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ny =300y cost ri(zin + zja), ng =3 iy sind; rj(zj + 2j0),

ny =30y cos O ri(yjn + yj2), ng =30y sind; ri(yjn + yj2),
ny = 2 Z?:l cos 0 rj, ng =2 Z?:l sind; r;.
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Given the correspondence of the basis lines of a model object and its scene instance, we can use
the above formula to transform the boundary of the model object onto the scene for verification.

Appendix-II

The components of the matrix for the system of linear equations for best least-squares match are as

follows:

my = E;Il cos? §; (%21 + :L‘JZZ),

miz =300 cos” 0 (21951 + Tjay52),

miz = Z;zl cos ; sin 6; (r?l + ;1:]2»2),

i :
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mis =355y cos” 0 (z1 + xj2),
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i .
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7 Discussion

When doing the experiments, at our first attempt we let the candidate model instances vote for
the global skewing factor without verifying them first. A wrong global skewing factor was usually
obtained. The reason involves: (1) The image is too noisy that there are too many lines detected and
irrelevant lines are often chosen as a basis; (2) An affine transformation is too “powerful” that it is
not difficult to have an affine transformation that maps a quadruplet of lines to another quadruplet of
lines if some error tolerance is allowed. At last our algorithm was modified to let only those verified
candidate model instances vote for the global skewing factor. The trade-off is that verification takes
computational time.

We also found from the experiments that when doing probing, if the probed triplet of lines happen
to correspond to a basis of a certain model (i.e., a correct match), then this [model, basis] pair usually
accumulates highest weighted score among others. If it does not rank the highest, the cause is usually
due to insufficient lines are detected for that particular model instance. However, its weighted vote
is usually still among the highest few. The high-voted false alarms (i.e. matching this scene basis to
a wrong [model, basis]) are usually rejected by verification. We conclude that this weighted voting
scheme is quite effective.

The method described above does not assume any grouping of features, which is expected to
greatly expedite the recognition stage (at least for scene basis selection). Lowe [16] first explicitly
discussed the importance of grouping to recognition. However, if reliable segmentation can not be
available, intelligent grouping seems difficult. We note that in probing, some basis selected, though
corresponding to none of model bases, may happen to result in false alarms which even pass the
verification due to high noise in the scene. However, we point out here that statistically false alarms
of such case disperse their votes for different skewing factors, while correct matches will accumulate
their votes for the global skewing factor.

It is obvious that the recognition stage can be easily parallelized by assigning each basis to a
processing element in a parallel computer, since each basis can be processed independently. A pos-
sible candidate of parallel computer is the Connection Machine, which is equipped with 16 K — 64K
processors (for model CM-2). When the number of processors simultaneously needed exceeded the
maximum number of physical processors in the machine, the machine can operate in a virtual processor
mode. In this mode, a single processor emulates the work of several virtual processors, by serializing
operations in time and partitioning the local memory associated with that processor.
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Appendix-I

Given a correspondence between pairs of triplets of lines in general position, the affine transformation
T = (A,b), where A is a 2 x 2 non-singular skewing matrix and b is a 2 x 1 translation vector, can be
uniquely determined such that T maps points of the first triplet of lines to their corresponding points
of the second triplet of lines.

Let the first triplet of lines be (6, ri)§:17273 and the second triplet of lines be (0;, r;)§:17273. We
have the closed-form formula for T = (A,b) as follows:

A — L ( a1 a2 ) ’
det \ —a21 —az
1 —by
b = —
det ( ba ) ’
where
a;1 = cosls csc(é’l1 - 6’12)sin(01 - 02)(7'11 sin 6, — rysin 6’11) +
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Figure 6: Example 5 of the experiments
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Figure 5: Example 4 of the experiments
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Figure 3: Example 2 of the experiments

Figure 4: Example 3 of the experiments
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Fig-3(a) shows a composite overlapping scene of model-0, 1, 2, 4 and 9. Fig-3(b) is the result
of Hough analysis applied to this scene. 60 lines were detected. The covariance matrix used for the
deviation of the detected lines from true lines is the same as in Fig-2. Fig-3(c) shows the model
instances hypothesized in the recognition stage. 5000 probes were tried. Fig-3(d) shows the final
result after disambiguation.

Fig-4(a) shows a composite overlapping scene of model-1, 3, 4, 13 and 19. Fig-4(b) is the result
of Hough analysis applied to this scene. 60 lines were detected. The covariance matrix used for
the deviation of the detected lines from true lines is the same as in Fig-2. Fig-4(c) shows the model
instances hypothesized in the recognition stage. 5000 probes were tried. Fig-4(d) shows the final result
after disambiguation. (Note that model-19 was not detected, since half of its boundary is invisible.)

Fig-5(a) shows a real image of model-0, 2, 3 and 4 with flakes scattered. Fig-5(b) is the result of
edge detection using Boie-Cox edge detector [4]. Fig-5(c) shows the result of Hough analysis applied to
this scene. 50 lines are detected. Fig-5(d) shows the recognition result before disambiguation. Fig-5(e)
shows the recognition result after disambiguation. Fig-5(f) shows the result after best least-squares
match.

Fig-6(a) shows a real image of model-1, 2 and 3 (note: model-3 appears twice) with flakes scattered.
Fig-6(b) is the result of edge detection using also Boie-Cox edge detector. Fig-6(c) shows the result
of Hough analysis applied to this scene. 50 lines are detected. Fig-6(d) shows the recognition result
before disambiguation. Fig-6(e) shows the recognition result after disambiguation. Fig-6(f) shows the
result after best least-squares match.
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Figure 1: The twenty models used in our experiments. From left to right, top to bottom are model-0
to model-19.



To minimize F, we have to solve the following system of equations:

oF oF oF oF oF oF
dar 0, Dirs =0, Bamr 0, Ban 0, by 0 and by 0.

