The On-Line K-Server Problem

Aris Floratos and Ravi Boppana
Courant Institute of Mathematical Sciences, NYU

Abstract

We survey the research performed during the last few years on the
on-line k-server problem over metric spaces. A variety of algorithms are
presented — both deterministic and randomized — and their performance
is studied in the framework of competitive analysis. Restrictions of the
problem to special cases of metric spaces are also considered.

1 Introduction

In much of the theory of algorithm analysis the following fundamental assump-
tion is made: whenever an algorithm is called upon to solve any particular
instance of a problem, all the input necessary for the solution is available at the
time the algorithm begins its computation. There are situations, though, where
this assumption is just not realistic. In many cases the nature of a problem
dictates that the input has to be presented to the algorithm incrementally, one
piece at a time, and the algorithm must produce a corresponding piece of out-
put based only on what has been seen up to that point. The optimal response
though, might depend on the way that future input (unknown at the time when
a decision must be made) is structured.

A typical example of such a situation (drawn from the field of computer
architecture) is the caching problem. In this setting, we have two different
kinds of memories: one (called the “cache”) is small and fast while the other
(the “main memory”) is large and slow. Each memory can store a number of
pages. At any point, the cache contains a subset of the pages stored in main
memory. The input consists of a sequence of page references. Whenever such
a reference arrives, the cache is checked for the corresponding page. If the
page is found there, then a hit is said to have occured and the reference can
be served at no cost. If, however, the page is not in the cache, then we have
a miss. In this case, one of the pages already in the cache must be selected
and evicted, i.e. replaced by the just referenced page. This replacement process
entails a certain cost, since data must be transfered between the main memory
and the cache. What is needed in the caching problem is a page replacement
algorithm, an algorithm that decides in case of a miss which page to evict from

the cache. The objective of such an algorithm is to minimize the overall cost
of processing any given page reference sequence (or, equivalently, to minimize
the total number of misses). As is very well known, this cost minimization is
achieved if, whenever a miss occurs, the cache page evicted is the one that will
not be used for the longest time in the future. This replacement strategy is,
however, inherently off-line: deciding which page to evict requires knowledge
of future page references. In practice, knowledge of the future is a luxury we
cannot afford. Any realistic page replacement algorithm must make its decisions
on-line: as soon as a miss occurs, a page replacement must take place before
any further references arrive.

The caching problem described above is just one instance of a big collec-
tion of problems coming from a great variety of disciplines such as computer
science ([24]), mathematics ([10]), economics ([22]) and many others. All these
problems, despite their great diversity, share a number of common features:

e They all are optimization problems. That is, given an instance (the input)
of any of these problems, what is asked for is an output of minimum cost
(or maximum return, depending on the problem).

e Although it is, in general, easy to construct off-line algorithms for these
problems (i.e. algorithms which, given a certain input, will compute an/the
optimal output), what we are interested in is the design of on-line algo-
rithms. Algorithms which will be fed their input in a piece-meal manner
and that must produce an output in a similarly incremental way: as soon
as some chunk of input becomes available, a piece of output must be pro-
duced.

Such problems, calling for the design of on-line algorithms, are categorized
under the broad class of on-line problems. Their study over the last few years
has enjoyed an increased attention, especially after the seminal work of Sleator
and Tarjan in [24].

The questions that are usually of interest when faced with an on-line problem
are the following;:

What is a good on-line algorithm for the problem? (design)

How well does a specific algorithm perform, i.e. how close to opti-
mal will the solutions produced by the algorithm be? (performance
analysis)

What is the best possible performance that an on-line algorithm for
the problem can achieve? (lower bounds)

Is it possible to get better results by using randomized algorithms?
(randomization vs. determinism)

In this survey these questions are addressed from the perspective of a partic-
ular on-line problem, the k-server problem. Our intention, apart from presenting

the results known to date, is also to exhibit some of the techniques used in the
research of on-line problems.

More specifically, the structure of the paper is as follows. In Section 2 the
k-server problem is defined and competitive analysis, the framework where the
problem is studied, is introduced. In Section 3 the problem is considered in its
most general setting, making no assumptions about the structure of the underly-
ing metric space. Sections 4 to 7 describe several algorithms for restricted metric
spaces, exhibiting how such restrictions can be exploited to obtain optimal on-
line k-server algorithms. In Section 8 we present some lower bounds showing
what kind of performance cannot be achieved by on-line algorithms. Finally,
Section 9 contains a discussion about questions that still remain unanswered.

2 The k-server problem

The on-line k-server problem, introduced by Manasse et al. [18], has virtually
defined the area of on-line problems. It is set on a metric space inhabited by
k servers. Initially, each server is positioned at some point of the space. Over
time, requests arrive for service at points of the space. Immediately after a
request at some point ¢ of the space comes in, a server must be moved to ¢ (if
none is there) in order to serve the request. Besides the server that moves to
g, the other servers are also free to move (e.g. to position themselves favorably
for handling subsequent requests). When a server moves it incurs a cost equal
to the distance it covers. The cost of a request is equal to the sum of the costs
incured by all servers during the service of that request. The cost of a sequence
of requests is equal to the sum of the costs of all requests in the sequence. Our
goal under this setting is to design on-line algorithms which will decide which
server(s) to move when a request arrives so that any sequence of requests can
be served with a cost as small as possible.

We now introduce some definitions and terminology to help formalize the
above discussion.

A metric space is a pair (@, d), where Q is a set of points and d : @ xQ — R
is a non-negative distance function satisfying the triangle inequality:

d(z,y) +d(y, z) > d(z, z) for all x, y, z in Q.

If d(z,y) = d(y,z) for all z,y in @ then the space is called symmetric. From
now on and unless otherwise specified the term “metric space” will be used to
denote a symmetric space.

A k-configuration for a metric space (@, d) is any multiset C of size k over
Q. Given two k-configurations C' and C' of a metric space (@Q,d) we define a
matching between C' and C' to be a bijection between C and C'. The matching
distance of such a matching is the sum of the distances of all matched pairs of
points. The notation |C'C’| indicates the minimum matching distance achievable
for the configurations C' and C".

Finally a request sequence p = (1,72, .-, 7m), of size m, is any element of
Q™. Such a sequence defines a set of requests and the order of their arrival.

An instance of the k-server problem is defined by specifying the metric space
(Q,d) and the number k of the servers. Let A be an on-line algorithm for that
instance. The input to the algorithm is a k-configuration Cy and a request
sequence p = (r1,Ta,...,Ty). Algorithm A is started with the k servers posi-
tioned at the points prescribed by Cy (which is called the initial configuration).
Then the requests of p start arriving, one after the other. When r; comes in,
the position of the servers is described by some configuration C;_;. In order
to serve r;, algorithm A must produce a new k-configuration C; containing the
point r; and move the servers to this new configuration. The output of A on p
is the sequence C1, Cs, ..., C), of k-configurations it generates in serving the
requests of p. The cost costa(r;) of serving r; under A is defined as

COStA(n’) = |C,,1Cz|

The cost of serving the overall sequence p under A is accordingly defined as:
m
costa(p) = ZcostA(ri).
i=1

The above discussion can be extended to also include randomized on-line
algorithms. When such an algorithm is presented with a request r; it can choose
its response C; from a probability distribution of k-configurations, all including
the point ;. As a consequence, each of the configurations Cy, Cs, ..., Cp,
that constitute the output of the algorithm to a request sequence p is really
a random variable. When studying randomized on-line algorithms for the k-
server problem the quantity we are interested in is the expected cost of serving
a request sequence.

We now turn to the question of how to analyze the performance of an on-line
algorithm for the k-server problem.

2.1 Competitive analysis

As is probably clear by now, the main impact of the requirement to process the
input as it arrives is that for any on-line algorithm there will be input sequences
forcing the algorithm to produce sub-optimal answers. A question then arises as
to what would be an appropriate performance measure for studying and com-
paring the power of such algorithms. Sleator and Tarjan in [24] answered that
question by suggesting that the solution produced by an on-line algorithm on
some input should be compared to the optimal solution for that input. Manasse
et al. [18] formalized this idea and introduced the notion of competitiveness.
Here this notion is presented in the context of the on-line k-server problem
but it applies to any on-line problem (with the appropriate problem-specific
adaptations).

Definition 2.1 An on-line algorithm A for the k-server problem is called c-
competitive if for any initial configuration Cy and any input sequence p:

costa(p) < c- costopr(p) + I(Cop)

where ¢ > 0, costopr(p) is the cost that the optimal off-line algorithm pays for
processing p starting at Co and I is a non-negative function depending only on
the initial configuration.

According to the above definition, showing that an on-line algorithm A is ¢-
competitive will guarantee that the cost that A pays in processing any sequence
of requests p is never greater than ¢ times what an optimal off-line algorithm
would pay for the same sequence plus an additive term dependent only on the
starting configuration and not on the sequence or its length.

In fact, the definition of competitive ratio in [18] is slightly different than
the one given here. In that work an on-line algorithm A is called c-competitive
if the inequality of Definition 2.1 holds for every off-line algorithm. That is, A
is called c-competitive if for every off-line algorithm B:

costa(p) < c¢-costp(p) + Ig(Co)

Although this definition is really no different than the one given here, it is
worth mentioning because it is closely connected to the method used in proving
competitiveness results. The usual approach is to consider the k-server problem
as a game between the on-line algorithm A under consideration and an adversary
B. The advesary has its own set of k servers and is supposed to know the code
of algorithm A. The role of B is then to generate and service a sequence of
requests p so as to maximize the ratio cost4(p)/costg(p). To prove that A is ¢-
competitive it is enough to prove that for any adversary B and for any sequence
p generated by B the inequality above holds.

This view of the problem as a game between the on-line algorithm and an
adversary is also used for defining the competitive ratio of a randomized on-line
algorithm. However, things are a little more tricky in this case. When the
on-line algorithm A is deterministic, the adversary B can produce a request
sequence without having to wait for A to respond to a request before generating
the next one: since A is deterministic and B knows the code of A, the adversary
can predict the response of A over the complete sequence. This is not, though,
the case with a randomized algorithm A. Even by knowing the code of A, the
adversary B cannot predict what the exact response of A to a given request
will be. This observation has motivated the definition of adversaries with vary-
ing power. There are three kinds of adversaries that have been proposed for
analyzing randomized on-line algorithms:

Oblivious: An adversary of this type will in advance generate and serve the
complete sequence of requests before the on-line algorithm makes any
move.

