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Abstract. It is previously known that the one dimensional mortar finite element projection is
stable in the L? norm, provided that the ratio of any two neighboring mesh intervals is uniformly
bounded, but with the constant in the bound depending on the maximum value of that ratio. In this
paper, we show that this projection is stable in the L? norm, independently of the properties of the
nonmortar mesh. The 1D trace of the mortar space considered here is a piecewise polynomial space
of arbitrary degree; therefore, our result can be used for both the h and the hp version of the mortar
finite element.
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1. Introduction. Mortar finite elements are nonconforming finite elements that
allow for nonconforming decomposition of the computational domain and for the opti-
mal coupling of different variational approximations in different subregions. Here, by
optimality we mean that the global error is bounded by the sum of the local best ap-
proximation errors on each subregion. Because of these features, the mortar elements
are quite general and they are used effectively in solving large classes of problems.

The mortar finite element methods were first introduced by Bernardi, Maday, and
Patera in [4]. A three dimensional version was developed by Ben Belgacem and Maday
in [3], and was further analyzed for three dimensional spectral elements in [2].

Let us briefly describe the mortar finite element space V" underlying the mortar
method. The computational domain €2 is decomposed into a nonoverlapping polygonal
partition {24}, _17. Since we are working with geometrically nonconforming mortars,
we do not require that the intersection of the boundaries of two different subregions
be either empty, or a vertex, or an entire edge. The restriction of the mortar space to
any subregion €; is a conforming P, or @, finite element space. In other words, €;
is partitioned in a geometrically conforming fashion into triangles or quadrilaterals,
and the restriction of V" to each element of this partition is a polynomial of total
degree m; (for Pp,;), or of degree m; in each variable (for @,,;). Since our arguments
will be local, the degrees m; are completely arbitrary.

Across the interface T', i.e. the set of points that belong to the boundaries of at
least two subregions, pointwise continuity is not required. We partition I' into a union
of nonoverlapping edges of the subregions {4}, 17, called nonmortars; on the two
sides of the edge which coincides with a nonmortar we find two distinct traces of the
mortar function, and we will require only that the difference of these two traces be
orthogonal, in the L? inner product, to a space of test functions.

More formally, if v is a nonmortar side, let V"(y) be the continuous piecewise
polynomial space which is the restriction of V” to 7. We then define the mortar
projection operator m, : L2(y) — V"(y) N H}(v) by the following L%-orthogonality
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condition:
/7(x - 7w(x))wols =0, ViecT(y).

Here, x € L?(y) and the test function space ¥"(y) is the subspace of V"(v), whose
restriction to the first and last mesh intervals are polynomials of degree 1 less than
the corresponding degree from V" (7).

In this paper, we address the issue of the L? stability of the mortar projection,
which arises in the study of the discretization error, as well as when various domain
decomposition methods are used to solve mortar finite element problems.

It has previously been proven that the mortar projection is stable for different
particular meshes; see Bernardi, Maday, and Patera [4] for uniform meshes, Ben Bel-
gacem [1] and Braess, Dahmen, Wieners [5] for quasiuniform meshes. In a more general
case, Seshaiyer and Suri [7] give a proof of the L? stability of the mortar projection,
if the ratio of any two neighboring mesh intervals over 7 is uniformly bounded. The
constant in their bound depends on the maximum value of that ratio and on m, the
polynomial degree.

We prove that the mortar projection is uniformly stable in L? for arbitrary meshes,
with the constant in the bound depending only on m. Our result is obtained by
refining a method used in Ben Belgacem and Maday [3] for 2-D mortar projections
with uniform meshes.

Let us also make some comments about the H} stability of the mortar projection.
In [7], Seshaiyer and Suri prove that the mortar projection is stable in the H} norm, if
the ratio of any two neighboring mesh intervals is uniformly bounded. In [6], Crouzeix
and Thomée prove a similar result for the Lo-projection from L2(vy) onto V*(y)NH{ ().
They also show that the projection is not stable in the H} norm for arbitrary meshes.
Therefore, it is reasonable to believe that some condition on the mesh of «y is necessary
in order to obtain the H} stability of the mortar projection Ty

The rest of the paper is structured as follows. In section 2, we present some
technical results about minimizing L? norms of polynomials, and in section 3 we use
an idea from Ben Belgacem and Maday [3] to prove the L? stability of the mortar
projection.