Since £ is a quadratic function in each of its unknowns, the above is a system of linear equations with
six unknowns. We can rewrite it in the matrix form as follows. (See Appendix-II for the expressions
of m;; and n;, 4,5 =1,...,6.)

mi1 M2 M3 M4 Mis Mis a1 n
M21 M2z M23 M24 Ma5 M2 a12 n2
m31 M32 MmM33 M34 M35 1N36 @21 _ ns
Ma1 Mgz 43 M44  M4a5 Mys a22 n g
Mms1  Ms2 Ms3 M54 M55 Mse by ns
Mme1 Me2 Me3 Me4a Mes  Mes by ng

The six unknowns can be solved by Cramer’s rule (see p.89 of [15]) as follows:

al] = det(Ml)/ det(M), ayjo = det(Mz)/det(M),
as] = det(Mg)/ det(M), ao9 = det(M4)/det(M),
b1 = det(Mg)/ det(M), b2 = det(M6)/det(M),

where M = [myj]; j=1,.6 and My = M with k-th column substituted by ["i]ﬁzl,...,@‘a fork=1,...,6.

Discussion

We could do a weighted sum of the squared distances. More specifically, the two squared distances
provided by the endpoints of long segments get more weight than those of short segments.

6.3 Experimental Results

We have done a series of experiments on synthesized images and real images containing polygonal
objects, which are modeled by line features. Our model base consists of twenty models, each with ten
lines (see Fig-1). For synthesized images, two kinds of noise are imposed onto the scene: positive and
negative. Both kinds of noise are supposed to be introduced by occlusion, e.g. flakes in the milling
process. Negative noise represents missing boundary pixels and is the result of occlusions on object
boundary. Positive noise mainly includes edge pixels of those occluding objects and also random dot
noise introduced in the imaging process.

We generate negative noise by randomly erasing edgels from the object boundary. For example, if
we want 10% of the boundary to be missing (occluded), we scan along the boundary of every object
and erase the edgels whenever ran modulo 10 = 0, where ran is a random number; similarly, if we
want 20% of the boundary to be missing, we do the same whenever ran modulo 5 = 0.

Positive noise consists of random dot noise and segment noise. Random dot noise is an additive dot
noise whose position in the image is randomly selected; segment noise is added by randomly selecting
a position in the image and randomly selecting an orientation (from 0° to 360°) for the segment then
putting a segment of length varying randomly from 0 to 7.

Fig-2, Fig-3 and Fig-4 show three examples of the experiments on synthesized images. Fig-5 and
Fig-6 show two examples of the experiments on real images, with best-least-squares match using
Method-3 discussed before.

Fig-2(a) shows a composite overlapping scene of model-0, 3 and 4 (note: model-0 appears twice),
which are significantly skewed. Fig-2(b) is the result of Hough analysis applied to this scene. 50 lines
were detected. The covariance matrix used for the deviation of the detected lines from true lines

was 3 — ( 0.003384 —0.00624

—0.00624  2.5198
of different levels of degradation. Fig-2(c) shows the model instances hypothesized in the recognition
stage. 5000 probes were tried. Fig-2(d) shows the final result after disambiguation.

, obtained from statistics of an extensive simulations on images
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Usually this distorted transformation transforms a model to match its scene instance with basis lines
matching each other perfectly while the other lines deviating from their correspondences more or less.
Knowledge of additional line correspondences between a model and its scene instance can be used to
improve the accuracy of the computed transformation. In the following, we discuss several methods
to minimize the errors.

Method 1

Treat each line as a point with coordinate (f,r) in (6, r)-space and minimize the squared distance
between (6, 7) and its correspondence (#',7').

Discussion

The problem of this method is that # and r are of different metrics. To minimize the squared distance
between a point (#,r) and its correspondence (¢',r'), we implicitly assume equal weight on both ¢
and r.

Method 2

To circumvent the problem caused by Method 1, we note that a line (8, r) can be uniquely represented
by the point (rcosf,rsin @), which is the projection of the origin onto the line. To match line (8, r)
to its correspondence (¢',r’), we try to minimize the squared distance between (rcosf,rsinf) and
(r' cos @', r'sinf’).

Discussion

The drawback of this method is its dependency on the origin. The nearer the line is to the origin, the
more weight is on r (think of the special case when both lines pass through the origin in the image).

Method 3

The models in a model base are usually finite in the sense that though they are modeled by lines, they
in fact consist of segments. We can minimize the squared distance of the endpoints of the transformed
model line segments to their corresponding scene lines in image space.

We derived in the following the closed-form formula for the case of affine transformations. The
similar technique can be applied for the cases of other transformation group.

Specifically, assuming that we are looking for an affine match between n scene lines /; and endpoints
of n segments, u;; and ujq, j = 1,...,n, we would like to find the affine transformation T = (A, b),
such that the summations of the squared distances between the sequence T(uj1) to {; and T(u;2) to
l;,5=1,...,n,is minimized:

E= minZ(distance of T(u;1) and lj)2 + (distance of T(u;2) and lj)2.
ji=1

Let line [; be with parameter (6;, r;) and endpoints uj; be (2j;,y;:),j=1,...,nand i = 1,2. Also
let T = (A, b) such that
A:(a11 a12) and :<b1).
az1 QA22 bs

T(uji) = (a112ji + a12yji + b1, an12; + asayji + ba)’

Then

and

E= minZ((cos 0;,sin0;)T(w;1) — r;)? + ((cos 0;,sin0; )T (uj2) — rj)>.

ji=1
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And the components for the covariance matrix of the spread function p(A®’, AR’) is given by

2 2 2 2 2 2
op = (cf; + i3+ cis +cir)og,
2 2 2 2 22 2 2 2 2N 2
Opr = (021 + Co3 + Cos + 627)0'9 + (622 + Cog + Cog + CQS)UT + 2(621622 + €23C24 + Ca5C26 + 027628)097',
_ 2
oo = (c11021 + €13¢23 + €155 + c17¢27)0g + (c11622 + €13¢24 + €15¢26 + C17C28) 007

During evidence synthesis, care should be taken to prevent multiple accumulation of weighted vote:
For each probing of scene bases, each hash node, [M;, by, [;], should receive vote only once, since
model feature ; can not match more than two scene features simultaneously. We thus have to keep
track of the score each hash node receives and take only the maximum weighted score the node has
received.

