown that if the objective Ψ of game G is a universal liveness property,

then G is a partitionable game. Intuitively, if there is a winning strategy for some

history h, there must be one for any other history h′, sharing the same last state.

Therefore, there can be no state from which player-2 has a winning strategy only with

respect to some history h but not with respect to some other history h′ sharing the

same last state.

In the remainder of this section, we will show how to transform an arbitrary game

G to an equivalent game G′ with an objective Ψ′ that represents a universal liveness

property. Essentially, we split undecided states like s4 in Fig. 2.1 so that the new

states can be identified as good or bad.

4.2.1 Converting the objective of a game expressed in PSL

into universal liveness

Given a game structure G = (S, A, Γ1, Γ2, δ) and objective Ψ, we first build a tester

that accepts Ψ as described in Chapter 3. Next we use the construction of [56] to

build a total deterministic Rabin-chain automaton R = (Q, q0, ∆, c) over S such that

accepts Ψ.

The composition of the game structure G with the Rabin chain automaton R is

the game G×R = (S ′, A′, Γ′1, Γ
′
2, δ

′), where:

67

• S ′ = S ×Q;

• A′ = A;

• Γ′i((s, q)) = Γi(s) for i = 1, 2;

• δ′((s, q), a1, a2) = (δ(s, a1, a2), ∆(q, s)).

It is straightforward to convert the acceptance condition of R into an LTL objective

Ψ′ for the game G′ = G×R. Indeed, we can define Ψ′ as:

Ψ′ =
∨k−1

i=0

(0 1(c = 2i) ∧10(c ≤ 2i)
)
,

where c is interpreted in a state (s, q) as c(q). Since the formula Ψ′ consists of a

boolean combination of formulas of the form 01 p and 10 p for assertions p, it is

easy to show that Ψ′ represents a universal liveness property. We can solve game G′

using the algorithm from [18].

Example 5 Consider the game structure in Fig. 2.1. The automaton for the objec-

tive Ψ is given in Fig. 2.2, and the composed game is outlined in Fig. 4.2.

The only good states in the composed game are (s4, q0) and (s5, q0). All other

states are bad. Thus, as desired, this composed game with universal liveness objective

is partitionable.

4.2.2 Deterministic Büchi Specifications

The construction above is quite expensive. The size of the resulting game is doubly

exponential in the length of the original objective Ψ. In addition, the size of the new

objective Ψ′ is exponential in the length of Ψ. An important and frequently occurring

68

〈c, b〉 〈c, c〉

〈a, c〉

〈b, c〉

〈a, c〉

〈c, c〉

〈c, c〉

〈c, c〉

〈c, c〉

〈c, a〉

〈b, c〉

s0, q0

s1, q1

s0, q0

s1, q1 s3, q3

s3, q4s2, q2

s4, q0

s5, qr

s4, qr

s5, q0

s3, q3

s3, q4s2, q2

s4, q0

s5, qr

s4, qr

s5, q0

〈c, c〉

Figure 4.2: The composed game

special case is when the specification Φ ∧ ΦI can be represented as a deterministic

Büchi automaton. In this case, we can skip the expensive determinization step. We

present an efficient algorithm for monitoring of such special cases.

As defined in Section 4.1, the objective of our game G is defined by

Ψ = (Φ ∧ ΦI) ∨10(turn = 1) ∨∨
J∈J (10 ¬J).

Recall that to solve a game for the purpose of run-time monitoring, we need to use

a partitionable game. In Section 4.2.1, we have presented a general methodology for

transforming an arbitrary game into a game with universal liveness objective. Here

we consider the special case that (Φ∧ΦI) can be represented by a deterministic Büchi

automaton. We proceed as follows:

• Build a deterministic Büchi automaton B that accepts (Φ∧ΦI). Let F represent

the accepting set.

• Compose the automaton B with the game G to obtain G′ = G × B as in

69

Section 4.2.1. Let the objective of the resulting game G′ be defined by

01F ∨1 0(turn = 1) ∨∨
J∈J (10 ¬J).

• Consider an LTL objective Φ in the form:

0 1 p ∨∨n
i=1(10 ri),

where p, r1, . . . , rn are assertions. Clearly, the objective of G′ has such a form. Let

Win be a set of player-2 winning states for Φ. Following [41], we can compute Win

as follows:

Win = νZ.µY.
(n∨

i=1

νX.(p ∧4Z) ∨4Y ∨ (ri ∧4X)
)
,

where

[[4 f]]eG = {s ∈ S | ∃b ∈ Γ2(s).∀a ∈ Γ1(s). δ(s, a, b) ∈ [[f]]eG}.

That is, [[4 f]]eG characterizes the set of states from which player-2 can force the

game to move to a state belonging to [[f]]eG in one step. For example, applying 4 to

the set {s1, s2}, in Example 1, yields {s0}.
The above formula can be evaluated symbolically, requiring at most |S|2 steps, in

spite of the fact that it has three alternating fix-point operators [45].

70

4.3 Feasible Interface Monitoring

Assume a module M , a specification Φ, and an interface specification ΦI . A finite

prefix σ of M -states is safe with respect to M , Φ, and ΦI if there exists a JDS I∗ (a

possible interface), such that

• σ is a prefix of some computation of M ‖ I∗;

• For every computation σ′ of M ‖ I∗ that has σ for a prefix, σ′ |= Φ ∧ ΦI .

The JDS I∗ can be viewed as a concrete implementation of a winning strategy of

player-2 (the interface). In fact, it can be shown that every such interface induces a

winning strategy applicable after observing σ.

Based on the discussion in the preceding sections, we can now formulate a more

efficient version of run-time monitoring process, in which we analyze the game only

once — prior to the beginning of the monitored production run.

Using the methods of the previous section, we construct a partitionable game

G which represents the possible interaction between the module and the interface,

while assessing whether this interaction satisfies the conjunction Φ ∧ ΦI and the

relevant fairness requirements of the module and proper interleaving between module

and interface. Since G is partitionable, we will use the terms “winning” and “good”

interchangeably. Let Init be the set of states that satisfy the initial condition Θ of M

and any initial conditions induced by any automaton that may have been combined

into G. A sketch of a feasible monitoring algorithm is presented in Fig. 4.3.

The following theorems state the soundness of Algorithm mon.

Theorem 4 If Init 6⊆ Win, then M is incompatible with Φ∧ΦI . That is, there exists

no interface I∗ such that M ‖ I∗ |= Φ ∧ ΦI .

71

• Prior to the monitored production run, analyze the game G, com-
puting the set Win of states which are winning for the interface. If
Init 6⊆ Win, then raise an alarm.

• Start the production run. For every observed finite prefix σ of M -
states, let h be the corresponding history of G, induced by σ. Let s
be the last state of h. If s 6∈ Win, then raise an alarm.

Figure 4.3: A feasible algorithm mon for prevention maintenance

Theorem 5 Algorithm mon in Fig. 4.3 alerts only after observing an unsafe history.

The proof of both theorems is based on the observation that if a state s, reachable

by history h, is not winning for the interface, then there exists no interface I∗ which,

when run in parallel with M , can guarantee that all continuations of h do not violate

Φ ∧ ΦI .

If there existed such an interface, we could derive from it a strategy which is

winning for the interface, contradicting the fact that the monitor observed a state

which is bad for the interface. Thus, if an alarm is raised, there is no way to prevent

a computation which violates Ψ.

More formally, we need to show that every infinite history h violating Ψ induced

by a run of a game is an open computation of M violating Φ∧ΦI , where M infinitely

often gives up its turn to the environment. Indeed, consider a history h which violates

the objective (Φ∧ΦI)∨10(turn = 1)∨∨
J∈J (10 ¬J). Violation of

∨
J∈J (10 ¬J)

guarantees that h satisfies all the fairness requirement of M . Thus, h is an open com-

putation of M violating Φ∧ΦI . Violation of the conjunct 10(turn = 1) guarantees

that h contains infinitely many interface steps.

Note that since in the absence of design faults all prefixes are safe, Theorem 5

implies that if an alert is generated, there is a bug in the system. Since we are

72

interested in finding faults, the above statement signifies soundness of our method.

In contrast, in model checking, the above statement usually means completeness since

the goal is to prove program correctness.

Example 6 Consider the JDS corresponding to the SPL module in Fig. 4.4(a).

Assume the specification is Φ : 01 at−`0 ∧01flag2 and the interface specification

is the trivial ΦI : true. In Fig. 4.4(b) we present an SPL program for an interface I∗

such that M ‖ I∗ |= Φ ∧ ΦI . Therefore, the module is compatible with Φ ∧ ΦI . As

was mentioned before, we can view I∗ as a concrete realization of a winning strategy

for the interface. Consider a state at−`2 ∧flag1 ∧flag2. It is easy to verify that it is a

bad state, assuming it is the module’s turn. Consequently, our monitor will raise an

alarm when such state is reached. The alarm is really an early warning. Although

the violation is unpreventable, it would take infinitely many steps to confirm the

violation.

Besides catching the problem early on, there is another significant advantage of

our approach – the fact that we were able to identify the problem at all. There is no

way to identify a violation of a liveness property, like Φ : 01 at−`0∧01flag2, using

traditional run-time monitoring unless the program terminates. Of course, we cannot

always catch a violation of liveness either, but, sometimes, we can catch an eventual

violation, as we did in this example. Moreover, let’s modify Φ to be 0 ¬at−`4. Even

in that case, there is no guarantee that a user would be alerted when traditional

run-time monitoring is employed since there is still a chance that the specification

will hold. Indeed, the module can give up the turn and the interface can reset the

flag2 to false, which would restore the game into a good state.

73

shared boolean flag1 = 0
shared boolean flag2 = 0
local boolean error = 0

`0 : while ¬error


`1 : flag1 := 0
`2 : await flag1

`3 : if flag2 then error := 1




`4 :

(a) Module M

shared boolean flag1 = 0
shared boolean flag2 = 0
m0 : loop forever do



m1 : await ¬flag1

m2 : flag2 := 1
m3 : flag2 := 0
m4 : flag1 := 1




m5 :

(b) Interface I∗

Figure 4.4: Module and a possible interface for Example 6

4.4 Discussion

Soundness and Completeness of the Method Our method is sound, meaning

that whenever mon raises an alert, there is a bug in the implementation of the module

and/or external components. However, as we mentioned before, an execution trace

that generates an alert is not actually bound to violate specification. Nevertheless, an

alert should be treated with the same amount of respect as a negative result of model

checking. Of course, in practise, it might be desirable to distinguish when there is

just a bug in the program or when a bug will cause the currently observed execution

to violate specification. To accomplish this, we construct a game as before but let

the interface make choices not only for itself but also for the module. If the interface

cannot win even under these relaxed conditions, then a violation is guaranteed to

occur whenever an alert is generated.

