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Abstract. We are interested in supervised ranking with the following twist: our goal is to design
algorithms that perform especially well near the top of the ranked list, and are only required to
perform sufficiently well on the rest of the list. Towards this goal, we provide a general form of
convex objective that gives high-scoring examples more importance. This “push” near the top
of the list can be chosen arbitrarily large or small. We choose `p-norms to provide a specific type
of push; as p becomes large, the algorithm concentrates harder near the top of the list.
We derive a generalization bound based on the p-norm objective. We then derive a corresponding
boosting-style algorithm, and illustrate the usefulness of the algorithm through experiments on
UCI data.

1 Introduction

The problem of supervised ranking is useful in many application domains, e.g., document processing,
customer service routing, and drug discovery. Many of these domains require the construction of a
ranked list, yet often, only the top portion of the list is used in practice. For instance, in the setting
of supervised movie ranking, the learning algorithm provides the user (an avid movie-goer) with a
ranked list of movies based on preference data. We expect the user to examine the top portion of the
list as a recommendation. It is possible that she never looks at the rest of the list, or examines it only
briefly. Thus, we wish to make sure that the top portion of the list is correctly constructed. This is
the problem on which we concentrate.

Naturally, the design of these rankings requires a tradeoff. Given the option, we would correct a
misrank towards the top of the list at the expense of possibly making a new misrank towards the
bottom. This type of sacrifice will have to be made; assuming a learning machine with finite capacity,
the best total ranking will not often correspond to the best ranking near the top of the list. The trick
is to design an algorithm that knows when a misrank occurs at the top and forces us to pay a high
price for it, relative to other misranks.

We have developed a somewhat general and fairly flexible technique for solving these types of
problems. In our framework, a specific price is assigned for each misrank; the misranks at the top are
given higher prices, and the ones towards the bottom are less expensive. Thus, the choice of these
prices determines how much emphasis (or “push”) is placed closer to the top. We may only desire to
incorporate a small push; it is possible, for example, that our movie-goer has seen all movies near the
top of the list and needs to look farther down in order to find a movie she has not seen. Or, perhaps
she may want to view the rank of a particularly bad movie. Thus, it is important that the rest of
the list be sufficiently well-constructed in this case. The desired size of the push might be anywhere
between very large and very small, depending on the application. There is simply a tradeoff between
the size of the push, i.e., the emphasis placed near the top, and the sacrifice made farther down the
list. As mentioned, some sacrifice must always be made since, as usual, we take our algorithm to have
limited capacity in order to enable generalization ability.
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The choice of price we pay for misranked examples corresponds to the choice of objective function
used for the learning. Using the form of ranking objective introduced in Section 2, one can make the
prices quite high for misranking towards the top (a big push), or one can make them moderately
high (a little push), or somewhere in between. The case with equal prices (no push) corresponds to a
standard objective for supervised bipartite ranking.

The algorithms we develop are motivated in the usual setting of supervised bipartite ranking. In
the supervised bipartite ranking problem, each training instance has a label of +1 or -1, i.e., each
movie is either a good movie or a bad movie. In this case, we want to push the bad movies away from
the top of the list where the good movies are desired. The quality of the ranking can be determined
by examining the Receiver Operator Characteristic (ROC) curve. In the setting where all misranks
are equally priced (no push) the AUC (Area Under the ROC Curve) is precisely a constant times
one minus the total standard misranking error (see [4]). However, the quantity we measure in our
problem is different. We care mostly about the leftmost portion of the ROC curve for this problem,
corresponding to the top of the ranked list. This is precisely the sacrifice we must make; in order make
the leftmost portion of the curve higher, we must sacrifice on the total area underneath the curve.

Recently, there has been a large amount of interest in the supervised ranking problem, and espe-
cially in the bipartite problem. Freund et al. have developed the RankBoost algorithm for the general
setting [8]. We inherit the setup of RankBoost, since our algorithms will also be boosting-style algo-
rithms. Oddly, there is a recent theoretical proof that AdaBoost performs just as well for bipartite
ranking as RankBoost, since both algorithms achieve the same AUC [11]. A recent algorithm of Cram-
mer and Singer is named“PRank” [5]. Mozer et al. [10] aim to manipulate specific points of the ROC
curve. The closest work to ours is that of Dekel et al. [7], who have used a similar form of objective
with different specifics for the score. There is a lot of recent work on generalization bounds for super-
vised ranking, for instance, those of Freund et al. [8], Agarwal et al. [1], and Rudin et al. [11]. There
is a body of work on reranking (see Collins [3]), and also work characterizing the difference between
classification error and misranking error for the bipartite problem [4].

In Section 2, we present a general form of objective function, allowing us to incorporate a push
near the top of the ranked list. In order to construct a specific case of this objective, one chooses both
a loss function ` and a convex price function g. If the price function is very steep, it means that the
push near the top is very strong. For instance, if we choose g to be a power law, g(r) = rp, then a
higher power p corresponds to a larger push near the top. With permissible choices of ` and g, the
objective function will be convex, and can possibly be minimized by coordinate descent on the space
of weak rankers used for the boosting. We show that our objective also provides a convex upper-bound
on the “misranking error at the very top”, which is directly related to the highest rank of a negative
example (the most offending negative example).

In Section 3, we provide a generalization bound for a variant of our objective function, using the
standard “0-1” loss function, and a p-norm price function. We expect that as p increases, more training
examples are necessary to ensure the same generalization error; one cannot expect to concentrate on
smaller regions of the input space without requiring more examples. Our bound does reflect this
observation, as well as our experiments. We will further discuss this in Section 6.