Adaptive on-line: Such an adversary will generate the next request based on
how the algorithm answered the previous request. It will also serve the
new request immediately (i.e. without waiting to see how the algorithm
will respond to the request).

Adaptive off-line: An adaptive off-line adversary will also generate the next
request based on how the algorithm answered the previous one. It will,
however, serve the whole request sequence optimally, at the end.

Definition 2.2 A randomized on-line algorithm A for the k-server problem is
called c-competitive against any oblivious (adaptive on-line, adaptive off-line)
adversary if for every oblivious (adaptive on-line, adaptive-off line) adversary
B, every initial configuration Cy and every request sequence p:

E[costa(p)] < ¢ E[costg(p)] + Is(Ch).

From the description of the adversaries it can be seen that every oblivious
adversary can be simulated by an adaptive on-line adversary and that every
adaptive on-line adversary can, in turn, be simulated by some adaptive off-line
adversary. If co, c¢n, cp are the competitive ratios of an on-line algorithm A
against any oblivious, adaptive on-line and adaptive off-line adversary respec-
tively, it then follows that co < ¢y < ¢p. The reverse order of simulations also
hold when A is a deterministic algorithm (in which case ¢co = ¢y = ¢p). This is
not true, though, when playing against randomized algorithms. The power that
is, in a sense, taken away from an oblivious adversary by allowing the on-line
algorithm to use randomization, is returned back when permitting the adver-
sary to watch the replies of the algorithm before generating the next request.
As a result, there exist randomized on-line algorithms for which cp < ¢y < cp.
In quantifying the amount of extra power allowed by each kind of adversary,
Ben-David et al. ([1]) proved the following.

Lemma 2.1 If the randomized algorithm A is c-competitive against any adap-
tive on-line adversary and there exists a randomized algorithm that is c'-competitive
against any oblivious adversary, then A is c-c'-competitive against any adaptive
off-line adversary.

Lemma 2.2 If the randomized algorithm A is c-competitive against any adap-
tive off-line adversary then there exists a deterministic c-competitive algorithm.

The last lemma shows that randomization adds no extra power against
adaptive off-line adversaries. Furthermore, combining both these lemmas, it
can be infered that the existence of a randomized on-line algorithm which is ¢-
competitive against any adaptive on-line adversary implies that there also exists
a c2-competititve deterministic algorithm.

All the algorithms presented in this survey are studied in the context of
the competitive analysis outlined above. Before proceeding with the actual

presentation, though, there is one final remark that we would like to make. Part
of the reason why the on-line k-server problem has drawn a great attention in
recent years is the fact that it closely models several important real-life problems.
Caching, mentioned in the introduction, is one of them. The servers in this case
are the cache page frames, the points of the metric space are the various pages
and the distance between each pair of points is one!. Every page reference then
is a request to a point of the space which is either covered (a hit) or uncovered
(a miss) by a server. Serving input/output requests on a disk with multiple
read/write heads is another example. Due to this practical dimension of the
problem one might be interested in other properties of an on-line algorithm
such as ease of implementation or speed. Such complexity questions, though,
fall outside the context of competitive analysis. The application-oriented reader
might want to keep this fact in mind when evaluating the algorithms presented
here.

3 Unrestricted metric spaces

In analyzing on-line algorithms for the k-server problem, any special properties
of the underlying metric space may prove crucial in the effort to obtain a good
competitive ratio for the algorithm under consideration. Examples of this fact
will be exhibited in subsequent sections. For now, though, we assume no extra
properties other than those described in the definition of metric spaces. In
this context two on-line algorithms are presented, one deterministic and one
randomized.

The deterministic, called the work function algorithm, is shown to be (2k—1)-
competitive. This is the best competitive ratio that has been shown for any
deterministic algorithm? in unrestricted metric spaces and is very close to a
lower bound proved by Mannasse et al. in [18]. It was shown therein that no
deterministic on-line k-server algorithm can be better than k-competitive. In
the same work, k is conjectured to be a tight lower bound. This is the famous
k-server conjecture. It states that for every symmetric space there exists a
deterministic on-line algorithm for the k-server problem which is k-competitive.
Proving (or disproving) that conjecture remains the foremost open question in
the area.

The randomized algorithm presented here, called the HARMONIC algo-
rithm, is shown to have a competitive ratio that is exponential in k against an
adaptive on-line adversary. This is the only randomized algorithm for unre-
stricted metric spaces that has appeared in the literature.

IThe value ‘one’ is just a normalization constant for the data transfer cost.
2Before the proof for the work function algorithm the best competitive ratio known ([12])
for deterministic algorithms in unrestricted spaces was exponential in k.

3.1 Work-function algorithm

The work-function algorithm was originally proposed by Chrobak and Larmore
in [6]. It was shown to be (2k — 1)-competitive by Koutsoupias and Papadim-
itriou in [16]. In this subsection we present an outline of the proof given in the
later paper.

The definition of the algorithm is based on the concept of the work function.
Let Cjy indicate an initial configuration for the & servers and consider any request
sequence P = (T1,72, ..., m)-

Definition 3.1 (Work function) For any k-configuration C let w;(C) denote
the optimal cost of serving the subsequence of requests p* = (ry,ra,...,r;) start-
ing at Cy under the requirement that at the end the servers must be placed at
the configuration C'. The non-negative real function w; defined on the set of
k-configurations is called the work function after serving pt.

The following properties of work functions can be directly deduced from the
above definition and the metric property of the underlying space:

Corollary 3.1 1. For every configuration C,

wi—l(c) Zf r; € C
w;(C) = Hgg{wi(c —s+r;) +d(s,r;)} otherwise

where (C — s + r;) indicates the k-configuration resulting from C by re-
placing the point s in C by r;.

2. For every configuration C,
w;(C) > w;_1(C)
3. For every pair of configurations C and C',
w;(C) <w;(C") + |CC'|
4. For every configuration C,
wo(C) = |CoC|

5. For every configuration C' and any sequence of requests p = (11,72, ..,7m),
costopr(p) < Wy (C)

The work function algorithm (WFA) is defined as follows:

Definition 3.2 (Work function algorithm) Let C;_; be the configuration of
WFA’s servers at the time when r; arrives. The server3 s; € C;_1 that will
move to service the new request is the one minimizing the quantity

wi(Ci—1 — 8i + 1) +d(si, 7).
Thus, C; = C;—1 — s; + r;, for the s; specified above.

The cost costyw ra(p) that WFA pays for serving a sequence of requests p =
(7’1,’!‘2, .. .,rm) is

costwra(p) = Z |Ci—1Ci| = Zd(si,ri)
i=1 =1

where the C; and s; are computed as described in the definition of the work
function algorithm. It turns out that instead of directly studying this cost it is
more convenient to look at an “inflated” version of it, called the extended cost:

Definition 3.3 (Extended cost) The extended cost of serving the i-th request
in the sequence p is
i = max{wi(C) —wi—1(C)}

while the total extended cost of serving the entire sequence is
m
T(p) =Y i
i=1

The use of the extended cost is illuminated by the following lemma:

Lemma 3.1 If there exists a function I such that for all request sequences p
and all starting configurations Cy

U(p) < (c+1) costopr(p) + I(Co)
then the work function algorithm is c-competitive.

Proof: It is enough to show that ¥(p) > costwra(p) + costopr(p).

m

U(p) = ngX{wi(C) —w;1(C)}
> Z(wi(Ci_l) —w;—1(Ci_1))
- Z(wi(Ci) +d(si, i) —w;—1(Ci—1))

3For brevity, a server will be sometimes identified with the point it occupies.

m

Zd(si,n) + Z(wi(ci)_wi—l(ci—l))

= costwra(p) + wmn(Cm) — wo(Co)
> costwra + costopr(p)

where the C; and s; are the ones computed by the work function algorithm. O

The remaining of the subsection is devoted in proving that the inequality
of Lemma 3.1 holds for ¢ = 2k — 1. The proof is carried through by the use
of an appropriately defined potential function. Before exhibiting this potential
function though, the following definition and lemma are needed.

Definition 3.4 For any work function w; and any point q of the metric space,
the configuration C' that minimizes the expression

wi(C) = Y d(z,q)

zeC

is called the minimizer of q with respect to w;.

Lemma 3.2 Consider the request r; of the input request sequence p and let C be
the minimizer of r; with respect to the work function w;. For any configuration
Cl

'U)Z(C) — W;—1 (C) Z 'U)Z(Cl) - wi,l(C").

That is, the extended cost 1; of serving r; is achieved at C'.

The proof of the above lemma (which is not presented here) is based on a prop-
erty shared by all work functions, the gquasiconvezity property. This property
states that for every work function w; and every pair of configurations C' and
C’ there exists a bijection h : C — C’ such that for every partition of C into
X, Y:

w;(C) + wi(C') > wi(X UA(Y)) +wi(Y Uh(X)).

With all the above in place, we are now ready to conclude the proof of the
claimed competitive ratio for the work function algorithm.

For any configurations U = (u1,us,...,ux) and B; = (bj1,bj2,...,bjk),
j=1,...,k, and any work function w;, let
k k
T(w;, U, By, ..., By) = kwi(U) + > _(wi(B;) = > _ d(uj,by))
j=1 =1
Define ®(w;) to be the minimum value of I'(w;, U, By, . . ., Bg) over all configu-

rations U, By, ..., Bg.

Lemma 3.3 For every work function w; the minimum value of T'(w;, U, By, ..., By)

is achieved for some U containing r;.

10

Proof: Fix some U, By, ..., By, for which the minimum value of I'(w;, U, By, . .., By)
is achieved. If r; ¢ U then by the definition of work function there exists some
up, in U such that

w;(U) = wi(U —up + i) + d(up,r3).

It can then be seen, using the triangle inequality, that by replacing U by U —
up, + r; in the parameters of I" the value of the function does not increase. O

Lemma 3.4 The work function algorithm is (2k — 1)-competitive.

