Automatic Synthesis Algorithms for Supervisory Controllers
(Preliminary Report)

Marco Antoniotti

Bud Mishra

Robotics Laboratory
Courant Institute of Mathematical Sciences
New York University
719 Broadway
New York, NY, 10003, U.S.A.

marcoxa@cs.nyu.edu

Abstract

In this paper we describe our experience with a pro-
totype system capable of synthesizing Supervisor Con-
troller Programs based largely on the theory of dis-
crete event systems (DES) first proposed by Ramadge
and Wonham [13]. We augment the theory by also
allowing continuous time trajectories modeling tran-
sitions between events. We illustrate our approach by
an example, the discrete control of a walking machine,
which poses some challenges on the applicability of the
theory and finally, discuss some possible solutions.

1 Introduction

In manufacturing and robotics, we are constantly
struggling with two related tasks: modeling the
devices and “processes,” we want to control and
more importantly, implementing the necessary soft-
ware components that realize these models.

The modeling task has been solved in many cases,
especially for linear time-invariant control problems
[16], but not for more general (hence, realistic) systems
in spite of their prevalence. In this paper, we focus
on such generalizations that include many challenging
and interesting applications.

The implementation task is still largely a question
of individual skills. To the best of our knowledge, very
little has been done toward the (partial) automation of
the process that goes from a model of the system to the
actual programs to be run on micro-controller boards
and/or standard PLC’s. Notable successful examples
in this direction include: [1], [2] and [15].

The aim of our research is to produce a comprehen-
sive computer environment for the synthesis of con-

mishra@nyu.edu

troller programs for a variety of manufacturing and
robotics systems, while simultaneously tackling the
modeling and the implementation tasks. In order to
achieve this goal, our initial approach has been to sort
through a large body of proposals and select (and de-
vise) carefully the algorithms that efficiently imple-
ment the step from model to implementation. The
effort also involves substantial theoretical work that
deal with expressibility problem, query processing al-
gorithms and probabilistic phenomena.

1.1 Problems Encountered

This paper deals only with our experience with an
initial prototype and points out the practical obstacles
that one encounters in trying to synthesize a controller
for a real application (namely, a walking machine).
The problems encountered can be classified into two
broad categories: linguistic and model based.

Linguistic problems denote the difficulties we en-
countered trying to express some properties of our ex-
amples starting directly from the theoretical specifi-
cation of DES. Model based problems denote a set of
more fundamental difficulties which we found in the
original DES formulation. In the later category, the
primary problem seems to arise from an inadequate
formulation of the close interplay between the discrete
and the “underlying” continuous levels.

Other authors have applied the theory of DES to
the modeling and control of systems, see [1] and [15].
While posing many interesting problems, especially
with respect to the inherent complexity of the man-
ageability of the systems!, they avoid the typical ques-

IThe algorithms used run against a state space ezplosion,
which is mostly unavoidable.



tions involved in the construction of an integrated en-
vironment for the practitioners.

2 “Dreadful Gaits”: Control Synthesis
for a Walking Machine

We have chosen the problem of synthesizing the
controller for a walking machine as a testbed for our
research. Traditionally, the problem of walking ma-
chine control has been dealt with either as an architec-
tural problem (see [6]) or as a standard control problem
(see [11]).

From our point of view, the problem is interesting
because it encompasses both the discrete (leg stances)
and continuous (leg kinematics and dynamics) levels
of control. The control of the kinematics and dynamics
of a mechanical leg is typically done within the realm
of classical continuous time control theory and yet,
it is obvious that the dynamics equations do change
when the leg is in contact with the ground, in contrast
to the situation when the leg is moving freely in the
air.

Problems like this are usually classified as hybrid?.

Our synthesizer accepts a model of the legs (both
continuous and discrete) and a set of goals (express-
ible in temporal logic) and automatically synthesizes a
controller that controls the legs. The controlled walk-
ing machine exhibits behaviors that are guaranteed
not to violate any of the desired goals. This class of
behaviors of the legs are called “gaits” and are ex-
pected to depend on the leg model and desired goals.
We also graphically simulate the gaits to gather in-
sights about the formulation and hope to provide the
designer feedback on how to make design changes.
The complete system has been facetiously dubbed as
“Dreadful Gaits,” or more simply, DG.

