Beyond Fail-Stop: Wait-Free Serializability and Resiliency in
the Presence of Slow-Down Failures®

Dennis Shasha
John Turek

May 25, 1994

Abstract

Historically, database researchers have dealt with two kinds of process failures: fail-stop
failures and malicious failures. Under the fail-stop assumption, processes fail by halting. Such
failures are easily detectable. Under the malicious (or Byzantine) failure assumption, processes
fail by behaving unpredictably, perhaps as adversaries. Such failures are not necessarily de-
tectable. When system designers discuss fault tolerance, they typically restrict themselves to
the problem of handling fail-stop failures only. This paper proposes an intermediate failure
model and presents a practical algorithm for handling transactions under this model. The new
failure model allows processes to fail by either slowing down or stopping; slow processes may
later speed up, continue to proceed slowly, or, (eventually) stop. We call such failures slow-down
failures. The model does not assume the ability to distinguish among these possibilities, say, by
using a timeout mechanism, nor does it assume that it is possible to kill a slow process. Our al-
gorithm, instead, allows for a new process to be dispatched to do the job that had been assigned
to a slow process. The problem is that several processes may end up doing the same task and
interfere with one another. Our algorithm controls such interference while guaranteeing both
serializability and resiliency.

1 Introduction

The primary tool that is used in building database management systems is the transaction. Typical
systems try to guarantee that any concurrent execution of transactions will have the same effect as
a sequential execution of those transactions that commit during the execution; aborted transactions
will have no effect.

Whether these guarantees can be achieved depends very much on the failure assumptions.
Realizable systems, to date, assume fail-stop failures where processors fail by halting. Some memory
may disappear, but other memory called stable storage will survive failures.

For some systems, these assumptions model hardware failures quite well. The stable storage
assumption can be guaranteed by using disk mirroring (or disk arrays) and checksums. As for

processor failures, many systems vendors guarantee that any single hardware failure in a processor

*This Research was partially supported by the National Science Foundation under grant IRI-89-01699 and by the
Office of Naval Research under grant N00014-90-J-1110.

will cause the processor to stop and announce failure within a few nanoseconds. Moreover, when
a failed processor is repaired, it performs special recovery activity — intuitively, it “knows” that it
has failed.

When processors don’t announce failures timeouts can be used to detect failures. The problem
is that using timeouts in this way assumes that inactivity over some time interval implies a fail-stop
failure. Even when this assumption is justified (e.g., when all failures are fail-stop and processors
execute at predictable speeds) timeouts have the undesirable property that the timeout threshold
may be too long for important real-time applications. We believe that network congestion and
certain kinds of software interactions (e.g. cycle stealing activity by a high priority job) can be
better modeled by processes' that simply slow down and may speed up later; when the processes
speed up, they will not perform any special recovery activity — they do not “know” they have failed.
So, we explicitly reject the assumption that the system can distinguish between a slow process, that
may eventually speed up, and a stopped process, that will never execute another instruction. All
we can determine is that the process is currently slow. We call this more general class of failures
slow-down failures.

This paper presents an algorithm that tolerates slow-down failures by dispatching new processes
to complete the work left by unfinished processes. The new processes can be created dynamically,
as soon as the system detects that a problem may have occurred. Briefly, the algorithm uses two
phase locking and a form of no undo/no redo recovery. Since several processes are working on the
same transaction, it is possible that a sleeping process, p, wakes up after another process, p’, has
completed the transaction that ¢ was to do. In this case, ¢t must be prevented from causing updates.
We accomplish this by timestamping the data items and applying techniques developed by Herlihy
[Her89].

This paper assumes a reliable, stable, shared memory on which the primitive compare&swap is
atomic. The basic idea also carries over to memories that suffer from slow-down failures; however,
we do not address this extension here.

The next section briefly reviews related work. In Section 3 we describe our model and objectives.
In Section 4 we present an algorithm, that correctly processes transactions in the presence of
slow downs, and prove its correctness. Finally, in Section 5 we conclude the paper giving a brief

description of some optimizations that are possible.

2 Related Work

The literature on achieving fault tolerance in database systems is extensive and its main methods are

well described in [BHG87]. That work assumes that processor failures are fail-stop. The inspiration

1A process will be our term for a thread of execution. However, many processes share the same address space.

for our work, however, comes from recent advances in the theoretical parallel computation literature
along with Herlihy’s work on wait-free algorithms.

Kedem et al. [KPS90] studied the problem of achieving efficient emulation of PRAMs (parallel
random access memories) on a PRAM with fail-stop failures. At each time step they use a strategy,
similar to no redo/no undo, combined with a certification technique to guarantee resiliency. Martel
et al. [Mar90] extend this result to include asynchronous PRAMs. The importance of these works is
that they show that one does not need to limit oneself to being resilient to a predetermined number
of faults. Both algorithms cause the system to degrade gracefully; as the number of faults increase,
system performance decreases. In fact, both algorithms will continue to execute the computation
at hand as long as at least one processor is still functional. Our algorithm has a similar flavor to
Martel’s in that both algorithms make use of faster processes to do the work of slower ones and
that both require the use of a specialized hardware primitive.

