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Abstract

Let V, E, and D denote the cardinality of the vertex set, the cardinality
of the edge set, and the maximum degree of a bipartite multigraph G. We
show that a minimal edge-coloring of G can be computed in O(E log D)
time.

1 Introduction

The edge-coloring problem is to find a minimal edge-coloring of a given multi-
graph. An edge-coloring of a multigraph G = (V, E) with vertex set V and
edge set E is a map ¢ : E — IN giving each edge e € E a color c(e) € IN such
that no two adjacent edges have the same color. If edge-coloring c uses at most
k colors, c is called a k-edge-coloring. A color class of an edge-coloring ¢ of a
multigraph G refers to the subset of edges having a certain color in ¢. An edge-
coloring of a multigraph G is said to be minimal if there is no edge-coloring of
G using fewer colors.

The number of colors used in a minimal edge-coloring of a multigraph G is
called the chromatic index of G. It is well known that the chromatic index of a
simple graph G is equal to D or D 4+ 1, where D denotes the maximum degree
of any vertex in G [Vi]. Upper bounds on the chromatic index of multigraphs
can be found in [NZN]. In general it is an NP-complete problem to determine
the chromatic index of a multigraph [Ho|]. However, there are some classes
of graphs for which the chromatic index always is the maximum degree. The
most important is the class of bipartite multigraphs. Throughout this paper
we restrict ourselves to this class.

The edge-coloring problem for bipartite multigraphs has applications in dif-
ferent areas. Many scheduling problems can be formulated in terms of edge-
coloring bipartite multigraphs, for example the class-teacher time-table problem
[Go] and the file transfer problem [NZN]. Other applications of edge-coloring
bipartite multigraphs are routing permutation networks [LPV], the k-k routing
problem [Si], and the simulation of a PRAM on a distributed memory ma-
chine [KLM]. Finally algorithms for edge-coloring bipartite multigraphs can be
applied in matching theory.
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The best running times previously known for computing a D-edge-coloring
were O(E log D+V log V' log D) [Ost] and 0(ED) [Sch]. In Section 4, we present
an algorithm which computes a minimal edge-coloring of G in time O(FE log D).

This paper is organized as follows. In Section 2 we briefly report on previous
related work. In Section 3 we review some basic techniques. In Section 4 we
give our coloring algorithm. In Section 5 we give a variant of the algorithm with
the same running time, which amounts to using the approach given in [Ost].

2 Previous Work

The first algorithms solving the edge-coloring problem for bipartite graphs
were derived from classic graph theory. Splitting G into D matchings us-
ing the matching algorithm of [HK] combined with a construction of Mendel-
sohn and Dulmage [La] gives an algorithm running in time O(EvV D). Col-
oring edge by edge using augmenting paths leads to an O(EV) time algo-
rithm. In 1976 Gabow presented a solution based on a divide and conquer
approach that takes O(E+vV log D) time [Ga]. In 1978 Gabow and Kariv de-
veloped an algorithm for edge-coloring bipartite graphs with time complex-
ity O(min{E\/ViogV,E(logV)D,V?log D}) [GK78]. They also used a di-
vide and conquer approach but they make the most effort in the conquer
step while Gabow concentrated on the divide step. Furthermore, Gabow and
Kariv took advantage of the fact that a graph with maximum degree a power
of two can be edge-colored efficiently. Using this fact again in an algorithm
which works by repeatedly enlarging a partial edge-coloring until all edges are
colored they achieved a running time of O(E(logV)?) in 1982 [GK82]. In
the same year Cole and Hopcroft developed an algorithm which takes time
O(Elog D+ Vlog V(log D)%) = O(Elog V) [CH]. The algorithm combined the
idea of Gabow with a faster matching algorithm and the fact that a graph with
maximum degree a power of two can be edge-colored efficiently. Improving the
matching algorithm led to an O(Elog D + V logV (log D)?) time solution in
[Co]. Recently, [Sch] found an O(E - D) time matching algorithm, which leads
to an O(E - D) time edge coloring algorithm. In 1995, Cole, Ost and Schirra
[Ost] showed that it sufficed to find one matching; the same result was also
found by Kapoor and Rizzi in 1996 [KR]. In combination with the matching
algorithm in [Co], this yielded an O(E log D+ V log V log D) time algorithm for
edge coloring.