Proof: Let A be the minimizer of request r; with respect to w;. Let ®(w;) =
I(w;,U, By, ..., By) for some U, By, . .., Bx. By to Lemma 3.3 it can be assumed
that r; = up, € U, for some h. Since A is the minimizer of r; with respect to
w; we can also assume that A = Bp. Let I'y,, ['y,_, be the values of function
I' computed at w;, w;_; for the configurations U, By, ..., By described above.
Using property 2 of Corollary 3.1:

®(w;) — ®(wi-1) > Tw; — T,y > wi(A4) —wi—1(4) = 9.

Summing over all i:
B(wpn) — B(wo) > U(p).

Let Copr be the configuration in which the optimal off-line algorithm ends up
after serving the input request sequence p. From the definition of the potential
function ® it can then be seen that

<I>(wm) < F(’wm,CopT,CopT, ceey COPT) <2k ’U)m(CopT) = 2kCOStopT(p).

By also observing that ®(wg) = — Z d(z,y) = —I(Cp) we get
w,yECO

¥ (p) < 2kcostopr(p) + I(Co)

which, by Lemma 3.1, concludes the proof. O

3.2 The HARMONIC algorithm

The HARMONIC algorithm, originally proposed by Raghavan and Snir in [23],
is a simple and natural randomized algorithm. It dictates that a server will be
selected to serve a new request with a probability inversely proportional to its
distance from the request. More formally:

Definition 3.5 (HARMONIC) Let C = {hq, ha, ..., hi} be the k-configuration
describing the positions of the servers at the time when a new request arrives.

11

If r € C then the requested point is already covered. Otherwise the server h; will

be selected to serve r with probability UCISVM, where
1
N = .
; d(h“ T)

One of the appealing properties of the HARMONIC algorithm is the fact
that it is memoryless: the probability distribution of the possible responses
to an incoming request depends only on the configuration of the servers and
the current request and not on past events. As a consequence, it takes only
O(k) time to decide which server to move (this is to be contrasted with the

work function algorithm which requires Q(k (H;;El)) time for computing its

response to the i-th request). It is this property that makes HARMONIC a good
candidate for implementation and is also part of the reason why its analysis has
drawn quite some attention. In [23] where it was introduced it is shown to
be k(k + 1)-competitive against any adaptive on-line adversary for the special
case when the underlying metric space has (k + 1) points. The first attempt to
analyze the performance of the HARMONIC algorithm for spaces with arbitrary
size and for any value of k£ was made by Berman et al. in [2]. It fell short on the
“any value of k” part. Specifically, they were able to prove that HARMONIC
is competitive against any on-line adversary in every symmetric space but only
for k = 3. The competitive factor turned out to be 3'7°00(!). Their approach
was subsequently used by Chrobak and Larmore ([17]) to prove HARMONIC
3-competitive against any adaptive on-line adversary for the case where k =
2. Grove in [13] was the first one to succesfully show that HARMONIC is
competitive in every symmetric space and for all values of k. The competitive
ratio achieved was %k2’C — 2k. In what follows we present an outline of the
method used in that work.

The proof proceeds by assuming that HARMONIC is “playing” against an
adaptive on-line adversary which generates the request sequence p = (11,72, ..., 7m)-
The k-configuration C; (A;) will be used to denote the position of the HAR-
MONIC (adversary) servers after HARMONIC (the adversary) has served re-
quest 7;. Initially, the servers of both the adversary and the HARMONIC start
at the same configuration, so Cy = Ag. The game consists of m phases. At the
begining of phase i the adversary will choose a new request point r; and move
one of its servers to that point thus changing its configuration from A; ; to A;
and paying a cost equal to cost g4py(r;) = |A;_14;|- The phase is concluded by
the HARMONIC algorithm which has to choose one of its servers and move it
to r;, paying a cost costgar(r;) = |Ci—1C;|, where C;_1, C; are analogous to
A; 1 and A;. What must be realized here is that, since the adversary chooses
a request point based on the responses of the HARMONIC algorithm up to
that point and due to the randomized nature of HARMONIC, all the quantities
involved (the requests r;, the configurations C; and A;, the costs costgar(r;)

12

and costapy (r;)) are random variables.

The proof proceeds by defining an apropriate potential function ® describing
the state of the system as it moves from phase to phase. The arguments of ®
are the current configurations of the HARMONIC algorithm and the adversary.
The aim is to show that the potential function has the following properties:

Property 1: It is non-negative.

Property 2: When the adversary moves a server at the begining of phase 4,
the potential function does not increase by more than ¢ times (for some ¢
to be specified) the cost paid by the adversary during that move:

®(Ci—1,4;) — ®(Ci—1,Ai—1) < c-costapy(r;).

Property 3: When HARMONIC moves a server to service request r;, the ex-
pected drop in the potential is large enough to cover the expected cost
paid by HARMONIC in serving r;:

Elcostgar(ri)] + E[®(C;, A;) — ®(Ci—1,A:)] < 0.

Lemma 3.5 If & has the above properties, then HARMONIC is c-competitive
against any adaptive on-line aversary.

Proof: Using the properties above it can be seen that:

m
Elcostgar(p)] = ZE[costHAR(n-)] < cE[costapv (p)] + ®(Co, Ag).

i=1

O
In order to define the potential function, a matching is maintained between

the on-line and the adversary servers. This matching is dynamic, i.e. it changes
as the servers move. Initially, Cy = Ay and each on-line server is matched to the
corresponding adversary server. When the adversary moves a server a to the
request r; (at the begining of the i-th phase) the matching does not change: the
on-line server o was matched to before the move is the same that « is matched
to after the move. When it is the turn of HARMONIC to service r; there are two
cases to consider. If the server h that HARMONIC will move to r; is the on-line
server matched to a then the matching remains unaltered: after its move, server
h will still be matched to a. Otherwise, let s be the on-line server matched to
«a and [the adversary server h is matched to. After the move of server h, the
matching changes: now h is matched to a and s to 8. Nothing else changes.

Definition 3.6 Let C, A be the current configurations of the on-line and the
adversary servers respectively. Let B be any subset of A. Let h be any on-line
server and call « the adversary server h is matched to.

13

— The radius R(h,B) of B around h is defined as:

E(h, B) = maxd(h, f).

— Let
R(h,B)
2|B]

A(h) = k2% mBin{ |a € B}.

The active set AS(h) of h is defined to be the largest choice of B for which
the value A(h) is achieved. The notation S(h) will be used to indicate the
size of the active set of h, i.e. S(h) =|AS(h)|.

Definition 3.7 (Potential function) Let C, A be the current configurations
of the on-line and the adversary servers respectively. The potential function
describing the present system state is defined as:

B(C,A) = Ah)

heC

Lemma 3.6 The potential function satisfies property 2.

Proof: The adversary will open the i-th phase of the game by selecting the
next request point r; and moving one of its servers there, thus changing its
configuration from A; 1 to A;. Let a be the adversary server chosen to service
r;. The cost cost4pv (r;) that the adversary pays for serving request r; is then
|A;—1A;i|. For any on-line server h let AS(h), S(h) denote the active set of h
and its size before the move of a. The move of the adversary server to r; will,
potentially, affect the value of the function A(h) for some on-line servers h. Since
we are interested in bounding the increase in the potential function resulting
from the move of « it is enough to concentrate only on those on-line servers h
for which A(h) gets bigger. By the definition of the function A, all such servers
must belong to the set

Y = {hla € AS(h) and d(h,r;) > R(h,AS(h))}

Furthermore, for any h € Y, the increase in A(h) due to the move of the

adversary server cannot be larger than k2% % (this is due to the triangle

inequality). Assume now that the on-line servers in Y are ordered, i.e. ¥ =
{ho, h1,..., hyy|}, so that

R(hj, AS(h;)) +d(hj, i) < R(hj1, AS(hjy1) +d(hjy1,7mi), 1<j<|YV[=1

and hg is the on-line server matched to «, if that server belongs to Y. Otherwise
there is no hg and the indexing in Y starts from h;. It can then be shown that

14

S(ho) > 1, S(h1) > 2 and that S(h;) >, for all [> 1. Consequently:

© costapy (73)

(Ci1,4:) —®(Ci—1,Ai1) < Z k2 BSOS

hey

1
< k2k cost g py (13)(+ +Z o

— (gkzk — 2k)cost apy (13).

which proves the lemma (with the factor ¢ of property 2 being equal to gk2k -
2k). O

Lemma 3.7 The potential function satisfies property 3.

Proof: Assume that the HARMONIC algorithm is about to service request r;
which was just generated and served by the adversary. Let o be the adversary
server covering r; and s the on-line server matched to a just before HARMONIC
makes its move. If h is any HARMONIC server then the probability of A being
chosen to service r; is equal to % Each such h belongs in one of three

categories (in what follows AS and S refer to the matching just before the move
of h):

1. h =s.

In this case the move of the HARMONIC server affects only the value of
A(s), which drops to 0. For all other on-line servers z the value of A(z)
remains unchanged. Consequently, the contribution of this case to the the
expected decrease of the potential is

_gp R(5,AS() _ k2"
Nd(s,r;)25() = N25(s)°

1
_ d(s,mi)
5 5 (5) =

2. h # s but the adversary server § matched to h is in AS(s).
Then, after the move of h, A(h) becomes zero, A(s) can only decrease
while the value of A for all other on-line servers is not altered.

3. h# s and B & AS(s) where 8 is the adversary server matched to h.

Again, after h moves, only A(h) and A(s) are affected, with the first
dropping to zero. But A(s) might now increase. As it turns out, this
increase can be bounded. Let B be the set of all adversary servers that

are outside AS(s) but within a distance of no more than d(s,3) from s.
Let [= |B| and define NS(s) as

NS(s) = AS(s) U B U AS(h).

15

Since AS(s)NB = 0, |NS(s)| > max{S(s)+1,S(h)}. Furthermore, due to
the triangle inequality, R(s, NS(s)) < d(s,r;) + d(r;, h) + R(h, AS(h)) <
R(s, AS(s)) + d(r;, h) + R(h, AS(h)). From the definition of the function
A it can then be seen that the following is true for the value of A(s) after
the move of the on-line server h:

(s, AS(s)) + d(ri, h) + R(h, AS(h))
9max{S(s)+I,S(h)})

gkﬂR

As a result the expected increase in the potential in this case will be no
more than
1
d(thi)
N

K2k
(change in the value of A(s)+change in the value of A(h)) < NP ECE

Note also that, since there are k — S(s) on-line servers in this category,
the above inequality will happen for all [between 1 and k — S(s).