We also have to reject reflezion cases. Reflexion transformations form a subgroup of affine trans-
formations. However, a 2-D object, say a triangle with vertex-1,2, 3 in clockwise sequence, preserves
this sequence, even its shape being seriously skewed when viewed from a tilted camera. This problem
is tackled by detecting the orientation (clockwise or counterclockwise) of a basis by cross product.
Thus no such false match between scene basis and model basis will be hypothesized.

Since we are dealing with highly occluded scenes, we have found that even if a hypothesis has passed
verification (by verifying its boundary), it can still be a false alarm. By the viewpoint consistency
principle [17], the locations of all object features in an image should be consistent with the projection
from a single viewpoint. We may show that all 2-D objects lying on the same plane have an identical
ratio of enlargement of area, if viewed from the same camera, assuming approximation of affine
transformations to perspective transformations. The quantity of this ratio is | det(A)|, where A is the
skewing matrix of an affine transformation T = (A, b). We call it as skewing factor and request that
all the hypothesized instances have the same skewing factor. (Appendix-II provides the formula for
computing T from a correspondence of a scene basis and a model basis.)

For each probe, after histograming of weighted vote, top few hypotheses are verified. If the
verification is successful, the skewing factor of the alleged instance is computed and used to vote for
a common skewing factor.

After sufficient number, which is determined by a statistical estimation procedure (see section 5.4),
of bases are probed, a global skewing factor, which is taken to be the |det(A)| with highest number
of votes, is obtained. Those hypothesized model instances voting for the global skewing factor are
passed onto a disambiguation process we go on to describe below.

It is possible that a scene line is shared by many model instances, some of which are spurious. We
could refine the result by classifying the shared lines to belong to that model instance most strongly
supported by the evidence. One possible technique for disambiguation is relazation [25]. However,
relaxation is a complicated process. Since each model instance is associated with its quality measure,
QM, as a measure of the strength of evidence supporting its existence (this definition of QM favors
long segments of a model instance and is similar to that used in [1] with the same justification). The
following straightforward technique proves to work well.

We maintain two data structures, @M-buffer and frame-buffer, of the same size as the image. After
initializing @ M-buffer and frame-buffer, we process each candidate model instance in arbitrary order
by superimposing the candidate model instance onto the QQ M-buffer, then tracing the boundary of the
model instance. For each position traced, if the QM of the current model instance is greater than that
value stored in the @M -buffer, we write the ¢d of this candidate model instance to the corresponding
position of the frame-buffer and replace that value in the @ M-buffer by the current QM.

After all candidate model instances have been processed, we recompute the (Q M of each candidate
on the frame-buffer by considering only positions with the same id as this candidate. Those with the
new QM ’s less than a preset threshold (e.g. 0.5) is removed from the list of candidate model instances.

6.2 Best Least-Squares Match

The transformation between a model and its scene instance can be recovered by the correspondence of
the model basis and the scene basis alone. However, scene lines detected by the Hough transform are
usually somewhat distorted due to noise. This results in distortion in computing the transformation.

12



6.1 Implementation of Affine Invariant Matching

To apply the procedure described in section 5.3 to the case of affine group, a triplet of lines is necessary
to form a basis. Eq. (1) and Eq. (2) are used to compute the invariant. Considering numerical
stability, we have to prevent using small bases or large bases for invariant computing. Small bases are
easily subject to perturbation; while large bases produce invariants with small values (thus without
discriminativity). In our implementation, we use 256 x 256 images. If any side of the basis is less than
20 pixels or greater than 500 pixels, we consider it infeasible.

The hash table is implemented as a 2-D array to represent the 2-D hash space. Since during
recognition, we have to consider a neighborhood of a hash entry when it is retrieved, the boundary
of the hash table has to be treated specially: The f#-axis of the 2-D hash table should be viewed
as round-wrapped with flip, since invariant (0, r) is mathematically equivalent to (6 — =, —r) (e.g.,
(179°,2) is equivalent to (—1°, —2), thus neighboring to, say,(0°, —2)).

We also have to specialize Eq. (9), the spread function of the invariant, to the affine case (interested
readers are referred to [22] for the cases of other transformations): Let (A®, AR), (AQ;, AR;)i=1 23
and (A@I,ARI) be stochastic variables denoting respectively the perturbations of the line being
encoded, (8, r), the basis lines, (6;,7;)i=1,2,3, and the computed invariant (91,7'1). We have

I

AO c11AO + ¢13A01 + ¢15A02 + ¢17AO3,

AR = ¢21A0 4 c2AR 4+ c23A01 + c24aAR | + ¢35 A0 + ca6 ARy 4 c27AO3 + ca3AR3,

where the coefficients ¢; ;s are given by

11 = sin(f; — 02)D,

c13 = —csc(f — 03)sin(f — 03)sin(f — 03)D,

c15 = csc(fz — 03)sin(f — 1) sin(@ — 03) D,

c1r = —csc(fy — 03) csc(fz — 03)sin(fy — 02) sin(f — 01) sin(0 — 02) D,

co1 = [~C(cos(d — 01)csc?(0y — 03)sin(0 — 6;) + cos( — 04) csc? (0, — 03) sin(0 — 02))/B +
csc(fy — O2)(ra cos(0 — 01) — rq cos(0 — 62))]/ E,