In Section 4 we derive a coordinate descent algorithm based on the p-norm objective, with ` chosen
as the exponential loss used for AdaBoost and RankBoost. As with AdaBoost and RankBoost, this
algorithm requires normalization at each iteration in order to maintain numerical stability, and we
assign this appropriately.

In Section 5, we demonstrate our p-norm ranking algorithms on UCI data in order to show their
usefulness and flexibility. Namely, we illustrate that a larger push, corresponding to a higher power p,
yields a very different result than a smaller push. For a larger push, the algorithm generally performs
much better at the top of the list in both training and testing.
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When choosing an algorithm for a particular application, one should always consider the domain
of problems for which the algorithm succeeds. Of course no single algorithm is successful for every
application. The final discussion of our paper is an attempt to understand, for our p-norm algorithm,
precisely this domain. In order to do this, we show, in Section 6, where the algorithm “breaks”, i.e.,
where the limit of its problem domain lies. We use the generalization bound of Section 3 to lead our
discussion.

2 Motivation: A General Objective for Ranking with a Convex Push

First, some notation. The set of instances with positive labels is {xi}i=1,...,I , where xi ∈ X . The
negative instances are {x̃k}k=1,...,K , where x̃k ∈ X . We always use i for the index over positive
instances and k for the index over negative instances. In the case of the movie ranking problem, the
xi’s are the good movies used for training, the x̃k’s are the bad movies, and X is a database of movies.
Our goal is to construct a ranking function f ∈ F that gives a real valued score to each instance in
X , that is, f : X → R. We do not care about the actual values of each instance, only the relative
values; for positive-negative pair xi, x̃k, we do not care if f(xi) = .4 and f(x̃k) = .1, but we do care
that f(xi) > f(x̃k).

Let us now derive the general form of objective function promised in the introduction. For a
particular negative example, we wish to reduce the number of positive examples that are ranked
beneath it. In other words, for each k, we wish to make the following quantity small:

I∑
i=1

1[f(xi)≤f(x̃k)]. (1)

Consider any two negative examples indexed by k and k̄, such that x̃k̄ is ranked below x̃k, i.e.,
f(x̃k̄) ≤ f(x̃k). We have:

I∑
i=1

1[f(xi)≤f(x̃k)] ≥
I∑

i=1

1[f(xi)≤f(x̃k̄)].

In other words, there are more positives below x̃k since it is ranked higher than x̃k̄.
Let us now add the push at the top end. We want to concentrate harder on negative examples

that have high scores, that is, we want to push these negative examples down from the top. Since,
as shown above, the highest scoring negative examples also achieve the largest values of (1), these
are the examples for which we impose a larger price. Namely, for convex, non-negative, monotonically
increasing function g : R+ →R+, we place the following price on negative example k:

g

(
I∑

i=1

1[f(xi)≤f(x̃k)]

)
.

If g is very steep, we pay an extremely large price for a high-ranked negative example. Examples
of steep functions include g(r) = exp(r) and g(r) = rp for p large. If g is the identity, we pay
substantially less for an offending negative example, relatively speaking. Thus we have derived an
objective to minimize:

Rg,1(f) :=
K∑

k=1

g

(
I∑

i=1

1[f(xi)≤f(x̃k)]

)
.

If the value of Rg,1(f) is small, it means that no negative example is ranked very highly; this is exactly
our design.
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As usual, we cannot minimize Rg,1 directly due to the 0-1 loss in the inner sum. Instead, we will
minimize an upper bound, Rg,`, which incorporates ` : R → R+, a convex, non-negative, monotoni-
cally decreasing upper bound on the 0-1 loss. Popular loss functions include the exponential, logistic,
and hinge losses. We can now define the general form of objective promised in the introduction:

Rg,`(f) :=
K∑

k=1

g

(
I∑

i=1

`(f(xi)− f(x̃k))

)
.

To construct a specific version of this objective, one chooses the loss `, the price function g, and as
usual, an appropriate hypothesis space F over which to minimize Rg,`.

For the moment, let us assume we care only about the very top of the list, that is, we wish to
push the most offending negative example as far down the list as possible. Equivalently, we wish to
minimize Rmax, the number of positives below the highest ranked negative example:

Rmax(f) := max
k

I∑
i=1

1[f(xi)≤f(x̃k)].

Although it is hard to minimize Rmax(f) directly, Rg,` can give us some control over this quantity.
Namely, the following relationships exist between Rg,`, Rg,1 and Rmax.

Theorem 1.

Kg

(
1
K

Rmax(f)
)
≤ Rg,1(f) ≤ Rg,`(f) and Rg,1(f) ≤ Kg(Rmax(f)).

Proof. The proof of the first part is as follows:

Kg

(
1
K

Rmax(f)
)

= Kg

(
1
K

max
k

I∑
i=1

1[f(xi)≤f(x̃k)]

)
≤Kg

(
1
K

K∑
k=1

I∑
i=1

1[f(xi)≤f(x̃k)]

)

≤
K∑

k=1

g

(
I∑

i=1

1[f(xi)≤f(x̃k)]

)
= Rg,1(f) ≤

K∑
k=1

g

(
I∑

i=1

`([f(xi) ≤ f(x̃k)])

)
= Rg,`(f)

Above, we have used the fact that g is monotonic, ` is an upper bound on the 0-1 loss, and Jensen’s
inequality for convex function g. The fact that the function Kg( 1

K r) is monotonic in r adds credibility
to our choice of objective Rg,`. For the second part of the proof, we only use the fact that g is
monotonic:

Rg,1(f) =
K∑

k=1

g(
I∑

i=1

1[f(xi)≤f(x̃k)]) ≤ K max
k

g(
I∑

i=1

1[f(xi)≤f(x̃k)])