Herlihy [Her88] proved that special hardware primitives are necessary to transform any se-
quential computation into a wait-free (or even non-blocking) concurrent? implementation. In a
more recent paper [Her89], he gives various examples of the use of a specific primitive, the com-
pareéswap, to create wait-free implementations of some well known data structures finally bringing

wait-freedom into the realm of practicality. Compare&swap, shown in Figure 1, atomically com-

compare&swap(m, v, v,)
begin /+ Atomic Action x/
if (m = v) then

begin
m=7v;
return(true)
end

else return(false);
end; /* Atomic Action */

Figure 1: Compare&Swap

pares the value of a memory location m with a value v, and replaces m with another value v, if
and only if m contains v. We follow Herlihy’s use of the compareé&swap in the implementation of
our algorithm.

The idea of replicating transactions in order to achieve fault tolerance is not new, see for
example [NS89,Bir85,DLA8S,Svo84]. We focus on the more recent work by Ng and Shi [NS89].
In their algorithm they immediately create k replicas of the transaction in order to survive k — 1

failures. Upon completion, the surviving replicas synchronize, selecting the replica with the highest

?Note that, in this context, concurrency implies asynchrony.

priority to commit. Their algorithm only handles fail-stop failures and generates process and data
replicas regardless of need. Qur algorithm can tolerate slow-down failures and replicates processes
and data only when a failure occurs. However, their algorithm can tolerate both processor and

memory failures while ours assumes that memory is stable.

3 Model

The computational environment that we consider is depicted in Figure 2. There are a fixed number

Local Local | .. Local

Mem. Mem. Mem.

Proc. Proc. | Proc.
1 2 P

Reliable Network

Stable Stable| Stable
Store Store Store

Figure 2: Computing Environment

of asynchronous processors connected to one or more reliable memory modules that we treat as
a single global memory space called stable storage. The connection is through a reliable, though
possibly slow, network. It is assumed that messages arrive in the same order as they were sent.
Fach processor can support several threads of control; we call each such thread a process.
Processes can fail either by slowing down temporarily or by stopping. We do not assume that we
can distinguish between the two kinds of failures (say, by using a timeout mechanism [BHGS8T7]), so
we call either of them a slow-down failure. Also, we do not assume that we can kill a slow process.
While the assumption that we can kill processes would significantly simplify our algorithms it is
not as simple a matter as it might first appear. For example, a process may be killed after having
issued several requests that cause updates. The existence of delays due to slow-down failures means
that at any given time the precise state of the system is impossible to determine. Related work

[And90] assumes that it is possible to kill a process and ignore any slow request that it might have

sent. In that work, the assumption is justified because there is an explicit data server process that
can serialize requests and knows what to ignore.

A task is defined by a code fragment and a task identifier, denoted task id. The code fragment
refers to the execution of a transaction beginning with a (ransaction start command and ending
with a transaction commit or a transaction abort command. The identifier is unique to each task
and we assume it is generated by the application, before the task is accepted by the system.

An action is an execution of a task. Because actions can suffer from slow-down failures, several
actions may be created for any given task; these actions execute concurrently. The decision of when
an action should be created to perform the same task as another action may be the responsibility of
the operating system, some application-dependent dispatcher, or some time-stamping convention
to which the processes adhere. These issues affect the performance of the system, but will not be
addressed in this paper.

A task may be aborted either because it is (or appears to be) in a deadlock state or because
another task was unable to wait for this task to terminate.® In either case, the application receives
an aborted terminating condition and can decide to either create a new task (to do the work of the
aborted task) or to forgo execution of the task.

To summarize, a task is the code of a transaction. An action is an execution of a task. A
process performs actions one-at-a-time on behalf of many tasks. Because of slow-down failures,
several processes may perform actions concurrently on behalf of a single task. This interaction can

be seen in Figure 3.

3.1 Correctness Criteria

Although the idea of having several actions do the same task is attractive in principle (reminiscent
of resending messages over a network that can lose messages), it introduces several problems. For
example, all the actions working on the same task must share locks but must not read the dirty
pages written by one another. Also, an action a for some task ¢ that continues to execute after
another action @’ has committed ¢ should not update anything. If @ did so, it might overwrite data
that other tasks have since updated. Finally, because actions may slow down at arbitrary times,
no failed action should stop the system. We summarize these considerations in our correctness

criteria:

1. If a task commits, exactly one action executing that task commits.

2. The concurrent execution of tasks is correct. Following Hadzilacos [Had88], this entails the

following three conditions.