¢ = 1/E,

ca3 = [—csc(fy —02)(racos(f — 01) + cot(fy — O3)(r2sin(@ — 01) — rysin(f — 03))) —
C((rzcos(fy — 03) — rocos(by — 03))/A —
esc?(fy — 03) sin(0 — 01)(cos(@ — 01) + cot(6; — 03)sin(0 — 61))/B) — cot(6y — 02)]/F,

ca = [—sin(fy — 03)AC — csc(y — 02)sin(0 — 02)]/ E,

cas = [ese(fy — O2)(ry cos(f — b2) + cot(fy — 02)(rasin(f — 01) — ry sin(f — 02))) —

C((r1 cos(f2 — O3) — rgcos(by — 02))/A —
cscz(6’2 — 03)sin(0 — 03)(cos(0 — 03) + cot (0 — 03) sin(f — 02))/ B) + cot(0;, — 62)]/ E,
c26 = [sin(f — 03)C/A+ csc(by — 02)sin(0 — 1))/ E,

car = [=C((racos(fy — 03) —rycos(f2 — 03))/A +
(cot(fy — 03) csc2(€1 —03) sin2(6 —01) + cot(fz — 03) csc2(62 —03) sin2(9 —0))/B)]/E,
C28 = [— sin(@l - HQ)C/A]/E,
with

= rgsin(f; — 03) + rasin(f3 — 01) + r1sin(f — 03),

csc2(01 —03) sin2(01 —04)+ csc2(92 —03) sin2(62 —04),
rycsc(fy — 02)sin(fa — 0) — rocsc(y — 02)sin(6, — 0) + r,
= csc(fy — 03) csc(b2 — 03)/ B,

= \/cscz(é?l —0,)BA2.
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score value is set to 0. In computing log p(invs, |[M;, Bu,, 1;]), the background distribution function,
compared with the spike induced by [M;, Ba,, ;] is usually negligible. We will use logarithm of Eq. (9)
to approximate it. Typically this Gaussian p.d.f. falls off rapidly. We thus approximately credit the
same weighted score, loge, to all those not in the neighborhood of the hash. Equivalently, we may
instead credit log p(invs, |[M;, Bu,,l;]) — logc to those nearby nodes accessed and keep intact those
not in the neighborhood. After all the invariants are processed, the support for all the [M;, Bas,] com-
binations are histogramed. Top few [M;, bys,]’s with sufficiently high vote are verified by transforming
and superimposing the model onto the scene. A quality measure, QM, defined as the ratio of visible
boundary, is computed. If the QM is above a preset threshold (e.g. 0.5), the hypothesis passes the
verification.

In the above process, each probe of scene basis is hypothesized as an instance of a particular basis
of a certain model. It is possible that the scene basis probed does not correspond to any basis of any
model. In the following section, we give a probabilistic analysis on the number of probes needed to
detect all the instances in the scene.

5.4 An Analysis of Probings Needed

Let there be n lines in the scene, n = ni + ns, where ny lines are spurious. Let also there be M model
instances in the scene. Assuming that the degree of occlusion of each instance is the same. Thus
averagely each model appearing in the scene has 7} lines.

The probability of choosing a scene basis, consisting of k features, which happens to correspond
to a basis of a model is

If we are to detect all M model instances at once, in best case we have to probe only M scene
bases from the scene. This happens when each time a basis is probed, it happens to correspond to a
basis of a certain model and next time another basis is probed, it corresponds to a basis of another
model. However, the probability for this to happen is p™, which is obviously small. The probability
of detecting exactly ¢ different models after ¢ trials (i.e. among the ¢ trials, ¢ = ¢ +4",4’ > ¢ probes
cover bases of each of the i models and "’ probes correspond to no bases of any model) is

p; = < i ) ilpt, i=0,..., M.

We may derive the lower bound of ¢ by restricting p; > ¢, 0 < e < 1:
tt—1)---(t—i+1)>¢/p'.

Thus, ' '
' > ¢/p* ort > v/e/p.
The probability of at least j different models are detected is then

j-1
g =1- Epzw
i=0

In practice, we have to try more probes than theoretically predicted, because some probes, though
corresponding to some model bases, are bad (e.g., too small, too big or too much perturbed) bases
and do not result in stable transformation that transforms model to properly fit its scene instance to
pass verification.

6 The Experiments
Since affine transformations are good substitutes for more general perspective viewing transformations.

We choose to implement the case of affine transformations as follows. Similar approach can be applied
to the cases of other transformations.

10



1 P([M;, Bar,]|invs, ) p(invs,) P([M;, By, ]linvs, ) p(invs,)

p(invs,, ..., inv;,) P([M;, Bu,]) o P([M;, Ba,))
_ p(invs,) ... p(invs,) ﬁ P([M;, By,]linvs,)
p(invs,, ..., invs,) bt P([M;, B,])

5 Plinvs,) ... p(invs,) ﬁ max; p(invs, |[Mi, Ba, |j]

p(invs,, ..., invs,) Pt p(invs, ) P([M;, Bar,)) (by Eq. (10))

B 1 ﬁ max; p(invs, |[M;, Bu,, 1]
~ plinvs,, ... invs,) P([M;, By,]) .
Thus
P([M;, By, linvs,, ..., inv, ) H max p(invs, |[Ms, By, j]), (1)
j
k=1

since p(invs,, ..., invs ) is independent of all the hypotheses and all P([M;, Ba,])’s are identical.
In the above derivation, we have assumed conditional independence among the invariants, i.e.

p(in'l}sl, ceey in'yanMia BM;]) = H p(in'vsk |[MZ: BM;]):
k=1

which means that the expected probability distribution of a scene invariant ¢nvs, is independent of
the other scene invariants. The intuition for this conditional independence to hold is that if the given
invs, does not belong to the embedded model M;, it has nothing to do with [M;, Bys,] and also
other scene invariants; if the given inv,, belongs to the embedded model M;, since geometric hashing
applies transformation-invariant information, ¢nv;, is destined to appear once By, is selected and is
not affected by other invariants. A more formal argument is given in [10].