2. Technical Tools. The main result of this section gives a good L? approxima-
tion (see Lemma 2.3 for the precise result) of a polynomial from V" (7) which vanishes
at the end points of 4 by another polynomial from ¥”(y). To do so, we need some
results about minimizing the L? norm of polynomials satisfying certain constraints.
The main idea of the proofs is to use Legendre polynomial expansions and Lagrange
multipliers methods.

For simplicity, we only work with odd degree polynomials. Similar estimates and
results can also be derived for even degree polynomials.

LEMMA 2.1. Let P be a polynomial of degree 2n + 1 on [—1, 1], such that
P(-1) = ¢; and P(1) = c¢y. Then

2(c2 +A3)(n+1) + 2cico
(n+1)2n+1)(2n+3)

igf”P“%?(—m) =



Proof. We write P in the basis of Legendre polynomials,

2n+1

1) Pz) = Y axly(a).

k=0

Since Li(1) = 1 and Lg(—1) = (—1)*, the conditions P(~1) = ¢; and P(1) = ¢
can be expressed as

2n+1 2n+1
Z ay = cg, and Z (—1)*ay, = e,
k=0 k=0

or, equivalently:

“ c1+ ¢
(2) Z agy = 2
k=0
" Cr —C1
(3) Y ag = ——.
k=0 2

The Legendre polynomials are orthogonal in the L? inner product, and

1
2 _
||Lk||L2(71,1) - k+1/2
Therefore
il o
2
(4) HPHL2(—1,1) - 1;) k—l—kl/2'

Therefore, we can split our minimization problem into two subproblems, corresponding
to the even and odd degree coefficients, respectively, which will be solved in a similar
fashion.

For the subproblem corresponding to {as},_g7;, We want to minimize

n a2
Z 2k ,
=0 2k + 1/2

subject to the constraint (2). Using a Lagrange multipliers method, which in this case
is equivalent to using Schwarz’s inequality, we obtain

n

Y

Therefore,

L a’ (c1 + ¢2)?
5 min 2k = ]
) S 2 2 T 13 T 2t D0 A T)

3



Similarly, for the problem corresponding to {agk+1},_g;>, We obtain:

n 2

2
. Aok 41 (c2 — 1)

6 min = .

(6) Sasi=(er )2 = 2k +3/2 — 2(n+1)(2n +3)

Adding (5) and (6), we obtain:

2(c? + B)(n+1) + 2c1eo
(n+1)2n+1)(2n+3)

: 2
ngfHP”L?(—l,l) =

d

LEMMA 2.2. Let P be a polynomial of degree 2n + 1 on [—1, 1], such that
P(—1) = 0 and P(1) = cy. Ezpand P in the Legendre polynomials basis and assume
that agn+1, the coefficient of the highest degree term in the expansions, is given. Then

22n+3)(n+1) 2c0a9n41 c

inf [|P 2 — 2 — .
@ BiWPlz = e T n v 3) ~ alnt1) T onn )

If the value of P at —1 is no longer required to be 0, then

8(n+1)? 4coaon+1 2c2

inf || P||3 = a3 :
®) Py = i T m e~ @nr? T @nt e

Proof. Writing P in the Legendre basis as in (1), and imposing P(—1) = 0 and
P(1) = ¢y, we obtain

2n 2n
aon+1 + Z ar = ¢, and —aopy1 + Z(—l)kak = 0.
k=0 k=0

Since agp+1 is fixed, we can solve for > agr and ) agsg11:

= 2 s c2 — 2a9n41
n
Zagk = 5 and Z Gkl = — 5
k=0 k=0
2
In Lemma 2.1, we have solved the problem of maximizing 2%11 kfﬁ when the

sums of the odd and even terms, respectively, are kept constant. Using that result
and (4), we obtain

inf ||P| 2 2 L % 4 (2= 2omp)
n L2(-1,1) Mt Oon+1)+1/2  2(n+1)(2n +1) 2n(2n +1)
) 2(n+1)(2n + 3) _ 2ca9n41 C%

il n+ DAn+3)  n@n+l) | 2n(n+ 1)

If the value of P at —1 is no longer fixed, then the only condition that the coeffi-
cients {ay},_gs, must satisfy is

2n

Z a = €2 — Q2p+1-
k=0



Using once again Schwarz’s inequality, and without splitting the problem into two
cases, we obtain:

(ikf%ﬂ) (,iHl/Q) B (,ikfil/2> (zn;rl)Q 2 (QZnak)Qa

which can be written as:

_ 2(co — agny1)?
Zk+1/2— 2n+1 Z“’“ - '

(2n +1)2
Therefore:
2n+1
Pl gy = 5 k> 2oy o= ame)”
LA(-1.1 «k+1/2 = 4n+3 (2n +1)2

Since in Schwarz’s inequality there exist coefficients ay, & = 0 : 2n such that the
equality is realized, we conclude that there exists a polynomial P such that

2a3 2(ca — agn+1)?
. 2 . 2n+1 2 2n+1
Pl = 2053 (2n + 1)2
9 8(n +1)? 4coaon+1 2c3

Font1 (4n + 3)(2n +1)2 (2n+1)2 (2n+1)%

d

The next lemma is the main result of this section. We introduce the following
notations. Let v = [a,b] be a segment partitioned into intervals {I; }J TN I; =
(z] 1,Zj), witha = 20 < z1 < ... < zyy1 = b, and let h; = z; — x4, for j =

1:N+1. Let {m]}j TN
polynomial spaces V"(y) and ¥"(v) as follows:

be a set of positive integers. We define the piecewise

Vh(y) ={v e C(0,1); vl € Pu;(I;), Vi=T: N +1},
and
UM(y) = {v € C(0,1); v|1; € Pm;(I}), Vi =2: N; |1, € Py 1(I)), j € {1, N+1}}.

LEMMA 2.3. Let mx € V*(y) N H}(7). Then there ezists a function x5 € ¥UR(y)
and a constant 0 < C(m) < 1, depending only on my and my1, and not on the
partition of vy, such that

(9) lmx = Xnlle2yy < Cm)llmxllLe(y-

Proof. We will choose x}, to be equal to mx on all of the partition intervals except
for the first two and the last two intervals. If we look for x; equal to 7w on all the
intervals except the first and last ones, it can be proven that the best constant M in
(9) would depend on hy and hi, which we want to avoid. Since x;, will be defined in a
similar way at both ends of 7, we only present the construction of x, on I; = (x¢, z1)
and Iz = (:L‘1,.’L‘2).



We may assume, without any loss of generality, that m, and ms are odd, i.e. m; =
2n1 + 1 and mo = 2n9 + 1; similar results can be obtained for even degrees. Let
f1 = mx(z1) and B2 = wx(x2). Note that myx(zg) = 0, since 7y vanishes at the end
points of . We require that xp(z2) = (2, and denote the value of yp at z1 by a1,
which will be different than £1: xu(z1) = a1 # 1. We will look for x;, € U"(y) such
that ||mx — Xnl|r2(y) is minimal, and then choose a1 such that relation (9) will hold
on the two intervals I; and Is.