2.1 Some Assumptions

In general, the class of problems of interest to us,
share the following characteristics:

1. The hybrid model comprises a continuous and a
discrete part.

2. The control of the discrete part of our model
determines the kind of models (and their con-
trol policies) used at the continuous level (in a
very similar way to the model used by Nicollin et

2For a different example, the classic peg-in-the-hole problem,
see [9].

al. in [10]). That is, we assume that the continu-
ous part evolves until a discrete change happens
which might also change the kind of model used
in the continuous part.

3. We assume that time is “global”. That is, we con-
sider a global “clock” from which all the elements
of our model (synchronously) read off the current
time.

2.2 The Model

We model the discrete behavior of each leg with a
standard finite state machine. The simplest model we
would like to use is shown in Fig. 1. The five states
correspond to the following activities of an individual
leg.

e Start: The leg is in a rest position.

e Unload: The leg begins not to support any weight
anymore.

e Recover: The leg is brought forward in a “flying
motion”.

o Load: The leg starts to bear weight.

e Drive: The leg thrusts forward the hip exerting a
force on the ground.

e Slipping: The leg was not able to firmly stand on
the ground.

Note that we do not specify final (or even “marked”,
in DES terminology) states in the model, since we as-
sume that any sequence of transitions is acceptable3.

In the spirit of DES theory, the events es, eu, er,
el, ed and esl are all controllable, slip is instead uncon-
trollable.

Since we want to model a system with many legs
we proceed in standard way by taking the interleav-
ing product of the machines for each leg. This yields
a “combined machine” that effectively represents the
discrete behavior of the comprehensive, unregulated
system. That is to say, in DES terminology, the lan-
guage is L(G) (or, more simply L).

For our testbed, we chose to introduce an uncon-
trollable event, slip, (see fig. 1), which indicates a con-
dition where the leg has somehow lost the necessary
“stance” on the ground*

31.e. the language described by the state machine is closed.

4Note that the way to “sense” when such an event happens
is by measuring some - sampled - continuous information such
as the force exerted on the links. This raises many interesting
questions about hybrid systems.



eu Recover

Start Unload

es

er

esl

Slipped
slip

Figure 1: Model of the discrete transitions of a single
leg with uncontrollable events slip and stop.

2.3 Supervisor Prototyping Methodology

First, we describe a simple methodology which
forms the basis of our collection of software tools for
supervisor synthesis. Fig. 2 depicts the typical steps
that our collection of software tools are intended to
provide. The definitions of controllability and the
supremal controllable set (denoted by KT) are taken
from the standard DES terminology and will be de-
fined explicitly subsequently.

This flowchart is evinced from the literature on DES
theory. Yet many of the steps are not immediately re-
alizable from the theory. They require further research
before they could be embodied in a usable tool for the
practitioners.

2.3.1 Applying the Theory

The model we described in fig. 1 yields a comprehen-
sive model with 1296 states and 5184 transitions (for 4
legs). This comprehensive model represents the phys-
ically admissible behavior of the 4 leg system.

The next steps are to formulate a control law (or a
desired behavior), represented by a language K and
then to use this law to guide the synthesis of the
supervisor®.

There are two choices for this step:
1. Specify K as a new language,

2. Specify a set of restrictions on the comprehensive
language L in order to define K.

5Formally a supervisor S is a couple (S, ¢), where

e S is a state machine defined on the same alphabet of the
system being controlled,

e $: X x¥ —{0,1}>
where X is the set of states of S and ¥ is the set of symbols
recognizable in the system.

¢ is called the state feedback map of the system. Its action is
to “enable” (1) or “disable” (0) transitions in the system.

® Start

Build Model of System
Language L

Build Model of "Desired Behavior"
Language K

yes
Is K Controllable?

Build approximation K¢

Is K acceptable?
no

Is K¢ acceptable?

Done “

Figure 2: Schematic flowchart of the Supervisor build-
ing steps.