Puting together the contribution of all these cases and observing that E[costgar(ri)] =
k/N we get

E[COStHAR(Ti)] + E[@(C,,Az) — @(C,;l,Ai)]

Eoookt S0 por
= N N25() + — N25(s)+
< 0.

O

Lemmas 3.5, 3.6 and 3.7 together with the fact that, by definition, ® is
non-negative imply that the HARMONIC algorithm is (§k2* — 2k)-competitive
against any on-line adversary.

Although this result is the best known up to date, it is speculated that the
HARMONIC algorithm has a much better, polynomial in &, competitive ratio
against adaptive on-line adversaries. This speculation was originally presented
in [23] in the form of the so called lazy adversary conjecture. A lazy adversary is
a special case of an adaptive on-line adversary which operates as follows: as long
as there exist adversary servers that do not coincide with any on-line server, a
lazy adversary will pick for the next request a point occupied by such a server.
The advantage of doing so is that the adversary can serve such a request at
no cost (it already has a server there) while the on-line algorithm will have to
move some server at the request point, thus incurring a non-zero cost. The
speculation is that this strategy maximizes the ratio of the HARMONIC cost
to the adversary cost.

Lazy adversary conjecture: The worst possible competitive ratio for the
HARMONIC algorithm (against an adaptive on-line adversary) is forced by
some lazy adversary.

16

It has been shown ([20], [23]) that the competitive ratio of the HARMONIC
algorithm against any lazy adversary is no worse than k(k +1)/2 (in fact, it has
also been shown that it is no better than that, i.e. there exist lazy adversaries
forcing that competitive ratio). If the lazy adversary conjecture is true, then
this would prove that the competitive ratio of HARMONIC against any adaptive
on-line adversary is exactly k(k + 1)/2 (no better and no worse).

4 The uniform metric space

A symmetric space (Q, d) is called uniform if all distances in the space are equal,
i.e. for some a > 0, d(z,y) = a for all pairs of distinct points z,y € Q. The
usual convention when talking about a uniform space is to assume that a = 1.
This assumption has no consequence as far as competitive analysis is concerned.
An algorithm that is shown to be c-competitive in a uniform space where a = 1
is also c-competitive in any other uniform space, as can be readily verified from
Definitions 2.1 and 2.2. In what follows it is assumed that all distances in a
uniform metric space are equal to one.

Another convention (which we also follow) is to discuss the on-line k-server
problem for uniform spaces in terms of the caching problem (the relation be-
tween the two was exhibited at the end of Section 2). Instead of k servers in a
uniform space of size n we will consider a cache of k page frames and a main
memory of n pages. Every miss will carry a unit cost.

Due to the importance of the caching problem a considerable number of
algorithms have appeared in the literature. In this section six of them are
presented: three deterministic (LRU, FIFO, ROTATE) and three randomized
(RANDOM, MARKING, PARTITIONING). One out of each category is memo-
ryless (ROTATE, RANDOM). The performance of RANDOM is studied against
any adaptive on-line adversary while for MARKING and PARTITIONING the
adversary is an oblivious one. It will be shown that all the above algorithms,
except MARKING, are strongly competitive, i.e. they achieve the best possible
competitive ratio. For the deterministic algorithms this ratio is k, as already
mentioned. In the case of randomized algorithms, Fiat at al. in [11] show that
no randomized on-line algorithm for the caching problem can be better than
Hj-competitive against any oblivious adversary (where Hy =1+ 5 + ...+).
Furthermore, for the special case of memoryless randomized algorithms, Ragha-
van and Snir ([23]) proved that their competitive ratio against adaptive on-line
adversaries cannot be better than k.

4.1 LRU and FIFO

The Least Recently Used (LRU) and First In First Out (FIFO) page replacement
algorithms were among the first heuristics used to deal with the caching problem.
They were also among the first on-line algorithms to be analyzed in the context

17

of competitive analysis. Sleator and Tarjan ([24]) were able to exhibit that both
algorithms are strongly competitive.

Lemma 4.1 LRU is k-competitive.

Proof: Let OPT be the optimal off-line algorithm for the caching problem and
p any sequence of requests. The aim is to show that for every set of k page
faults forced by p on LRU, the optimal off-line algorithm suffers at least one
page fault.

Assume that LRU and OPT are run with the request sequence p as input.
Let p= pyp; - - - p,, be a partitioning of p into subsequnces so that the number
of page faults that LRU suffers during handling p;, 1 <i < m is exactly k (for
po LRU suffers at most (k — 1) page faults). Let p; 1 be the page reference
immediately before p, (i.e. p;—; is the last reference of p, ;). Examining the
faulting behaviour of LRU in p; we can distinguish two cases. The first one is
when all £ faulting pages in p; are distinct and none of them is p;_;. Since p;_1
is in the cache of OPT just before p,, at least one of these pages will force a
page fault on OPT. The second case is when p;_1 is among the faulting pages
or when there is some page creating two or more page faults. By the definition
of LRU, this means that there are at least (k + 1) distinct pages in p,. As a
result, OPT will fault on at least one of them.

In either case each p;, 1 < i < n, forces one or more page faults on OPT.
Taking also into account the page faults that LRU suffers due to p, we can
conclude that

costrru(p) < k- costopr(p) + (k—1)

which proves the claim. O
Using a similar argument, FIFO can also be shown to be k-competitive.

4.2 ROTATE
ROTATE ([4]) is a simple memoryless algorithm defined as follows:

Definition 4.1 (ROTATE) Each time that a miss occurs on a page reference
r evict the cache page s, where

s= max {r|p<r}
cache pages p

If there is no page number less than r in the cache, then evict the page with the
greatest page number.

The definition assumes that pages are identified by page numbers (which is
usually the case) so that the comparisons are meaningful. The algorithm can be
extended, though, to any uniform space. All that is required is an (arbitrary)
total ordering on the points of the space.

18

Lemma 4.2 ROTATE is k-competitive.

Proof: The proof is similar to the one used to prove HARMONIC competitive.
The algorithm is assumed to be playing against an adversary which generates
and immediately serves the requests. A non-negative potential function is then
defined and is shown to have the following properties: first, each time the ad-
versary serves a request the increase in the potential function is at most & times
the adversary cost for serving that request; second, each time ROTATE serves
a request the potential drops by at least as much as the algorithm paid for
servicing the request. Such a potential function will guarantee that ROTATE
is k-competitive.

The potential function used is defined in terms of the current algorithm and
adversary configurations (where, in the context of caching, a configuration is the
set of pages in the cache). To help visualize the discussion assume that every
page number r is identified with the point r of the real line. There are two sets
C = {s1,...,sx} and A = {aq,...,04} of k mobile servers each, where every
server can occupy a point 7 of the real line corresponding to the page with the
same number. The points covered by the algorithm servers of C' represent the
pages currently in the cache of ROTATE while the adversary servers of A cover
the pages currently in the adversary’s cache.

For any two numbers a, b define the interval (a, b] as

(a,b] = {z]a<z<b} ,ifa<b
" {z|xz>aorx<b} ,otherwise

Let v;; be the number of adversary servers in the interval (s;, ;] where, as
usually, we abuse the notation by identifying a server with the number of the
page that it covers. For any permutation 7 over the set {1,2,...,k} define

k
v(m) = Z Vi, (i)-
=1
The potential function @ is then defined as

®(C,A) = m;nv(ﬂ).

A permutation 7 for which the minimum above is achieved is said to realize ®.

In order to show that the ® has the first of the two claimed properties, let r
be the new request generated by the adversary. If r € A nothing happens and
the property is trivially true. So, let » ¢ A and assume that it is the adversary
server o that moves to 7. Let m be a permutation that realizes ® just before
the move of a;. Imagine that in order to serve r; the server a; starts moving
rightwards on the real line (towards infinity) until it either hits r; or the last
page covered by a (adversary or algorithm) server. In the later case it “wraps
around” to the origin of the real line and continues moving to the right. In either

19

case, when o reaches r; it stops. During this trip a; will pass by a number of
adversary and algorithm servers. When it passes by an algorithm server s; the
potential increases by one (since the interval (s;, ar(;] now contains one more
adversary server). When it crosses over an adversary server ; the potential
either drops by one (because the adversary server o; just deserted the interval
(87-1(1), @1]) or remains unchanged (because the drop is counterbalanced by the
fact that a; was added to the interval (s,-1(;),a;]). In any case, the increase
in the potential is no greater than k, the number of algorithm servers.

For the second property, let r be the new request that ROTATE must serve
and assume that o is the adversary server covering r. Let ® be the potential
function just before ROTATE serves r and consider a permutation 7 realizing ®
such that for every i # [none of the intervals (s;, ar ()], (81, ()] is a subset of
the other (there always exists such a 7). If r is already covered by an algorithm
server there is no change and the property is true. So assume that » ¢ C. If
sr-1(;) is the algorithm server that ROTATE will pick up for servicing r, then
the potential drops by at least one after the move (since «; is no longer in the
interval (s;-1(;),;]). Otherwise, let s; be the ROTATE server that will move.
Since s; is the first algorithm server to the “left” of r, it follows that r (and
thus a;) belongs to the interval (s;, ar(;)] or else (s;, ar(;)] would be a subset of
(87-1(j); @;]). Consequently, moving s; to r drops the potential by at least one.
O

4.3 MARKING

The MARKING algorithm, presented and analyzed by Fiat et al. in [11], is a
randomized version of LRU. It operates by maintaining a dynamic set of marks,
each one occupying some cache frame. In case of a miss the cache page to be
evicted is selected at random among the unmarked ones. More specifically:

Definition 4.2 (MARKING) Initially, all cache page frames are unmarked.
Let r be a new page reference. If r is already in the cache, then a mark is placed
on the corresponding cache frame (if one is not already there). Otherwise, the
victim page is chosen uniformly at random among those that do not have a
mark. If all pages in the cache are marked, then before the random selection of
the victim all the marks are cleared. In either case, at the end a mark is placed
on the cache frame where r is stored.

Lemma 4.3 The MARKING algorithm is 2H},-competitive against any oblivi-
ous adversary.