= Kg(max
k

I∑
i=1

1[f(xi)≤f(x̃k)]) = Kg(Rmax(f)). ut

Theorem 1 suggests that Rg,` is a reasonable quantity to minimize in order to incorporate a push
at the top, e.g., in order to diminish Rmax. It is well-known that if g is especially steep, for instance
g(r) = exp(r) or g(r) = rp for p large, then g−1(

∑K
k=1 g(rk)) ≈ maxk rk. That is, the quantity L,

for steep functions g, will approximate Rmax. For the rest of the paper, we are considering only the
p-norm objectives.
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3 A Generalization Bound for the p-Norm Objective

This bound is an adaptation of Rudin and Schapire [12] (also [11]), which is inspired by the works of
Cucker and Smale [6], Koltchinskii and Panchenko [9], and Bousquet [2].

Assume that the positive instances xi ∈ X , i = 1, ..., I are chosen independently and at random
(iid) from a fixed but unknown probability distribution D+ on X . Assume the negative instances
x̃k ∈ X , k = 1, ...,K are chosen iid from D−. We always use i for positive instances and k for negative
instances. The notation x ∼ D means x is chosen randomly according to distribution D. The notation
S+ ∼ DI

+ means each of the I elements of the training set S+ are chosen independently at random
according to D+. Similarly for S− ∼ DK

− .
We now define the “true” objective function for which our algorithm has been designed. Our goal

is to make the following quantity small:

Rp
D+D−1f :=

(
Ex−∼D−(Ex+∼D+1[f(x+)−f(x−)≤0])p

)1/p = ‖Px+∼D+(f(x+)−f(x−) ≤ 0|x−)‖ Lp(X−,D−) .

The empirical loss associated with Rp
D+D−1f is the following:

Rp
S+,S−1f :=

(
1
K

K∑
k=1

(
1
I

I∑
i=1

1[f(xi)−f(x̃k)≤0]

)p)1/p

.

Here, for a particular x̃k, Rp
S+,S−1f takes into account the average number of positive examples that

have scores below x̃k. To make this notion more general, let us consider the average number of positive
examples that have scores that are close to or below x̃k. A more general version of Rp

S+,S−1f is thus
defined as:

Rp
S+,S−1θ

f :=

(
1
K

K∑
k=1

(
1
I

I∑
i=1

1[f(xi)−f(x̃k)≤θ]

)p)1/p

.

This terminology incorporates the “margin” value θ; as usual, we suffer some loss whenever positive
example xi is ranked below negative example x̃k, but now we also suffer loss whenever xi and x̃k have
scores within θ of each other. Note that Rp

S+,S−1θ
f is an empirical quantity, so it can be measured for

any θ. We prove a generalization bound in terms of Rp
S+,S−1θ

f :

Theorem 2. For all ε > 0, θ > 0, and f ∈ F :

PS+∼DI
+,S−∼DK

−

[
Rp
D+D−1f ≤ Rp

S+,S−1θ
f + ε

]

≥ 1− 2N
(
F ,

εθ

8

)[
exp

[
−2
( ε

4

)2p

K

]
+ exp

[
−ε2

8
I

]]
.

This expression states that, provided I and K are large, then with high probability, the true error
Rp
D+D−1f is not too much more than the empirical error Rp

S+,S−1θ
f .

It is important to note the implications of this bound for scalability. Since we are only concentrating
on the negative examples near the top of the ranked list (corresponding to a small chunk of negative
input space), we must require more negative examples to achieve high accuracy; this is precisely what
the bound shows. There is no way to avoid this, so we hope, in the interest of concentrating near
the top of the ranked list, that in practice we have enough examples for the algorithm to generalize.
In our experiments of 200-300 examples this has not been a problem, but our theory predicts that
it may be problematic for experiments with very small data sets. We will discuss this further in
Section 6 and illustrate our point experimentally. The bound above gives us a quantitative indication
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of the scalability of K with p, namely, according to the bound we require order
(

4
ε

)2(p−1) times the
number of negative examples in order to achieve the same accuracy as when p = 1. To summarize the
cautionary note provided by Theorem 2, a sufficient number of examples are needed for generalization,
especially for large p.

The main purpose of Theorem 2 is to provide the theoretical justification required for our choice
of objective, provided a sufficient number of training examples. Let us now write an algorithm for
minimizing that objective.

4 A Specific Family of Objectives and a Boosting-Style Algorithm

We now choose a specific form for our objective Rg,` by choosing `. We have already chosen g to be a
power law, g(r) = rp. From now on, ` will be the exponential loss `(r) = exp(−r). One could just as
easily choose the hinge loss or another loss; we choose the exponential loss in order to compare with
RankBoost. The objective when p = 1 is exactly that of RankBoost. The larger the value of p, the
more we are concentrating at the top of the list (the larger the push). Thus we have our family of
objective functions:

Fp(f) :=
K∑

k=1

(
I∑

i=1

exp[−f(xi) + f(x̃k)]

)p

.