3 Preliminaries

WLOG we assume E =V - D (to achieve this low degree vertices are combined
to give degree at least D/2 to all but at most one vertex; then some vertices
may be added to one side of the graph to give the same number of vertices on
each side; finally O(E) edges are added to give every vertex degree exactly D
cf. [CH]). Graphs in which every vertex has the same degree are said to be
regular.

Nearly all previous algorithms for edge-coloring bipartite multigraphs [in
principle] use a divide and conquer approach: They partition G into subgraphs
that are recursively colored with different color sets. To obtain a minimal
edge-coloring it is crucial that the maximum degrees of the subgraphs sum up



to D. Hence the edges of G have to be divided so that each of the resulting
subgraphs is regular as well. A decomposition D of G into £ nonempty subgraphs
G, = (V,Ey),Gy = (V,E3),...,Gy = (V,E;), where E1, Es,...,E; form a
partition of E, is called regular if all subgraphs G; € D, 1 < i < t, are regular.

A matching in G is a subset M of E with the property that no two edges
have a common endpoint. M is said to be full if it contains, as an endpoint,
every vertex of G. Obviously each color class of a D-edge-coloring of G is a full
matching in G.

Euler partitions are a helpful tool in forming regular decompositions. An
Euler partition of a graph G is a partition of its edges of into open and closed
paths, such that each vertex of odd degree is at the end of exactly one open
path, and each vertex of even degree is at the end of no open path. An Euler
split of bipartite graph G splits G into two bipartite graphs G; = (V, E1) and
Gy = (V, Ey) where E; and Es are formed by scanning the paths of an Euler
partition of G and alternately placing one edge into E1 and one edge into FEj.
Any vertex of even degree in G will have the same degree in both G; and Go,
while any vertex of odd degree in G will have degrees in G; and G4 differing
by one. This implies that if G is regular and D is even, then all the vertices in
G will have degree D/2 in each of G and G2 and this is the maximum degree
of any vertex in G; or G5. Hence the decomposition is regular.

It immediately follows that for a graph with D = 2¢, i € INy, a minimal
edge-coloring of G can be computed by splitting the graph recursively by Euler
splits until all resulting subgraphs have degree one. This gives a decomposition
into D matchings that can trivially be 1-colored. This algorithm runs in time
O(Elog D).

If G has an odd maximum degree a decomposition of G into G; and G4
obtained by an Euler split is not necessarily regular. This follows from the fact
that each vertex of maximum degree in G will have degree [D/2] in G; and
degree | D/2| in G2 or vice versa. Hence G; and G5 might both have maximum
degree [D/2]. This means that in general using repeated Euler splits to color
the edges of G yields a (2D — 2)-edge-coloring only. Every split of a (sub)graph
with an odd maximum degree might require an additional color since the sum
of the maximum degrees of the resulting subgraphs might exceed the maximum
degree of the split graph by one.

We can take advantage of the above edge-coloring algorithm for graphs with
maximum degree a power of two in the recursion of the divide and conquer
approach as follows [GK82, CH]:

Tool 1. Assume that G is partitioned into two regular subgraphs G; and
Gs. Let D¢, and D¢, denote the chromatic indices of G; and G4, respectively.
Suppose that Dg, > 2Mlog Day | Dg,. First, a minimal edge-coloring c of G is
found; then 2/1°8 Pés1 — D¢, color classes of ¢ are moved from G to G, forming
graph GY. The maximum degree of G} is a power of two and a minimal edge-
coloring of G, can easily be computed using repeated Euler splits. Together
with the remaining color classes of G this gives a D-coloring of G.

4 Computing a Minimal Edge-Coloring

The basic approach of the algorithm in [CH] is to attempt to follow the Euler
split method even when D is not a power of 2. When D is even, using an Euler



split, G is partitioned into two graphs each of degree D/2. The first graph
is colored recursively, the second using Tool 1. When D¢ is odd, a regular
matching M is computed; it is colored and removed from G. The graph G — M
has even degree and it is colored using the method for even D.

It is not hard to see that in the worst case as many as log D full matchings
may be needed (for a variety of subgraphs of G). Let Tjqtn be the cost of
computing such a matching. Then the Cole-Hopcroft algorithm has running
time O(Elog D + log D - Tpaten)- The first term accounts for the Euler splits
of G and the colorings using Tool 1. As Tp,4cn = O(V'1og Vlog D) [Col, this
gives a running time of O(E log D + V log V log? D). This section gives a new
matching algorithm with Tyt = O(E).