We also need to mention incompleteness of algorithm mon, which in our case

means that the existence of a winning strategy for the interface does not necessarily

imply that this strategy can be implemented by an SPL program. It is mainly due

74

to the following two reasons. First, we allow the interface to observe all the variables

of M, even the local ones. In addition, the interface has access to the complete

history of a computation. The practical effect of incompleteness is that a monitor

may not spot a bug as early as it could have done; sometimes it may not deduce a

bug at all. However, it should be stressed that as soon as a computation violates

the specification an alert will be generated. Therefore, in this respect, mon is always

better then traditional run-time monitoring tools.

Note that incompleteness of algorithm mon should not be confused with the fol-

lowing fact – the absence of an alarm does not guarantee that the computation ac-

tually satisfies the objective if we let the game continue forever. Just because the

game stays within good states, the system may not be getting any closer to satisfying

its liveness properties. Unfortunately, any sound run-time monitoring system has the

above characteristic.

State Explosion Consider the formula for computing the winning states at the

end of Section 4.2.2. The amount of work needed to compute the set Win is compara-

ble to model checking the module in the presence of fairness. Both require handling at

least two alternating fix-point operators. Consequently, both suffer from state explo-

sion problem. Fortunately, the parallel with model checking does not stop here, and

we can apply some popular remedies used for model checking. In particular, one can

abstract the module before applying run-time monitoring. To preserve the soundness

of the method, we can allow the interface to resolve all the non-deterministic choices

caused by abstraction. Of course, this may adversely effect completeness.

Interestingly enough, one of the reasons to use run-time monitoring in the first

place may be to cope with the complexity of model checking. Indeed, we can label

75

parts of the program that are hard to deal with as external components and apply run-

time monitoring. Since we allow specifications given as Rabin-chain automaton, one

can abstract to any degree that is necessary. In the extreme case when specification

of the external components matches their implementation, run-time monitoring is

degraded to regular model checking.

4.5 Our Contribution and Related Work

Game-theoretic formalisms have been widely applied for solving various verification

related problems. For example, a problem of verification and synthesis of open systems

is studied in [46] and is closely related to our work. However, as far as we know, we

are the first to utilize game-theoretic approach for run-time monitoring. In addition,

we have identified and proposed a solution for a problem of solving games in the

presence of dynamic information.

We have already mentioned some differences between our work and ”traditional”

approaches to run-time monitoring. Most importantly, we are pursuing different goals:

trace monitoring vs fault discovering. Therefore, we largely view our work as being

orthogonal to the existing methods. However, even if we concentrate on a specific

behavior like traditional monitors do, our approach offers several advantages. First,

we are able to deal with liveness properties, raising an alarm when a violation of a

liveness property can no longer be prevented with absolute assurance by the interface.

Furthermore, in most cases, we can detect violations long before they actually happen.

One such case is when an individual thread in a multi-threaded application performs a

sequence of local computations, which are usually deterministic. If something is about

to go wrong during this time, an alert is generated before any actual computations

76

takes place. This information can be helpful in a number of ways, for example, it

might be prudent to increase the level of logging to facilitate the debugging/recovery

process later on. In addition, one may even attempt to repair the faulty application

as was discussed in [39].

77

Chapter 5

Range Analysis

Model checking [5] is a promising verification technique, which has been used suc-

cessfully in practice to verify complex circuit designs and communication protocols.

However, model checking suffers from the state explosion problem, i.e. the number

of states to explore grows exponentially with the number of state elements. This

problem is further exacerbated in the context of software verification, where variables

are typically modeled as multi-bit state vectors and arrays of variables are common.

In this chapter, we directly address this problem by bounding the number of bits

needed to represent program variables. We statically determine possible ranges for

values of variables in programs and use this information to extract smaller verification

models. The use of this information greatly improves the performance of back-end

model checking or static analysis techniques, based on use of BDDs or SAT solvers.

Our main method formulates the range analysis problem as a system of inequality

constraints between symbolic bound polynomials. It then reduces the constraint to

a Mixed Linear Programming (MLP) problem. A second approach called bounded

range analysis was introduced for bounded depth analyses as is done in Bounded

78

Model Checking (BMC) [8]. Both methods have been implemented in F-Soft veri-

fication platform [33].

Outline. We have presented some background information on our software mod-

eling approach, centered around a Control Flow Graph (CFG) representation of a

software program in Chapter 2, Section 2.6. In Section 5.1 we present the gener-

ation of the range analysis constraint system in terms of the CFG representation.

Section 5.2 discusses the analysis of the constraint system using an MLP solver. Sec-

tion 5.3 presents our new bounded range analysis technique. We present experimental

results with our prototype implementation in Section 5.4, and conclude this chapter

with some remarks.

5.1 Constraint System Generation

The first step in range analysis is the generation of a symbolic constraint system,

which is then analyzed by a linear program solver as described in Sec. 5.2. This

section describes the generation of this constraint system.

First, we describe the basic outline; a detailed description will follow. For each

program variable v, we need a bound on the number of bits needed to represent the

value of v in all possible executions. We actually compute something more general:

for each variable v and each program location loc, we compute the lower and upper

bounds of v at loc in terms of the arguments of the main function [55]. That is,

we derive explicit linear expressions that let us bound the possible values of v at

loc for any given values of the main function arguments. Currently, we use only

some of this information for improving model checking. Specifically, for a variable v

whose bounds at all program points do not depend on main function arguments, we

79

assign to v the smallest range that contains the ranges of v computed at all locations.

From this range, we derive the number of bits needed to represent v. For variables

whose bounds at some locations depend on the values of main function arguments, we

cannot compute a meaningful bound because in most of our model-checking analyses

the values of main function arguments are assumed to be arbitrary. If we only need

to model check the program for specific ranges of main function arguments, then the

bounds on variables whose ranges depend on main function arguments can be used

to bound the bitwidths of these variables.

5.1.1 Symbolic Bounds

For each block Bi in the CFG of procedure f we define two locations: prei representing

the start of block Bi and posti representing the end of Bi. The set of local integer

variables (including pointer variables) of procedure f is denoted by Vf . We use vloc to

denote the value of the variable v at program location loc. Pf ⊆ Vf is a set of formal

parameters of procedure f that are defined to be integers. For each formal parameter

p ∈ Pf we use p0 to symbolically represent the value of the actual parameter that

corresponds to p. Similar to [55], we focus the rest of our discussion on the case where

the values of the actual parameters are positive.

It should be noted that the set Pf of formal parameters is typically empty in

our analyses, since each analysis treats one function as main with unconstrained

argument values; computing ranges in terms of these unconstrained arguments is not

useful for us, and so we only look for ranges that are independent of the argument

values. Additionally, since we consider one entry function f we only need to consider

one set Vf and one set Pf .

80

For each variable v ∈ Vf and location loc, let Lv
loc and U v

loc represent lower and

upper bounds, respectively, of the value of v at loc. We set Lv
loc and U v

loc to be linear

combinations of the parameters of f with unknown rational coefficients, which are

formally defined as follows:

Lv
loc = CL +

∑
p∈Pf

CL
p · p0,

U v
loc = CU +

∑
p∈Pf

CU
p · p0.

In order to obtain the lower and upper bounds of each variable, we generate the

constraint system by considering following three types of constraints.

Initialization constraints. We generate initialization constraints for location

pre0 that represents the beginning of the initial block B0. For each p ∈ Pf we require

that Lp
pre0

= Up
pre0

= p0. For each v ∈ Vf\Pf we require that Lv
pre0

= −∞ and Up
pre0

=

+∞. The values of “−∞” and ”+∞ correspond to the most conservative lower and

upper bounds of the particular integer data type used. For unsigned integers, −∞ ≡ 0

and +∞ ≡ 232 − 1; for signed integers, −∞ ≡ −231 and +∞ ≡ 231 − 1.

Assignment constraints. Assignment constraints define the bounds after exe-

cution of the expressions in a block. For each assignment, we update the bounds at

the corresponding block of the variable on the left hand side with the bounds of the

expression found on the right hand side. We define l(e, loc) to represent the lower

bound of an expression e at location loc. We compute l(e, loc) for a constant c, a

81

variable v and expressions e, e1 and e2 as follows:

l(c, loc) = c

l(v, loc) = Lv
loc

l(e1 + e2, loc) = l(e1, loc) + l(e2, loc)

l(e1 − e2, loc) = l(e1, loc)− u(e2, loc)

l(c · e, loc) =





c · l(e, loc) c ≥ 0

c · u(e, loc) c < 0

Whenever we cannot compute a bound, we let l(e, loc) = −∞.

Similarly, we can define u(e, loc) for upper symbolic bounds of expressions.

For an assignment within block Bi of the form v = e, where v ∈ Vf , we generate

the following assignment constraint (note that a variable can be assigned at most

once in a basic block after simplication):

Lv
posti

= l(e, prei) ∧ U v
posti

= u(e, prei).

In case a variable v is not reassigned in block Bi, we generate the following constraint:

Lv
posti

= Lv
prei

∧
U v

posti
= U v

prei
.

Propagation constraints. If a transition can be taken from a block Bi to some

block Bj, a range of a variable v at the beginning of Bj must include all possible

values the variable v can have just before such a transition. Formally we add the

82

following constraint to the constraint system if there is a transistion from Bi to Bj:

Lv
prej

≤ Lv
posti

∧
U v

prej
≥ U v

posti
.

5.1.2 Handling of Conditionals

The constraint system as defined in the previous section is comprehensive enough to

ensure soundness of the bounds. However, additional information implied by condi-

tionals (guards) in the CFG may further minimize the resulting ranges. For example,

consider that the range of a variable v before a conditional is v ∈ [0, 100], but the

condition guarding the transition to a new block is v ≥ 20. If there is no other in-

coming edge to the new block, then the lower bound for v in the new block can be

safely assumed to be 20.