3This is important for real-time applications where high priority jobs can not afford to be delayed by lower priority
jobs.

Task 1 Task 2

Process 1 Process 2

Actions 1, 4, and 5 execute on behalf of task 1. Actions 3 and 2 execute
on behalf of task 2. Process 1 executes action 4. Process 2 executes
actions 1 and 2. Other processes executing actions 3 and 5 are not

shown.

Figure 3: Tasks, Actions, and Processes

(a) Commit Serializability: Committing actions execute (one-copy) serializably.
(b) Recoverability: Any task (or action) which has not been committed can be aborted

without affecting the semantics of committed tasks.

(c) Resiliency: A consistent database state can be recovered from the information in stable

storage at any time.

3. The system should be wait-free. In other words, if a process gets killed, or becomes slow, it

should not indefinitely block the progress of any other process.

Item 1 deserves additional attention. We do not assume that the executed task is idempotent.
For example, if the effect of a task is to add 1 to x, then, if care is not taken, the net result of

having two actions commit for the task will be different from having just one action commit. This

problem is further exacerbated if the execution flow of the two actions is different. This can occur
for several reasons; for example, the execution may depend on the state of the rest of the system

(such as user input from a keyboard) or be non-deterministic.

4 Algorithm

Our algorithm uses a generalized two phase locking concurrency control algorithm combined with
a generalized no undo/no redo recovery algorithm. After discussing states of task and the data
state, We present the algorithm at a high level (i.e., using powerful constructs). We show how to

implement those constructs later.

4.1 Task States

A task is in one of three mutually exclusive states as shown in Figure 4. Since different actions may

execute on behalf of the same task, the task state is a function of the states of its various actions.

ITIABORTED
1
1
1
1
1
1
1

ACTIVE :
1
1
1
1
1
1
1
1 COMMITTED
1
1
1
1
1
1
1
1
1
1

Modify tmp 1 Modify db
(Cleanup)

Figure 4: States of a Task

Active Start state.

Aborted Some action has set the task state to aborted. (The action may belong to this task

or another, presumably higher priority, task.)

Commutled Some action belonging to this task has set the task state to committed. (In our

implementation, this means setting a pointer to a list of after-images.)

A race condition can exist between two actions where one attempts to set the state to aborted
and the other attempts to set the state to committed. As we show in Section 4.6, the first action

to set the state wins the race. Thus, Aborted and Committed are final states.

4.2 Data State

There may be several instances of any object in the database. Each of these either will have been
written by an action of a committed task (we will call such an instance a committed instance) or will
be associated with some active action. Fach instance of an object has a version number associated
with it. At any time, the current version of an object is the commitled instance with the largest
version number. Qur algorithm ensures that no two committed instances of an object can have the
same version number. The data state at any time is defined to be the set of current versions of

objects in the database.

4.3 High Level Algorithm

A task starts in the active state. All actions for a task share locks with one another. When an
action aborts a task, the action need not release locks for that task. Here is the algorithm for a

single action a for task ¢:

1. active phase:

Loop
Execute the code associated with the task,
For each object # needed by the action do:
Obtain the lock for x, abort if unable to obtain lock.
Read the current version of jz into a temporary instance,
x.tmp, that only this action can access.
Increment the version number of x.tmp by 1.
End for
Continue processing.
End loop

Link all the temporary instances into an after-image list.

2. commil phase:

Atomically, commit task ¢ and associate the after image list of ¢ with task ¢,
provided no other action for ¢ has performed a commit.
If successful, objects on the after-image list are now commitled.

3. Cleanup Phase (optional; the alternative, scavenging, is discussed below):

Release the locks.

Atomically is taken, in this context, to mean that the atomic operation either occurs in its entirety
or not at all and that no other operation can read or modify intermediate results of the atomic
one. The action can abort either the task on whose behalf it executes or, depending on system

requirements, the task holding the lock.

4.4 Correctness of High Level Algorithm

In subsection 4.5 we show how to implement the difficult operations of the high level algorithm. In
the subsection following, we prove that the implementation is correct. This subsection assumes that

the high level operations can be implemented and verifies the algorithm under that assumption.
Lemma 4.1 If a task commils, exactly one action evecuting that task commits.

Proof: Because of the provision associated with the commit operation, at most one action will

commit for a committed task. If no action commits, then there is no way for the task to commit. M
Lemma 4.2 Commit Serializability: Committing actions execute (one-copy) serializably.

Proof: Define the history of the computation on a single object to be the temporal order of reads
and writes on any version of that object where we only consider committing actions. Because of
write and read locks, two distinct operations on the same version of an object are ordered if one of
them is a write.