Note that Fp is not normalized to approximate Rp
D+D−1f , but this can easily be accomplished via

1
I(K)1/p (Fp(f))1/p, which is monotonically related to Fp(f).

Now we describe our boosting-style approach. The hypothesis space F is the class of convex
combinations of “weak” rankers {hj}j=1,...,n, where hj : X → [0, 1]. Note that we have allowed
real-valued (confidence-valued) weak rankers. The function f is constructed as a normalized linear
combination of the hj ’s: f =

∑
j λjhj , where λ ∈ Rn. At each iteration of the algorithm, the coefficient

vector λ is updated. At iteration t, we denote the coefficient vector by λt.
We construct a structure M, which describes how each individual weak ranker j ranks each positive-

negative pair i, k. We define M element-wise as: Mikj := hj(xi)−hj(x̃k). Thus, Mikj ∈ [−1, 1]. Since M
has three indices, we need to define right multiplication: (Mλ)ik :=

∑n
j=1 Mikjλj =

∑n
j=1 λjhj(xi)−

λjhj(x̃k) for λ ∈ Rn. Thus, `(f(xi)− f(x̃k)) can now be written as exp(−Mλ)ik.
Remark: The function Fp is convex in λ. This is because exp(−Mλ)ik is a convex function of λ, any
sum of convex functions is convex, and any composition of convex functions is convex.

We now derive a boosting-style coordinate descent algorithm for minimizing Fp as a function
of λ, notating Fp now as Fp(λ). We will add extra normalization to promote numerical stability in
practice. There is much background material available on the convergence of similar coordinate descent
algorithms (for instance [14]). We start with the objective at iteration t:

Fp(λt) :=
K∑

k=1

(
I∑

i=1

exp[(−Mλt)ik]

)p

.

We then compute the variational derivative along each “direction”, and choose weak ranker jt to have
largest absolute variational derivative. The notation ej means a vector of 0’s with a 1 in the jth entry.

jt ∈ argmax
j

∣∣∣dFp(λt + αej)
dα

∣∣∣
α=0

∣∣∣, where

dFp(λt + αej)
dα

∣∣∣
α=0

= p

K∑
k=1



(

I∑
i=1

exp[(−Mλt)ik]

)p−1( I∑
i=1

−Mikj exp(−Mλt)ik

)
 .
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Define the vector qt as usual on pairs i, k: qt,ik := exp[(−Mλt)ik], and dt as usual: dt,ik := qt,ik/
∑

ik qt,ik.
Our choice of jt becomes (ignoring constant factors that do not affect the argmax):

jt ∈ argmax
j

∣∣∣ K∑
k=1



(

I∑
i=1

dt,ik

)p−1 I∑
i=1

dt,ikMikjt


 ∣∣∣.

To update the coefficient of weak ranker jt, we now perform a linesearch for the minimum of
Fp along the jth

t direction. The distance to travel in the jth
t direction, denoted αt, solves 0 =

dFp(λt+αejt )

dα

∣∣∣
αt

. Incorporating renormalization and division by other constants, this equation becomes:

0 =
K∑

k=1



(

I∑
i=1

dt,ik exp[−αtMikjt
]

)p−1( I∑
i=1

Mikjt
dt,ik exp[−αtMikjt

]

)
 . (2)

The value of αt can be computed analytically in some cases, for instance, when the weak rankers are
binary-valued and p = 1 (this is exactly RankBoost). Otherwise, we simply use a linesearch to solve
this equation for αt. To complete the algorithm, we set λt+1 = λt +αtejt

. To avoid having to compute
dt+1 directly from λt, we can still perform the update by

dt+1,ik =
dt,ik exp(−αtMikjt

)
zt

where zt :=
∑
ik

dt,ik exp(−αtMikjt
).

The full algorithm is shown in Figure 1.

1. Input: {xi}i=1,...,I positive examples, {x̃k}k=1,...,K negative examples, {hj}j=1,...,n weak classifiers, tmax

number of iterations, p power.

2. Initialize: λ1,j = 0 for j = 1, ..., n, d1,ik = 1/IK for i = 1, ..., I, k = 1, ..., K Mikj = hj(xi) − hj(x̃k)
for all i, k, j

3. Loop for t = 1, ..., tmax

(a) jt ∈ argmaxj

���PK
k=1

��PI
i=1 dt,ik

�p−1PI
i=1 dt,ikMikjt

� ���.
(b) Perform a linesearch for αt. That is, find a value αt which solves (2).

(c) λt+1 = λt + αtejt , where ejt is 1 in position jt and 0 elsewhere.

(d) zt :=
PK

k=1

��PI
i=1 dt,ik

�p−1 �PI
i=1 dt,ik

��
(e) dt+1,ik := dt,ik exp[(−Mλt)ik]/zt for i = 1, ..., I, k = 1, ..., K

4. Output: λtmax

Fig. 1. Pseudocode for the “Ranking with a Convex Push” algorithm.

5 Experiments

We will now show the effect of adding a push. Namely, we will evaluate the effect of the p-norm on
the leftmost portion of the ROC curve. We will sometimes focus on the value of Rmax, the number of
positives scoring higher than the highest ranking negative. Rmax is indicated exactly by the leftmost
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value of the ROC curve. It is the number of “true positives” when there is one “false positive”. There
are numerous reasonable choices for ` and g, for example, popular choices for ` include the hinge loss,
etc. Our goal is to illustrate the effect of the price g on the quality of the solution; in order to compare
with RankBoost, we use the exponential loss. Here, we hope to show that Rmax, or more generally, the
leftmost portion of the ROC curve, increases steadily with p. Our demonstration shows this firmly;
we will see that the value of Rmax does often increase (fairly dramatically) with p, for both training
and testing.