Proof: The algorithm is assumed to be playing against an oblivious adversary
which generates the input page reference sequence p = (rq, ..., 7y,). Initially the
algorithm configuration Cp and the adversary configuration Ag are the same.
Let p = pyp; --.p,) be a partitioning of p where p, only contains pages in
Co, p; starts with the first page reference not in Cy and each p;, 1 < i < t,

20

is a maximum length subsequence containing k distinct pages (i-e. if r is the
first reference in p;,; then the subsequence p;r contains exactly (k + 1) distinct
pages). The only exception is p, since there might not be enough references at
the end of p to guarantee that p, will have k distinct pages.

Let r; € p; be a reference to a page not appearing previously in p;. Then
r;j is called clean if there is no reference to the same page in p;_; while it is
called stale otherwise. Let C;, A; be the configurations of the algorithm and
the adversary respectively immediately after the last reference of p,. From the
definition of MARKING, C; contains exactly the pages referenced in p,. Let
I; be the number of clean vertices in p,; and define d; = |4; — C;|. That is, d;
indicates the number of pages which the adversary and algorithm caches differ
at after finished processing p;. Under the above definitions it is not hard to
verify that

costapv(p;) > (l; —d;—1) and costapyv(p;) > d;

which imply that costapv(p;) > +(I; — di—1 + d;). Summing over all i:

1
costapy (p) > 3 Zl l;.

The expected cost of MARKING on p; has two components. The first one
is due to serving the clean references. Every such reference imposes a unit cost
since it always creates a miss. The second component is the expected cost of
servicing the stale references. It can be shown that this cost is never greater
than ;(Hy — H;). Combining the contribution of both clean and stale page
references

Elcostyrar(p;)] < Li(Hp — Hy + 1) < Hgl;.
Summing over all i:

t
Elcostprar(p)] < Hy, Zli < 2Hycostapv (p)-

i=1

O

MARKING was the first randomized on-line algorithm for the k-server prob-
lem in the uniform space proved to have a sub-linear competitive ratio, thus
exhibiting that, when playing against an oblivious adversary, randomized algo-
rithms have an edge over deterministic ones. The advantage of a good random-
ized algorithm is that, by being able to respond in many possible ways to any
given request sequence p, it can balance (in a probabilistic sense) high and low
cost responses thus producing a favorable overall expected cost.

21

4.4 PARTITIONING

The PARTITIONING algorithm, due to McGeogh and Sleator ([19]), is another
randomized version of LRU which, however, is provably optimal: PARTITION-
ING is Hpg-competitive against any oblivious adversary. It is, however, sub-
stantially more complicated than the MARKING algorithm. In what follows a
description of the algorithm is given together with an outline of its competitive
analysis. As usual, OPT will stand for the optimal off-line algorithm.

The algorithm is based on a partition of all the pages in the memory space
into an ordered sequence of disjoint sets S, Sq+t1,---,55—1, 5 (some of which
might be empty) where a < b. This partition is dynamic; it is updated (in a
way to be described shortly) each time a new page reference arrives. With each
set S;, a < i < b, we associate a non-negative label /;. The labels are related to
the cardinalities of the sets and always satisfy the following labaling invariant:

l,=0
lizlj71+|5j|_1 (a<i<b)
lp_1 =k —|Sh

Initially a = 1, b = 2 and there are only two sets in the partition. The set S,
contains the k pages originally residing in the cache of the algorithm and the set
S the remaining n — k pages (where n is the size of the memory space). When
a new page reference r arrives the partitioning is updated in the following way:

r € Sp: No change.

r € S;,a < i < b: First the following assignments are applied: S; = S; — {r},
Sp=SpU{r}andl; =1; — 1 (for i < j < b). If after these assignments
there exist some label that is equal to zero, let j be the greatest integer
for which [; = 0. Then the partition is modified as follows:

J
S, = U St and a=j.
t=1

r € Syt The following assignments are performed: S, = S, — {r}, Sp41 = {r},
lyb=k—1andb=0b+1.

It is not hard to verify that this updating process maintains the labeling invari-
ant.

Assume that p= (ry,...,7r,) is the input page reference sequence and let
P; = {S,,...,Ss} be the partition immediately after the page reference r; has
been processed. The purpose of P; is to provide information about the contents
of OPT’s cache after OPT has served r;. These contents are of course dependent
on input yet unseen (the requests riy1,...,7m,). Still, it is possible to have a
partial idea about what pages the cache of OPT contains. For example, at the

22

very least we know that it includes the page r;. In a less trivial situation assume
that (r',r,...) is the input reference sequence and that the cache of OPT has
two frames that initially contain the pages r and r”". When the first reference
r' arrives we know that it creates a miss but it is not possible to infer which
of its two cache pages OPT is going to evict. When r arrives, though, it can
be safely inferred that it was r” that OPT evicted at the previous miss. So,
after OPT processes the second reference r, its complete cache image is known,
even without information about future requests. It is this kind of reasoning
that the partition is supposed to capture. More specifically, let Py = {57, S2}
be the initial partition and consider the execution of OPT on the sequence p
when started with its cache containing the set of pages S2. Then the partition
P; (0 < i < m) provides the following information about the cache image of
OPT immediately after OPT has served r;:

1. If p € Sp then the page p is in the cache of OPT.
2. If p € S, then p in not in the cache of OPT.

3. If pe S, a < j < b then no definite conclusion about the state of p can
be drawn based on what has been seen up to now (i.e. p might or might
not be in OPT’s cache, depending on future requests).

4. Every set Sj (a < j < b), cannot have more than [} = r<ntinb{lt} pages in
J<t<
OPT’s cache.

Furthermore, a request r; will create a miss for OPT if and only if r; belongs
to the set S, of the partition P; ;.

The PARTITIONING algorithm operates by maintaining the dynamic par-
tition described above augmented with a set of marks. There is a distinct kind
of mark (called an i-mark) for every set S} = U S; (a <1i < b) and there are

a<j<i
l; copies of each i-mark. An i-mark can only be placed on a page in S; or on
a page already possesing an (¢ — 1)-mark. Since l; = I; 1 + |S;| — 1, there are
l; + 1 potential recipients of an i-mark.

The algorithm always keeps in its cache the pages of Sy (i.e. the pages that
are for sure in OPT’s cache) as well as all pages bearing a (b—1)-mark. Initially
a =1, b =2 and there are no marks.

Definition 4.3 (PARTITIONING) Letr be an incoming page reference and
P ={S,,...,S} the partition just before the arrival of r. If v is already in the
cache (i.e. r € Sy orr has a (b—1)-mark in P) there is nothing to do. Otherwise
there are two cases to consider:

1. If r € S;, a < i < b, then before updating the partition perform the
following step for each j such that i < j < b:

23

If r has a j-mark then do nothing. Otherwise choose uniformly
at random a page p that has a j-mark and transfer each t-mark
(fort > j) of p tor. If p has a (b—1)-mark, then p is the page
to be evicted from the cache.

Subsequently update the partition and remove all marks from r (which by
now is in Sy). If in the process of updating the partition the set S, changes
then remove all marks from the pages in the new S,.

2. If r € S, then first update the partition thus creating a new Sy containing
only the page r. Then create (k —1) new (b—1)-marks and distribute them
uniformly at random among the k pages eligible of receiving such a mark
(these are exactly the pages in the cache of the algorithm just before the
arrival of r). The one page that does not receive a (b—1)-mark is the one
that is evicted.

Since, as mentioned above, there are (I; + 1) possible recipients of an i-mark,

the total number of valid mark arrangements is H (I; +1). It can be shown
a<i<b

that the PARTITIONING algorithm is equally likely to produce any of these
valid arrangements. Using this fact it is possible to prove the following:

Lemma 4.4 Let r € S;, a < i < b, be an incoming page reference. The
probability of r creating a miss is no greater than
1

i<j<b lj+1

This lemma is used in proving that

Lemma 4.5 The PARTITIONING algorithm is Hp-competitive against any
oblivious adversary.

Proof sketch: Let p = (ry,...,r,) be the input sequence generated by the
adversary (it can be assumed that the adversary will serve p optimally) and
define the non-negative potential function ¢ as

B(P)= Y (Him — 1)

a<i<b

where P; is the partition immediately after r; has been processed. It can then
be shown, using induction on the lenght of p, that the following inequality is
true

costpar(p) + ®(P,,) < Hy, - costopr(p)

which proves the lemma. The induction proceeds by assuming that this in-
equality holds before the arrival of the last page reference r,, and shows that

24

it also holds after r,, has been processed. There are two cases to consider.
The first is when 7., is in some set S; (a < ¢ < b) of the partition P,,_1 (at
which case r,, is a hit for OPT) while the second is when r,, € S, (a miss for
both OPT and PARTITIONING). Lemma 4.4 provides a bound for the cost of
PARTITIONING in the first case. O

4.5 RANDOM

RANDOM, a simple memoryless randomized algorithm introduced by Raghavan
and Snir in [23], is really the HARMONIC algorithm restricted to the uniform
space:

Definition 4.4 (RANDOM) Letr be an incoming page reference. Ifr creates
a miss, then choose a cache page uniformly at random and evict it.

Lemma 4.6 RANDOM is k-competitive against any adaptive on-line adver-
sary.

Proof: The proof is similar to the one used for proving HARMONIC competi-
tive. RANDOM is assumed to be playing against an adaptive on-line adversary
that generates the input page reference sequence p = (r1,...,rm). Let C; (4;)
indicate the set of pages in the cache of RANDOM (the adversary) immediately
after the algorithm (the adversary) has served r;. Initially Cy = Ag. Define the
non-negative potential function ® as

8(C, A) = k(k — |Cn A

where C, A are the current cache contents of RANDOM and the adversary
respectively. Consider the change in the potential when the adversary generates
the next request r;. If r; € A; 1 then A; = A; 1 and costapy(r;) = 0. If
r; € A;_1 then the adversary will choose one of its cache pages and will evict
it, thus suffering a cost equal to one and changing its cache image from A;_; to
A;. In either case

@(Ci_l,Az') — (I’(Ci_l,Ai_l) S k- COStApv(Tz').