Every read to an object x made by an action is to the current version of z at the time of the
read. Every committing write creates a new current version. Therefore, each read will be to the
value written by the last preceding write. This is the same behavior as would occur in a single copy
execution. Therefore, we can treat the execution as a single-copy execution and apply the standard

two phase locking theorem [BHGS8T7].]

Lemma 4.3 Recoverability: Any task (or action) which has not been commilted can be aborted

without affecting the semantics of committed tasks.

Proof: The state of the database is changed only by a commil. Non-committing tasks or actions

never reach the commit phase, so do not change the state. [|

Lemma 4.4 Resiliency: A consistent database state can be recovered from the information in stable

storage at any time.

Proof: A consistent state is exactly the set of current versions. They are all in stable storage. R

Lemma 4.5 The system should be wail-free. In other words, if a process gets killed, or becomes

slow, it should not indefinitely block the progress of any other process.

Proof: If a process p is blocked by an action @’ of process p’, p does not depend on the progress
of p’ but rather of the task, say ¢’, that p’ is executing. Because many actions may execute ¢’ in
our scheme, another process p” will eventually issue an action to execute t’, unblocking p. (Which
other process does this is a pragmatic decision that is outside the scope of this discussion.) [|

Since these lemmas correspond exactly to our correctness conditions, we have proven our main

theorem.

Theorem 4.1 The high level algorithm is correct assuming that each of its operations is imple-

mented correctly.

4.5 Implementing the Constructs of the Algorithm

In order to implement our algorithm, we need to support the fundamental operations:
1. Obtain a lock on a data item z.
2. Read the current version of a data item z.
3. Commit or abort a task by at most one action.
4. Atomically change either a task or lock state.

We discuss the above operations in order of presentation. For concreteness, we focus on a specific
implementation though other implementations are possible.

Locks are held by tasks; all the actions executing a given task will share the lock on an object.
Suppose that an action, a, for a task, ¢, attempts to acquire a lock on an object z. There are three
possibilities: no task holds the lock on z, ¢ already holds the lock (because another action for ¢
previously acquired the lock), or the lock is held by some other task, t'. If the first case is true,
then @ can atomically lock z for ¢. If ¢ already holds the lock, then it is as if @ had already obtained
the lock. In both cases, we say that the lock was obtained directly.

If the lock is held by another task ¢, then there are three possibilities. The task, ¢, has either
commilted, aborted, or is still active. If ¢ is still active, then it can still make progress (even if
all the actions currently performing {' have failed, a new action will eventually be dispatched). In
this case, @ can wait or abort ¢ or abort ¢ (what it does depends on implementation decisions

and whether ¢’ is deadlocked). If, on the other hand, t' has terminated (either by committing or

10

aborting), then, as far as concurrency control is concerned, ' no longer needs to hold the lock. In
this case a will reset the lock to its unlocked state. We call this scavenging.

Scavenging must be done carefully to ensure that operation 2 is supported. Locks serve two
purposes in our algorithm; first, they ensure that tasks obey two phase locking; second, they serve
as a pointer to the current version of an object. Ideally, the current version of an object z would
always be in a well-known location say z.db. The difficulty is that the commit operation does not
put it there but rather puts it on an after-image list.* So the current version must be copied from
the after-image list of ¢ to z.db.

Normally, the first committing action of ¢’ will perform this copying, however it may suffer a
slow-down failure after committing. So we allow actions for other tasks, here action a from task ¢,
to do the copying. Whichever action performs the copying does essentially the same sequence of

steps. In both cases we call the process scavenging;:

1. Atomically, write the instance of z on the after-image list of t' to z.db provided the instance

on the after-image list has a larger version number than z.db. °

2. Release the lock held by #'. That is, atomically reset the lock to null provided it is still held
by ¢'.

3. Mark the instance on the after-image list as no longer needed (a service for the garbage

collector).

At this point, unless a task other than the one on whose behalf action a executes does so first, a
will be able to obtain the lock on z directly, so it tries again.

The procedure for obtaining the lock can be seen in succinct form in Figure 5. a represents
the object to be locked and ¢ the task on whose behalf the calling action, a, is acting. An instance
of z on the after-image list of some task, t', is denoted x.after(t'). The lock on z is denoted as
xz.lock. Once obtain_lock completes, the current version of z is in z.db. Scavenge can be seen in
Figure 6.

As will be proved, the obtain_lock procedure maintains the invariant that the current version of
x can either be found in z.db or, if z is locked by a committed task ¢, in the after-image list of {. In
order to establish the invariant we assume that when object z is first accessed, its current version
is in z.db.

The obtain_lock and scavenge procedures require the implementation of 3 distinct atomic oper-
ations; this brings us to item 4 on our list of constructs to implement. We address this issue in the

next subsection.