Experiments have been performed for 6 different values of p, in each of 5 settings, for a total of
30 trials. Values of p chosen are p = 1(RankBoost),2, 4, 8, 16 and 64. Data for these experiments were
obtained from the UCI machine learning repository [13]. We have used the data in its original form
in all but one case; for the wdbc setting described below, we found that a linear combination of all
features could often learn the entire training set, i.e., the problem is separable. Since we prefer to
evaluate non-trivial ROC curves, the problem needs to be made more difficult; this is accomplished
by using fewer features. Here are summaries of the 5 settings:

– pima-indians-diabetes with real features: 768 examples, 8 features. This dataset is particularly
difficult, in terms of classification error, as reported on the UCI summary table. 300 randomly
chosen examples were used for training, and the rest for testing. To construct weak ranker hj , the
values of attribute j were normalized to the interval [−1, 1]; thus there are 8 weak rankers. Our
results are shown in Figure 2.

– pima-indians-diabetes with threshold features: 4 threshold features were obtained from each
real valued feature, via hthresh(x) = 1 iff h(x) > thresh , and hthresh(x) = 0 otherwise. Thresh-
olds used were chosen so that no two threshold features would be equivalent with respect to
the training data. Thresholds are as follows : feature 1: 2,3,6,7, feature 2: 100,130,150,160, fea-
ture 3: 60,65,72,90, feature 4: 1,10,20,30, feature 5: 30,50,80,100, feature 6: 30,32,35,37, feature 7:
0.1,0.2,0.3,0.5, feature 8: 30,33,36,40. Again, 300 examples were used for training, and the rest for
testing. See Figure 3.

– wdbc (Wisconsin Breast Cancer): Out of 569 examples, 200 randomly chosen examples were
used for testing and the rest for training. In order to make sure the algorithm was unable to achieve
a separable solution, only the first six features (columns 3-8) were used. Again, all features were
normalized to have values within [−1, 1]. See Figure 4.

– tic-tac-toe: Here, the data comes as “o”, “x”, and “b”. We set o=0, x=1, b=2, and used all 9
features, normalized. We purposely did not build any knowledge of the game into our model, and
used just the raw data. 500 examples were used for training, and the rest for testing, out of 958
total examples. See Figure 5.

– housing (Boston Housing): 506 total examples, 300 used for training. In order to use the hous-
ing dataset for a binary classification problem, we used the fourth feature (which is binary) as
the label y. The fourth feature describes whether a tract bounds the Charles River. Since there
is some correlation between this feature and the other features, it is reasonable for our learning
algorithm to predict whether the tract bounds the Charles River based on the other features, of
which there are 13. Again, all features were normalized. See Figure 6.

For all experiments, the linesearch for αt was performed using matlab’s ‘fminunc’ subroutine. The total
number of iterations, tmax, was fixed at 200 for all experiments. We examine both training and testing
curves for all settings. In agreement with our algorithm’s derivation, a larger push (p large) causes
the algorithm to perform better near the top of the ranked list. As mentioned in the introduction,
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this ability to correct the top of the list is not without sacrifice; we do sacrifice the ranks of items
farther down on the list, but we have made this choice on purpose. We believe it is important to show
this sacrifice explicitly, thus full ROC curves have been included for all experiments. In no cases did
we find a large deviation in the AUC, hence the sacrifice has been small. This point will be discussed
further in Section 7. For each training and testing ROC curve, we show a “zoomed-in” version of the
leftmost portion. We include the crossover region wherever possible, i.e., the point where the curves
cross and our sacrifice begins. Often there is not a clear crossover point since the curves may cross
many times, so we have just included the first crossover point and somewhat beyond.

Consider the first setting, pima-indians-diabetes with real features. Here, the value of Rmax is
significantly improved for large p; with RankBoost alone, the ranked list has only 4 positive examples
before the first negative. For p = 64, the algorithm has 22 positives before the first negative. Further-
more, the increase in Rmax is completely monotonic in p for both training and testing. It would be
nicer to see the crossover point appear more to the right, but it is clear that the algorithm is strongly
generalizing since the Rmax values are indeed monotonic.

The results for pima-indians-diabetes with threshold features are shown in Figure 3. Again, there is
complete monotonicity in Rmax in both training and testing (although there are some ties in testing).
The overall trend that we expect is present; as p increases, the leftmost part of the ROC curve tends
to increase.
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Fig. 2. Leftmost portion of ROC curves for p = 1, 2, 4, 8, 16 and 64, followed by full ROC curves. It is customary
to perform constant scaling on the axes to obtain a rate, but we have eliminated this for clarity. The values
of Rmax are nondecreasing. (a) pima-indians-diabetes with real valued weak classifiers, training curves. (b)
pima-indians-diabetes with real valued weak classifiers, testing curves.
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Fig. 3. (a) pima-indians-diabetes with thresholded weak classifiers, training curves. (b) pima-indians-diabetes
with thresholded weak classifiers, testing curves.
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For the wdbc setting, we observe the same overall trend in the leftmost part of the ROC curve,
showing that the algorithm is able to generalize. The only curve out of place is the p = 64 curve, which
is slightly below the p = 16 curve. It is true that more examples are needed in order to generalize to
higher values of p, yet the p = 64 curve is still significantly improved over the p = 1 curve (crossing
at the tenth false positive). Thus, the p = 64 curve is still generalizing.
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Fig. 4. (a) wdbc training curves (b) wdbc testing curves

For the tic-tac-toe setting, we again observe the expected trend, however, an outlier has been
encountered during testing. Namely, there is one negative example appearing out of place near the
top of the list, which disturbs the values of Rmax. Aside from this one outlier, the desired trend is
present even as far out as the 16th negative example.

The housing setting yields the clearest view of the effect of the algorithm. The trend from p = 1 to
p = 64 is clearly present and close to monotonic. There is a distinct crossover region, showing exactly
what parts of the ROC curve are gained, and what parts are sacrificed.