Cole, Ost and Schirra [Ost] showed that only one matching, rather than
log D matchings need be computed. In section 5, for completeness, we give a
brief review of their method.

The basic approach used in [Sch] and [Co] is one of weight redistribution.
Each edge is given a non-negative integer weight, initially one. The weights
are redistributed so that the weight incident on each vertex remains unchanged
at D and the edge weights remain integers in the range [0, D]. The goal is
to obtain one edge of weight D incident on each vertex, i.e. a matching. The
method used is to repeatedly find a cycle C' in the graph, then to alternately
increment and decrement the weight of the edges on the cycle by A so as to
cause at least one edge to have weight 0 or D while keeping all weights in the
range [0, D]. Any edges with weight 0 or D are removed from the graph. This
process is continued until all edges have weight 0 or D. Using DFS, this process
is readily implemented in time 0(L) for each length L cycle found.

The key observation in [Sch] is that by choosing the reweighing to go in
the “right” direction, this takes time O(FE - D) overall. Suppose an edge e; has
weight wt(e;) = w;. Edge e; is given potential e?. Suppose WLOG that on
cycle C of length 21, Eézl Wo; > Zézl way; 1. Suppose the weight of the even
index edges is incremented by one. Then the gain in potential is

l l l

l
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Since the final potential is V' D2, the method runs in time O(V D?) = O(E - D)
time. We speed this up by a ©(D) factor.

As in [CH] our algorithms start by reducing the number of edges to O(V log D)
in O(E) time. This is done by creating edge sets of weight 0,2,---,2¢, -, for
2! < D, where all the edges sets, except for that of weight 0, have no cycles. To
this end, the cycle finding and reweighting is applied to the weight one edges
until no cycles remain amoung weight one edges; this takes time O(E). In turn,
the cycle finding is applied to the weight 2¢ edges, for 2 < 2! < D, and this
takes time O(E/2¢).

For the remaining edge collection of size O(V log D) the goal is to process
long cycles in sublinear time. To this end, edges are formed into paths, called
chains, of length at most s edges, s a parameter to be specified. Chains have
an implicit direction. The chains will be vertex disjoint. The algorithm will
need to perform the following operations on chains, each in time O(log s).

e Concatenation.



e Split.
e Reverse.
e Find the total weight of the even index edges and of the odd index edges.

¢ Find a minimum weight edge of even (resp. odd) index and optionally
delete it.

e Find a maximum weight edge of even (resp. odd) index and optionally
delete it.

e Given a vertex, find the chain it belongs to, if any.

These operations are readily implemented using a balanced tree; indeed a
splay tree, with just an amortized time bound, would suffice for our application.

A cycle will comprise an alternating sequence of chains and edges; further,
all but at most two chains on the cycle will have length exactly s. To process
and reweight the edges on a cycle, the cycle is traversed a chain at a time to
find the weight of even index edges and the weight of odd index edges; the
maximum and minimum weights of edges of odd and even index are also found
(four weights in all). WLOG suppose the even index edges have greater weight;
their weight is incremented maximally. Each chain is split at each edge now
having weight 0 or D. Then the remainder of the cycle is removed from the
path. The process of growing a cycle continues from the remainder of the path,
which could be a single vertex.

A path is built by DFS. Whenever possible, the path will be extended by a
chain rather than a single edge. If an edge is added which is incident on a vertex
v in the interior of the chain, the chain is split at v and the larger portion is
added to the path. The shorter portion edge with endpoint v is removed from
the chain, and the remainder of this portion forms a new shorter chain. On the
path being built, by means of concatentions and splits, the path is maintained
as an alternation of chains of length s and singleton edges plus possibly a chain
of length less than s at the end of the path.

Because of the vertex disjointness of chains, a cycle can be formed only by
the addition of an edge and not a chain to the path. But this edge may be
added to a chain of length less than s and may be incident on the interior of a
chain. Thus a cycle may have up to two chains of length less than s, as claimed
earlier.