In general, consider a transition from block Bi to Bj and a guard of the form

v ≥ e, where v ∈ Vf . Assume that Lv
prej

≤ l(e, posti) is satisfied.

Then, whenever we can make a transition from Bi to Bj we are guaranteed that

the lower bound of v at the beginning of Bj is less or equal to the value of v at the end

of Bi at the time of the transition. So, we can relax the corresponding flow constraint

to:

Lv
prej

≤ Lv
posti

∨
Lv

prej
≤ l(e, posti).

Often we can omit the flow constraint altogether. However, since we do not know a

priori the relationship between Lv
posti

and l(e, posti) we introduce a disjunction that

results in higher precision. Other comparison operators can be handled in a similar

fashion.

83

void foo(int N){
int i = 0;
while (i ≤ N) i + +;

}
Figure 5.1: A Sample Program

However, the addition of disjunctions into an otherwise purely conjunctive con-

straint system presents a challenge to the approach advocated here. We use LP

solvers to perform an efficient analysis of the constraint system. Allowing disjunc-

tions prevents us from using pure LP solvers where all variables are rational (since

disjunctions are not linear). Therefore, the original work suggested in [55] does not

allow disjunctions. We discuss our disjunction handling in Sec. 5.2.

As an example, consider the program presented in Fig. 5.1. The corresponding

CFG and symbolic constraint system are shown in Fig. 5.2. We omit the constraints

for lower bounds in order not to clutter the figure.

5.1.3 Objective Function

Since we are interested in the most precise range information, we add an objective

function to the LP problem. It minimizes the total number of values to be considered:
∑

v ∈Vf

∑
Bi ∈Rv

| U v
prei

− Lv
prei

|, where Rv = {Bi ∈ B | v is read in block Bi}.

5.1.4 Constraint System Decomposition

Intuitively, it is clear that some bounds are independent of some other bounds. To

formalize this notion we follow [55] and introduce a dependency graph of bounds.

The nodes in the graph represent bounds. For a block Bi and a variable v there are

84

B1

B3

i ≤ N

i + +;

[
U i

pre3
≥ U i

post2

∨
U i

pre3
≥ UN

pre2

UN
pre3

≥ UN
post2

]

[U i
post2 = U i

pre2
; UN

post2 = UN
pre2

]

i > N

B2

i = 0;

i ≤ N

[
U i

pre2
≥ U i

post1 ; UN
pre2

≥ UN
post1

U i
pre2

≥ U i
post3 ; UN

pre2
≥ UN

post3

]

[U i
pre1

= ∞; UN
pre1

= N0]

[U i
post1 = 0; UN

post1 = UN
pre1

]

[U i
post2 = U i

pre2
; UN

post2 = UN
pre2

]

Figure 5.2: Symbolic Constraint System

exactly 4 nodes in the graph corresponding to Lv
prei

, U v
prei

, Lv
posti

, and U v
posti

. For every

generated constraint there is an edge from the node that represents the bound on the

left hand side to any node that represents a bound on the right hand side. We then

decompose the graph to strongly connected components and process each component

separately in reverse topological order. Decomposition prevents the propagation of

unboundedness between unrelated variables. This allows us to find tight bounds for

many variables.

85

5.2 Analyzing a Constraint System

Although the generated constraint system resembles an LP problem, several impor-

tant distinctions prevent the direct usage of LP solvers. First, lower and upper bounds

in the generated constraint system are linear expressions with not only unknown vari-

ables, but also unknown rational coefficients. Second, the generated constraint system

has both conjunction and disjunction as Boolean connectives, while LP solvers only

support conjunction. In order to use a LP solver, we must simply the generated

constraint system.

5.2.1 From Symbolic Constraints to Linear Inequalities

Consider a constraint of the form Lv
loc′ ≤ Lv

loc, where Lv
loc = C +

∑
p∈Pf

Cp · p0 and

Lv
loc′ = C ′ +

∑
p∈Pf

C ′
p · p0. We generate the following linear inequality constraint

that can be submitted to the LP solver:

C ′ ≤ C ∧
(∧

p∈Pf

C ′
p ≤ Cp

)
.

Assuming positivity of parameters, the new constraint is stronger than the original

one, thus preserving soundness of the bounds. Other constraints can be handled

similarly. When we cannot assume positivity of parameters, we need to perform an

inefficient case split for the possible combinations of positive and negative parameters.

86

5.2.2 From Symbolic Objective Functions to LP Objective

Functions

Similarly, we convert a symbolic objective function of the constraint system into

a linear objective function. Assuming that Lv
prei

= Xv
prei

+
∑

p∈Pf
Xv

prei, p
· p0 and

U v
prei

= Y v
prei

+
∑

p∈Pf
Y v

prei, p
· p0, we rewrite the objective function as

∑
v ∈Vf

∑
Bi ∈Rv

| (Y v
prei

−Xv
prei

)+
∑

p∈Pf
(Y v

prei, p
−Xv

prei, p
) | .

5.2.3 Handling Disjunctions

The addition of disjunctions into an otherwise purely conjunctive constraint system

presents a challenge to the approach using LP solvers. If the user chooses to consider

disjunctions, our tool uses an approach based on encoding disjunctions via integer

variables. Several heuristics are used to reduce the number of disjunctions. We

describe our approach using a small example. Consider the following constraint:

Lv
prej

≤ Lv
posti

∨
Lv

prej
≤ l(e, posti). We introduce two new binary variables

D1 and D2, and M denotes a large positive number. Our original constraint is then

replaced with the following constraint:

(
D1 + D2 ≤ 1

) ∧ (
Lv

prej
−M ·D1 ≤ Lv

posti

)
∧ (

Lv
prej

−M ·D2 ≤ l(e, posti)
)
.

The new constraint is stronger than the original one, and the two constraints are

actually equivalent if M is sufficiently large. Note that the new variables D1 and D2

are the only variables that need to be pure integer variables, while all others can have

87

rational values. For problems with small numbers of integer variables, performance

of MLP solvers is comparable to the performance of LP solvers.

In the following we briefly describe some of the heuristics we employ to resolve

some disjunctions before we invoke the appropriate LP solver for the resulting con-

straint system.

• Drop a constraint if some bound on the right hand side is close to M . For several

practical reasons, mostly due to lack of necessary precision of floating-point

numbers, we may not be able to set M as high as we wish. If we were not to drop

such disjunctive constraints, we may actually treat the disjunctive constraint as

a conjunctive constraint instead. Therefore, we resolve this problem by dropping

a constraint from the disjunction.

• Drop a constraint if some bound on the right hand side has not yet been deter-

mined. As in the previous case the unknown bound value might be close to M

and we would have the same issue that was described in the previous heuristic.

Furthermore, if the unknown value cannot be bounded, the whole constraint

system would be declared infeasible and thus unbounded.

• Prefer to satisfy the flow constraint. It is clear, that we cannot drop both

sides of a disjunction. That is, if the aforementioned rules require that both

constraints of a disjunction be removed, we need to keep at least one of the two

in the resulting constraint system. In such a case, we prefer to leave the flow

constraint in the constraint system, since it refers to one program variable only.

88

5.3 Bounded Range Analysis

Recently, there has been a growing interest in utilizing bounded model checking for

program verification [13, 31]. We propose the idea of bounded range analysis, which

computes ranges by exploiting the fact that the range information, if used only in a

bounded model checking run of depth k, does not have to be sound for all compu-

tations of the program, but only for traces up to length k. By concentrating on a

bounded length trace only, we are able to find tight bounds on many program vari-

ables that cannot be bounded using the technique described earlier. Such an approach

can also support non-linear functions. As an example, consider the following code:

int i = 0, j = readInput(); while(i < j ∗ j) {i + +; }

If one were to consider all possible traces and j is not bounded, then the upper bound

for i would have to be declared unbounded. However, if we are only concerned with

the traces up to k steps, it is safe to conclude that the value of i will always be in the

range from 0 to k.

A straightforward way to compute such ranges is to perform a BFS on the control

flow graph with depth limit set to k which updates the lower and upper bounds for

the individual basic blocks. Although this approach results in very precise ranges,

it is not efficient for large k. We propose the following algorithm that can be easily

implemented on top of the constraint based approach described earlier. For a fixed

89

number of steps (depth), its runtime is quadratic in terms of the code size.

Intialize all bounds to the least conservative values;

for(i = 0; i < #steps; i + +)

foreach basic block Bj

foreach variable v, v ∈ Vf

update Lv
prej

, U v
prej

, Lv
postj

, and U v
postj

using constraints

This algorithm can be further improved in several ways, in particular to support

non-linear functions.

• Support for non-linear functions. In case a function does not have any pa-

rameters, we can easily extend the algorithm to support many important non-

linear functions. The restriction on the presence of parameters is not severe.

Expressing bounds as a linear combination of parameters is mostly useful for

inter-procedural analysis. Since F-Soft inlines all function calls, parameters

of called functions can be ignored. Consider an assignment y = x2 in a block

Bi. The following rules can be used to update Ly
posti and Uy

posti : Ly
posti = 0 and

Uy
posti = max(| Lx

prei
|, | Ux

prei
|)2.

• Increasing precision. This algorithm and the BFS-like approach represent two

extremes. By moving towards the middle, we can increase precision, while

sacrificing the running time. Of course, it is worthwhile doing so, as long as

decrease in efficiency is reasonable compared to the savings we gain during later

stages of verification.

90

Bench No RA MLP
mark bits gates SAT BDD bits gates SAT BDD
PPP 1435 24628 TO(69) TO(169) 445 18955 TO(89) TO(216)
TCAS 1481 8792 2.1s 278.7s 765 5550 1.7s 109.6s
BKRY 198 1515 70.2s 16.1s 24 449 27.7s 0.6s
ARRY 359 5212 3.1s 47.1s 160 2440 2.2s 7.8s

Table 5.1: MLP range analysis benchmarks

5.4 Experiments

We have implemented our range analysis techniques in our prototype verification

platform for C programs [33]. In this section, we report experimental results for the

use of these techniques in verification of several benchmarks.