*For recovery afficionados, the high level algorithm is no undo/no redo, but the implementation is redo/no undo.
® Another possibility is to write this value to a database cache instance. In the event of a volatile memory crash,
the latest committed instance of each item can be obtained from the lists associated with the committed tasks.

11

obtain_lock(z, t)
do forever
begin

Atomz’cally‘ if z.lock is free or owned by ¢, lock = ‘

If lock attempt is successful, then exit /* lock obtained directly */
if ¢’ is active then /* lock is owned by another task, ¢ */
wait or abort /* application dependent issue */
else /* ¢ has terminated */
scavenge(z, ')
end if

end

Figure 5: Obtaining a Lock

4.6 Implementing the Atomic Actions

One of our objectives in this paper is to use only basic hardware primitives, yet achieve resiliency in
an environment with slow-down failures. Herlihy’s work can be used to argue that one such primitive
is necessary and sufficient — compareé&swap. In this section we show how to implement each of the
three atomic actions described in Figure 5 and also show how to commit a task atomically.

We first show how to atomically lock an item. We assume that the lock on an object is held
in stable storage in the location defined by z.lock. If task t' holds the lock on z, then, the value
of z.lock is t' or z.lock = t' for short. If no task holds the lock on z, then, z.lock = Null. If
task ¢t wants to lock z, then it can do so if and only if z.lock = Null. In other words, we need to
create a mechanism whereby we can atomically determine if z.lock = Nwull and replace it with ¢
if true. This is easily achieved using compareé&swap. The procedure lock shown in Figure 7 takes
as arguments the object, z, and the task id, ¢, and returns true if, after the procedure, ¢ holds the
lock on z.

Releasing a lock held by a task, ¢, is similar to the procedure for locking the object. The
difference is that here we need to set z.lock = Nwll if and ounly if z.lock = {. We show the
procedure in Figure 8.

Consider the problem of replacing z.db with z.after(t') if z.after(t') has a higher version
number. We address this problem by assuming that the object, z, along with its version number,
can be modified by a single compare&swap. This is not unreasonable since x could be comprised
of the version number and a pointer to the actual object; we discuss the representation of objects

further in Section 5. The idea is then to read z.db and z.after(t') into local memory and then

12

scavenge(z,t)
begin

Atomically

Atlomically

if ¢ is committed then

if z.after(t') has a higher version number
than .db, then z.db := z.after(t)

release lock of ¢ ; i.e., if z.lock = t' then unlock
x

mark z.after(t') as unneeded
else if ¢ is Aborted then

Atomically| release lock of t'; i.e., if z.lock = t' then unlock
x
end if
end
Figure 6: Scavenging a Lock
lock(z, t)
begin

else return(false)
end

compare&swap(z.lock, Null,t); /* if z.lock = Null then z.lock =t */
if (z.lock = t) return(true)

Figure 7: Locking an Object

use compare&swap to replace x.db if Jc.afte'r(t/) has a higher version number. The routine replace,

shown in Figure 9, shows one way to do this. In the figure, the procedure get_version(z) returns

the tag associated with the object, z.

A word about replace is in order. One might imagine that two processes might try to replace
x.db with different versions of 2 both having a higher version number than z.db. That cannot occur
as our proof of correctness will show. Also, the restriction that z.db is read into local memory
is required to guarantee that the version of z.db being replaced is the one that was first read;

i.e., a process may go to sleep sometime after extracting the version number of z.db and before

overwritting z.db.

Finally, we have to show how to change the state of the task in an atomic fashion. For the sake

of concreteness, we assume that the state of a task, ¢, can be found in ¢.status. Now, changing

13

release lock(z,)
begin
compare&swap(z.lock,t, Null); /* if z.lock = t then z.lock = Null */
if (z.lock = Null) return(true)
else return(false)
end

Figure 8: Releasing a Lock

replace(z,)
begin

old_r = x.db;

/* if version of z.db is less than version of z.a fter(t') then */

if get_version(old_) <get_version(z.after(t)) then
/¥ if z.db = x.0ld then z.db = x.after(t) */
compare&swap(z.db,old z, x.afte'r(t'));

end

Figure 9: Replacing x.db

the state of the task can be done by executing the routine new_state, shown in Figure 10, which

new_state(t, A, B)
begin
compare&swap(l.status, A, B); [* if t.status = A then t.status = B */
if (t.status = B) return(true)
else return(false)
end

Figure 10: Changing the Status of a Task

atomically changes the state of { to B if and only if ¢ is in state A. In the case where we are
changing the state from active to committed, we also need to associate the after-image list with ¢.
In order to do this, we define special values of t.status for active and aborted. All other values of
t.status indicate that the task has committed and that t.status is a pointer to the location of the

after-image list. We describe possible implementations of the after-image list in Section 5.