On Iy, wx—xp is a polynomial of degree 2no+1 which takes the values §1 — a7 and
0, respectively, at the left and right end points. After a suitable change of variables,
which maps I5 into (—1,1), and using Lemma 2.1, we can find x;, on I such that

2(B1 — ar)?
2ns +1)(2ne + 3)°

8
(10) h_QHWX_XhH%?(b) =1

On I, mx — xp is a polynomial of degree 2n; 4+ 1 which takes the value 81 — a3
at x1, the left end point of I;. Let a be the coeflicient of Loy, 4+ in the Legendre
expansion of 7y over I;. Since x} is a polynomial of degree 2n; over I, a is also the
coefficient of Loy, 11 in the Legendre expansion of 7y — xp. After a suitable change of
variables, which maps I; into (—1,1), and using (8) from Lemma 2.2, there exists xp,
satisfying all the above mentioned properties, such that

8(77,1 + 1)2 4a(ﬂ1 — al) 2(ﬁ1 — 051)2

8
11 — xnl[? = a? — :
( E“WX XhHLz(Il) “ (4ny + 3)(2ny +1)2 (2ny +1)2 (2ny +1)2

We now find lower bounds for ||7x||z2(r,) and [|7x||z2(7,). On Iz, mx takes the
values 31 and (3 at the end points. After a change of variables and using Lemma 2.1,
we obtain

2(8F + B3)(ng + 1) + 2615
(’)7,2 + 1)(2n2 + 1)(2n2 + 3) ’

The minimal value of the right hand side of (12) is obtained for S, = —(1/2(ng + 1),
and therefore:

(13 [ APRUE R SO . 1
—||m — .
hy' " XNL2 () = 4(ng +1)%) (202 + 1)(2na + 3)
On I, mx takes the values 0 and (; at the end points, and in its Legendre
expansion the coefficient of Loy, 1 is a. After a change of variables, and using (7)
from Lemma 2.2, we obtain

5 2(2n1 + 3)(ny + 1) 2B1a B

8
14) —||mx|Za(ry > - '
) ez 2 ni(2n1+1)(4n1+3)  m(ni+1)  2m(2m +1)

8
(12) h—2||7fXH%2(12) >

We choose a; = f31/2, and compare the L2 norms of mx — X and 7y separately
on Il and IQ.
On I, we obtain by using (10) and (13), that

2
(15) lmx = xalliz) < 3 llmx|Z2 (1)
On I, we obtain by using (11) and (14), that

(16) llmx = xallzo@) < (1=1/@n+1)%) |laxllzsr,).-
6



We make a similar construction for x; on Inx_1 and Iy. Since mx — Xy vanishes
outside the first and last two mesh intervals of y, we can conclude, by using (15) and
(16), that

llmx — Xnll2(yy < Cm)|lmxllrzey)s

where C(m) depends only on m; and my1, and not on the particular properties of
the partition of . D

3. Stability property of the mortar projection. In this section, we prove
the main result of our paper, namely the uniform stability of the mortar projection
onto V() N H}(7), i.e. that the bound is independent of the mesh. In Theorem 3.1,
the spaces V"(y) and U"(y) are those defined in Sections 1 and 2 .

THEOREM 3.1. Let v be a nonmortar side, and let m be the degree of the piecewise
polynomial restriction of the mortar function to . Let wp, be the mortar projection of
L2(vy) into V' (y) N HE(v), which satisfies

/_(x - m(x))wds =0, Yo¢eTl(y).

Y

Then there exists a constant é(m) depending only on m such that

1mh0Oll2y < Cmlixlliagy),  ¥x € L2(7)-

Proof. Let py, : L2(y) — ¥"(v) be the L? projection into the space U"(v):
| (x=mn0)wds =0, vip € W),
5
where py(x) € U"(y). Then

(700 =m0 )ds =0, vip € (),

v

and therefore py(x) is the projection of 7, (x) into ¥”(y). Then:

lma(x) =P 22(y) = Xhé$£(7)||7rh(X)_Xh“L?(y) < Cm)|lmn ()l r2¢y)s

with M < 1, according to Lemma 2.3, applied for the case when all the degrees m;
are equal to m.
A simple computation will lead us to the desired conclusion:

174G gy = /_ (G0 — pr0)mn(0)ds + /_ Pr()ma(x)ds

- /7 (w0 — pa0) ds + /7 ()T (x)ds

C(m)?|lmn () 727y + Nmn 0Ozl loa 0O 220

IN

Since C(m) < 1, and since py(x) is an L? projection of x:

1 1
lmn () L2 < mllph(x)\lmm < TW”XHL?@)-
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