MLP-based and bounded range analysis. The experimental results are sum-

marized in Table 5.1 and Table 5.2. For each benchmark, we include results for three

methods: no range analysis; our MLP-based method described in Sections 5.1 and 5.2;

and our bounded range analysis method (BoundedRA) described in Section 5.3. For

each method, we include the model size (number of state bits and number of Boolean

connectives), and the timing results for two verification methods: SAT-based bounded

model checking and BDD-based unbounded model checking. The timing results show

either time in seconds (numbers ending with s), or the maximum depth reached before

one-hour timeout (TO(maxdepth)). For the bounded range analysis, the computed

ranges are valid for traces of up to 2000 steps; the ranges are sound for all analyses

described here, as none of the analyses exceed this depth.

In the PPP example we check correctness of an implementation of the point-

to-point protocol with respect to its high-level specification. The TCAS example

checks a safety property of an air traffic control software. BKRY checks mutual

91

Bench No RA BoundedRA
mark bits gates SAT BDD bits gates SAT BDD
PPP 1435 24628 TO(69) TO(169) 258 17909 TO(93) TO(273)
TCAS 1481 8792 2.1s 278.7s 336 3912 1.7s 40.1s
BKRY 198 1515 70.2s 16.1s 24 449 27.7s 0.6s
ARRY 359 5212 3.1s 47.1s 42 1369 1.1s 3.3s

Table 5.2: Bounded range analysis benchmarks

exclusion for a faulty implementation of Lamport’s bakery algorithm. ARRY is an

array-manipulation example involving several nested loops, that checks for out-of-

bounds array accesses. The results show that range analysis can significantly reduce

the complexity of verification. The number of state bits, the size of the Boolean

circuit representing the transition relation, and the verification time are all noticeably

reduced. The results also show that bounded range analysis can give much better

results than unbounded range analysis based on MLP solvers.

Range analysis for abstraction refinement. We have also tested the effect of

range analysis on predicate abstraction, on examples from air traffic control software

(TCAS) and a device driver (SERIAL). On examples from the TCAS benchmark,

the total reduction in number of state bits was 61%. For four examples of predicate

abstraction, on average we saved 49% on abstraction time, and 49.5% on refinement

time in our current predicate localization framework [35]. For a previous predicate

abstraction implementation based on SAT-based enumeration of the transition rela-

tion [44] we found similar performance improvements due to the fact that the concrete

variable representation is significantly reduced with range analysis, thus resulting in

faster runtime per solution. For 13 examples of predicate abstraction from the SE-

RIAL benchmark, the use of range analysis reduced the total abstraction time by

92

35.7% and the total refinement time by 29.4%. The time for range analysis itself was

almost always negligible; in one case though, the time spent on range analysis offset

the savings in verification time.

Comparison with LP-based range analysis We have also compared our MLP-

based method with the LP-based method of [55]. On one of our examples, the MLP-

based method removed 74% of state bits compared to 37% with the LP-based method;

the analysis run-time with BDDs was 26s with the MLP-based method compared to

265s with the LP-based method. The use of MLP did not affect range analysis

runtime, which remained a negligible fraction of verification time.

5.5 Conclusions

In this chapter, we proposed the use of lightweight and efficient range analysis tech-

niques for improving the performance of software verification. Our main method

formulates the range analysis problem as a system of inequality constraints between

symbolic bound polynomials. It then reduces the constraint to an MLP problem.

A second approach called bounded range analysis was introduced for bounded

depth analyses. Both methods have been implemented in our prototype verifica-

tion platform [33]. We also described a technique for improving the quality of range

analysis in the presence of arrays, and described how range analysis can improve veri-

fication performance for two different representations of arrays. Finally, we presented

promising experimental results on a variety of software verification benchmarks.

93

Chapter 6

Static Analysis for Invalid Pointer

Accesses

Static analysis techniques have been successful in analyzing large programs for typical

programming errors such as array buffer overflows, use of uninitialized variables,

access of memory through invalid pointers, locking violations and others [6, 12, 15, 20,

23, 28, 34, 66]. Function summaries are often employed to provide an inter-procedural

application of this technique [54]. Although the use of function summaries is often

less precise than analysis of inlined source code, it allows scaling of the analysis to

large pieces of code such as the Linux kernel [65].

In recent work, function summary-based techniques for program analysis using

SAT-techniques have been shown successful to increase intra-procedural precision of

the analysis [64]. The Saturn tool was able to find violations of an alternating lock-

unlock checker [65], and improve precision for the detection of memory leaks [63].

In this chapter, we also employ a SAT-based function summary approach to analyze

94

programs for invalid pointer accesses. We have implemented this technique in F-

Soft [32], which is an analysis framework for C programs for user-defined properties

and standard programming bugs.

Overview of the Approach. The first step in our analysis is to parse the

given program and automatically annotate it with monitoring statements that moni-

tor validity of pointers and flag invalid pointer accesses as reachability of unsafe error

blocks. For the program in Fig. 6.1, we introduce three Boolean validity flags rValid,

pValid, and qValid for the pointer variables r, p, and q, respectively. We introduce

the statement rValid = r?1:0 after the call to malloc and rValid = 0 after the

call to free. In addition, we have three possibly invalid accesses in the program:

free(r), *p, and *q resulting in the creation of three potentially reachable error

blocks Bk, Bj, Bi respectively. In each error block, we set a corresponding reacha-

bility predicate errork, errorj, and errori to true. These reachability predicates

are initialized to false. Following this monitor generation step, we may use many

model size reduction and simplification steps such as program slicing, to reduce the

models being analyzed by the following steps. We then process a program bottom

up, starting with leaf functions, computing function summaries in terms of a set of

function interface predicates. To compute function summaries in terms of predicates,

we use symbolic simulation to encapsulate path-sensitive behavior of a single func-

tion using BDDs. As an example, we create the following BDD for the predicate

errori in function foo in Fig. 6.1: q? (qValid? errori:1):errori. At the BDD

level, we only track simple variable-to-variable assignments accurately, and replace

other assignments with fresh variables. Each new variable is interpreted later when

we build a bit-level accurate Boolean problem for the SAT-based function summary

95

computation. We also use equivalence checks between these abstracted expressions to

limit the number of required unknowns. In particular, when we process the function

top depicted in Fig. 6.1, we can match the condition (r) explicitly present in the

function and the condition in the monitoring statement rValid = r?1:0. The BDD

for rValid thus simplifies to 1 before the function calls. We also use an efficient

BDD variable ordering to capture the function structure, and thus avoid BDD size

explosion as well as expensive variable reordering operations.

void top(){
int ∗ r;
r = malloc(4);
if(r){

bar(r);
free(r);

}
}

void bar(int ∗ p){
· · ·
∗p = · · · ;
foo(p);
· · ·

}

void foo(int ∗ q){
· · ·
if(q) ∗ q = · · · ;
· · ·

}

Figure 6.1: A motivating program fragment

A critical problem in using function summaries for detection of invalid pointer

accesses is that a pointer that is changed inside a function may be aliased to some

other pointer that is not accessed in the function. On the other hand, for accuracy,

any changes to an aliased pointer in a function should be made observable as part of its

summary. We introduce context-insensitive pointer updates to summarize the effect of

function calls on aliased variables that are not directly changed inside the function.

These statements are unsound in principle, but in practice they often capture the

typical use of pointers in real software.

We then simplify the analysis by pre-computing relationships between invalid

pointer accesses during an error hierarchy analysis. We look for scenarios of related

96

invalid pointer accesses, i.e. where an invalid pointer access in one location implies

another invalid pointer access in the remaining function body or in some other func-

tion. If the access through p in function bar is valid, then it must also be valid

inside foo (see Fig. 6.1). Therefore, we only consider the access in bar. Many such

cases arise in practice, since each pointer access generates a unique error block, al-

though different pointer accesses may refer to the same pointer. In addition, validity

of different pointer variables may also be highly correlated.

Performing summarization using all predefined predicates can become infeasible,

and is in most cases unnecessary. We employ inter-procedural predicate clustering to

cope with the problem. Each cluster contains output predicates involving the validity

of a pointer, and its relationship to the predicates concerning the return variable of

the function. To this cluster, we add all input predicates that syntactically share

variables with the transfer functions of the output predicates. Similarly, we create a

separate cluster for each error monitoring predicate. We also employ inter-procedural

information by expanding these clusters using the required clustering information of

the callees. We also use many static analysis techniques - property-based program

slicing, constant folding, range analysis, control-flow graph simplifications and opti-

mizations, and fast invariant computation techniques - on the given program. These

are useful in reducing the size of the verification model used by the SAT solver for

computing the function summaries, thereby improving its performance and scalability.

Outline. In the following section, we briefly review the modeling of software

programs that is implemented in F-Soft, and is the basis of our analysis here. Next

we describe our SAT-based function summary approach to find typical invalid pointer

accesses in software. Section 4 then discusses how we simplify the analysis using

97

relationships between potential invalid pointer accesses. In Section 6.4, we describe

an implementation of these ideas in the F-Soft framework, and show the efficacy of

this approach on Linux kernel modules and proprietary software, before we conclude

this chapter with some final remarks.

6.1 Software Modeling in F-Soft

Let’s briefly review software modeling in F-Soft, which is discussed in more detail

in Chapter 2, Section 2.6. We begin with full-fledged C and apply a series of code

transformations, each of which simplifies complex expressions into smaller but equiv-

alent subsets of C. This preprocessing phase handles pointers, arrays, and bounded

heap/stack related memory accesses. We use auxiliary variables that correspond to

pointed-to locations for pointer variables [58]. While this introduces some additional

variables into the model of the software, it allows us to simplify any indirect read

through a pointer by having a single live pointed-to location [30, 58].

We also perform a points-to analysis to determine for each memory access the

set of variables that may be accessed at that program location. We then replace the

accesses through pointers with the appropriate conditional expressions. The simplified

program consists of only scalar variables of types Boolean, enumerated, integer or real.

Each program step is represented as a set of parallel assignments to these variables.

Throughout the modeling and analysis, we use simplification techniques to reduce

the model size. These steps include program slicing [37, 61], constant folding [51],

and could also include techniques such as range analysis [55, 68], and other numerical

domain analysis techniques using octagons [49].