While the first alternative seems the most straight-
forward (and it is definitively suitable for “small”
cases) it is very laborious and error prone. The main
problems stem from the necessity to define a language
K that must be a subset of L. This can be difficult
specifically for large examples and requires extra ma-
chinery to test for language containment. Things get
even more complicated when the original model is ex-
tended to take into account uncontrollable events: one
is more likely to specify behaviors which result in triv-
ial or useless controllers.

The second alternative seemed more viable.
Roughly, we specify which states of the system do not
meet some requirements and remove them from the
comprehensive system. This has some appealing side
effects.

e It does not violate the property that K C L.

e It allows us to specify “local” criteria for desir-
ability of a state.

e It is easily implementable.

There are some drawbacks to this approach as will be
pointed out later.



2.3.2 Controllability of the Discrete Model

One of the key notions in the DES theory is that of
controllability, which is expressed in terms of L and
K, using the following terminology.

If we indicate by L (respectively, K) the language
of the prefizes of all the elements of L (respectively,
K), the notion of controllability in the discrete case
amounts to ensuring that any initial segment of the
desired behavior, followed by an uncontrollable event,
must still constitute a prefix of our desired behavior
K. Formally this is expressed with

(K2.NnL) ¢ K (1)

The algorithm that tests for controllability is basically
a simple graph search and we augmented it with a di-
agnostic capability that will return a “counterexample
run” of the system, that violates (1). The complexity
of this algorithm is therefore linear in the size of the
machine® for K.

2.3.3 Approximation of the Control Law

When the desired behavior K fails the controllability
test, we know that we can compute an approximation
to it, denoted KT, which is called the supremal con-
trollable sublanguage of K [13]. We implemented one
of the algorithms described in [12].

Once an approximation is computed, the actual def-
inition of the supervisor state feedback map is very
simple”.

2.4 Expressiveness Problems

There are several pragmatic problems in the syn-
thesis of supervisors. While the “restriction” method
for providing a viable first cut specification, is rather
successful, we did notice some shortcomings of this
approach. Namely, it is very difficult to express prop-
erties that are inherent to subsequences of events.

As an example of this difficulty, we were inter-
ested in modeling what physiologists and zoologists
call rear-to-front waves in animal gaits [6]. In four
and six legged animals, this gait pattern makes the
recovering movement in a “train” of legs—either the
left or the right legs, start from the rear most one and
proceeds to the front one. This is typically a constraint
on the sequencing of events in the leg system.

In order to express these sorts of constraints, we
must resort to other formalisms. One such formalisms

SWhich, in turn and unfortunately, is ezponential in the size
of the its components.
"The details can also be found in [13].

is Temporal Logic®. Temporal Logic (see for example
[8] and [3]) has been heavily used in the field of verifi-
cation of concurrent and real time systems [5]. In one
such formalisms, CTL, the “rear-to-front” condition
can be expressed as

AG. [(statel = drive A states = recover)

= —EX.(state; = unload A states = recover)].

The meaning of this formula is that whenever the rear
leg (number 2) is recovering, the front leg (number 1)
cannot make a direct transition from the drive to the
unload state.

Removing this transitions from the machine repre-
senting the unregulated state is once again a matter
of doing a simple graph traversal. Moreover, a lot of
work has been done in order to efficiently manipulate
within the TL formalisms (see [4]) and we will heavily
draw on this body of work.

2.5 OQur System

As a preliminary feasibility study, we have built
a system that implements our approach as described
earlier. Given the exploratory nature of our task, we
chose to implement a rapidly prototyped system in
Common Lisp. Such a choice had many advantages
over a more traditional one, given the flexibility of the
Lisp environment. Moreover, it does not hinder the
actual production (through a “compilation” process)
of low level Assembly or C code for some of the archi-
tectures currently used in our laboratory (Motorola
MC68332'™ boards and VxWorks™).

Under the supervision of R. Wallace, our robotics
laboratory has developed an inexpensive yet powerful
technology of mini actuators [14]. In collaboration
with this group, we have been designing direct drive
walking machines and constructing these out of mini-
actuators together with necessary simulation models
and controllers. Fig. 3 shows prototype leg joints.