6 Limitations

We have decided to include this section in order to more explicitly describe the problem domain for
which the algorithm is useful. As no one algorithm is the best for every problem setting, we wish
to make as clear as possible the settings in which our algorithm is meant to succeed, and in which
domains it is not meant to be used. In other words, we are specifying the boundaries of the appropriate
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Fig. 5. (a) tic-tac-toe training curves (b) tic-tac-toe testing curves
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problem domain. To be blunt, we will show in this section where the algorithm “breaks”, i.e., where
it becomes not useful.

First, it is important to note that the algorithm does not produce a maximum value of the AUC
(area under the ROC curve). This is by design; as mentioned earlier, if we are concentrating on the
top of the ranked list, we do not care about the full ROC curve, only the leftmost part. Users who
wish to concentrate on the AUC might use RankBoost (p = 1). As p increases, we do expect the AUC
to be reduced.

The most definitive boundary of our problem domain involves the sample size. Referring back to
Section 3, the generalization bound of Theorem 2 indicates that for larger values of p, many more
examples are needed in order to allow generalization ability; we are concentrating on a smaller region
of the probability distribution, so this is natural. When the sample size is too small, the algorithm
may still be able to generalize for smaller values of p, but for larger values, we cannot expect the
training curve to represent the testing curve. For the settings shown in Section 5, we have used a
few hundred examples per experiment, which is enough to allow the algorithm to generalize in these
settings. Even though the wdbc setting has the p=16 and 64 curves reversed on the left, the p = 64
curve is still significantly better than the p = 1 curve, so the algorithm is still capable of generalizing
here. In contrast, we now present a setting that compliments our theoretical prediction; in this setting,
a larger value of p will hinder our ability to generalize, due to the small size of the training set. The
setting is the pima-indian-diabetes dataset with only 50 training examples. Here, the algorithm is
able to generalize for small p, but it is not able to generalize for large p. Above a certain p value, its
performance degrades as p increases. Figure 7 shows this explicitly. At low values of p, the algorithm
generalizes; the p = 1 curve lies below the p = 2 curve, which lies below the p = 4 curve. At large
values of p the algorithm does not generalize; the Rmax value for the p = 8 curve is below that of
the p = 1 curve, and the p = 16 and 64 curves are even below this. Thus, in agreement with our
theoretical prediction, the algorithm is suitable only for settings where a sufficiently large training set
is available, and in this case, 50 training examples is not sufficient.

This example shows (what we believe is) the main cautionary note to experimentalists when using
this algorithm, and for that matter, when using any other algorithm that concentrates on a small part
of the input space.

7 Discussion and Open Problems

As mentioned in Section 5, we have shown that an increase in p tends to increase the value of Rmax,
but how severe is the sacrifice that we make farther down the ranked list? All of the full ROC training
curves in Section 5 (with perhaps the exception of housing) do not show any significant sacrifice, even
between the p = 1 and p = 64 curves. To explain this observation, recall that we are working with
learning machines of very limited capacity. The number of real valued features has not exceeded 13,
and none of these learning machines are able to create a completely consistent decision boundary with
respect to the training examples. In other words, there is not too much flexibility in the set of solutions
that yield good rankings; the algorithm chooses the best solution from this limited choice. If a learning
machine is high capacity, it has the flexibility to change the shape of the ROC curve dramatically.
Accordingly, in experimental situations, a high capacity learning machine generally is able to produce
a consistent (or nearly consistent) decision boundary. This is one possible reason for our sacrifice to
have been small in experimental settings; otherwise the AUC would be close to 1 and the ROC curve
would be a straight line, which is not so interesting from the perspective of comparison. In order to
achieve a dramatic change in the ROC curves (by changing p), one might attempt to find a dataset
and a high complexity hypothesis space such that no hypothesis can achieve a good decision boundary.
We leave it as an interesting open problem to find such a dataset and hypothesis space, hopefully in
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Fig. 7. The pima-indians-diabetes dataset with only 50 training examples. The algorithm is able to generalize
for early values of p, but it does not generalize for large values of p. This underscores the need for a sufficiently
large training set for large p values. Top: full training ROC curve. Bottom: Zoomed in version of testing ROC
curve and full testing ROC curve.



16 Cynthia Rudin

a realistic setting. That is, we challenge the reader to find a dataset and hypothesis space such that
an increase in p causes a dramatic change in the full ROC curve.

Another important direction for future research is the choice of loss function ` and price function
g. The choice of loss function is a thoroughly-studied topic, however, the choice of price function adds
a new dimension to this problem. One appealing possibility is to choose a non-monotonic function for
g. The only algorithmic requirement is that g be convex. This matter is currently under investigation.

8 Conclusions

We have provided a method for constructing a ranked list where correctness at the top of the list is
most important. Our main contribution is a general set of convex objective functions determined by
a loss ` and price function g. A boosting-style algorithm based on a specific family of these objectives
is derived. We have demonstrated the effect of a number of different price functions, and it is clear,
both theoretically and empirically, that a steeper price function concentrates harder at the top of the
list.
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A Proof of Theorem 2

We define a Lipschitz function φ : R → R (with Lipschitz constant Lip(φ)) which will act as our loss function,
and gives us the margin. We will eventually use the same piecewise linear definition of φ as Koltchinskii and
Panchenko [9], but for now, we require 0 ≤ φ(z) ≤ 1 ∀z and φ(z) = 1 for z < 0. Since φ(z) ≥ 1[z≤0], we can
define an upper bound for Rp

D+D−1f :

Rp
D+D−φf :=

�
Ex−∼D−(Ex+∼D+φ(f(x+)− f(x−)))p�1/p

.