98

6.1.1 Pointer Validity Checking

In order to analyze the input program for invalid pointer accesses, we automatically

instrument the program by adding new Boolean monitors to the program. We con-

sider a base pointer to be valid, if the base pointer points to a correctly allocated

memory address either on the heap or on the stack. A pointer expression is con-

sidered valid, if the base pointer of the expression is valid according to the above

definition. Note that this means that we do not consider arithmetic offsets in pointer

expressions; that is, arithmetic offsets do not change the validity of a pointer in our

analysis. A null base pointer is considered to be invalid. However, it is possible to

construct an expression that evaluates to null, but would be considered valid using

the above definition.

For each pointer variable, including pointer elements of arrays, we add monitor-

ing flags. For example, a pointer variable called ptr may be monitored using the

Boolean flag ptrValid. Pointer assignments update these validity flags by copying

the corresponding flag for the right hand side of an assignment. The validity flags are

also updated by calls to malloc, by setting the flag to true if malloc succeeds, and

false otherwise. Calls to free set the validity of a pointer to false. We also model

commonly used library functions in C, such as string manipulating routines. For ev-

ery memory access, such as *p, p[i], or calls to free, we introduce monitoring error

blocks, that correspond to programming errors in the original source code should

any such block ever be reached. Our analysis thus translates to checking whether

any error block can be reached in the monitored program, and if so, which ones in

particular. Note, that we do not check for calls to free with pointer variables with

non-zero offsets.

99

6.1.2 Context-Insensitive Pointer Updates

We process program functions in reverse topological order starting from leaf functions,

that is functions that do not call any other functions.1 Whenever a function is called

from another function, we substitute the call with its computed summary. A critical

problem in using function summaries for detection of invalid pointer accesses is that

a pointer parameter (or a global pointer) that is changed inside a function may be

aliased to some other pointer variable that is not accessed in the function. On the

other hand, for accuracy, any changes to an aliased pointer in a function should be

made observable as part of its summary.

There are two ways of handling this situation in F-Soft. We can add so called

aliasing statements into the corresponding basic block which track indirect accesses to

aliased pointers, even if they are out-of-scope. These are used due to F-Soft s’ mod-

eling of pointed-to locations [30, 58]. We only add these aliased statements for pointers

that may be aliased to the changed pointer.2 As an example of such statements, con-

sider the program fragment depicted in Fig. 6.2. The statement free(q) in function

foo is replaced by the assignments qfooValid = 0 and pbarValid = (pbar==qfoo)?

0:pbarValid, and similarly for qbar even though p and q (of bar) are out-of-scope.

Most other statements that track values of pointed-to locations are often not impor-

tant and are sliced away. However, in some cases such as programs with arrays of

pointers, these statements may not be sliced away. The problem with this approach is

that the number of clusters and pointer comparison predicates becomes prohibitively

large.

1We treat mutually recursive functions as a single functional entity.
2It should be mentioned that we first perform a fast Steensgaard-style pointer alias analysis [60]

to limit the potential aliasing relationships that need to be considered.

100

void bar(int ∗ p, int ∗ q){
· · ·
foo(p);
· · ·

}

void foo(int ∗ q){
· · ·
free(q);
· · ·

}

Figure 6.2: A program fragment

Another option is to introduce approximating statements to the pointer validity

flags not in the callee, but in the appropriate caller. We call this context-insensitive

pointer updates. An update to a pointer function parameter p only propagates to

other in-scope aliased pointers. The updates to all other pointers are delayed until

we process the corresponding caller. In other words, we only update pointers whose

actual aliasing relationship with p can be established without considering the calling

context. As an example, consider again Fig. 6.2. Since we pass pointer p to foo,

we are only interested in analyzing whether p or any aliased pointer q is indirectly

invalidated using a call to free; that is, we do not have to worry about a call to malloc

that may make p or any aliased pointer valid after the function call. Therefore, after

the call to foo, we introduce the following statements into our model for function

bar:

pbarValid = !qfooValid? 0 : pbarValid, (6.1)

qbarValid = (pbar old==qbar old && !qfooValid)? 0 : qbarValid, (6.2)

where pbar old and qbar old are the values of p and q in bar before the call.

Statement (1) is meant to model the fact that the parameter p passed to foo

may be freed inside foo. We approximate the effect of the function call to foo on p,

101

by saying that p was probably freed by foo, if, at the end of the execution of foo,

parameter q of foo is invalid. Otherwise, that is, if q of foo is valid at the end of

function foo, we do not change the validity of p inside function bar. The reason

is that the validity of q of foo may be due to the fact that it was allocated inside

foo, but that allocation does not change the validity of what p originally pointed to.

Similarly, it could have been aliased to some valid pointer, which again should not be

reflected onto p. The above statement is incorrect, however, if q of foo was first freed

inside foo, and then allocated locally. In this scenario, we produce a model where the

function call to foo would not change the validity of p, although it should have been

invalidated. Note that we rely on programming styles that discourage such coding

practice.

A similar argument can be made to understand statement (2), which models the

call to foo on the potentially aliased pointer q. Intuitively, we are saying that if

p and q are aliased before the call, and p is freed by foo then we also update the

validity flag for q. We handle memory allocation in a similar fashion, when modeling

function calls where a pointer is passed by reference. Unlike the aliasing statements

approach, these context-insensitive updates are unsound. In particular, aliasing re-

lationship between pointers may change during function calls. A simple separate

analysis is needed to detect such situations. However, this should not happen often

since re-aliasing a parameter before performing free or malloc is a very undesir-

able programming practice. Context-insensitive pointer updates allow us to scale the

analysis by guaranteeing that function summaries need only be in terms of function

parameters and globals.

102

6.2 Function Summary Computation

A function summary is a relation between the input and output values of param-

eters and globals. We use symbolic simulation to capture the effect of a function,

and develop an efficient BDD-based approach to represent loop-free programs. For

scalability purposes, we compute summaries of functions in terms of predicates using

SAT-based enumeration techniques [44].

6.2.1 Functional Symbolic Simulation

In this section, we describe how we use BDDs to symbolically simulate the behavior

of a function. BDDs provide a good balance in addressing the following concerns:

size of representation, canonicity of the representation to allow equivalence checks of

expressions, and simplification of expressions. We have developed an algorithm that

computes a good variable ordering, and we guarantee that all expressions are linear in

the code size as long as we do not have any gotos. BDDs have been used to encode

path-sensitive information efficiently in other contexts before, such as to perform

symbolic RTL simulations [43]. There are other interesting alternatives for repre-

senting expressions such as multi-terminal binary decision diagrams (MTBDDs) [25]

and Free Conditional Expression Diagrams (FCEDs) [26]. MTBDDs provide a high

simplification degree, but can be exponential, while FCEDs do not provide canonicity.

For each basic block Bi, we compute a guard Gi which is an abstracted Boolean

formula that represents the condition under which Bi is reachable from the function

entry point. These guards are stored as BDDs. For each variable x and block Bi,

we define a transfer function Fx
i which is a formula over the input variables of the

function that represents the value of the variable x at the beginning of Bi. Similarly,

103

we use F̂x
i to denote the value of x at the end of Bi. The main reason to use

BDDs is to efficiently represent path-sensitive information and perform high-level

simplification. We employ two interconnected techniques to achieve that. First, at

the BDD level we only track simple variable-to-variable assignments accurately, and

replace all other assignments with fresh variables in a blobbing process [57]. These

variables are interpreted later by building a bit-level accurate Boolean model for the

SAT-solver. Second, we use these blobbed BDDs to find equivalent expressions to

limit the number of required unknowns. We also introduce new BDD variables for

program conditions.

The equivalence check can result in significant BDD simplification. Consider the

example in Fig. 6.3 taken from [38]. The example shows that often there is a need to

correlate sub-paths through a function, such as in the case of nested or sequential if-

statements. In the example, there are two conditions which both refer to p and which

can be found equivalent. Therefore, the transfer function for the lock variable at the

assert location is found to be c1, where c1 is a symbolic variable representing the

constant one. Consequently, the assertion lock==1 is simplified to true. In addition,

at the exit of the function example2 the transfer function for the lock variable is c0,

where c0 is a symbolic variable representing the constant zero.

In Fig. 6.4 and Fig. 6.5 we show how to compute guards and transfer functions

for a basic block, assuming that all its parents have already been processed. We

repeatedly apply the process for each block in topological order starting from the

entry block. Note that at this stage function calls are handled by introducing fresh

unknowns for variables potentially updated by the function call. Capturing the actual

semantics of the function call is performed later by the SAT-solver.

104

void example2()
0. {
1. lock = 0;
2. if(p) lock = 1;
3. · · ·
4. if(p){
5. assert(lock == 1)
6. lock = 0;
7. }
8. }

Transfer Function for lock
0. lock0

1. c0

2. p0?c1 : c0

3. p0?c1 : c0

4. c1, in the then-branch; c0, in the else-branch
5. c1

6. c0

7. c0

8. c0

Figure 6.3: Using BDDs to slice and simplify a program.

• Initialization: All guards are initialized to true, G0 = 1

• Flow Merging: Let Pre(Bi) denote the set of indexes of all the predecessors
of the block Bi, and gij denote the guard for going from the block Bj ∈ Pre(Bi)
to Bi.

Gi =
∨

j ∈Pre(Bi)

Gj ∧ gij.

Figure 6.4: Computing Guards as Blobbed BDDs

Handling Loops. In the above discussion, we omitted how loops are handled.

After F-Soft completes its preprocessing including program slicing and CFG sim-

plifications, we currently unroll all remaining loops a fixed number of times. This

approach seems adequate for invalid pointer access analysis. Nevertheless, we follow

special rules when handling loops, which greatly increase soundness:

• A fresh unknown is introduced for each expression and each loop unrolling.

• We do not interpret unknowns introduced for dirty expressions (i.e., an expres-

sion, whose value might be affected by a loop).

105

• Initialization: For each variable x, the transfer function is initialized to a
fresh symbolic variable, Fx

0 = x0

• Flow Merging:

Fx
i =

∨

j ∈Pre(Bi)

Gj ∧ gij ∧ F̂x
j .