2.5.1 Example

In order to give a flavor of the current usage of our
system, we give some excerpts of a session where we
consider the behavior of one train of legs (i.e. a front
(1) and a rear (2) leg).

The state machine representing the behavior of one
leg is represented as follows®:

8 Abbreviated to TL, henceforth.

9The notation and the tricks used are standard Common
Lisp. leg2 represents the state machine for the rear leg; s2 rep-
resents the relative start state and so on. define-state-machine
is a simple macro that extends the language.



pipay f1WTH““ﬂHW“FTHH?”
= g 0

S e e e e s
A = %

Figure 3: Prototypes of the mini actuator links for the
legs of the Walking Machine.

(define-state-machine leg2
:states (s2 r2 12 42 u2 sl12)
:start s2
:alphabet (es2 er2 el2 ed2 eu2 esl2 slip2)
:uncontrollable (slip2)
:delta ((s2 es2 u2) (r2 er2 12)
(12 €12 d2) (d2 ed2 u2)

(u2 eu2 r2)
(d2 slip2 u2) (sl2 esl2 u2)
)

:final-states (s2 r2 12 d2 u2 sl2)

)

In order to specify the machine representing the inter-
leaving of the discrete events we write

(define-state-machine legs
:op (shuffle legl leg2))

which states that legs is the shuffle of the two ma-
chines at hand (legl and leg?2)

We build a representation for the desired behavior
K by removing from the machine legs those states
which are “inconsistent” with our aims. As an ex-
ample, we are not interested in those situations when
both legs are recovering: this state is represented as
(r1 r2).

The resulting language K is not controllable, hence
we need to build an approximation for it. In this case
the approximation algorithm terminates after two it-
erations. The results are as follows:

CMUCL 7> (omega-op K legs uncontrollable-events)

;3 Debugging deleted...
>> OMEGA(0) : removable states

((R1 D2) (D1 R2)
(D1 U2) (D1 SL2)
(U1 D2) (SL1 D2))
;3 Debugging deleted...

>> OMEGA(1): removable states = NIL
#<Representation for the approximation to K>
CMUCL 8>

From which we can immediately infer that the gait of
the train of legs will be completely “stable”, since the
states (r1 d2) and (d1 r2) (which represent states of
the train where the system is “unbalancing” in order
to proceed) have been removed from the supervisor.

Some more testing by means of the graphical simu-
lation shows that the system loses the necessary alter-
nation between the front and the rear leg. The source
of the problem is the “unconstrained choice” the su-
pervisor makes in state (11 12) between which event
to enable next.

A way around this is, for example to introduce ex-
tra fairness constraints in the specification of the de-
sirable behavior K. Of course this raises more prob-
lems in terms of the definition of a viable specification
language. Once again, TL seems to be a very good
candidate.

2.5.2 Interactions with the Continuous Level

We tested our system through a simple graphical sim-
ulation. The necessities of the simulation brought up
all the problems relative to the interaction between
the discrete and the continuous levels of the walking
machine system. For related ideas, see [10].

Our system simulates each leg through a Common
Lisp function which is run at regular intervals. The
only parameter we actually measure (we do not im-
plement any continuous closed loop control scheme at
this level) is the position of leg. According to the po-
sition and discrete state, the simulation advances the
leg or keeps it in place.

The simulation architecture is straightforward. We
produce the next enabled discrete event via the syn-
thesized supervisor and run each leg at the same time.
A leg may find itself in one of the following meta
states:

1. It can make the transition,
2. It needs another transition which is not enabled,

3. It does not need a “discrete” transition, but it can
move on “continuously” .



In case 1 the transition is made in (apparent) no time
and it is reflected in the supervisor. In case 2 the leg
is blocked in its “current” state; its position is not
changed. In case 3 the leg state is not changed, but
its position is.

We are currently researching ways to achieve the
following goals: definition of a language for a smoother
integration of the continuous level of a system; anal-
ysis of the algorithms for the synthesis of supervisors
in the hybrid case; better system support and choices
of target language (the NYU ADA-9X translator is a
good candidate).