By definition, Rp
D+D−1f ≤ Rp

D+D−φf . The empirical error associated with Rp
D+D−φf is:

Rp
S+,S−φf :=

 
1

K

KX
k=1

 
1

I

IX
i=1

φ(f(xi)− f(x̃k))

!p!1/p

.

First, we upper bound Rp
D+D−φf by two terms: the empirical error term Rp

S+,S−φf , and a term charac-

terizing the deviation of Rp
S+,S−φf from Rp

D+D−φf uniformly:

Rp
D+D−1f ≤ Rp

D+D−φf = Rp
D+D−φf −Rp

S+,S−φf + Rp
S+,S−φf ≤ sup

f̄∈F
(Rp
D+D−φf̄ −Rp

S+,S−φf̄ ) + Rp
S+,S−φf .

The proof of Theorem 2 involves an upper bound on the first term. We provide this upper bound through a
couple of lemmas. First, define L(f) as follows:

L(f) := Rp
D+D−φf −Rp

S+,S−φf .

The following lemma is true for every training set S:

Lemma 1. For any two functions f1, f2 ∈ L∞(X ),

L(f1)− L(f2) ≤ 4Lip(φ)||f1 − f2||∞.

Proof. First, we rearrange the terms:

L(f1)− L(f2) = Rp
D+D−φf1 −Rp

S+,S−φf1 −Rp
D+D−φf2 + Rp

S+,S−φf2

= [Rp
D+D−φf1 −Rp

D+D−φf2 ]− [Rp
S+,S−φf1 −Rp

S+,S−φf2 ]. (3)

We upper bound the second bracketed term of (3),"
1

K

KX
k=1

"
1

I

IX
i=1

φ(f1(xi)− f1(x̃k))

#p#1/p

−
"

1

K

KX
k=1

"
1

I

IX
i=1

φ(f2(xi)− f2(x̃k))

#p#1/p

≤
"

1

K

KX
k=1

�����1I
IX

i=1

φ(f1(xi)− f1(x̃k))− 1

I

IX
i=1

φ(f2(xi)− f2(x̃k))

�����
p#1/p

≤
"

1

K

KX
k=1

"
1

I

IX
i=1

|φ(f1(xi)− f1(x̃k))− φ(f2(xi)− f2(x̃k))|
#p#1/p

≤
"

1

K

KX
k=1

"
1

I

IX
i=1

Lip(φ)|f1(xi)− f1(x̃k)− f2(xi) + f2(x̃k)|
#p#1/p

≤
"

1

K

KX
k=1

"
1

I

IX
i=1

Lip(φ)2 sup
x
|f1(x)− f2(x)|

#p#1/p

= Lip(φ)2‖f1 − f2‖∞.

Here, we have used both the triangle inequality for `p(RK) and the definition of the Lipschitz constant for φ.
An identical calculation for the first bracketed term of (3) yields:

|Rp
D+D−φf1 −Rp

D+D−φf2 | ≤ 2Lip(φ)||f1 − f2||∞.

Combining the two terms yields the statement of the lemma. ut
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The following step appears in Cucker and Smale [6]. Let `ε := N
�
F , ε

8Lip(φ)

�
, the covering number of F

by L∞ disks of radius ε
8Lip(φ)

. Define f1, f2, ..., f`ε to be the centers of such a cover, i.e., the collection of L∞
disks Br centered at fr and with radius ε

8Lip(φ)
is a cover for F . In the proof of the theorem, we will use the

center of each disk to act as a representative for the whole disk. So, we must show that we do not lose too
much by using fr as a representative for disk Br.

Lemma 2. For all ε > 0,

PS∼Dm{ sup
f∈Br

L(f) ≥ ε} ≤ PS∼Dm{L(fr) ≥ ε

2
}.

Proof. By Lemma 1, for every training set S and for all f ∈ Br,

sup
f∈Br

L(f)− L(fr) ≤ 4Lip(φ)||f − fr||∞ ≤ 4Lip(φ)
ε

8Lip(φ)
=

ε

2

Thus,

sup
f∈Br

L(f) ≥ ε =⇒ L(fr) ≥ ε

2
.

The statement of the lemma follows directly. ut

Here is a small lemma from calculus that will be useful in the next proof.

Lemma 3. For a, b ∈ R+, it is true that |a1/p − b1/p| ≤ |a− b|1/p.

Proof. It is true that for c ≥ 0, we have |c− 1|p ≤ |cp − 1|. Let c = a1/p/b1/p. The lemma directly follows.

We now incorporate the fact that the training set is chosen randomly.

Lemma 4. For all ε1 > 0,

PS+∼DI
+,S−∼DK

−
(L(f) ≥ ε1) ≤ 2 exp

�
−2
� ε1

2

�2p

K

�
+ 2 exp

�
− ε21

2
I

�
.

Proof. Define

Rp
S+,D−φf :=

 
Ex−∼D−

 
1

I

IX
i=1

φ(f(xi)− f(x−))

!p!1/p

.

Now,

PS+∼DI
+,S−∼DK

−
(L(f) ≥ ε1)

= PS+∼DI
+,S−∼DK

−
(Rp
D+D−φf −Rp

S+,D−φf + Rp
S+,D−φf + Rp

S+,S−φf ≥ ε1)

≤ PS+∼DI
+

�
Rp
D+D−φf −Rp

S+,D−φf ≥ ε1
2

�
+ PS+∼DI

+,S−∼DK
−

�
Rp

S+,D−φf −Rp
S+,S−φf ≥ ε1

2

�
(4)

=: term1 + term2.