In addition, for efficiency, we restrict the BDD for Fx
i by the guard Gi, to

minimize the size. In particular, when there is only one predecessor Bj, the

guard Gi = Gj∧gij, and after restricting the transfer function Fx
i = Gj∧gij∧F̂x

j ,

we obtain Fx
i = F̂x

j .

• Function Calls: For each function call, represented by the summary edge
(Bi, Bj), we reset each variable x that might be updated by the callee to a
fresh symbolic variable u.

Fx
i = u.

• Assignments: Since all of the assignments are only of the form x := y, we
just let

F̂x
i = Fy

i .

If a variable is not changed then:

F̂x
i = Fx

i .

Figure 6.5: Computing Transfer Functions as Blobbed BDDs

• Dirty expressions are only matched within the same loop body.

This over-approximative handling of individual loop unwindings converges fast, and

can easily be extended until a sound fixpoint has been reached for all loops. Another

approach would be to handle loops as functions themselves, thus allowing the same

procedure that is used to summarize functions to handle loops soundly. Nevertheless,

we currently use an unsound unwinding approach that works well in practice to catch

most bugs, while providing efficiency. While our intra-procedural algorithm is similar

106

to the one used in Saturn [64], there are several important distinctions. We use BDDs

to represent both the guards and the transfer functions, while Saturn uses BDDs to

represent guards only. In addition, we do not model individual bits using transfer

functions. Indeed, taking into account the blobbing, all the bits are updated uniformly

to derive a “word-level” transfer function. We also use various preprocessing analysis

steps, such as program slicing and constant folding, to reduce the model size.

Variable Ordering. The variable order is crucial for a succinct BDD representa-

tion. In our framework we can efficiently compute a good variable ordering by using

the following two basic rules:

• The ordering among variables that correspond to conditions follows the control

flow of the program itself. Whenever two branches of a conditional statement

meet at a basic block, the BDD variable that represents the condition should

have the lowest ordering (i.e., the symbolic variable representing the condition

is the first one we split on) at the join basic block.

• We assign a lower ordering to variables representing conditions than to variables

representing assignments. It is interesting to note that the ordering among vari-

ables that correspond to assignments is irrelevant, since assignments naturally

correspond to leaf nodes in our BDD representation. This intuitively corre-

sponds to so called reaching definitions of variables for which we build transfer

functions.

Theorem 6 For a loop-free, goto-free program the transition functions constructed

by the algorithm described in Fig. 6.4 and Fig. 6.5, have the total number of BDD

nodes O(V ∗ N), where V is the number of variables and N is the number of basic

blocks.

107

We give a proof by induction on the structure of the program. The base case when we

just have one basic block or sequential composition of basic blocks is trivial. Indeed,

all the BDDs will have just one node representing either the initial value of some

variable or the unknown that is introduced for the right hand side of some of the

assignments. The only other two cases that we need to consider are described below.

Sequential Composition. Assume that we compose two code fragments of sizes

N1 and N2 respectively. Our algorithm first builds the transfer function to represent

the first fragment and by applying the inductive assumption we find that the total

number of nodes is O(V ∗ N1). When the algorithm proceeds to the second section

the transfer function of the first fragment are essentially used as initial values for

the second fragment, and, again, applying inductive assumption, we add at most

O(V ∗N2) new nodes.

Conditional Statements. The only remaining possibility is when two fragments

of sizes N1 and N2 are composed using a conditional statement. For simplicity, we

assume that we have unique branch and merge blocks for each such statement, so the

number of blocks in the composed program is N = N1 + N2 + 1 + 1. Since the blocks

are processed in topological order, before considering the merge block, we first build

transfer functions for the two branches each resulting in O(V ∗N1) and O(V ∗N2) new

nodes respectively. The only remaining step is the merging of the transfer functions

according to the formula:

Fx
composed = (¬g ∧Fx

left)
∨

(g ∧Fx
right), where g represents the condition.

Since g is guaranteed to have the lowest index in our BDD order, the merge can

introduce at most one new node (the one that splits on g) for each resulting transfer

function. The total number of nodes thus is O(V ∗N1 + V ∗N2 + V) = O(V ∗N).

108

As we have shown the heuristics produce linear sized BDDs for any goto-free

program and they also works well in practice for an arbitrary CFG, as evidenced by

the experiments presented in Sec. 6.4. Also note that we use the variable order that

is computed in the exit block of a function as the global order for the function.

6.2.2 Summary Computation

Having computed all blobbed transfer functions for the exit block, we first interpret

the unknowns. These interpreted expressions represent a transition relation R(V, V ′),

which expresses the relation between function interface variables V (including globals)

at the beginning of a function call and the values at the function return denoted as V ′.

Since such a transition relation is too detailed, we compute an over-approximation of

R based on a predefined set of input and output predicates as the function summary.

Formally, a function summary is a relation R(Pin, Pout), where Pin is a set of input

predicates over input variables V , and Pout is a set of output predicates over output

variables V ′. We define the set of input and output predicates using the following

heuristics. For each pointer p that is a function parameter or is a global variable, we

introduce two predicates p==0 and pValid into both predicate sets (after renaming

for Pout). Also, we introduce predicates on the return values of functions, and add

them to Pout. In particular, we check for nullness of a return variable, as well as for

the validity of the return variable, if it is a pointer. Finally, for every potential invalid

pointer access represented as an error block Bi, we introduce a reachability predicate

expressed as errori.

Inter-procedural predicate clustering. Using the above rules we often obtain

109

too many predicates. Computing R most accurately, that is performing summa-

rization using all predicates seems to be infeasible and in most cases unnecessary.

We employ predicate clustering techniques [36] to cope with the problem, which es-

sentially means that we compute decomposed summaries that over-approximate R
and thus further over-approximate R. A separate predicate cluster is created for each

pointer variable. Each cluster contains the output predicates involving the nullness of

the pointer, its validity, and its relationship to the predicate(s) concerning the return

variable of the function. Furthermore, we add all input predicates that syntactically

share variables with the transfer functions of the aforementioned output predicates.

Similarly, we create a cluster for each illegal pointer access error monitoring predicate,

and all the input predicates that syntactically share variables with the monitor.

Note that the above does not capture inter-procedural variable dependencies since

a variable changed by a callee is reset with an unknown. Therefore, we expand

our clusters using the clustering information of the callees. We use the clustering

information of the callee by interpreting the input and output predicates according

to the context of the call, and adding input predicates into the clusters that are

relevant according to the summaries of the callee.

At the last stage of summary computation we apply the summaries of the callees.

For each cluster of a callee we create a Boolean formula relating the interpretations of

the input and output predicates using accurate bit-level modeling. We then use SAT-

based abstraction enumeration techniques [44] to compute the abstract transition

relations for all clusters.

Eager and a lazy summary application. As one can observe the summaries

of the callees are not ”inlined” (i.e., applied eagerly) using possibly an exponential

110

number of assignments. All potentially updated variables are simply reassigned with

unknowns, whose values are restricted by the corresponding summaries. The restric-

tion happens when we compute the summary for the caller and does not effect the

computation of transfer functions. For a comparison between the eager and lazy

approaches see Example 7.

Example 7

To illustrate the difference between and eager and a lazy summary application assume

that we have two functions bar and foo as shown in Fig. 6.6. Assume that we have

two predicates P0 := (x == 0) and P1 := (y == 0). Then the summary for foo can

be expressed as P ′
0 == P0 ∧P ′

1 == P0, where P ′
i stands for the value of the predicate

Pi after execution of the function.

void bar(· · ·){
bool x, y;
x = 1;
foo(x, y);

}

void foo(bool x, bool &y){
· · ·

y = x;
· · ·

}

Figure 6.6: A program fragment for Example 7.

In Fig. 6.7, we apply both approaches for our example. In the lazy approach every

assume statement is essentially a clause to a SAT solver. In the eager approach, we

do not directly create any additional clauses, but essentially encode this information

using transition functions. However, there is a chance to apply simplifications to the

transition functions, before we perform the enumeration. In this example, we can

potentially discover that y is simply equal to 1 after the call to foo.

111

void bar(· · ·){
bool x, y;
x = 1;
Interpret input predicates:

assume(P0 == (1 == 0));
assume(P1 == (y0 == 0));

Interpret output predicates:
assume(P ′

0 == (1 == 0));
assume(P ′

1 == (U == 0));
Reset possibly changed variables:

y = U ;
Apply summary of foo

assume(P ′
0 == P0 ∧ P ′

1 == P0);
}

(a) Lazy Approach

void bar(· · ·){
bool x, y;
x = 1;
Try all combinations of the predicates
when x and y are changed:
if(x == 1 && y = 0) (x, y) = (1, 1);
if(x == 0 && y = 1) (x, y) = (0, 0);

}
(b) Eager Approach

Figure 6.7: Lazy vs Eager Summary Instantiation

Range analysis. We also improve the efficiency of the SAT-based summary com-

putation by limiting the number of bits that are required for variables. The number

of bits needed to encode a variable depends on its range. For example, an integer

variable is generally represented using 32 bits, while a char variable requires 8 bits.

One distinguishing feature of our work is that we may perform a pre-processing step

called range analysis [55], which allows us to reduce the bitwidths of many variables.

As was discussed in Chapter 5, this is often crucial to succeed in enumerating the

predicated abstract transition relation.

6.3 Error Hierarchy Analysis

In this section, we describe techniques to simplify the analysis by finding relationships

between invalid pointer accesses. We look for scenarios where an invalid pointer access

112

in one location implies another invalid pointer access in the remaining function body

or in some other function. Many such cases arise in practice, since each pointer

access generates a unique error block, although different pointer accesses may refer

to the same pointer. In addition, validity of different pointer variables may also be

highly correlated. Furthermore, since we perform a bottom-up function-level analysis,

we process a called function body before we analyze its calling context. Thus, the

function summary includes scenarios that are actually executed, as well as scenarios

that are never executed. Many of such invalid scenarios are correlated and can be

discovered using our error hierarchy analysis. This hierarchy analysis both decreases

the model size and thus improves efficiency of the analysis, as well as results in

significantly fewer warnings that need to be analyzed by the user.