3 Final Remarks

We have presented an application of DES theory
to a standard problem in robotics: the walking ma-
chine. The main goal was to understand the difficul-
ties that arise in such applications and gain insights
toward the realization of a robust and easy-to-use “su-
pervisor compiler” for a wide range of robotics and
manufacturing systems.

There are still many open problems which we ex-
pect to face before actually producing a viable soft-
ware environment capable of aiding the practitioner
in the production of code for PLC’s or microcontroller
programs. Our current experience points some out.
Other are well known problems from the field of hy-
brid systems and are now under active investigation
by researchers around the globe[7].

Acknowledgments

We are grateful to many of our colleagues for their help,
advice and comments: Prof. Mohsen Jafari of Rutgers for
getting us involved in similar problems arising in manu-
facturing; Profs. Ken Perlin, Jack Schwartz and Richard
Wallace, all of NYU Robotics Lab for motivating several
examples from human-computer interface, multimedia and
robotics.

References

[1] S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi,
and G. F. Franklin. Supervisory Control of a Rapid
Thermal Multiprocessor. IEEE Transactions on Au-
tomatic Control, 38(7):1040-1059, jul 1993.

[2] A. Benveniste, M. Le Borgne, and P. Le Guernic. Hy-

brid Systems: the SIGNAL approach. In R. L. Gross-
man, A. Nerode, A. P. Ravn, and H. Rischel, editors,

(3]

[4]

[5]

[6]

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Hybrid Systems, volume 736 of Lecture Notes in Com-
puter Science, pages 230-254. Springer-Verlag, 1993.

M. Browne, E. M. Clarke, D. Dill, and B. Mishra. Au-
tomatic verification of sequential circuits using tem-
poral logic. IEEE Transactions on Computers, c-
35(12):1035-1044, 1986.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L.
Dill, and L. J. Hwang. Symbolic Model Checking:
10%° States and Beyond. 5th LICS, pages 428-439,
1990.

J. W. de Bakker, C. Huizing, W. P. de Roever, and
G. Rozenberg, editors. Real-Time: Theory in Prac-
tice (REX Workshop), volume 600 of Lecture Notes
in Computer Science. Springer-Verlag, 1991.

M. D. Donner. Real-Time Control of Walking, vol-
ume 7 of Progress in Computer Science. Birkh&user,
1986.

R. L. Grossman, A. Nerode, A. P. Ravn, and
H. Rischel, editors. Hybrid Systems, volume 736 of
Lecture Notes in Computer Science. Springer-Verlag,
1993.

Z. Manna and A. Pnueli. The Temporal Logic of Reac-
tive and Concurrent Systems. Springer-Verlag, 1992.

B. J. McCarragher and H. Asada. A Discrete Event
Approach to the Control of Robotic Assembly Tasks.
In IEEFE International Conference on Robotics and
Automation, pages 331-336. IEEE, 1993.

X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An
Approach to the Description and Analysis of Hybrid
Systems. In R. L. Grossman, A. Nerode, A. P. Ravn,
and H. Rischel, editors, Hybrid Systems, volume 736
of Lecture Notes in Computer Science, pages 149-178.
Springer-Verlag, 1993.

M. H. Raibert. Legged Robots That Balance.
Press, 1986.

P. J. Ramadge and W. M. Wonham. On the Supre-
mal Controllable Sublanguage of a Given Language.
SIAM J. Control and Optimization, 25(3):637-659,
may 1987.

P. J. G. Ramadge and W. M. Wonham. Supervisory
Control of a Class of Discrete Events Processes. STAM
J. Control and Optimization, 25(1):206-203, 1987.

R. S. Wallace. Miniature Direct Drive Rotary Actua-
tors. Robotics and Autonomous Systems, 11:129-133,
1993.

R. A. Williams, B. Benhabib, and K. C. Smith. A
Hybrid Supervisory Control System for Flexible Man-
ufacturing Workcells. In IEEE International Confer-
ence on Robotics and Automation, pages 2551-2556.
IEEE, 1994.

W. M. Wonham. Linear Multivariate Control — A
Geometric Approach. Springer—Verlag, 3rd edition,
1985.

MIT