Let us bound the second term of (4), denoted term2. We are going to use McDiarmid’s Inequality on the
negative examples. In order to do this, we will calculate the largest possible change in (Rp

S+,S−φf )p that one
negative example can cause. Since φf is bounded between 0 and 1, the largest possible change is:

1

K

 
1

I

IX
i=1

1

!p

= 1/K.

Thus, McDiarmid’s Inequality implies that for all ε2 > 0:

PS−∼DK
−

h���Ex−∼D−
�

1
I

PI
i=1 φ(f(xi)− f(x−))

�p

− 1
K

PK
k=1

�
1
I

PI
i=1 φ(f(xi)− f(x̃k))

�p��� ≥ ε2
i

≤ 2 exp

�
−2ε22
K 1

K2

�
= 2 exp

�−2ε22K
�
. (5)
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The following is true for any S+, due to Lemma 3 above:

Rp
S+,D−φf −Rp

S+,S−φf =

 
Ex−∼D−

 
1

I

IX
i=1

φ(f(xi)− f(x−))

!p!1/p

−
 

1

K

KX
k=1

 
1

I

IX
i=1

φ(f(xi)− f(x̃k))

!p!1/p

≤
�����Ex−∼D−

 
1

I

IX
i=1

φ(f(xi)− f(x−))

!p

− 1

K

KX
k=1

 
1

I

IX
i=1

φ(f(xi)− f(x̃k))

!p�����
1/p

. (6)

Combining (5) and (6) yields a bound on term2. Namely, for all ε3 > 0:

PS−∼DK
−

�
Rp

S+,D−φf −Rp
S+,S−φf ≥ ε3

�

≤ PS−∼DK
−

2
4
�����Ex−∼D−

 
1

I

IX
i=1

φ(f(xi)− f(x−))
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KX
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1

I
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φ(f(xi)− f(x̃k))

!p�����
1/p

≥ ε3

3
5

= PS−∼DK
−

"�����Ex−∼D−
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I
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φ(f(xi)− f(x−))

!p

− 1

K

KX
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1

I

IX
i=1

φ(f(xi)− f(x̃k))

!p����� ≥ εp
3

#

≤ 2 exp
�−2ε2p

3 K
�
. (7)

Letting ε3 := ε1/2 finishes our work on term2. Now we consider term1 of (4).

PS+∼DI
+

�
Rp
D+D−φf −Rp

S+,D−φf ≥ ε1
2

�

= PS+∼DI
+

0
@�Ex−∼D−

�
Ex+∼D+φ(f(x+)− f(x−))

�p�1/p −
 

Ex−∼D−

 
1

I
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φ(f(xi)− f(x−))

!p!1/p

≥ ε1
2

1
A

= PS+∼DI
+

0
@Ex+∼D+φ(f(x+)− f(·))

Lp(X−,D−)
−
1

I

IX
i=1

φ(f(xi)− f(·))
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≥ ε1
2

1
A

≤ PS+∼DI
+

0
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Ex+∼D+φ(f(x+)− f(·))− 1

I
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φ(f(xi)− f(·))
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1
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I

IX
i=1

φ(f(xi)− f(·))
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2

1
A .

We use McDiarmid’s Inequality again to complete the proof. The largest possible change in 1
I

PI
i=1 φ(f(xi)−

f(x−)) due to the replacement of one positive example is 1/I. Thus, for all x−,

PS+∼DI
+

 �����Ex+∼D+φ(f(x+)− f(x−))− 1

I
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φ(f(xi)− f(x−))

����� ≥ ε1
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!
≤ 2 exp
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�
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2
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I 1
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#
= 2 exp
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− ε21I

2

�
.

Combining this result with (4) and (7) yields the statement of Lemma 4.

Proof. (Of Theorem 2) Since the Dp are a cover of F , it is true that

sup
f∈F

L(f) ≥ ε ⇐⇒ ∃p ≤ `ε such that sup
f∈Dp

L(f) ≥ ε.

First applying the union bound, then applying Lemma 2, and then Lemma 4, we find:

PS+∼DI ,S−∼DK

�
sup
f∈F

L(f) ≥ ε

�
≤

`εX
r=1

PS+∼DI ,S−∼DK

�
sup

f∈Dr

L(f) ≥ ε

�
≤

`εX
r=1

PS+∼DI ,S−∼DK {L(fr) ≥ ε/2}

≤ N
�
F ,

ε

8Lip(φ)

��
2 exp

�
−2
� ε

4

�2p

K

�
+ 2 exp

�
− ε2

8
I

��
.
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Now we put everything together. With probability at least

1−N
�
F ,

ε

8Lip(φ)

��
2 exp

�
−2
� ε

4

�2p

K

�
+ 2 exp

�
− ε2

8
I

��
,

we have
Rp
D+D−1f ≤ Rp

S+,S−φf + ε.

Let us choose φ(z) = 1 for z ≤ 0, φ(z) = 0 for z ≥ θ, and linear in between, with slope 1/θ. Thus, Lip(φ) = 1/θ.
Since φ(z) ≤ 1 for z ≤ θ, we have:

Rp
S+,S−φf =

 
1

K

KX
k=1

 
1

I

IX
i=1

φ(f(xi)− f(x̃k))

!p!1/p

≤
 

1

K

KX
k=1

 
1

I

IX
i=1

1[f(xi)−f(x̃k)≤θ]

!p!1/p

= Rp
S+,S−1θ

f .

Thus, with probability at least

1−N
�
F ,

ε

8Lip(φ)

��
2 exp

�
−2
� ε

4

�2p

K

�
+ 2 exp

�
− ε2

8
I

��
,

we have
Rp
D+D−1f ≤ Rp

S+,S−1θ
f + ε.

Thus, the theorem has been proved. ut