14

4.7 Proof of the Constructs

We have already shown that our algorithm satisfies the correctness criteria as long as we can
implement the lower level operations. In this section we show that the lower level constructs we

have given achieve their stated objectives.
Lemma 4.6 The routines lock, release_lock, replace, and new_state all behave atomically.
Proof: By inspection of each of the routines and the assumed atomicity of the compare&swap. R

Lemma 4.7 If task t commits, exactly one action executing on behalf of task t will change the

state of t.

Proof: By inspection of the new_state routine, we see that each execution on behalf of a transaction
will atomically create a list. The next execution will see the pointer to that list and will fail to

commit. []

Lemma 4.8 The algorithm maintains the invariant that the current version of x can either be

found in x.db or, if x is locked by some task t that has committed, in the after-image list of t.

Proof: An instance of an object, z, in stable storage changes only when a task commits, thereby
creating a new committed instance of , or when an action scavenges z, thereby changing the value
of z.db. We must show that both of these operations maintain the invariant. We do so inductively.

The invariant holds when the first action acquires a lock on z, because the initial version of x
is in location z.db. Assume that the invariant holds when some action a for task ¢ acquires a lock
on z. Between that time and the time ¢ commits or aborts, no other task’s action can write z. So,
the invariant still holds just before ¢ aborts or commits. Suppose task ¢ is the next to acquire the
lock after ¢ aborts or commits.

If ¢ aborts then z.db will still be the current version of z. When ¢ invokes scavenge, the lock
that ¢ had will be released without changing z.db. This will preserve the invariant.

If ¢ commits, then exactly one action executing on behalf of ¢ will commit by lemma 4.7. By
inspection of the high level algorithm, the action ¢ that commits will have created a temporary
version of ¢ whose version number is one greater than that of .db when a was still active. Since
@ holds the lock through its commit point, no other action will modify z.db or create any other
committed version of while a holds the lock. Therefore, immediately after ¢ commits, the version
number of z will be one greater in the after-image list of ¢ than in z.db and will be greater than the
version number of any other committed instance of z. Since ¢ holds a lock on z at that moment,

the invariant holds.

15

When scavenge is invoked, it will copy the current version of to z.db and remove the lock of
t on z, maintaining the invariant.

Operations on objects follow a strict order. A task first obtains a lock on z. It then either
aborts, without creating a new committed version of z, or commits, creating a new committed
version of z. Finally the lock on the object is scavenged before z can be accessed by another
task. This alternating sequence of events guarantees that the invariant is maintained for all objects

throughout the existence of the database. |

Corollary 4.1 If task t has not terminated (i.e., commitled or aborted), then when action a for t

completes execution of obtain_lock(z,t) successfully the current version of can be found in z.db.

Proof: By lemma 4.8 the current version of object will either be in z.db or in the after-image
list of the task holding the lock on z assuming that the task has committed. Obtain_lock completes
successfully if and only if task ¢ has obtained the lock. However, the algorithm guarantees that
once task t has obtained the lock on z it will not release the lock until ¢ has terminated. By
assumption of this corollary, ¢ cannot have terminated and the current version of x must therefore
be in z.db. |

These lemmas can be used to show that we can implement the lower level constructs in our

algorithm thereby satisfying the needs of our high level algorithm.

Theorem 4.2 Using compare&swap we can implement the three fundamental operations required

to run our high level algorithm.

Proof: We proceed in reverse order of the stated conditions:
1. Atomically change either a task or lock state. Atomicity follows from Lemma 4.6.
2. Only one action commils or aborts a lask. Follows from Lemma 4.7.

3. Read the current version of a data item z. By Corollary 4.1 we can find the current version
of z in z.db unless the task on which the action is acting has terminated. However, if the task
has terminated then by Lemma 4.7 the execution of the current action will have no effect on

the state of the database and can be regarded as an empty execution.

4. Obtain a lock on item x. If no task holds a lock on z, then obtain_lock will succeed getting
a lock on z for task ¢. If the task, ¢, holding a lock on z has terminated then obtain_lock
will scavenge the lock for ¢ and return successfully. Otherwise, either there is a deadlock and
the current task, ¢, will be aborted (i.e. we don’t need the lock on z), or " will eventually

terminate and obtain_lock will succeed.

16

5 Efficiency Considerations

We have tried to avoid implementation details until now, because these details do not affect the
correctness of our algorithm. However, they can have significant performance consequences. In this

section we explore some implementation alternatives.

5.1 Object Representation

Our technique depends on being able to modify an object with a single atomic action. If the data
object occupies more space than can be realistically handled by the compareéswap then the object
can be replaced by pointers to the object. This implies that a new copy of the object must be
created each time it is modified. Although this is not a problem for small objects, it can have
serious performance implications for larger objects. We follow Herlihy [Her89] in using persistent
data structures [DSST86] as an economical alternative to copying entire objects.