In computing P([M;, B, ]|invs,, ..., invs, ), we do not need to compute absolute probabilities but
only relative probabilities. Since the logarithm function is monotonic, we can apply the logarithm to
both sides of Eq. (11):

log P([M;, Bu,]linvs,, ..., invs, ) = log C' + Zlog mjax p(invs, |[M;, Bum,, 1), (12)
k=1

turning products into sums.

5.3 The Algorithm

The pre-processing stage parallels our description of the preprocessing stage of the geometric hashing
method reviewed in section 2. For a specific transformation group considered, we use the formulae
given in section 3 to compute the invariants. We also compute the spread functions of these invariants
using Eq. (9). Both pieces of information, together with the identity of [model, basis, line], are stored
in a node in the hash entry indexed by each invariant. Understanding that the spread function is
Gaussian, we store its covariance matrix as a representation of the function. We note that each node
records information about a particular [model, basis, line] combination necessary for our recognition
stage. The hash table is so arranged that the position of each entry in fact represents a quantized
coordinate (0, r) of hash space. In this way, range query can be easily performed.

In the recognition stage, lines are detected by the Hough transform and a subset of these lines are
chosen as a basis for associating invariants with all remaining lines. Eq. (12) is used to accumulate
support from all these invariants (log C' term, which is common to all hypotheses, can be ignored).
We note that a straightforward use of Eq. (12) runs through all the [model, basis, line] combinations
and thus the computational cost can be immense. By advantage of the geometric hash table prepared
in the pre-processing stage, for each invariant inv,, hashed into the hash space, we access only its
nearby nodes. For each node accessed, we credit log p(inv,,|[M;, Bu,,;]) to the node, whose initial



the bin being hashed. However, our analysis of noise effect on computed invariants in the preceding
section shows that the perturbation of an invariant has a Gaussian distribution with non-zero correla-
tion coefficient. This implies that the region of hash space that would need to be accessed is an ellipse
instead of a circle centered around the “true” value of the invariant. Moreover, this perturbation
also depends on the basis and the line being encoded, which means that different invariants should
associate with different size, shape and orientation of hash space regions for error tolerance.

The nodes in hash entries more “closely match” value of the invariant should get higher weighted
score than those which are far away, in a manner accurately representing the behavior of the noise
which affects these invariants. Let inv; be a scene invariant and let tnvys, be a model invariant
computed from a basis By, and a line [; of M;. Bayes’ theorem [7] allows us to precisely determine
the probability that inv, results from the presence of a certain [M;, Bu,, {;]:

p(invs|[M;, By, 1j])
p(invy)

P([MMBMUIJHZW'US) = P([MZaBMml]])

where

e P([M;, By, !;]) is the a priori probability that M; is embedded in the scene and Byy, is selected
to encode [;. We assume that all the models are equally likely to appear and have the same num-
ber of features, which is a simplification that could be easily generalized. Thus P([M;, B, {j])
is the same for all [model, basis, line] combinations. (Note that this may not be quite true if the
basis selection procedure favors long bases instead of selecting bases randomly.)

o p(invg|[M;, Bu,,l;]) is the conditional p.d.f. of observing inv, given that M; appears in the
scene with By, being selected and [; being encoded. It consists of two parts: the spike induced
by [M;, Bu,, ;] and a background distribution.

e p(inv;) is the p.d.f. of observing inv,, regardless of which [M;, By, {;] induces it.

Assuming that no two invariants of the same model and with a fixed basis locate near each other
in hash space (i.e. model features are distinct and separate. If more than one model feature lands in
approximately the same location, then the features should be coalesced into a single feature.), inv, can
be close to at most one model invariant. Thus, given inv, the supporting evidence that M; appears
in the scene and the basis By, is selected is then

P([M;, By,])|invs) =~ maxP([M;, Bu,, lj]|invs)
J

max; p(in'Us |[MZ: BM, ) l]])
p(invy) '

5.2 Evidence Synthesis by Bayesian Reasoning

In the recognition stage, a certain scene basis B; is probed and the invariants of all the remaining
features with respect to this basis are computed. Each invariant provides various degrees of support
for the existence of [M;, Bas,] combinations, assuming B; corresponds to Byy,. If for every [M;, Bas,]
combination we synthesize support from all the invariants and hypothesize the one with maximum
support, we in fact exercise a maximum likelihood approach to object recognition.

In order to synthesize support coming from different invariants, we have the following formula,
based on probability derivation using Bayes’ theorem [5] :

P([M;, Bag,]linvg,, ..., invs )
P([M;, Bu,])
p(invs,, .. ., invs |[M;, Bu,))
p(invs,, ..., iNv,,)
p(invs, |[M;, Ba,]) - .p(invs, |[M;i, Ba,])

= _ : (assuming conditional independence)
p(invs,, ..., inv,,)




where

(A©O,AR,AO,ARy,...,AOy, ARk)t
O'g oo 0 0
Oor 0'3 0 0
s =
0 0 0'3 0'92r
0 0 Tér  Or / (2k42)x(2k+2).
Since
(AG/’AR/)t _ < €11 €12 ... C12k4+1 C12k+42 )V,
€21 C22 ... C22k41 C22k42
we can show that (A©®', AR’) also has a Gaussian distribution having p.d.f.
1
p(AO' AR) = ——exp[-=(AQ', ARYZ'"1(AO', AR')!] (9)
2/ | 2| 2
and covarlance matrix
o ( o os
B Tgipt g ’
where
op = (i +cls+- -+ Ci2k+1)‘73 (g +cig+ -+ C%,2k+2)03 +
2(e11¢12+ c13C14 + -+ Cl,2k+1cl,2k+2)09ra
2 _ 2 2 2 2 2 2 2 2
op = (ea1+ a3t H 3 0541)0% +(chp F a5 opy0)or +
2(ea1¢22 + co3Caa + -+ C2,2k+102,2k+2)0'9r=
ogrr = (11021 +C13C23 + -+ C1,2k+102,2k+1)03 + (c12¢22 + c1ac2a + - - - + Cl,2k+202,2k+2)0'3 +

(c1122 + 1324 + - - + €1 2641C2 2842 + C21C12 + C23C1a + - - + €2 28 41C1 2542)T6r -

For a detailed derivation of the above, the reader is referred to Appendix-I of [21]. Recall that in
computing the invariant (6’,r')*, we may adjust the value of §’ by adding 7 or — with the sign of 7’
flipped accordingly such that 6 is in [0..7). If this is the case, then the covariance matrix X/ must be
adjusted by flipping the sign of ogspr.