Consider now what happens when RANDOM is about to serve the request
r; which was just generated and served by the adversary. If r; is a hit for
RANDOM then no cost is paid for serving it and there is no change in the
value of the potential. Otherwise a cache page must be evicted. There are
(k—|4; N C;_1|) > 1 pages in RANDOM’s cache that are not in the cache of
the adversary and each one of them has probability % of being evicted. The
eviction of any such page causes an expected drop of —1 to the value of the

potential function while evicting any page from C;_; N A; leaves the potential

25

unchanged. Consequently, no matter what r; is for RANDOM (a hit or a miss)
we have that

Elcostran(r:)] + E[®(C;, A;) — ®(Ci—1,4:)] <0

The combined effect of the above two inequalities (as exhibited in the analysis of
HARMONICQ) is that RANDOM is k-competitive against any adaptive on-line
adversary. O

As mentioned at the begining of the section, no memoryless randomized
algorithm can be better than k-competitive against oblivious adversaries and
RANDOM was just shown to achieve that optimal behaviour. This means
that when no information about the past is available, the strategy of randomly
choosing a victim in the case of a miss is the best.

5 Trees

Trees are yet another category of symmetric spaces.

Definition 5.1 A metric space (Q,d) of n points is called a tree if there exists
an undirected weighted tree T = (V, E), |V| > n, with non-negative edge costs
and a one-to-one mapping f : Q@ — V such that for every pair of points z,y € Q
the distance d(x,y) is equal to the weight of the unique path in T connecting the
vertices f(z) and f(y).

The family of trees contains several interesting spaces, although their tree
structure might not be immediately recognizable. As an example consider the
uniform space of n points. This space can be mapped on a star-shaped tree with
(n+ 1) vertices. Each point of the space corresponds to a leaf and the distance
of every leaf from the center of the star is equal to %

Chrobak and Larmore in [5] present a deterministic on-line k-server algo-
rithm for trees and show that it is optimal. An interesting feature of the algo-
rithm is that when serving a request it can move around more than one servers
(none of the algorithms presented so far had this property). In the following
discussion it is assumed that the mapping of the underlying space to a weighted
tree T has been established (as prescribed by the definition above) and we
imagine all the action taking place on that tree.

Definition 5.2 (The algorithm) Let C = {s1,...,s,} be the current config-
uration of the k servers, where each s; is a vertex of T. Let r be an incoming
request. Define (x,y], for any two points x,y of T to be the unique path connect-
ing ¢ and y but with the point excluded. A server s; € C' will be called active
(relative to r) if there exists no other server on the path (s;,r]. If it happens
that more than one servers currently occupy the point s; then one is chosen
arbitrarily and deemed to be the active server. All the others are inactive. In
order to serve r, the following loop is executed:

26

while none of the algorithm’s servers is on r do

- Let 6 = ming{d(s,ys) | s is an active server} where ys is the first
vertex in (s,r].

- Move each active vertex a distance 6 towards r.

endwhile

Notice that a server s that begins as active might be rendered inactive midway
through its journey to r. This will happen if during the execution of the loop
described above some other active server appear in front of s.

Lemma 5.1 The algotithm is k-competitive.

Proof: The standard approach is followed: the algorithm is playing against
an adversary that generates the input request sequence p = (r1,...,7m,). As
usually, C; and A; denote the configurations of the algorithm and the adversary
respectively immediately after they serve r;. A non-negative potential function
is defined. When the adversary moves to serve a request the potential will not
increase by more than k times the adversary cost. When the algorithm moves
the potential will decrease by at least the cost paid by the algorithm. These
conditions guarantee the k-competitiveness of the algorithm. The potential
function & is defined as:

&(C,A) =k-|CA[+)_d(si,s;)

i<j

where C' = {s1,...,s;} and A = {ay,...,a} are the current configurations of
the algorithm and the adversary and |C A| is the minimum matching distance
between C' and A.

Assume that the adversary generates the request r; and moves one of its
servers, say aj, to serve it thus paying a cost d = d(«;,r;) and changing its
configuration from A; 1 to A;. The summation component of the potential is
not affected, since no on-line servers are moved, while the matcing distance does
not increase more than d due to the triangle inequality. As result, the increase
in the potential is no more than k& - d.

Consider now the move of the algorithm to serve r; (which is by now covered
by the adversary server a;). Without loss of generality we can assume that
s1,---,8; are the active (with respect to r;) on-line servers. It can now be seen
that there is always a minimum matching between C;_; and A; such that the
adversary server «;; is mapped to some active on-line server. Assume that s; is
that server. Consider the first execution of the algorithm’s while-loop. All active
servers will move some distance § for an overall cost of 4. During this move,
the minimum matching distance cannot increase by more than (¢t — 2)d (s1, at
the very least, moves closer to its matched adversary server). For p =1,... ¢t

27

let 1, be the number of inactive servers s such that s, is in (s, r;] (for each such s
there is exactly one s, with the above property and as a result 2221 I, =k—1).
As s, moves by J, its distance to these [, on-line servers increases by J but to
the remaining (k—1, — 1) servers its distance decreases by 4. Putting everything
together we conclude that the change in the potential is no more than

t
k(t—2)0+ Y (I, —k+1,+1)§ = —t5

p=1

which shows that the potential drop covers for the cost of the algorithm in
the first execution of the while-loop. Exactly the same reasoning applies for
subsequent iterations of the loop. O

6 Resistive spaces

In designing a randomized algorithm for the on-line k-server problem, the pri-
mary consideration is how to compute the probability distribution of the possible
responses to an incoming request. HARMONIC, for example, advocates that
any server should move to the request with a probability inversely proportional
to its distance from it. Coppersmith et al. ([7]) propose a different approach for
the case when the underlying space is resistive.

Definition 6.1 A metric space (Q,d) of n points qi,...,qn, is called resistive
if there exists a network of resistors Ng with n nodes vy, ...,v, such that for
every i,7 (1<14,7 <n)

d(qi7 Qj) = Rv,-,vj

where R, is the effective resistance between the nodes v and u in Ng. The
conductance matriz {0y} of Ng (where 1/0, 4 is the branch resistance between
the nodes u and v) is called the resistive inverse of (Q,d).

In a related definition, a metric space is called m-resistive if every m-subset of
the space is resistive. It can be shown that every symmetric space is 3-resistive.
Furthermore, every subset of a resistive space is also resistive. Consequently
every resistive space with n points is m-resistive for every m < n.

It turns out that resistive spaces are a quite broad class including, among
others, all uniform spaces and all tree spaces. Coppersmith et al. in [7] intro-
duce RWALK, a randomized and memoryless k-server algorithm, for the case
when the underlying space is (k 4 1)-resistive. In doing so they use the resistor
network underlying any (k+ 1)-subset of the space as a guide for computing the
probability of each server moving to serve a request.

Definition 6.2 (RWALK) Let C = {s1,..., sk} be the current configuration
of the servers when the request r arrives. If r € C then the request point is

28

already covered and is served at no cost. Otherwise let {0y} be the resistive
inverse of the subspace C U {r}. Then the probability of the server s; servicing
T 18

Osi,r

-
2j=1Osjr
Lemma 6.1 RWALK is k-competitive against any adaptive on-line adversary.

Proof sketch: The standard method is employed in this proof too. The al-
gorithm is assumed to be playing against an adaptive on-line adversary that
generates the input request sequence. A non-negative potential function is de-
fined and is shown to have the properties 2 and 3 described in Section 3.2 (with
the factor ¢ of property 2 being equal to k). In fact the potential function used
here is exactly the same as the one used for proving the tree algorithm of the
previous section competitive (it was subsequently shown by Deng and Mahajan
([8]) that this potential function has the afore mentioned properties for a ran-
domized and memoryless on-line algorithm if and only if the underlying space
is (k + 1)-resistive). Proving that this potential function respects property 2 is
quite straightforward: the same argument used in the proof of the tree algo-
rithm is used here too. For property 3 the argument is a little more technical
but still not complicated. It uses the mathematical formulation for defining an
m-resistive space. O

Since, as mentioned above, every symmetric metric space is 3-resistive,
RWALK gives a 2-competitive algorithm for the 2-server problem on every such
space. RWALK can also be used to provide a competitive algorithm for an
unrestricted space, given that this space has a resistive approximation.

Definition 6.3 A resistive space (Q),d') is said to be a resistive A-approzimation
of the metric space (Q,d) (where A > 0) if for every p,q € Q:

d'(p,q) < d(p,q) < Ad'(p,q)

Lemma 6.2 If a metric space (Q,d) has a resistive A-approzimation (Q,d')
then there exists a randomized and memoryless k-server algorithm for (Q,d)
that is Ak-competitive against any adaptive on-line adversary.

Proof: Assume that the input request sequence p = (rq,...,7n) is served by
RWALK in (Q,d'). Every sequence of server moves produced by RWALK in
serving p has a d-cost that is no greater than X times the corresponding d'-cost.
Taking expectations the result follows. O

In fact the above reasoning applies for other kinds of approximation as well.
For example, if all distances of (Q, d) are in the interval [1, A] (or, more generally,
if max, qeq d(p,q) < Amin, 4eq d(p,q)) then any of the k-competitive uniform
space algorithms can be used to give a Ak-competitive algorithm for (Q, d).

29

7 Weighted cache

In this section we conclude the presentation of on-line algorithms for the k-
server problem by considering an instance of the problem in an asymmetric
metric space. Let (Q,d) be a space where every point ¢ €) has an associated
positive weight w(q) and where the distance d(p,q) of point g from any other
point p € (Q is defined as

d(p,q) = w(q)-

It is not hard to see that this distance function satisfies the triangle inequality
property and, as a result, (Q,d) is a metric space. But d(p,q) = w(q) which,
in general, is different from w(p) = d(q,p). The k-server problem over such
a space is known as the weighted cache problem since it can be considered a
generalized version of the cache problem where the cost of a miss is not uniform
but depends on the page that created the miss. Caching fonts in a printer or in
the memory of a bitmap display are examples of weighted cache problems.

Raghavan and Snir ([23]) discuss a version of the HARMONIC algorithm for
the weighted cache problem. In this setting, a server that currently occupies a
point s will move to serve an incoming request r with probability inversely pro-
portional to w(s). The algorithm is proven k-competitive against any adaptive
on-line adversary when the maximum weight in the underlying space is finite.
Another algorithm, deterministic this time, is described by Chrobak et al. in
([4]). The algorithm, called BALANCE, is shown to be k-competitive. The
remaining of this section contains a description of this algorithm and an outline
of its competitive analysis.