6.3.1 Intra-procedural Error Hierarchy Analysis

We first try to identify related error blocks within a function, which is started before

the summary computation is performed. Assume Bi and Bj are two error blocks with

the corresponding blobbed guards Gi and Gj represented as blobbed BDDs. We define

a relation . between error blocks, which corresponds to a logical implication between

the BDDs representing the reachability of these basic blocks. If Gi =⇒ Gj, then we

say Bi . Bj and we do not consider Bi until we have resolved the reachability of Bj.

In addition, even though the guards may contain blobbed expressions, the .-relation

means that either Bj is reachable or Bi is unreachable. It should be noted though

that due to using blobbed BBDs we may not discover all actual implications.

At the end of the analysis, if Bj is proved to correspond to a valid dereferencing,

either automatically or with the help of the user, we can immediately guarantee the

113

safety of Bi. Otherwise, if Bj is a confirmed bug we can present Bi for further

investigation. Note that if Bi . Bj and Bj . Bi, then we prefer to consider the basic

block with a shorter path from the function entry point in the control flow graph of

the function.

6.3.2 Inter-procedural Error Hierarchy Analysis

We can extend the idea from Section 6.3.1 to the inter-procedural case. Consider

the example in Fig. 6.1. It is intuitively clear that if the dereferencing of pointer p

in function bar is valid, then it must also be valid inside foo. To find such inter-

procedural relationships, we rely on the predicated function summaries. Suppose Bi is

the error block corresponding to the dereferencing of q in function foo, and Bj is the

error block to the dereferencing of p in bar. The summary for bar includes individual

clusters for the predicates errori and errorj. Denote the corresponding function

summaries as Ti and Tj, respectively. Then, Tj can be expressed as ¬pValid =⇒
errorj

′ ∧ pValid =⇒ Pres(errorj), where Pres(p) stands for p′ ⇐⇒ p. Ti can

be expressed as a conjunction of (p 6= 0 ∧ ¬pValid) =⇒ errori
′ and (p ==

0∨pValid) =⇒ Pres(errori). From these summaries it follows that if we can show

that the access at Bj is valid, then pValid must hold and consequently the access at

Bi must also be valid.

More formally, suppose Bi and Bj are two error blocks with the corresponding

transition relations Ti and Tj. If (Ti ∧ Tj ∧ ¬errorj
′) =⇒ Pres(errori), then we

say that Bi / Bj and we do not consider Ti until we have resolved the reachability

of Bj. If we are able to prove the access at Bj (in bar) correct, then the access at Bi

when called through bar must also be correct.

114

6.4 Experimental Results

In this section, we describe our experimental evaluation for the analysis of invalid

pointer accesses in Linux kernel modules (version 2.6.15) as well as on proprietary

software. The examples encoded lnx1, lnx2, and lnx3 were chosen randomly from the

Linux implementation of device drivers for sound cards. The examples, coded lnx4

and lnx5 were taken from a database of known Linux bugs. Finally, prop1 and prop2

are examples of proprietary software.

Benchmark Model Description Results
LOC Blocks Errors Func. Warn. Bugs Time(m)

lnx1 - ymf ac97 init 7k 1775 86 26 10 0 1+9
lnx2 - ali probe 19k 5546 234 54 15 0 20+70
lnx3 - via init one 13k 4995 134 40 10 0 20+20
lnx4 - snd sbmixer add ctl 6k 1912 90 24 12 2 1+9
lnx5 - v9fs create 8k 5602 124 20 6 1 5+9
prop1 13k 6207 495 12 13 0 3+70
prop2 3k 1037 35 10 7 1 1+2

Table 6.1: Experimental Results

Table 6.1 presents some experimental results on these benchmarks. We first pro-

vide the number of source code lines(LOC) used in each example, and then provide

information on how many basic blocks(Blocks) are created in our CFG, how many of

these are used to signal an invalid pointer access (Errors), and how many functions

were processed in total (Func). Furthermore, we provide statistics on how many

warnings were produced by our analysis, how many of these were actually invalid

pointer accesses, and how much computation time was spend by our implementation.

Our analysis declares 94% of potential pointer accesses correct. Most of the warnings

reported by the analysis still represent false positives, which is largely due to sound

115

modeling of potentially unbounded data structures such as linked lists. In addition,

we did not provide the tool with any user input. On the other hand, while we do

have a large percentage of false positives, we did not find any false proofs due to the

unsoundness of the technique for any of the examples by inspection.

The run-time, shown in the last column contains two numbers, where the first

represents the time it took F-Soft to construct the control flow graph and perform

some preprocessing such as pointer aliasing analysis and program slicing. The second

number is the time spend in our analysis for invalid pointer accesses starting with

the construction of blobbed BDDs. Overall, the summary computation time is still

quite high, but it can be significantly improved. This is due to the fact that F-Soft

was designed as a highly precise model checking tool and not as front end for static

analysis; in the future, we will develop relaxed software models targeted to increase

the ratio of bugs per warning.

Table 6.2 gives more details about the performed experiments. In the first column

we show the percentage of blocks that were sliced away by F-Soft preprocessing. The

second column contains the percentage of error blocks that were proved unreachable

for each of the examples using simple numeric domain invariant computations. While

most of these error blocks could be proved unreachable by our method also, the above

preprocessing steps reduces the model size. The example prep2 2, which is the same as

example prep2 1 except that we omitted these simple preprocessing steps, highlights

the difference, where the time spent in SAT-based function summary enumeration

quadrupled. Note that for most other examples, we were not able to complete the

analysis without these preprocessing steps using a three hour time limit.

Our next two columns show statistics on the BDD usage. In all experiments, even

116

the largest transition function was linear in the size of the corresponding function.

The largest transition function (taken from prop1), which has 466 BDD nodes, belongs

to a function with more than 600 basic blocks. Moreover, using BDDs significantly

helped our analysis by removing about 55% of the error blocks from consideration by

analyzing intra-procedural error hierarchies. Example prop2 3 shows the case when

we turned off the error hierarchy analysis for the example prop2 2. It should be noted

that the analysis produced 8 additional warnings (not shown). Note, that we have

not yet experimented with inter-procedural error hierarchy analysis.

Bench F-Soft Analysis BDD Statistics SAT Statistics
mark Blocks Err. Bl. Error MAX MAX Pred. MAX Pred. SAT

Sliced Proved Analysis . nodes per Cluster per Func. Time(m)
lnx1 74% 28% 45% 17 8 68 3.5
lnx2 78% 9% 41% 20 6 234 61.7
lnx3 61% 5% 42% 27 6 131 13.4
lnx4 13% 30% 65% 7 5 66 3.4
lnx5 89% 71% 25% 122 4 47 5.3
prop1 68% 36% 71% 466 6 329 55
prop2 1 67% 23% 37% 99 4 31 0.5
prop2 2 N/A N/A 28% 101 5 48 2
prop2 3 N/A N/A N/A 101 5 48 2.3

Table 6.2: Detailed experimental results

In the last three columns we report statistics regarding SAT-based enumeration.

We sometimes obtain hundreds of predicates to compute a function summary. In our

experience, we require many predicates due to the underlying highly precise model

build by the F-Soft front-end, such as for arrays of pointers, which means that we

would not have been able to complete the SAT-based enumeration without predicate

clustering. Fortunately, we were able to design simple but effective clustering heuris-

tics for the analysis of invalid pointer accesses, which is evidenced by the fact that

117

the largest cluster in all these benchmarks contains 8 predicates. Nevertheless, the

SAT enumeration time, shown in the last column, remains the main bottleneck of our

implementation for large benchmarks and requires further investigation.

6.5 Conclusions

In this chapter, we presented a SAT-based function summary analysis to detect invalid

pointer accesses in programs. We propose many new techniques that are needed to ad-

dress this problem in a fully automatic approach. We add context-insensitive pointer

updates into caller functions to summarize the indirect effect of pointer manipula-

tions inside a called function on aliased pointer variables. We use BDDs to represent

a symbolic simulation of each function. We also present an inter-procedural predicate

clustering technique based on variable dependencies in called function summaries.

We perform an error hierarchy analysis to limit the number of warnings presented to

the user, and also to increase efficiency of the analysis. We also employ other static

analysis techniques such as program slicing to simplify and reduce the software model

that needs to be considered. In the future, we wish to address the analysis of more

complex properties, as well as improve the efficiency of various stages of the current

implementation such as the SAT-based function summary computation.

118

Bibliography

[1] Accellera Organization, Inc. Property Specification Language Reference Manual,

Version 1.01, 2003. http://www.accellera.org/.

[2] Franjo Ivancic Srihari Cadambi Malay Ganai Aarti Gupta Aleksandr Zaks,

Ilya Shlyakhter and Pranav Ashar. Using range analysis for software verification.

In Proceedings of the 4th International Workshop on Software Verification and

Validation (SVV 2006). Computing Research Repository (CoRR), August 2006.

[3] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing

Letters, 21(4):181–185, Oct 1985.

[4] Aleksandr Zaks Amir Pnueli and Lenore Zuck. Monitoring interfaces for faults.

In Proceedings of the 5th Workshop on Runtime Verification (RV 2005), volume

144 of Electronic Notes in Theoretical Computer Science, pages 73–89, May 2006.

[5] E.M. Clarke andO. Grumberg and D.A. Peled. Model checking. MIT Press, 2000.

[6] K. Ashcraft and D. Engler. Using programmer-written compiler extensions to

catch security holes. 2002 IEEE Symposium on Security and Privacy, 00:143,

2002.

119

[7] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-

based runtime verification. In Proc. VMCAI’04, LNCS 2937, pages 44–57, 2004.

[8] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic model

checking using SAT procedures instead of BDDs. In Proceedings of the 36th

ACM/IEEE Design Automation Conference, pages 317–320, 1999.

[9] N. Bjorner, A. Browne, E. Chang, M. Colon, A. Kapur, Z. Manna, H. B. Sipma,

and T. E. Uribe. STeP: deductive-algorithmic verification of reactive and real-

time systems. In Proc. CAV’96, LNCS 1102, pages 415–418. Springer Verlag.

[10] J. R. Büchi. On a decision method in restricted second-order arithmetic. In

Proceedings Logic, Methodology and Philosophy of Sciences 1960, Stanford, CA,

1962. Stanford University Press.

[11] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of ACM,

28(1):114–133, 1981.

