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Abstract

We present a robust algorithm for estimating non-rigid motion in video sequences. We build on recent
methods for tracking video by enforcing global structure (such as rank constraints) on the tracking. These
methods assume color constancy in the neighborhood of each tracked feature, an assumption that is violated
by occlusions, deformations, lighting changes, and other effects. Our method identifies outliers while solving
for flow. This allows us to obtain high-quality tracking from difficult sequences, even when there is no single
“reference frame” in which all tracks are visible.

1. Introduction

Shape and motion reconstruction from uncalibrated video sequences promises to produce high-quality 3D
models for video analysis and computer graphics applications. Recent work has shown that, by viewing
tracking and reconstruction as a global optimization problem, high-quality 3D shape and motion models may
be obtained from video, even for non-rigid shapes [5, 11, 2]. However, these methods make the restrictive
assumption of color constancy, that object features appear the same in all views. Almost all sequences of
interest violate this assumption at times, such as with occlusions, lighting changes, motion blur, and many
other common effects. Although it may be possible to explicitly model all sources of variability, in practice,
this will yield an extremely difficult modeling and optimization problem.

In this paper, we propose a global optimization framework for tracking based on robust statistics: all
violations of color constancy are modeled as outliers. This allows us to tackle more challenging tracking
problems, without requiring us to explicitly model all errors. We demonstrate sequences for which previous
global reconstruction methods fail. For example, previous methods require that all feature points be visible in
all video frames, i.e. all features are visible in a single “reference frame;” our method relaxes this assumption
and allows sequences for which no single “reference frame” exists. We also show examples where existing
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techniques fail due to local changes in lighting and shape. Our method is based on the EM algorithm for
robust outlier detection.

1.1. Relation to Previous Work

We build on recent techniques for exploiting rank constraints on optical flow. Conventional flow and tracking
algorithms use only local information; namely, every track in every frame is estimated separately [4, 7]. Irani
[5] treated optical flow as a global problem, combining information from the entire sequence — along with
rank constraints on motion — to yield better tracking. Extending these ideas, Bregler et al. [3], Torresani
et al. [11, 10] and Brand [2] describe tracking and reconstruction algorithms that solve for 3D shape and
motion from sequences, even for non-rigid scenes. In this paper, we show how to embed all of these
previous approaches in a robust framework, in order to handle cases for which they would otherwise fail,
such as occlusions and lighting variation.

Robust algorithms for tracking have been widely explored in local tracking algorithms [1]. We formulate
a probabilistic outlier model and solve globally over the entire sequence, using the EM algorithm. Unlike
local robust methods, our method can handle “track” features that are completely occluded, by making use
of global constraints on motion. Our outlier model is closely related to layer-based motion segmentation
algorithms [12, 13, 6], which also often apply EM globally to a sequence. We use the outlier model to handle
general violations of color constancy, rather than to specifically model multiple layers.

2. Robust flow

We now describe our basic robust optical flow algorithm. We first define a generative model for video se-
quences, and then a generalized-EM algorithm for estimating the parameters of this model from a sequence.

Image formation model. We assume that 3D motion can be described in terms of J points that move in
3D. At a given time t, point j projects to a 2D position pj,t = (xj,t, yj,t); these 2D projections are called
point tracks. These point tracks are restricted by a 3D motion model that depends on the specific application.
For example, the point tracks may be produced by orthographic projection of a rigid object, in which case,
the matrix of motion vectors pj,t − pj,0 is restricted to be rank 3 [5]. We denote the complete tracking data
over all tracks and all frames by a variable P = {...,pj,t, ...}.

Individual images in a video sequence are created from the point tracks. Ideally, the window of pixels
around each point track should remain constant over time; however, this window may be corrupted by noise
and outliers. Let w be an index over a pixel window, so that I(pw,j,t) is a pixel in the window of track j in
frame t. This pixel intensity should be a constant µw,j ; however, it will be corrupted by Gaussian noise with
variance σ2. Moreover, it may be replaced by an outlier, with probability 1− τ . We define a hidden variable
Ww,j,t so that Ww,j,t = 0 if the pixel is replaced by an outlier, and Ww,j,t = 1 if it is valid. The complete
PDF over individual pixels in a window is given by:

p(I(pw,j,t)|Ww,j,t = 1,P) = N (I(pw,j,t)|µw,j ; σ
2) (1)

p(I(pw,j,t)|Ww,j,t = 0,P) = c (2)

p(Ww,j,t = 1) = τ (3)
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whereN (I(pw,j,t)|µw,j ; σ
2) denotes a 1D Gaussian distribution with mean µw,j and variance σ2, and c is a

constant corresponding to the uniform distribution over pixel intensities.
For convenience, we do not model the appearance of video pixels that do not appear near point tracks,

or correlations between pixels when windows overlap.