BALANCE operates by trying to equally divide the service cost of a request
sequence among all the k servers. To this end each server maintains a variable
that stores the work performed by the server so far. The value of this variable
is initialized to zero and is updated each time the server is selected to service a
request.

Definition 7.1 (BALANCE) Let the algorithm servers be labeled s, ..., sk
arbitrarily and with each s; associate a work variable W; initialized to zero. Each
time a request r arrives one of two things can happen: either the request point r is
already covered by a server, at which case it is served by that server at zero cost,
or not. If r is uncovered then a server s;, such that W; = min{W1, ..., W}, is
chosen and is moved to r. Finally, W; is incresed by w(r), the cost of serving
the request.

Lemma 7.1 BALANCE is k-competitive.
Proof: As usually, the algorithm is assumed to be playing against an adversary

that generates the input request sequence p = (r1,...,7m,). Without loss of
generality the following assumptions are made:

30

1. The adversary will never generate a request at a point currently occupied
by an on-line server — omitting such a request leaves the cost of BAL-
ANCE unchanged while, due to the triangle inequality, never increases the
adverary cost.

2. After an adversary server moves from a point ¢ there is no subsequent
request to ¢ (such a request can be placed instead to an imaginary point
¢’ that has the same weight as q).

3. At the end both the adversary and the algorithm servers are at the same
configuration. The algorithm servers can be forced to converge to the
final adversary configuration Ay by extending p with a sufficient number
of requests to points of Ay currently unoccupied by the algorithm servers.
The exessive requests will cost the adversary nothing while they can only
increase the total cost of the algorithm. We assume that these extra
requests are part of the sequence p.

The set of points R = {r|r € p} can now be partitioned in two disjoint sets:
the set of final points /' = RN Ay and the set of non-final points NF = R — F'.
Let Wr, Wnr be the sum of the weights of the final and non-final points
respectively. Then, according to the above mentioned assumptions, we have
that

costapv(p) = Wnr + Wr.

Let T'(j) always denote the value of min{W7, ..., Wy} just before the arrival
of request ;. Let W;(j) be the value of W; just after the request r; has been
served. Clearly T'(0) = 0 and T'(j) will remain zero as long as there exists an
on-line server that has not still moved from its initial position. Consider now a
server s; that moves to serve a request r; € NF. Since r; is a non-final point, s;
will, at some point in the future, have to vacate r;. Let r; (I > j) be the next
request that makes s; move from r;. According to the definitions given above
we have that

T(j) = Wi(j) —w(r;) and) = W;(4).

Thus, during the time that s; occupies the point r; the value of T increases by
w(r;). Using this fact it can be shown that

T(m) S WNF-

To see this, assume that every request is first served by the adversary and then
by the algorithm. Consider the case where an on-line server s; moving to service
a request 7; causes an increase in the value of T' (i.e. T'(j) > T'(j — 1)). Since
the adversary has already moved a server at 7, there will always be, just before
the move of s;, at least one (necessarily non-final) point ¢ occupied only by
an on-line server s; (perhaps s; = s;). The increase of T is then charged to

31

that point. But while ¢ is occupied by s; the increase in T is w(q). As a
result the total charge allocated to ¢ cannot be more than w(g). Consequently,
T(m) <22 eNF w(g) = Wi

The definition of the function T' now implies that T'(j) > W;(j) — w(g:),
where ¢; is the point occupied by s; immediately after r; has been served by
the algorithm. Putting everything together:

k
costpar(p) = ZWi(m) <kT(m)+Wr <k(Wnr + Wr) < k-costapv(p)
i=1
O

8 Lower bounds

The question of how well on-line k-server algorithms can perform has been ad-
dressed up to now from a “positive” side, by presenting concrete examples of
such algorithms and analyzing their performance in the framework of competi-
tive analysis. The same question can also been approached from the “negative”
viewpoint of lower bounds: showing what cannot be achieved by an on-line al-
gorithm. Some of these negative results have already been introduced in the
discussion of the k-server problem over unrestricted and uniform spaces. This
section further elaborates on these results and also introduces a few more of the
same negative flavor.

The first lemma presented here appeared in the work of Manasse et al. ([18])
where the k-server problem itself was introduced. It gives a lower bound for
the competitive ratio achievable by deterministic algorithms over symmetric
spaces. This bound is strongly conjectured to be tight. The task of settling
this conjecture has been the centerpiece of the research on the on-line k-server
problem.

Lemma 8.1 No deterministic algorithm for an instance of the on-line k-server
problem over a symmetric metric space can be better than k-competitive.

Proof: Consider an instance of the k-server problem on some symmetric space
(Q,d). Let L be an on-line algorithm for that instance of the problem and
let Co = {s1,...,5,} be an arbitrary initial configuration of L. Without loss
of generality it can be assumed that Cy contains k distinct points, i.e. no two
servers of L coincide. We can also assume that L is “reasonable”, meaning that
it will only move a server in order to serve a request at an uncovered point
(the triangle inequality inplies that doing otherwise can only increase the cost
that L pays in processing a request sequence). Consider now any subspace H
of (@,d) containing (k + 1) points: the k points of Cy plus an arbitrary point
g € Q. Then a request sequence p = (ry,...,ry,) of an arbitrary length m can
be formed by always placing the next request at the unique point of H that is

32

not covered by a server of L. So, r1 = ¢, r2 = s; where s; is the point of Cy
that was occupied by the server that serviced r; and so on. This scheme then
implies that the server which serves request r; was occupying, just before the
arrival of r;, the point ;1. As a consequence, the cost paid by L in processing
p is:

m—1 m—1

costr (p) = Z d(rit1,7s) + costr(rm) > Z d(ri, Tiy1)
=1 i=1
Consider now a family By, ..., By of k server algorithms that are going to serve

the same request sequence p as L. Let (Cy — {s;} U {¢}) be the initial config-
uration of B;. Algorithm B; operates as follows: if it already has a server at
the point of an incoming request r; it does nothing. Otherwise it moves the
server currently occupying the point 7;_; to serve r;. Let now C;(j) denote
the configuration of algorithm B; immediately after it has served r;. A simple
induction on j reveals that for every j, 0 < j < m, and every i # 1,

Ci(j) # Ci(j)-

This means that every request r; forces exactly one of the algorithms B; to
move a server in order to service it. The others already have a server at r;. As
a result,

k m—1
S costin(p) = 3 dlr,y01) < costi o).
i=1 j=1

which implies that there exists at least one algorithm B; such that costp, (p) <
1
zcostr(p).

Taking into account the fact that the initial configurations of L and B; are
not the same, the triangle inequality implies that

costopr(p) < costp, (p)+max d(s;,q) = costr(p) > kcostopr(p)—k max d(s;, q)

5;€Co 5;€Co

where costopr(p) is the optimal cost of serving the request sequence p starting
at Cp. From that, the lemma follows. O

Karloff et al. ([14]) address the question of lower bounds for randomized
on-line k-server algorithms in unrestricted metric spaces. Through a lengthy
argument they were able to prove that there exists an Q(loglog k) lower bound
on the competitive ratio of every randomized on-line algorithm (against oblivi-
ous adversaries) for every symmetric space with at least (k + 1) points and that
this lower bound can be strengthened to Q(log k) if the space is large enough to
include a (k+1) size subspace that is almost superincreasing. Roughly speaking,
a space (Q = {qo,---,4qn},d) is superincreasing if d(g;, ¢;+1) is much larger than
d(gi—1,q;). First they prove that there can be no randomized on-line k-server
algorithm with a sublogarithmic competitive ratio in a superincreasing space
with at least (k+ 1) points. The next step is to prove that a large enough space

33

will contain either a subspace with (k + 1) points that is almost superincreasing
or a subspace (of the same size) that is almost uniform. In the later case, the
Q(logk) lower bound follows from the following result, proved by Fiat et al.
([11]), which addresses the performance of randomized algorithms in unifrom
spaces.

Lemma 8.2 No randomized on-line k-server algorithm for uniform space can
be better than Hy-competitive against an oblivious adversary, where Hy, = 1 +

% +...+ % 1is the k-th harmonic number.

Proof: Let L be any randomized on-line k-server algorithm for the uniform
space (@, d) and consider any starting configuration Cy = {s1,. .., s } consisting
of k distinct points. For an arbitrary point ¢ € @ such that g € Cy let H =
Co U {q}. We will show how an oblivious adversary can construct a sequence p
of requests at points of H so that the expected cost that L pays in serving p is at
least Hy, times the adversary cost for serving p (where both the adversary and
the algorithm L start with their servers at Cp). The adversary generates the
input sequence p = p; ...p,, in phases, where each phase p; is a subsequence
of requests such that

m

costapy(p;) =1 and Elcostr(p;)] > Hy.

Since the adversary is oblivious, it is not allowed to see how the algorithm L
will respond to a request before generating the new one. It does, however, know
the code of L. This means that it can maintain an array P[] of probabilities
where, for each x € H

P[z] = Pr{x is not covered by an algorithm server after the most recent request}.

Initially, P[s;] = 0 (Vs; € Cp) and P[g] = 1. The entries of P[] are updated
after the generation of every new request. The request sequence p is generated
based on the value of P (observe that a request placed at a point r will make
the algorithm pay an expected cost of P[r] for serving r).

The adversary maintains a dynamic set of marks over the points of H. Ini-
tially, there are k marks, one on every point of Cy. When a new request r is
generated, a mark is placed on r, if none is already there. If, however, after
placing that mark all points in H are marked then all marks, except the one
placed on r, are removed. A phase p; ends as soon as there are £ marked points
in H. Every phase is broken down to k subphases. Each subphase consists of
a number (possibly zero) of requests to already marked points followed by a
request to an unmarked point. Let M always be the set of marked points and
set t = |[H — M|. At the begining of a subphase the set H — M is checked for
a point r such that P[r] > 1/t. If such a point exists, then a request is placed
at r (causing L to pay an expected cost of 1/t in order to serve it) and the
subphase ends. Otherwise, there must be at least one point x € M such that

34

Plx] > 0. Let ¢ = P[x] for such a 2 and use U to always denote the current
value of) yeM Ply]. The subphase then starts by generating requests to already
marked points according to the following loop:

While U > ¢ and while the total expected cost of all the requests
in this subphase so far does not exceed 1/t, request a point r € M
such that P[r] = maxgepm{P|[z]}.