For ease of exposition, we refer to blocks of memory. The size of a block will be chosen as
a function of latency and transmission time in the network and in stable storage. An object, z,
consists of two parts, z.verston and z.data, where the combined pair can be handled by a single
compareéswap. If the contents of the object are too large to fit into z.data, then z.data contains a
pointer to a block containing the actual data. When the object changes, the entire block is copied
and z.data is changed to point to the new block.

The problem is that the contents of z may be too large to fit into one block of memory. In
this case, we represent the object as a tree of blocks. The leaves of the tree represent the data and
the internal nodes represent pointers to blocks. Modifying an object now consists of replacing the
appropriate leaf(ves) of the tree as well as the nodes on the path from the leaf to the root. See
Figure 11. We refer to objects fitting in z.data as word level objects, objects fitting in a block as
block level objects, and larger objects as complex objects.

This technique also minimizes the overhead associated with maintaining multiple versions of an

object. This creates concurrency opportunities that need to be explored further.

5.2 Read Locks

Using read (also known as shared) locks is a well known method of increasing the amount of
concurrency available in a transaction processing system. Our algorithm, as presented so far,
assumes that all locks are write locks (and therefore exclusive). In this section, we describe how to
incorporate read locks into our algorithm.

Because of scavenging, we must remove read locks associated with tasks and therefore must
know which task each read lock belongs to. Therefore, we will have a linked list of locks associated

with each object. That linked list will have length one if a task holds a write lock for the given

17

Old Object Old Object New Object

P

Q
® O O

Figure 11: Modifying a Large Object

object. So, to obtain a (read or write) lock on object z, an action, a, on behalf of task ¢ will get
an exclusive lock on the linked list associated with z and then will attempt to obtain the lock.

The inherent difficulty of implementing this approach, as stated, is that we now need to obtain
an exclusive lock on the linked list and release the lock before task ¢ terminates (otherwise we have
an exclusive lock on the list for the duration of ¢ and have not gained anything). Even if we treat
this lock in a special fashion (i.e., we do not require the 2-phase locking constraint to be maintained
for this lock) action @ could still fail after having obtained the exclusive lock on the list but before
releasing it. We now need to control interaction between the actions. When we were dealing with
exclusive locks only the lock could be viewed as a word level object that could be manipulated with
a single compare&swap. With read locks, the lock has become either a page level or complex object
that cannot be manipulated atomically.

One solution to this problem is to create a sublask to deal with the lock list. The purpose
of this subtask is to perform the requested insert or delete operation on the lock list. Subtasks,
like their parents, are performed by actions; if one action fails, then another will be created to
perform the work of the failed action. Since at most one lock (on the lock list) must be obtained
by the subtask, no deadlock can occur; therefore, subtasks never need to be aborted and will always
terminate successfully. The parent task waits for its subtask to complete before continuing.

Since the lock list is a well-defined object (having operations insert, read, and delete), one
could directly apply the techniques in [Her89] to make the lock list wait-free. This would avoid the

additional overhead of creating a subtask.

18

5.3 Garbage Collection

Throughout the life of a database, many tasks will be processed. Our algorithm requires that space
be created for each of these tasks and does not address the issue of reclaiming this space once the
task has terminated. Furthermore, page level and complex objects require the creation of additional
space that also needs to be reclaimed. In this section we focus on the problem of garbage collection.

Assuming that we have only word level objects, space is created by each task for the task status
word and the task id. Space is created by each action for the after-image list. We assume that the
object is stored directly in the after-image list and is copied, via a compareéswap, directly into the
x.db version. Hence, we only need to garbage collect the after-image list, the task status word, and
the task id.

Each process is assigned a fixed amount of process space in stable memory. The process space
is large enough to hold at least one full after-image list. Each process is responsible for reclaiming
its own process space. If a process fails permanently, then its process space is also lost. When a
process attempts to commit an after-image list and fails, it can immediately reclaim the space used
by that list. When a process runs out of space (when creating a new after-image list) it can reclaim

any committed after-image list, [, it created by:
1. Scavenging all the objects on [.
2. Change the task id associated with ! to null and the task status to null.
3. Reclaim [.

This, then, reclaims both the after-image list, I, as well as the task space (i.e., the task space has
been set to null and can be reused). We still have to deal with errant processes that are reading
the reclaimed data; i.e., we need to guarantee that an action accessing [at the same time as it is
reclaimed will not read garbage. We achieve this result by modifying the way in which an action

accesses the after-image list. Recall that the task status word points to the after-image list:

1. Find the task status word associated with task, ¢. If ¢ cannot be found in the list of task ids
and their respective status words, then the space associated with that task has been reclaimed

(therefore, all the locks have been scavenged) and we can stop.
2. Search for the object in the after-image list.