5 Geometric Hashing with Weighted Voting

Our recognition scheme builds upon the geometric hashing method. Even though we propose to use
line features in a degraded image, we still face the problem dealing with image noise and the resulting
problem of noise in the invariants used for hashing, as discussed in the preceding section.

To minimize these noise effects, we need to derive a theoretically justified scheme for weighted
voting among hash bins. This is the aim of the probabilistic procedure which we now go on to
describe.

5.1 A Measure of Matching between Scene and Model Invariants

In the geometric hashing method described in section 2, during recognition a computed scene invari-
ant is used to index the geometric hash table and tally one vote for the entry retrieved. However,
considering the presence of noise, a scene invariant can not exactly hit the hash table entry where its
matching model invariant is supposed to reside. Gavrila and Groen [8] assumes a bounded circular
region around each hash bin and tally equal vote for all the bins within the region centered around



More precisely, let (6, 7) be the “true” value of the parameters of a line and (A©, AR) be the
stochastic variable denoting the perturbation of (6, r). The joint probability density function of A©
and AR is then given by

p(AO,AR) = exp[— AG) JAR)S™1(AO, AR)Y]

=

and is centered around (6, 7).

4.2 The Spread Function of the Invariants

In section 3, we have given formulae of the invariants (6, 7')’s for various transformations. These
invariants are functions of the basis lines, (6;, Ti)ﬁ:l,“.,ki and the line being encoded, (6, r):

(Hl: rl)t = f((ga r)t: (61: rl)t: Ty (gk: rk)t)
Equivalently we may rewrite the above equation as follows:

0’ f/((gir)t:(glarl)t’"':(ak:rk)t)’ (3)
o= f//((0¢r)t¢(01’r1)t¢"'}(gfﬁrk)t)' (4)

The exact forms of Eq. (3) and Eq. (4), together with the value of k£ (i.e. the number of basis lines
needed), depend on the viewing transformation under consideration and are given in section 3.1, 3.2,
3.3 and 3.4 respectively.

Introducing perturbations of the line parameters (8, r)* and (;, ri)ﬁ:l,...,k results in a perturbation

of the computed invariant (¢’,7’)?, having the following form:
0'+60" = f((O+60,746r), (014601, 71 +8r1) -, (Ok + 60k, 7k + 671)"), (5)
48 = (04 680,746r), (00 + 801, v+ 6r1)' o, (Ok + 60k, 7k + 67)"). (6)

Expanding Eq. (5) and Eq. (6) in Maclaurin series and ignoring second and higher order perturbation
terms and then subtracting Eq. (3) and Eq. (4) from them, we have

/ o0’ o0’ 86” (%V
60 = 500+ 56 +Z( iéri)
= 1160 4 ci207 + 613591 + c1abr1 + ...+ 12841008 + €1 2842078, (7)
or’ or'
! _ .
o' = oy80+ —5 + Z <—59 Zérl)
= 2160 4 ca20r + 623591 + c246r1 + ...+ 29841008 + €2 2542078, (8)

where ¢11 = 06'/06, c120 = 00" /0r, co1 = Or'[08, can = Or'[Or, c1,; = 00" /0b;_2, ca; = Or'/00;_4, for
i=3,5,...,2k+ 1, and ¢1; = 00" /Ori_a, ca; = OF' [Or;_ 2,f0r2_4 6,...,2k+ 2.

Let (AG), AR), (AO;, AR;)i=1, . and (A@I,ARI) be stochastic Variables denoting the perturba-
tions of (6,7), (0;,7;)i=1, . r and (91,7'1) respectively. Eq. (7) and Eq. (8) can be rewritten as

A = ¢11AO + s AR+ ¢13AO) + c1uARy + ...+ 1,2k 41401 + ¢1 25 42A Ry,
AR = ¢31AO + cs AR+ c23A01 + cos ARy + ... + €22k +1A0 + 2 25 42 ARy

Since p(A©,AR) and p(A©;, AR;)i=1, 1 are Gaussian and independent, we have that joint p.d.f.
p(AO, AR, AO,ARy,...,AO, AR}) is also Gaussian. More precisely,

p(AO, AR, AO;, ARy, ..., AO, ARy)

p(AO, AR) p(AOy, ARy) - - p(AOk, ARy)

= (e[ VBV

(2my+1,/|5|



where

\/csc2(91 —03) sin2(01 —0) + csc2(0y — 03) sin2(02 —0) | csc(by — 02) 4],
1 sin(02 — 93) =+ 79 sin(03 — 91) + r3 sin((h — 92)

T

A

3.4 Line Invariants under Projective Transformations

Five lines are necessary to define a shape signature under the projective group: Given an ordered
quadruplet of lines (6;, ri)§:1727374 such that no three lines are parallel to one another or intersect at a
common point, any fifth line (¢, 7)* can be encoded in terms of these four lines in a projective-invariant
way.