Problem statement. Given a video sequence I and track positions specified in some reference frames,
we would like to estimate the positions of the tracks in all other frames, as well as which pixels are valid
or outliers. The values µw,j are determined from the corresponding reference frame, in which the window
is assumed to be completely uncorrupted. It is not required that the same reference frame be used for all
tracks.

We pose this as a problem of estimating the point tracks P by maximizing

p(P|I, µ, σ, τ) (4)

This density can be expanded in terms of the hidden variables Ww,j,t:

p(P|I, θ) = p(P, Ww,j,t = 1|I, θ) + p(P, Ww,j,t = 0|I, θ) (5)

= p(P|Ww,j,t = 1, I, θ)p(Ww,j,t = 1|I, θ) + p(P|Ww,j,t = 0, I, θ)p(Ww,j,t = 0|I, θ) (6)

where θ encapsulates the terms µ, τ, and σ. Denoting γw,j,t = p(Ww,j,t = 1), we can view this as a problem
of jointly optimizing P and γw,j,t. The value γw,j,t indicates the likelihood that pixel (w, j, t) is an outlier.
In addition, we would like to jointly learn the maximum likelihood values of τ and σ2.

Generalized EM algorithm. The above problem can be optimized using a generalized EM algorithm. In
the E-step, we estimate the distribution γw,j,t, given our current estimate of the motion P:

γw,j,t ≡ p(Ww,j,t = 1|P, I, θ) (7)

Intuitively, this is estimated by warping the reference frame to the position (pw,j,t), and measuring recon-
struction error. More formally, let

α0 = p(I(pw,j,t), Ww,j,t = 0|P, θ) (8)

= p(I(pw,j,t)|Ww,j,t = 0,P, θ)p(Ww,j,t = 0|P, θ) (9)

= (1− τ)c (10)

α1 = p(I(pw,j,t), Ww,j,t = 1|P, θ) (11)

= p(I(pw,j,t)|Ww,j,t = 1,P, θ)p(Ww,j,t = 1|P, θ) (12)

=
τ√

2πσ2
e−||I(pw,j,t)−µw,j ||

2/(2σ2) (13)

Then, using Bayes’ Rule and p(I|P, θ) = α0 + α1, we have

p(Ww,j,t = 1|P, I, θ) = p(I|Ww,j,t = 1,P)p(Ww,j,t = 1|P, θ)/p(I|P, θ) (14)

= α1/(α0 + α1) (15)
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In the generalized M-step, we solve for optical flow given the outlier probabilities γw,j,t. The outlier
probabilities provide a weighting function for tracking: pixels likely to be valid are given more weight in
the tracking. Our goal is to minimize the following energy function:

Q(P, θ) = Eγ [− log p(P|θ)] (16)

= −
∑

w,j,t

γw,j,t log p(I(pw,j,t), W = 1|θ)

−
∑

w,j,t

(1− γw,j,t) log p(I(pw,j,t), W = 0|θ)

=
∑

w,j,t

γw,j,t(I(pw,j,t)− µw,j,t)
2/(2σ2)

+
∑

w,j,t

γw,j,t log
√

2πσ2 −
∑

w,j,t

γw,j,t log τ

−
∑

w,j,t

(1− γw,j,t) log c(1− τ) (17)

To solve for the motion, we linearize the target image around the current estimate p0
w,j,t:

I(pw,j,t) ≈ I(p0
w,j,t) +∇IT (pw,j,t − p0

w,j,t) (18)

where ∇I denotes a 2D vector of partial derivatives of I evaluated at p0
w,j,t. One such linearization applied

for every pixel w in every window j for every frame t. Substituting Equation 18 into 17 yields the following
quadratic energy function for the motion P:

∑

t,j,w

γw,j,t(I(p0
w,j,t) +∇IT (pw,j,t − p0

w,j,t)− µw,j,t)
2/(2σ2) (19)

plus terms that are constant with respect to P. The optimization of this function for P depends on the specific
motion model. For example, covariance-weighted factorization may be used for orthographic projection of
rigid motion [8]; bundle adjustment may be used for perspective projection of rigid scenes.

The noise variance and outlier probabilities are also updated in the M-step, by optimizing Q(P, θ) for τ
and σ:

τ ←
∑

w,j,t

γw,j,t/(JNT ) (20)

σ2 ←
∑

w,j,t

γw,j,t(I(pw,j,t)− µw,j,t)
2/

∑

w,j,t

γw,j,t (21)

where T is the number of images and N is the number of pixels in a window.