[12] H. Chen and D. Wagner. MOPS: An infrastructure for examining security prop-

erties of software. In 9th ACM Conference on Computer and communications

security (CCS’02), pages 235–244, New York, NY, USA, 2002. ACM Press.

[13] E.M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction

of ANSI-C programs using SAT. In Model Checking for Dependable Software-

Intensive Systems Workshop, 2003.

[14] Bustan D., Fisman D., and Havlicek J. Automata Construction for PSL. 2005.

http://www.wisdom.weizmann.ac.il/d̃ana/publicat/automta constructionTR.pdf.

120

[15] E.A. Brewer D. Wagner, J.S. Foster and A. Aiken. A first step towards automated

detection of buffer overrun vulnerabilities. In Networking and Distributed System

Security Symposium, Feb 2000.

[16] Marcelo d’Amorim and Grigore Rosu. Efficient monitoring of omega-languages.

In CAV, pages 364–378, 2005.

[17] Morton Davis. Infinite games of perfect information. In Advances in game theory,

pages 85–101. Princeton Univ. Press, Princeton, N.J., 1964.

[18] L. de Alfaro, T. Henzinger, and R. Majumdar. From verification to control:

dynamic programs for omega-regular objectives. In Proc. LICS ’01, pages 279–

290, 2001.

[19] L. de Alfaro and T.A. Henzinger. Concurrent omega-regular games. In Proc.

LICS’00, pages 141–154. IEEE Computer Society Press, 2000.

[20] A. Deutsch. Static Verification Of Dynamic Properties. Technical report, 2004.

http://www.polyspace.com/white papers.htm.

[21] D. Drusinsky and M.T. Shing. Monitoring Temporal Logic Specifications Com-

bined with Time Series Constraints. JUCS, 9(11):1261–1276, 2003.

[22] Cindy Eisner, Dana Fisman, John Havlicek, Michael Gordon, Anthony McIsaac,

and David Van Campenhout. Formal Syntax and Semantics of PSL. 2003.

http://www.wisdom.weizmann.ac.il/d̃ana/publicat/formal semantics standalone.pdf.

[23] D. Evans and D. Larochelle. Improving security using extensible lightweight

static analysis. IEEE Software, 19(1):42–51, 2002.

121

[24] Bernd Finkbeiner and Henny Sipma. Checking finite traces using alternating

automata. In Klaus Havelund and Grigore Rosu, editors, Electronic Notes in

Theoretical Computer Science, volume 55. Elsevier Science Publishers, 2001.

[25] M. Fujita and P.C. McGeer. Introduction to the special issue on multi-terminal

binary decision diagrams. Formal Methods in System Design, 1997.

[26] S. Gulwani and G.C. Necula. Path-sensitive analysis for linear arithmetic and

uninterpreted functions. In 11th Static Analysis Symposium, volume 3148 of

LNCS, pages 328–343. Springer-Verlag, August 2004.

[27] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In 2001 ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering (PASTE’01), June 2001.

[28] G.J. Holzman. UNO: static source code checking for user-defined properties. In

World Conf. on Integrated Design and Process Technology (IDPT), June 2002.

[29] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison Wesley, Reading, Massachussetts, 1979.

[30] F. Ivančić, I. Shlyakhter, A. Gupta, M.K. Ganai, V. Kahlon, C. Wang, and

Z. Yang. Model checking C programs using F-Soft. In Conference on Computer

Design (ICCD). IEEE, October 2005.

[31] F. Ivančić, Z. Yang, M. Ganai, A. Gupta, and P. Ashar. Efficient SAT-based

bounded model checking for software verification. In Symposium on Leveraging

Formal Methods in Applications, 2004.

122

[32] F. Ivančić, Z. Yang, M.K. Ganai, A. Gupta, I. Shlyakhter, and P. Ashar. F-

Soft: Software verification platform. In Computer-Aided Verification (CAV),

2005.

[33] F. Ivančić, Z. Yang, I. Shlyakhter, M.K. Ganai, A. Gupta, and P. Ashar. F-

Soft: Software verification platform. In Computer-Aided Verification, LNCS.

Springer, 2005.

[34] T. Jaeger, A. Edwards, and X. Zhang. Consistency analysis of authorization

hook placement in the linux security modules framework. ACM Trans. Inf. Syst.

Secur., 7(2):175–205, 2004.

[35] H. Jain, F. Ivančić, A. Gupta, and M.K. Ganai. Localization and register shar-

ing for predicate abstraction. In 11th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, volume 3340 of LNCS,

pages 397–412. Springer, 2005.

[36] H. Jain, D. Kroening, and E.M. Clarke. Verification of SpecC using predicate

abstraction. In MEMOCODE, pages 7–16. IEEE, 2004.

[37] G. Jayaraman, V. P. Ranganath, and J. Hatcliff. Kaveri: Delivering the indus

java program slicer to eclipse. In Fundamental Approaches to Software Engineer-

ing (FASE), pages 269–272, 2005.

[38] R. Jhala, R. Majumdar, and R. Xu. Structural invariants. In Symposium on

Static Analysis (SAS), 2006.

123

[39] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In

K. Etessami and S. K. Rajamani, editors, 17th Conference on Computer Aided

Verification (CAV ’05), pages 226–238. Springer-Verlag, 2005. LNCS 3576.

[40] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal

logic specifications. In Proc. 25th Int. Colloq. Aut. Lang. Prog., volume 1443 of

Lect. Notes in Comp. Sci., pages 1–16, 1998.

[41] Yonit Kesten, Nir Piterman, and Amir Pnueli. Bridging the Gap between Fair

Simulation and Trace Inclusion. In Proc. CAV’03, LNCS 2725. Springer, 2003.

[42] Yonit Kesten and Amir Pnueli. A compositional approach to CTL∗ verification.

Theoretical Computer Science, 331:397–428, 2005.

[43] A. Kölbl, J. Kukula, and R. Damiano. Symbolic RTL simulation. In 38th Con-

ference on Design Automation (DAC), pages 47–52. ACM Press, 2001.

[44] S.K. Lahiri, R.E. Bryant, and B. Cook. A symbolic approach to predicate ab-

straction. In Computer-Aided Verification (CAV), pages 141–153. Springer, 2003.

[45] D. Long, A. Browne, E. Clarke, S. Jha, and W. Marrero. An improved Algorithm

for the Evaluation of Fixpoint expressions. In Proc. CAV’94, LNCS 818, pages

338–350. Springer, 1994.

[46] F.Y.C. Mang. Games in Open Systems Verification and Synthesis. PhD thesis,

University of California, Berkeley, 2002.

[47] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.

Springer-Verlag, New York, 1995.

124

[48] Donald A. Martin. Borel Determinacy. Annals of Mathematics, 102:363–371,

1975.

[49] A. Miné. The octagon abstract domain. In AST in WCRE 2001, pages 310 –

319. IEEE, October 2001.

[50] Satoru Miyano and Takeshi Hayashi. Alternating finite automata on ω-words.

Theoretical Computer Science, 32:321–330, 1984.

[51] S.S. Muchnik. Advanced Compiler Design and Implementation. Addison Wesley,

1997.

[52] Amir Pnueli and Aleksandr Zaks. Psl model checking and run-time verification

via testers. In The 14th International Symposium on Formal Methods, volume

4085 of LNCS, pages 573–586. Springer Berlin / Heidelberg, August 2006.

[53] Amir Pnueli, Aleksandr Zaks, and Lenore Zuck. Monitoring interfaces for faults.

In H. Barringer, B. Finkbeiner, Y. Gurevich, and H. Sipma, editors, Fifth In-

ternational Workshop on Run-time Verification (RV), July 2005. Edinburgh,

Scotland, UK.

[54] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis

via graph reachability. In Symposium on Principles of programming languages

(POPL), pages 49–61. ACM Press, 1995.

[55] R. Rugina and M.C. Rinard. Symbolic bounds analysis of pointers, array indices,

and accessed memory regions. In Programming Language Design and Implemen-

tation (PLDI), pages 182–195, 2000.

125

[56] S. Safra. On the complexity of ω-automata. In Proc. FOCS’88, pages 319–327,

White Plains, NY, 1988.

[57] J. Schwartz, E. Omodeo, and D. Cantone. Computational Logics and Set Theory.

Springer, 2006.

[58] L. Séméria and G. de Micheli. SpC: Synthesis of pointers in C, application of

pointer analysis to the behavioral synthesis from C. In Conference on Computer-

Aided Design (ICCD), pages 321–326. IEEE/ACM, November 1998.

[59] A.P. Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of

Computing, 6:495–511, 1994.

[60] B. Steensgaard. Points-to analysis in almost linear time. In Symposium on

Principles of Programming Languages (POPL), pages 32–41, 1996.

[61] F. Tip. A survey of program slicing techniques. Journal of programming lan-

guages, 3:121–189, 1995.

[62] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-

gram verification. In Proc. First IEEE Symp. Logic in Comp. Sci., pages 332–344,

1986.

[63] Y. Xie and A. Aiken. Context- and path-sensitive memory leak detection. In

Foundation of Software Engineering (ESEC/SIGSOFT FSE), pages 115–125,

2005.

[64] Y. Xie and A. Aiken. Saturn: A SAT-based tool for bug detection. In Computer-

Aided Verification (CAV), pages 139–143, 2005.

126

[65] Y. Xie and A. Aiken. Scalable error detection using boolean satisfiability. In

Principles of Programming Languages (POPL), pages 351–363, 2005.

[66] Y. Xie, A. Chou, and D. Engler. ARCHER: Using symbolic, path-sensitive

analysis to detect memory access errors. In Foundations of software engineering

(FSE), pages 327–336, New York, NY, USA, 2003. ACM Press.

[67] C. Han Yang and David L. Dill. Validation with guided search of the state space.

In Proc. DAC’98, June 1998. San Francisco, CA.

[68] A. Zaks, S. Cadambi, I. Shlyakhter, F. Ivančić, Z. Yang, M.K. Ganai, A. Gupta,

and P. Ashar. Range analysis for software verification. In Intern. Workshop on

Software Verification and Validation (SVV), August 2006.

[69] Aleksandr Zaks, Franjo Ivancic, and Aarti Gupta. Static analysis for invalid

pointer accesses using SAT-based techniques. In preparation.

127