One way to encode the fifth line is to find a transformation T which maps the four basis lines to a
canonical basis, say x =0,y =0,z = L and y = 1 (i.e. (0,0), (%,0)%, (0,1)" and (%, 1) respectively),
then apply T to the fifth line. It can be shown that the invariant (¢’,7')" of (6, r) with respect to
(0i,7i)i=1 2 3.4 is as follows:

0 = tan"'(DEF/ABC),
: ~GCF
V(ABC)2 + (DEF)?’

where

= rysin(fs — 03) + rosin(fsz — 61) + rasin(fy — 62),
rasin(f — 2) — rosin(@ — 04) + rsin(fs — 04),
rasin(fy — 03) — rgsin(f; — 04) + r1sin(f3 — 64),
—rgsin(f — 01) + r1 sin(0 — 03) — rsin(f; — 03),
rasin(fy — 02) — rosin(f; — 04) + r1sin(f — 64),
rasin(fz — 03) — rgsin(f2 — 04) + rosin(fsz — 64),
= rosin(f — 01) — rysin(f — 02) + rsin(6; — 0).

QT O
[l

4 The Effect of Noise on the Invariants

In noisy and occluded scenes, line features are usually detected using the Hough transform. However,
detected line parameters (0, r)’s always deviate slightly from their true values, since in the physical
process of image acquisition the positions of the endpoints of a segment are usually randomly perturbed
and occlusion also affects the process of the Hough transform. As long as a segment is not too short,
this induces only slight perturbation of the line parameters of the segment. Thus it is reasonable
for us to assume that detected line parameters differ from the “true” values by a small perturbation
having a Gaussian distribution.

In the following, we derive the “spread” of the computed invariant over hash space from the
“perturbation” of the lines which give rise to this invariant.

4.1 A Noise Model for Line Parameters

We make the following mild assumptions: The measured line parameters (6, r)’s of a set of lines are
1. statistically independent;

2. distributed according to a Gaussian distribution centered at the true value of the parameter;

2
ggp [

. . O'g Tor
3. with a fixed covariance X = .



A convenient way to encode the third line is to find a transformation T which maps the first line
to the z-axis and maps the second line to such that its intersection with the first line is the origin
(i.e. maps them to (%,0)* and (g, 0)" respectively, where ¢ is fixed though unknown), then apply T
to the third line. It can be easily shown that the resulting invariant (¢’,7')" of (6, r)* with respect to
(92';7'2')2:172 is as follows:

T
0 = 0—0,+ 9
= r4csc(fy — 02)(rasin(f — 61) — rysin(f — 62)),
or
T
¢ = 60-0,— 7
P = r+cesc(fy — 02)(rasin(@ — 61) — rysin(f — 6,)).

Note that we have two solutions due to the ambiguity discussed above. However, during recognition
we need to compute only either of them, since we may store both invariants in the geometric hash
table during preprocessing.

3.2 Line Invariants under Similarity Transformations

Four lines are necessary to define a shape signature under the similarity group: Given an ordered set
of triplet of lines (6;, ri)§:17273, not all of which are parallel to each other and intersect at a common
point, any fourth line (6,7)" can be encoded in terms of this triplet as a basis in a similarity-invariant
way.

Without loss of generality, we may assume that the first line intersects the remaining two basis
lines. One way to encode the fourth line is to find a transformation T which maps the first line to the
z-axis, maps the second line to such that its intersection with the first line is the origin and maps the
third line to such that its intersection with the first line has Euclidean coordinate (1,0) (i.e. maps
them to (%,0)", (¢1,0)" and (g2, sin |1 — 03])* respectively, with @1 and ¢y fixed though unknown),
then apply T to the fourth line. It can then be shown that the resulting invariant (6’,7')* of (6, r)*
with respect to (6;, ri)§:17273 is as follows:

T
o= 00—+,
= sin(f; — 65)B/|4],
where
A = 1 sin(02 — 63) + 79 sin(03 — 61) + r3 sin((h — 62),
B = rgsin(@ —61) — rysin(0 — 63) + rsin(fy — 62).

3.3 Line Invariants under Affine Transformations

Four lines are necessary to define a shape signature under the affine group: Given an ordered triplet
of lines (6;, ri)2:1,2,3a which are not parallel to one another and do not intersect at a common point,
any fourth line (#,7) can be encoded in terms of these three lines in an affine-invariant way.

One way to encode the fourth line is to find a transformation T which maps the three basis lines
to a canonical basis, say 2 =0, y =0 and z +y = 1 (i.e. (0,0)*, (5,0)" and (%, %)t respectively),

then apply T to the fourth line. As before, it can be shown in this case that the resulting invariant
0", v\ of (0, r)" with respect to (6;, ;)i is as follows:
i=1,2,3

o = tan_l(csc(ﬂl —03)sin(f; — ) csc(6, — 02)A/
csc(fy — O3) sin(fy — 0) csc(0; — 02)A), (1)
¥ = l(1“1 csc(fy — O2)sin(fy — 0) — rocsc(fy — 03)sin(0; — 0) + 7), (2)
T



(i1) use the computed invariants to index the hash table entries, in each of which we record a node

(M, b).

Note that all feasible bases have to be used. In particular, all the permutations (up to k!) of the k
inputs used to calculate the invariants have to be considered. The complexity of this stage is O(m*+1)
per model, where m is the number of points extracted from a model. However, since this stage is
executed off-line, its complexity is of little significance.

The recognition stage

Given a scene with n feature points extracted, we
(i) choose a feasible set of k points as a basis b;
(i1) compute the invariants of all the remaining points in terms of this basis b;

(iii) use each computed invariant to index the hash table and hit all [M;, b;]’s that are stored in the
entry retrieved;

(iv) histogram all [M;, b;]’s with the number of hits received;

(v) hypothesize the existence of an instance of model M; in the scene if [M;, b;], for some j, peaks in
the histogram with sufficiently many hits;

(vi) Repeat from step (i), if all hypotheses established in step (v) fail verification.