Implementation details. We initialize our algorithm using conventional coarse-to-fine Lucas-Kanade
tracking [7]. Since the conventional tracker will diverge if applied to the entire sequence at once, we cor-
rect the motion every few frames by applying our global robust EM algorithm over the subsequence thus
far initialized. This process is repeated until we reach the end of the sequence. We refine this estimate by
additional EM iterations. The values of σ and τ are initially held fixed at 10 and 0.3, respectively. They are
then updated in every M-step after the first few iterations.
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Experiments. We applied the robust tracking algorithm technique to two video sequences of human mo-
tion. The first is a video consisting of 660 frames recorded in our lab with a consumer digital camera. The
video contains non-rigid deformations of a human torso. Although most of the features tracked are charac-
terized by distinctive 2D texture, their local appearance changes considerably during the sequence, due to
occlusions, shape deformations, varying illumination in patches, and motion blur. More than 25% of the
frames contain occluded features, due to arm motion and large torso rotations. 77 features were selected
automatically in the first frame using the criterion described by Shi and Tomasi [9]. Figure 1(a) shows
their initial locations in the reference frame. The sequence was initially processed assuming rank 5 motion,

(a) (b)

Figure 1: Reference frames. Regions of interest were selected manually, and individual tracks selected
automatically using Shi and Tomasi’s method [9]. Note that, in the second sequence, most tracks are clearly
visible in only one reference frame. (Refer to the electronic version of this paper to view the tracks in color.)

and progressively increased during optimization to rank 10 (corresponding to 3 basis shapes under weak
perspective projection). Estimated positions of features with and without robustness are shown in Figure
2 and in the accompanying videos. It is worth noting that tracking this sequence without robustness fails
even before occlusions appear, due to deformations and variations in illumination. Figure 3 shows the 3D
reconstruction obtained by the factorization. Our algorithm yields an accurate reconstruction despite the
difficulty of the sequence, reconstructing even occluded regions.

The second video contains 100 frames long of mostly-rigid head/face motion. The sequence is challeng-
ing due to low resolution and low frame rate (15 fps). In this example, there is no single frame in which
feature points from both sides of the face are clearly visible, so existing global techniques cannot be ap-
plied. To test our algorithm, we used 45 features automatically selected from two separate reference frames
(Figure 1(b)). Tracking was assumed to be rank 4, corresponding to rigid motion under weak perspective
projection. Points from the left side of the person’s face are occluded for more than 50% of the sequence.
Robust tracking is necessary for even short subsequences; without it, some of the features on the left side
of the face are lost or incorrectly tracked after just four frames. Within 14 frames, all points from the left
side are completely lost. With robust tracking, our algorithm successfully tracks, making use of geometric
constraints to fill in missing tracks (Figure 4).

3. Discussion and future work

We have presented techniques for tracking and reconstruction from video sequences that contain occlusions
and other common violations of color constancy. Most tracking of challenging footage and severe occlusion
as we present here can only be achieved with very strong appearance and very restricted dynamical mod-
els. We have shown how to track such difficult sequences without any prior knowledge of appearance and
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(a)

(b)
Frame 323 Frame 388 Frame 531 Frame 699

Figure 2: (a) Rank-constrained tracking of the first sequence without outlier detection, using the reference
frames shown in Figure 1. Tracks on occluded portions of the face are consistently lost. (b) Robust, rank-
constrained tracking applied to the same sequence. Tracks are colored according to the average value of
γw,j,t for the pixels in the track’s window: green for completely valid pixels, and red for all outliers.

Figure 3: Reconstructions of frames from the first sequence, using robust tracking. Note that occluded areas
are accurately reconstructed.
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(a)

(b)
Frame 32 Frame 60 Frame 81 Frame 100

Figure 4: (a) Rank-constrained tracking of the second sequence without outlier detection, using the reference
frames shown in Figure 1. Tracks on occluded portions of the face are consistently lost. (b) Robust, rank-
constrained tracking applied to the same sequence. Tracks are colored according to the average value of
γw,j,t for the pixels in the track’s window: green for completely valid pixels, and red for all outliers.

dynamics.
We expect that these techniques can provide a bridge to very practical tracking and reconstruction al-

gorithms, by allowing one to model important variations in detail (such as a more sophisticated lighting or
visibility model) without having to model all other sources of non-constancy.

It would be straightforward to handle true perspective projection for rigid scenes in our algorithm, by
replacing our closed-form M-steps with bundle adjustment.
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