If the loop ends with the expected cost of the subphase exceeding 1/t then the
subphase concludes with a request to an arbitrary unmarked point. Otherwise,
the last request is for the unmarked point y with the highest P[y] value. In
either case it can be verified that the cost of L for the subphase is at least 1/¢.

The proof is completed by observing that in the duration of a phase t takes
(in that order) the values 1,%,(k — 1),...,2 and summing over all subphases
we can conclude that the cost of L for serving any phase p; is at least Hy.
Furthermore, the adversary can serve every phase at a unit cost. To see this, let
r, ' be the first requests of phases p;, and p;_; respectively. The definition of
a phase implies that r # r'. If when r' arrives the adversary serves it with the
server that it has at point r, then it can be verified that all subsequent requests
of p; , fall on points already covered by adversary servers. O

In the spirit of Lemma 6.2, the above result also implies that if (Q,d) is a
metric space such that

maXg yeqQ d(may) <b
ming ,eq d(:c,y) -

for some b > 0 then no randomized on-line algorithm for the k-server problem
in that space can be better than %—competitive against an oblivious adver-
sary. Furthermore, combining Lemmas 8.2, 2.1 and 2.2 we can conclude that
no randomized on-line algorithm for the caching problem can be better than
k/Hy-competitive against an adaptive on-line adversary (or else there would be
a better than k-competitive deterministic on-line caching algorithm).

Regarding the performance of memoryless randomized algorithms for the
uniform space, Raghavan and Snir ([23]) show the following:

Lemma 8.3 No memoryless randomized on-line algorithm for the caching prob-
lem can be better than k-competitive against an oblivious adversary.

For the weighted cache problem, Chrobak et al. ([4]) prove that:

Lemma 8.4 There exists no memoryless deterministic on-line algorithm that
is c-competitive for every instance of the k-server weighted cache problem, no
matter what the value of c is.

Proof: Let L be such an algorithm that claims to be c¢-competitive (¢ > 0),
for every instance of the weighted cache problem. Consider such an instance
defined by the set of points @ = {q1,-..,qr+1} together with the assignment

35

of weights w(g;) = V*, for some positive number V. Let B be an adversary,
starting in the same initial configuration as L, which generates the input request
sequence in the following way. It starts by always placing a request to a point
that is uncovered by the algorithm servers. It will keep on doing so until the
algorithm goes through some configuration C' for the second time. Since there
are k servers and (k + 1) points this will not take more than (k + 1)* requests
to happen. At that poin the adversary modifies its strategy: from then on it
simply repeats the sequence of requests in the cycle between the first and the
second appearence of C. Call this sequence of requests p. The memorylessness
of L guarantess that the algorithm will always go through exactly the same
configurations when faced with p. Let now ¢; be the highest indexed point in
p- It follows that for each repetition of the request sequence p the cost of L is
at least V. The adversary on the other hand, always keeps one of its servers at
g; and uses any one of its remaining servers for handling the other requests. As
a result, the adversary cost for serving p is no more than (k + 1)¥V¢1. Over a
very large number of repetitions of p the costs incurred before reaching the cycle
can be ignored. Thus, in the limit, the ratio of the algorithm and adversary cost
is at least V*/((k + 1)¥V;_1) = V/(k + 1)*. A suitably large choice of V makes
this ratio exceed ¢, contradicting the claim that L is c-competitive. O
A similar argument can be used to prove the following:

Lemma 8.5 There exists no memoryless deterministic on-line algorithm that
is c-competitive for every instance of the on-line k-server problem, no matter
what the value of c is.

Chrobak et al. ([4]) show how to construct asymmetric metric spaces for
which no deterministic on-line k-server algorithm can be c-competitive, for any
value of ¢. This proves that, for the general case of the on-line k-server problem
in asymmetric spaces, there exist no competitive deterministic algorithm.

9 Conclusion

In the past few sections we tried to exhibit some of the work performed during
the last few years on the on-line k-server problem. The results, both positive
and negative, that have been presented show the definite progress achieved in
understanding and analyzing the problem. Despite this progress, though, there
are quite a few tantalizing questions that remain unanswered.

The most eminent among them is the k-server conjecture: is it true that for
every instance of the k-server problem over a symmetric metric space there exists
a k-competitive deterministic algorithm? All the evidence seem to indicate that
the answer is yes but a concrete proof still eludes us. The conjecture has been
settled in the positive only for restricted versions of the problem: it is known
to be true for the 2-server problem over any symmetric space ([18]) and for the
k-server problem when the underlying space has (k+1) points ([18]) and (k+2)

36

points ([16]); it has also been shown to hold for particular metric spaces (uniform
spaces, trees). For the general case, though, the best result known to date is the
(2k — 1) competitive ratio achieved by the work function algorithm. In fact, this
algorithm is believed to really be k-competitive although no conclusive proof
has been found. Chrobak and Larmore ([6]) report that computer experiments
over thousands of small metric spaces have revealed no counterexample forcing
a larger than k competitive ratio on the algorithm.

A similar question arises when considering randomized algorithms. Are there
linearly competitive randomized algorithms? In fact, the apparent superiority
of randomized versus deterministic algorithms, at least when playing against
oblivious adversaries (emphatically displayed in the discussion of the k-server
problem over uniform spaces), gives rise to an even more interesting possibility:
are there randomized on-line algorithms that achieve a sublinear competitive
ratio for the general case of the k-server problem? Of particular interest is the
case of memoryless randomized algorithms. As the example of HARMONIC
shows, such algorithms can be competitive despite their memorylessness prop-
erty, something that is not true for their deterministic counterparts. What is
the best competitive ratio for a memoryless, randomized k-server algorithm? Is
it possible that it is linear in k? Since memoryless algorithms are usually easy
to implement and fast, there is also an important practical side in answering
these questions (especially in the face of the very bad execution time of the work
function algorithm).

The only randomized and memoryless algorithm that has been shown to
be competitive for the general case of the k-server problem is the HARMONIC
algorithm. Although HARMONIC is, provably, not linearly competitive (neither
against oblivious nor adaptive on-line adversaries) there still exists a large gap
between the exponential competitive ratio that it has been shown to achieve
and its worst known behaviour (k(k—;l)—competitive against lazy adversaries).
Finding the exact competitive ratio of HARMONIC remains an open problem.

References

[1] S. Ben-David, A. Borodin, R. Karp, G. Térdos, and A. Wigderson. On the
power of randomization in online algorithms. In Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing, pages 379-386, 1990.

[2] P. Berman, H. Karloff, and G. Térdos. A competitive 3-server algorithm.
In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 280-290, 1990.

[3] A. Borodin, N. Linial, and M. Saks. An optimal on-line algorithm for

metrical task systems. In Proceedings of the 19th Annual ACM Symposium
on Theory of Computing, pages 373-382, 1987.

37

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. New results on
server problems. In Proceedings of the 1st Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 291-300, 1990.

M. Chrobak and L. Larmore. An optimal on-line algorithm for k-servers
on trees. SIAM Journal on Computing, 20(1):144-148, 1991.

M. Chrobak and L. Larmore. The server problem and on-line games. In
On-Line Algorithms: Proceedings of a DIMACS Workshop, volume 7 of
DIMACS Series in Discrete Mathematics, pages 11-64. 1992.

D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir. Random walks on
weighted graphs, and applications to on-line algorithms. In Proceedings of
the 22nd Annual ACM Symposium on Theory of Computing, pages 369—
378, 1990.

X. Deng and S. Mahajan. Server problems and resistive spaces. Information
Processing Letters, 37:193-196, 1991.

P. Doyle and J. Snell. Random Walks and Electric Networks. Number 22
in The Carus Mathematical Monographs. The Mathematical Association
of America, 1984.

D. Du and F. Hwang. Competitive group testing. In On-Line Algorithms:
Proceedings of a DIMACS Workshop, volume 7 of DIMACS Series in Dis-
crete Mathematics, pages 125-134. 1992.

A. Fiat, R. Karp, M. Luby, L. McGeogh, D. Sleator, and N. Young. Com-
petitive paging algorithms. Journal of Algorithms, 12:685-699, 1991.

A.Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algorithms. In Pro-
ceedings of the 31st Annual IEEE Symposium on Foundations of Computer
Science, pages 454-463, 1990.

E. Grove. The harmonic k-server algorithm is competitive. In Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing, pages 260—
266, 1991.

H. Karloff, Y. Rabani, and Y. Ravid. Lower bounds for randomized k-server
and motion planning algorithms. 1991.

E. Koutsoupias and C. Papadimitriou. Beyond competitive analysis. In
Proceedings of the 35th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 394-400, 1994.

E. Koutsoupias and C. Papadimitriou. On the k-server conjecture. In
Proceedings of the 26th Annual ACM Symposium on Theory of Computing,
pages 507-511, 1994.

38

[17] L. Larmore M. Chrobak. Harmonic is 3-competitive for two servers. 1990.

[18] M. Manasse, L. McGeogh, and D. Sleator. Competitive algorithms for
server problems. In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, pages 322-333, 1988.

[19] L. McGeogh and D. Sleator. A strongly competitive randomized paging
algorithm. Algorithmica, 6:816-825, 1991.

[20] S. Phillips and P. Tetali. Hitting costs via electrical resistances and the
harmonic algorithm for k-servers. 1993.

[21] P. Raghavan. Lecture notes on randomized algorithms. Research report,
IBM Research Division, T.J. Watson Research Center, 1990.

[22] P. Raghavan. A statistical adversary for on-line problems. In On-Line
Algorithms: Proceedings of a DIMACS Workshop, volume 7 of DIMACS
Series in Discrete Mathematics, pages 79-83. 1992.

[23] P. Raghavan and M. Snir. Memory versus randomization in on-line al-
gorithms. In 16th International Collogium on Automata, Languages and
Programming, volume 372 of Lecture Notes in Computer Science, pages
687-703. Springer-Verlag, 1989.

[24] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202—208, 1985.

39