The complexity of this stage is O(n)+ O(2) per probe, where n is the number of points extracted from
the scene and ¢ is the complexity of verifying an object instance.

3 Line Invariants under Various Transformation Groups

The idea behind the geometric hashing method is to encode local geometric features in a manner
which is invariant under the geometric transformation that model objects undergo during formation
of the class of images being analyzed. This encoding can then be used in a hash function that makes
possible fast retrieval of model features from the hash table, which can accordingly be viewed as an
encoded model base. The technique can be applied directly to line features, without resorting to point
features indirectly derived from lines, providing that we use some method of encoding line features in
a way invariant under transformations considered.

Potentially relevant transformation groups include rigid transformations, similarity transforma-
tions, affine transformations and projective transformations, depending on the manner in which an
image is formed. Each of these classes of transformations is a subgroup of the full group of projective
transformations. Since a projective transformation is a collineation (referring to p. 89 of [12]), all
these transformations preserve lines. This allows us to use line features as inputs to the recognition
procedures.

We will give the formulae of the invariants under various transformation groups in the following.
For additional detail, the reader is referred to [24]. Throughout the following discussion, we represent
a line by its normal parameterization (¢, r) with ¢ in [0,7) and 7 in R. If the computed invariant
(0',7") has ¢ not in [0..7), we adjust it by adding = or —m and adjust the value of ' by flipping its
sign.

3.1 Line Invariants under Rigid Transformations

Three lines are necessary to define a shape signature under the Euclidean group up to a 180°-rotation
ambiguity: Given an ordered pair of non-parallel lines (6;, 7’2‘)5:172; any third line (6, r)" can be encoded
in terms of this pair in a rigid-invariant way up to a 180°-rotation ambiguity. This ambiguity can be
easily broken if we know the position of a third line during verification.



1 Introduction

Visual object recognition can be complicated by partial overlapping of the objects in the scene (e.g.
piles of industrial parts) or possible existence of occluding (e.g. flakes generated during the milling
process) or unfamiliar objects.

Prior research (see surveys [2,3,6]) has indicated that a model-based approach to object recog-
nition can be very effective in overcoming occlusion, complication and inadequate or erroneous low
level processing. Geometric hashing [14] is a model-based approach which precompiles redundant
transformation-invariant information derived for object models into a hash table. Then during recog-
nition, the same invariants are computed from features in a scene and used as indexing keys to retrieve
from the hash table the possible matches with model features.

In noisy scenes, the locations of point features can be hard to detect and the analysis of geometric
hashing on point sets [9] is much troubled by noise. Line features are more robust and can be
extracted by the Hough transform method [11] with greater accuracy, since more image points are
involved. Although point features can be obtained by intersecting lines, this increases uncertainty.
Hence it can be advantageous to work directly on line features by computing the geometric invariants
of lines using a combination of lines.

We examine line invariants under various transformations and investigate their statistical behavior
under uncertainty. We impose minimal segmentation requirements: Only positional information of
edgels i1s assumed to be available. The method presented combines use of the Hough transform,
geometric hashing and weighted voting by Bayesian reasoning.

This paper is organized as follows. In section 2, we give a brief review of the original geometric
hashing method to make the paper self-contained. In section 3, we give closed-form formulae for line
invariants under various viewing transformations. Section 4 analyzes the perturbation of the computed
invariant from the perturbations of the lines giving rise to this invariant. A Gaussian noise model is
assumed. This analysis yields a measure of the closeness of two invariants, which can be used to pick
out the most promising candidate set of model features from a pool of alleged sets. Section 5 describes
the resulting improvement of the recognition procedure. Section 6 describes a system implementation
for the case of affine transformations. We also discuss best least-squares match procedures for model
registration. Experimental results are also presented. Section 7 discusses some observations of the
approach and a possibility of parallel realizations.

2 Brief Review of the Geometric Hashing Method

The geometric hashing idea has its origins in work of Schwartz and Sharir [20]. Application of the
geometric hashing idea for model-based visual recognition was described by Lamdan, Schwartz and
Wolfson. This section outlines the method; a more complete description can be found in Lamdan’s
dissertation [13]; later developments of the technique are found in [18,19,23,24].

Geometric Hashing involves two stages: a preprocessing stage and a recognition stage. In the pre-
processing stage, we construct a model representation by computing and storing redundant, transformation-
invariant model information in a hash table. During the subsequent recognition stage, the same in-
variants are computed from features in a scene and used as indexing keys to retrieve from the hash
table the possible matches with the model features. If a model’s features scores sufficiently many hits,
we hypothesize the existence of an instance of that model in the scene.

The pre-processing stage

Models are processed one by one. New models added to the model base can be processed and encoded
into the hash table independently. For each model M and for every feasible basis b consisting of &
points (k depends on the transformations the model objects undergo during formation of the class of
images to be analyzed), we

(i) compute the invariants of all the remaining points in terms of the basis b;



A Probabilistic Approach to
Geometric Hashing using Line Features

Frank Chee-Da Tsai

Robotics Research Laboratory,
Courant Institute of Mathematical Sciences,
New York University
715 Broadway, 12FL
New York, N.Y. 10003

tsai@robust.nyu.edu

Technical Report No. 640
June 1993

Abstract

Most current object recognition algorithms assume reliable image segmentation, which in practice is
often not available. We examine the combination of the Hough Transform with a variation of Geomet-
ric Hashing as a technique for model-based object recognition in seriously degraded single intensity
images. Prior work on the performance analysis of geometric hashing has focused on point features
and shown its noise sensitivity. This paper uses line features to compute recognition invariants in a
potentially more robust way. We investigate the statistical behavior of these line features analytically.
Various viewing transformations, which 2-D (or flat 3-D) objects undergo during image formation,
are considered. For the case of affine transformations, which are often suitable substitutes for more
general perspective transformations, we show experimentally that the technique is noise resistant and
can be used in highly occluded environments.