To help detect a cycle, for each chain a bit is kept indicating if it is on the
current path. Whenever an edge or chain is added to the path, the new final
vertex on the path is tested to see if it belongs to a chain already on the path.

It remains to analyze the running time of this process. It is helpful to
associate a potential of log slogt¢ with a chain of length ¢ edges, which is not
on the current path, and a potential of log s with each edge not on a chain or
the current path. Then the cost of processing a length L cycle is:

O((Llog?s)/s + log? s - number of edges removed)

The reason is that each chain resulting from processing the cycle needs a
potential of O(log?s). There may be one chain for each edge removed, plus



another O(L/s) chains. Also, there may be this many singleton edges, which
each need O(log s) potential.

The cost of building the path is O(log s) for each edge or portion of a chain
that is appended. This cost is covered by the potential associated with the edge
or by reducing by log s the potential associated with the chain (recall that the
longer portion of a chain being split is added to the path; the shorter portion
retains the remainder of the chain’s potential, which suffices as it is of the form
log slog t, where ¢ is the chain edge length).

Thus the charge for removing all but V/2 edges (a matching) is O(V log D log? s).
Since . L over all cycles is at most VD2, the total cost due to the term
O((Llog?s)/s) is at most O((VD?log?s)/s). Choosing s = D? limits this
term to O(V log? s). Then the total running time is O(V log® D) = O(E).

5 Coloring Using a Single Matching

The hard problem is to color a graph G for D an odd integer. The Cole, Ost
and Schirra [Ost] algorithm proceeds essentially as follows. First, compute a
full matching M; then perform an Euler split of G — M, yielding a regular
decomposition into graphs G2 and G3; set G; = M. It remains to minimally
color G4 UG9 U Gs.

The correct generalization is to the following problem: to minimally edge
color G1 U G2 U G3, where G1, G2, G are regular graphs over the same vertex
set, DG1 is odd and DG1 7é DG2 = DG3, or DG1 = DG2 = DG3 = 1.

Case 0. Dg, = Dg, = Dg, = 1. Simply color each graph with a distinct
color.

Case 1. Dg, is even.

Set aside GG3; then perform an Fuler split of G2, yielding a smaller instance of
the same problem, and solve it recursively. Finally, color G5 using Tool 1.

Case 2. Dg, is odd.

G1 U G2 U Gy is partitioned into regular graphs G}, G, G%, with D¢y, = Dg,
being even. G U G4 U GY% is colored using the method for Case 1.

The partitioning is obtained as follows. Set H; = G; U G2 and perform
an Euler split of Hy, yielding regular graphs J; and Jy. Assign G + G,
Gy + J; and G3 < Jo. This is a new instance of the same problem and is
solved recursively.

To see the recursion terminates, we argue as follows. Notice that Dg, =
(De, + Day)/2; Dg, = Dg, = Dg,. Thus |Dg, — Dg,| = [(Da, — Da,)/2|-
Eventually, this difference becomes odd and Case 1 is reached.

Analysis. Notice that each time Case 1 is performed a graph Gj is set
aside. The time to color G5 is O(V - D¢, log Dg,), which bounds the time
for splitting Go. Thus over the whole algorithm, as the various graphs G3 are
disjoint, Case 1 uses time O(V - Dlog D) = O(E log D).

It remains to analyze the time due to Case 2. Consider a maximal sequence
of consecutive iterations of Case 2. The more iterations there are, the closer
the final D¢y is to the initial (Dg, + Dg, + Dg,)/3. More precisely if there
were i iterations of Case 2, |DGr1 - DGI2| < (Dg, + Dg, + Dg,) /2. Asi > 1,
it follows that Dg, = Dg, > (Dg, + Dg, + Da,)/6 (for otherwise Dg >
2/3(Dg, +Dg,+ Dg,), contradicting the observation in the previous sentence).
Note that graph G% will be set aside by the immediately following instance



of Case 1. Thus the next instance of Case 2, if any, will have size at most
5/6V(DG1 + D¢, + DGS)-

The cost of its maximal sequence of i iterations of Case 2 is O(V(Dg, +
D¢, + Dg,) log(Dg, + Dg, + Dg,)). Over all instances of Case 2 this sums to
O(log D(E + (5/6)E + (5/6)*E + - -+) = O(Elog D). Thus aside from the cost
of computing one full matching, the algorithm was uses time O(E log D).
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