3. Check the task id of ¢. If it has changed (i.e., it no longer contains the task id of t), then
the after image-list has been reclaimed and the object read is no longer valid. If it has not

changed, then the object retrieved from the after image-list is valid and can be used.

19

Hence, an after-image list is considered valid only if the task id of of the task for which the list was
committed is still valid after the list has been read. We check the validity of any object retrieved
from the after-image list by checking the validity of the after-image list after the object has been
retrieved.

In order to extend our algorithm to deal with page level and complex objects, we can still use
the same technique as above to deal with the after-image list and the task space; however, we add
a global free list that is used to manage the blocks with which page level and complex objects are
built. We extend the after-image list to maintain a reference to the old object as well as the new
object. In this way, when a process is reclaiming an after image list it can also reclaim the space
no longer needed by the new version of the objects on the after-image list; this avoids competition
during the reclamation. Processes will discover that they are errant when they attempt to read the
root of a complex object after reading portions of that objects.

Reclamation must add all freed-up space to a free list structure in the global space. This can

be implemented by using subtasks in the spirit of Section 5.2.

5.4 After-Image List

The after-image list plays a critical part in our algorithm. Depending on the system configuration
(e.g. number of processes, contention for data objects, etc.) one may want to use a variety of

different data-structures. Some examples are:
1. A linked list or a binary search tree.

2. A hash table. If the application is real-time, then the hash table can be constructed in such
a way as to guarantee that high priority tasks spend minimal time scavenging any locks that

they might require.

3. A wait-free linked list implemented using the techniques in [Her89]. HAs the linked list
is scanned for the object in question, all objects encountered in the search are scavenged
and removed from the after-image list (some modifications to the garbage collecting policy
described above would be necessary). This amortizes the cost of scavenging locks across all

the processes and leads to improved overall system performance.

6 Conclusion

We have presented an algorithm that guarantees the correct serializable execution of tasks in an
environment where slow-down failures may occur. While we have focused on an approach using 2-
phase locking, the algorithm could be modified to work with other locking strategies. The algorithm

uses three techniques that may have wider applicability.

20

e The use of several dynamically created actions to perform a single task. This may prove

useful in real-time transaction systems even when slow processes may speed up eventually.

e The dual use of locks on stable storage as pointers to after-image lists as well as to ensure

serializability.

e The ability to scavenge locks from terminated (committed or aborted) tasks. This is critical

to our ability to handle slow processes.

Further work is needed to extend the slow-down model to replicated failure-prone memories.
For example, consider replicated file servers where timeout is not a reliable indication of a stop

failure.

ACKNOWLEDGEMENTS
The authors would like to thank Brian Anderson, Zvi Kedem, Krishna Palem, and Bill Weihl for

helpful discussion.

References

[And90] Anderson, B. Persistent Linda: Extending Linda to Include DataBase Facilities.
Manuscript: To appear as N.Y.U. Ph.D. thesis, 1990.

[BHGS87] Bernstein, P., V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison Wesley, 1987.

[Bir85] Birman, K. P. Replication and Fault-Tolerance in the ISIS System. In Proceedings of the
Tenth ACM Symposium on Operating Systems Principles, pages 79-86, 1985.

[DLAS8S] Dasgupta, P., R. LeBlanc, and W. F. Appelbe. The Clouds Distributed Operating System:
Functional Description, Implementation details, and Related Work. In Proceedings of the
8th International Conference on Distributed Computing Systems, pages 2-9, 1988.

[DSST86] Driscoll, J., N. Sarnak, D. Sleator, and R. Tarjan. Making Data Structures Persistent. In
Proceedings of the 18th Annual ACM Symposium on Theory of Compuling, pages 109-121,
1986.

[Had88] Hadzilacos, V. A theory of reliability in database systems. Journal of the ACM, 35(1):121-
145, January 1988.

[Her88] Herlihy, M. Impossibility and Universality Results for Wait-Free Synchronization. In Sewv-
enth ACM SIGACT-SIGOPS Symposium on Principles of Distributed Compuling, pages
276-290, August 1988.

21

[Her89] Herlihy, M. A Methodology for Implementing Highly Concurrent Data Structures. In Pro-
ceeding of the Second ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 197-206, March 1989.

[KPS90] Kedem, Z., K. Palem, and P. Spirakis. Efficient Robust Parallel Computations. In Pro-
ceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages 134-148,
May 1990.

[Mar90] Martel et. al. Efficient PRAM Emulation by Asynchronous Prams. Manuscript: Submit-
ted to FOCS 1990, 1990.

[NS89] Ng, P. and S. Shi. Replicated Transactions. In Proceedings of the Third Symposium on
Reliability in Distributed Software and Database Systems, pages 474-480, 1989.

[Svo84] Svobodova, L. Resilient distributed computing. IFFE Transactions on Software Engi-
neering, 10(3):257-267, May 1984.

22

